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Abstract

Introduction: There are no known biological measures that accurately predict future development of psychiatric disorders
in individual at-risk adolescents. We investigated whether machine learning and fMRI could help to: 1. differentiate healthy
adolescents genetically at-risk for bipolar disorder and other Axis I psychiatric disorders from healthy adolescents at low risk
of developing these disorders; 2. identify those healthy genetically at-risk adolescents who were most likely to develop
future Axis I disorders.

Methods: 16 healthy offspring genetically at risk for bipolar disorder and other Axis I disorders by virtue of having a parent
with bipolar disorder and 16 healthy, age- and gender-matched low-risk offspring of healthy parents with no history of
psychiatric disorders (12–17 year-olds) performed two emotional face gender-labeling tasks (happy/neutral; fearful/neutral)
during fMRI. We used Gaussian Process Classifiers (GPC), a machine learning approach that assigns a predictive probability
of group membership to an individual person, to differentiate groups and to identify those at-risk adolescents most likely to
develop future Axis I disorders.

Results: Using GPC, activity to neutral faces presented during the happy experiment accurately and significantly
differentiated groups, achieving 75% accuracy (sensitivity = 75%, specificity = 75%). Furthermore, predictive probabilities
were significantly higher for those at-risk adolescents who subsequently developed an Axis I disorder than for those at-risk
adolescents remaining healthy at follow-up.

Conclusions: We show that a combination of two promising techniques, machine learning and neuroimaging, not only
discriminates healthy low-risk from healthy adolescents genetically at-risk for Axis I disorders, but may ultimately help to
predict which at-risk adolescents subsequently develop these disorders.
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Introduction

Early identification of individuals at high risk of future

psychiatric illness is a critical but challenging endeavour. Because

most psychiatric disorders typically have an onset in adolescence

or early adulthood [1], meeting this challenge could delay, or even

prevent, future onset of these debilitating illnesses in high-risk

adolescents. To date, no biological measures can either accurately

identify individual risk for future psychiatric illness, or predict

future illness onset at an individual level: even genetic risk does not

accurately predict individual risk for future psychiatric illness. For

example, having a family history of bipolar disorder confers a 10%

risk of future bipolar disorder, as well as 10–25% risk of developing

other Axis I disorders in the future, including ADHD, major

depression, or anxiety disorders [2]. Having such family history

does not, however, accurately determine the likelihood of future

development of these disorders at the individual level.

Two techniques: machine learning and neuroimaging, show

promise as tools to identify biological measures that may help with

clinical challenges such as early identification of individuals at

future risk of psychiatric disorders. Neuroimaging techniques such

as functional magnetic resonance imaging (fMRI) have helped

improve understanding of abnormalities in neural circuitry

supporting emotion processing and emotion regulation associated
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with a variety of different psychiatric disorders, including mood

disorders such as bipolar disorder and major depressive disorder,

in adults [3,4,5] and adolescents [6,7]. Furthermore, neuroimag-

ing and univariate statistical techniques have been used to

indentify circuitry abnormalities in adolescents at risk of future

mood disorders as group differences relative to a healthy control

group. These techniques cannot, however, be used to identify

robust abnormalities in neural circuitry in individual participants; nor

can such techniques be used to classify individuals into diagnostic

groups based upon neuroimaging findings. Machine learning

comprises computer-based techniques that allow automatic

discovery of regularities in data (i.e. patterns). Discovery of such

regularities can then be used to classify data into different

categories. Machine learning has previously been applied to

classify groups of individuals based on structural MRI data [8,9],

and can also be applied to functional magnetic resonance imaging

(fMRI) data to classify individuals, case by case, into groups based

on their fMRI data [10,11]. For example, the combination of

machine learning with fMRI has recently been used to accurately

differentiate depressed patients from healthy individuals on a case-

by-case basis [11]. These techniques are therefore promising tools

to be used for clinical purposes, such as identification of

neurobiological measures that can aid early identification of those

individuals who are at future risk of developing psychiatric

disorders [12,13], but their potential in this domain remains

unrealized.

In the present study, we sought to determine whether machine

learning and fMRI could help to discriminate, at an individual

level, healthy adolescents genetically at-risk for Axis I disorders

including bipolar disorder, depression, and anxiety disorders, from

healthy adolescents at low risk of developing these disorders. In

more exploratory analyses, we also investigated whether the

predictive probabilities of those healthy, genetically at-risk

adolescents who subsequently developed an Axis I disorder, were

statistically different from the predictive probabilities of those who

did not develop such a disorder in follow-up clinical assessments.

To achieve this, we used a well-validated emotional face gender

labeling fMRI paradigm [14]. This type of experimental design

has been used to examine neural activity in mood disorders given

that abnormal patterns of neural activity during facial emotion

processing has been shown in a range of psychiatric conditions,

especially in depression and bipolar disorder [5,6].

Methods

Participants
The study was approved by the University of Pittsburgh

Institutional Review Board. Parents signed consent forms, and

adolescents signed assent forms. A total of 32 healthy offspring

participated in the study (Table 1). Of these, 16 were offspring

having at least one biological parent diagnosed with bipolar

disorder, who were therefore at genetic risk of future psychiatric

disorders (healthy bipolar offspring). 16 offspring were age- and

sex- matched healthy offspring of healthy parents (healthy

controls). Parents of healthy controls did not have any current

Axis I psychiatric disorder or history of mood disorder or psychotic

disorder, while first-degree relatives of healthy controls did not

have any current, or history of, bipolar disorder. Participants were

recruited from the Bipolar Offspring Study (BIOS), an ongoing

longitudinal study on the psychiatric symptomatology in offspring

of parents with bipolar disorder (MH#060952, PI: B.B.).

Procedures for the above longitudinal study included diagnostic

interviews with the offspring and their parents using semi-

structured diagnostic instruments: The Structural Clinical Inter-

view for DSM-IV (SCID-I) was used to ascertain lifetime

psychopathology for all parents and the Schedule for Affective

Disorders and Schizophrenia for School Aged Children – Present

and Lifetime Version (K-SADS-PL) [15] was used to interview

parents about their children and children about themselves for the

presence of current and lifetime psychiatric disorders (see [2] for

details). The family history–research diagnostic criteria method

[16] was used to ascertain the psychiatric history of biological co-

parents not seen for direct interview.

Participants in the above longitudinal study who did not

endorse any current DSM-IV Axis I diagnosis or history of

depression or bipolar disorder on the K-SADS-PL were invited to

participate in the current neuroimaging study. Participants and

their parents completed self-report measures on the day of the

neuroimaging scan to ensure that all participants were free of any

current DSM-IV Axis I psychiatric diagnoses immediately before

the neuroimaging evaluation. Parents completed self-reports about

their children assessing: presence of DSM-IV Axis I disorder,

anxiety, depression, and mood lability. Children completed self-

report measures assessing anxiety and depression (see Text S1).

Exclusion criteria included: IQ,70, history of head trauma,

neurological disorder, substance abuse/dependence, developmen-

tal delay, hand-eye coordination problems, and mood disorders

secondary to substance abuse, medical conditions, pregnancy,

presence of metal in the body.

fMRI paradigm
An emotional face gender labeling event-related fMRI para-

digm was used [14]. It comprised two, well-validated 6-minute fast

event-related neuroimaging tasks examining neural activity to

happy versus neutral (happy face task) and fearful versus neutral

(fearful face task) emotional facial expression. Faces were morphed

to depict expressions ranging from neutral, to mild (50%), and to

intense (prototypical; 100%). Subjects were asked to indicate

whether the actor in the picture was a woman or a man (see Text

S1).

Image acquisition
Neuroimaging data were collected using a 3T Siemens Allegra

MRI. The acquisition parameters are described in Text S1.

Data preprocessing and analysis
Data preprocessing was performed using standard procedures in

SPM5 (see Text S1 for details). For each subject a general linear

model (GLM) was constructed in SPM5 with three emotion

intensities (e.g., neutral, mild happy, intense happy) entered in the

design matrix as separate regressors. The happy face and fearful

face tasks were modeled separately. The fixation cross served as a

baseline. Movement parameters from the realignment stage were

entered as covariates of no interest to control for subject

movement. The images corresponding to the GLM coefficients

for each experimental condition (neutral, mild happy/fearful,

intense happy/fearful) defined the spatial patterns of brain

activation used as input to the Gaussian Process Classifier (GPC).

Pattern Classification Analysis
We used Gaussian Process Classifiers (GPCs) [17], a machine

learning approach that assigns a predictive probability of group

membership to an individual person based on the confidence of a

classifier computed from pre-processed fMRI scans. For a detailed

description about the GPC implementation to fMRI based
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classification please see [18]. We used a Gaussian process classifier

(GPC), as the test predictions take the form of predictive

probabilities; this contrasts with other classification methods that

provide categorical classification (e.g. +1 for class 1 and 21 for

class 2). The predictive probability measures the classifier

confidence about the class membership of the test example.

Probabilistic predictions are especially important for clinical

applications for two reasons. First, probabilistic prediction models

aim to provide coherent estimates of predictive uncertainty for

individual subjects (e.g. the probability that a particular subject has

a psychiatric disorder). In clinical populations, it is reasonable to

expect that illness severity varies within patient groups and the

disease itself may also be heterogeneous. Probabilistic predictions

provide an elegant mechanism to capture this variability,

providing confident predictions for the most prototypical cases

and less confident predictions for more ambiguous cases. Second,

probabilistic predictions can be easily adjusted to compensate for

the prior frequency of diagnostic classes in the general population

[10]. Thus, probabilistic prediction models provide mechanisms to

ensure that inference remains coherent in classification scenarios

where the frequency of each class in the test set may be entirely

different from the frequencies observed in the training set.

We used GPC as implemented in the PROBID software

package (http://www.brainmap.co.uk/PROBID). We embedded

the classifier in a recursive feature elimination (RFE) framework

[18], a well-validated technique in pattern recognition analyses,

that enabled us to: (1) find the subset of brain voxels that provided

the optimal discrimination accuracy and (2) accurately localize the

most discriminative brain voxels. To achieve this, we employed

nested (3-way) cross-validation where we first excluded a matched

pair of subjects (one from each group) to comprise the test set, then

performed a second split where we repeatedly repartitioned the

remaining 15 subject pairs into a validation set (1 pair) and

training set (14 pairs). In each case we selected the number of

features that produced maximal accuracy on the validation set

before applying it to the test set (Figure 1). We thresholded the

probabilistic predictions at 0.5 to convert the probabilistic

predictions to class labels and computed the proportion of subjects

having the correct label across all test splits to derive an overall

estimate of generalization ability (classification accuracy). The

statistical significance of the classifier was determined by

permutation testing.

Follow-up clinical assessment
As part of their enrollment in the longitudinal study, each

participant was interviewed face-to-face every other year using the

same procedures and instruments utilized during the intake

interview described above (see [2]). Presence or absence of Axis

I disorder at the follow-up clinical interview, which was conducted

every other year, was used in analyses. Given that the longitudinal

follow-up study is still ongoing, the most recent information

available was included in the current analyses. The mean interval

of time between the fMRI scan and the follow-up interview was

24.4 months (range 12 to 45 months).

Receiver Operating Characteristic curve
Using the predictive probabilities from the classifier for at-risk

adolescents versus healthy controls as a score for at-risk adolescents,

we were then able to use receiver operating characteristic (ROC)

curve analysis to evaluate if this score could be used to predict which

at-risk adolescents developed a psychiatric disorder during follow-

up clinical assessment. The ROC curve was constructed using the

predictive probabilities for all at-risk adolescents with follow-up, and

the labels were developers vs. non-developers. The ROC curve

compared the classifier’s true positive rate (TP) and false positive

rate (FP) as the decision threshold (i.e. the score threshold) was

varied. A classifier guessing at chance level would therefore result in

an 45 degree diagonal line that connects the point (0, 0) with the

point (1,1), while classifiers discriminating above chance would

result in an ROC curve that is ‘northwest’ of this line. The area

under the curve (AUC) is therefore a summary measure describing

the performance of the classifier across all decision thresholds,

where a classifier achieving perfect classification would achieve an

AUC of 1, while a classifier guessing at chance-level would achieve

an AUC of 0.5.

Permutation test
This test was used to derive a p-value to determine whether

classification accuracy exceeded chance levels (50%). To achieve

this, we permuted the class labels 1000 times (i.e., each time

randomly assigning class 1 and class 2 labels to each pattern of brain

activation) and repeated the entire RFE procedure. We then

counted the number of times the permuted test accuracy was higher

than the one obtained for the true labels. Dividing this number by

Table 1. Demographic and Clinical Characteristics of Healthy Offspring Having a Parent with Bipolar Disorder and Age- and Sex-
Matched Control Offspring of Healthy Parents.

Group Statistic df p Value

HBO (n = 16) HC (n = 16)

Age at Scan (years), mean (SD) 14.8 (1.8) 15.3 (1.2) t = 1.2 30 .25

Sex (M/F) 7/9 7/9 — — —

Socio-economic Status, mean (SD) 45 (13) 44 (11) t = 2.57 21 .83

Full Scale IQ, mean (SD) 118 (12) 121 (11) t = 2.57 15 .57

MFQ – parent version, mean (SD) 3.6 (4.1) 2.7 (5.5) t = .54 30 .59

MFQ – child version, mean (SD) 7.4 (5.7) 4.6 (3.9) t = 1.6 29 .13

SCARED – parent version, mean (SD) 6.4 (5.0) 4.6 (5.3) t = 1.6 30 .33

SCARED – child version, mean (SD) 14.1 (9.6) 9.6 (6.0) t = .99 30 .12

CALS, mean (SD) 3.6 (3.9) 2.8 (4.6) t = .54 30 .60

Abbreviations: HBO = healthy offspring having a parent diagnosed with bipolar disorder; HC = healthy control offspring of healthy parents; MFQ, Mood and Feelings
Questionnaire (range, 0–68); SCARED, Screen for Childhood Anxiety and Related Disorders (range, 0–82); CALS, Child Affect Lability Scale (range, 0–80).
doi:10.1371/journal.pone.0029482.t001
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1000 we derived a p-value for the classification accuracies. We also

performed the permutation test for the area under ROC curve.

Additional Measures
Behavioral performance on the fMRI paradigm. Mean

percent accuracy scores and correct-trial reaction times were

analyzed using mixed analyses of variance models, with group as

between-subject and face condition as within-subject variables.

Post-scanning emotion labeling task. Following the scan-

ning session, participants performed a computerized emotion labeling

task. The task comprised viewing 45 grayscale pictures of male and

female actors [19] depicting several different emotional facial

expressions (happy, sad, anger, fear, disgust, neutral). Participants

were asked to select the appropriate emotion label by using a mouse to

click on the square next to the emotional word. For the purpose of this

study, analyses focused on overall accuracy scores and reaction times,

and specifically for happy, fearful, and neutral faces.

Results

Pattern Classification
Happy face task. GPC based on the whole brain activity to

neutral faces accurately and significantly differentiated at-risk

adolescents from healthy controls with 75% accuracy

(sensitivity = 75%, specificity = 75%, permutation test p = 0.008).

Only 4/16 at-risk adolescents were misclassified as healthy controls

(Figure 2A). For the mild faces, the accuracy in differentiating

groups was 68.5% (specificity = 56%, sensitivity = 81%,

permutation test p = 0.07). For the intense faces, the accuracy was

only 37.5% (sensitivity = 44%, specificity = 31%, permutation test

p = 0.96). The spatial pattern that best discriminated the groups

included ventromedial prefrontal cortex and superior temporal

sulcus (Figure 2B, see also Table S3 for the list of regions). We

emphasize that the discrimination maps should not be interpreted as

statistical tests; they simply provide a spatial representation of the

decision boundary, i.e. the weight of each voxel in discriminating

the groups. In the present study, we used Recursive Feature

Elimination (RFE) to select a subset of most important regions for

discriminating the groups. Gaussian Process Classifiers are

multivariate techniques, however, and therefore take into account

spatial correlations in the data. Since the discrimination is based on

the whole pattern, rather than on individual regions, all voxels

within the pattern contribute the classification and no local

inferences based on these approaches should be made.

Fearful face task. Whole-brain GPC classification accuracy

did not significantly exceed chance for neutral, mild or intense

faces. Specifically, for neutral faces the accuracy was 47%

(sensitivity = 63%, specificity = 31%), to mild faces the accuracy

Figure 1. Summary of pattern recognition analyses. (1) Feature Extraction: the information from the beta images were transformed into an
input vector. (2) Nested leave one out (LOO) Approach. We employed a nested (3-way) cross-validation, where we first excluded one matched pair of
subjects to comprise the test set (test loop in light blue). We then performed a second split (validation loop in dark blue), where we removed 5000
voxels each iteration and repeatedly repartitioned the remaining 15 subject pairs into a validation set (1 pair) and training set (14 pairs) to compute
the mean accuracy on the validation set. This procedure (removing voxels and computing mean accuracy) was repeated until all voxels were
removed. We then selected the number of voxels that produced maximal accuracy on the validation set before applying it to the test set. The final
accuracy was the mean accuracy over all test subjects (outer test loop in light blue). (3) We then generated a map training the GPC with all subjects
and removing voxels until we obtained the mean number of voxels.
doi:10.1371/journal.pone.0029482.g001
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was 40.5%(sensitivity = 50%, specificity = 31%), and to intense

faces, was 66% (sensitivity = 88%, specificity = 44%).

Outcome. The predictive power of the GPCs for future Axis I

disorder in at-risk adolescents pertaining to neutral faces presented

during the happy face experiment was evaluated using post-

scanning clinical assessments in 13 at-risk adolescents. Of these, 6

subsequently met DSM-IV criteria for either major depression

(n = 3) or anxiety disorders (n = 3). GPC predictive probabilities

were significantly higher for these 6 at-risk adolescents than for at-

risk adolescents who remained healthy at follow-up (t(11) = 1,82,

p = 0.04) (Figure 3). Furthermore, 3/4 at-risk adolescents

misclassified as healthy controls at scanning remained healthy at

follow-up (for one of these 4 at-risk adolescents, we did not have

clinical follow-up information).

ROC Analyses. The area under the ROC curve (AUC) was

0.78 (p,0.05, permutation test) (Figure 4), indicating that the

score based on the classifier for at-risk adolescents versus healthy

controls could be used to predict those at-risk adolescents who

went on to develop, versus those who did not develop, a

psychiatric disorder during clinical follow-up (i.e. area under the

ROC curve exceed chance level which is 0.5). Using a

combination of machine learning and neuroimaging, we were

therefore able to find a measure (i.e. GPC predictive probabilities)

that could be used to identify which at-risk adolescents

subsequently developed an Axis I disorder.

Task performance on fMRI paradigm
Happy Face Task: Accuracy. There was no significant main

effect of group F(1,30) = 2.4, p = .14), or group by face condition

interaction (F(2,29) = 0.01, p = .99). There was, however, a

significant main effect of face condition (F(2,29) = 15.8, p,.001),

indicating that percent accuracy was significantly lower for neutral

faces relative to happy faces (mild, intense), p,.05. Reaction times:

There was no significant main effect of group, main effect of face,

or group by face condition interaction (all p..1).

Fearful Face Task: Accuracy. There was no significant main

effect of group (F(1, 30) = 0.99, p = .33), or group by face condition

interaction (F(2,29) = 0.50, p = .61). There was, however, a

significant main effect of face condition, (F(2,29) = 11.2, p,.001),

indicating that percent accuracy was significantly lower for neutral

faces relative to intense fearful faces (p,.05). The effect was at a

trend level for mild fearful versus neutral faces (p = .06). Reaction

times: There was no significant main effect of group, main effect of

face, or group by face condition interaction (all p..1) (see Table S1).

Task performance on post-scanning emotion labeling task
Accuracy. There were no significant group differences on

overall emotion labeling scores (t(23) = .92, p = .37). When

examining accuracy specifically to happy, fearful, and neutral

faces, however, there was a main effect of face condition

(F(2,22) = 11.10, p,.001). Post hoc comparisons indicated that

Figure 2. Summary of results from pattern recognition analyses. A. Decision boundary and individual predictive probabilities. B. GPC weights
overlaid on an anatomical template. The color code shows the relative weight of each voxel for the decision boundary (red scales: higher weights for
healthy bipolar offspring and blue scales: higher weights for healthy controls). The discriminating pattern included clusters with higher weights for
healthy bipolar offspring in the superior temporal sulcus (STS; x, y, z: -50, 11, -5) and in a posterior region of the ventromedial prefrontal cortex
(VMPFC(p); x, y, z,: 0, 29, -14) and a cluster with higher weights for healthy controls in the anterior region of the ventromedial prefrontal cortex
(VMPFC (a); x, y, z: -2, 51, -19) (x, y, z, are in Talairach coordinates).
doi:10.1371/journal.pone.0029482.g002

Pattern Recognition Discriminate Youth at Risk

PLoS ONE | www.plosone.org 5 February 2012 | Volume 7 | Issue 2 | e29482



accuracy scores were significantly lower to neutral faces relative to

happy and fearful faces (p,0.05).

Reaction times. There were no significant group differences

on emotion labeling scores (t(23) = .45, p = .66). When examining

reaction times specifically to happy, fearful, and neutral faces,

however, there was a main effect of face condition (F(2,22) = 6.23,

p = .007). Post hoc comparisons indicated that reaction times were

slower to fearful relative to happy and neutral faces, (p,.05; see

Table S2).

Discussion

The main goal of this study was to determine whether machine

learning and fMRI could help to differentiate, at an individual

level, healthy adolescent offspring at genetic risk for bipolar

disorder and other Axis I psychiatric disorders from healthy

adolescents at low risk of developing bipolar disorder or other Axis

I psychiatric disorders. We also investigated whether the predictive

probability of those healthy at-risk adolescents who subsequently

developed a future psychiatric illness were statistically different

from the predictive probability of those at-risk adolescents who did

not develop such a disorder in longitudinal clinical follow up. Our

findings indicate that machine learning combined with fMRI

helped to discriminate healthy low-risk control adolescents from

healthy adolescents at genetic risk of future psychiatric disorders.

Our findings also indicate that the magnitude of the predictive

probabilities for group classification that were derived from these

techniques could potentially be used as a score to predict which at-

risk adolescents subsequently went on to develop an Axis I

psychiatric disorder, namely mood and anxiety disorders.

The advantage of pattern recognition techniques such as the

one we employed in the present study is that they provide

information at the individual – rather than the group - level (GPC

based on whole brain neuroimaging data). Specifically, our

findings from GPC indicate that we can make predictions at the

individual level considering the discrimination between who are

genetically at risk from who are not. Furthermore, ROC analysis

with predictive probabilities derived from GPC suggests that

pattern recognition techniques such as GPC have the potential in

the future to help identify which at-risk adolescents are most likely

to develop future Axis I disorders.

Recent studies demonstrated the utility of pattern recognition

approaches in helping with classification of different psychiatric

disorders, including Alzheimer’s diseases and autism [8,9]. One

study [20] evaluated early recognition and disease prediction using

multivariate pattern classification, and demonstrated that this

approach could be used to predict transition to psychosis. Until

now, however, it was unknown whether the method could

distinguish completely asymptomatic, genetically at-risk individu-

als from healthy, low-risk individuals.

In the present study, none of the at-risk adolescents developed

bipolar disorder following the fMRI scan. Over half of the at-risk

adolescents developed an affective disorder (anxiety or depression),

however. It is possible that the prediction findings in the present

study may be attributed to similarities across affective disorders

with regard to abnormal patterns of activation to emotional facial

expressions relative to age-matched healthy controls. However, the

fact that healthy at-risk adolescent who went on to develop these

disorders have higher predictive probabilities is noteworthy in light

of evidence indicating that major depressive disorder and anxiety

disorders often emerge prior to the onset of mania and episodes of

depression characterizing bipolar disorder [1]. For example,

recent evidence from the Bipolar Offspring Study suggests that a

larger number of bipolar disorder episodes of offspring in that

Figure 3. Mean predictive probabilities (with standard error to
the mean) for the comparison between healthy bipolar
offspring with and without future onset of Axis I disorder,
which in this sample was major depressive disorder and
anxiety disorders.
doi:10.1371/journal.pone.0029482.g003

Figure 4. We used the predictive probabilities from the
classifier at-risk adolescents vs. controls as a score for the at-
risk adolescents. An ROC curve was used to evaluate if this score
could be used to predict which of at-risk adolescents developed a
future mood disorder. Each point on the ROC curve represents a
sensitivity/specificity pair corresponding to a particular decision
threshold. A test with perfect discrimination has a ROC curve that
passes through the upper left corner (100% sensitivity, 100%
specificity). The area under the ROC curve (AUC) was 0.78 (p,0.05).
doi:10.1371/journal.pone.0029482.g004
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study started with depressive episodes [2]. Such evidence supports

previous findings indicating that depressive symptoms emerge

prior to the onset of bipolar disorder symptoms [21,22,23],

particularly if there is family history of bipolar disorder [24]. With

regard to anxiety disorders, some studies suggest that anxiety

symptoms often precede and may hasten the onset of bipolar

disorder in adults [25]. For example, prospective data from a large

community sample suggested that individuals who reported

experiencing anxiety as adolescents were at increased risk of

developing bipolar disorder as adults [26], which is consistent with

previous findings [27,28]. Ongoing prospective follow-up of the at-

risk adolescents in the current study will help to further elucidate

the role of these psychiatric disorders in the developmental course

of bipolar disorder. Identifying differences in patterns of neural

activity to emotionally salient information in these at-risk

adolescents can contribute valuable information to this research.

Gaussian process classifiers are discriminative approaches and

therefore are able to find a discriminating boundary between two

classes (e.g. healthy vs. a patient group), and then use this

information to classify new individuals. Discriminative models,

however, should not be confused with statistical approaches based

on mean group differences, such as the General Linear Model

[29]. GLM analyses treat every voxel independently and extract

measures of interest from them, such as the average response

during a particular experimental condition. More specifically, the

GLM approach searches for voxels whose activation time series is

well reconstructed by the combination of regressor time series

related with each experimental condition and some noise terms.

The analysis of fMRI data with discriminative models differs from

the traditional GLM analysis by investigating a different question.

Instead of finding voxels whose time series respond to a specific

experimental condition, such models ask whether it is possible to

make a prediction about a variable of interest (e.g. patients vs.

controls or task 1 vs. task 2) based on the pattern of activation over

a set of voxels [30]. Furthermore, discriminative models provide a

map that shows the discriminating boundary between the different

groups. Specifically, a high value in a particular voxel indicates a

strong contribution to the discrimination boundary, but does not

necessarily imply greater activity in one group versus another. In

summary, pattern recognition approaches such as GPC are

multivariate techniques, where discrimination is based on the

whole pattern rather than on regional activity, which is typically

reported in the traditional GLM-based analyses comparing

psychiatric patient and healthy control groups. Based on the

GPC used in the current study, the spatial pattern that best

discriminated at-risk adolescents vs. healthy controls included

ventromedial prefrontal cortex and superior temporal sulcus,

which are key regions supporting emotion regulation and face

processing, and are regions that have been shown to be

functionally abnormal in individuals with bipolar, and other

mood disorders [3,31].

Interestingly, the best discrimination between at risk and low-

risk adolescents was found to be neutral faces presented in the

happy face experiment. Furthermore, the fact that there were no

significant findings for mild or intense happy faces, or for any of

the faces in the fear face experiment, suggested that accurate

classification was specific to neutral faces presented in the context

of happy faces, and not generalizable to the other emotional faces.

Neutral faces especially are often perceived as ambiguous and

potentially threatening by individuals diagnosed with anxiety or

mood disorder [6,32]. One study, for example, reported

abnormally elevated subcortical activity to neutral faces in youth

with bipolar type I disorder, particularly in those who perceived

these faces as threatening [6]. Another study reported that

depressed patients did not differ from healthy controls in their

ability to accurately recognize sad and happy facial expressions,

but they were less accurate at recognizing neutral expressions [33].

Specifically, depressed patients misclassified a higher number of

neutral expressions as sad, suggesting a negative interpretative

bias. Other studies used neutral facial expressions as a control

condition for other emotional facial expressions, and also found

evidence of a negative emotional interpretative bias in depressed

patients [34], or found that depressed patients were slower to

respond to neutral expressions compared with emotional expres-

sions [33].

Findings from the behavioural data analyses indicate that there

were no differences between groups, or group by face condition

interactions, neither in accuracy nor for reaction times. This is

interesting because it shows that behavioural differences cannot

explain the results found in the present study, indicating that the

classification results are related to the underlying neural circuitry

which is already different in at-risk individuals as compared to

healthy individuals. Furthermore, the absence of behavioural

differences between these groups suggests that there was no

impairment in the performance of the at-risk adolescents

indicating that those adolescents were healthy during the

neuroimaging experiment. There was, however, a main effect of

face condition, such that all adolescents were less accurate in

gender labeling neutral faces. Performance on the out-of-the

scanner emotion labeling task also indicated that all adolescents

were less accurate in labeling neutral faces relative to fearful and

happy faces. These behavioral data are consistent with previous

findings that children and adolescents find neutral faces more

ambiguous and more difficult to identify than emotional faces

[35,36]. Taken together, these findings suggest that neutral faces

may have been more difficult to label in all adolescents in the

present study, and that this greater level of difficulty in perceptual

discrimination may have warranted greater recruitment of neural

regions, including ventromedial prefrontal cortex and superior

temporal sulcus, which contributed to the classifier that differen-

tiated the two groups. Moreover, at-risk adolescents may have

perceived neutral faces presented in the context of happy faces not

only as ambiguous and ‘‘non-neutral’’ but potentially as more

threatening than did healthy controls, which would have

influenced their pattern of activation in these key neural regions.

This interpretation would be consistent with the idea that other

emotions can influence the interpretation of neutral faces [37], and

may help to explain why groups were classified based on

recruitment of key neural regions implicated in face processing

and emotion regulation. Nevertheless, including subjective emo-

tional ratings of neutral and other emotional facial expressions in

future studies may help elucidate these findings further.

The following limitations to the current study merit some

discussion. Although the sample size in the current study was

sufficient to provide adequate power to train a GPC to

discriminate between adolescents at risk for mood disorders vs.

adolescents at low risk, further analyses to distinguish between

those who developed vs. those who not develop mood disorder

could be conducted only on a subset of the at-risk adolescents who

had complete diagnostic interview data. Our findings do, however,

provide a rationale for future studies, with larger samples of

converters and nonconverters from the at-risk group, to examine

the extent to which pattern recognition techniques can identify at

the individual level those at-risk adolescents who are most likely to

develop in the future different Axis I disorders.

In addition, while the leave-one-out cross-validation is the

recommended technique for evaluating classifier performance on

small samples due to its almost unbiased estimation of the true
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error rate it has high variance for small sample sizes. Therefore

our results should be validated using independent and bigger

samples. Nevertheless, our findings are an important first step

toward the ultimate goal of using neuroimaging to help predict

future clinical course in at-risk adolescents, and highlight the utility

of combining neuroimaging and machine learning techniques to

identify neuroimaging measures that may ultimately be able to act

as predictors of future onset of psychiatric disorders in at-risk

adolescents. We recognize the importance of other risk factors

(e.g., psychosocial functioning) in the development of psychiatric

disorders such as bipolar disorder. Additionally, it is possible that

the environmental effects of being raised by a bipolar parent were

a potential confound in the present study. Future studies with

larger samples will allow us to integrate these factors and examine

these more complex prediction models. In future work we also aim

to investigate whether other fMRI tasks could lead to better

discrimination between the groups and also strategies to combine

different information into the model (e.g. different imaging

modalities, clinical and behavioural information).

In summary, our findings indicate that the combination of

machine learning and neuroimaging have great potential,

especially in situations where there is limited clinical and genetic

information, to help to identify which individual at-risk adolescents

are at true risk of developing future Axis I disorders. This in turn

can help guide early and appropriate interventions for these

adolescents and their families, to relieve the significant psycho-

logical problems associated with lack of knowledge about the

future likelihood of psychiatric disorders in individual at-risk

adolescents.

Supporting Information

Table S1 Estimated Marginal Means and Standard
Errors for Accuracy and Reaction Time Measures for
the Happy Face and Fearful Face fMRI Gender-labeling
Tasks. Abbreviations: HBO = healthy offspring having a parent

diagnosed with bipolar disorder; HC = healthy control offspring of

healthy parents; SE, standard error; RT, reaction times; ms,

millisecond; fMRI, functional magnetic imaging. * Significant main

effect of face condition for percent accuracy scores (Happy face task:

F(2, 29) = 15.8, p,.001; Fearful face task: F(2, 29) = 11.23, p,.001).

Post hoc comparisons indicated Neutral,Happy 100% and Happy

50%, p,.05 and Neutral,Fearful 100%, p,.05, with a trend for

Fearful 50% p = .06.
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Table S2 Estimated Marginal Means and Standard
Errors for Accuracy and Reaction Time Measures for
the Post-scanning Emotion Labeling Task. Abbreviations:

HBO = healthy offspring having a parent diagnosed with bipolar

disorder; HC = healthy control offspring of healthy parents; SE,

standard error; RT, reaction times; ms, millisecond; fMRI,

functional magnetic imaging. * There a significant main effect of

face condition for accuracy scores, F(2, 22) = 11.1, p,.001. Post

hoc comparisons indicated Neutral,Fearful and Happy faces,

p,.05. { There a main effect of face condition for correct-trial

reaction times, F(2, 22) = 6.23, p = .007. Post hoc comparisons

indicated Fearful.Neutral and Happy faces, p,.05.
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Table S3 Most discriminative areas for HBO vs HC. We

listed the regions in the highest weight values, ie, highest

contribution for the decision function. The coordinates were

obtained using the script 3dclust in AFNI, (http://afni.nimh.nih.

gov/pub/dist/doc/manual/3dclust.pdf) and the regions corre-

sponding to the selected coordinates were obtained using the

software Tailarach Client.
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