
Recursive Loop-Free Alternates for Full Protection
Against Transient Link Failures

Suksant Sae Lor, Redouane Ali, Raul Landa, and Miguel Rio
Department of Electronic & Electrical Engineering

University College London, UK
Email: {s.lor, r.ali, r.landa, m.rio}@ee.ucl.ac.uk

Abstract—In this paper, we propose a routing technique,
“recursive Loop-Free Alternates (rLFAs)”, to alleviate packet
loss due to transient link failures. The technique consists of a
backup path calculation with corresponding re-routing scheme
based on the Loop-Free Condition (LFC) as defined in the
basic specification for IP Fast Re-Route (IPFRR). Under this
routing strategy, nodes calculate backup paths by modifying the
weights of links in the primary shortest path tree. If a failure
occurs, the detecting node determines the number of recursions,
which indicates the number of times packets must be forwarded
along the alternate next hops to bypass the failed link. This
technique guarantees full repair coverage for single link failures.
We evaluate the performance of our proposed technique through
simulations and show that the incurred overheads, the stretch of
its pre-computed alternate paths, and the failure-state Maximum
Link Utilisation (MLU) are minimal.

I. INTRODUCTION

Network reliability has been an important research topic
over the past few decades due to the growth of sensitive ser-
vices and applications. However, the current routing paradigm
fails to satisfy the requirement for high reliability networks.
Self-healing operation such as re-convergence does not provide
sufficient resilience due to the time required to complete the
process, hence the need for fast re-route mechanisms to cope
with these issues.

The work described in [1] provides an analysis of link
failures in today’s backbone Internet and shows that about 50%
of failures are transient, where primary routes are unavailable
for short time durations (<1 minute) until the network re-
converges and new routes are computed. Furthermore, it has
been shown in [2] that about 70% of link failures occur one
at a time i.e., single link failures.

To account for this issue, several approaches based on IP
Fast Re-Route (IPFRR) [3], in which alternate paths are pre-
computed for fast re-route in presence of failures, have been
proposed to alleviate packet loss rate due to failures. Some of
the proposed algorithms include Loop Free Alternates (LFAs)
[4], not-via addresses [5], Failure Carrying Packet (FCP) [6]
and Multiple Routing Configuration (MRC) [7]. However,
these schemes either do not guarantee full protection, are im-
practical in presence of frequent failures or require excessive
computational and memory overheads.

Our proposed algorithm also falls within the IP Fast-Re-
Route framework but does not suffer from the drawbacks just
mentioned. In our proposed scheme, a node adjusts a counter

for the number of recursions, i.e., number of hops, necessary
for forwarding through the alternate path before packets can
be routed via the primary path again. This approach guarantees
full coverage against single failures and incurs low computa-
tional and memory overheads.

The rest of this paper is organised as follows. In Section
II, we describe the basic concepts of loop-free re-routing.
We introduce our technique as an alternative to the basic
mechanisms in Section III and prove the key properties of our
routing strategy to ensure it is complete and correct. Section
IV evaluates the performance of the routing technique with
respect to incurred stretch of alternate paths, overheads and
network loads. We conclude the paper in Section V.

II. LOOP-FREE RE-ROUTING

The concept of fast re-route in IP networks is not new.
Several techniques have been proposed based on the IPFRR
framework. These techniques focus primarily on mechanisms
for repairing paths rather than mechanisms for fast failure
detection. For examples, Loop-Free Alternates (LFAs) [4] and
not-via addresses [5] are well-known techniques for providing
alternate paths in the presence of failures. Other proposals such
as Multiple Routing Configurations (MRC) [7] and Failure
Carrying Packets (FCP) [6] have similar objectives, that is,
to allow routers to react to failures as quickly as possible.
However, each of these strategies has drawbacks. LFAs do
not guarantee full protection even if an alternate path may be
available. Not-via addresses require nodes to perform IP-in-
IP tunnelling, which may degrade their performance. MRC
requires excessive computational and memory overheads in
order to generate different routing configurations that allow
routers to bypass failures. Although, unlike other techniques,
FCP is capable of handling multiple failures, it requires
intensive computations and very large packet overhead. This
paper focuses on LFAs and not-via addresses as they are
practical in current IP networks.

A. Loop-Free Alternates
The basic specification of LFAs is defined in [4]. In general,

LFAs can be categorised according the following conditions,
which determine the ability of nodes to serve as alternate next
hops: 1) loop-free condition (LFC); 2) node-protection condi-
tion (NPC); 3) downstream condition (DSC); and 4) equal-cost
multi-path condition (ECMP). LFC is the basic condition used

978-1-4244-7755-5/10/$26.00 ©2010 IEEE 44

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1904612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to guarantee loop-free forwarding in the presence of failures.
However, its coverage does not include node failures. NPC
recovers packets from node failures via longer alternate paths.
Note that, LFAs do not handle multiple failures which might
cause forwarding loops. However, LFAs that satisfy DSC and
ECMP conditions do not suffer from this problem. Our routing
technique focuses on handling single link failures based on (1).

cost(ni, d) < cost(ni, s) + cost(s, d) (1)

where ni is a neighbour of s, the detecting node, and d is the
destination router.

LFAs do not require any major modifications to the existing
routing paradigm. The techniques make use of additional
information about the alternate next hops pre-computed by
each router. Due to their simple implementation and minimal
requirements, LFAs become good alternatives for handling
single failures where full protection is not necessary.

B. Not-Via

The not-via addresses are defined in [5]. In the presence of
failures, these addresses are used to protect specific interfaces;
therefore two IP addresses are required for each interface in
the network. Basically, not-via addresses are used to deviate
the traffic around the failed elements by employing IP-in-
IP tunnelling. Not-via addresses specify the failed nodes so
that packets being re-routed along the repair paths do not
encounter the failures. Although the computation of not-via
addresses is based on nodes removal, a link failure is assumed
if the detecting node is directly connected to the destination
to guarantee full coverage of recoverable failures.

Although not-via addresses provide 100% repair paths for
any single failure in arbitrary networks, these paths are con-
siderably longer than the optimal shortest paths after network
re-convergence.

III. RECURSIVE LOOP-FREE ALTERNATES

Computing backup paths can be simple with the help of
source-based routing. However, designing hop-by-hop resilient
routing protocols that can recover from failures quickly and
with low complexity has proven difficult.

We propose a re-routing technique based on recursive Loop-
Free Alternates (rLFAs) to provide loop-free repair paths for
all recoverable single link failures. In general, the technique
employs a series of alternate next hops pre-computed by
routers. These alternate next hops are obtained based on a dis-
joint paths concept. However, re-routing must be assisted with
a counting mechanism that allows packets to be forwarded
through alternate next hops for a number of times before they
can be routed normally via the primary path. The following
describes the algorithms used to compute the alternate next
hops and the number of recursions required to bypass a failure,
and the packet forwarding mechanism.

Input: s, d, G, Ep(s, d)
Output: ns(s, d)

1: G′ ← G
2: for all (i, j) ∈ Ep(s, d) do
3: w′(i, j) ← w(i, j) + Wt

4: end for
5: T ′

s = ShortestPath(G′, s)
6: ns(s, d) ← φ(T ′

s(d))
7: return ns(s, d)

Fig. 1. Computing the alternate next hop.

A. Computing Alternate Next Hops
Let G = (V,E) be the graph with vertices V = {v1, v2, ...}

and edges E ∈ V × V representing the network topology.
Given an edge (i, j), we assign it a weight w(i, j) ∈ R > 0.
We define Wt as the total weight of all links in E:

Wt :=
∑

(i,j)∈E

w(i, j) (2)

We seek to assign to each destination vi a maximally disjoint
secondary path, so that the backup path will have as few links
in common with the primary path as possible.

Let Ep(s, d) be the set of links used in the primary path
from s to d. The primary next hop and its alternate are denoted
by np(s, d) and ns(s, d) respectively. Using Wt as a link
weight re-calculation factor, the algorithm shown in Fig. 1
is run on each router for each source-destination pair. The
output of the function ShortestPath is the shortest path tree
Ts rooted at s, with Ts(d) being the shortest path from s to
d excluding s, and φ(Ts(d)) the first node in Ts(d).

The outputs of the algorithm shown in Fig. 1 construct
S(d) = {ns(v1, d), ns(v2, d), ...}, the alternate next hop nodes
that every node will use to route packets to d under failure
conditions. Thus, the algorithm outlined in Fig. 1 calculates
an alternate next hop for each source-destination pair, which is
the first hop of an alternate path that is maximally link disjoint
from its corresponding normal path. However, forwarding
packets to an alternate next hop in the presence of a failure
does not guarantee a consistent operation as the information
of the failed link is locally known to the detecting node. Thus,
we need to employ a mechanism that uses these pre-computed
alternate next hops to route packets to their destinations via
loop-free paths.

We now introduce the algorithm used to compute the
number of recursions re-routed packets must observe via a
series of alternate next hops and the forwarding mechanism.

B. Computing Number of recursions
As each router in the network may have different backup

paths for the same destination, forwarding must be aided
with an additional mechanism that allows correct operation
under failure conditions. Our technique computes and employs
the number of recursions, Nr(s, d), that indicate the number
of alternate hops re-routed packets must go through via the

978-1-4244-7755-5/10/$26.00 ©2010 IEEE 45

Input: s, d, S(d)
Output: Nr(s, d)

1: Nr(s, d) ← 1
2: nc ← s
3: C ← ∅
4: while nc %= d ∧ nc /∈ C do
5: C ← C ∪ nc

6: if cost(nc, d) < cost(nc, s) + cost(s, d) then
7: break
8: else
9: Nr(s, d) ← Nr + 1

10: nc ← ns(nc, d)
11: end if
12: end while
13: return Nr(s, d)

Fig. 2. Computing the number of recursions.

alternate path to ensure that no forwarding loop exists. We
now illustrate how, with inconsistent information on the local
alternate paths, packets can be forwarded consistently under
our routing scheme.

The number of recursions Nr(s, d) used by rLFAs routing
is included in the packet header in order to ensure consistency.
If we recall S(d) = {ns(v1, d), ns(v2, d), ...} and define nc as
the node being determined, the Nr(s, d) value can be obtained
using the algorithm shown in Fig. 2.

The algorithm first initialises Nr(s, d) = 1 and nc = s. Its
alternate next hop, ns(nc, d), is then examined using (3).

cost(nc, d) < cost(nc, s) + cost(s, d) (3)

If ns(nc, d) satisfies (3), the algorithm returns the current
value of Nr(s, d). However, if the condition is not satisfied, the
algorithm increments Nr(s, d) by 1 and uses ns(nc, d) as its
next nc. This process iterates until either it finds the node that
satisfies the condition, reaches the destination, or gets caught
in a loop (i.e. no alternate path is available).

C. Packet Forwarding

Since re-routing based on rLFAs does not affect normal
route calculation, packets can be forwarded to all destinations
via the shortest path in the absence of failures. The operations
at each node when a packet arrives are summarised in Fig. 3.

When a node s detects a failure in one of its outgoing links,
it marks those packets which would be forwarded through
the affected link with the number of recursions, Nr, that
corresponds to the destination router of the packet. If an
alternate path to that node exists, it decrements the Nr value
in the packet and forwards it to its alternate next hop. When
a node receives a marked packet, it determines the value of
Nr. If Nr > 0, its value is decremented by 1 and the packet
is forwarded to the node’s alternate next hop. However, if
Nr = 0, the node forwards the packet to its normal next hop
until it reaches the destination.

Input: in pkt
Output: out pkt

1: if in pkt.Nr == 0 then
2: if (s, np(s, in pkt.d)) == failed then
3: in pkt.Nr ← Nr(s, in pkt.d)− 1
4: return out pkt← in pkt
5: else
6: return out pkt← in pkt
7: end if
8: else
9: if (s, ns(s, in pkt.d)) == failed then

10: Drop(in pkt)
11: return null
12: else
13: in pkt.Nr ← in pkt.Nr − 1
14: return out pkt← in pkt
15: end if
16: end if

Fig. 3. Packet processing at node s.

It is important to note that, rLFAs handle only single
link failures. Certain cases of multiple failures can lead to
forwarding loops. However, this problem can be trivially
solved. We propose the use of an extra bit to indicate a re-
routed packet. That is, if a packet encounters a failure, the
detecting node also marks it using this bit, in addition to the
Nr. If a marked packet experiences a failure again, it will be
dropped immediately.

D. Optimisation
Evidently, the calculations of alternate next hops and their

corresponding Nr values imply additional computations for
network elements. Since these only need to be performed
for stable topology configurations to pre-compute and cache
relevant values (as opposed to be carried out constantly),
these can be “amortised” over longer time periods. Thus, it
is feasible to perform the algorithm at practical speeds, even
using commodity hardware.

If additional efficiency is required, optimised shortest path
algorithms can be used. One such algorithm is the incremental
shortest path first algorithm (iSPF) [8], which avoids the cal-
culation of the whole shortest path tree and instead terminates
the computation once the shortest path between the source
and destination has been found. This significantly reduces the
computation time of the alternate next hops.

E. Properties
The two key properties of our routing technique are: 1)

full repair coverage for recoverable single link failures, and
2) loop-free forwarding. These properties are guaranteed if
the routing scheme is complete and correct in the presence of
recoverable failures. Definitions for these concepts are now
given. For the remainder, we assume that equal-cost paths
can be distinguished, so that all paths are essentially cost-
unique, and all algorithms choose from between equal-cost

978-1-4244-7755-5/10/$26.00 ©2010 IEEE 46

paths following a deterministic algorithm. Typical ways of
achieving this include differentiating by the number of hops
or on the basis of the interface ID of the first link.

Definition 3.1: A single link failure is recoverable for a
source-destination node pair if there is at least one alternate
path from the source to the destination which does not traverse
the failed link.

Definition 3.2: The routing technique is complete if the
combination of local alternate next hops and the packet
forwarding mechanism guarantees a successful packet delivery
in case of any single link recoverable failures.

Definition 3.3: The routing technique is correct if the com-
bination of local alternate next hops and the packet forwarding
mechanism can forward packets to the destination in case
of any single link recoverable failures without traversing the
failed links.

First, we show that our routing strategy is complete in the
presence of any recoverable single link failures.

Theorem 3.1: If G is not disconnected after the removal
of link (s, np(s, d)), then there exists a path from s to d via
(s, ns(s, d)) that does not traverse link (s, np(s, d)) under fast
re-route using rLFAs.

Proof: We call D the set of paths from s to d that do not
include (s, np(s, d)). If D = ∅, the failure is non-recoverable
by definition. Thus, we proceed to prove that if D %= ∅, the
re-route using rLFAs algorithm will always find an alternate
path from s to d in D.

We proceed by contradiction, assuming that D %= ∅ and
nonetheless the algorithm has found that np(s, d) = ns(s, d).
This implies that the weight of all paths in D is strictly higher
than Wt, since the algorithm adds Wt to the weight of each
one of the links of the primary shortest path in order to find the
alternate path from s to d, and w(i, j) > 0; ∀(i, j). However,
the longest path from s to d over G would be an Eulerian path,
whose weight could be of at most Wt, and thus the weight
of all paths in D could be of at most Wt. Hence, we have a
contradiction, and D %= ∅ implies that np(s, d) %= ns(s, d).

Second, we also show that incorporating the pre-computed
alternate next hops with the alternate next hop counting
mechanism can forward re-routed packets to the destination
correctly under failure scenarios. Note that, the packet for-
warding in normal case is based on the shortest path tree and
hence, it is correct.

Theorem 3.2: If there exists a path from s to d without link
(s, np(s, d)), fast re-route using rLFAs can forward packets
from s to d without traversing (s, np(s, d).

Proof: Let Tp(d) be the shortest path tree rooted at d and
Hs(s, d) = {h1, h2, ...} be the hop sequence of the alternate
path from s to d excluding s, which is locally known to s.
We denote Tp(ds) as the subgraph of Tp(d) below s, which
includes s with a set of vertices N .

Given E is a set of vertices in N that are employed by the
alternate path from s to d. Each node ei in E has the alternate
next hop, ns(ei, d). As each node ei shares some links in the
Tp(d) with s, Hs(s, d) must involve ns(ei, d).

A re-routed packet can encounter a failed link (s, np(s, d))
if and only if it traverses along Tp(d) starting from any node
in E. However, a node will forward a re-routed packet through
Tp(d) only if the Nr value is 0 - after this the packet will no
longer be routed by using alternate next hops.

Since all nodes in E have alternate next hops that coincide
with the alternate path from s to d, no re-routed packets
arriving at ei will have a zero value Nr. Thus, packets will not
be routed along Tp(d) starting from ei. Furthermore, packets
will not be routed via Tp(d) starting from a node in N that
does not belong to E either, since N − E and Hs(s, d) are
disjoint sets.

Finally, routing via Tp(d) from any node outside N will not
cause packets to traverse (s, np(s, d)), because these nodes are
not elements of Tp(ds).

Alternatively, the correctness can be proved using the con-
dition expressed in (3). If none of the nodes satisfy (3), the
routing technique fails to find an alternate paths. That is, the
failure is non-recoverable.

Therefore, we conclude that a path for re-routing packets
from s to d does not involve the failed link (s, np(s, d)).

IV. PERFORMANCE EVALUATION

This section presents our evaluation of fast re-route using
rLFAs. We explore the incurred overheads, stretch of alternate
paths and the network traffic in post-failure scenarios.

A. Method
We create our own software model to compute the alternate

next hops and the number of recursions a re-routed packet
needs to be forwarded along rLFAs of intermediate routers in
the presence of failures. We run our simulations on a machine
with a 2.16 GHz Intel Core 2 Duo processor and 2 GB
memory. We use the Abilene [9] and GEANT [10] topologies,
with corresponding real traffic matrices. To illustrate that our
technique can perform well for arbitrary network topologies,
we also use the Point-of-Presence (PoP) level topologies of
Abovenet and Sprint inferred from Rocketfuel data [11].

Unfortunately, these inferred topologies do not have avail-
able traffic matrices. Therefore, we use the gravity models
[12] to generate realistic traffic matrices composed of edge-
to-edge flows. We use data from the U.S. Census Bureau [13]
and the United Nations Statistics Division [14] to calculate
the city population of each node in the network. In addition,
we employ the Breadth-First Search algorithm to assign link
capacity [15] in Abovenet and Sprint topologies. Furthermore,
we scale the traffic matrices such that the maximum link
utilisation does not exceed 100% under failure-free conditions.

Not-via addresses provide the same properties as rLFAs.
Nevertheless, it requires complex mechanisms, i.e. IP-in-IP
tunnelling. Usually not-via computation assumes a node fail-
ure; therefore, the stretch of alternate paths is obviously longer
than OSPF re-route and rLFAs. Consequently, comparing
stretch of alternate paths computed using not-via and rLFAs
cannot yield an impartial result. Although it is possible to
employ not-via addresses in combination with LFAs in order

978-1-4244-7755-5/10/$26.00 ©2010 IEEE 47

to reduce the traffic that requires encapsulation [5], there are
no strong advantages [16]. In addition, modifying not-via to
cope with only link failures will yield the similar results as
those of OSPF re-route. Therefore, we use OSPF re-route (the
shortest paths after re-convergence) as the only benchmark
throughout this evaluation.

B. Overheads
The overheads incurred by our routing strategy are evaluated

as follows.
1) Computational Overhead: We evaluate the computa-

tional overhead required by computing the algorithm com-
plexity. First, computing the alternate next hops for all source-
destination node pairs require: O(n4 +D∗n2) given that D is
the diameter of the network. Second, computing the number
of recursions, Nr, for all soure-destination node pairs require:
O(D ∗ n). Therefore, the overall computational overhead can
be expressed as: O(n4 + D ∗ n2) + O(D ∗ n2).

Although the algorithm is computationally demanding, sim-
ulation results show that practical topologies have no difficulty
in implementing rLFAs. For example, the backbone topology
of Sprint which consists of 315 nodes and 972 symmetric
links requires less than 100 ms to complete the computation
of alternate next hops and their corresponding number of
recursions, Nr, for all destinations. With this in mind, we
conclude that our routing scheme does not incur significant
computational overhead.

2) Memory Overhead: To enable re-routing via rLFAs,
a router must store additional information about for each
existing destination. In other words, in addition to the normal
next hop, the alternate next hop and its corresponding number
of recursions, Nr, must be maintained. However, no additional
routing table entries are required; hence re-routing via rLFAs
does not entail excessive memory overhead.

3) Packet Overhead: Our forwarding scheme requires
packet space to store the number of recursions packets must be
forwarded along the alternate next hops, Nr. In addition, an
extra bit is needed to indicate packets that has experienced
a failure to avoid possible forwarding loops resulted from
multiple failures.

We conduct simulations on a large number of topologies,
both real and computer generated, we find that alternate paths
across all topologies have Nr ≤ 7; therefore only 3 bits are
required. However, the length of the Nr field can be adapted
to suit other network topologies. Moreover, if the first alternate
next hop (from the point of failure) satisfies the condition
expressed in (3), we can initialise the Nr value to 0.

C. Routing Results
The characteristics of alternate paths used to re-route traffic

from failures have an impact on the routing performance. We
refer the ratio of alternate paths to their primary paths as
the “stretch”, and use it to evaluate the performance of our
technique.

The main objective of fast re-route is to prevent packets
from being dropped due to failures. However, it is vital to

Fig. 4. Stretch comparison between OSPF re-route and rLFAs of Abilene
topology.

TABLE I
AVERAGE STRETCH INCURRED BY OSPF RE-ROUTE AND RLFAS OF

DIFFERENT NETWORK TOPOLOGIES.

Topology Stretch Equal stretch (%)
OSPF re-route rLFAs

Abilene 2.413 2.417 98.182
GEANT 2.669 2.682 96.245
Abovenet 1.438 1.462 95.614
Sprint 1.313 1.319 94.812

examine the stretch incurred by routing through alternate paths
as a long path would degrade the quality of service of sensitive
applications. Consequently, the most preferable alternate path
is the path with a stretch of 1. That is, the distance between
the point of failure to the destination through an alternate path
is equivalent to that of its corresponding shortest path.

Figure 4 illustrates the stretch incurred by alternate paths
under OSPF re-route and rLFAs of Abilene network. Our
simulation results show that the stretch difference between
the best available paths and alternate paths computed by our
algorithms is marginal regardless of network topology. As
the results of OSPF re-route and rLFAs are very similar, we
compare the stretch of these two strategies using the average
stretch of all source-destination node pairs.

From these simulation results, we can conclude that rLFAs
is capable of alleviating the problem of forwarding disruptions
due to single link failures using near optimal paths (i.e. the
shortest paths after re-convergence).

D. Traffic Results
We analyse the maximum link utilisation over different

failure scenarios of each topology. The simulation result of
Abilene network is illustrated in Fig. 5. The graph represents
the fraction of links with MLU exceeding the value in x-axis.
OSPF represents MLU under normal case while OSPF re-route
and rLFAs illustrate MLU in the post-failure scenario.

In general, link utilisation is proportional to the number of
links used for packet forwarding. The results show that re-
routing traffic using rLFAs incurs no significant impact on the

978-1-4244-7755-5/10/$26.00 ©2010 IEEE 48

Fig. 5. MLU comparison between OSPF, OSPF re-route, and rLFAs of
Abilene topology.

TABLE II
MLU OF THE LINK WITH MAXIMUM LOAD OF DIFFERENT NETWORK

TOPOLOGIES.

Topology MLU Equal MLU (%)
OSPF re-route rLFAs

Abilene 0.996 0.996 92.857
GEANT 0.993 0.993 83.784
Abovenet 0.995 0.995 88.235
Sprint 1.000 1.000 85.119

TABLE III
AVERAGE INCREASED THROUGHPUT AFTER FAILURES OF DIFFERENT

NETWORK TOPOLOGIES.

Topology ∆T (%) Equal ∆T (%)
OSPF re-route rLFAs

Abilene 5.820 5.817 96.429
GEANT 2.635 2.631 87.838
Abovenet 0.737 0.737 94.118
Sprint 0.473 0.496 84.524

MLU under different failure scenarios compared to normal re-
convergence. Since the performance of OSPF re-route and that
of rLFAs are very similar, we represent MLU of the link with
maximum load of each network topology in Table II.

It can be seen that MLU of the link with maximum load
under OSPF re-route and rLFAs are identical. Note that,
the actual figures holding higher precision show negligible
difference. Therefore, we also examine the increased network
throughput after different failure scenarios. Table III shows
the average of increased throughput, ∆T, of each network
topology under OSPF re-route and rLFAs.

As can be seen, the MLU and increased network throughput
after failures under rLFAs are similar to those of OSPF re-
route. However, it must be noted that the performance of OSPF
re-route is obtained upon the completion of re-convergence
while re-routing using rLFAs provides immediate results as
packets can be re-routed through rLFAs as soon as routers
detect link failures.

V. CONCLUSION

Routing disruption is a major concern when deploying
fault-intolerant services and applications. The routing schemes
deployed in current networks do not provide sufficient mecha-
nisms for handling failures. Several approaches such as LFAs,
not-via addresses, MRC, and FCP have been proposed to
alleviate the problem with considerable drawbacks.

This paper presented a novel mechanism to allow full fast
re-route in the presence of transient link failures known as
recursive Loop-Free Alternates (rLFAs). In addition, it was
proved that the routing strategy is complete and correct.
From simulation results, our technique provides not only full
recovery against transient link failures, but also near optimal
path and minimal impact on the network traffic after failures.
We believe that fast re-route using rLFAs can greatly improve
the network reliability without any expensive requirements.

REFERENCES

[1] G. Iannaccone, C. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot,
“Analysis of link failures in an IP backbone,” in Proceedings of the 2nd
ACM SIGCOMM Workshop on Internet measurment, 2002, pp. 237–242.

[2] G. Markopoulou, A. Iannaccone, S. Bhattacharyya, C. Chuah, and
C. Diot, “Characterization of Failures in in an IP Backbone,” in Proc.
IEEE INFOCOM, 2004.

[3] M. Shand and S. Bryant. (2009, Feb) IP fast reroute framework.
IETF Internet draft. [Online]. Available: http://tools.ietf.org/html/
draft-ietf-rtgwg-ipfrr-framework-13

[4] A. Atlas and A. Zinin. (2008, Sep) Basic specification for IP
fast reroute Loop-Free Alternates. RFC 5286. [Online]. Available:
http://tools.ietf.org/html/rfc5286

[5] S. Bryant, M. Shand, and S. Previdi. (2009, Jul) IP fast reroute
using not-via addresses. IETF Internet draft. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-rtgwg-ipfrr-notvia-addresses-04

[6] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker,
and I. Stoica, “Achieving convergence-free routing using failure-carrying
packets,” in Proc. ACM SIGCOMM, Kyoto, Japan, Aug 2007, pp. 241–
252.

[7] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and O. Lysne, “Fast IP
network recovery using multiple routing configurations,” in Proc. IEEE
INFOCOM, Barcelona, Spain, Apr 2006, pp. 23–29.

[8] J. M. McQuillan, I. Richer, and E. C. Rosen, “The new routing algorithm
for the ARPANET,” IEEE Transactions on Communications, vol. 28,
no. 5, pp. 711–719, May 1980.

[9] Y. Zhang. (2004, Dec) The Abilene topology and traffic matrices.
Online. [Online]. Available: http://www.cs.utexas.edu/∼yzhang/research/
AbileneTM/

[10] GEANT. (2004, Dec) The GEANT topology. Online. [Online]. Avail-
able: http://www.geant.net/upload/pdf/GEANT Topology 12-2004.pdf

[11] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
topologies with Rocketfuel,” IEEE/ACM Transactions on Networking,
vol. 12, no. 1, pp. 2–16, Feb 2004.

[12] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot,
“Traffic matrix estimation: Existing techniques and new directions,” in
Proc. ACM SIGCOMM, Pittsburgh, PA, Aug 2002, pp. 161–174.

[13] U.S. Census Bureau. (2000, Apr) Census 2000 gateway. Online.
[Online]. Available: http://www.census.gov/main/www/cen2000.html

[14] United Nations Statistics Division. (2008, Aug) Demographic and
social statistics. Online. [Online]. Available: http://unstats.un.org/unsd/
demographic/

[15] W. Liu, H. T. Karaoglu, A. Gupta, M. Yuksel, and K. Kar, “Edge-to-edge
bailout forward contracts for single-domain Internet services,” in Proc.
IEEE IWQoS, Enschede, The Netherlands, June 2008, pp. 259–268.

[16] R. Martin, M. Menth, M. Hartmann, T. Cicic, and A. Kvalbein, “The
effect of combining loop-free alternates and not-via addresses,” Institute
of Computer Science, University of Würzburg, Würzburg, Germany,
Research Report 432, Sep 2007.

978-1-4244-7755-5/10/$26.00 ©2010 IEEE 49

