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Abstract In this paper, we show that all nodes can be found optimally for almost all
random Erdős–Rényi G(n, p) graphs using continuous-time quantum spatial search
procedure. This works for both adjacency and Laplacian matrices, though under dif-
ferent conditions. The first one requires p = ω(log8(n)/n), while the second requires
p ≥ (1+ε) log(n)/n, where ε > 0. The proof was made by analyzing the convergence
of eigenvectors corresponding to outlying eigenvalues in the ‖ · ‖∞ norm. At the same
time for p < (1 − ε) log(n)/n, the property does not hold for any matrix, due to the
connectivity issues. Hence, our derivation concerning Laplacian matrix is tight.

Keywords Quantum spatial search · Random graphs · Continuous-time quantum
walk · Erdős–Rényi graphs

1 Introduction

Quantum walk is a topic of great interest in quantum information theory [1–3]. Numer-
ous possible applications were already discovered, including quantum spatial search
[1,4], Google algorithm [5–7] or quantum transport [8,9]. Throughout this article,
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we consider quantum spatial search procedure, which is an example of an algorithm
yielding a result up to quadratically faster than its classical counterpart. Since the very
first paper describing it was published [1], plenty of new results have appeared in
the literature. This includes the noise resistance [10], efficiency analysis [1,4,11–13],
imperfect implementation [14] and difference in implementation [15].

Unfortunately, most of the results concern very specific graph classes like complete
graphs [1,10] or their simplex [14], and binary trees [13]. Due to some kind of ‘symme-
try,’ it was not necessary to make analysis for all vertices separately (as, for example,
in complete graphs or hypercubes), or at least it could be easily fixed (for example
by the level in binary trees). The first big step toward the generalization into a large
collection of graphs is the work of Chakraborty et al. [4], where Erdős–Rényi random
graph model G(n, p) was analyzed (with n, p standing for the number of vertices and
probability of an edge being present, respectively). The authors have proven that for
almost all graphs almost all vertices can be found optimally. Since there are already

known examples of graphs for which some vertices are searched in �(n
1
2 +a) time for

a > 0 [1,13] (throughout this paper O, o,�, ω,�,∼ denote asymptotic relations,
see [16]), the result cannot be strengthened into ‘all graphs.’

The proof of the main result of Chakraborty et al. [4] is based on a lemma describing
limit behavior of a principal eigenvector |λ1〉 of the adjacency matrix. The authors

show that for p > log
3
2 (n)/n, if |s〉 = 1√

n

∑
v∈V |v〉 = α|λ1〉 + β|λ1〉⊥, then almost

surely α = 1 − o(1). Since the time needed for quantum spatial search is �( 1
|〈w|λ1〉| ),

where w denotes the marked vertex, we have that almost all vertices can be found in
optimal time. However, in this case it is not trivial which vertex is chosen, since the
Erdős–Rényi graph is not necessarily symmetric. This kind of convergence allows the
existence of vertices, which can be found in linear time. As an example, consider a
vector

|λ′
1〉 = 1

n
√

k

k∑

i=1

|i〉 +
√

n2 − 1

n
√

n − k

n∑

i=k+1

|i〉, (1)

for k = o(n). We have 〈s|λ′
1〉 = α = 1 − o(1), and thus a priori vector |λ′

1〉 from [4],
can be the leading eigenvector of an adjacency matrix. In such a case, the argument
used by [4] is not tight enough to exclude a possibility that all vertices w ∈ {1, . . . , k}
will be found in �(n) time, which is actually a random guess complexity. Note that it
is even possible that for almost all graphs, such vertices exist. Furthermore, many of
the applications mentioned in [4] require 〈i |v1〉 ≈ 〈 j |v1〉 for arbitrary i, j . Otherwise,
creating Bell states or quantum transport will be at least very difficult.

What is more, due to the laws of quantum mechanics, the measurement time needs to
be known since the beginning. This includes not only differences in the complexity, but
a constant as well. For example, if for two different nodes v, v′ we have 〈v|λ1〉 = 1√

n

and 〈v′|λ1〉 = 2√
n

, then different measurement times should be chosen for each.
Both effects mentioned above can be described as hiding nodes in the graphs.

Finally, we propose a following research problem: can we actually ‘hide’ a vertex in a
random Erdős–Rényi graph? We have managed to show that in the case of adjacency
matrix, p = ω(log3(n)/(n log2(log(n))) is a sufficient requirement for all-vertices
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optimal search. Under further constraint p = ω(log8(n)/n), we have common time
measurement. Moreover, we went a step further than the authors of [4] and studied
also Laplacian matrix, which led us to tighter results. In the case of Laplacian matrix,
p > (1+ε) log(n)/n, for constant ε > 0, is sufficient for common time measurement;
however in the p = �(log(n)/n) case, it may not be true that almost surely the
probability 1 of a successful measurement is achieved. If p < (1−ε) log(n)/n, then a
random graph contains almost surely isolated nodes [17]; hence, it is possible to hide
a vertex for both adjacency and Laplacian matrix.

2 Element-wise optimality for adjacency matrix

Let G = (V, E) be a simple undirected graph with node set V = {1, . . . , n} and edge
set E ⊂ V × V . Moreover, let HG be a quantum system spanned by an orthonormal
basis {|v〉 : v ∈ V }. Quantum spatial search is based on the Schrödinger differential
equation

|ψ̇t 〉 = −iH |ψt 〉 = −i (−MG − |w〉〈w|) |ψt 〉, (2)

where MG is a matrix corresponding to the graph structure, typically rescaled adja-
cency matrix A or Laplacian L = D − A, where D is the degree matrix. In [4],
authors have proven that for a random Erdős–Rényi graph in case of an adjacency
matrix almost all vertices from almost all graphs can be found optimally. We say some
property holds almost surely for all graphs, when the probability of choosing random
graph having such is 1−o(1). The result was based on the following simplified lemma.

Lemma 1 [4] Let H be a Hamiltonian with eigenvalues λ1 ≥ · · · ≥ λn satisfying
λ1 = 1 and |λi | ≤ c < 1 for all i > 1 with corresponding eigenvectors |λ1〉 =
|s〉, |λ2〉, . . . , |λn〉 and let w denote a marked vertex. For an appropriate choice of
r ∈ [− c

1+c , c
1−c ], the starting state |s〉 evolves by the Schrödinger’s equation with the

Hamiltonian (1 + r)H + |w〉〈w| for time t = �(
√

n) into the state | f 〉 satisfying
|〈w| f 〉|2 ≥ 1−c

1+c + o(1).

According to the proof of the lemma, the bound can be derived by choosing r satisfying

n∑

i=2

|〈w|λi 〉|2
(1 + r)λi − r

=
n∑

i=2

|〈w|λi 〉|2. (3)

The assumptions from the lemma guarantee the existence of r ∈ [ −c
1+c , c

1−c ] satisfying
the above equality. Note that the result is constructive for c = o(1), as in this case

r = o(1) as well as t = π
√

n
2 . Otherwise, a proper determination of r and t is needed.

According to the lemma, two properties of MG are useful in proving search opti-
mality. Firstly, the matrix should have a single outlying eigenvalue. Secondly, if
|λ1〉 is the eigenvector corresponding to the outlying eigenvalue, one should have
|〈w|λ1〉| = �( 1√

n
).

Note that in the limit n → ∞, norms cease to be equivalent; thus, different con-
cepts of closeness of vectors can be chosen. In [4], authors choose 1 − |〈ψ |φ〉| for
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arbitrary vectors |ψ〉, |φ〉, which allows to infer that o(n) of nodes can be found in
time ω(

√
n), see the example given in Eq. (1). In order to make statements concerning

all vertices, we should study the limit behavior of the principal vector in L∞ norm
‖ · ‖∞, which bounds the maximal deviation of coordinates. More precisely, we are
interested whether ‖|λ1〉 − |s〉‖∞ = o(1)√

n
, as this would imply that for an arbitrary

marked node w we have 〈w|λ1〉 = (1 + o(1)) 1√
n

. The above will give us the bound

�( 1
|〈w|λ1〉| ) = �(

√
n) for the time needed for quantum spatial algorithm to locate

vertex w.
Indeed, a convergence of infinity norm was shown by Mitra [18] providing p ≥

log6(n)/n. We have managed to weaken the assumptions and thereby strengthen the
result.

Proposition 1 Suppose A is an adjacency matrix of a random Erdős–Rényi graph
G(n, p) with p = ω(log3(n)/(n log2 log n)). Let |λ1〉 denote the eigenvector corre-
sponding to the largest eigenvalue of A and let |s〉 = 1√

n

∑
v |v〉. Then,

‖|λ1〉 − |s〉‖∞ = o

(
1√
n

)

(4)

with probability 1 − o(1).

The proof, which follows the concept proposed by Mitra [18], can be found in Section A
in Supplementary Materials. This implies that all vertices can be found optimally in
�(

√
n) time for almost all graphs.

To show the common time measurement, suppose that the largest eigenvalue of
1

np A satisfies
|λ1 − 1| ≤ δ, (5)

where δ → 0. Then, the probability of measuring the searched vertex w in time t can
be approximated by [4]

Pω(t) = |〈w| exp(−iHt)|s〉|2

≈ 1

1 + nδ2/4
sin2

(√

δ2/4 + 1/nt

)

.
(6)

Since |λ1〉 tends to |s〉 in the ‖ · ‖∞ norm, the approximation works for all nodes.
Hence, when δ = O( 1√

n
) (with small constant in the �( 1√

n
) case), then all of the

vertices can be found in time O(
√

n). Nevertheless, δ depends on a chosen graph, and
thus, the measurement time may differ. In order to ensure that the time and probability
of measurement are the same for all marked nodes and almost all graph chosen, one
should provide δ = o( 1√

n
) almost surely.

If p = ω(log8(n)/n), then the largest eigenvalue λ1 followsN (
1, 1

n

√
2(1 − p)/p

)

distribution [19], see Section B in Supplementary Materials for a step-by-step deriva-
tion, where N (μ, σ ) is the normal distribution with mean μ and standard deviation σ .
Therefore, one can show that asymptotically almost surely
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∣
∣
∣
∣λ1

(
1

np
A

)

− 1

∣
∣
∣
∣ ≤ δ, (7)

where δ = o( 1
n
√

p ). Note that since np = ω(log8(n)), we have actually δ =
o( 1√

n log4(n)
) in the worst-case scenario. This, in turn, allows us to use the simpli-

fied version of Eq. (6)

Pω(t) ≈ sin2
(

t√
n

)

(8)

for large n. Thus, we have that in time t = π
2

√
n, the probability of measurement is

optimal, independently on a chosen marked node. Finally, we can conclude our results
concerning adjacency matrix with the following theorem.

Theorem 2 Suppose we chose a graph according to Erdős–Rényi G(n, p) model with
p = ω(log8(n)/n). Then by choosing MG = 1

np A, where A is an adjacency matrix in
Eq. (2), almost surely all vertices can be found with probability 1−o(1) with common
measurement time approximately t = π

√
n/2.

3 Element-wise optimality for Laplacian matrix

Similar property holds for a Laplacian matrix L . This is a positive semi-definite matrix,
where the dimensionality of null space corresponds to the number of connected com-
ponents. Based on the results from [20], one can show that for p = ω(log(n)/n) all of
the other eigenvalues of L

np converge to 1, see Section C in Supplementary Materials.
At the same time, the eigenvector corresponding to the null space is exactly the equal
superposition |s〉 = |μn〉 = 1√

n

∑
v∈V |v〉. Thus, since for p > (1 + ε) log(n)/n a

graph is almost surely connected, the Laplacian matrix takes the form

L

np
= 0 · |s〉〈s| +

n−1∑

i=1

μi |μi 〉〈μi |, (9)

where μi → 1 almost surely for 1 ≤ i ≤ n − 1. Here μ1, . . . , μn denote eigenvalues
of Laplacian matrix with corresponding eigenvectors |μ1〉, . . . , |μn〉.

Note that since the identity matrix corresponds to global phase change only, which
is an unmeasurable parameter, we can equivalently choose

I − L

np
= |s〉〈s| −

n−1∑

i=1

(μi − 1)|μi 〉〈μi |. (10)

Note that the matrix above satisfies the requirements of Lemma 1 from [4], and there-
fore, all of the vertices can be found optimally with probability 1 − o(1). Common
time measurement is a direct application of Lemma 1 from [4], since more in-depth
proof analysis shows that, under the theorem assumptions, t = π

√
n/2 should be

chosen for maximizing the success probability.
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Fig. 1 The lower bound of
success probability of quantum

spatial search for p = p0
log(n)

n
for almost all graph from
Erdős–Rényi graph model. The
exact formula is pbound = W0(

1−p0
e p0

)
/W−1

(
1−p0
e p0

)
. Note

that pbound → 0 as p0 → 1+,
where connectivity threshold is
achieved. Furthermore,
pbound → 1 as p0 → ∞

The situation changes in the case of p = O(log(n)/n). Note that for both adjacency
and Laplacian matrices the evolution does not change the probability of measuring
isolated vertices. If p < (1 − ε) log(n)/n, then graphs almost surely contain such
vertices, and hence, you actually can hide a vertex in such a graph.

The p ∼ p0 log(n)/n for a constant p0 > 1 is a smooth transition case between
hiding and non-hiding cases mentioned before. In this case based on Exercise III.4
from [21], one can show that μ1 ∼ (1 − p0)(W0(

1−p0
e p0

))−1 log(n) and μn−1 ∼ (1 −
p0)(W−1(

1−p0
e p0

))−1 log(n), where W0, W−1 are Lambert W functions, see Section D
in Supplementary Materials. Here we use the notation f (n) ∼ g(n) ⇐⇒ f (n) −
g(n) = o(g(n)) . In this case, the MG = I − 1

np L does not imply that both μ1 and
μn−1 converge to 1.

Nevertheless, we can still make simple changes in a matrix in order to obtain
optimality of the procedure. Let a = (1 − p0)(W0(

1−p0
e p0

))−1 and b = (1 −
p0)(W−1(

1−p0
e p0

))−1 denote constants corresponding to μ1 and μn−1 limit behavior.
Then

I − 2

(a + b) log n
L (11)

again satisfies Lemma 1 from [4] with c = a−b
2 . According to Lemma 1, the probability

of success after time t = π
2
√

n
is bounded from below by

pbound = 1 − c

1 + c
= W0

(
1 − p0

ep0

)

/W−1

(
1 − p0

ep0

)

. (12)

The bound converges to 0 when p0 → 1+ and to 1 when p0 → ∞ and monoton-
ically changes in (1,∞), see Fig. 1. Note that this corresponds to the other results.
For p0 < 1, the probability of measuring all vertices is equal to 0 due to the con-
nectivity issues mentioned before. For p0 → ∞, the situation becomes similar to
p = ω(log(n)/n), where non-hiding property was already shown. Note, however,
that the actual success probability seems to be much higher than the bound, see Fig. 2.
Eventually, we conclude all of the results by the following theorems.

Theorem 3 Suppose we chose a graph according to Erdős–Rényi G(n, p) model. For
p = ω(log(n)/n), by choosing MG = 1

np L in Eq. (2), almost surely all vertices can
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Fig. 2 The figure presents probability bounds for quantum spatial search together with success probability
derived from simulation. The red dashed line denotes the limit bound for success probability. The blue error
bars denote 1−c

1+c for c = max{|λ2|, |λn |} for matrix from Eq. 11 for randomly chosen graph. Black error
bars denote the actual success probability. Deviations correspond to the maximal and minimal obtained

values. Graphs were chosen according to the G(n, 2 log(n)
n ) model, r were derived according to Eq. 3, and

we chose time t = π
√

n
2 . Thirty graphs were chosen for each size. One can see that the bound for randomly

chosen graph oscillates around the limit value; nonetheless, the true success probability is much higher than
the bound

be found with probability 1 − o(1) in asymptotic π
√

n/2 time. For p ∼ p0 log(n)/n,
by choosing MG = (1 + r)γ L for some proper r , where γ is defined as in Eq. (11),
all vertices can be found in �(

√
n) time with probability bounded from below by the

constant in Eq. (12).

We leave determining proper r and t values as open question.

Theorem 4 Suppose we chose a graph according to Erdős–Rényi G(n, p) model with
p ≤ (1−ε) log(n)/n, where ε > 0. Then for both adjacency and Laplacian matrices,
there exist vertices which cannot be found in o(n) time.
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4 Conclusion and discussion

In this work, we prove that all vertices can be found optimally with common mea-
surement time (π

√
n)/2 for almost all Erdős–Rényi graphs for both adjacency and

Laplacian matrices under conditions p = ω(log8(n)/n) and p ≥ (1 + ε) log(n)/n,
respectively. The proof is based on element-wise ergodicity of the eigenvector corre-
sponding to the outlying eigenvalue of adjacency or Laplacian matrix. While under
the mentioned constraint adjacency matrix almost surely achieves success probability
1 − o(1), the same probability for Laplacian matrix in the p ∼ p0 log(n)/n case for
some p0 > 1 can only be bounded from below by some positive constant. At the same
time for p < (1 − ε) log(n)/n, the property does not hold anymore, since almost
surely there exist isolated vertices which need �(n) time to be found.

While our derivation concerning the Laplacian matrix is nearly complete, since
only upper bound for success probability is missing in the p = �(log(n)/n) case, in
our opinion it is possible to weaken the condition on p for the adjacency matrix.
The first key step would be showing that the largest eigenvalue λ( 1

np A) follows

N (1, 1
n

√
2(1 − p)/p) distribution for p ≥ (1 + ε) log(n)/n. Then, since element-

wise convergence of principal vector requires p = ω(log3(n)/(n log2 log n)), the
result would be strengthened to the last mentioned constraint. The second step would
be the generalization of the mentioned element-wise convergence theorem.

Further interesting generalization of the result would be the analysis of more general
random graph models as well. While this proposition has already been stated [4], our
results show that in order to prove security of the quantum spatial search, it would be
desirable to analyze the limit behavior of the principal vector in the sense of ‖ · ‖∞
norm.
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A Element-wise bound on principal eigenvector

Let Gn,p be a random Erdős–Rényi graph, deg(v) be a degree of the vertex v ∈ V and
A be its adjacency matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn . Let also |λi 〉 be an
eigenvector corresponding to the eigenvalue λi and |s〉 = 1√

n
|1〉 = 1√

n

∑n
i=1 |v〉.

Proposition 5 For the probability p = ω
(
ln3(n)/(n log2 log n)

)
and some constant

c > 0 we have

‖|λ1〉 − |s〉‖∞ ≤ c
1√
n

ln3/2(n)√
np ln(np)

(13)

with probability 1 − o(1).
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Proof Using [20], we have

‖A − E(A)‖ ≤ √
8np ln(n), (14)

|λ1 − np| ≤
√

8np ln(
√

2n), (15)

max
i≥2

|λi | ≤
√

8np ln(
√

2n), (16)

with probability 1 − o(1). The first inequality was shown in the proof of Theorem 1
while the second and third inequalities come from Theorem 3 in [20]. Note deg(v)

follows a binomial distribution. Using Lindenberg’s CLT and the fact that the conver-
gence is uniform one can show that

P
(
| deg(v) − np| ≤ 2

√
ln(n)np(1 − p)

)
≈ P

(
|X | ≤ 2

√
ln(n)

)

≥ 1 − 1√
2π ln(n)n2

, (17)

whereX is a random variable with standard normal distribution. Let A = λ1|λ1〉〈λ1|+∑
i≥2 λi |λi 〉〈λi | and |s〉 = α|λ1〉 + β|λ⊥

1 〉. Assume that |λ1〉, |λ⊥
1 〉, |λi 〉 are normed

vectors and |λ⊥
1 〉 = ∑

i≥2 γi |λi 〉. By the Perron–Frobenius theorem, we can choose a
vector |λ1〉 such that 〈v|λ1〉 ≥ 0 and hence obtain 〈s|λ1〉 = α > 0. Thus,

(A − E(A)) |λ1〉

=
⎛

⎝λ1|λ1〉〈λ1| +
∑

i≥2

λi |λi 〉〈λi | − np|s〉〈s|
⎞

⎠ |λ1〉

= (λ1 − npα2)|λ1〉 − npαβ|λ⊥
1 〉. (18)

With probability 1 − o(1), using Eq. (14) we have

(λ1 − npα2)2 + (np)2α2β2 = ‖ (A − E(A)) |λ1〉‖2

≤ 8np ln(n) (19)

and thus since β2 = 1 − α2, then

α2np(np − 2λ1) + λ2
1 ≤ 8np ln(n). (20)

Eventually, we receive

1 ≥ α ≥ α2 ≥ λ2
1 − 8np ln(n)

2λ1np − (np)2

≥ 1 − 4

2 +
√

np
8 ln(

√
2n)
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≥ 1 − 16
√

np
ln(n)

, (21)

where the fourth inequality comes from Eq. (15). We know that | deg(v) − np| ≤
2
√

n ln(n)p(1 − p) with probability greater than 1− 1
n2 . Thus, with probability 1− 1

n
the above is true for all v ∈ V simultaneously. Now, since deg(v) = 〈v|A|1〉, we have

np − 2
√

n ln(n)p(1 − p)

λ1
≤ 1

λ1
〈v|A|1〉

≤ np + 2
√

n ln(n)p(1 − p)

λ1
(22)

The lower bound can be estimated as

np − 2
√

n ln(n)p(1 − p)

λ1

(15)≥
1 − 2

√
ln(n)

1−p
np

1 +
√

8 ln(
√

2n)
np

≥
1 − 2

√
ln(n)
np

1 + 4
√

ln(n)
np

=: d (23)

and similarly the upper bound

np + 2
√

n ln(n)p(1 − p)

λ1
≤

1 + 2
√

ln(n)
np

1 − 4
√

ln(n)
np

=: u. (24)

Consequently
d√
n

≤ 1

λ1
〈v|A|s〉 ≤ u√

n
(25)

for all v ∈ V . Let l = c ln(n)

ln(
√

np
ln(n)

/4)
, where c = c(n, p) ∈ [1, 2) is chosen to satisfy

l =
⌈

ln(n)

ln(
√

np
ln(n)

/4)

⌉

. Hence

dl

√
n

≤ 〈v|
(

A

λ

)l

|s〉 ≤ ul

√
n

(26)

for all v ∈ V . On the other hand

(
1

λ1
A

)l (
α|λ1〉 + β|λ⊥

1 〉
)

=
⎛

⎝|λ1〉〈λ1| +
∑

i≥2

(
λi

λ1

)l

|λi 〉〈λi |
⎞

⎠
(
α|λ1〉 + β|λ⊥

1 〉
)
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= α|λ1〉 + β
∑

i≥2

(
λi

λ1

)l

γi |λi 〉. (27)

Using Eqs. (14, 15) we are able to estimate λi
λ1

by

λi

λ1
≤

√

8np ln(
√

2n)

np −
√

8np ln(
√

2n)

= 1
√

np
8 ln(

√
2n)

− 1
≤ 4

√
np

ln(n)

. (28)

Thus

∥
∥
∥
∥
∥
∥
β

∑

i≥2

(
λi

λ1

)l

γi |λi 〉
∥
∥
∥
∥
∥
∥∞

≤ |β|
∥
∥
∥
∥
∥
∥

∑

i≥2

(
λi

λ1

)l

γi |λi 〉
∥
∥
∥
∥
∥
∥

2

≤ |β|

√
√
√
√
√
√

∑

i≥2

γ 2
i

⎛

⎝ 4
√

np
ln(n)

⎞

⎠

2l

= |β|
(√

np
ln(n)

4

)l
= |β|

nc

≤ 4
(

np
ln(n)

)1/4
n
, (29)

where the last inequality comes from Eq. (21) and ‖ · ‖2 denotes the Euclidean norm.
By Eqs. (25, 27) we get

dl

√
n

≤ α〈v|λ1〉 + 〈v|
⎛

⎝β
∑

i≥2

(
λi

λ1

)l

γi |λi 〉
⎞

⎠ ≤ ul

√
n
, (30)

for all v ∈ V and using Eqs. (21, 29) we eventually obtain

dl√
n

− 4
(

np
ln(n)

)1/4
n

1
≤ 〈v|λ1〉 ≤

ul√
n

+ 4
(

np
ln(n)

)1/4
n

1 − 16√
np

ln(n)

(31)
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for all v ∈ V . In order to finish the proof it is necessary to show that

(1 − dl) + 4
(

np
ln(n)

)1/4 √
n

= O

(
ln3/2(n)√
np ln(np)

)

(32)

and

(ul − 1) + 4
(

np
ln(n)

)1/4 √
n

= O

(
ln3/2(n)√
np ln(np)

)

. (33)

We need to estimate how quickly dl converges to 1. Using the fact that d → 1, it is
enough to observe that

(1 − d)l = O

⎛

⎝ ln3/2(n)

√
np ln

(√
np

ln(n)
/4

)

⎞

⎠ , (34)

and thus

1 − dl ≈ 1 − e(d−1)l = O

(
ln3/2(n)√
np ln(np)

)

. (35)

The second term of LHS of Eq. (32) converges to 0 more rapidly than the bound, so it
completes the proof for the lower bound. The same thing for the upper bound can be
shown analogously. ��

B Distribution of the largest eigenvalue of adjacency matrix

Theorem 6.2 from [19] considers the distribution of the largest eigenvalue of rescaled
adjacency matrix Ã = A/

√
(1 − p)pn. They show that as long as p > 1

n , then

Eλ1( Ã) =
√

np

1 − p
+

√
1 − p

np
+ o(1). (36)

Furthermore, under another condition p = ω(log8(n)/n) we have

√
n

2

(
λ1( Ã) − Eλ1( Ã)

)
→ N (0, 1) (37)

in a distribution. This allows us to derive the distribution of the largest eigenvalue of
the 1

np A matrix

λ1

(
1

np
A

)

=
√

1 − p

np
λ1( Ã)

123



Vertices cannot be hidden from quantum spatial search for… Page 13 of 15 81

=
√

2(1 − p)

n
√

p

(√
n

2

(
λ1( Ã) − Eλ1( Ã)

)
+

√
n

2
Eλ1( Ã)

)

=
√

2(1 − p)

n
√

p
X + 1 + 1 − p

np
+

√
1 − p

np
o(1) (38)

where X → N (0, 1). Hence we have that λ1(
1

np A) ∼ N (1, 1
n

√
2(1−p)

p ). Note, that

under the condition p = ω(log8(n)/n), the standard deviation tends to 0. This means
that the largest eigenvalue actually tends to the Dirac distribution δx=1.

This gives as a bound for λ1(
1

np A). Note that

P(|λ1(A/(np)) − 1| ≤ δ) = 1 − erfc

(
n
√

pδ

2
√

1 − p

)

. (39)

The probability tends to 1 as long as the argument tends to ∞. In order to achieve
this, we need to assume n

√
pδ → ∞ as n → ∞. This can be done by choosing

δ = o( 1
n
√

p ). Eventually, we have asymptotically almost surely

∣
∣
∣
∣λ1

(
1

np
A

)

− 1

∣
∣
∣
∣ = o

(
1

n
√

p

)

. (40)

Note that for p = o(1) the bound is better than the one used in [4].

C Laplacian matrix spectrum

Algebraic connectivity satisfies μn−1 = np + O(
√

np log n) for p = ω(log(n)/n).
Similarly we conclude from results of Bryc et al. [22], that μ1 ∼ np.

Theorem 6 Let Ln be a Laplacian matrix of random Erdős–Rényi graph G(n, p),
where p = ω(

log n
n ). Then, μ1 = μ(L) ∼ np.

Proof By Theorem 1.5 from [22], if L̃ is a symmetric matrix whose off-diagonal
elements have two-point distribution with mean 0 and variance p(1 − p) and L̃ii =∑

j �=i L̃ i j . Then,

lim
n→∞

μ(L̃)
√

2np(1 − p) log n
= 1. (41)

Note that in the following version p may depend on n. Hence, we can extend the
Corollary 1.6 from the same paper.

Let Ln = L̃n + Yn , where Yn is a deterministic matrix with −p on off-diagonal
and (n − 1)p on diagonal. Note that Yn is an expectation of a random Erdős–Rényi
Laplacian matrix. Yn has a single 0 eigenvalue and all of the others take the form np.
By this we have μ(Yn) = ‖Yn‖ = np. Then, we have

∣
∣
∣
∣
‖Ln‖

np
− ‖Yn‖

np

∣
∣
∣
∣ ≤ ‖Ln − Yn‖

np
= ‖L̃n‖

np
→ 0 (42)
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where the limit comes from the Eq. (41), assuming p = ω(log n/n). Finally μ(Ln)
np →

1. ��

D The largest eigenvalue of Laplacian matrix near the connectivity
threshold

Suppose G is a random graph chosen according to G(n, p0
log(n)

n ) distribution, for
p0 > 1 being a constant. It can be shown that

δ ∼ (1 − p0)

(

W−1

(
1 − p0

ep0

))−1

log(n) (43)

and

� ∼ (1 − p0)

(

W0

(
1 − p0

ep0

))−1

log(n), (44)

see [21], Exercise III.4. Here δ and � denote, respectively, minimal and maximal
degree of the graph. In [23] authors have shown that providing

|δ − cnp| = O(
√

np) (45)

we have
|μn−1 − cnp| = O(

√
np), (46)

where μn−1 is the second smallest eigenvalue of the Laplacian matrix. In fact, similar
behavior can be stated for the largest eigenvalue, i.e., if

|� − cnp| = o(np) (47)

we have
|μ1 − cnp| = o(np). (48)

While we plan to prove the statement above, it is possible that the RHS can be reduced
to O(

√
np) by following the proof in [23]. Nonetheless, we are satisfied with the men-

tioned result. The proof is very similar to the proof of Lemma 3.4 in [23]. Furthermore,
note, that the theorem holds for p0 > 0.

Theorem 7 Suppose there exists a p0 > 0 so that np ≥ p0 log(n) and � ∼ cnp
almost surely. Then, almost surely μ1 ∼ cnp.

Proof Note, that since the eigenvector corresponding to 0 eigenvalue is the equal
superposition, we have

μ1 = max{|φ〉⊥|s〉:〈φ|φ〉=1}〈φ|L|φ〉
= max{|φ〉⊥|s〉:〈φ|φ〉=1}(〈φ|D|φ〉 − 〈φ|A|φ〉). (49)
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Note that

μ1 ≤ max{|φ〉⊥|s〉:〈φ|φ〉=1}〈φ|D|φ〉 + max{|φ〉⊥|s〉:〈φ|φ〉=1} |〈φ|A|φ〉)|
≤ � + C

√
np (50)

by Theorem 2.5 from [24]. Similarly one can show μ1 ≥ �, which can be done by
taking maximum over canonical vectors. After combining those bounds and � ∼ cnp,
we obtain the result. ��
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