
LiveShift: Mesh-Pull Live
and Time-Shifted P2P Video Streaming

Fabio V. Hecht∗, Thomas Bocek∗, Richard G. Clegg†, Raul Landa†, David Hausheer∗‡, Burkhard Stiller∗
∗ University of Zurich, Department of Informatics (IFI), Zurich, Switzerland

† Department of Electronic and Electrical Engineering, University College London
‡ Currently on leave at Department of EECS, University of California, Berkeley, CA 94720, USA

Email: {hecht,bocek,hausheer,stiller}@ifi.uzh.ch, {rlanda,rclegg}@ee.ucl.ac.uk

Abstract—The popularity of video sharing over the Inter-
net has increased significantly. High traffic generated by such
applications at the source can be better distributed using a
peer-to-peer (P2P) overlay. Unlike most P2P systems, LiveShift
combines both live and on-demand video streaming – while
video is transmitted through the peer-to-peer network in a live
fashion, all peers participate in distributed storage. This adds
the ability to replay time-shifted streams from other peers in
a distributed and scalable manner. This paper describes an
adaptive fully-distributed mesh-pull protocol that supports the
envisioned use case and a set of policies that enable efficient usage
of resources, discussing interesting trade-offs encountered. User-
focused evaluation results, including both channel switching and
time shifting behavior, show that the proposed system provides
good quality of experience for most users, in terms of infrequent
stalling, low playback lag, and a small proportion of skipped
blocks in all the scenarios studied, even in presence of churn.

I. INTRODUCTION

The demand for video streaming on the Internet is increas-
ing [10]. Further, the growth in deployment of Fiber to the
Home (FTTH) technology has increased upload capacity at
the edge, making the peer-to-peer (P2P) content distribution
paradigm especially attractive, both to increase scalability and
to decrease media publishing costs. While P2P video distri-
bution is quickly becoming a mature technology, with wide-
scale deployments already providing video stream distribution
through user collaboration, storage and subsequent distribution
of content using this same P2P infrastructure remains an open
research challenge.

To address this issue, LiveShift allows collaboration beyond
the current state of the art, enabling peers to store received
video streams in order to distribute them in the future, thus
allowing time shifting (TS) or – if the combined storage is
large – even video-on-demand (VoD) functionality.

A use case of this functionality allows a user, without
having previously prepared any local recording, to watch a
program from the start and jump over uninteresting parts until
seamlessly catching up with the live stream. Watching pre-
recorded or live content does not require different protocols
and system architectures; LiveShift seamlessly provides these
two functionalities. Similarly, live transmission may be used
for the premiere of a movie, TV show, or news program,
when several users might watch it at the same time. Instantly
and automatically, the content is made available – since the
starting time of the premiere – to every user joining at a later

time. Content providers may also benefit from the proposed
approach, since, besides general P2P properties that reduce
bandwidth costs at the provider side, moving the storage to
the end-user results in content automatically being replicated
at a factor proportional to its popularity and distributed to
locations where it is popular. The protocol does not mandate
particular architectural requirements, as it can be deployed on
computers, set top boxes, or servers provided by ISPs or CDN
operators; providers may include large as well as small home
broadcasters.

The extra challenges that the proposed functionality in-
troduces are several, but two are distinguished as the main
drivers of our protocol. First, and in stark difference with
a live video streaming system, users may switch not only
between channels, but also within various time positions in
a given channel, over a potentially large time scale. Second,
the asymmetry of interest inherent in such a scenario demands
a flexible protocol based on policies that do not require that
peers be simultaneously interested in data each other has.

The functionality of LiveShift for real-time streaming was
presented as a demonstration in [9]. The two main contribu-
tions of this paper are a) to propose a new, fully-distributed,
P2P streaming, mesh-pull protocol, which is suitable both
for live streaming and VoD, and b) to propose, discuss, and
analyze initial policies to be used with the protocol. While this
paper does not claim that the presented policies are optimal, it
introduces the main challenges and trade-offs involved when
designing those in a system in which live and on-demand
streaming are indistinguishable. Protocol and policies are
evaluated using traces from a real IPTV system to model peer
behavior, including channel switching. Results are measured in
terms of quality of experience (QoE) metrics, such as playback
lag, that are important for the end user. As far as the authors are
aware, this is the first fully-decentralized, mesh-pull protocol
designed for both live streaming and VoD, and which has been
tested to include the effects of peer channel browsing behavior.

The rest of this paper is organized as follows. Section II
presents related work in the area of time-shifted P2P video
streaming. The protocol is described in Section III, while
policies are presented in Section IV. Section V shows evalua-
tion results, and Section VI contains conclusions and suggests
future work.

II. RELATED WORK

The idea of a P2P live video streaming system that supports
time shifting is relatively new. Many previous works [5], [6],
[14], [15] have relied, instead, on the separate and independent
distribution of live video and time-shifted streams. The seam-
less transition between live and time-shifted operation, as pro-
vided by LiveShift, has remained elusive. Further differences
between these works and the present one can be found in the
evaluation: [5] is interested in evaluating the distribution of
data availability and expected number of available peers, not
the QoE obtained by users; [6] is very short and presents no
insights or evaluation; and in both [14] and [15], evaluation
is very limited regarding QoE, since the impact of a higher
number of failed requests is not clear – in addition, in this
work peers need to store streams they never watched, only to
be able to serve them to other peers.

The works presented in [18] and [16] unify live and time-
shifted video streaming as envisioned in LiveShift, but sug-
gest a hybrid P2P approach, with a central entity holding
a complete view of which stream segments every peer has.
This may become a single point of failure and result in
scalability problems when the number of peers is very high,
there are many streams, there is a flash crowd, or churn is high.
In addition, it requires additional infrastructure (the central
tracker) to be in place, which is not desirable in a scenario
where users broadcast from their homes. The first of these
works, [18], adopts a multiple-tree approach, which has been
shown to perform badly with dynamic network conditions and
churn [17], when compared compared with a mesh approach.
Such conditions, though, are exactly what is expected when
users are allowed to both switch channels and rapidly change
their media playback position. Further, the evaluation of [18]
relies on simulations in which every peer is always able
to upload at a rate twice the bit rate of the video stream.
This kind of reliable over-provisioning, while simplifying
many problems, is unrealistic in a P2P environment where
bandwidth availability is expected to fluctuate. The second
of these works, [16], presents a model based on multiple-
interval graphs and several optimization strategies that can
be used by a central tracker with a global view. Peers are
assumed to always transfer complete 1-minute-long blocks to
each other, which is problematic when peers need to download
different blocks from different peers, each at speed lower than
the bit rate of the video stream, and combine them on time for
playback. It is probably due to this fact that their evaluation
only considers peer capacities which are integer multiples of
the video stream bitrate. Finally, the results presented concern
only the reduction of bandwidth at the provider side, which are
a natural consequence of using a P2P approach, but overlook
the issue of user experience.

This paper is heavily influenced by other mesh-pull (also
known as swarming) systems and protocols. In particular,
many concepts present in the BitTorrent [4] file-sharing system
are part of the LiveShift protocol. The mesh-pull approach
has also been successfully employed to provide live streaming

by systems such as CoolStreaming [13], as well as VoD, e.g.
in [11]. LiveShift, in contrast, unites live and on-demand video
streaming under a single protocol and policies.

III. PROTOCOL DESIGN

LiveShift’s protocol design objectives are the following:
(1) Free Peercasting: Any peer is able to publish a channel,
therefore becoming a peercaster; (2) Scalability: The ap-
proach shall scale to a high number of peers, even when several
of them are only able to upload at a fraction of the bit rate of
the video stream; (3) Robustness: The system must tolerate
churn; (4) Full decentralization: In order to allow any peer
to publish a channel without deploying a large infrastructure
and to fully benefit from P2P properties, no central entities
shall be present – except peercasters, a single point of failure
for the live stream of the channel they originate; and (5) Low
overhead: Video streaming is very bandwidth-consuming and
sensitive to delay, therefore network overhead introduced must
be low.

A. Segments and Blocks

The proposed use case gives users the possibility of switch-
ing channels and time shifting. LiveShift adopts the mesh-
pull approach [10], which adapts better to dynamic network
conditions and churn when compared to tree protocols [17].
Mesh-pull divides the stream into blocks that are exchanged
between peers with no fixed structure. Two levels of blocking
are used – a segment is an addressing entity, which is made
up of several smaller blocks.

LiveShift addresses and identifies segments and blocks
based solely on time – they are both of well-known fixed
time-based length. This makes it trivial to discover which
block and segment contain the part of the video stream to
be played at a given time. This is especially useful for live
streaming, since it may be difficult to predict at which bit
rate the video will be generated in the future. It also makes
it simple for peercasters to change the bitrate of the offered
channel, or even offer variable bit rate (VBR) streams to save
bandwidth in sequences that can be better compressed. Each
segment is uniquely identified by a SegmentIdentifier, which
is a pair (channelId, startT ime) announced on the tracker
by peers which offer video blocks within a segment. Blocks
are small-sized, fixed-time video blocks, and are the video unit
exchanged by peers.

Differentiating segment and blocks is important to reduce
the number of tracker operations (due to larger segments),
while allowing peers to download blocks from several other
peers, recovering quickly if any fails (due to smaller blocks).
Thus, only segment availability is announced on trackers;
block availability within a segment is queried directly between
peers, considering that it is more sensitive to timing and
synchronization issues.

B. Distributed Hash Table and Distributed Tracker

LiveShift uses a distributed hash table (DHT) to store
the channel list and individual channel information. There

Fig. 1. LiveShift protocol example sequence diagram

are three DHT operations available: GetChannelList re-
trieves a list with all available channels and channelIds,
PublishChannel and UnpublishChannel creates and
removes a channel, respectively. A possible enhancement
would be adding an electronic program guide (EPG) to map
programs to (channelId, startT ime), achieving VoD-style
program browsing.

The tracker is responsible for mapping segments to a set of
providers – peers that hold at least one block in the segment.
LiveShift uses a fully-distributed tracker (DT), maintained
by all peers in the system, improving scalability and load
balancing, avoiding a single point of failure, and reducing
the infrastructure deployed by peers. There are three DT
operations: PublishSegment is invoked by providers of a
segment, UnpublishSegment is called by peers that have
removed all blocks in a segment from their local storage, and
GetCandidates retrieves a set with peers that provide a
particular segment. The DT differs from the DHT, since its
operations are invoked much more frequently. Therefore, every
peer that is a provider for a certain segment caches the provider
set obtained, which can then be supplied to other peers on
request. This improves load balancing, which is of especial
importance on popular segments. More information on the DT
can be found on [8].

Since peers may leave the system unexpectedly, each tracker
entry has a time-out value; thus, peers need to periodically
refresh their content availability. A timeout value of 30 minutes
is currently used. The timeout value is a compromise between
overhead and chance of holding outdated information in the
tracker, especially in the presence of churn. Even if a central
tracker were in place, such a timeout value would still be
important to remove outdated information.

C. Protocol Overview

The protocol is designed to be flexible by allowing the
implementation of different policies for specific functions;

a set of basic policies is proposed in Section IV. A key
difference between LiveShift and other existing P2P systems
and protocols regards symmetry of interest. Supporting VoD as
envisioned in LiveShift requires that peers serve stored video
blocks without necessarily being simultaneously interested in
what the peer receiving the download has to offer, thus the
separation between neighbors and subscribers as described
below. This has implications with respect to incentive mech-
anisms which, although out of scope of this paper, have been
successfully approached in the literature [2], [12].

Figure 1 shows, in a simplified sequence diagram, the
steps taken by a peer to locate and download content (see
Table I for nomenclature). A peer r, when entering the system,
retrieves the channel list from the DHT. After having chosen
a channelId and a startT ime to tune into, r consults the
DT to retrieve a set Cr of candidate peers (providers) that
have advertised blocks in the corresponding segment. Another
way of obtaining candidates is receiving PeerSuggestion
messages, which contain suggestions for new candidates,
directly from any peer. Peer r then contacts a number of
candidates p ∈ Cr by sending each a Subscribe message,
containing the SegmentIdentifier and a declared upload
capacity. Verifying the correctness of the upload capacity is
out of the scope of this paper.

When a peer p ∈ C receives a Subscribe message from
a peer r, it attempts to place r in its subscribers set Sp. If
|Sp| < Sp, the subscribers set is not full yet, and peer r is
sent a Subscribed message, with a block map indicating
which blocks in the requested segment p holds and a timeout
value TS . Peer r will then be subscribed to receive updates to
the corresponding block map via Have messages. If |Sp| =
Sp, p checks if there is another peer q ∈ Sp that has lower
priority than r (according to the policy used, c.f. Section IV-D).
If so, it will be preempted immediately and removed from
the set. Thus, either q or r will receive a NotSubscribed
message. Limiting |Sp| is important because if each peer has
|S| subscribers for a particular segment, the total number of
Have messages sent for each new block in the whole P2P
network is |S|2− |S|. The constraint that a peer will not send
Have to a peer which has reported to hold the block only
reduces it to (|S|2− |S|)/2. Note that the proposed algorithm
contrasts with existing mesh-pull P2P streaming ones in two
important aspects; first, that the relationship between peers is
asymmetric, and second, that immediate preemption causes a
quicker reaction compared to re-evaluating peer selection at
fixed time slots, reducing overall playback lag.

When peer r receives Subscribed, it adds p to the
neighbor set Nr and needs to verify interest periodically
by computing the intersection between blocks scheduled for
downloading and blocks announced by p via its initial block
map and following Have messages. If the intersection is not
empty, r adds p to Ir and sends it an Interested message,
which makes p add r in Qp ⊂ Sp, the queue for peers
waiting for an upload slot, and reply a Queued message,
with a timeout value TQ. On the contrary, when p has no

TABLE I
IMPORTANT QUANTITIES

Cr set of candidate peers that announce at least one block in a
segment at which r seeks for blocks

Nr set of peers in which r is subscribed to block map updates

Ir set of peers in which r is interested, waiting for a slot

Dr set of peers which are granting r an upload slot

Sp set of peers that subscribed to block map updates from p

TS time limit a peer is allowed to stay in S

Qp set of peers that have manifested interest and are in the upload
queue waiting to get an upload slot from peer p

TQ time limit a peer is allowed to stay in Q

Up set of peers a peer p is granting an upload slot to

TI time limit a peer is allowed to stay in U inactive (i.e. maximum
time between two BlockRequests)

• maximum allowed size of set •
| • | current size of set •

more interesting blocks, r sends it NotInterested to be
removed from Qp.

Peer p has a number of upload slots Up, each of which
is granted to an interested peer r ∈ Qp. When peer r is
granted an upload slot, it receives a Granted message, with
a inactivity time-out value TI , such that an upload slot that
has not been used for TI seconds is granted to another peer.
Similarly to what happens in Sp, peers with higher priority
may immediately preempt other peers from upload slots.

When r is granted an upload slot from p, it is allowed to
send BlockRequest messages to p and receive video blocks
in BlockReply messages. Each upload slot queues up to two
BlockRequests at a time, to fully utilize its upload capac-
ity, with no delays between sending a BlockReply and re-
ceiving the next BlockRequest message. This happens until
a) r sends either a NotInterested or DisconnectUp
message, b) p sends either a Queued message (if r is
preempted) or a DisconnectDown message, or c) r times
out.

The two different types of disconnect messages reflect the
asymmetry of interest present in the system. DisconnectUp
is issued by a requesting peer r which is not anymore
interested in downloading a particular segment. A peer p that
receives DisconnectUp stops uploading to r, removing it
from Sp, Qp, and Up. DisconnectDown, in contrast, is
issued by a providing peer p that is leaving the system. It
is similar to the NotSubscribed message, in the sense
that it communicates that r has been removed from Sp, Qp,
and Up, so it must remove p from Cr, Nr, Ir, and Dr. The
difference is that the retry behavior of r towards p should take
into account that it has actually left the system. Differentiating
disconnect messages allows a peer that is switching channels
or time shifting to change peers it is downloading from without
breaking its uploads.

D. Peer Departure and Failure

Three mechanisms are present so the system reacts quickly
to peers leaving unexpectedly or failing, namely timeout

values, reporting of DHT routing errors, and ping messages.
The timeout values TS , TQ, and TI are defined to impose a
limit on the resources taken by peers that leave the system
unexpectedly. The latest received timeout value always over-
writes all previously received ones. Additionally, the DHT
is able to inform LiveShift about routing errors. When a
routing error occurs, a moving average for the failing peer is
incremented. When the moving average exceeds a threshold,
the peer is removed from all sets, leaving space for other
peers. The moving average absorbs temporary or intermittent
peer or network failures. Finally, PingRequest messages
may be used to test if peers are on-line. Peers must reply
with a PingReply whenever they receive a PingRequest,
otherwise they are considered as having failed.

IV. CURRENT POLICIES

As stated in section III-C, LiveShift may be used with
different sets of policies. Our focus will be on the discussion of
the engineering trade-offs embodied by the policies described
in this section. These policies are simple enough to produce
reliable results, yet complete enough to give an accurate
representation of the design space for streaming protocols
capable of both VoD and real time operation.

A. Length of Segments and Blocks

Larger segments mean less entries in the DT and less
Subscribe and (Not)Subscribed messages, but reduce
the chance of locating interesting peers. LiveShift currently
uses 10-minute-long segments, which have shown to produce
good results.

To minimize delay, blocks must have a small size, since
they can only be uploaded after they are completely down-
loaded. Yet, the smaller they are, the larger is the overhead
with headers, block maps, and Have, BlockRequest, and
BlockReply messages. A block length of one second has
shown to provide a good compromise, since a peer is still
able to download each one quickly from different peers and
combine them in a short time period.

B. Block Selection

Another important decision is how many video blocks peers
try to download ahead of the playing time. Downloading many
blocks ahead may decrease the probability of a block not
being present at playback time. It may not, though, be always
desirable to read ahead as much as possible, since doing so
may consume resources from other peers that could be used
to send blocks to the community. LiveShift selects the next
15 missing blocks for downloading, counting from the current
playback position, with two limitations: (1) at most 30 blocks
ahead of the playback position are selected, and (2) blocks
that were not yet produced because their timestamp is in the
future are not scheduled for download. Peer r downloads each
selected block in ascending chronological order from each peer
p ∈ Dp if p announced to hold the missing block. Another
option would be downloading rarest blocks first, but since a

short time period between playing time and current time is a
possibility, the policy is not used at the moment.

Since peers may fail unpredictably, BlockRequest mes-
sages that are not answered in a timely fashion need to be
sent to another peer in Dr. While a short time-out value
causes the number of duplicate blocks received to increase,
wasting resources, a longer time out makes the system react
too slowly, increasing the number of blocks that do not meet
their playback deadline. LiveShift tackles this problem by
keeping a moving average of response time of each peer in Dr.
When a requested block takes longer than twice the moving
average of the last five block requests, the block is rescheduled.
A default value of four seconds is used for the first block
download attempt, since the average is not yet known.

C. Candidate and Neighbor Selection

Initially, peer r retrieves 40 random peers from the DT to
be added to Cr. Peer r may also receive candidates from a
peer p via PeerSuggestion messages, which should be
sent following DisconnectDown messages, containing all
known peers that are providers for the segment r was sub-
scribed. This is important to lessen disruption of the overlay,
which can then be quickly repaired. Furthermore, peers add
senders of Subscribe messages for interesting segments as
candidates, since these may be newly arrived peers.

Every peer tries to have up to 15 other peers in Nr by
choosing from Cr in the following order: (1) least amount
of Subscribe messages sent, (2) highest amount of blocks
provided, (3) random. This selects peers that provided suc-
cessfully blocks in the past, while allowing for rotation in
case downloading is not successful.

Peers stop looking for members of Cr, Nr, and Ir when
receiving video blocks at a rate sufficient to keep up with
normal playback, that is, at least one block per second. This
is to reduce overhead and avoid needlessly preempting other
peers.

As a peer advances its playback position, it eventually
reaches the segment boundary and needs to start downloading
the next segment. For the new segment, a peer r adds to Cr

and first tries to obtain upload slots at the peers from which
it has successfully downloaded blocks in the recent past. This
results in a more stable segment transition, since the peer does
not have to begin again looking for peers to reach Dr.

Peers are removed from Cr after exceeding a threshold
(currently 5) in number of Subscribe messages sent without
having provided any blocks. This allows new peers to be added
to Cr from the DT. Peers in Nr that report to only hold blocks
too far (currently 8s) behind playback position are removed
from Nr, since they are unlikely to have any interesting blocks
soon.

D. Subscribers and Upload Slot Selection

It is intuitive that peers should prioritize uploading to peers
with a high upload capacity, because these are able to serve
many other peers, amplifying the upload capacity of the
peercaster earlier in the distribution process [19]. By doing

so, the average application-level hop count to the peercaster
through the overlay is reduced, thus reducing average playback
lag.

To this end, members of Sp and Up are primarily chosen by
peer p according to their upload capacity. Sp is defined as 5
peers per upload slot, that is, 5 ·Up. This value should not be
too large, since it is only worthwhile to keep subscribed peers
that are likely to get an upload slot. In case there are peers
with the same upload capacity, the peers which have been
given more blocks in the recent past have preference, which
increases overlay stability, avoiding unnecessary changes to
the overlay. A peer may only grant a single upload slot to a
peer, in order to distribute streams to more peers.

Using a fixed number of upload slots has disadvantages.
Possibly, the more upload slots a downloading peer is granted,
the less often it will request blocks from each of them. It is
difficult for an uploading peer to know precisely how much
its upload slots will be used at any moment. The solution
is having peers dynamically adjusting the number of upload
slots according to the used upstream bandwidth. When a peer
p detects that its upstream is underused by the granted upload
slots, it creates a new upload slot and grants it to a peer in
Qp. When, however, the used upstream bandwidth reaches the
maximum capacity of the peer and each slot is providing,
on average, less than the full stream, a slot is shut down by
sending a Queued message to the peer to which it is granted.
By adjusting Up to be able to provide at least the full stream
at full rate to each slot, it avoids many peers receiving the
stream at a rate too low to be played properly.

When selecting a slot to shutdown, an intuitive policy would
be using the same ranking used to grant upload slots. But
since the last granted slot is possibly the lowest-ranked one,
the system could return to the previous state of underusing
upstream. Thus, the method currently used is to shutdown the
least used slot in a moving average of 3s.

Concerning timeout values, TS is set to 5s, and TQ to 10s.
TI defines that a peer may remain only up to 4s inactive (not
downloading blocks) while granted an upload slot. Such low
values are to promote rotation.

E. Playback Policy

The playback position is the position on the time scale that
refers to the block currently being played, and is advanced
by 1 block per second if the peer holds the corresponding
block. Due to overlay network problems such as jitter, churn,
upstream boundaries, and the limited view of resources in
other peers, some blocks may not be found, or they may not be
downloaded on time to be played. The playback policy is the
decision on, when a block is missing for playback, whether to
skip it, or stall waiting for it. While skipping has a negative
effect on image quality, stalling increases playback lag.

LiveShift’s playback policy is to skip n contiguous missing
blocks if and only if the peer holds at least rn contiguous
blocks immediately afterward. A ratio r = 2 is used on the
evaluations; in practice, though, it may be more adequate to let
the user adjust the ratio to express its preference on whether

TABLE II
EVALUATION SCENARIOS

Scenario Number PC Number HU Number LU Churn
s1 6 15 60 0
s2 6 15 90 0
s3 6 15 120 0

s2c30 6 15 90 30%

to skip or stall more often. The proposed policy and ratio
are nevertheless effective at not letting peers stall for long in
case only a few blocks are rare, achieving a low number of
skipped blocks, which cause severe image quality degradation
with most video encoding methods.

F. Storage Policy

The selection of which blocks peers keep in the local storage
in case they run out of space is an interesting aspect and
impacts data availability. The currently used storage policy
is storing all received blocks until the maximum capacity
– currently two hours of video – is reached. When storage
capacity is full, blocks with oldest download time are deleted
to make up space. Although simple, the strategy achieves good
results, since blocks that are currently more popular naturally
get more replicated in the system. The peercaster may choose
to offer larger storage capacity in order to assure that at least
one copy of past video streams is accessible in the system,
though this is not assumed on this paper’s evaluation section.

V. EVALUATION

LiveShift has been fully implemented, in Java version 1.6,
to allow the investigation of the interdependencies among the
different policies. The evaluation was made using 16 physical
machines from the CSG Testbed – a detailed description of the
testbed can be found at [1]. This section presents the subset of
our evaluation results which pertains to the validation of the
proposed protocol and policies, the testing of its scalability
limits, and the investigation of its improvement opportunities.
Evaluation includes both channel browsing behavior and churn
to produce highly realistic results. The reader is directed to [7]
for additional evaluation results.

A. Evaluation Scenarios and Peer Behavior

Table II describes the four scenarios addressed. Peers were
divided in classes regarding their maximum upload capacities.
High upload capacity (HU) peers and peercasters (PC) have
upload limit of 500%, e.g., for the video stream bit rate of
500 kbit/s defined for our experiments, HU and PC nodes
have an upload capacity of 2.5 Mbit/s. This value is not
particularly high, considering that these nodes may be running
at universities or connected via FTTH (Fiber to the Home)
technology. Low upload capacity (LU) peers may be, for
example, running DSL (Digital Subscriber Line) or cable
connections, and have only 50% upload capacity (250 kbit/s).
Peers are not limited in download bandwidth. All results were
obtained over 10 runs of 1 hour each.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120

 1 2 3 4 5 6

C
D

F

channel ranking traces

channel ranking experiments

traces
experiments

Fig. 2. Channel popularity

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

100 101 102 103 104 105

C
D

F

time (s)

Fig. 3. Channel holding time

Peer behavior was modeled using traces from a real IPTV
system [3]. Peers were created with an inter-arrival time of
1s and loop through the following two steps: (1) choose a
channel and starting time, (2) hold to the channel, locating and
downloading content from other peers. The distribution used
to determine which channel peers switch to is displayed in
Figure 2, including the original distribution with 120 channels,
and the one used on these experiments with six channels.
The channel holding time distribution is pictured in Figure 3.
Since there is no system supporting both live and time-shifted
streaming as described on this paper, there are no traces
available documenting how long behind real time will a newly
arriving peer join. Hence, it was assumed that the probability
of a peer tuning to a time nearer the current live time is
exponentially larger than the probability of it tuning to some
other point in the past. The distribution used was the one
pictured in Figure 3, with the starting time ranging from the
current playback position, and all the way back to the playback
time at the start of the experiment.

In the scenario with churn, when a peer chooses a channel
and time to tune to, it has a nonzero probability of going
offline. While offline, a peer does not react to any incoming
message. Peers remain offline for an amount of time given
by the channel holding time distribution before having again
the same chance of remaining offline or going back on-line.
Peers disconnect cleanly, that is, they follow the protocol
properly by sending PeerSuggestion, DisconnectUp,
and DisconnectDown messages.

B. Quality of Experience and Scalability

The main Quality of Experience (QoE) metric used is the
playback lag experienced by users during holding time, from
the point a (channelId, startT ime) was selected. Figures 4-7
show the playback lag experienced as users hold on (watch)
a channel in the different proposed scenarios. The x-axis
represents the time (in minutes) for which a user holds on a
channel. The y-axis represents the playback lag (in seconds),
which is the difference between the current playback position,
according to the defined playback policy, and the time of the
block that should be playing if there were no interruptions in
playback. A lower playback lag means lower start-up delay,
less interruptions, and more closeness to what the user initially
intended to watch, thus better user experience. Since blocks
in LiveShift are transmitted via reliable connections (TCP),
there is no risk of losing data within a block. For example,
the 95% LU line designates the maximum playback lag which
95% of low upload capacity users achieve. In other words, it
is the worst case lag for 95% of LU peers. As can be seen in
Figures 4-7, our results show that:
a. playback lag increases only slightly as users continue to

view a channel, which shows that users do not experience
frequent stalling;

b. even in the worst case scenarios investigated, 95% of HU
peers experience playback lag of less than 10 seconds,
which is acceptable performance (indeed many live TV
broadcasts may have similar lag); and

c. LU peers are much more susceptible to high lag and espe-
cially in scenarios with churn or less available bandwidth.
For instance, Figure 7 shows that 5% of LU peers exhibit
a playback lag larger than 25 seconds after watching for
long periods of time, while in Figure 6, the worst 5% of
LU peers have playback lag just above 50 seconds after
watching a channel for more than 40 minutes.

In Scenario s3, the system shows signs of being saturated,
with several LU peers exhibiting playback lags surpassing
30s. This happens because the average delay to the peercaster
through the overlay increases, since the blocks need to travel
through relatively more hops. In addition, peers take a longer
than average time to obtain upload slots, which are more
disputed in this scenario.

Overall, average playback lag is 5.45s in s1, 7.70s in s2,
14.31s in s3, and 8.93s in s2c30, showing that 30% churn
increases average playback lag by about 15% in s2.

C. Skipped Blocks and Failed Playback

According to the playback policy defined in Section IV-E,
some blocks may be skipped, therefore avoiding an increase in
playback lag (it actually decreases). The proportion of skipped
blocks, on average, 2.61% of the total blocks played in s1,
2.41% in s2, and 1.86% in both s3 and s2c30. Interestingly, rel-
atively less blocks are skipped in more bandwidth-constrained
scenarios, due to fewer concurrent downloads.

The availability of content is affected by the fact that peers
change their interest frequently. In the worst case, a peer may

not be granted an upload slot from any of the peers which
hold the blocks that it seeks. This may happen even when the
system has spare bandwidth, due to the unbalance in content
popularity: peers that have unused upload capacity may only
hold unpopular content, leading to available overlay resources
remaining unused. If playback stalls for a long time, it is not
realistic to assume that the user will wait forever. Thus, when a
peer, in a sliding window of the last 30s of playback, is able to
play less than half the blocks it should have been able to play,
playback is considered failed, that is, the user is considered to
have given up and switched to another (channel, time). Failed
playback events account for 0.08% of the channel switches in
s1, 0.60% in s2, 1.87% in s2c30, and 4.64% in s3.

D. Upload Capacity Utilization

The upload capacity utilization of a peer is its percentage of
upload capacity used, on average, and is obtained by dividing
its used upload capacity by its total upload capacity. An
efficient P2P system is able to discover unused bandwidth and
react quickly to peers changing interest, which is challenging
in a fully-decentralized system.

Figure 8 shows the average upload capacity utilization, per
peer. The presented protocol and policies are able to achieve
on average 63.2% upload capacity utilization in s1, 65.8% in
s2, 82.4% in s3, and 64.7% in s2c30. HU peers use more
of their upload capacity, since they are placed nearer the PCs
(due to the policy in Section IV-D), receiving (and announcing)
having blocks sooner than LU peers. There is little variation
in upload capacity utilization of PCs in the different scenarios
because they do not react to channel popularity – in s2, while
the PC for channels 1 and 2 average higher than 98% upload
capacity utilization, the PC for channel 6 averages only 4.0%
simply because the channel is unpopular. In addition, due
to the difference in popularity of channels and the dynamic
behavior of peers, some swarms may be more or less provided
with bandwidth. This can explain why some LU capacity is
used while HUs are not fully loaded: some swarms may not
have enough HUs, and need to resort to LUs. Because of the
small block size, peers can combine the upstream capacity of
several LU peers.

E. Overhead

Since both blocks and segments are fully time-based, the
absolute system overhead does not depend on the bit rate of the
video stream, but rather, on the length of blocks and segments.

Figure 9 gives an insight into the running protocol, display-
ing the average number of messages a peer sends per second,
by type, in Scenario s2. Some messages Have messages are
the most common ones, which is expected from the protocol
design. The number of Have messages sent per second mean
that, on average, |S| = 4.88 in s2. All other messages
have negligible size when compared to the BlockReply
message, which carries the video block itself. The overhead
relative to a stream of 500kbit/s is, for any scenario, at
most 2.01% on average, excluding DT and DHT traffic, as
can be seen in Figure 11. Figure 12 includes DT and DHT

 0

 5

 10

 15

 0 5 10 15 20 25 30 35 40 45 50 55

p
la

y
b
ac

k
 l

ag
 (

s)

holding time (min)

50% LU
50% HU

80% LU
80% HU

95% LU
95% HU

Fig. 4. Playback lag in Scenario s1

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40 45 50 55

p
la

y
b
ac

k
 l

ag
 (

s)

holding time (min)

50% LU
50% HU

80% LU
80% HU

95% LU
95% HU

Fig. 5. Playback lag in Scenario s2

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45 50 55

p
la

y
b
ac

k
 l

ag
 (

s)

holding time (min)

50% LU
50% HU

80% LU
80% HU

95% LU
95% HU

Fig. 6. Playback lag in Scenario s3

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40 45 50 55

p
la

y
b
ac

k
 l

ag
 (

s)

holding time (min)

50% LU
50% HU

80% LU
80% HU

95% LU
95% HU

Fig. 7. Playback lag in s2c30

 30

 40

 50

 60

 70

 80

 90

 100

s1 s2 s3 s2c30

u
p
st

re
am

 u
ti

li
za

ti
o
n
 (

%
)

HU
LU
PC
all

Fig. 8. Upstream utilization

 0

 1

 2

 3

 4

 5

Ping
PeerSuggestion

Disconnect

Granted/Queued

(Not)Interested

Subscribe

BlockReply

BlockRequest

(Not)Subscribed

Have

nu
m

be
r

of
 s

en
t m

es
sa

ge
s

Fig. 9. Sent messages per peer per second in Scenario s2

 0.9

 1

 1.1

 1.2

 1.3

s1 s2 s3 s2c30

d
u
p
li

ca
te

 b
lo

ck
s

re
ce

iv
ed

 (
%

)

scenario

Fig. 10. Duplicate blocks received

 1.7

 1.8

 1.9

 2

 2.1

s1 s2 s3 s2c30

o
v
e
rh

e
a
d
 (

%
)

scenario

Fig. 11. Overhead not including DHT+DT Fig. 12. Overhead including DHT+DT

traffic, and shows that overhead is at most 3.09% on average.
Interestingly, Scenario s1 has slightly higher overhead than
the other scenarios, which is credited to the higher number of
messages allowed by the higher available bandwidth.

Figure 10 shows that the proportion of duplicate blocks
received is below 1.3% on average, for all of the analyzed
scenarios. Similarly to the number of skipped blocks, the
decrease in more bandwidth-restricted scenarios is explained
by a smaller |D|, which means a restricted choice of peers to
download video blocks from. This validates the rescheduling
policy presented in Section IV-B.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a flexible and fully-decentralized mesh-
pull P2P protocol for locating and distributing both live and
time-shifted video streams in an integrated manner. It also
presents policies that can be used with the new protocol,
revealing and discussing the main trade-offs encountered in
building such a system, as well as evaluation results.

Trace-driven evaluations focus in scenarios with many
channel switches and an increasing number of peers with
upstream capacity lower than the rate of the video stream being
transmitted. The system shows its ability to find content and
upstream capacity quickly enough to sustain a low playback
lag relatively to the holding time. LiveShift also shows ability
to combine the upload capacity of several low upstream peers
on time. In the scenarios studied, the system supports a low
(less than 10s) playback lag for 80% of users with high
bandwidth, even in the presence of churn – in form of channel
switching, time shifting, and peers disconnecting. Users with
low upstream bandwidth are negatively affected in scenarios
with high churn or overall low upload capacity, but playback
lag remains within 60 seconds of transmission for over 95% of
the peers in the investigated scenarios. Finally, in the scenarios
studied, overhead remains below 3.1% of the original bitrate
of the video stream being transmitted.

While the definition and evaluation of a protocol and initial
policies represent an important first step into supporting the
proposed use case of integrating both live and time-shifted
video streaming in a fully-decentralized environment, this
paper identifies many open questions. Future work includes
further analyzing and finding optimal policies, developing an
effective incentive mechanism to verify the upload capacity
of peers that may be applied in the proposed use case, and
running longer experiments on a global scale with a higher
number of users and channels. Further important issues to be
considered concern overall system security and commercial
aspects.

ACKNOWLEDGMENT

This work has been performed partially in the framework
of the EU ICT STREP SmoothIT (FP7-2008-ICT-216259).

REFERENCES

[1] “Testbed Infrastructure for Research Activities – CSG,”
http://www.csg.uzh.ch/services/testbed/, last visited: 26.06.2010.

[2] T. Bocek, Y. El-khatib, F. V. Hecht, D. Hausheer, and B. Stiller,
“CompactPSH: An Efficient Transitive TFT Incentive Scheme for Peer-
to-Peer Networks,” in Proceedings of the 34th IEEE Conference on
Local Computer Networks, Zurich, Switzerland, October 2009.

[3] M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatriain,
“Watching Television over an IP Network,” in Proceedings of the 8th
ACM SIGCOMM Conference on Internet Measurement, New York, NY,
USA, 2008, pp. 71–84.

[4] B. Cohen, “Incentives Build Robustness in BitTorrent,” Workshop on
Economics of Peer-to-Peer Systems, Berkeley, CA, USA, June 2003.

[5] S. Deshpande and J. Noh, “P2TSS: Time-Shifted and Live Streaming of
Video in Peer-to-Peer Systems,” in 2008 IEEE International Conference
on Multimedia and Expo, April 2008, pp. 649 –652.

[6] D. Gallo, C. Miers, V. Coroama, T. Carvalho, V. Souza, and P. Karlsson,
“A Multimedia Delivery Architecture for IPTV with P2P-Based Time-
Shift Support,” in Proceedings of the 6th IEEE Conference on Consumer
Communications and Networking Conference, Piscataway, NJ, USA,
2009, pp. 447–448.

[7] F. Hecht, T. Bocek, R. G. Clegg, R. Landa, D. Hausheer, and B. Stiller,
“LiveShift: Mesh-Pull P2P Live and Time-Shifted Video Streaming,”
University of Zurich, Department of Informatics, Tech. Rep. IFI-2010-
0009, September 2010.

[8] F. Hecht, T. Bocek, and B. Stiller, “B-Tracker: Improving Load Balanc-
ing and Efficiency in Distributed P2P Trackers,” in To appear in 11th
IEEE International Conference on Peer-to-Peer Computing (P2P’11),
Kyoto, Japan, September 2011.

[9] F. V. Hecht, T. Bocek, C. Morariu, D. Hausheer, and B. Stiller,
“LiveShift: Peer-to-peer Live Streaming with Distributed Time-Shifting,”
in 8th International Conference on Peer-to-Peer Computing, Aachen,
Germany, September 2008.

[10] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A Measurement Study
of a Large-Scale P2P IPTV System,” IEEE Transactions on Multimedia,
vol. 9, no. 8, pp. 1672–1687, December 2007.

[11] Y. Huang, T. Z. Fu, D.-M. Chiu, J. C. Lui, and C. Huang, “Challenges,
Design and Analysis of a Large-Scale P2P-VoD System,” SIGCOMM
Comput. Commun. Rev., vol. 38, no. 4, pp. 375–388, 2008.

[12] R. Landa, D. Griffin, R. G. Clegg, E. Mykoniati, and M. Rio, “A
Sybilproof Indirect Reciprocity Mechanism for Peer-to-Peer Networks,”
in Proceedings of INFOCOM 2009, Rio de Janeiro, Brasil, April 2009.

[13] B. Li, S. Xie, Y. Qu, G. Keung, C. Lin, J. Liu, and X. Zhang, “Inside
the New Coolstreaming: Principles, Measurements and Performance
Implications,” in INFOCOM 2008. The 27th Conference on Computer
Communications. IEEE, Apr. 2008, pp. 1031 –1039.

[14] Y. Liu and G. Simon, “Peer-to-Peer Time-shifted Streaming Systems,”
ArXiv e-prints, Nov. 2009.

[15] Y. Liu and G. Simon, “Distributed Delivery System for Time-Shifted
Streaming Systems,” in 2010 IEEE 35th Conference on Local Computer
Networks (LCN 2010), Oct. 2010, pp. 276 –279.

[16] ——, “Peer-Assisted Time-shifted Streaming Systems: Design and
Promises,” in Communications (ICC), 2011 IEEE International Con-
ference on, Jun. 2011.

[17] N. Magharei and R. Rejaie, “Mesh or Multiple-Tree: A Comparative
Study of Live P2P Streaming Approaches,” in Proceedings of IEEE
INFOCOM 2007, 2007, pp. 1424–1432.

[18] J. Noh, A. Mavlankar, P. Baccichet, and B. Girod, “Time-Shifted Stream-
ing in a Peer-to-Ppeer Video Multicast System,” in GLOBECOM’09:
Proceedings of the 28th IEEE conference on Global telecommunications.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 6025–6030.

[19] M. Piatek, A. Krishnamurthy, A. Venkataramani, R. Yang, D. Zhang,
and A. Jaffe, “Contracts: Practical Contribution Incentives for P2P
Live Streaming,” in Proceedings of the 7th USENIX conference
on Networked systems design and implementation, ser. NSDI’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 6–6. [Online].
Available: http://portal.acm.org/citation.cfm?id=1855711.1855717

