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ABSTRACT
This paper presents a statistically sound method for measur-
ing the accuracy with which a probabilistic model reflects
the growth of a network, and a method for optimising pa-
rameters in such a model. The technique is data-driven, and
can be used for the modeling and simulation of any kind of
evolving network.

The overall framework, a Framework for Evolving Topol-
ogy Analysis (FETA), is tested on data sets collected from
the Internet AS-level topology, social networking websites
and a co-authorship network. Statistical models of the growth
of these networks are produced and tested using a likelihood-
based method. The models are then used to generate arti-
ficial topologies with the same statistical properties as the
originals. This work can be used to predict future growth
patterns for a known network, or to generate artificial mod-
els of graph topology evolution for simulation purposes. Par-
ticular application examples include strategic network plan-
ning, user profiling in social networks or infrastructure de-
ployment in managed overlay-based services.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Net-
work Topology; G.2.2 [Graph Theory]: Network Prob-
lems

General Terms
Measurement, Design

Keywords
Network evolution, Likelihood-based models

1. INTRODUCTION

In recent years there has been much interest in cre-
ating simple probabilistic models which can be used
to produce topologies which replicate certain statisti-
cal properties of a given target network. Many of these
models depend on a procedure by which a network is
progressively “grown” from a small “seed” (with a hand-
ful of links) into an artificial topology which is as large
as required. If the model is successful, the artificial net-
work will have similar properties to the original. Thus,
these models rely on finding a network evolution model
that produces networks which are structurally similar
to the target network.

In much of the previous research in this field the
usual way of achieving this is to hypothesise an evo-
lution model for the target network, grow an artificial
network of at least the same size using that model, and
compare several key graph theoretical statistics with the
respective ones from the target network. This is usu-
ally done multiple times, so that the expected values
of the statistics can be obtained. If after this process
the model is found to be unsatisfactory, it is updated
accordingly and the whole process repeated.

Thus, the development of a topology evolution model
following the methodology detailed above will require
the construction of large numbers of “test” topologies
that use tentative evolution models. Since the construc-
tion of these topologies can be computationally cumber-
some if the networks in question are large, the analy-
sis of network evolution models has not been widely
adopted in practice.

The main contribution of this work is two-fold. Firstly
(and most importantly), we present a set of statistics
that directly measure the likelihood of a given prob-
abilistic evolution model giving rise to a given target
network – no “test” topologies need to be constructed.
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Secondly, we present a framework for exploratory test-
ing and optimisation of certain (quite general) classes
of network growth models.

The statistics that our technique produces are an un-
ambiguous and statistically rigorous measure of the like-
lihood of the evolution of the target network arising
from any particular hypothesised probabilistic model.
These statistics are quick to produce (much more so
than growing a test network of the same size), and could
be used as a fitness function for state-space searches or
genetic algorithms to automatically optimise parametrised
classes of models.

We will refer to this statistical framework as FETA
(Framework for Evolving Topology Analysis).

The structure of this paper is as follows. Section 2
describes the FETA framework in detail. Section 2.1
shows how the model likelihood is derived, and section
2.2 describes the fitting procedure for optimising model
parameters. Section 3 describes the model fitting for
the five network examples investigated in this paper.
Section 4 shows how the fitted models can be used to
generate artificial topologies that replicate specific sta-
tistical measures of the corresponding real networks.

1.1 Motivation
The problem of creating artificial topologies with the

same growth dynamics as a target network is an impor-
tant one. As networks grow, their statistical measures
change and undesirable emergent properties may occur.
A good statistical model of how a given target network
grows is an important goal which has applications in
many fields, but especially in the design and optimi-
sation of distributed computation and communication
systems. A tier one network provider may wish to be
able to model the future growth of the AS network to
predict and potentially avoid undesirable network prop-
erties, or to strategically choose its peering agreements.
The owner of an online social network may wish to
be able to predict, from their position in the network,
consumption patterns or demographic characteristics,
which users are more likely to accrue “friends” and
hence influence others. This information can be used
for targeted advertising, marketing or capacity planning
purposes. Finally, a provider of overlay-based services
(such as Skype or Akamai) may need to plan based
upon the future evolution of their overlay network. As
key network statistics change, they may wish to adapt
their protocols, or to modify infrastructure deployment
strategies accordingly.

1.2 Background
The field of generating graphs (or networks or topolo-

gies, the words seem to be used almost interchange-
ably in the literature) using random processes is usu-
ally considered to begin with Erdős and Rényi [8]. An

early study by Price [7] found that the degree distribu-
tion of co-authorship network of scientific papers obeyed
a power law. Much later it was discovered that the
Internet Autonomous System (AS) graph also follows
a power law [9] and this finding was also shown to
apply to a large number of other networks, including
social networks, hyperlinked document networks and
networks derived from biological systems. The well-
known Barabási–Albert (BA) model [3] provided a sem-
inal explanation of scaling network topologies in terms
of a “preferential attachment” model where “rich get
richer”: the probability of connecting to a given node
is exactly proportional to its degree. This led to several
papers which attempt to explain network evolution in
terms of node degree and related properties such as the
BA [3], ASIM [11] and AB [2] models.

Bu and Towsley [5] introduced the Generalised Linear
Preference (GLP) model, which modifies the preferen-
tial attachment model by raising the degree of the node
to a small power. Zhou and Mondragón [19] presented
the Positive-Feedback Preference (PFP) model, which
also modifies preferential attachment by raising node
degree to a small power (but this power also depends
on the node degree).

It has been shown that a model which faithfully re-
produces the node degree distribution may not capture
all the important properties of a graph [18]. To account
for this, the ORBIS model [12] reproduces the statistics
of subgraphs of small orders to take account of degree-
degree and higher order characteristics. The ORBIS
model is slightly different to the growth models which
the FETA approach uses, as the model uses rewiring
and rescaling rather than a hypothesised growth model.

The typical assessment of topology generation mod-
els has focused on measuring a number of statistics on
the real network data. Such measures have included the
number of nodes and links, average and maximum node
degree, best-fit power-law exponent, rich-club connec-
tivity, probability of nodes with low degrees (1, 2 and
3), characteristic path length, average and maximum
triangle coefficient, average and maximum quadrangle
coefficient, average knn and average and maximum be-
tweenness (see [10] for definitions of these properties
and a review of topology generation from an Internet
perspective). A candidate artificial model is then tested
by creating an artificial topology using the model and
seeing how well the topology reproduces several statis-
tics measured on the real data set. Occasionally, a new
network statistic may be added which existing models
do not reproduce and this can be used to justify a differ-
ent, improved model. This approach to model testing
and refining based on the generation of test topologies
and the comparison of a set of statistical measures be-
tween the test topologies and the target network is char-
acterised here as the “basket of statistics” approach.
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Figure 1: The FETA approach compared with the “basket of statistics” approach.

Willinger et al [18] called for a “closing of the loop”
between the discovery of “emergent phenomena” and
the models which reproduce them. They emphasise
the importance of a “validation” step to ensure that
a particular proposed model is consistent with the real
data. The evaluation framework given in section 2.1
provides this validation, albeit at the expense of requir-
ing data about how the network evolves rather than a
static snapshot. In so doing, however, the generation of
test topologies is avoided and the processing of bigger
graphs or more complicated models becomes possible.

Figure 1 contrasts the approach used by FETA with
the “basket of statistics” approach which has been pre-
viously used. By directly assessing model likelihood,
our approach short circuits the cycle of generating and
measuring test networks to optimise a test model.

2. FRAMEWORK FOR EVOLVING TOPOL-
OGY ANALYSIS

The Framework for Evolving Topology Analysis (FETA)
allows the investigation of growth models for real net-
works where information is known about the order in
which links were added to the network. The aim of
FETA is to produce probabilistic models which fit the
observed evolution of these networks. The class of mod-
els which FETA can work with includes BA [3], AB [2],
GLP [5] and PFP [19].

The probabilistic models used by FETA are described
in terms of two components referred to as an inner
model and an outer model . It is the inner model which
FETA evaluates and fits, which means that only models
based on probabilistically growing networks are com-
patible with FETA.

Definition 1. The outer model chooses an opera-
tion which will make a change to the existing network.
This could be add and connect a node, add a link between
nodes, delete a node or delete a link between nodes. The
inner model defines the probabilities for selecting the
node or nodes involved in the operation.

Definition 2. The inner model defines the proba-
bilities for selecting the node or nodes involved in the

operation defined by the outer model. The inner model
used by a given evolution model can vary, depending on
whether the outer model operation is a connection to a
new node or a connection between existing inner nodes.

For example, the AB model would correspond to an
outer model which adds a new node and then chooses
exactly three inner nodes to connect it to, along with
an inner model that chooses nodes with probabilities
proportional to their node degree. In PFP and GLP,
the outer model is the same as with AB, but the inner
model is different: the probability is proportional to the
degree raised to a power.

Remark 1. As is common in the literature, the main
focus of this paper is on the inner model. The outer
models, where needed in this paper, are assumed to be
of the following simple form: a new node is joined to
N existing nodes; following this M (which can be zero)
inner edges are added. The values of N and M are ran-
domly selected from probability distributions empirically
derived from the target network.

The framework is flexible enough to allow or disallow
the possibility of multiple edges between the same node
pair, and to allow or disallow nodes with connections to
themselves. In this paper only undirected, connected,
simple (no repeated edges and no edges from a node
to itself) graphs are considered. Removal of nodes or
edges is not considered in this paper.

Section 2.1 describes the evaluation procedure of FETA,
that works with any inner model which can assign prob-
abilities to nodes or edges in a graph. It will produce
statistically reliable measures of how well the model fits
the observed data. Section 2.2 describes a fitting proce-
dure which works with a subset of inner models which
combine sub-models and fit them using General Lin-
ear Models. Section 2.3 describes how FETA is used in
practice and gives information about scalability.

2.1 Model evaluation using FETA
Consider data from an empirical network which shows

how the network grows in time by the addition of nodes
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and edges. This growth data can be decomposed into
decisions from the outer model (whether a link is be-
tween existing inner nodes or to a new node) and the
choices of node (which would be controlled by the inner
model).

Let G0 be the known state of the graph at a certain
time. Assume that the graph is extended by adding
edges (sometimes between existing nodes and sometimes
in addition to a new node) one at a time. Assume, fur-
ther, that the state of the graph is known for each one of
these edge additions up to some step t (G0, G1, . . . , Gt

is known). Let Oi be the outer model operation (con-
nect edge to new node or connect edge between existing
nodes) for the ith edge addition since G0. Let Ii be the
node or nodes selected by the inner model for the outer
model operation Oi. Together Oi and Ii define the tran-
sition between Gi−1 and Gi. Conversely, if Gi−1 and Gi

are known then Oi and Ii are also known for 1 ≤ i ≤ t.
The best outer and inner models are those which best
explain Oi and Ii, respectively, for the observed peri-
ods. This paper focuses on the selection of the inner
model.

Let C stand for all of the observed inner model choices
I1, I2, . . . , It, and let θ be some inner model which at-
tempts to explain the observed inner model choices C
in terms of some statistical properties of the graph. At
each step i, θ maps graph properties (and, perhaps,
other properties, such as whether a new node or an in-
ner edge is being connected, or properties associated
with the node but exogenous to the network topology)
to probabilities.

In order to simplify the explanation, assume for re-
mainder of this section that the outer model always in-
volves the choice of a single existing node to connect to
a new node. In this case C is simply an ordered list
of the nodes chosen at each observed step and Ii is the
node connected at step i. Evaluation of the model θ is
now a matter of calculating the likelihood of C given
the model θ. The larger this likelihood, the better the
model fits the observed data.

Let pi(j|θ) be the probability that inner model θ as-
signs to node j at step i. To be a valid model θ should
ensure that

∑

j pi(j|θ) = 1 where the sum is over nodes.
It follows that pi(Ii|θ) is the likelihood of the choice Ii

at step i given model θ. The likelihood of all the obser-
vations C given model θ is given by the product

L(C|θ) =

t
∏

i=1

pi(Ii|θ).

It is also useful to define the log likelihood l(C|θ) =
log(L(C|θ)). The larger the likelihood (or log likeli-
hood) the better the model explains C.

Definition 3. The null model θ0 is defined as the
model which gives every node in the choice set equal

probability (this can also be thought of as the random
model). The saturated model θs is a model with as
many parameters as data points. In this case, θs en-
sures that pi(Ii|θs) = 1 for all i ∈ {1, . . . , t}. Hence
L(C|θs) = 1 and l(C|θs) = 0.

Now it is useful to define some measures of the good-
ness of the model using the statistic known as deviance.

Definition 4. The deviance of model θ is minus two
times the log-likelihood ratio between the model θ and the
saturated model θs,

D = −2(l(C|θ) − l(C|θs)) = −2l(C|θ).

Evidently, the deviance will always be positive (or
zero for the saturated model), and the smaller it is, the
better the model θ explains the data.

Definition 5. The null deviance D0 of a candidate
model θ is given by

D0 = −2(l(C|θ) − l(C|θ0)).

Thus, D0 will always be negative if the model θ ex-
plains C better than the null (random) model θ0. The
smaller D0, the better θ explains the choice set C.

Because of the size of the data sets used in this work
(|C| ∼ 100, 000) then the magnitude of D can be quite
large and depends critically on the size of C. It is useful
to have a statistic which defined on a more comprehen-
sible scale, and invariant to the size of C. We present
such new statistic, the per choice likelihood ratio:

Definition 6. The per choice likelihood ratio c0 is
the likelihood ratio between θ and the null model θ0 nor-
malised by the number of choices.

c0 =

[

L(C|θ)

L(C|θ0)

]1/t

= exp

[

l(C|θ) − l(C|θ0)

t

]

.

The quantity c0 is one if θ is exactly as good as θ0,
greater than one if it is better and less than one if it
is worse. Note that D, D0 and c0 are simply different
ways of looking at the model likelihood.

It should be noted though, that while a lower de-
viance or a higher per choice likelihood ratio always
indicate a better fit, this alone does not mean a model
should be preferred. The saturated model θs gives a
perfect fit to data, but it is a useless model for prac-
tical purposes since it can only reproduce the data it
has been given. What is needed is a trade off between
fit to data and a parsimonious model. Adding new pa-
rameters to a model is only good if the improvement to
the fit (reduction in D, increase in c0) justifies the extra
parameter. One criteria would be Akaike’s An Informa-
tion Criterion (AIC) [1] which is given by A = D + 2k
where k is the number of free parameters in the model.
However, given the size that D typically attains in this
modelling, this seems unlikely to prove a useful distinc-
tion.
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Example 1. An example will help comprehension.
Consider an initial graph which is the two link network
consisting of nodes {1, 2, 3} and edges {(1, 2), (2, 3)}.
The network grows by adding node 4 and link (2, 4)
and then node 5 and link (2, 5). We assume the simple
outer model add one node and connect it to one exist-
ing node at every stage. The inner model must explain
C = (2, 2), I1 = 2 and I2 = 2 given G0 and G1. The
null model θ0 predicts equal probabilities (1/3 each) for
node 4 to connect to nodes 1, 2 or 3 and equal proba-
bilities of 1/4 each, for node 5 to connect to nodes 1 to
4. Therefore, for this C and the null model the likeli-
hood is p1(I1|θ0) = 1/3 and p2(I2|θ0) = 1/4. The null
likelihood L(C|θ0) = 1/12. If, on the other hand, we
consider θ as the preferential attachment model (prob-
ability of attachment proportional to node degree) then,
given G0 the node probabilities are (1/4, 1/2, 1/4) and
given G1 they are (1/6, 1/2, 1/6, 1/6). The likelihoods
are p1(I1|θ) = 1/2 and p2(I2|θ) = 1/2 giving a final
likelihood L(C|θ) = 1/4. From this, deviance, null de-
viance and per choice likelihood ratio can be calculated.
Naturally, real data sets will have many more choices
and many more nodes.

Remark 2. The selection of edges from a set of all
possible edges would present a difficult computational
problem, as the set of all possible edges increases ap-
proximately as the square of the number of nodes. This
can be avoided by considering the probability of choosing
edge (n1, n2) as the probability of choosing n1 followed
by n2, plus the probability of choosing n2 followed by n1

(assuming n1 6= n2). The second choice set can be nar-
rowed to avoid self loops and nodes already connected to
the first node if a simple graph is desired.

Remark 3. Separate inner models can be fitted to
each type of operation for the outer model. Therefore,
for example, the hypothesis that new nodes connect us-
ing preferential attachment and inner edges connect us-
ing PFP can be explored. The data set C can be split
into two parts, those choices associated with connecting
to new nodes and those choices associated with adding
edges between existing nodes. In this case, the deviance
of the full inner model is the sum of the deviance of the
model components, and the per choice likelihood ratio c0

can be calculated accordingly.

2.2 Model fitting using FETA
The deviance and per choice likelihood ratio can de-

termine which inner model is a better fit for a given data
set. However, for parametrised models, they do not al-
low the automatic tuning of parameters. In this sec-
tion a method is introduced based upon the statistical
technique of Generalised Linear Models (GLM) which
allows certain (linear) parameters to be automatically
tuned for an inner model. Again, for simplicity of dis-

cussion, this section considers only inner models which
connect nodes to a new node.

Consider an inner node model θ. It may be that the
ideal model is not pure preferential attachment or PFP,
but some mixture of these models. Further, it follows
that probabilities may be affected other factors (both
inherent in the graph topology and exogenous to the
topology but available as a data input).

Let dj(i) be the degree of node i in graph Gj−1 (the
graph used to make choice j). Let pj(i|θ) be the prob-
ability that model θ assigns to node i for choice j. For
the null model θ0 then we have that

pj(i|θ0) = Cn
j ,

where Cn
j is a normalising constant for a given choice

(that is, it is constant for a given j) so that the probabil-
ities sum to one over all i. Similarly, for the preferential
attachment model, referred to for now as θd, then we
have that

pj(i|θd) = Cd
j dj(i),

where, again, Cd
j is a normalising constant for a given j.

Let Tj(i) be the number of triangles (3–cycles) node i
is part of in graph Gj−1. Now we can consider some
hypothetical model θt where connection probabilities
depend upon the triangles,

pj(i|θt) = Ct
jtj(i),

where, again, Ct
j is a constant for fixed j. A model can

be considered which is a linear combination of θ0, θp

and θt. Call this hypothesised model θ. For this model
we would have that

pj(i|θ) = β0pj(i|θ0) + βdpj(i|θd) + βtpj(i|θt), (1)

where β0, βd and βt are all in the range [0, 1] and sum
to one. These constants are the proportion of each of
the models which contribute to the final model. We use
GLM to find the optimal combination of β parameters
for a given data set. A brief summary of GLM follows.

Let y = {y1, y2, . . . , yN} be some set of observed data
we desire to model. Let x1 = {x1

1, x
1
2, . . . , x

1
N} and

x2, x3, . . . (similarly defined) be sets of observed data
that is to be used to explain y. A relationship is hy-
pothesised which allows y to be estimated in terms of
x1, x2 and so on. A model is to be fitted of the form

y = β0 + β1x
1 + β2x

2 + β3x
3 + ε, (2)

where the βi are parameters (not constrained to a range
this time) which give the contribution of the various
components to the variable y and β0 which is an inter-
cept parameter and ε is an error component. Fitting
GLM can be done automatically using a statistical lan-
guage such as R1. Given observed data, this can be read
into R and a GLM fitting procedure can be used to find
1http://www.r-project.org
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those β values which maximise the model likelihood.
In addition, the fitting procedure produces the model
deviance and estimates of the errors and statistical sig-
nificance for each of the model parameters. If a param-
eter is not statistically significant it should usually be
removed from the model.

Let Pj(i) be an indicator variable which is 1 if and
only if node i was actually the node picked for choice j,
and 0 otherwise. The problem of finding the best model
in (1) becomes the problem of fitting the GLM,

Pj(i) = β0pj(i|θ0) + βdpj(i|θd) + βtpj(i|θt) + ε,

to find the combined model θ that best predicts the
Pj(i). Thus, GLM fitting can be used to find the choice
of βi which maximises the likelihood of this model. This
is equivalent to finding the βi which gives the maxi-
mum likelihood for θ since for model θ, the expectation
E [Pj(i)] = pj(i|θ).

This will give the choice of βi which best combine the
model components into the unified model θ. If the βi

are in the range [0, 1] and sum to one, it can be trivially
shown that θ is a valid probability model as long as
pj(i|θ1), pj(i|θ2), . . . are.

So, for the period between G0 and Gt, for each node, a
data point is generated with the parameters of the graph
relevant to the models, and with a 1 or a 0 depending on
whether that node was the node actually selected as an
outcome of that choice. The procedure has been tested
on data from artificially generated networks and it has
been found to be able to successfully recover their βi

parameters in a wide variety of circumstances. Certain
model component combinations might be problematic
to fit, however. An example of this would be a model
constructed from a PFP and a preferential attachment
component: since these explanatory variables are very
similar for most nodes, finding a satisfactory mix using
GLM is usually extremely hard.

Note that only the βi parameters can be automat-
ically optimised by the GLM fitting procedure. Any
other parameters such as the δ in the PFP model must
be fitted by other means, such as trying a number of
parameter choices and comparing the deviance or per
choice likelihood ratio.

Remark 4. As pointed out in remark 3, separate mod-
els can be fitted to nodes connecting to new nodes and
connections to inner edges. The items of data are sepa-
rated by an analysis tool and they are fitted in different
GLM models. As in remark 2 fitting inner edges causes
issues for the framework. The choice of inner edges is
broken down into the choice of two nodes. The choice
set for the second node is constrained by removing from
the choice set those nodes which already have a link from
the first node.

2.3 FETA in practice

The FETA evaluation process therefore consists of
hypothesising inner models which might fit the evolu-
tion of a target network and calculating their likelihood
statistics as shown in section 2.1. The fitting procedure
in section 2.2 is used as an exploratory tool both to tune
linear combinations of model components and also to
provide hints as to which other components might be
introduced (for example, a negative β parameter will
rarely produce a usable model but, for example, if the
θt component produced a negative βt this suggests that
the choice mechanism is avoiding nodes with a high tri-
angle count).

The graph in figure 2 shows the run time for measur-
ing model likelihood (as described in section 2.1) and
for creating a network file with a given number of links
(using a test model which is part PFP and part ran-
dom). The tests were run on a 2.66GHz quad core
Xeon CPU. The plot is a log-scale showing how run
time varies with network size. For 100,000 links the net-
work creation process takes 2,631 seconds and for the
likelihood estimation process takes 53 seconds. Both
processes appear to scale approximately as the square
of the number of links (for times under 1 second the tim-
ing information is not accurate). Neither process takes
a significant amount of memory. The relative speed of
the evaluation of likelihood statistics is another benefit
of the FETA approach. To tune the parameters of a
hypothetical parametrised model using the “basket of
statistics” approach, a new network would have to be
grown for every test model. This is much more com-
putationally intensive than the calculation of likelihood
statistics required by FETA.
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Figure 2: Run time for network creation and

analysis processes in FETA.

3. FITTING MODELS TO NETWORK DATA
The FETA procedure is used to create inner models

for several networks of interest. Section 3.1 fits mod-
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els to a co-authorship network inferred from the arXiv
database. Section 3.2 fits models to a view of the AS
network topology referred to here as the UCLA AS net-
work and section 3.3 fits models to a second view of the
AS topology, which we refer to here as the RouteViews
AS network.

Finally, section 3.4 fits network evolution models to
a network derived from user browsing behaviour, and
section 3.5 fits models to a social network derived from
the popular photo sharing site Flickr.

Table 1 summarises the networks considered in terms
of total edges, total nodes and the edge/node ratio.

Network edges nodes edge/node
arXiv 15,788 9,121 1.73

UCLA AS 93,957 29,032 3.24
RouteViews AS 94,993 33, 804 2.81

gallery 50,472 26,958 1.87
Flickr 98,931 46,557 2.13

Table 1: Sizes of the networks analysed

Several model components were considered in a linear
combination as described in section 2.2. Those compo-
nents are listed below, where pi is the probability of
choosing node i and kα is a normalising constant such
that pi = 1 when summed over the choice set. Further-
more, di is the degree of node i and ti is the triangle
count of node i.

• θ0 – the null model assumes all nodes have equal
probability pi = kn.

• θd – the degree based preferential attachment model
assumes node probability pi = kddi.

• θt – the triangle count model assumes node prob-
ability pi = ktti.

• θ1 – the singleton model assumes node probability
pi = k1 if di = 1 and pi = 0 otherwise.

• θ2 – the doubleton model assumes node probability
pi = k2 if di = 2 and pi = 0 otherwise.

• θ
(δ)
p – the PFP model assumes node probability

pi = kpd
1+δ log

10
(di)

i .

Note that the PFP model is the only one to require a
parameter.

This notation allows the concise description of a lin-
ear additive model in terms of its components. For ex-

ample θ = 0.1θ1 + 0.9θ
(0.04)
p is a model which is has

a component from the singleton model (contributing
0.1 of the probability) and a component from the PFP
model with parameter δ = 0.04 (contributing 0.9 of the
probability). In the models θ1, θ2 and θt there is a pos-
sibility of all nodes being assigned zero probability (if

there are no singletons, doubletons or triangles respec-
tively). In this case, θ0 is substituted for that model
component. This happens on extremely few occasions
and always very early in network construction. Obvi-
ously a large collection of model components could be
tried but a conscious decision was taken to limit the
number of possibilities for this experimentation.

For each data set, three inner models are tried:

1. a pure preferential attachment model,

2. a pure PFP model (with an optimally tuned δ for
connections to new nodes, and another one for in-
ternal edges),

3. the best model found using the techniques from
section 2.2.

Model one was picked because the preferential attach-
ment is a reasonable baseline for improvement. Model
2 was picked because investigation showed that for al-
most every network the PFP model had low deviance.
Model 3 was picked to show the improvement (if any)
possible by using linear combinations of models.

The outer model was derived simply by calculating
empirically from the network data two distributions.

1. the number of inner nodes each new node connects
to on arrival,

2. the number of inner edges connected between each
new node arrival.

These distributions are then used to create the outer
model. This is simplistic and obviously further research
is required to improve the techniques to generate this
outer model.

Results are presented using the metrics from section
2.1: D is the deviance, D0 is the null deviance and c0 is
the per choice likelihood ratio. A better model is indi-
cated by lower D and D0, and by a high c. The results
are broken down into the contribution from the inner
model to connect to new nodes and the inner model for
connecting internal edges.

3.1 Fitting the arXiv data set
A publication co-authorship network was obtained

from the online academic publication network arXiv.
The first paper was added in April 1989 and papers are
still being added to this day. To keep the size manage-
able, the network was produced just from the papers
categorised as math. The network is a co-authorship
network: an edge is added when two authors first write
a paper together. In this case, because it is required
that the network remains connected, edges which are
not connected to the largest connected component are
ignored. Multiple edges between two authors are not
added. The processing of this network is far from per-
fect, only author names (rather than unique IDs) are
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matched. Inconsistent naming conventions mean some
authors are recorded by first name and surname, and
some by initial and surname. To avoid problems match-
ing John Smith, J. Smith and John W. Smith, the
match is on first initial and surname, though it is clear
this will allow some collisions. One paper2 was removed
from analysis. The paper has sixty authors, far more
than the paper with the next largest number of authors.
Since each author on a paper forms a graph clique with
all the other coauthors in that same paper, this paper
added 1,732 links for which no arrival order significant
to the evolution of the network could be found. As a
size 60 clique would distort most network statistics, it
was rejected as an outlier.

As described in the previous section, three models
were tried, a preferential attachment model, a pure PFP
model and the best model found using the fitting proce-
dure. Model 2, the best PFP model was, for connections

to new nodes, θ
(−0.21)
p and for connections between in-

ner edges θ
(−0.02)
p . Model 3, the best model found, was,

for new node connections, 0.881θ
(−0.22)
p + 0.119θ1 and

for internal node connections the pure PFP model as in
model 2 (no better model could be found).

As can be seen, the best model by all measures is
model 3. It is worth noticing that the inner edge model
does not perform significantly differently between the
three (in any case this is the same model for 2 and 3).
With such a small δ parameter the model is almost the
same as preferential attachment (model 1). It should
also be noticed that the deviance itself is hard to com-
pare simply because it is such a large number that the
relative differences seem small. For the preferential at-
tachment model, (model 1) the new node model was
actually worse than the null model and this can be seen
by the fact that D0 is positive and c0 is less than one.
Overall, the new node model appears to have made few
gains relative to the new node model in all cases (c0

is larger for the inner edge models than the new node
models) despite the simplicity of the inner edge model.
This suggests that improving the new node model is the
best focus for model improvements in general. The im-
provement in new node model c0 from 1.06 in model 2 to
1.09 in model 3 seems significant and indicates that the
addition of a model reflecting singletons is useful. Re-
membering that singletons in this case are authors with
only a single other co-author, perhaps this is explained
by a desire for those authors with a single co-author to
collaborate with other new authors.

3.2 Fitting the UCLA AS data set
The data set we refer to here as the UCLA AS data

set is a view of the Internet AS topology seen between
January 2004 and August 2008. It comes from the In-

2http://arxiv.org/abs/math/0406190

Model component D D0 c0

Model 1 New node 195,000 -1,510 1.06
Model 1 Inner edge 118,000 -4,091 1.31
Model 1 Overall 312,000 -5,600 1.15
Model 2 New node 194,000 -2,450 1.10
Model 2 Inner edge 118,000 -4,170 1.32
Model 2 Overall 311,000 6,610 1.18
Model 3 New node 193,000 -3,090 1.13
Model 3 Inner edge 118,000 -4,240 1.32
Model 3 Overall 311,000 -7,340 1.21

Table 2: Three models tested on the arXiv net-

work.

ternet topology collection3 maintained by Oliviera et.
al. [15]. These topologies are updated daily using
data sources such as BGP routing tables and updates
from RouteViews, RIPE,4 Abilene5 and LookingGlass
servers. Each node and link is annotated with the times
it was first and last observed during the measurement
period.

As previously stated, our network growth model does
not include a removal process. On the other hand, var-
ious links and nodes disappear from the UCLA data
set during the time interval under analysis. To incor-
porate this into our modelling framework, the data is
preprocessed by removing all edges and nodes which
are not seen in the final sixty days of the data, so that
the final state of the evolution of the network is the AS
network as it is in August 2008. Edges are introduced
into the network in the order of their first sighting. If
this would cause the network to become disconnected,
their introduction is delayed until the arrival of other
links and nodes allows them to join while maintaining
a connected network at all times.

The arrival order of edges is only known after timed
link arrival data is available in January 2004. Further-
more, there is a period of fast discovery of nodes and
edges immediately after this time where the order of
edge arrival is considered to be very uncertain (since
snapshots are only daily and not every link will be dis-
covered on the first day it exists). Thus, the first days
of data are considered a “warm up” period and removed
from the analysis. G0 is taken to be after this warm up
period expires. The growth of the network is shown in
figure 3.

Exploratory model fitting on the UCLA AS network
showed that a PFP model was again favoured. Again
the inner edge model seemed to have a smaller δ than
the new node model. No model was found to be a great
improvement over PFP but there was some evidence
that including a small singleton component would make

3http://irl.cs.ucla.edu/topology/
4http://www.ripe.net/db/irr.html/
5http://abilene.internet2.edu/
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Figure 3: Network growth for UCLA AS net-

work.

slight improvements.
Three models are tested on the UCLA AS network.

Model 1 is pure preferential attachment. Model 2 is

pure PFP with different delta parameters – θ
(0.028)
p for

the new node model and θ
(0.007)
p for the inner edge

model. The best model found was only slightly bet-
ter than this, and it and combined PFP with a tiny
amount of the singleton model The new node model

was 0.974θ
(0.032)
p + 0.026θ1. The inner edge model was

0.960θ
(0.013)
p + 0.040θ1.

The results of this fitting exercise are shown on table
3. In this case, the improvement against preferential
attachment was extremely marginal. It was only model
3 that showed an improvement, and this improvement
was mostly in the inner edge model (indeed its new node
model was worse than that of model 2). Overall, the c0

values were relatively high indicating a good fit to the
data compared with the random model.

Model component D D0 c0

Model 1 New node 320,000 -102,000 10.6
Model 1 Inner edge 1,790,000 -402,000 5.74
Model 1 Overall 2,110,000 -504,000 6.33
Model 2 New node 319,000 -102,000 10.8
Model 2 Inner edge 1,790,000 -402,000 5.73
Model 2 Overall 2,110,000 -504,000 6.33
Model 3 New node 320,000 -102,000 10.7
Model 3 Inner edge 1,780,000 -405,000 5.82
Model 3 Overall 2,100,000 -507,000 6.41

Table 3: Three models tested on the UCLA AS

network.

3.3 Fitting the RouteViews AS data set
For the present paper we define the RouteViews AS

data set as the view of the Internet AS topology from
the point of view of a single RouteViews data collec-

tor. The raw data used to construct it comes from the
University of Oregon Route Views Project[17], and it
was recovered from the parsing of the routing tables ob-
tained by running ‘show ip bgp’ on the command line
of route-views3.routeviews.org and capturing the out-
put. To construct the node and link arrival process to
which we fit our evolution models we process one such
table dump per day over the time interval between April
11th, 2007 and January 16th, 2009.

It is well known that an AS map obtained in such
a way will not be representative of the true AS Inter-
net topology (see [4, 16, 6, 13]). However, a valida-
tion framework like FETA should be able to discover
this difference by fitting different growth models to the
RouteViews AS data set and the more complete UCLA
data set.

Since the basic outer models that we set out to eval-
uate do not have a node removal process, we consider
only the addition of AS numbers and peerings to the
AS map, as it is viewed from the perspective of route-
views3.routeviews.org. Thus, we seek to model the cu-
mulative AS growth process as viewed from a single
BGP peer.

As with the UCLA data set, we ignore the very first
tables processed, as their dynamics are not representa-
tive of the system equilibrium growth rate, and their
timing information is unavailable. The growth of the
network is shown in figure 4.
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Figure 4: Network growth for RouteViews AS

network.

As before, model fitting on the RouteViews AS data
set showed that a PFP model was favoured. As in the
previous cases, the inner edge model seemed to have a
significantly smaller δ than the new node model. As
with the UCLA case, a small singleton component in
the inner edge model yields slight improvements.

Three models are tested on the RouteViews AS data
set. Model 1 is pure preferential attachment. Model 2
is pure PFP with different delta parameters (δ = 0.034
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for the new node model and δ = 0.003 for the inner
edge model). Model 3 took the same new node model
as model 2, but for the internal edge model it combined
a pure PFP new node model with the singleton model

according to 0.87θ
(.013)
p + 0.13θ1.

The results are shown in table 4. As before, the
improvement against preferential attachment was ex-
tremely marginal. It was only model 3 that showed
improvement, as a consequence of a slightly better in-
ner edge model. Again, c0 values were relatively high
indicating a good fit to the data compared with the
random model.

Model component D D0 c0

Model 1 New node 138,000 -45,400 12.7
Model 1 Inner edge 1,478,000 -257,000 4.36
Model 1 Overall 1,620,000 -302,400 4.81
Model 2 New node 138,000 -46,100 13.21
Model 2 Inner edge 1,480,000 -257,000 4.36
Model 2 Overall 1,620,000 -303,400 4.83
Model 3 New node 138,000 -46,100 13.21
Model 3 Inner edge 1,470,000 -264,000 4.53
Model 3 Overall 1,610,000 -310,100 5.00

Table 4: Three models tested on the Route-

Views AS network.

As expected, the model found for the RouteViews AS
data set is quite close to that one found from the UCLA
data set, while still being different enough to accommo-
date their differing topological characteristics. Over-
all, the difference in the PFP/singleton mix between
the best models fitted for the UCLA AS and Route-
Views data sets suggests that, from the point of view of
route-views3.routeviews.org, ASs with a single point of
attachment to the Internet are more prone to becom-
ing multihomed than they are from a more complete
perspective of the AS topology.

3.4 Fitting the gallery data set
The website known simply as “gallery”6 is a photo

sharing website. To be able to upload pictures and have
some control over the display of pictures, users have to
create an account and login. From webserver logs, the
path logged in users browse as they move across the
network can be followed. Thus, images become nodes
in the networks, and a user browsing between two pho-
tos creates a link between the two nodes that represent
them. These links are overlaid for all users in order to
form our network.

Model 1 is, as usual, a pure preferential attachment
model θd. The fitting of model 2 was problematic for
this network, minimising deviance for the new nodes
model with the unusually low delta value of δ = −1.8.

6http://gallery.future-i.com/

For inner edges, the PFP model θ
(0.015)
p had lowest

deviance. Finally, Model 3 has the new node model
0.516θd + 0.484θ1, and the same inner edge model as

model 2 – that is, θ
(0.015)
p .

Table 5 shows the model likelihood statistics, where
the inadequacy of the proposed models to the network
growth dynamics is apparent. In particular, the model
to connect to new nodes was, for model 1 and model 2,
worse than the null model θ0 (which connects to nodes
at random). Thus, FETA allows us to discover in a
straightforward way that new node connections in this
network do not have a preferential attachment struc-
ture at all. We hypothesise that the peculiar new node
arrival process arises from the fact that the browsing
network is, uniquely amongst the networks examined
here, a transient one in the sense that a link between
two nodes is made by a user moving from one picture
to the next – however, no permanent record of this is
reflected to the user, and thus, user behaviour is not
influenced by it.

Model component D D0 c0

Model 1 New node 675,000 44,300 0.523
Model 1 Inner edge 586,000 -17,000 1.23
Model 1 Overall 1,260,000 27,000 0.815
Model 2 New node 645,000 14,000 0.810
Model 2 Inner edge 586,000 -17,200 1.30
Model 2 Overall 1,230,000 -2,750 1.02
Model 3 New node 529,000 -102,000 4.43
Model 3 Inner edge 586,000 -17,000 1.30
Model 3 Overall 1,110,000 -119,000 2.43

Table 5: Three models tested on the gallery user

network.

3.5 Fitting the Flickr data set
The Flickr7 website allows users to associate them-

selves with other users by naming them as Contacts .
In [14] the authors describe how they collected data for
the graph made by users as they connect to other users.
The first 100,000 links of this network is analysed here.
The graph is generated by a web-crawling spider so the
order of arrival of edges is the order in which the spi-
der moves between the users rather than the order in
which the users made the connections. Thus, the evo-
lution dynamics of this network will be determined by
the spidering code.

The analysis compares only two different network mod-
els, first a pure preferential attachment model θd; sec-

ond a PFP model with θ
(0.05)
p for the new nodes connec-

tions and θ
(−0.013)
p for the inner edge connections. No

combined model was found which improved over the
PFP model.

7http://flickr.com/
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Model component D D0 c0

Model 1 New node 379,000 -529,000 294
Model 1 Inner edge 1,600,000 -479,000 9.83
Model 1 Overall 1,970,000 -1,010,000 27.9
Model 2 New node 352,000 -555,000 389
Model 2 Inner edge 1,590,000 -481,000 9.93
Model 2 Overall 1,945,733 -1,040,000 30.7

Table 6: Two models tested on the Flickr net-

work.

3.6 Discussion of model fitting
Several conclusions can be drawn from the model fit-

ting process. For most models considered in this sec-
tion, providing different model components for the in-
ner new node model and the inner edge model yields
improved models. Thus, the separation of the inner
model into a sub-model for connections to new nodes
and a sub-model for new internal edges between exist-
ing nodes is usually productive.

Moreover, in all but one case (the Flickr data set) it
was found that inner models with a higher likelihood
could be obtained from a linear combination of model
components. Thus, the ability to produce optimised
models through the linear combination of sub-models is
of use in finding improved network evolution models.

Models based upon PFP generally had high likeli-
hoods (but this was the only parametrised model com-
ponent tried, so this might be simply an issue of in-
creased flexibility in the fitting procedure). The model
parameters selected for the two different AS networks
were encouragingly similar, pointing to common net-
work evolution dynamics, but had significant differences
consistent with the way their measurement characteris-
tics.

4. ARTIFICIAL TOPOLOGY GENERATION
The models explored in the the previous section have

been generated purely by fitting proposed models so
that their parameters best predicted the actual network
growth process observed. Thus, the models were cre-
ated without growing test networks, measuring statis-
tics on them and further refining them – indeed, the
models were identified without measuring any statistics
about the real network.

However, it is natural to expect that if the null de-
viance D0 and per choice likelihood ratio c0 predict that
model θA is “better” than model θB, this will be re-
flected in model θA growing artificial networks with a
better match to the statistics of the real network than
model θB. Here, therefore, artificial networks are gen-
erated from the seed G0 (In the the case of the AS
networks is the state of the network shortly after mea-
surements started, while in the three remaining cases

this is simply a single edge). Each of the models from
the previous section and the random model are used to
grow a network of the same size as the full real network,
and summary statistics are compared.

The results in this section need careful interpreta-
tion. In particular, it should be remembered that the
claim is not that these models are the best possible fit
to the real network – in some cases, the claim is that
the models tried are actually worse than simply select-
ing nodes at random. The fitting procedure in section
2.2 optimises the mixture of model components (the β
parameters), while the evaluation procedure can opti-
mise other model parameters (such as the PFP δ) using
any state space search technique. However, the models
themselves need to be provided as an input, and it may
be the case that no perfect model is to be found from
the model components chosen.

However, independently of the precise mathematical
description of the network growth models under test,
a model with c0 > 1 should be better than a random
model, and the model with the highest c0 should be
the best. This is difficult to achieve using statistical
network measures: saying that one model reproduces
real network statistics “better” that other model is, in
itself problematic. If a model scores well on three highly
related statistics but extremely badly on two others,
is it a good model? The “basket of statistics” does
not always give an unambiguous answer to as to which
model is “best”.

For this section, four statistics related to the degree
distribution are used: dmax, the maximum node degree
in the network, d1, the proportion of nodes with degree
one, d2, the proportion of nodes of degree 2 and d2, the
mean square of the node degrees (d is a property of the
outer model and automatically equal to that of the real
network in all models here).

In addition, two further statistics are used captur-
ing the interaction between pairs and triples of nodes.
The clustering coefficient γi of a node is the number of
3-cycles that the node belongs to, divided by the poten-
tial number of 3-cycles between its neighbouring nodes
(Obviously, nodes of degree one do not have any poten-
tial triangles and the clustering coefficient is not defined
for them). In the tables in this section γ is the mean
clustering coefficient for the graph. The assortativity
coefficient r is positive when nodes attach to nodes of
like degree (high degree nodes attach to each other) and
negative when high degree nodes tend to attach to low
degree nodes. For full definitions of all these quantities
see [10].

4.1 Topology generation using FETA models

4.1.1 Statistics on the arXiv evolution model

The summary statistics for the arXiv publication net-
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Model d=1 d=2 d2 dmax r γ

Real 0.314 0.237 31.3 127 0.00557 0.145

Rand 0.233 0.223 23.9 24 0.245 0.00285

1 0.483 0.215 123.5 446 -0.060 0.0154

2 0.431 0.204 39.1 97 0.152 0.00901

3 0.348 0.258 33.6 75 0.179 0.00748

Table 7: Summary statistics arXiv co-

authorship network.

work are in table 7. The previous modelling in table 2
rated model 1 with c0 = 1.15, model 2 with c0 = 1.18
and model 3 with c0 = 1.21. If these figures are re-
liable, model 3 should be expected to be a better fit
than model 2 which is in turn a better fit than model 1.
This is certainly bourne out for the degree distribution
statistics, with model 3 closest for d = 1, d = 2 and d2

and marginally worse than model 2 for dmax. All three
models generate networks which replicate γ badly, with
model 1 being the closest. With respect to assortativ-
ity, model 1 is closest in absolute terms but it predicts
a disassortative network when the actual network is as-
sortative.

While these results are not straight-forward to inter-
pret, the overall picture seems to confirm that model
3 reproduces the statistics of the network better than
model 2, which in turn beats model 1. The relatively
low c0 value means that the models should not be a
dramatic improvement upon the random baseline, and
this is bourne out by the statistics (indeed, for model
1 it is arguable whether the model is even better than
random).

4.1.2 Statistics on the UCLA AS evolution model

Model d=1 d=2 d2 dmax r γ

Real 0.122 0.245 6,620 3,150 -0.197 0.0584

Rand 0.129 0.118 210 1,199 -0.00962 0.0173

1 0.447 0.163 2,230 4,177 -0.144 0.0190

2 0.451 0.167 3,230 5,305 -0.168 0.0148

3 0.363 0.215 3,820 6,109 -0.172 0.0121

Table 8: Summary statistics, UCLA AS net-

work.

As detailed in section 3.2, evolution information was
not known for the early part of the the UCLA AS net-
work growth. Therefore, the first 42,000 edges were
taken from the original network, and its evolution fol-
lowed from this. The statistics from table 3 gave c0 =
6.33 for model 1 and model 2, but c0 = 6.41 for model
3. This implies that model 3 should be a modest im-
provement on models 1 and 2. This is bourne out by the
statistics in table 8 for d = 1, d = 2 and d2, but for dmax

model 3 performs the worst and is incorrect by some
way. With r, model 3 is again the best and relatively
close to the correct value. Regarding the clustering co-
efficient γ, model 3 is best but all models are quite far

away from the correct value. As predicted, model 1 and
model 2 are hard to distinguish using these statistics.
Overall, model 3 was best or close to best in almost all
statistics measured, as the c0 value predicts. All mod-
els would be expected to be a good improvement on the
random model and this is shown in all statistics except
d = 1 which random gets nearly exactly.

4.1.3 Statistics on the RouteViews AS evolution model

Model d=1 d=2 d2 dmax r γ

Real 0.203 0.363 2,110 3,294 -0.186 0.00887

Rand 0.093 0.118 630 2,289 -0.0710 0.00266

1 0.342 0.185 2,130 4,172 -0.154 0.00631

2 0.350 0.187 2,520 4,637 -0.165 0.00590

3 0.118 0.358 2,610 4,844 -0.163 0.00443

Table 9: Summary statistics RouteViews AS

network.

From table 4, it would be expected that model 1
(c0 = 4.81) would be the same as or very slightly worse
than model 2 (c0 = 4.83) and model 3 (c0 = 5.00) would
be slightly better than either. It is worth noticing that
the ratio of these figures is small and the expected im-
provement from 1 to 3 is slight. This hierarchy is bourne
out by the statistics for nodes of degree 1 and degree 2
with model 3 being considerably better in both cases.
For d and dmax, however, the expectation is reversed
and for these statistics, model 1 is better. Models 2
and 3 are close to each other and the correct value for
r but for γ model 1 is better than either. In the end it
is hard to say from these statistics which model is the
best. The high values of c0 do unambiguously claim
that all models are superior to random by some way
and this is certainly the case. The random model is the
worst model for all statistics except for dmax.

4.1.4 Statistics on the gallery evolution model

Model d=1 d=2 d2 dmax r γ

Real 0.0132 0.473 26.3 214 0.144 0.0829

Rand 0.217 0.117 210 30 0.283 0.000809

1 0.447 0.235 369 1,442 -0.065 0.00689

2 0.279 0.205 38.0 277 0.160 0.00992

3 0.0924 0.453 51.1 354 0.0708 0.00537

Table 10: Summary statistics gallery user brows-

ing network.

The gallery likelihood table 5 shows that for model 1,
c0 = 0.815 (worse than random), for model 2 c0 = 1.02
and for model 3 c0 = 2.43. This means that, in the
statistics in table 10, model 3 should outperform model
2, which itself should outperform model 1. This ex-
pectation is largely bourne out by the degree statistics,
with model 1 very inaccurate for all statistics based on
node degree. However, in this case, it is hard to see
the very clear distinction between model 2 and model 3
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which is predicted by the c0 values. Model 3 is certainly
better at predicting the number of nodes of degree one
and two and does quite well with d2 and dmax. How-
ever, it remains hard to claim that model 3 represents
the clear improvement in model accuracy that the c0

statistic would lead us to expect.
We have a case where model 1 is expected to be worse

than random and model 2 not much better. This cer-
tainly seems to match the statistics provided. The rela-
tively poor performance of model 3 remains an anomaly
of this data set.

4.1.5 Statistics on the Flickr evolution model

Model d=1 d=2 d2 dmax r γ

Real 0.639 0.157 7,500 11,053 -0.288 0.00196

Rand 0.245 0.179 32.4 35 0.341 0.000758

1 0.560 0.172 694 1,704 -0.119 0.0216

2 0.572 0.168 1,290 3,587 -0.154 0.0107

Table 11: Summary statistics Flickr spider net-

work.

As detailed in section 3.5, only two models were tried
for the Flickr data set. Table 6 gives extremely high
c0 values for both models, with model 2 being slightly
better than model 1. This is definitely reflected in the
statistics in table 11 with model 2 being closer to the
real data all statistics. The models are quite close on
many statistics, but fail to predict the extremely highly
connected node with degree 11,053. This may be an
artifact of the browsing pattern of the spider, which
may also be reflected in the d2 value being incorrect.
The high c0 values indicate that both models should
be considerably better than the random model, which
is certainly true – the random model is extremely bad.
These results point towards considerable structure to
the network network evolution which the random model
fails to capture.

4.2 Discussion on topology generation
None of the models tested here were perfect at re-

producing the selected statistics of their respective net-
work data sets. In the majority of cases, the best fitting
models reproduced the degree distribution related met-
rics measured here, but finding the maximum degree
was often difficult. However, one thing the modelling
in this section certainly shows is the difficulty of distin-
guishing between models by considering a large number
of, often correlated, statistics.

Obviously the models tested here could be improved.
However, the network statistics measured did rank the
networks in the same order as the statistics from sec-
tion 3 (the exception being model 3 in the gallery data
which, while arguably the best model, was not better
by the expected degree). This is an important confir-
mation of the usefulness of the likelihood statistic c0

in assessing the fit of network evolution models. The
gallery data definitely proved an exception to expecta-
tions, and this is perhaps due to the transient nature of
this network as discussed in section 3.4.

A general conclusion of this section on the models
themselves was that (apart from the gallery data), as
might be expected, the PFP based models outperformed
the degree based model, and the “tweaked” models from
the fitting process in section 2.2 (where better models
were found) did better still in most cases.

For a given network and a given model the value of
c0 did seem (with one exception) to be an accurate pre-
dictor of how well a model would replicate the statistics
of a target network. However, it is hard to see a con-
nection between the magnitude of c0 between networks
and the success in prediction. For example, the predic-
tions on the arXiv network seemed very good for model
3 for most statistics despite the model only having a c0

value of 1.21.
In general, though, relative likelihood statistics for

the different models was reflected in the performance
at reproducing representative network statistics. Those
models with higher likelihoods (lower deviances) better
reproduced the statistics of the target network. This
confirms the usefulness of the framework for automatic
model selection.

5. CONCLUSIONS
In this paper we present FETA, the Framework for

Evolving Topology Analysis. The most important con-
tribution of FETA is a statistically rigorous and un-
ambiguous likelihood estimate for a model of network
evolution that is quick to compute and does not require
the generation of test networks for its operation. The
method requires a target network for which the order
in which links are added is known (at least approxi-
mately) for a given period of time. Given this data,
a model θ which purports to explain the evolution can
be compared either with a second model θ′ or with the
null (random) model θ0 as an explanatory model for
the link and node arrivals observed in the target net-
work. The likelihood statistics can be efficiently calcu-
lated and could be used, for example, as a fitness func-
tion for a genetic algorithm or in state space exploration
for parametrised models.

A second contribution is a fitting procedure which
allows the weightings of linear combinations of mod-
els to be tuned automatically to fit the target network.
This is an exploratory tool and, in addition to providing
the weightings which best combine the models chosen,
can guide the user as to which other model components
might appropriate for the target network.

Five different networks were tested, and several mod-
els were produced for each. Artificial networks were
grown for each model, and for each one of these a set
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of summary statistics were compared against measures
taken from the real target network. Models with better
likelihood estimators were found to have better agree-
ment with the statistics of the target network. This
confirms that greater accuracy in terms of the likeli-
hood estimator corresponds with a closer match to the
final target network generated.

A great deal of potential future work arises from this
paper. The outer model (the part of the model which
selects whether to add a node or an internal edge) was
not investigated in any depth. It would be useful to
consider the validation and tuning of more sophisticated
outer models, and which also allowed node and edge
deletion.

A model form which has more promise than the linear
combination of model components proposed in section
2.2 would be one with multiplicatively combined model
components (that is a model of the form θ = θβ1

1 θβ2

2 · · · ).
Logistic regression would seem a promising framework
for this, but nontrivial problems exist with normalisa-
tion. The evaluation framework from section 2.1 would,
however, work unchanged with this type of model.

In short, the FETA framework is promising for de-
velopment in many ways. The evaluation framework
fits a broad class of models of network evolution and
could be a very useful tool for researchers wishing to
test hypotheses. The tools and data used in this paper
are freely available for download and researchers are en-
couraged to try them8.
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[8] P. Erdős and A. Rényi. On random graphs I.
Publicationes Mathematicae, 6:290–297, 1959.

[9] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the Internet topology.
In Proceedings of ACM SIGCOMM, pages
251–262, Cambridge, Massachusetts, United
States, 1999.

[10] H. Haddadi, G. Iannaccone, A. Moore,
R. Mortier, and M. Rio. Network topologies:
Inference, modelling and generation. IEEE
Comm. Surveys and Tutorials, 10(2), 2008.

[11] P. Holme, J. Karlin, and S. Forrest. An integrated
model of traffic, geography and economy in the
internet. SIGCOMM Comput. Commun. Rev.,
38(3):5–16, 2008.

[12] P. Mahadevan, C. Hubble, D. Krioukov,
B. Huffaker, and A. Vahdat. Orbis: Rescaling
degree correlations to generate annotated Internet
topologies. In Proceedings of ACM SIGCOMM,
Kyoto, Japan, 2007.

[13] Z. Mao, D. Johnson, J. Rexford, J. Wang, and
R. Katz. Scalable and accurate identification of
AS-level forwarding paths. Proceedings of IEEE
INFOCOM, 3:1605–1615 vol.3, March 2004.

[14] A. Mislove, H. S. Koppula, K. P. Gummadi,
P. Druschel, and B. Bhattacharjee. Growth of the
flickr social network. In WOSP ’08: Proceedings
of the first workshop on Online social networks,
pages 25–30, New York, NY, USA, 2008. ACM.

[15] R. Oliveira, B. Zhang, and L. Zhang. Observing
the evolution of Internet AS topology. In
Proceedings of ACM SIGCOMM, Kyoto, Japan,
2007.

[16] L. Subramanian, S. Agarwal, J. Rexford, and
R. Katz. Characterizing the Internet hierarchy
from multiple vantage points. Proceedings of
IEEE INFOCOM, 2:618–627 vol.2, 2002.

[17] University of Oregon RouteViews project.
http://www.routeviews.org.

[18] W. Willinger, R. Govindan, S. Jamin, V. Paxson,
and S. Shenker. Scaling phenomena in the
Internet: critically examining criticality. In
Proceedings of the National Academy of Sciences,
volume 99, pages 2573–2580, 2002.

[19] S. Zhou and R. J. Mondragón. Accurately
modeling the Internet topology. Phys. Rev. E,
70(066108):1–7, 2004.

14

http://www.richardclegg.org/software/FETA
http://www.routeviews.org

	Introduction
	Motivation
	Background

	Framework for Evolving Topology Analysis
	Model evaluation using FETA
	Model fitting using FETA
	FETA in practice

	Fitting models to network data
	Fitting the arXiv data set
	Fitting the UCLA AS data set
	Fitting the RouteViews AS data set
	Fitting the gallery data set
	Fitting the Flickr data set
	Discussion of model fitting

	Artificial Topology Generation
	Topology generation using FETA models
	Statistics on the arXiv evolution model
	Statistics on the UCLA AS evolution model
	Statistics on the RouteViews AS evolution model
	Statistics on the gallery evolution model
	Statistics on the Flickr evolution model

	Discussion on topology generation

	Conclusions
	Additional Authors
	References

