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1 Introduction

After almost a decade since the launch, the Large Hadron Collider (LHC) operates at energy√
S = 13 TeV, close to the nominal

√
S = 14 TeV, and the total integrated luminosities

are large enough to perform precision studies of physics at electroweak scales. Currently,

precision physics offers one of the most promising paths towards potential discoveries of

physics beyond the Standard Model. Theoretical precision for the observables at the LHC

requires good understanding of strong interactions, that govern the structure of beams,

drive or introduce sizable corrections to most interesting reactions. In particular, accurate

description of high energy hadronic collisions crucially depends on good understanding of

color radiation and the resulting final states. In the high energy regime, the QCD radiation

is intense, and the theoretical treatment requires calculational schemes that go beyond fixed

order QCD calculations. In this regime, an all order resummation of the perturbative QCD

corrections enhanced by powers of energy logarithms, (log
√
S)n, is necessary that leads to

the celebrated BFKL formalism [1–5]. This formalism is complementary to the collinear

resummations scheme and is used to improve predictions for cross sections and final states

in hadronic collision at high energies. Hence it is necessary to provide predictions for new

observables that carry significant BFKL effects.

In this paper, we propose a new probe of the BFKL dynamics given by a forward

Drell-Yan (DY) pair production in association with a backward jet. We closely fol-

low the approach and methods developed for forward-backward jet hadroproduction [6],

described below.
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A classical probe of QCD radiation in the BFKL approach applied to hadronic colli-

sions was proposed by Mueller and Navelet (MN) [6] to study hadroproduction of two jets

with similar transverse momenta but separated by a large rapidity interval ∆Y which are

produced from a collision of two partons with moderate hadron momentum fractions. For

such a configuration, the phase space for QCD radiation is large and so are the emerging

logarithms of energy. The first analysis of the dijet production data from the Tevatron [7]

showed that the exponential enhancement with ∆Y in dijet production at fixed parton

momentum fractions, as originally suggested by Mueller and Navelet, is highly suppressed

by the parton distribution functions at Tevatron energies. Thus, it was proposed in [7–9]

to use the angular decorrelation in transverse momentum and azimuthal angle in the trans-

verse plane of the MN jets as a new probe of the BFKL dynamics. Both observables became

a subject of intense experimental studies at Tevatron [10, 11] and the LHC [12–15]. From

the theoretical side, a substantial theoretical progress has been made since the appearance

of the initial papers to include the next-to-leading order (NLO) corrections to the jet im-

pact factors and the next-to-leading-logarithmic (NLL) corrections to the BFKL evolution

kernel to make a successful comparison with data. Below, we briefly describe this progress.

The first evidence of significant NLL effects in MN jets came from confronting the

2 → 3 parton fixed order calculations with the first iteration of the LL BFKL kernel [9].

Already first approaches to include leading higher order corrections to the BFKL evolutions

showed that they substantially modify the LL BFKL predictions [16–18]. The key steps

towards obtaining full NLO/NLL BFKL predictions for the MN jet observables were made

by the computation of the NLL BFKL kernel [19–23], and the computation of the quark

and gluon impact factors at NLO [24, 25]. The first results for the MN jets with the

NLL BFKL kernel, but using the LO impact factors, was presented in [26] and the full

NLO/NLL predictions were given in [27, 28]. It was shown in [29–31] that the NLO/NLL

BFKL results describe well the MN jet data collected at the LHC. However, to achieve

good agreement it was required to fix the process scale in the BLM procedure [32] with

a surprisingly large hard scale. An interesting alternative to this procedure was proposed

in [33] where an all order collinear improvement was applied to the NLL BFKL kernel with

a natural process scale. Finally, it was shown in [34] that the BFKL effects are clearly

distinguishable from the DGLAP effects.

The theoretical effort described above and some remaining puzzles clearly indicate the

need to test the scheme with other processes. In ref. [35] BFKL effects were analyzed in the

W boson production in association with one and two jets. Recently proposals were made

to combine the backward MN jet with a forward probe being a heavy quarkonium [36], the

Higgs boson [37] or the charged light hadron [38]. In this paper we propose to replace one

of the MN jets by a forward Drell-Yan pair. At the partonic level, it amounts to replacing

the qg∗ → q impact factor by the qg∗ → qγ∗ → ql+l− impact factor. There are several

advantages to use the forward Drell-Yan pair as one of the probes. (i) The experimental

precision of DY measurements is usually very high. (ii) The forward production of the DY

pair with a backward jet depends on several kinematical variables which may be scanned:

mass of the lepton pair M , its transverse momentum q⊥ and rapidity yγ , and the virtual

boson — jet separation in rapidity YγJ . (iii) The lepton angular distributions depend on
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three independent coefficients related to the DY structure functions [39–43] in which some

theoretical uncertainties are expected to cancel out. (iv) The Lam-Tung combination of

the DY structure functions [39, 40] is particularly sensitive to the transverse momentum

of the exchanged t-channel parton [41–43], hence to the effects of the QCD radiation in

the exchange. Thus, given the richness of the interesting observables and their sensitivity

to BFKL effects, the forward DY pair+backward jet production offers an excellent testing

ground for theory.

In calculations of the BFKL scattering amplitudes one applies the high-energy factor-

ization framework. Up to now, the forward Drell-Yan impact factors for all virtual photon

polarizations are known only at the leading order [41, 44–48], and the analogous impact

factors for forward lepton hadroproduction through the W boson were also calculated at

the LO [35]. These impact factors, combined with the LL [43] or NLL [49] BFKL evolution,

lead to successful description of the inclusive Drell-Yan cross section at the LHC within the

BFKL framework. Since the NLO Drell-Yan impact factors are not available yet, the full

NLO/NLL BFKL calculation cannot be done also for the DY + jet process. So we choose an

approach closely following the one applied in [16] in which the LO impact factors are com-

bined with the LL BFKL kernel with all order collinear improvements [50–55]. We apply

the implementation of the collinear improvements called the consistency condition, defined

in [51]. Although this simplified approach does not enjoy the theoretical sophistication of

the full NLO/NLL BFKL calculations, it is expected to encompass the generic properties

of the QCD radiation at high energies. In particular, it follows from [51] and [19–23], that

the collinear improvements to the BFKL kernel, constrained to the NLL accuracy exhausts

up to 70% of the exact NLL BFKL corrections [56]. Therefore, we expect to obtain the

correct indications of general phenomenological properties of the studied observables. The

results obtained in this paper clearly show the significance of the BFKL effects in associ-

ated Drell-Yan and jet hadroproduction, and allow to propose this process as a sensitive

probe of the BFKL dynamics.

The paper is organized as follows. In section 2 we introduce kinematic variables for the

DY + jet process, while in section 3 we present basic formulas for the DY + jet cross section.

In particular, we present the BFKL kernel and lepton angular distribution coefficients as

well as the MN jet cross section as a handy reference. In section 4 we discuss our numerical

results for the DY + jet process, namely the dependence on the azimuthal angle φγJ between

the DY photon and the backward jet, which shows the angular decorrelation elaborated

later in terms of the mean cosine values. We also present in this section the results on the

angular coefficients of the DY leptons, which provide additional information to be measured

in the experiments. Finally, we present summary and outlook.

2 Kinematic variables

The schematic diagram of the Drell-Yan + jet process is show in figure 1. We denote

the proton projectiles four-momenta as P1 and P2, and S = (P1 + P2)2 is the invariant

Mandelstam variable. We apply the standard Sudakov decomposition of four momenta,
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∆ ∆

Figure 1. One of the two diagrams for the forward Drell-Yan + backward jet production with the

indicated kinematic variables. Only photon q and jet pJ momenta are measured. Parton p2 might

be either quark or gluon. In the second diagram photon is emitted from the p1 fermionic line.

e.g. for the DY virtual photon γ∗ we have

q = αqP1 + βqP2 + q⊥, (2.1)

with the transverse momentum q⊥ · P1 = q⊥ · P2 = 0. The photon virtuality q2 = M2 > 0

is also the lepton pair invariant mass squared. In the light cone coordinates we have

P1 = (
√
S, 0,~0) and P2 = (0,

√
S,~0), and for any four vectors u and v their scalar product

is given by

u · v =
1

2
(u+v− + u−v+)− ~u⊥~v⊥. (2.2)

Thus, the transverse part of any four-vector is perpendicular to the collision axis with such

a choice of the coordinates.

We treat the initial state partons as collinear and their four momenta are

p1 = (x1P
+
1 , 0,

~0⊥) , p2 = (0, x2P
−
2 , 0,

~0⊥), (2.3)

where P+
1 = P−2 =

√
S. We additionally define the longitudinal momentum fraction of the

fast quark p1 taken by the virtual photon γ∗,

z =
q+

p+
1

. (2.4)

The virtual photon and jet momenta are the following

q =

(
x1zP

+
1 ,

M2 + q2
⊥

x1zP
+
1

, ~q⊥

)
, pJ =

(
p2
J⊥

x2P
−
2

, x2P
−
2 , ~pJ⊥

)
(2.5)
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and their rapidities are given by

yγ =
1

2
ln
q+

q−
= ln

 zx1

√
S√

M2 + q2
⊥

 , (2.6)

yJ =
1

2
ln
p+
J

p−J
= ln

(
pJ⊥

x2

√
S

)
, (2.7)

where q⊥ = |~q⊥| and pJ⊥ = |~pJ⊥|. Defining rapidity difference between photon and jet,

∆YγJ = yγ − yJ , (2.8)

we find from the above relations

z =
pJ⊥

√
M2 + q2

⊥

x1x2S
e∆YγJ . (2.9)

The spectral condition 0 < z < 1 sets a constraint on allowed values of kinematic variables.

In analogy to the Mueller-Navelet (MN) process [16], we define the rapidity difference

between the measured jet and the separated in rapidity the photon plus quark system

∆YP = ln

(
x2

xg

)
= ln

(
z(1− z)x1x2S

M2(1− z) + q2
⊥ + z(k2

1⊥ − 2~k1⊥ ~q⊥)

)
, (2.10)

where xg is the momentum fraction of the uppermost gluon in the BFKL ladder, see

figure 1, which value is fixed by kinematics. This rapidity difference is an argument of the

BFKL kernel, discussed in the next section, while ∆YγJ is a measurable quantity. The

functional dependence of ∆YP on ∆YγJ is obtained by substituting eq. (2.9) to eq. (2.10).

Finally, we introduce the variable

ρ = ln

(
k2

1⊥
k2

2⊥

)
, (2.11)

which is built from transverse momenta of the first and the upper most gluon in the BFKL

ladder. Taking into account that at the jet vertex the transverse momentum of the initial

partons equals zero, we have

~k2⊥ = −~pJ⊥ . (2.12)

Thus, we always replace ~k2⊥ by the jet transverse momentum −~pJ⊥ in what follows.

Since the photon is virtual, it has three polarizations which we denote by σ = 0,±.
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3 Drell-Yan plus jet cross section

In the standard approach to the inclusive DY process (where only two leptons are measured)

one factorizes leptonic and hadronic degrees of freedom [39] and the cross-section is written

as an angular distribution of one lepton1 in the lepton pair center-of-mass frame:

dσDY,inc

d4 q dΩ
=

α2
em

2 (2π)4M4

[
(1− cos2 θ)W

(L)
inc + (1 + cos2 θ)W

(T )
inc +

+ (sin2 θ cos 2φ)W
(TT )
inc + (sin 2θ cosφ)W

(LT )
inc

]
. (3.1)

In the above expression Ω = (θ, φ) is a solid angle of a positive charged lepton and q is a

four-momentum of virtual photon. The coefficients W (λ) with λ = T, L, TT, LT are called

helicity structure functions and do not depend on Ω. They are obtained as appropriate

projections of hadronic tensor on the helicity state vectors εµσ=0,± of the virtual photon.

For the DY+jet process, where both photon and jet are measured, the structure

of (3.1) is preserved and one can separate leptonic and hadronic degrees of freedom in

the cross section

dσDY+j

dΠdΩ
= (1− cos2 θ)

dσ(L)

dΠ
+ (1 + cos2 θ)

dσ(T )

dΠ
+

+ (sin2 θ cos 2φ)
dσ(TT )

dΠ
+ (sin 2θ cosφ)

dσ(LT )

dΠ
, (3.2)

where dΠ is the phase space element of a set of kinematic variables for the DY+jet

final state:

dΠ = dM2 d2~q⊥ d
2~pJ⊥ d∆YγJ . (3.3)

The coefficients dσ(λ)/dΠ play the role of structure functions and for convenience we include

the normalization factors related to the above choice of the variables into them to write

dσ(λ)

dM2 d∆YγJ d2q⊥ d2pJ⊥
=

4α2
emα

2
s

(2π)4

∫ 1

0
dx1

∫ 1

0
dx2 θ(1− z) fq(x1, µ)feff(x2, µ)×

× 1

M2p2
J⊥

∫
d2k1⊥
k2

1⊥
Φ(λ)(~q⊥,~k1⊥, z)K(~k1⊥,~k2⊥ = −~pJ⊥,∆YP ),

(3.4)

where the rapidity difference ∆YP is given by eq. (2.10) while z is given by eq. (2.9). The

theta function in the above restricts z to the interval (0, 1). The quantities

fq(x1, µ) =

5∑
i=1

e2
i

{
fi(x1, µ) + f̄i(x1, µ)

}
, (3.5)

feff(x2, µ) = fg(x2, µ) +
CF
CA

5∑
i=1

{
fi(x2, µ) + f̄i(x2, µ)

}
(3.6)

1By convention we choose lepton with positive charge.
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are built of the collinear parton distribution functions (PDFs) with five quark flavours and

gluon, taken at the scale equal to the transverse mass of the virtual photon

µ = M⊥ ≡
√
M2 + q2

⊥. (3.7)

The DY impact factors Φ(λ) for the Gottfried-Jackson helicity frame were obtained in [41]

and they are given by

Φ(L)(~q⊥,~k⊥,z) = 2

[
M(1−z)

D1
−M(1−z)

D2

]2

, (3.8)

Φ(T )(~q⊥,~k⊥,z) =
1+(1−z)2

2

[
~q⊥
D1
− ~q⊥−z

~k⊥
D2

]2

, (3.9)

Φ(TT )(~q⊥,~k⊥,z) = (1−z)


[(

~q⊥
D1
− ~q⊥−z

~k⊥
D2

)
·~ex

]2

−

[(
~q⊥
D1
− ~q⊥−z

~k⊥
D2

)
·~ey

]2
 , (3.10)

Φ(LT )(~q⊥,~k⊥,z) = (2−z)

[
M(1−z)

D1
−M(1−z)

D2

][
~q⊥
D1
− ~q⊥−z

~k⊥
D2

]
·~ex, (3.11)

where ~ex and ~ey are two orthogonal unit vectors in the transverse plane perpendicular to

the collisions axis, and the denominators read

D1 = M2(1− z) + ~q 2
⊥ , D2 = M2(1− z) + (~q⊥ − z~k⊥)2. (3.12)

Notice that in the Gottfried-Jackson helicity frame, the x̂ polarization axis viewed in

the LAB frame has the transverse part always parallel to the transverse momentum of the

virtual photon q⊥ in this frame. Thus, we set ~ex ‖ ~q⊥ and in consequence ~q⊥ = (|~q⊥|, 0).

3.1 BFKL kernel

In eq. (3.4), K(~k1⊥, ~k2⊥,∆YP ) is the BFKL kernel, given by the Fourier decomposition

K(~k1⊥,~k2⊥,∆YP ) =
2

(2π)2|~k1⊥||~k2⊥|

(
I0(∆YP , ρ) +

∞∑
m=1

2 cos(mφ)Im(∆YP , ρ)

)
, (3.13)

where φ is the azimuthal angle between the transverse momenta ~k1⊥ and ~k2⊥ = −~pJ⊥ of

the exchanged gluons, see figure 1. We use the solution to BFKL equation, specified by

the coefficients Im:

Im(∆YP , ρ) =

∫ ∞
0

dν RAm(ν) exp(ωAm(ν)∆YP ) cos(ρν). (3.14)

We consider two cases: the leading logarithmic (LL) approximation and the LL ap-

proximation supplemented by a part of the next-to-leading logarithmic corrections in the

form of a consistency condition (CC). The BFKL equation with consistency condition was

proposed in refs. [50, 51], and later it was found to resum to all orders the leading collinear

and anti-collinear corrections to the BFKL kernel [53–55].
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-0.4

-0.2

0.0
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ω
m

ν

 m=0, BFKL LL

 m=1, BFKL LL

 m=2, BFKL LL

 m=0, BFKL CC

 m=1, BFKL CC

 m=2, BFKL CC

Figure 2. The functions ωLL
m (ν) (solid lines) and ωCC

m (ν) (dashed lines) defined by eqs. (3.15)

and (3.18), respectively, for m = 0, 1, 2.

1. In the LL approximation the BFKL equation solution reads

ωLL
m (ν) = χm(0, ν) = ᾱs

[
2ψ(1)− ψ

(
m+ 1

2
+ iν

)
− ψ

(
m+ 1

2
− iν

)]
, (3.15)

where ψ(z) = Γ′(z)/Γ(z) is the digamma function and

RLL
m (ν) = 1. (3.16)

2. The solution of the BFKL equation with CC, and with the symmetric choice of the

scale, is given by [51, 53–55]

RCC
m (ν) =

[
1− dχm(ω, ν)

dω

∣∣∣
ω=ωCC

m (ν)

]−1

, (3.17)

where ωCC
m (ν) is a solution of the equation

ωCC
m (ν) = χm(ωCC

m (ν), ν), (3.18)

with the modified BFKL characteristic function

χm(ω, ν) = ᾱs

[
2ψ(1)− ψ

(
m+ ω + 1

2
+ iν

)
− ψ

(
m+ ω + 1

2
− iν

)]
. (3.19)

In figure 2 we show the functions ωLL
m (ν) and ωCC

m (ν) for m = 0, 1, 2 obtained for the

LL (solid lines) and CC (dashed lines) BFKL solution, respectively. We choose the values

of ᾱs such that the intercept values, ωLL
0 (0) and ωCC

0 (0), are both close to the value 0.27

which allows to successfully describe the HERA data on F2: ᾱs = 0.1 for LL and ᾱs = 0.15

for CC. With such a choice, the LL and CC functions for m = 0 are very close to each

other up to ν ≈ 1, see figure 2, which is a dominant region for the integration over ν in
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eq. (3.14). The same is true for m = 1, in which case the two functions equal zero for ν = 0

by definition. These two contribution practically dominate the sum over m in the BFKL

kernel (3.13). This explains why the numerical results on angular decorrelations, presented

in section 4, are very similar for the LL and CC BFKL kernels.

In the forthcoming analysis we will also consider the BFKL kernel in the leading order

(LO)-Born approximation in which only two gluons in the color singlet state are exchanged.

In this case the exchange kernel reads,

K(~k1⊥,~k2⊥,∆YP ) =
1

2
δ2(~k1⊥ − ~k2⊥). (3.20)

3.2 Azimuthal angle dependence

A special attention has to be paid to the azimuthal angle dependence in the transverse

plane to the collision axis. In the LAB frame, the transverse part of the Gottfried-Jackson x̂

polarization axis is oriented along the positive direction of the photon transverse momentum

~q⊥, thus the azimuthal angle of the photon φγ = 0.

Therefore, we define the following angles with respect to x̂ in the transverse plane for

the jet and the upper most gluon in the BFKL ladder transverse momenta

φJ = ](~pJ⊥, x̂) , φg = ](~k1⊥, x̂) (3.21)

and consider the differences

φγJ = π − φJ , φJg = π − (φJ − φg). (3.22)

The jet and photon are back-to-back in transverse plane when φγJ = 0. The same is

true for the jet and the gluon ~k1⊥ when φJg = 0. For further analysis, we choose as

independent angles φγJ and φg. The first angle is an observable while the latter is the

integration variable in the integral over ~k1⊥. Therefore, we rewrite (3.4) in the form

dσ(λ)

dMd∆YγJdq⊥ dpJ⊥dφγJ

=
16α2

emα
2
s

(2π)5

q⊥
Mp2

J⊥

∫ 1

0
dx1

∫ 1

0
dx2 θ(1−z)fq(x1,µ)feff(x2,µ)×

×
∫
dk1⊥
k2

1⊥

∫ 2π

0
dφgΦ(λ)(~q⊥,~k1⊥,z)

{
I0(∆YP ,ρ)+

∞∑
m=1

2cos(mφ)Im(∆YP ,ρ)

}
, (3.23)

where the angle in the BFKL kernel is given by φ = 2π − (φγJ + φg) and

cos(mφ) = cos [m(φγJ + φg)] = cos(mφγJ) cos(mφg)− sin(mφγJ) sin(mφg). (3.24)

The impact factors Φ(λ) are even with respect to the transformation φg → −φg and the

term proportional to sin(mφg) vanishes when integrated over φg. Thus, we obtain the

following cross-section for the DY + jet production

dσ(λ)

dMd∆YγJdq⊥ dpJ⊥dφγJ
= I(λ)

0 (M,∆YγJ , q⊥, pJ⊥) +

+

∞∑
m=1

2 cos(mφγJ) I(λ)
m (M,∆YγJ , q⊥, pJ⊥), (3.25)
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where the Fourier coefficients, for m = 0, 1, 2 . . ., have the form:

I(λ)
m (M,∆YγJ , q⊥,pJ⊥) =

16α2
emα

2
s

(2π)5

q⊥
Mp2

J⊥

∫ 1

0
dx1

∫ 1

0
dx2 θ(1−z)fq(x1,µ)feff(x2,µ)×

×
∫
dk1⊥
k2

1⊥

∫ 2π

0
dφgΦ(λ)(~q⊥,~k1⊥,z)cos(mφg)Im(∆YP ,ρ) (3.26)

In the LO-Born approximation (3.20), the DY + jet cross section in the given helicity

state reads

dσ(λ)

dMd∆YγJdq⊥ dpJ⊥dφγJ
=

4α2
emα

2
s

(2π)3

q⊥
Mp3

J⊥

∫ 1

0
dx1

∫ 1

0
dx2 θ(1− z)×

× fq(x1, µ) feff(x2, µ) Φ(λ)(~q⊥,−~pJ⊥, z). (3.27)

3.3 Lepton angular distribution coefficients

The integration of (3.2) over the full spherical angle Ω gives the helicity-inclusive cross

section:

dσDY+j

dΠ
≡
∫
dΩ

dσDY+j

dΠdΩ
=

16π

3

(
dσ(T )

dΠ
+

1

2

dσ(L)

dΠ

)
. (3.28)

In the inclusive DY process it is useful to define normalized structure functions. We follow

this approach and define for the DY+jet process:

A0 =
dσ(L)

dσ(T ) + dσ(L)/2
, A1 =

dσ(LT )

dσ(T ) + dσ(L)/2
, A2 =

2dσ(TT )

dσ(T ) + dσ(L)/2
. (3.29)

Lam and Tung proved the following relation valid at the LO and NLO for the DY qg

channel in the collinear leading twist approximation [39, 40]:

dσ(L) − 2dσ(TT ) = 0 or A0 −A2 = 0. (3.30)

As it was shown in [42], the combination A0 − A2 is sensitive to partons’ transverse

momenta.

The coefficients dσ(λ)/dΠ (like the structure functions W
(λ)
inc in the inclusive DY) are

computed for a particular choice of the polarization axes, i.e. Gottfried-Jackson frame.

Since most of experimental results are provided in the Collins-Soper helicity frame, we

apply an additional rotation of our impact factors, see appendix A of ref. [42] for the form

of rotation matrix.

One can find several combinations of structure functions which are invariant w.r.t. the

change of the helicity frame. Obviously, the helicity-inclusive cross section (3.28) is one of

them. It also turns out that the Lam-Tung combination (3.30) has this property. More

information about the frames used to describe the lepton pair and relation between them

can be found in [57].
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3.4 Mueller-Navelet jets

For a comparison with the DY+jet results, we present also formulas for the Mueller-Navelet

(MN) jet production. In this case, the DY form factors in (3.4) should be replaced by the

jet form factor (which is a delta function in the leading order approximation). Additionally,

the singlet quark distribution fq should be replaced by the effective distribution feff given

by eq. (3.6). Thus

dσMN

d∆YIJd2pI⊥d2pJ⊥
=

(CAαs)
2

p2
I⊥p

2
J⊥

∫ 1

0
dx1feff(x1,µ)x2feff(x2,µ)K(~pI⊥,−~pJ⊥,∆YP ), (3.31)

where ~pI⊥ and ~pJ⊥ are transverse momenta of the two jets and their rapidities are given by

yI = ln

(
x1

√
S

pI⊥

)
, yJ = ln

(
pJ⊥

x2

√
S

)
. (3.32)

Their difference is equal to

∆YIJ = yI − yJ = ln

(
x1x2S

pI⊥pJ⊥

)
. (3.33)

Since ∆YIJ is fixed in the MN jet analysis, only one of the two longitudinal momentum

fractions of the initial partons is an independent variable. Similarly to the pure DY case,

we expand the BFKL kernel using formula (3.13) in which φ = φIJ = π − (φI − φJ) is the

angle between jets’ transverse momenta, ∆YP = ∆YIJ and ρ = ln(p2
I⊥/p

2
J⊥).

4 Numerical results

In this section we present numerical results obtained for the LHC hadronic center-of-mass

energy,
√
S = 13 TeV. For the collinear parton distributions which enter fq and feff, we

use the NLO MMHT2014 set [58] with the scale µ = M⊥, see eq. (3.7). We also impose

the following cuts for the rapidities of the photon and the jet:

|yγ | < 4 , |yJ | < 4.7. (4.1)

4.1 Helicity-inclusive DY+jet cross section

We start by showing in figure 3 (left column) the normalized helicity-inclusive cross

section (3.28)

dσDY+j(φγJ)

dσDY+j(0)
=

(
dσ(T )(φγJ)

dΠ
+

1

2

dσ(L)(φγJ)

dΠ

)/(
dσ(T )(0)

dΠ
+

1

2

dσ(L)(0)

dΠ

)
(4.2)

as a function of the azimuthal jet-photon angle φγJ for fixed values of M,∆YγJ , q⊥ and pJ .

We computed this ratio for the three cases of the BFKL equation treatment, discussed in

section 3: the leading order LO-Born approximation, and the LL and CC approximations.

As expected, the BFKL gluon emissions lead to a strong decorrelation in the azimuthal

angle in comparison to the LO-Born case. This effect does not depend on the value of the

– 11 –



J
H
E
P
1
2
(
2
0
1
8
)
0
9
1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 LO-Born

 BFKL LL

 BFKL CC
σ

/σ
(0

)

φγJ/π

q⊥ = 10GeV

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 MN BFKL LL

 MN BFKL CC

σ
/σ

(0
)

φIJ/π

pI⊥ = 10GeV

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 LO-Born

 BFKL LL

 BFKL CC

σ
/σ

(0
)

φγJ/π

q⊥ = 25GeV

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0  MN BFKL LL

 MN BFKL CC

σ
/σ

(0
)

φIJ/π

pI⊥= 25GeV

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 LO-Born

 BFKL LL

 BFKL CC

σ
/σ

(0
)

φγJ/π

q⊥ = 60GeV

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0  MN BFKL LL

 MN BFKL CC

σ
/σ

(0
)

φIJ/π

pI⊥= 60GeV

Figure 3. The dependence on the azimuthal angle of the normalized helicity-inclusive cross section

for the DY+jet (left column) and Mueller-Navelet jets (right column) productions. The following

values of parameters are used: pJ⊥ = 30 GeV, ∆YγJ = ∆YIJ = 7 and M = 35 GeV. The LO

Mueller-Navelet distribution is not shown since dσMN |LO = 0 when pI⊥ 6= pJ⊥, see (4.3). Angles

φγJ and φIJ are defined such that they equal zero for configurations back-to-back.

photon transverse momentum q⊥, which we illustrate by showing the angular dependence

for q⊥ = 10, 25 and 60 GeV. We observe that the two considered BFKL models with ᾱs
adjusted to the F2 HERA data lead to similar predictions on the normalized azimuthal

dependence. Nevertheless, the BFKL model with CC is more realistic since it resums to

all orders the collinear and anti-collinear double logarithmic corrections [53–55].

In figure 3 we also compare the angular decorrelation for the DY + jet (left) and MN

jet (right) productions for the same values of the jet and the photon transverse momenta,

q⊥ = pI⊥, and the rapidity difference ∆YγJ = ∆YIJ . We see that the photon decorrelation
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is stronger in comparison to the MN jet process, which is what we expected due to the more

complicated final state with one more particle. However, looking from a pure theoretical

side, the differences between the cases with the BFKL emissions and the Born calculations

is stronger in the MN case. In the latter case, there is no decorrelation and the two jets

are produced back-to-back in the LO-Born approximation,

dσMN

d2pI⊥ d2pJ⊥

∣∣∣∣∣
LO

∼ δ2(~pI⊥ + ~pJ⊥). (4.3)

In the DY + jet system we are dealing with a three particle final state in the LO-Born

approximation, i.e. two jets and a photon, and the Dirac delta is smeared out.

For similar transverse momenta of the probes, the angular decorrelation of BFKL

driven cross-sections is much stronger for the associated DY and jet production, than it is

for the Mueller-Navelet jets — see figure 3, the middle row. This may be understood by

inspecting the lowest order contributions to both the processes in this kinematical setup.

For the MN jets, the first contribution appears at the O(α3
s) order, from a 2 → 3 parton

process, i.e. when at least one iteration of the BFKL kernel is performed. The additional

emission is necessary to move the MN jets out of the back-to-back configuration. On

the other hand, if the transverse momenta of the jets have similar values, the transverse

momentum of the additional emission tends to be small w.r.t. the jet momenta, and hence

it does not lead to a strong decorrelation. In contrast, in the associated virtual photon and

jet production, the lowest order process is already at 2 → 3 level, (e.g. q+ g → q+ g+ γ∗),

and there occurs some angular decorrelation due to the additional quark jet, before the

BFKL emissions are included. This decorrelation is further enhanced by the additional

gluon emissions. Hence, while the decorrelation for the DY plus jet production is present

already at the lowest order, for the MN jets with similar transverse momenta, it only starts

at the NLO as a strongly constrained effect.

When transverse momenta of the probes are strongly unbalanced — see first and last

row of figure 3 — the additional emission carries significant transverse momenta w.r.t. the

jets momenta and this implies larger decorrelation than for the balanced probes. In this

case angular decorrelation in the DY+jet process is similar to that for the MN jets: the

strong additional emission dilutes the difference between two-particles and three-particles

final state.

4.2 More on azimuthal decorrelations

In the analysis of the azimuthal decorrelation of the MN jets, the mean values of cosines

of the azimuthal angle between jets are useful quantities since they can be measured at

experiments with good precision. Thus, we follow the idea to study them and define the

following quantity for the DY + jet production with a given polarization λ:

〈cos(nφγJ)〉(λ) =

∫ 2π
0 dφγJ

dσ(λ)

dMd∆YγJdq⊥ dpJ⊥dφγJ
cos(nφγJ)∫ 2π

0 dφγJ
dσ(λ)

dMd∆YγJdq⊥ dpJ⊥dφγJ

, (4.4)

where the cross section is given by eq. (3.25) for the LL and CC cases and by eq. (3.27)

in the LO-Born approximation. Since the coefficients I(λ)
m in eq. (3.25) do not depend on
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Figure 4. The mean cosine 〈cos(nφγJ)〉 for n = 1 (left) and n = 2 (right) as a function of the

photon momentum q⊥ (upper row) and the photon-jet rapidity difference ∆YγJ (lower row). We

choose ∆YγJ = 7 for the upper plots and q⊥ = 25 GeV for the lower plots. The jet momentum

pJ⊥ = 30 GeV and the invariant mass of photon-jet system M = 35 GeV in all cases.

φγJ , the mean cosine in the BFKL case is given by

〈cos(nφγJ)〉 =
I(T )
n + I(L)

n /2

I(T )
0 + I(L)

0 /2
, (4.5)

where we skip the symbol λ for the helicity-inclusive production.

In figure 4 we show the mean 〈cos(nφγJ)〉 for n = 1 and 2 as a function of the pho-

ton transverse momentum q⊥ (upper row plots) for a given value of the jet transverse

momentum pJ⊥ in the three indicated in the plot cases. We see that the values of the

mean cosines are much smaller in the LL and CC cases which is an indication of a stronger

azimuthal decorrelation in comparison to the LO-Born case. All functions have maximum

at q⊥ ∼ pJ⊥ = 30 GeV. One should expect this behaviour since the strongest back-to-back

correlation (the biggest cosine value) is possible when photon’s transverse momentum bal-

ances the transverse momentum of the jet. Once again, the BFKL emissions in the LL and

CC approximations dilute this effect significantly. In the lower row of figure 4 we show the

dependence of the mean cosines on the photon-jet rapidity difference ∆YγJ . As expected,

the cosine values in the LL and CC approximations decrease with growing rapidity differ-

ence since more BFKL emissions are possible, causing stronger decorrelation. On the other
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Figure 5. The mean cosine of the photon-jet angle 〈cos(nφγJ )〉 for n = 1 (left) and n = 2 (right)

for the DY+jet (solid lines) and the MN jets (dashed line) as a function of the rapidity difference

∆YγJ . The parameters are the following q⊥ = pI⊥ = 25 GeV, pJ⊥ = 30 GeV and M = 35 GeV.

hand, in the LO-Born approximation there are no emissions and the cosine values almost

not depend on the rapidity difference.

In figure 5 we perform the comparison between the DY+jet (solid lines) and MN jet

(dashed lines) processes in terms of the mean cosines 〈cos(φγJ)〉 for n = 1 and n = 2 as a

functions of γ-jet or jet-jet rapidity difference in the indicated on the plots approximations.

In general, we see stronger decorrelations for the DY + jet production that for the MN jet

production in both approximations: the LO-Born and the BFKL with CC. Note that, the

mean cosine values equal one for the LO-Born MN jets when both jets have the same trans-

verse momentum. On the other hand, if the jets have different transverse momenta (which

is the case shown on figure 5), the mean cosine value is not well defined at the Born level.

4.3 Angular coefficients of DY leptons

Up to now we have considered only helicity-inclusive quantities which are obtained by

averaging over the leptons’ distribution. One of the biggest advantage of the DY+jet

process, comparing to the MN jet production, is the possibility to investigate the DY

lepton angular coefficients Ai, defined by eq. (3.29). In this section we present our analysis

of these quantities calculated using the Collins-Soper frame.

In figure 6 we show the coefficients A0, A1 and A2 together with the Lam-Tung differ-

ence A0 − A2. These coefficients are shown as functions of the γ-jet angle φγJ . We see a

dramatic difference between the LO-Born result which very strongly depends on angle and

the BFKL approximations which are almost independent on it. One can conclude that for

leptons’ angular coefficients the decorrelation coming from the BFKL emissions is almost

complete. As before, the LO-Born predictions for the azimuthal dependence are very close

to those obtained using the BFKL predictions.

In order to study the q⊥ and ∆YγJ dependence of the coefficients Ai, it is useful to

consider the quantities averaged over the angle φγJ . Therefore, we define the averaged

cross sections

dσ̄(λ)

dMd∆YγJdq⊥ dpJ⊥
=

∫ 2π

0
dφγJ

dσ(λ)

dMd∆YγJdq⊥ dpJ⊥dφγJ
. (4.6)
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Figure 6. The angular coefficients A0, A1 and A2 as functions of the photon-jet angle φγJ for

the three indicated approximations together with the Lam-Tung difference A0 − A2. The photon

transverse momentum q⊥ = 25 GeV (left column) and q⊥ = 60 GeV (right column) while the other

parameters: pJ⊥ = 30 GeV, ∆YγJ = 7 and M = 35 GeV.
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Figure 7. The averaged over φγJ coefficients Ā0, Ā1 and Ā2 as functions of the photon transverse

momentum q⊥ for the three indicated models together with the Lam-Tung difference Ā0− Ā2. The

following parameters are used: pJ⊥ = 30 GeV, ∆YγJ = 7 and M = 35 GeV.

Then the Āi’s defined by eqs. (3.29) are computed using the averaged dσ̄(λ)’s. The calcu-

lation of (4.6) for the BFKL cross section (3.25) is particularly simple since all the Fourier

coefficients with m ≥ 1 vanish and

dσ̄(λ)

dMd∆YγJdq⊥ dpJ⊥
= 2π I(λ)

0 (M,∆YγJ , q⊥, pJ⊥). (4.7)

In figure 7 we show the averaged coefficients Āi’s as functions of q⊥. The Lam-Tung observ-

able is particularly interesting. In the LO-Born approximation it decreases rapidly with q⊥,

so that it vanishes when q⊥ is substantially larger than pJ⊥. It is easy to understand since

violation of the Lam-Tung relation is caused in this process by the transverse momentum

transfer from the forward jet to the DY impact factor. When pJ⊥ is substantially smaller

than q⊥, this momentum transfer is negligible and the Lam-Tung relation is satisfied. On

the other hand, the BFKL emissions provide large transverse momentum transfer to the

DY impact factor even when pJ⊥ is small comparing to q⊥.

In figure 8, the mean coefficients Āi are shown as a function of ∆YγJ for q⊥ = 25 GeV

(left column) and q⊥ = 60 GeV (right column). We see again a significant difference

between the LO-Born and the BFKL approximations.
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Figure 8. The averaged over φγJ coefficients Ā0, Ā1 and Ā2 as functions of the photon-jet rapidity

difference ∆YγJ for the three indicated models together with the Lam-Tung difference Ā0 − Ā2.

The photon transverse momentum q⊥ = 25 GeV (left column) and q⊥ = 60 GeV (right column)

while the other parameters: pJ⊥ = 30 GeV, ∆YγJ = 7 and M = 35 GeV.
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5 Summary and outlook

W proposed a new process to study the BFKL dynamics in high energy hadronic collisions

— the Drell-Yan (DY) plus jet production. In this process, the DY photon with large

rapidity difference with respect to the backward jet should be tagged. The process is

inclusive in a sense that the rapidity space between the forward photon and the backward

jet can be populated by minijets which are described as the BFKL radiation. As in the

classical Mueller-Navelet process with two jets separated by a large rapidity interval, we

propose to look at decorrelation of the azimuthal angle between the DY boson and the

forward jet. For the estimation of the size of this effect, we use the formalism with the

BFKL kernel in two approximations; the leading logarithmic (LL) and the approximation

with consistency conditions (CC) which takes into account majority of the next-to-leading

logarithmic corrections to the BFKL radiation. The jet and photon impact factors were

taken in the lowest order approximation.

The presented numerical results show a significant angular decorrelation with respect

to the Born approximation for the BFKL kernel, which is observed for all considered values

of photon transverse momentum. The found decorrelation is stronger than for the Mueller-

Navelet jets due to more complicated final state with one more particle, being the tagged

DY boson. We also presented numerical results on the angular coefficients of the DY lepton

pair which provide an additional experimental opportunity to test the effect of the BFKL

dynamics in the proposed process. In particular, these coefficients allow to study the Lam-

Tung relation (3.30) which is strongly sensitive to the transverse momentum transfer to

the DY impact factor. For this reason, the study of the angular coefficients of the DY pair

in the BFKL framework is highly interesting.

As an outlook, it would be very interesting to analyse the DY + jet production in full

NLO and NLL setting for the photon/jet impact factors and the BFKL kernel. We hope

to return to this problem in future.
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