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PREFACE 

The work featured in this thesis represents part of the research 1 perfonned 

throughout my doctoral studies. These results were harvested from the Laboratory of 

Cellular Neurobiology at the University of Québec à Trois-Rivières, Canada, but also 

from a collaborative effort with the Laboratory of Neurophannacology at the University 

of Cagliari, Italy, where 1 completed six months of research during my doctoral studies. 

This thesis is presented in the fonn of scientific articles and manuscripts: as of 

August 2018, two have been published and one has been submitted. It also refers to 

two reviews and one book chapter pertinent to the core subject and for which 1 am lead 

author. These can be found in the appendices. 

As per the authorization granted by the Cellular and Molecular Biology Graduate 

Program Committee on April 20th
, 2017, this thesis is written entirely in English. 

A French surnmary of the thesis is provided in the following pages, and French 

surnrnaries of each of the articles are supplied at the beginning of the corresponding 

chapters. Please take note that the introduction and discussion sections are written in 

Canadian English, whereas the articles, manuscripts and reviews are written in American 

or British English, according to the language requirements specified by the editors of the 

scientific journals in which they were published or submitted. One of the reviews is also 

written in French. 

AlI abbreviations and acronyrns employed throughout the text or within figures are 

listed in the table provided for this purpose. Abbreviations in text are defined upon first 

encounter, except for common biochemical tenns or when the fluidity of the text is 

hindered. Within figures, abbreviations are described in the legend upon first encounter, 

regardless of whether the y were first introduced in the text, but are not defined in 

subsequent legends. It is important to note that each chapter that features an article 

stands alone within this thesis and may therefore present tenns or abbreviations that are 

inconsistent with the remainder of the text. 
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Last, 1 wish to mention that this thesis explores three distinct subject 

matters integrated in a single discourse: dopaminergic neurons, hyperglycaemia and the 

polyphenol resveratrol. Granted the broadness of the topics discussed herein, 

the introduction is accordingly lengthy, as 1 was committed to appropriately ventilate aIl 

dimensions impinging on the central hypothesis and on future perspectives. Likewise, 

owing to the multiple techniques and models used to achieve the objectives of this 

thesis, the methodology is meticulously described in the aim of guiding the reader 

through the numerous decisions made upstream of the results presented herein. 



RÉSUMÉ 

Au deuxième rang des maladies neurodégénératives les plus communes après la maladie 
d'Alzheimer, la maladie de Parkinson atteint quelque 1 % de la population âgée de plus 
de 60 ans. Cette pathologie est caractérisée par la perte des neurones dopaminergiques 
logés dans la substance noire pars compacta du mésencéphale, conduisant à une 
diminution de la dopamine dans le striaturn dorsal et à l' apparition de symptômes 
moteurs. Malgré d ' amples efforts dévoués à l'élucidation des ses mécanismes 
neuropathologiques, la neurodégénérescence sélective des neurones de la voie 
nigrostriée demeure incomprise. En effet, la voie dopaminergique mésocorticolimbique, 
provenant du mésencéphale au niveau de l'aire ventrale tegmentale et innervant le 
striaturn ventral et le cortex préfrontal, ne semble pas dégénérer. Une explication 
voudrait que les neurones de la voie nigrostriée expriment un phénotype distinct les 
rendant plus vulnérables au stress oxydant. Selon cette conjecture, les neurones 
dopaminergiques de la voie nigrostriée devraient exhiber une plus grande susceptibilité à 
toute source de stress oxydant. 

Dans cette optique, nous avons émis l' hypothèse que les neurones de la voie nigrostriée 
sont plus vulnérables au stress oxydant engendré par l 'hyperglycémie en comparaison, 
par exemple, à ceux de la voie mésocorticolimbique. En premier lieu, nous avons vérifié 
que de fortes concentrations de glucose pouvaient causer un stress oxydant menant à la 
dégénérescence de neurones dopaminergiques en culture. En effet, chez les cellules 
PCI2 différenciées en neurones dopaminergiques, ces conditions conduisaient à une 
hausse des niveaux de l'anion superoxyde, une espèce réactive de l' oxygène produite 
en excès dans les premiers instants suivant une hyperglycémie. En maintenant ces 
concentrations élevées sur une période de 96 h, les cellules neuronales PCI2 entraient en 
apoptose, tel que le confirmaient la fragmentation de l' ADN et l' altération des profils 
d'expression de plusieurs marqueurs apoptotiques. De plus, l'usage d ' un antioxydant 
éprouvé, le polyphénol resvératrol, abrogeait la hausse des niveaux d'anion superoxyde 
et la mort des cellules neuronales PCI2. 

Suite à la confirmation que de fortes concentrations de glucose pouvaient conduire à la 
mort de neurones dopaminergiques en culture, nous avons voulu vérifier notre hypothèse 
centrale dans un modèle rongeur d'hyperglycémie. Nous avons employé un paradigme 
bien connu qui fait appel à l' administration de streptozotocine, une toxine ciblant les 
cellules productrices d'insuline, afin de générer un modèle de rat exhibant une 
hyperglycémie pouvant être maintenue pour une durée de 6 mois. À l'aide de méthodes 
immunologiques, nous avons démontré qu 'une hyperglycémie chronique induisait la 
dégénérescence des neurones dopaminergiques de la substance noire pars compacta, 
mais pas de ceux de l' aire ventrale tegmentale. Conséquemment, nous observions 
une perte des terminaisons dopaminergiques dans le striatum dorsal qui n' était pas 
perceptible dans le striatum ventral. De plus, par microdialyse intracérébrale, nous avons 
confirmé une baisse des niveaux de dopamine explicitement dans le striatum 
dorsal. Cette neurodégénérescence était accompagnée de l' augmentation du nombre 
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d'astrocytes et de la perte de cellules microgliales au niveau de la substance noire pars 
compacta et du striatum, mais pas dans l'aire ventrale tegmentale. 

En complément, nous avons examiné les aspects comportementaux de notre modèle 
de rat hyperglycémique à l'aide de tests utilisés chez les rongeurs parkinsoniens. 
Nos résultats démontrent l'existence de déficits moteurs évoquant ceux retrouvés chez 
les patients parkinsoniens. Il était intéressant de constater que ces troubles moteurs ainsi 
que la baisse des niveaux de dopamine se manifestaient avant que ne soit perceptible la 
neurodégénérescence, indiquant un possible dysfonctionnement du système nigrostrié en 
amont de la mort neuronale. Puisque la dopamine occupe un rôle prépondérant dans 
la régulation des comportements sociaux, nous avons également procédé à l' étude 
des interactions entre paires de rats non-familiers, tout en nous attardant à leurs 
communications ultrasoniques dont les paramètres sont vraisemblablement modulés par 
la dopamine. Lors de ces rencontres sociales, nous avons découvert que les rats 
hyperglycémiques exhibaient une hyper-sociabilité et une agressivité accompagnées de 
l'accroissement du nombre de vocalisations ultrasoniques émises, suggérant l'existence 
d'un dysfonctionnement dopaminergique. L'intensité de ces témoignages hyper-réactifs 
était de plus corrélée au degré de perte d'innervation du striatum dorsal. 

La somme de ces résultats nous permet de conclure que les neurones de la 
voie nigrostriée exhibent une susceptibilité manifeste vis-à-vis de conditions 
hyperglycémiques soutenues. Ces démonstrations viennent en appui aux études 
épidémiologiques soulignant un risque accru de développer la maladie de Parkinson 
chez les patients diabétiques. 

Mots-clés: comportements sociaux anormaux, déficits moteurs, diabète, 
hyperglycémie, maladie de Parkinson, neurones dopaminergiques, stress oxydant, 
voie mésocorticolimbique, voie nigrostriée. 



SUMMARY 

Parkinson 's disease affects an estimated 1 % of the population over the age of 60 years, 
making it the second most cornrnon neurodegenerative disorder after Alzheimer's 
disease. Fundamentally, this pathology features a progressive loss of dopaminergic 
neurons harboured in the substantia nigra pars compacta of the midbrain, which leads 
to decreased dopamine release in the dorsal striatum responsible for the emergence of 
motor symptoms. Despite arduous efforts deployed to improve our understanding of 
the neuropathological underpinnings of this disease, researchers are still at loss as to 
why the nigrostriatal dopaminergic pathway undergoes preferential early degeneration 
compared, for instance, to the neighbouring mesocorticolimbic pathway originating 
from the ventral tegmental area in the midbrain and projecting to the ventral striatum 
and prefrontal cortex. Rapidly gaining momentum is a proposition providing that 
nigrostriatal dopaminergic neurons possess a distinctive phenotypic liability responsible 
for their relative susceptibility to oxidative stress. If this holds true, nigrostriatal 
dopaminergic neurons should be preferentially vulnerable to unspecific oxidative insults. 

On these bases, we hypothesized that nigrostriatal dopaminergic neurons are more 
vulnerable to hyperglycaemia-induced oxidative stress compared to other neuronal 
populations, expressly ones of the mesocorticolimbic pathway. We began by verifying 
that high glucose conditions are conducive to the death of dopaminergic neurons in 
culture and that this degeneration is linked to oxidative stress. When cultured in elevated 
yet physiological concentrations of glucose, differentiated dopaminergic neuronal PC12 
cells promptly exhibited high levels of superoxide anion, a key reactive oxygen species 
who se overproduction constitutes the earliest event in hyperglycaemia-induced oxidative 
stress. Sustained for 96 h, high glucose conditions led to the apoptotic death of neuronal 
PC12 cells substantiated by DNA fragmentation and altered expression profiles of 
various markers of apoptosis. Treating neuronal dopaminergic PC12 cells with a potent 
antioxidative polyphenol, resveratrol, attenuated the rise in superoxide anion levels and 
afforded protection against high glucose-induced apoptosis. 

After confirming that high glucose conditions elicit a state of oxidative stress leading to 
the death of dopaminergic neurons in culture, we set out to verify our central hypothesis 
in a rat model of long-term hyperglycaemia. We employed a well-known paradigm 
that utilizes streptozotocin, a toxin that targets insulin-producing pancreatic ~ cells, 
to generate a model presenting a hyperglycaemic phenotype that could be maintained for 
up to 6 months. Employing irnrnunohistochemical and immunoblotting techniques, 
we demonstrated that long-term hyperglycaemia in rats causes the degeneration of 
dopaminergic neurons in the substantia nigra pars compacta, but not in the ventral 
tegmental area. Accordingly, dopaminergic terminal fibres were less dense in the dorsal 
than in the ventral striatum of hyperglycaemic rats. Utilizing the intracerebral 
microdialysis technique, we also showed that dopamine release was diminished in the 
dorsal striatum, but not in the ventral striatum or in the prefrontal cortex. We further 
discovered a noticeable increase in astrocytes that was neuroanatomically coincidental to 
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a loss of microglial cells in the substantia nigra pars compacta and striatum, but not in 
the ventral tegrnental area. 

Behavioural alterations were assessed in a series of tasks destined to uncover motor 
deficits in rodent models of Parkinson's disease. Long-term hyperglycaemic rats 
manifested signs of bradykinesia and gait disturbances reminiscent of parkinsonian 
motor syrnptoms. Interestingly, motor deficits and dampened dorsostriatal dopamine 
release were apparent before neurodegeneration could be discerned, suggesting possible 
functional impairments of the nigrostriatal pathway upstream of neuronal death. 
Considering dopamine also exerts an important control on social behaviours, 
we examined interactions between pairs of unacquainted rats and analyzed dopamine
regulated ultrasonic vocalizations known to reflect the subjects ' affective state. 
In particular, hyperglycaemic rats engaged in markedly hyper-sociable and hyper
aggressive encounters, while emitting a greater number of ultrasonic vocalizations, 
evocative of a dopaminergic dysfunction. Remarkably, the intensity of these hyper
reactive phenotypes correlated with the degree of dorsostriatal dopaminergic 
denervation. 

Taken together, our data expose the preferential vulnerability of the nigrostriatal 
pathway to sustained hyperglycaemia, supporting the physiological significance of their 
phenotypic liability to oxidative stress. Our findings further strengthen the apparent 
epidemiological link between pre-existing diabetes and an increased risk of developing 
Parkinson's disease. 

Keywords: abnormal social behaviours, diabetes, dopaminergic neurons, 
hyperglycaemia, mesocorticolimbic pathway, motor deficits, nigrostrial pathway, 
oxidative stress, Parkinson' s disease. 
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CHAPTERI 

INTRODUCTION 

Of all the intricate systems that make up the hurnan organism, no other has elicited 

more debate or has inspired such a vast array of theories regarding its functions than the 

central nervous system (CNS). An era's worth of research in neuroscience has amounted 

to our CUITent appreciation of the various temporal, spatial and thermodynamic 

circumstances that dictate neural outcomes in countless contexts. Nevertheless, 

particular modules of the CNS continue to galvanize neuroscientists, in particular the 

multifarious roles dopaminergic systems fulfil in health and disease. This thesis aims to 

address one specific aspect of dopaminergic neurons: their selective vulnerability in 

certain pathological settings, with a keen focus on the nigrostriatal dopaminergic 

pathway involved in Parkinson ' s disease. 

1.1 Dopaminergic neurons 

Possibly the most impressive feature of CNS dopaminergic neurons is their small 

population size, totalling approximately 200 000 cells per hemisphere in humans 

(Stark and Pakkenburg, 2004), weighed against the astonishing number of pro cesses 

the y carry out, for instance motor control, cue-related leaming, arousal, social play, 

mood modulation, endocrine regulation and many more. In fact, to sustain these 

functions, dopaminergic neurons make synapses with no fewer th an 200 million other 

neurons in the striatum, cortex, amygdala and other structures (Stark and Pakkenburg, 

2004). Emerging late in prenatal development, it is possible that dopamine holds a 

particular position in stabilizing and integrating various other brain circuits (Grace, 

2016). Conversely, dopaminergic neurons are phylogenetically ancient, occUITing in all 

mammals, birds, reptiles and insects, which allows assurnptions on their crucial role in 
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the adaptation of animal behaviour throughout evolution (Jones and Pilowski, 2002; 

Smeets and Gonzalez, 2000; Yamamoto and Vernier, 2011). 

Dopaminergic subpopulations were first described in the 1960s upon identification 

and classification of groups of catecholaminergic neurons (Dahlstr6m and Fuxe, 1964), 

later updated by others (H6kfelt et al., 1984). Of the designated A1-Al7 groups, 

it is understood today that only groups A8-All comprise proper dopaminergic neurons 

(Bj6rklund and Dunnett, 2007). By definition, dopaminergic neurons utilize the 

catecholamine neurotransmitter dopamine (3-hydroxytyramine) to communicate and, 

thus, express the rate-limiting enzyme of catecholamine biosynthesis, tyrosine 

hydroxylase (TH), as weIl as aromatic amino acid decarboxylase that ultimately 

produces dopamine (Bj6rklund and Dunnett, 2007). Conversely, they do not express the 

enzymes necessary for the conversion of dopamine to the succeeding catecholamines in 

the biosynthetic pathway, namely noradrenaline and adrenaline (Bj6rklund and Dunnett, 

2007). Several other ontological hallmarks are also exclusive to dopaminergic neurons, 

reviewed in greater detail by Arenas et al. (2015) 1 • 

Of equal importance to their role in the CNS, dopaminergic neurons occupy 

important functions in the enteric nervous system (Li et al., 2006). They are principally 

located in the submucosal plexus, only sparingly so in the myenteric plexus, and are 

distributed more densely in the small intestine in comparison to gastric or colonic tissues 

(Li et al., 2004). By secreting dopamine onto smooth muscle cells, dopaminergic 

neurons inhibit gastrointestinal motility (Li et al., 2006). Although the place he Id by 

dopaminergic neurons in the proper operation of the enteric nervous system is 

increasingly acknowledged (see for review Mittal et al., 2017), this thesis will focus on 

CNS dopaminergic neurons. 

1 The presence or absence of developmental factors, such as LIM homeobox transcnptlon factors 
(Lmx 1 a/b) or the late transcription factor nuclear receptor 4a2 (N r4a2 , better known as NUIT 1), 
determines neuronal identity by suppression of lateral fates or activation of dopaminergic ones. 
Today, human dopaminergic neurons can be prepared through direct reprogramming of pluripotent stem 
cells or somatic cells, for the purpose of disease modeling or regenerative therapies (Arenas et al., 
2015). 
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1.1.1 Dopamine metabolism and neurotransmission 

Dopamine was first described in the hum an brain in the 1950s by 

Kathleen Montagu (Montagu, 1957) and named after its previously achieved chemical 

synthe sis utilizing the precursor L-3 ,4-dihydroxyphenylalanine (L-DOPA) (Fahn, 2008). 

Arvid Carlsson and Nils-Âke Hillarp confirmed its identity as a neurotransmitter in the 

CNS (Carlsson et al., 1958), the former receiving the 2000 Nobel Prize in Physiology 

and Medicine for this demonstration (Benes, 2001). A host of researchers later 

confirmed dopamine ' s implication in Parkinson's disease2 (Bazelton et al. , 1967; 

Ehringer and Homykiewicz, 1960; Homykiewicz, 1966) and behavioural disorders, 

such as psychoses and addiction (Baldessarini, 1985). Advances in lesion models and 

dopamine visualization techniques further permitted the discovery of its role in a 

plethora of brain functions upon which were built entire fields still evolving rapidly 

today. 

Alongside noradrenaline and adrenaline, dopamine belongs to the catecholamine 

subcategory of monoamine neurotransmitters, aIl produced from amino acid metabolism 

and collectively important in various aspects of behaviour. The non-essential amino acid 

L-tyrosine is the precursor for catecholamines, easily obtained in a balanced diet or 

derived from L-phenylalanine hydroxylation in the liver, but not in the brain. 

Tyrosine must gain entry to the CNS via the large neutral amino acid transporter by 

competing with other amino acids (Duelli et al. , 2000). Once inside neurons, the first 

step consists in the hydroxylation of L-tyrosine to L-DOPA by the rate-limiting enzyme 

TH. Aromatic amino acid decarboxylase3 then promptly decarboxylates L-DOPA to 

dopamine. In adrenergic neurons, dopamine is further hydroxylated into noradrenaline, 

which is in tum methylated to yield adrenaline (see for review of catecholamine 

biosynthetic pathways Daubner et al., 2011) (Figure 1.1). Whereas dopamine is 

produced in the cytosol of neurons, noradrenaline and adrenaline are mainly synthesized 

in synaptic vesicles. In order to access these vesicles for transformation into other 

2 Parkinson ' s disease is later described in section 1.1.3 . 

3 This enzyme is also referred to as DOPA decarboxylase despite its lack of substrate specificity. 
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catecholamines or for storage until its release, dopamine must use vesicular monoamine 

transporter 2 (VMAT2) (Cartier et al., 2010; Eiden et al., 2004). To reduce dopamine's 

presence in the cytosol, TH and aromatic amino acid decarboxylase are accordingly 

complexed to the cytosolic portion of VMAT2, ensuring rapid vesicular uptake and 

stabilization of dopamine by the acidic environment (Guillot and Miller, 2009). 

This mechanism is important considering that lingering cytosolic dopamine undergoes 

deleterious auto-oxidation reactions (see for review Segura-Aguilar et al., 2014) , 

which yield dopamine-derived quinones known to react with nucleophilic components in 

cells like cysteine residues of proteins (Belluzzi et al. , 2012). Quinones also participate 

in the synthesis of neuromelanin, a pigmented melanin analogue responsible for the dark 

coloration of certain catecholamine-rich structures4 (Sulzer et al. , 2000). 

Dopaminergic neurotransmission occurs by phasic or tonic release (Grace, 2000) 

(Figure 1.2). Phasic firing involves quick spiking activity produced in dopaminergic 

neurons in response to a proper stimulus-mediated action potential (Grace and Bunney, 

1984a) or to presynaptic receptor activation by neighbouring neurons (Rice et al., 20 I l). 

Phasic bursts of dopamine carry proper information to targets and provide them with 

spiking currents necessary for long-term potentiation (Wickens et al., 1996). 

In opposition, tonic firing represents the slower baseline pacemaker activity of 

dopaminergic neurons (Grace and Bunney, 1984b) and rather fulfil a modulatory role 

by regulating postsynaptic targets that are innervated by other afferents. Once secreted, 

dopamine binds G-protein linked metabotropic receptors that exist in five types 

(Missale et al., 1998) and in heterocomplexes with other dopamine or non-dopamine 

receptors (Borroto-Escuela et al., 2017), allowing for a great number of outcomes at the 

postsynaptic membrane. Dopamine receptors can be conveniently separated into the 

stimulatory, low-affinity Dl-like (Dl and D5) and inhibitory, high-affinity D2-like 

(D2-D4) families. It is commonly accepted that D2-like receptors are more sensitive to 

tonic neurotransmission than D l-like receptors that rather transduce phasic bursts 

4 Neuromelanin's role in health and disease is unclear. On the one hand, it chelates transition metals like 
iron ions and may therefore protect catecholaminergic neurons from Fenton reactions that produce 
reactive oxygen species (ROS). However, under certain circumstances, neuromelanin also departs itself 
from these metals, acting thereby as an agent of neurotoxicity (Segura-Aguilar et al. , 20 14). 
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(Dreyer et al. , 2010), but paradigms have been shifting in recent years (Yapo et al., 

2017). 

Figure 1.1 
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The catecholamine biosynthetic pathway. 
(From Wikimedia Commons: https://commons.wikimedia.org/wikilFile: 
Biosynthese _ Catecholamine.svg.) 
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Figure 1.2 
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Tonie and phasie dopaminergic neurotransmission. 
Top: Constant low levels of extracellular dopamine are ensured by 
tonic release, dependent on slow irregular firing and modulated by 
glutamatergic afferents. Release mainly occurs extrasynaptically where 
catechol-O-methyltransferase ensures dopamine degradation. Bottom: 
Phasic dopamine neurotransmission is triggered by burst firing of 
dopaminergic neurons, which release very high levels of dopamine into 
the synaptic c1eft that stimulate postsynaptic dopamine receptors. 
Phasic dopamine is rapidly inactivated by removal from the synaptic c1eft 
via the dopamine transporter. (Adapted from Grace, 2016.) 
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Owing to the relatively slow response of metabotropic dopamine receptors, 

which involves voltage-gated ion channels, dopamine earns the title of neuromodulator, 

alongside serotonin, noradrenaline and histamine, to name a few. Neuromodulators are 

characterized by their capacity to regulate diverse populations of neurons, in contrast to 

other neurotransmitters binding fast-acting ionotropic receptors on more explicitly 

determined postsynaptic targets. As such, dopamine mainly acts by modulating 

the excitability of receptive postsynaptic elements to afferent inputs instead of 

directly affecting their conductance (O'Donnell, 2003). In addition, 60-70% of 

neurotransmission events occur ectopically, outside the synaptic cleft, implying 

significant delays in receptor activation, extension of spatial domains to somatodendritic 

and presynaptic targets, and diluted mediation (Descarries et al., 1996; Sesack et al., 

2003; Venton et al., 2003). 

Aside from synaptic overflow, negative feedback onto presynaptic D2 

autoreceptors and presynaptic influences from other neurotransmitters, dopaminergic 

neurotransmission is principally regulated by reuptake or catabolism (Figure 1.3). 

In particular, phasic bursts of dopamine are largely cleared via the Na+-CI- - dependent 

dopamine transporter (DAT) on presynaptic elements (McElvain and Schenk, 1992; 

Schroeter et al., 2000). Tonic dopamine, on the other hand, occurs mainly outside of 

synapses and is therefore predominantly metabolized by catechol-O-methyltransferases. 

Once in the cytosol, dopamine is rapidly catabolized by monoamine oxidase and 

aldehyde dehydrogenase into 3,4-dihydroxyphenylacetic acid that is further excreted and 

transformed extracellularly by catechol-O-methyltransferase into homovanillic acid 

(Eisenhofer et al. , 2004). Noteworthy, two isoforms of the key degradation enzyme 

exist: monoamine oxidase A, expressed in CNS neuronal and glial cells but also in 

peripheral adrenergic neurons, predominantly metabolizes serotonin and catecholamines, 

whereas monoamine oxidase B, which makes up 80% of this class of enzymes in 

dopaminergic loci, metabolizes catecholamines with a preference for dopamines. 

5 Preferential midbrain and striatal expression renders monoamine oxidase B favoured targets in the 
elaboration oftreatments for Parkinson's disease (Youdim and Weinstock, 2004). 
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Both ofthem were found to generate reactive oxygen species (ROS), which contribute to 

oxidative stress in dopaminergic neurons6 (Andersen et al., 1994; Graham, 1984). 

AD/MAO 
HVA 4 3-MT 

COMI /cOMT 
4 DA 
AD/MAO 

DOPAC .4_
A
_
D
_ DOP~ .~:~~ 

MAO DA 

Tyrosine ---.~ DOPA ~C \ TH 
DAQ 
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Dopaminergic 
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l 
'pllC ~~~tem targeA 

eement '-/ 

Figure 1.3 Dopamine reuptake and catabolism. 

Postsynaptic 
element 

Besides presynaptic reuptake and metabolism described in the text, 
dopamine can also be absorbed by astrocytes via a transporter whose 
identity remains unknown. There, it undergoes degradation mediated by 
catechol-O-methyltransferase before it is transformed by monoamine 
oxidase and aldehyde dehydrogenase into homovanillic acid (Dahlin 
et al., 2007; Hansson and Sellstrom, 1983; Takeda et al., 2002). 3-MT, 
3-methoxytyramine; AADC, aromatic amino acid decarboxylase; 
AD, aldehyde dehydrogenase; COMT, catechol-O-methyltransferase; 
Dl/D2 DA-R, Dl-like/D2-1ike dopamine receptors; DA, dopamine; 
DAQ, dopamine quinones; DA T, dopamine transporter; DOPA, L-3 ,4-
dihydroxyphenylalanine; DOPAC, 3,4-dihydroxyphenylacetic acid; 
DOPAL, 3,4-dihydroxyphenylacetaldehyde; HV A, homovanillic acid; 
MAO, monoamine oxidase; TH, tyrosine hydroxylase; VMA T2, vesicular 
monoamine transporter 2. 

6 Oxidative stress is later described in section 1.2.4. 
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1.1.2 Central dopaminergic systems 

As previously mentioned, dopaminergic neurons are divided into groups 

concurring to cytoarchitectonic and chemoarchitectonic stains, best described in the 

mouse (Fu et al., 2012) and rat (Ikemoto, 2007). Most of these neuronal clusters are 

found in midbrain structures. Explicitly, groups A8-AlO correspond neuroanatomically 

to the retrorubral field, the substantia nigra and the ventral tegmental area, respectively. 

On the other hand, group AlI is rather located in the hypothalamic arcuate nucleus and 

projects to the median eminence where it releases dopamine in the circulation via the 

hypophyseal portal system to influence the secretion of pituitary hormones, notably 

prolactin (see for review Grattan, 2015). Neurons of the AlI group that constitute this 

dopaminergic system, termed the tuberoinfundibular pathway, will not be discussed here 

as its endocrinological role dwells outside of the scope of our present work. 

Midbrain dopaminergic neurons receive afferents from the striatum, the brainstem 

pedunculopontine nucleus, and the lateral habenula via the globus pallidus, the superior 

colliculus and the rostromedial tegmental nucleus. In tum, they extend their projections 

to various subcortical and cortical targets, principally the striatum, thalamus, amygdala, 

globus pallidus and hippocampus (see for reviews Haber, 2014; Lanciego et al., 2012). 

As such, the midbrain participates in basal ganglia circuitry, principally by providing a 

dopaminergic input to gamma-aminobutyric acid (GABA)-producing medium spiny 

neurons of the striatum (Figure lA). The latter receive incoming goal-directed messages 

from various cortical areas, acting as a gateway to basal ganglia that process and manage 

the information before it is transmitted to the thalamus for action 7 (Schultz, 2002). 

Basal ganglia allow action selection by exerting a modulatory foothold on cortical 

information via the stimulatory direct and inhibitory indirect pathways, which oppose 

each other to activate or silence the thalamus. Midbrain dopamine serves to modulate 

7 There are currently two opposing models to explain action selection by dopaminergic inputs to basal 
ganglia. One of these is the Go-NoGo model, which stipulates that direct and indirect pathways act in 
opposition to, respectively, allow actions (Go) or inhibit them (NoGo) (Frank et al., 2004; Shen et al., 
2008). Contrarily, the prepare-and-select model grants basal ganglia dopamine more complicated 
functions , wherein initial direct pathway activation in reaction to stimuli allows the preparation of a set 
of appropriate responses, and subsequent indirect pathway activity permits the selection of one action 
among these choices (Keeler et al., 2014). 
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this tight control and to allow more activation of the thalamus by phasically activating 

direct pathway medium spiny neurons that harbour stimulatory Dl , and by tonically 

inhibiting indirect pathway medium spiny neurons that harbour inhibitory D2 receptors. 

r------
1 
1 
1 L ________ _ 

Figure 1.4 
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Instrumental learnmg 
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Basal ganglia circuitry in decision-ma king. 
Top: Basal ganglia comprise the caudate-putamen, and the internaI and 
externa1 globus pallidus. The subthalamic nucleus, substantia nigra pars 
compacta and ventral tegmental area are sometimes considered as 
secondary basal ganglia. Bottom: At rest, the thalamus, central activator 
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of actions, is kept in check by the substantia nigra pars reticulata and 
internai globus pallidus. This hold can be lifted through the direct 
pathway when the cerebral cortex activates medium spiny neurons of the 
striaturn, which in turn lifts the inhibition on the thalamus exerted by the 
internai globus pallidus and substantia nigra pars reticulata, thereby 
allowing the achievement of the goal. Conversely, a tighter control of 
the thalamus via the indirect pathway requires the activation of medium 
spiny neurons that will rather inhibit the external globus pallidus, which 
ultimately leads to the activation of the internai globus pallidus and 
substantia nigra pars reticulata responsible for silencing the thalamus and 
thus thwarting the achievement of the goal. Midbrain dopaminergic 
neurons fine-tune the sensitive equilibrium of this basal ganglia circuit 
via aforementioned mechanisms. ac, anterior commissure; CN, caudate 
nucleus; Dl , D1-like dopamine receptor-expressing medium spiny 
neurons; D2, D2-like dopamine receptor-expressing medium spiny 
neurons; DLS, dorsolateral striatum; DMS, dorsomedial striatum; 
GPe, external globus pallidus; GPi, interior globus pallidus; NAc, nucleus 
accumbens; Put, putamen; SNc, substantia nigra pars compacta; SNr, 
substantia nigra pars reticulata; STN, subthalamic nucleus; VTA, ventral 
tegmental area. (Top adapted from Lanciego et al. , 2012; bottom adapted 
from Macpherson et al. , 2014.) 

1.1.2.1 The nigrostriatal pathway 

Restricted to the ventrolateral reglOn of the midbrain, the substantia mgra 

constitutes the first dopaminergic structure to be identified in 1786 in a study addressing 

neuromelanin distribution in the human brain (Parent and Parent, 2010; Vicq D'Azyr, 

1786). However, it was only much later that its role in motor control was recognized 

following its association with Parkinson ' s disease (Bremer, 1920; Brissaud, 1895; 

Hassler, 1939). The substantia nigra harbours group A9 cells, totalling approximately 

16000 in rats (Oorschot, 1996) and 160000-232000 in macaque monkeys (German 

et al. , 1988; Percheron et al. , 1989), and is thus recognized as the most dense population 

of dopaminergic neurons (Figure 1.5). Their localization coincides with the pars 

compacta region of the substantia nigra, dorsal to the pars reticulata zone that contains 

more loosely packed GABAergic neurons. 
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Figure 1.5 A8-AIO dopaminergic neuronal c1usters in the rat brain. 
Immunohistochemical staining of dopaminergic neurons in rat 
brain coronal sections organized rostrocaudally (A-F) depict the 
neuroanatomical location of each cluster at the level of the midbrain. 
Particularly important to us, the substantia nigra pars compacta is found 
laterally to the ventral tegmental area. Scalebars: A-F, 1 mm; inset F, 
0.5 mm. aq, cerebral aqueduct; de, dorsocaudal; f, fomix; IPN, 
interpeduncular nucleus; ml, medial lemniscus; MT, mammillothalamic 
tract; P AGvl, ventrolateral periaqueductal grey; RRF, retrorubral field ; 
SNI, substantia nigra pars lateralis. (From Yetnikoff et al., 2014.) 
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The substantia nigra pars compacta provides the greatest dopaminergic input to 

the striatum, particularly - but not restricted (Yetnikoff et al. , 2014) - to the dorsal 

striatum better known in primates as the caudate nucleus and putamen or simply the 

caudate-putamen8 (Figure 1.6). Nigrostriatal dopaminergic neurons project in a fairly 

mediolateral topographical manner (Lynd-Balta and Haber, 1994) to an estimated 

2.8 million and 31 million striatal neurons in rats and macaques, respectively, each axon 

ramifying abundantly and harbouring sorne 500 000 varicosities (Andén et al., 1966). 

This affords the dorsal striatum with a near-total exposure to dopamine input, implying a 

significant divergence factor of 300-400 between nigrostriatal neurons and striatal 

targets. The importance of nigrostriatal arborizations is even better appreciated when 

taking into account that, at least in rats, one striatal neuron is innervated by an average 

of 100-200 dopaminergic neurons and that one nigrostriatal axon is estimated to interact 

with sorne 75 000 striatal neurons (Matsuda et al., 2009). Such a profuse dopaminergic 

innervation necessarily in fers critical modulatory effects on the dorsal striatum, 

which receives important glutamatergic inputs from the cerebral cortex, thalamus and 

amygdala (Donoghue and Herkenham, 1986; Graybiel, 1990; Sadikot et al., 1992). 

Striatal modulation by nigrostriatal neurons is best appraised in corticostriatal 

motor circuits. As it consists in the most important source of tonic dopamine to 

the striatum, the substantia nigra pars compacta especially inactivates indirect 

pathway medium spiny neurons expressing D2 receptors, thereby downgrading the 

inhibition on the thalamus. In Parkinson's disease, degeneration of nigrostriatal 

dopaminergic neurons disrupts tonic firing in the striatum, which allows for the 

D2 receptor-modulated indirect pathway to exert its full inhibitory effect on the 

thalamus. This pathophysiological feature dwells at the core of parkinsonian motor 

symptoms, chiefly bradkyinesia/akinesia and rigidity (Albin et al., 1989). In fact, several 

animal models employ nigrostriatal pathway les ions of ail sorts to emulate parkinsonian 

symptoms (Deumens et al., 2002; Dut Y and Jenner, 2011; Jackson-Lewis et al. , 2012; 

Nagatsu, 1997; Pinna and Morelli, 2014; Ungerstedt, 1968). 

8 Whether in rodents, primates or humans, the caudate-putamen will hereafter be termed dorsal striatum. 



14 

A mesocortical 
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Figure 1.6 Mesocorticolimbic and nigrostriatal projections. 
Both mesocorticolimbic and nigrostriatal pathways ongmate in the 
midbrain, illustrated sagittally (A) and coronally (B). The nigrostriatal 
pathway projects especially onto dorsal regions of the striatum, while 
the mesocorticolimbic pathway mainly innervates the ventral striatum 
(mesolimbic) and the prefrontal cortex (mesocortical). Midbrain 
projections onto the striatum are fairly topographic, depicted by 
colour gradients (B), and modulate specific corticostriatal circuits (C). 
Afferents supplied by sensorimotor, associative and limbic cortical are as 
are also distributed in a particular neuroanatomical manner, which bears 
implications on the behavioural programs that different midbrain 
projections can control (C). dStr, dorsal striatum; OT, olfactory tubercle. 
(Adapted from Chuhma et al., 2017.) 
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1.1.2.2 The mesocorticolimbic pathway 

In the first half of the 20th century, neuroscientists bore a rather unyielding vision 

of basal ganglia as movement processing centres, still somewhat enduring today. 

More complex functions were much later ascribed to these structures upon the 

identification of corticostriatal circuit loops that did not involve motor areas (Alexander 

et al. , 1990; Haber et al., 1985; Young et al. , 1984), and the parallel discovery of a 

particular striatal subdivision located ventrally and sUITounding the anterior commissure 

termed the nucleus accumbens (Heimer, 1978). In the meantime, a collection of studies 

were showing rats to electrically self-stimulate certain regions of their brain as positive 

reinforcement (Olds and Milner, 1954), later found to receive dopaminergic inputs 

(Crow, 1972) and to be sensitive to dopamine agonists or antagonists (Stein, 1964; 

Wise and Bozarth, 1987). Pioneering microdialysis work from the laboratory of 

Prof. Gaetano Di Chiara at the University of Cagliari, Italy, later confirmed the nucleus 

accumbens identity of this region, shown to be sensitive to dopamine agonizing drugs9 

(Di Chiara and Imperato, 1988). 

The nucleus accumbens, found in the ventral striatum, is one of the key dopamine 

terminaIs of the mesocorticolimbic pathway. This system is composed of the mesolimbic 

and mesocortical pathways, originating from groups A8 and Al 0 neurons (Figure 1.5). 

Both lodged in the midbrain, group Al 0 coïncides with the ventral tegmental area 

medial to the substantia nigra pars compacta, whereas group A8 is contained in the 

retrorubral field 10 located dorsocaudally to the substantia nigra pars compacta (Fu et al. , 

2012; Halliday et al. , 20 12a). Mesolimbic dopaminergic neurons project to the striatum, 

preferentially to ventral areas such as the nucleus accumbens and the olfactory tubercle, 

whereas the mesocortical pathway connects the ventral tegmental are a and retrorubral 

9 Di Chiara' s group also made the groundbreaking di scovery that the nucleus accumbens is in fact di vided 
into core and shell subregions, which operate very di fferently in reward valuation (Pontieri et al., 1995 ). 

10 The retrorubral field does not account for much of the dopaminergic innervation provided by the 
midbrain and therefore little attention is pa id to it in this thesi s. Likewise, the olfactory tuberc\e is a 
secondary ventral striatum structure whose functions in the mesolimbic pathway will not be granted 
much focus . 
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field to the pre frontal cortex, but these connections are mu ch less dense than striatal ones 

(Figure 1.6). 

Akin to nigrostriatal dopaminergic neurons, the ventral tegmental area 

operates via modulation of corticostriatal circuits at the level of the striatum. However, 

inasmuch as the nigrostriatal pathway is known for tonically enabling movement, 

the mesocorticolimbic pathway stands out as a reward processing system endowed with 

limbic and executive dimensions permitted by phasic bursts of dopamine (Haber et al. , 

2000). There exists today a wide array of pharmacological paradigms mimicking 

dysfunctional dopaminergic neurotransmission in the ventral striatum and prefrontal 

cortex (Espafia and Jones, 2013; Jones et al., 2011). Notably, these models bear a 

striking likeness to pathologies such as addiction and other neuropsychiatric disorders 

(Bassareo et al., 2011 ; Di Chiara et al., 1993; Grace, 2000, 2016; Tanda et al. , 1996). 

1.1.2.3 Converging and diverging functions 

While nigrostriatal and mesocorticolimbic pathways appear to operate very 

differently considering their fairly different roles in human behaviour and disease, 

they actually function in similar ways. In fact, aside from their archetypal tonic-motor 

and phasic-reward instructions, the nigrostriatal and mesocorticolimbic pathways are 

both endowed with the following characteristics: 1) they comprise dopaminergic 

neurons that can fire both phasically and tonically depending on the information 

conveyed by dopamine; 2) they project onto striatal medium spiny neuron D 1-like 

and D2-1ike receptors thereby modulating corticostriatal circuitry, and; 3) their 

neuroanatomical origins receive feedback projections from the targets they innervate 

that refine dopaminergic neurotransmission. Despite the widely acknowledged 

movement enabling functions of the nigrostriatal pathway, regulation of the striatum by 

its afferents also holds a role in many other decision-making processes, leamed 

behaviours and habits arising from outcome prediction, especially with regard to 

sensorimotor functions. These roles may have to do with time scales of dopamine 

impulses, where sensory-evoked phasic firing encodes teaching signaIs for the 
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acquisition of a behaviour, (Chaudhury et al., 2013; Redgrave and Gurney, 2006; 

Schultz et al., 2006), and where baseline tonic firing enables the proper selection of 

these pre-Iearned behaviours by the basal gang lia (Ellwood et al., 2017; Hikosaka et al., 

2000; Redgrave et al., 1999). Both firing modes are impaired in Parkinson's disease 

(Beeler, 2011; Marklund et al., 2009; Redgrave et al., 2010), although the loss of 

dopamine tone is more typically acknowledged with respect to the motor symptoms it 

produces. The same holds true for the mesocorticolimbic pathway, which is also devoted 

to tonic enabling of pre-Ieamed behaviours aimed at seeking pleasure and rewards that 

had previously required a learning period provided by phasic firing of dopamine 

(Ellwood et al., 2017). 

In a larger sense, nigrostriatal and mesocorticolimbic dopamine operates both as 

a phasic carrier of predicted outcomes and a tonic enabler of postsynaptic neurons, 

from which originates its dual informationallmodulatory role (Saddoris et al., 2013; 

Schultz, 1998). Indeed, in both pathways, fast phasic bursts encode reward, slow phasic 

changes inform on punishing/ambiguous elements, and tonic maintenance enables 

postsynaptic functions (Schultz, 2007). In this respect, an overarching the ory proposes 

CNS dopamine to mediate the basic reactivity of animaIs to their environrnent, ensuring 

their survival by permitting economic decision-making, reward recognition, monitoring 

of uncertainty and detection of punishing elements via the prediction of favourable or 

unfavourable outcomes, wherein dopamine encodes prediction errors (Schultz, 2007) 

and leaming entails progressive reduction of prediction errors. This is applicable to 

motor, social, cognitive, motivational and reward processes regulated by these pathways. 

This begs the following questions: Why are mesocorticolimbic dysfunctions 

highly associated with addiction, whereas nigrostriatal ones are linked with Parkinson's 

disease? And why is the mesocorticolimbic pathway largely spared in Parkinson's 

disease? At first glance, behavioural and pathological disparities in these pathways are 

the result of rather c1ear neuroanatomical distinctions between their origins, embedded 

in different environrnents, and between their targets, innervated by distinct cortical 

inputs and expressing differential distribution patterns of D l-like and D2-like 
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receptors (Bertran-Gonzalez et al., 2008; Centonze et al., 2003; Lanciego et al., 2012). 

As such, even if both pathways operate with a similar dopamine interface regulating 

corticostriatal circuitry, they modulate different cortical programs. Other sources of 

dopaminergic dichotomies in health and disease may rather lie in differential exposures 

to noise-to-signal (tonic-to-phasic) ratios. Indeed, the dorsal striatum is submitted to a 

greater noise-to-signal ratio than the ventral striatum, due to the marked tonicity of 

nigrostriatal neurons responsible for very high basal release of dopamine in the dorsal 

striatum (Dreyer, 2014; Zhang et al., 2009). This al10ws two implications: first, phasic 

firing do es not have the same weight in the dorsal striatum than in the ventral striatum, 

which explains the great differences in the information carried by dopamine in these 

two areas; second, high basal pacemaking activity may in itself constitute a risk factor in 

neurodegeneration, later discussed in the context ofParkinson's disease. 

In keeping with the discriminating elements that pick these pathways apart, 

the remainder of this thesis will address the apparent preferential degeneration of 

nigrostriatal dopaminergic neurons in various conditions, as in Parkinson's disease next 

addressed, and the behavioural alterations that may arise from this neurodegeneration. 

1.1.3 Parkinson 's disease 

The year 2017 marked the 200th anniversary of Dr. James Parkinson's An Essay on 

the Shaking Paisy wherein were described 6 subjects suffering from a pathological state 

that he termed at the time paralysis agitans (see for historical reviews Obeso et al. , 

2017; Parent and Parent, 2010). In this es say, Dr. Parkinson illustrated with acute 

precision several symptomatic aspects exhibited by his subjects that we know today 

were effectively attributable to Parkinson's disease. Indeed, he accurately identified 

the graduai nature of both onset and progression, as well as the expression of gait 

disturbances, forward flexion of the trunk, resting tremors, sleeping troubles and 

gastrointestinal issues in these individuals (Parkinson, 1817). Charcot later expanded on 

these observations to include bradykinesia and rigidity to the key features of the disease, 

and proposed to rename the paralysis agitans disorder Parkinson's disease upon 
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observing that the loss of motor functions was not attributable to weakness (paIsy) 

(Charcot, 1877). 

Since the publication of this pioneering report, the field of Parkinson ' s disease has 

phenomenally progressed. In this age of effervescent neuroscientific developments, 

clinical profiles are more accurately drawn, long-term patient management is improving, 

and the pursuit of etiological and pathophysiological explanations is starting to bear fruit 

(Chaudhuri and Jenner, 2017). The preferential degeneration of the dopaminergic 

nigrostriatal pathway is weIl appreciated today and additional pieces of the puzzle are 

continuously falling into place, especially with respect to non-dopaminergic affections 

(Hall et al., 2014; Qarnhawi et al. , 2015; Remy, 2005). The following section 

surnmarizes state-of-the-art knowledge on Parkinson's disease and draws particular 

attention to the apparent vulnerability of nigrostriatal dopaminergic neurons in 

this pathology. The CUITent state of the field regarding symptomatology, diagnostics, 

pathological basis, genetic and idiopathie etiopathogeneses, experimental models, 

neuroimaging, biomarkers, treatments and unmet needs is extensively reviewed 

elsewhere by preeminent researchers in a special collaborative publication underlining 

the second centenary of the shaking paIsy (Obeso et al. , 2017). 

1.1.3.1 Clinical symptomatology and treatments 

As highlighted by Dr. Parkinson's and others ' early observations, a wide array of 

motor and non-motor symptoms characterize Parkinson ' s disease, which both enable and 

complicate the process for clinicians to arrive to a diagnosis. Indeed, this disorder is 

pronouncedly heterogeneous in terms of inter-individual symptomatology, but also with 

respect to disease progression and sensitivity to treatments (Lang and Obeso, 2004) 

(Figure 1.7). For the sake of example, the age of onset can range from as early as the 

third de cade of life to very old ages (Pagano et al. , 2016); initial motor manifestations 

may affect either upper or lower limbs on either side of the body (Roberts et al. , 2017); 

deterioration rates may present benign or malignant courses (Jankovic et al., 1990), and; 

distinct subpopulations of patients may respond differently to dopamine treatments 
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(Miller et al., 2017). The clinical landscape is further convoluted by the existence of 

idiopathie and genetic forrns of the disease. As a result, the dogma according to which 

Parkinson's disease is a single uniforrn pathology is slowly ce ding to newer concepts 

handling it as a multisystem syndrome or as Parkinson 's diseases (Marras and Lang, 

2008). Clinicians are only beginning to understand how to hamess these inter-individual 

differences in order to improve treatments and clinical trials (Athauda and Foltynie, 

2016a; Marras and Chaudhuri, 2016; Nutt, 2016; Payami, 2017). 

PIGD PD 
• Poor prognosis with rapid 

progression 
• Bradykinesia and rigidity 
• Dementia 
• Depression 
• Anosmia 
• Levodopa 
• Degeneration in 

ventrolateral SN 

MlxedPO 

• DAT SPECT 
• "Egg-shaped" configuration 

on DAT SPECT 

LOPD 

Onset after age 60 y 
Sporadic 

Tremor-dominant PD 
• Good prognosis with slow 

progression 
• Essential tremor 
• Benign tremulous parkinsonism 
• Good response to levodopa 
• Wearing off 
• Increased fMRI activity in CTC 

circuitry 
• Degeneration in medial SN, 

ventral GPi, thalamic serotonin, 
and midbrain (AS) 

• "Eagle wing" configuration 
on DAT SPECT 

YOPD 

Onset between ages 
20 and 40 y 
Genetic 
Dystonia 

Figure 1.7 The various forms of Parkinson 's disease. 
Parkinson's disease is characterized by a wide spectrum of pathological 
expressions. Based on symptomatological peculiarities and disease 
evolution, this pathology can be divided into postural instability and 
gait difficulty, tremor-dominant, mixed, late-onset and young-onset 
Parkinson 's disease. CTC, cerebellothalamocortical; fMRI, functional 
magne tic resonance imaging; LOPD, late-onset Parkinson 's disease; 
PD, Parkinson's disease; PIGD, postural instability and gait difficulty; 
SN, substantia nigra; SPECT, single-photon emission computed 
tomography; YOPD, young-onset Parkinson's disease. (From Thenganatt 
and Jankovic, 2014.) 



21 

The most prominent feature of Parkinson's disease remams the presence of 

motor symptoms expressed in a majority of patients as a classical triad of resting 

tremors, bradykinesia and rigidity; two of them are required for diagnostic purposes 

(Parkinson Québec, 2018). Later, motor disabilities evolve to implicate gait and postural 

reflex disturbances, though nowadays they are no longer required to emit a diagnosis. 

Non-dopaminergic (extranigral) motor features also arise and consist in falls , freezing 

of gait, speech impairment and difficulty swallowing. Accompanying these motor 

symptoms are equally disabling non-motor manifestations, such as psychiatric 

disturbances, dementia and autonomic failure . Granted Parkinson ' s disease is not a fatal 

condition, patients are expected to live almost as long as healthy individuals and the 

primary cause of death appears to be pneumonia (lwasaki et al. , 1990; Pennington et al., 

2010), although manifestations of more advanced symptoms, such as falls and 

swallowing problems, may lead to premature accidentaI mortalities. 

Adequate management of the incapacitating motor symptoms in Parkinson' s 

disease was only made possible 150 years after the issuing of the shaking paIsy essay 

when George C. Cotzias and his colleagues published a trailblazing paper on L-DOPA 

(Cotzias et al., 1967) that remains, with certain modem ad just ment s, the benchmark 

therapy (Freitas et al. , 2016, Lotia and Jankovic, 2016). While its function is 

unmistakably to restore tonic dopaminergic neurotransmission (Dreyer, 2014), exactly 

how L-DOPA operates remains hazy as ofyet. Indeed, L-DOPA may not act as a simple 

precursor for dopamine allowing for its tonic replenishment in the striatum: sorne have 

advanced its possible role as a neurotransmitter itself (LeWitt and Fahn, 2016). 

Nevertheless, a slew of clinical trials, intervention studies and longitudinal observations 

ceaselessly validate L-DOPA's efficacy in alleviating motor symptoms (LeWitt and 

Fahn, 2016; Olanow, 2014; Yahr, 1969), although several collateral effects are 

manifested by acute and chronic users, the most notable being dyskinesias, impulse 

control disorders and wearing-off in longstanding administration (Aquino and Fox, 

2014; Cilia, 2012; Parkinson Study Group, 2004). In the hop es of delaying the 

apparition of these side effects, sorne patients are initially administered dopamine 
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receptor agonists or monoamine oxidase B inhibitors until these milder medicines can no 

longer manage the motor symptoms as the disease progresses (Figure 1.8). 

Circulation 

COMT inhibitors 
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l Dopamine availability 
• Amanladlne 

• 
L-DOPA -----+-+--tl~ • • Dopamine 

receptors • • 
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3-0MD 

Dopamine Agonists 

COMT inhibitors 
(peripheral) 

'Selegillne 
• Rasagillne 

• Bromocrtptlne (ergol) 
• Pramlpexole (non ... rgol) 
• Roplnlrole (non ... rgol) 

• Tolcapone 
• Enlacapone 

Presynaptic neuron Postsynaptic neuron 

Figure 1.8 

Blood-brain barrier 

Current parkinsonian drug therapies. 
On the left hand side are depicted adjuvant agents necessary for 
L-3 ,4-dihydroxyphenylalanine (L-DOPA) to reach the brain considering 
its propensity to be metabolized in the periphery, thereby dampening its 
efficacy. Other drugs are illustrated on the right, including more recent 
dopamine agonists and inhibitors of the reuptake and metabolism of 
dopamine. It is important to note that no therapy discovered to date 
achieves curative endpoints in Parkinson's disease. 3-0MD, 3-0-
methyldopa; DDC, DOPA decarboxylase. (From http: //step2.medbullets. 
com/step2-3-neurology/121704/parkinsons-disease-drugs.) 

Inter-individual irregularities not only complicate diagnosis, but also shape 

treatment efficacy in Parkinson's disease. Sorne patients, usually younger diagnostics, 

will develop a benignly progressive form presenting few non-dopaminergic symptoms 

and these usually respond weil to L-DOPA treatments. Others may suffer from a 

more malignant, rapidly progressing disease with typically early manifestations of 

non-dopaminergic motor and non-motor symptoms that resist to L-DOPA interventions 
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(Lang and Obeso, 2004). Regardless of age at onset, older individuals are more likely to 

express L-DOPA-resistant motor symptoms in conjunction with cognitive decline and 

autonomic failure (Kempster et al., 2007). In patients with severe motor fluctuations, 

other strategies may be employed, for instance deep brain stimulation of the subthalamic 

nucleus or internaI globus pallidus in basal ganglia circuitry, performed in sorne 

150 000 patients (Obeso et al., 2017) since its groundbreaking successful utilization in 

the 1990s (Pollak et al. , 1993). Akin to L-DOPA therapy, the mechanistic underpinnings 

of deep brain stimulation are ill understood (Lozano and Lipsman, 20 l3) and adverse 

effects may supervene in the likes of impaired verbal fluency, depression and ev en 

suicidaI tendencies (Benabid et al., 2005; Lang et al., 2006). To these motor symptom 

therapies are sometimes layered supplementary treatments to address psychiatric 

manifestations arising from the disease or motor symptom treatments themselves, 

for instance cholinesterase inhibitors for cognitive impairment (Emre et al., 2004) , 

antidepressants and cognitive-behavioural therapy for mood disorders (Dobkin et al., 

2011 ; Menza et al. , 2008; Richard et al. , 2012) or neuroleptics for psychoses 

(Cummings et al., 2014). 

Today, still, no therapy has been fruitful in modifying the course of Parkinson 's 

disease, ev en less so in providing hope for curative ends. This may partI y be attributable 

to the failure of clinical trials or therapeutic strategies to take into account the various 

existing subgroups of Parkinson's disease patients. Sensitive subdivision of clinical 

subtypes at the early stages of the pathology is among the most pressing research aims to 

render treatments and their development more discriminative, especially considering the 

rapid rate at which the population is aging occasioning foreseeable rises in the incidence 

of age-related neurodegenerative disorders su ch as Parkinson's disease (Olesen et al., 

2012) (Table 1.1). In order to achieve this, reliable identification of premotor phases of 

the pathology, obviously requiring robust biomarkers, will need to be accomplished first. 
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Table 1.1 

Projected prevalence of select neurological conditions in Canada 

Projection year 

2011 2016 2021 2026 2031 

Number of prevalent cases - . 
(rate per 100,000 population ln projection year) -

Alzheimer's disease and other dementias 340,200 395,000 461,700 554,200 674,000 

(2,000) (2,200) (2,400) (2,700) (3,100) 

Brain in jury (traumatic) t 550,900 595 ,700 640,1 00 685,600 730,300 

(1,600) (1,700) (1,700) (1,800) (1,800) 

Cerebral paisy 75 ,200 79,800 84,300 89,300 94,200 

(200) (200) (200) (200) (200) 

Epilepsy 321,700 345,400 368,100 392,1 00 415,800 

(1,000) (1,000) (1,000) (1 ,000) (1 ,000) 

Multiple sclerosis 98,800 108,600 117,800 126,200 133,600 

(400) (400) (400) (400) (400) 

Parkinson 's disease/parkinsonism 84,700 99,000 116,800 138,800 163,700 

(500) (500) (600) (700) (700) 

Spinal cord in jury (traumatic) t 35,000 38,400 41,800 45,200 48,100 

(1 00) (100) (100) (100) (100) 

NOTES: 
Alzheimer's disease and other dementias and Parkinson's disease/parkinsonism projections were for a population age 40+ years. Multiple 
sclerosis projections were for a population age 20+ years. Traumatic spinal cord in jury projections were for a population age 5+ years. 

Traumatic brain in jury, cerebral paisy, and epilepsy projections were for a population age 0+ years. 

Data were rounded to the nearest hundred. 

1 Traumatic brain and spinal cord injuries were based on hospitalized cases, and excluded injuries that did not present to hospital. 

SOURCE: POHEM-Neurological (Statistics Canada and Public Health Agency of Canada)& 

& POHEM, population health mode!. 

1.1.3.2 Prodrome and biomarkers 

Abnormalities in the health of parkinsonian patients often appear years before 

a diagnosis is made during a phase termed the prodrome. These premotor or prodromal 

features are non-motor in nature, the most common manifestations being rapid 

eye movement sleep behavioural disorder, hyposmia, constipation, and psychiatrie 

disturbances such as depression or anxiety (Pont-Sunyer et al., 2015) (Table 1.2). 

Seeing as a substantial proportion of patients present one or several signs before onset, 

efforts have been deployed to elaborate specifie and reliable premotor biomarkers to 

diagnose Parkinson's disease much earlier on (Lang, 2010). A sizeable hurdle to 
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overcome remams that these symptoms are hardly specific and are often encountered 

in the general population". For the future development of prodromal biomarkers, 

the difficulty dwells in selecting individuals who will actually develop Parkinson' s 

disease, which requires setting up arduous longitudinal studies. 

Table 1.2 

Markers of prodromal Parkinson ' s disease 

Marker Level of evidence Approxlmate relative risk Lead time Testing costlburden 

O~action High 5 ?? Law 1 Moderate & 
REM Sleep Behavior Disorder& High 50 13 years Law (screens) ta High (PSG) 
Somnolence Moderate 1.8 ?? Law 
Restless legs (late onset) Law 1.5 Short Law 
Constipation High 2.5 > 15 years Law 
Orthostatic hypotension Moderate ? 2·10? 2·5 years? Law 
Urinary dysfunction Law-Moderate 2.1 ?? >5 years Law 
Erectile dysfunction Law-Moderate 1.2 mild 5·10 years Law 

3.8 severe 
Depression/anxiety High 1.8 Uncertain ?Biphasic Law, but follaw·up higher 
Color vision Law 2.5 >3 years? Moderate 
Subtle parkinsonism Moderate 10 4-5 years Moderate - High (Expert) 
Quantitative motor testing Moderate 3-4 5 years Moderate 
SN ultrasound Moderate 15 Uncertain ? risk marker? Moderate-Hlgh 
Dopaminergic PETISPECT& Law (but high 20 5 years High 

plausibility) 
PD-related pattern on SPECT/PET Law ? ? High 
Hippocampal hyperpertusion Law ? ? High 
GI synuclein palhology & Law 2? ? High 

For thls table, only markers wrth prospective evodence of predictove value are oncluded. For level of evidence, low Implies a single study, moderate ompies > 1 
high-quality study, high ompies >4 high-quality studoes. Lead time refers to the approximate tome that the marker deviates from normal values (the tome at 
which testong is reliably abnormal cannot be estimated for rnost markers). For testong cost, Iow indicates can be screened by questoonnaire (does not requira 
visit), moderate impies in-person assessment requlred but low cost (eg, research aSsistant), hlgh Implies extensive or ex pensive evaluation (>$300). 

& GI, gastrointestinal; PET, positron emission tomography; PSG, Parkinson's Study Group; REM, rapid eye movement. 
(From Obeso et al. , 201 7.) 

The crying need for prognostic biomarkers in Parkinson ' s disease arises from its 

particular pathophysiological course. lndeed, the cardinal motor symptoms permitting 

diagnosis reflect the loss of nigrostriatal dopaminergic neurons and the ensuing 

decline in tonic dopamine neurotransmission that can no longer ensure enablement of 

postsynaptic targets in the dorsal striatum interconnected with corticostriatal circuits of 

movement production. Owing to compensatory neurocircuit redundancies in the basal 

II Interestingly, considering the elevated prevalence of hyposmia in premotor patients (~75% when 
corrected for age) (Haehner et al. , 2009), Prof. Johannes Frasne lli 's group from the Uni versity of 
Québec recently demonstrated that it was possible to te ll apart individuals with Parkinson's disease from 
individuals with non-parkinsonian olfactory dysfunctions by evaluating olfactory and trigeminal 
sensiti vity. Although both cohorts of subjects displayed impaired olfaction, Parkinsonian patients did 
not show trigeminal sensitivity deficits, contrarily to hyposmic non-parkinsonian individuals (Tremblay 
et al., 2017). 
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ganglia and adjustments of dopamine receptor numbers, anywhere between 30-70% of 

nigrostriatal dopaminergic neurons and 50-80% of their striatal terminaIs have peri shed 

before the advent of clear motor symptoms (Bemheimer et al., 1973; Cheng et al., 2010; 

Feamley and Lees, 1991), dulling any hope for reversaI of the pathology. Like man y 

other neurodegenerative disorders, Parkinson's disease begins many years before 

classical symptoms arise. However, to our advantage, it is a rather special pathology in 

that neurodegeneration appears to begin in regions outside the substantia nigra pars 

compacta whose progressive dysfunction may emerge as a phenotypic non-motor 

signature that could one day be exploited for emitting diagnoses at premotor stages. 

The following section grants a closer look at the pathophysiological mechanisms 

subtending the particular course of progression in Parkinson's disease. 

1.1.3.3 Pathophysiology 

More th an a century after its identification by Félix Vicq d'Azyr (Vicq d'Azyr, 

1786), the substantia nigra was freshly emerging as the neuroanatomical substrate of 

the motor syndrome in Parkinson's disease (Blocq and Marinesco, 1892; 1893; Brissaud, 

1895). In parallel, Friedrich Heinrich Lewy was conducting histological assessments of 

parkinsonian brains, discovering the presence of cytoplasmic inclusions of aggregated 

proteins in the dorsal vagal nucleus and substantia innominata (Lewy, 1912), 

later identified in surviving nigral neurons of other patients and termed Lewy bodies in 

recognition of the former 's seminal work (Trétiakoff, 1919). In the mid 1900s, the role 

of the substantia nigra in Parkinson's disease was further bolstered by findings enlisting 

dopamine as a key contributor (Carlsson, 1958; Ehringer and Homykiewicz, 1960) and 

demonstrating the projection of nigral neurons to the dorsal striatum (Homykiewicz, 

1966). From these early discoveries were derived the two pathological requirements to 

emit a definitive post-mortem diagnosis, still standing today: first, the marked 10ss of 

pigmented dopaminergic neurons in the substantia nigra pars compacta, and second, the 

presence of Lewy bodies or their intraneuritic counterparts, Lewy neurites (Dickson 

et al. , 2009). To these findings were added, in later years, the contributions of 

Langston and colleagues describing parkinsonism in opioid addicts who had 
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accidentally consumed I-methyl-4-phenyl-l,2,3 ,6-tetrahydropyridine (MPTP) (Langston 

et al., 1983), a by-product of desmethylprodine synthesis that impedes the mitochondrial 

electron transport chain and triggers the production ofROS I2 (Greenamyre et al., 2001). 

This discovery also allowed further development of animal models of Parkinson's 

disease, complementing physical and 6-hydroxydopamine (6-0HDA) les ion paradigms 

(Ungerstedt, 1968), and coaxed investigations on environmental neurotoxins in the 

etiopathogenesis of the disease owing to MPTP's resemblance to certain known 

pesticides. 

The latest significant leap forward in the field dates back to the identification of 

the first gene mutation, explicitly a single point mutation in the SNCA gene co ding for 

a-synuclein 13, found to cause a dominant familial form of early onset Parkinson 's 

disease (Polymeropoulos et al., 1997). This event triggered a sequence of discoveries 

regarding the major constituent of Lewy bodies and neurites, a-synuclein (Spillantini 

et al., 1997), but also conceming genetic forms of the pathology. Disease-causing 

duplications (Chartier-Harlin et al., 2004) and triplications (Singleton et al., 2003) of 

the SNCA gene were quickly identified, to which were added in subsequent years several 

other genes (Table 1.3). It is important to note that idiopathie Parkinson 's disease still 

composes approximately 90-95% of diagnoses and are not always faithfully represented 

by genetic forms in terms of symptomatology and pathophysiology (see for review 

Houlden and Singleton, 2012). 

\2 The generation of ROS by the mitochondrial electron transport chain is later described in 
section 1.2.4.1. 

\3 a-Synuclein is an intrinsically unstructured protein, especially localized to presynaptic terminais 
wherein it cycles between a cytosolic natively unfolded state and a membrane-bound state. Its function 
in normal physiological conditions remains unclear to date, but it is thought to regulate synaptic activity, 
vesicular trafficking and several metabolic and transport enzymes specifie to dopaminergic neurons 
(see for review Surré, 2015). 
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Table 1.3 

List of monogenic Parkinson's disease and parkinsonism 

Designalioo and reference & 

1. Classical PO 
PARK-SNC4 

PARK-LRRK2 

PARK-VPS35 

2. Early-onset PO 
PARK -parkin 

PARK-PINK1 

PARK-OJ1 

3. Parkinsonism 
PARK-ATP1342 

PARK-FBX07 

PARK-ONAJC6 

PARK-SYNJI 

GeneReviews and OMIM& 
Reference 

GeneReviews hl1p://www.ncbi. 
nlm.nih.govlbookslNBK1 'l231 
DMIM 168601 

GeneReviews hl1p://www.ncbi. 
nlm.nih.govlbookslNBKl2081 
OMIM 607060 
GeneReviews 
hI1pJIwww.ncbi.nlm.nih.gov/ 
books/NBK1223J 
OMIM 614203 

GeneReviews 
hI1pJIwww.ncbi.nlm.nih.gov/ 
books/NBKl1551 
OMIM 600116 
GeneReviews 
httpJIwww.ncbi.nlm.nih.gov/ 
books/NBK1223J 
OMIM 605909 
GeneReviews 
hI1pJIwww.ncbi.nlm.nih.gov/ 
books/NBK1223J 
OMIM 606324 

GeneReviews 
hI1pJIwww.ncbi.nlm.nih.gov/ 
books/NBK1223J 
OMIM 606693 

GeneReviews 
hI1pJIwww.ncbi.nlm.nih.gov/ 
books/NBK1223J 
OMIM: 260300 
GeneReviews: nIa 
OMIM 615528 
GeneReviews: nIa 
OMIM 615530 

Clinical cluBs 

M issense mutations cause 
dassical par1<insonism. 
Duplication IX' triplication 
mutations in this gene 
cause early onset 
parkinsonism with pro minent 
dementia 

Clinically typical PO 

Clinically typical PO 

Often presents with dystonia, 
typically in a leg 

Often presents with psychiatrie 
leatures 

Kufor-Rakeb syndrŒne with 
parkinsonism and dystonia; 

Additional leatu res: 
Supranuclear gaze paisy, 

spastidty/pyramidal signs, 
dementia, lacial-laudal
linger mini-myodonus, 
dysphagia, dysarthria, 
~Iactory dyslunction 

Early onset parkinsonism with 
pyramidal signs 

May present with mental 
retwdation and seizures 

May have seizures, cognitive 
decline, abnorrnal eye 
movements, and dystonia 

Inheritance& 

AD 

AD 

AD 

AR 

AR 

AR 

AR 

AR 

AR 

AR 

Previous locus symbol 

PARK1 

PARK8 

PARK17 

PARK2 

PARK6 

PARK7 

PARK9 

PARK15 

PARK19 

PARK20 

& AD, autosomal dominant; AR, autosomal recessive; OMIM, Online Mendelian Inheritance in Man; PARK-ATPI 3A2, 
probable cation-transporting adenosine triphosphatase 13A2 gene; P ARK-DJI , oncogene OJ- I gene; P ARK
DNAJC6, auxilin gene; PARK-FBX0 7, F-box only protein 7 gene; PARK-LRRK2, leucine-ri ch repeat kinase 2 gene; 
PARK-parlan, parkin gene; PARK-PINKl , phosphatase and tensin homologue-induced putative kinase 1 gene; 
PARK-SNCA, alpha-synuclein gene; PARK-SYNJI , synaptojanin 1 gene; PARK- VPS35, vacuolar protein sorting
associated prote in 35 gene. 
(From Obeso et al., 20 17, adapted From Bar-Gad et al., 2003 .) 

Another hint pointing to a distinguishing pathological sequence initially surfaced 

when Kosaka and colleagues described patterns of Lewy body distribution in patients 

over the course of the disease (Kosaka et al., 1988). This was later confirmed and 

transmuted into a highly controversial staging framework by a German group 
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spearheaded by Heiko Braak and Kelly Del Tredici (Braak et al., 2003). They reported 

that in many idiopathie Parkinson's disease patients, though not all l4 (Kalaitzakis et al. , 

2008b; Milber et al., 2012; Parkkinen et al., 2005; Zaccai et al., 2008), Lewy bodies and 

neurites appear to colonize the olfactory bulb or the brainstem early in the pathology 

(stages 1 and 2), spreading sequentially through the midbrain (stages 3 and 4), 

and ultimately reaching neocortical and limbic areas (stages 5 and 6) (Braak et al., 2003) 

(Figure 1.9). Interestingly, Lewy bodies had been identified in the brainstem almost one 

century prior (Lewy, 1912). More recent hypotheses conforming with Braak staging 

(Braak et al., 2006) go as far as to suggest that the pathology may begin in the periphery 

downstream from the vagal nerve, for instance in the enteric nervous system, and spread 

to the CNS as substantiated by evidence in rodents (Holmqvist et al., 2014; Pan-Montojo 

et al., 2010, 2012; Phillips et al., 2008; Ulusoy et al., 2013), and as alluded to in human 

studies (Stokholm et al., 2016). Of particular interest, apparition of Lewy bodies in 

extranigral regions may lead to the dysfunction - but not necessarily to the demise - of 

these neurons, partly explaining the prodromal phase and later dopamine-unresponsive 

symptoms. Whether this theory holds true or not, the conjecture that Lewy bodies 

spread across interconnected neuroanatomical regions has provided a cornerstone for 

more advanced theories of trans-synaptic neuron-to-neuron propagation of misfolded 

a-synuclein, for example the discordant prion hypothesis 15, supported by experimental 

demonstrations (Desplats et al., 2009; Luk et al., 2012; Recasens et al., 2014; Volpicelli

Daley et al., 2011) and observations of host-to-graft spreading of Lewy bodies in 

humans 10-14 years after transplants (Kordower et al., 2008; Li et al., 2008). 

14 Many parkinsonian post-mortem samples present Lewy body patterns that deviate from Braak's 
staging framework (Halliday et al., 2012b; Kalaitzakis et al. , 2008a) . In addition, neuroanatomical 
connectomics do not aid ·in predicting the apparition of Lewy bodies. Exemplarily, striatal medium 
spiny neurons, highly interconnected with Lewy body-Iaden nigrostriatal dopaminergic neurons, hardly 
ever display Lewy pathology (Halliday et al. , 20 Il ; Martin et al. , 2008). 

15 Today, no doubt remains that fibrillar a-synuclein can spread from one neuron to another upon 
experimental inoculation. However, the time course (only 50% of patients show Lewy pathology by 
13 years of onset) and infectiousness of a-synuclein in humans are significantly different than those 
observed in preclinical prion models. In fact, no direct evidence of spreading in humans is available. 
For many, the question remains whether prion-like spreading and toxicity is the primary governing 
factor in the selective vulnerability of nigrostriatal dopaminergic neurons in Parkinson 's disease 
(McCann et al. , 2015 ; Surmeier et al. , 2017). 
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Figure 1.9 

(~ dm co an me he te 

1 

2 '. 

Braak staging of the progression of Parkinson 's disease-related 
Lewy body pathology. 
According to this staging framework, spreading of Lewy body pathology 
(dm to fc at the top of the graph) begins in the dorsal IX/X motor nucleus 
(stage 1) but aiso in the anterior olfactory nucleus, sequentially spreading 
toward coeruleus regions (stage 2), the midbrain (stage 3), mesocortical 
entorhinal regions (stage 4), high order cortical areas (stage 5) and finally 
to first order cortical areas (stage 6). Colour intensity indicates the degree 
of Lewy body pathology: in the schematic representations of the brain, 
stage 6 is depicted. co, coeruleus/subcoeruleus complex ; dm, dorsal IX/X 
motor nucleus; fc, first order sensory association areas and premotor areas 
and/or primary sensory and motor fields of the neocortex; hc, high order 
sensory association are as and pre frontal areas of the neocortex; mc, 
transentorhinal region and/or ectorhinal region (anteromedial temporal 
mesocortex); sn, posterior portion of substantia nigra pars compacta. 
(Adapted from Braak et al., 2003.) 
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Connecting this constellation of breakthroughs has led to our current appreciation 

of the pathophysiology that characterizes Parkinson ' s disease, without however fully 

unscrambling its etiopathogenesis. We suspected and have confirmed that the 

degeneration of nigrostriatal dopaminergic neurons leads to the depletion of dopamine at 

the striatal interface of basal ganglia circuits, accounting for motor symptoms (Calabresi 

et al., 2014; Kravitz et al. , 2010; Tritsch and Sabatini, 2012). However, formai 

recognition that Parkinson' s disease do es not necessarily start in the substantia nigra 

pars compacta leaves us at loss as to why nigrostriatal dopaminergic neurons degenerate 

long before other Lewy body-Iaden neurons do. It is likely that various cellular and 

molecular mechanisms account for the select vulnerability of nigrostriatal dopaminergic 

neurons in Parkinson ' s disease, which only accentuates our awareness of the multiple 

dimensions that demarcate this pathology. 

1.1.3.4 Vulnerability of the nigrostriatal pathway 

Identifying exogenous and endogenous risk factors is a sensible place to start on 

the quest for c1ues to unravel one of the most important questions left unsettled in 

Parkinson ' s disease, that is, the selective early death of nigrostriatal dopaminergic 

neurons. The incidence of idiopathic Parkinson's disease is c1early linked with 

environmental factors. The discovery of MPTP as a mitochondria-targeting agent of 

parkinsonism broke new ground for the exploration of other chemicals, such as 

pesticides (Furlong et al., 2015; Priyadarshi et al. , 2000), solvents (Goldman et al. , 

2012; Pezzoli and Cereda, 2013), metals (Finkelstein and Jerrett, 2007; Gorell et al. , 

1997) and organochlorines (Steen land et al. , 2006; Weisskopf et al. , 2012), subsequently 

shown to constitute risk factors acting via bioenergetic disruption and oxidative 

mechanisms. Elements of infection were also suggested long ago to promote 

Parkinson' s disease (Charcot, 1877; Gowers, 1886), substantiated by the occurrence 

of postencephalitic parkinsonism that succeeded the great pandemic of encephalitis 

lethargica in the early 1900s (Schwab et al. , 1956; Vilensky et al., 2010). Later, studies 

found certain of these exogenous elements to represent a greater hazard in individuals 

carrying a specific genetic profile. Indeed, a host of genetic variants are known today 
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to synergistically increase the odds of developing Parkinson 's disease, in gene

environment interactions but also as standalone risk factors (Polito et al., 2016; Wamer 

and Schapira, 2003) (Table 1.4). Monogenic forms of Parkinson's disease also provide 

supplementary clues pointing to intrinsic issues that bode unfavourable odds. 

Noteworthy, the abnormal proteic products of these genes interfere with healthy cellular 

trafficking, prote in degradation or mitochondrial function (Figure 1.10). 

Aside from these genetic and environmental factors specifie to certain individuals, 

one element of risk stands out due to its universality and that is aging (Reeve et al., 

2014). Indeed, of ail the risk factors, aging persists as the best-established player in 

idiopathie Parkinson's disease, as is the case for several other chronic and 

neurodegenerative illnesses. However, the tightness of this relationship is such that 

Parkinson's disease is viewed today as the epitome of the synergistic potentiation that 

occurs between aging and neurodegeneration (Obeso et al., 2017) (Figure 1.11). 

For example, the substantia nigra pars compacta appears to be relatively susceptible to 

aging outside of a pathological context (Buchman et al., 2012; Rudow et al., 2008), 

as cellioss occurs at an estimated rate of 4.7-9.8% per decade in humans (Feamley and 

Lees, 1991; Ma et al. , 1999). Moreover, iron contents (Bilgic et al., 2012), levels of 

iron-binding neuromelanin (Double et al., 2003), neuroinflammation (Calabrese et al. , 

2018), oxidative stress-induced mitochondrial DNA deletions (Reeve et al., 2014), 

and malfunction of the ubiquitin proteasome system and autophagy clearance pathways 

(Jana, 2012; Li and Li, 2011; Rubinsztein et al., 2011) were ail shown to mcrease 

drastically with age, especially so in the substantia nigra pars compacta (Corral

Debrinski et al., 1992; Daugherty and Raz, 2013; Dexter et al., 1989; Fedorow et al. , 

2006; Soong et al., 1992). Coherently, in the setting of Parkinson's disease, nigrostriatal 

neurons that contain more neuromelanin are at higher risk of degenerating (Gibb and 

Lees, 1991; Hirsch et al., 1988; Kastner et al., 1992; Marsden, 1983; Zecca et al., 2001), 

microgliosis is relatively more pronounced in the substantia nigra pars compacta (Kim 

et al., 2000; Lawson et al., 1990; McGeer et al., 1988), nigral mitochondrial DNA 

deletions accurnulate (Bender et al., 2006, 2008) and clearance pathways are impaired 

(Cuervo et al., 2010; Dehay et al., 2010). 
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Table 1.4 

Overview of the 26 genetic risk variants showing consistent association with 
Parkinson 's di sease in genome-wide association studies 

SNP Location (hg38) Nearest gene& AIIeles Risk allele freq OR P value 

rs35749011 1 :155,162,810 SLC50Al (GBA) AlG 0.017 1.824 1.37 X 10- 29 

rsl14138760* 1 :154,925,709 PMVK(GBA) C/G 0.012 1.574 3.80 X 10- 7 

rs823118 1 :205,754,444 NUCKSI TIC 0.559 1.122 1.66 X 10- 16 

rsl0797576 1 :232,528,865 SIPA1L2 TIC 0.140 1.131 4.87 X 10- 10 

rs6430538 2:134,782,397 ACMSD CfT 0.570 1.143 9.13 X 10- 20 

rs1474055 2:168,253,884 STK39 TIC 0.128 1.214 1.15 X 10- 20 

rs12637471 3:183,044,649 MCCCI GIA 0.807 1.188 2.14 X 10- 21 

rs34311866 4:958,159 TMEM175 (GAI<) GIA 0.191 1.272 1.02 X 10- 43 

rs34884217* 4:950,422 TMEM175 (GAI<) AlC 0.913 1.247 1.10 X 10- 6 

rsl1724635 4:15,735,728 BSTI AlC 0.553 1.126 9.44 X 10- 18 

rs6812193 4:76,277,833 FAM47E CfT 0.636 1.103 2.95 X 10- 11 

rs356182 4:89,704,960 SNCA CfT 0.367 1.316 4.16 X 10- 73 

rs7681154* 4: 89,842,802 SNCA CfA 0.498 1.189 7.09 X 10.19 

rs9275326 6:32,698,883 HLA-DOBI CfT 0.906 1.211 1.19 X 10- 12 

rs132011 01 * 6:32,375,827 C6orfl0 TIC 0.053 1.192 3.84 X 10- 6 

rs199347 7:23,254,127 GPNMB AlG 0.590 1.110 1.18 X 10- 12 

rs117896735 7:119,777,065 INPP5F AlG 0.014 1.624 4.34 X 10- 13 

rs329648 11:133,895,472 MIR4697HG TIC 0.354 1.105 9.83 X 10- 12 

rs76904798 12: 40,220,882 LRRK2 TIC 0.143 1.155 5.24 X 10- 14 

rsll060180 12:122,819,039 CCDC62 AlG 0.558 1.105 6.02 X 10- 12 

rsll158026 14:54,882,151 GCHI CfT 0.665 1.106 5.85 X 10- 11 

rs2414739 15:61,701 ,935 VPS13C AlG 0.734 1.113 1.23 X 10- 11 

rs14235 16:31 ,110,472 BCKDK AlG 0.381 1.103 2.43 X 10- 12 

rs17649553 17:45,917,282 MAPT GIA 0.774 1.300 2.37 X 10- 48 

rs12456492 18:43,093,415 RIT2 GIA 0.307 1.106 7.74 X 10- 12 

rs8118008 20:3,187,770 . DDRGKI AlG 0.657 1.111 3.04 X 10- 11 

This table was adapted from Table 1 and Supplementary Table 3 of the original study.13 It lists the 22 most si~nificant SNPs per locus (defined in 1 Mb bound
aries) that showed genome-wide signiflcant Ip <5 x 1 0 ~ association with Parkinson's disease (PD) status. Furthermore, it displays 4 SNPs (Iabeled with a 
star rn that showed significant association (ie, p <1 x 10- 5 following Bonferroni correction) with PD risk upon conditioning on the mest significant SNP in the 
same genetic region (ie, corresponding to the SNP listed in this table in the preceding line). Note that the nearest gene assigned to each SNP here (as deter
mined according to RefGene as available on the UCSC genome browser (https:lIgenome.ucsc.edul)) does not necessarily represent the functional element 
undet1ying the genetic association. The genes in parentheses refer to the more commonly used gene names for the respective locus. Full names of ail official 
gene names listed here can be found in the EntrezGene database (http://www.ncbi.nlm.nih.gov/genel).Alleles = the first allele represents the risk allele. hg38, 
human genome build 38; Freq, frequency; MAPT, microtubule-associated protein tau; OR, odds ratio; SNP, single nucleotide polymorphism. 

& ACMSD, aminocarboxymuconate semialdehyde decarboxylase gene; BCKDK, branched chain ketoacid 
dehydrogenase kinase gene; BSTl , bone marrow stromal cell antigen 1 gene; C6orfl O, chromosome 6 open reading 
frame 10 gene; CCDC62, coiled-co il domain containing 62 gene; DDRGKl , DDRGK domain containing 1 gene; 
FAM47E, fa mily with sequence similari ty 47 member E gene; GAK, cyclin G associated kinase/auxilin -2; GBA, 
beta-glucocerebrosidase gene; GCR l , guanosine triphosphate cyclohydrolase 1 gene; GPNMB, glycoprote in 
neuromedin B gene; HLA-DQBl , major histocompatibili ty complex, c lass Il, DQ beta 1 gene; INPP5F, inositol 
polyphosphate-5-phosphatase F gene; MCCCl, methylcro tonoyl-coenzyme A carboxylase 1 gene; MIR4697HG, 
microribonucleic acid 4697 host gene; NUCKSl , nuclear casein kinase and cyclin dependent ki nase substrate 1 gene; 
PMVK, phosphomevalonate kinase gene; RIT2, Ras-like without CAAX 2 gene; SIPA IL2, signal induced proli fe ration 
associated 1 like 2 gene; SLC50A l , solute carrier family 50 member 1 gene; STK39, serine/threonine kinase 39 gene; 
TMEM175, transmembrane protein 175 gene; VPS13C, vacuolar protein sorting 13 homologue C gene. 
(From Obeso et al., 20 17, adapted trom Fahn and Goetz, 1987.) 
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Synaptic/endosomal vesicle/protein recycling 

Proteasome 

Mitochondrial function Protein degradation 

Figure 1.10 Disease mechanisms implicated in Parkinson's disease. 
This diagram, termed the Bermuda triangle by the authors, highlights 
three important cellular pathological axes affected in monogenic forms of 
Parkinson ' s disease, which may also be implicated in idiopathic forms. 
Importantly, cellular trafficking, mitochondrial homeostasis and protein 
degradation are tightly interwoven in the pathophysiology of Parkinson 's 
disease. (From Obeso et al. , 2017.) 

In considering the sum of exogenous and endogenous risk factors that come into 

play in Parkinson ' s disease, several mechanisms proposed to dwell at the core of this 

illness emerge, notably mitochondrial dysfunction, protein aggregation, iron toxicity, 

neuroinflammation and impaired cellular trafficking, among others. Despite their 

apparent disparity, they converge to cause the preferential early degeneration of 

nigrostriatal neurons in Parkinson ' s disease and possibly contribute to oxidative stress to 

which these neurons may be more vulnerable (Brichta and Greengard, 2014; Haddad and 

Nakamura, 2015; Oliveira et al. , 2017; Surmeier, 2007; Surrneier et al., 2017). 

This concept dates back to the 1980s (G6tz et al., 1990; Jenner, 1991; Lenzi et al., 1979; 

y oudim et al., 1989), but its popularity has waxed and waned at the rhythm of 

discoveries such as the sequential spreading of Lewy bodies (Braak et al. , 2003 ). 

Nevertheless, the ide a that metabolic oxidative insults may underlie the specific 

vulnerability of nigrostriatal neurons has lately gained momentum as the pro minent 

philosophies of the 1900s and beginning of the 2000s are failing to satisfy questions 
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regarding the course of progressIOn of Parkinson ' s disease (Obeso et al. , 2017). 

Oxidative stress and the propagation of Lewy bodies are not mutually exclusive theories 

either: oxidative stress is a known facilitator of a-synuclein aggregation and Lewy 

bodies contribute to oxidative stress (Gupta et al. , 2009). As such, they likely engage in 

an intimate relationship in the etiopathogenesis of Parkinson's disease. 

Substantla nigra toxins 1-----------, 

Figure 1.11 Crosstalk between aging and Parkinson 's disease. 
Aging leads to several pathological events in neurons that are conducive 
to the development of Parkinson's disease. In particular, oxidative 
stress emerges as a pivotai factor. A TP, adenosine triphosphate; 
PTP, penneability transition pore; UPS, ubiquitin-proteasome system. 
(From Schapira, 2008.) 

In order for oxidative stress to incarnate the noxious interface through which ail 

of these risk factors converge onto nigrostriatal dopaminergic neurons, the latter must 

exhibit exclusive properties discerning them from other neuronal populations and 

rendering them sensitive to each of these contributing elements. It is critical that 

nigrostriatal neurons distinguish themselves from other dopaminergic neurons, 

especially their mesocorticolimbic analogues, as they ail share the liability of employing 
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dopamine as a neurotransmitter, recognized to generate ROS upon auto-oxidation 

(Segura-Aguilar et al., 2014) and to require ROS-producing monoamine oxidases for 

their degradation (Andersen et al., 1994; Graham, 1984). In this respect, we argue that 

nigrostriatal dopaminergic neurons display the following phenotypic idiosyncrasies that 

may afford their vulnerability to oxidative stress instigated by genetic mutations, 

environrnental toxins and aging: 

1) They are embedded in a particular environrnent, the substantia nigra pars compacta, 

which stores considerable amounts of iron ions (Chinta and Andersen, 2008; Hirsch 

and Faucheux, 1998) accumulating with age (Daugherty and Raz, 2013) and known 

to participate in deleterious Fenton reactions with hydrogen peroxide to produce the 

very reactive hydroxyl radical (Youdim et al., 1989); 

2) They express lower levels of VMAT2 than most other catecholaminergic neurons, 

implying the protracted presence of dopamine in the cytosol leading to the 

inevitable formation oftoxic oxidative by-products and, ultimately, potentially toxic 

neuromelanin (Liang et al. , 2004); 

3) Constituting a very small cluster of cells (German et al., 1988; Percheron et al., 

1989), they are nonetheless required to fully innervate a very large surface, 

the dorsal striatum, which entails tremendous bran ching of axons harbouring 

numerous vesicular release sites ridden with potentially pathogenic a-synuclein 

(Matsuda et al., 2009; Parent and Parent, 2006); 

4) To enable corticostriatal circuits, the y constitute the greatest striatal input of 

uninterrupted tonic dopamine relying on autonomous pacemaking activity at the 

source of high baseline levels of calcium ions, which enhance oxidative 

phosphorylation, mitochondrial membrane hyperpolarization and superoxide anion 

production (Guzman et al., 2010; Pacelli et al., 2015); 

5) To maintain their neurotransmission activities and drawn-out axonal arbours, 

these neurons keep an army of mitochondria to fulfil their exorbitant energetic 

needs, also irnplying elevated basal rates of oxidative phosphorylation and greater 

production of electron transport chain superoxide anion by-products (Pacelli et al. , 

2015); 
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6) Last, they are endowed with a limited calcium-buffering capacity (Foehring et al., 

2009) and scanty endogenous antioxidative defences (Bharath et al. , 2002), 

consequent of their low expression of calbindin (Dopeso-Reyes et al. , 2014; 

Iacopino and Christakos, 1990; Liang et al., 1996; Yamada et al., 1990) and 

glutathione (Kang et al., 1999), respectively. 

In aU evidence, these features unite to augment the basal oxidative burden to 

which are subjected nigrostriatal neurons. Upon further exposure to environrnental or 

genetic insults, endogenous antioxidative defences are eventually overwhelmed: 

this turning point typified by the failure of neurons to cope with the added oxidative load 

constitutes the origin of oxidative stress. Sustained in time and enhanced by aging 

processes, oxidative stress may eventually lead to the death of nigrostriatal neurons in 

Parkinson' s disease. Following this premise, studies have employed primary neuron 

cultures (Pacelli et al. , 2015), acute rat brain slices (Carbone et al., 2017), 

rodents (Vidyadhara et al., 2016) and primate (Dopeso-Reyes et al. , 2014) models to 

demonstrate that nigrostriatal dopaminergic neurons are more vulnerable to parkinsonian 

neurotoxins in comparison to other neuronal populations, exemplarily dopaminergic 

neurons 10dged in the neighbouring ventral tegmental area, and that this vulnerability is 

abated by pharmacologically targeting these specific phenotypic risk features (Carbone 

etaI. , 2017; Pacelli et aI. , 2015). 

If indeed nigrostriatal neurons are relatively more susceptible to insults that 

overwhelm their endogenous coping mechanisms, other sources of oxidative stress that 

are not specific to Parkinson 's disease may yield similar results and shore up the idea 

of their selective vulnerability. Indications of this are provided by epidemiological 

evidence showing a higher occurrence of Parkinson ' s disease in patients suffering 

from other pathologies with a significant component of oxidative stress, such as 

diabetes (Cereda et al. , 2012; Santiago and Potashkin, 2013; Sun et al. , 2012), ischemic 

stroke (Huang et al. , 2013) and sleep apnea (Snyder and Cunningham, 2017). 

Interestingly, Parkinson ' s disease is significantly less frequent in patients with the 

hyperuricemic illness gout wherein the antioxidative effects of uric acid may in fact 

protect nigrostriatal neurons (Alonso and Sovell, 2010). Although evidence weighs in 
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favour of the selective vulnerability of the nigrostriatal pathway in pathological states 

that induce upwelling of systemic oxidation, for instance in a hyperglycaemic setting, 

studies are required to validate this. The present thesis aims to expound on this question. 

1.2 Hyperglycaemia in the central nervous system 

Before addressing the mechanisms by which hyperglycaemia 16 may instigate 

oxidative stress in the CNS, and before laying out the epidemiological evidence in 

favour of the particular vulnerability of nigrostriatal dopaminergic neurons in these 

conditions, it is critical that we fully grasp glucose dynamics in the brain. The transport 

kinetics and metabolism of glucose are highly complex, especially in the CNS, and bear 

significant implications in the initiation of oxidative stress in neurons. Progressing in 

this direction, a fundamental appraisal of the brain' s energy sources is first required. 

1.2.1 Glucose as a preferential fuel for the brain 

Long has functional neuroimagery exposed the importance of glucose in the 

fulfilment of the adult brain's energetic needs (Landau et al., 1955; Schmidt and Kety, 

1947; Siesjo, 1978; Sokoloff et al., 1977). In fact, the brain utilizes 25% of total body 

glucose, mostly to power oxidative metabolism (Heiss, 2016; Kety and Schmidt, 1948; 

Laughlin and Attwell, 2001; Shulman et al., 2001; Sokoloff et al., 1999). Glucose is 

indispensable to neurons and thus plays a significant role in CNS health and disease. 

In settings of extreme dietary and pathological depletion of glucose or its transport, 

the brain is forced to employ other fuels, although a minimal amount of glucose is 

always required to maintain normal cerebral functions (Casazza et al., 1984; Owen 

et al., 1967; Vanltallie and Nufert, 2003). In these specifie contexts, blood-borne ketone 

bodies can account for up to 70% of brain energy requirements through its conversion to 

acetyl coenzyme A, in contrast to fatty acids that inefficiently cross the blood-brain 

16 Normoglycaemia is defined in humans as fasting blood glucose < 5.5 mM « 100 mg/dL), postprandial 
blood glucose < 7.8 mM « 140 mg/dL) or glycated haemoglobin < 5.7%; hyperglycaemia is defined as 
fasting blood glucose ~ 7.0 mM (~ 126 mg/dL), postprandial blood glucose ~ ILl mM (~ 200 mg/dL) 
or glycated haemoglobin ~ 6.5% (American Diabetes Association, 2016). 
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barrier and are oxidized too slowly for rapid energy provIsIon (Dhopeshwarkar and 

Mead, 1973; Hamilton and Brunaldi, 2007; Hasselbalch et al. , 1994; Morris, 2005; 

Schonfeld and Reiser, 2013). Likewise, circulating lactate may substitute for glucose 

and afford basal sustenance, but it do es not allow neurons to carry out efficient 

neurotransmission (Bak et al., 2006, 2012; Ivannikov et al. , 2010). In the context of 

hyperglycaemia, the peripheral production of ketones may arise if insulin levels are too 

low to supply cells with glucose despite its overabundance (Fukao et al., 2004; Fulop 

et al. , 1999). However, since the brain does not rely on insulin for intracellular import of 

glucose, as we will see next, the latter remains the preferred substrate, especially 

considering its elevated circulating concentrations. 

1.2.2 Neuronal glucose transport 

Neurons have particular needs III terrns of glucose transport and availability, 

as they are required to react extremely rapidly to a perpetually changing intra- and 

extracellular environrnent directly ensuing from neurotransmission l7. Unlike other 

energy-greedy cells endowed with glycogen stores, like striated muscle cells, neurons 

cannot count on glycogenolysis for sustenance, as this macro mole cule is almost 

exclusively confined to astrocytes in the brain (Cataldo and Broadwell, 1986; Dienel and 

Cruz, 2006; Ibrahim, 1975; Koizumi, 1974; Sagar et al., 1987; Watanabe and 

Passonneau, 1973). Intraneuronal glucose is thus mainly provided from the extracellular 

environrnent, which itself is supplied by the circulation. This implies the need for 

glucose to cross several barriers whose transport kinetics assuredly influence its 

metabolism in neurons. 

1.2.2.1 Transporters and kinetics 

Hydrophilic glucose molecules must be transported by facilitated diffusion to 

reach the intracellular space. Glucose transporters (GLUTs) ubiquitously present at the 

17 In neurons, constant restoration of membrane potentials, clearance of intracellular calcium, synthesis of 
neurotransmitters, restructuration of synapses and maintenance of highl y solicited organelles oblige an 
uninterrupted energy flux. 
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surface of cells occupy the function of taking up glucose from the extraceIlular 

environment (Table 1.5). Excluding the myo-inositol transporter, aIl GLUTs identified 

to date mediate energy-independent facilitative transport (see for review Mueckler and 

Thorens, 2013; Wood and Trayhum, 2003). 

Table 1.5 

Glucose transporter expression sites and substrates 

Type Prolein (gene)&< 

GLUTI (SLC2A/) 

GLUTl (SLC2A2) 

GL T3 (SLC2A3) 

GL T4 (SLC2M) 

(Insulin-sensilive) 

GLUTS (SLC2A5) 

FacilitativelSodium- GLUT6 (SLC2A6) 

indcpcndent 
GLUn (SLC2A7) 

GLUn (SLC2A8) 

(Insulin-responsive?) 

GLUT9 (SLC2A9) 

GLUTIO (SLC2A IO) 

iles expressed 

Brain endothelial and epithelial-Iike brain barriers, glial cells, blood-tissue 

barriers, eye, pheripheral nerves, placenta, lactating mammary gland 

(Ubiquilous distribution in mosl mammalian cells) 

Kidney, small intestine (epithelial cells), Iiver, pancreas (islets), brain 

(astrocytes) 

Neurons, testis, placenta, brain endothelial cells? 

Brown and white adipose tissue, muscle (skeletal), fal, heart (myocardium), 

hippocampal neurons, cerebellar neurons 

Intestine (jejunum), Iddney, testi , brain microglia 

Brain, peripheral and spleen (Ieukocytes) 

Small intestine (mamly in brush border mcmbranc-cntcrocytes), colon, testis, 

prostate, liver (associated with endoplasmic reticulum) 

BlaslOCytes, testis, brain (neurons), muscle, adipocytes, mammary gland? 

Liver, kidney (proximal tubule of epithelial cells), placenta? 

Liver, pancreas, heart, lung, brain, skeletal mu cie, placenta 

Iso-form A: Heart, skeletal muscle, kidney 

GLUTII (SLC2A If) lso-form B: Placenta, adipo e ti sue, kidney 

GL Tl2 (SLC2A / 2) 

(In. ulin-sensitive?) 

HMIT (SLC2Al 3) 

(co-transporler) 

lso-form C: Adipose tissue, heart, keletal muscle, pancreas 

Heart, skeletal muscle, fat, prostrate, laetating mammary gland ?, spleen 1, 

breast cancer (Ductal cell carcinoma) tissue 

Brain (neurons mtracellular vesicles) 

ubslrale/lransports 

>>Glucose, galactose, 

mannose, gl ucosamine, 

ascorbic acid 

Mannose, galactose, 

fructose, glucose, 

glucosamme 

Glucose, galactose, 

mannose, xylose, 

dehydroascorbic acid 

Glucose, 

dehydroascorbic acid, 

glucosamine 

Fructo e 

Glucose 

>Fructose, glucose 

Gluco e 

Glucose, urate 

Glucose, galactose 

Fructose, glucose 

Glucose 

H+'myo-inositol 

& GLUT, glucose transporter; HMIT, H+/myo-inosito l transporter; SLC2A, solute carrier famil y 2 gene. 
(Adapted From Simpson et al., 2007.) 

Contrary to most peripheral cells that express GLUT4 requmng insulin for 

membrane translocation, the vast majority of CNS components employ insulin

independent GLUTs (Huang and Czech, 2007; James et al., 1988) (Figure 1.1 2). 

GLUTI is the most widespread isoform in the body and, aside from red blood ce Ils, 

it is most abundant in the brain microvasculature, evenly distributed among the luminal 
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and abluminal surfaces of the endothelium (Maher et al., 1994; Simpson et al. , 2001). 

It is also the main transporter employed by glial cells, especially astrocytes (Dick et al. , 

1984; Gerhart et al. , 1989; Maher et al., 1994; Simpson et al. , 2001). Neurons, on the 

other hand, overwhelmingly employ the GLUT3 isoform densely located across the cell 

surface but more intensely so at the neuropil (Leino et al. , 1997; Mantych et al., 1992; 

Nagamatsu et al. , 1993; see for review Simpson et al. , 2008). Consequently, to access 

the brain parenchyma, circulating glucose must penetrate the endothelium and astrocytic 

endfeet of the blood-brain barrier via GLUTI. In turn, glucose diffuses through the 

extracellular space where it can be absorbed by neuronal GLUT3 . 

• GLUn 55K 8 Mcn 
• GLUT1 45K MCT2 

GLUT3 K MCT3 

* GLUT4 MCT4 
Â GLUT5 

GLUT6 
GLUT8 

GLUn 
55K 

1 

GLUT5 

Figure 1.12 Glucose and monocarboxylate transporters in the mammalian brain. 
Endothelial cells solely express GLUT1 , whereas other brain celis usually 
express multitudinous isoforms. Noteworthy, endothelial cells express 
the highly glycosylated 55-kDa isoform of GLUT1 ,while astrocytes and 
oligodendrocytes express the 45-kDa variant. Neurons mainly express 
GLUT3 , but can also express GLUTS 1, 2, 4, 6, 8 and the myo-inositol 
transporter, depending on brain regions and isoforms. The fructose 
transporter GLUT5 is almost only found at the surface of microglial cells, 
but its function remains unclear in the brain due to the virtual absence of 
its known substrate in the parenchyma (Jurcovicova, 2014; Maher et al. , 
1994). MCT, monocarboxylate transporter. (From Simpson et al., 2007, 
adapted from McKenna et al. , 2005.) 
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Although cellular constituents of the brain do not rely on insulin for glucose 

uptake, several kinetic factors come into play in limiting glucose permeation between 

compartments. Seeing as GLUTs are facilitative, bidirectional, energy-independent 

transporters, they allow not for glucose accumulation but for its equilibration between 

compartments in a manner that smoothens concentration gradients. Brain GLUTs 

possess elevated affinities for glucose, highest for neuronal GLUT3 (Km ~ 1.5 mM) 

(ColviUe et al. , 1993; Maher et al. , 1996) (Table l.6). In fact, GLUT3 also presents the 

greatest turnover for glucose, defmed as the number of transport cycles per transporter 

per second (Manolescu et al., 2007; Rumsey et al., 1997). 

Table 1.6 

Glucose transport capacities of brain ce Us 

!eeU TRANSPORTER [Transporter[ [Transporter] [Transporter] !!Vmax ~m c ubstratelligand llkcat ~redicted 

SPECIES uptake uptake Vmn in 

model 

pmol/mg membrane carriers/flm 
2 pmol/mg total nmol/I06 mM per mmol/sec 

protein protein ceUs/min sec 

RBC& GLUTI 2000 2083 92 80.4 8 GI CB 1166 

Endothelium GLUTI 400 fI 000 gl8 0.21 8 CB 1166 7.8 x 10 
-IS 

------
Astrocyte GLI/TI 7.3 f l8 gO.34 4.8 8 CB 1166 h.4 x 10 

-16 

!1.9 
XIO- IS 

Neuron GLUTI 9.S [24 gO.44 hS.O 2.8 3MG/CB h868 2.3 x 10 

i34.6 4;S12 - 14 

'Cell in which tran pon i measurcd. 
bMeasured or compuled maximum rate (V maJ or affinity (K.J for transpon .. 
"Tbe substrate employed in transpon (Glucose (Glc), 3-0-methylglucose (3MG) or lactale) or ligand GLUT quanlitalion experirncnts (Cytochalasin B (CB) binding). 
dcompuled k Cal ([Vm .. ,I[GLUT]) for transpon. 
' Predicled V mu for IranSpon of glucose and lactate for use in the mode!. 
fAssumes 1 mg membrane prolein is equivalenllo a surface area of 2.4 x IOll flffi2. 
IAssurnes lhat the ratio of membrane:lotal cellular protein is 0.0462 : 1. 
hMeasured a12SoC. 
iCompuled for transpon al 37°C as uming thal GLUT3 and GLUTI hare Ihe same temperature dependence. 
JOirection basal lamina 10 astrocyte. 
kOirection inlerstilium to aSlrocyte. Glucose transpon parameters in endothelial cells, aslrocytes and neurons were computed using estimated ccII membrane GLUT 
conlents and measured k Cil paramelers. MCT concentrations are estimatcd as uming MCT k cal = GLUTI k cal and using measurcd V .... values. 
&RBC, red blood cell. 

(From Simpson el al., 2007.) 
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Since normoglycaemic settings afford much more glucose than transport kinetics 

require, one would expect brain cells like neurons to contain approximately as much 

glucose as their immediate extracellular environment. Likewise, brain glucose 

concentrations should fluctuate as a function of glycaemia, regardless of insulin levels. 

According to computational studies performed by Simpson and colleagues, neurons and 

astrocytes only contain ~0.9 mM of glucose in normoglycaemic steady-state conditions 

(Simpson et al., 2007) (Table 1.7). Similarly, extracellular concentrations of glucose 

merely reach ~ 1.4 mM. Even endothelial cells that express GLUTI and are in direct 

contact with blood-bome solutes display concentrations of ~3.8 mM. This discrepancy 

between expected compartment equilibration and markedly lower levels of glucose in 

parenchymal and endothelial cells may be explained by transport inhibition at the level 

of the blood-brain barrier. Indeed, endothelial GLUT1 undergoes allosteric inactivation 

by adenosine triphosphate (ATP) in settings of metabolic abundance (Carruthers and 

Helgerson, 1989; Levine et al., 1998; Lowe and Walmsley, 1986). Consequently, 

endothelial ce Ils uptake and provide less glucose to the brain parenchyma in 

replete, normoglycaemic settings. Conversely, when glycolytic demands increase and 

ATP runs low, GLUT 1 transport is uninhibited and glucose may efficiently be 

transferred to surrounding tissues (Carruthers, 1986; Cloherty et al., 1996). Globally, 

the parenchyma's apparent Km for glucose remains 1-3 mM, signifying that glycaemia 

must significantly drop before brain uptake deficits are perceived (Rao et al. , 2006). 

This can be interpreted as an evolutionary adaptation in favour of organisms whose 

neurons were uninterruptedly supplied with fuel. 

Table 1.7 

Computed compartment glucose levels for the core (primary) model 
or the astrocyte-neuron lactate shuttle (ANLS) 

Serum [Gle] 6 30 6 30 

EndoIhchal [GIe] 3. 174 3.1 11 .0 

B3YlI.m,na [Giel 2.1 10 2.0 10.4 

Astroc)tle 1 Gle 1 0.9 1.9 U 9.4 

IO'<r!mualIGkl 14 99 U 95 

" euro .. 1 [Gkl 1.2 Il 4 

BI1IIOIGIeI 1.2 9 12 91 

(From Simpson et al. , 2007.) 
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1.2.2.2 Physiological considerations 

Notwithstanding the progress made in elucidating how glucose gains entry to the 

brain and permeates neurons, the CUITent state of the field leaves many questions 

unanswered in physiological settings. Converging data on differential expression of 

GLUTs across brain regions, between species, in health and in disease are lacking. 

We know that GLUT3 appears to occur in high levels in grey matter, especially in 

densely populous zones known to be energetically needy; fittingly, neurons from the 

hippocampal region, cerebral cortex, cerebellum, striatum and midbrain express the 

greatest amounts in the rat brain (Bondy et al., 1992; Nagamatsu et al., 1993). 

However, we know little about the transcriptional regulation of brain GLUTs and the 

stabilization of rnRNA transcripts 18. Best studied is the upregulation of GLUTs in the 

CNS during hypoglycaemic events (Anitha et al. , 2012; Nagamatsu et al., 1994; 

Santiago et al., 2006; Simpson et al., 1999). Moreover, aside from evidence of cerebral 

GLUT mobilization in specifie regions of the brain during active firing (Ashrafi et al., 

2017; FeITeira et al., 20 Il; Weisova et al., 2009), information is scarce on the recyc1ing 

and trafficking ofthese transporters (McClory et al., 2014). Unlike GLUT4, intracellular 

pools of GLUT 1 and 3 are seemingl y small and do not require insulin to be upregulated 

at the cell surface 19. 

At any rate, hyperglycaemia, especially sustained for long periods oftime, remains 

a blind spot in the study of cerebral GLUTs and glucose uptake in the brain. 

In opposition to the hypoglycaemia-induced compensatory upregulation of brain 

GLUTs, hyperglycaemia has not been demonstrated to afford a c1ear regulatory effect in 

rodents, at least on the short term (Anitha et al. , 2012; Nagamatsu et al. , 1994; Santiago 

et al., 2006; Simpson et al., 1999). Under normal physiological circumstances, literature 

further provides that microvasculature density is mostly uniform across brain regions, 

18 There is sorne evidence in the periphery to support a role for cellular stress in the transcriptional 
upregulation of GLUn , explicitly in contexts of oxidative stress, rnitochondria inhibition and hypoxia 
(Anitha et al. , 2012; Bashan et al., 1992, 1993; Baumann et al. , 2007; Kozlovsky et al., 1997; 
McMahon and Frost, 1995; Mobasheri et al., 2005; Nagarnatsu et al., 1994; Santiago et al. , 2006). 

19 Sorne have rai sed the possibility that rnernbrane-bound brain GLUTs rnay be rapidly trafficked in and 
out of lipid rafts to respond to rnetabolic signais (Bames et al., 2004; Rauch et al. , 2006). 
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including the midbrain and the striatum (lelacqua et al., 2016; Kolinko et al., 2016). 

However, the possible effects of hyperglycaemia on cerebral blood flow are 

contradictory. On the one hand, both acute and chronic hyperglycaemic states are known 

to reduce cerebral blood flow (Duckrow et al., 1987; McCall, 1992; Nishimura et al., 

2007). On the other hand, they cause the occurrence of pathological neovascularization, 

that is, a rise in the volume of capillaries with deficient pericyte coverage (Ergul et al. , 

2015; Li et al., 2010; Prakash et al., 2013). The ensuing gain of blood-brain barrier 

permeability might grant glucose the ability to sidestep endothelial ATP-inhibited 

GLUT 1 and to infuse the entire brain more profusely (Carruthers and Helgerson, 1989; 

Levine et al., 1998; Lowe and Walmsley, 1986). 

Despite these remammg ambiguities, vanous demonstrations strengthen the 

idea that hyperglycaemia causes a substantial rise in parenchymal glucose 

concentrations. Early studies demonstrated that brain glucose levels were indeed 

sensitive to glycaemic circumstances. Indeed, they faU or rise during transient 

hypoglycaemic or hyperglycaemic challenges, respectively (Abi-Saab et al., 2002; 

Béland-Millar et al., 2017; Macauley et al., 2015; McCall et al., 1986; Osborne et al., 

1997). In rodent models of sustained diabetes-induced20 hyperglycaemia, intracerebral 

glucose concentrations are also augmented (de Vries et al., 2003; Gomez and Barros, 

2003; Jacob et al., 2002; McCrimmons et al., 2003). These experiments were performed 

on who le brain tissues and reliable intraneuronal measurements are still lacking21
. 

Nevertheless, computational renderings taking into account GLUT kinetics and their 

distribution predict greater glucose permeation in ail brain constituents under 

hyperglycaemia (Simpson et al., 2007) (Table l.7). We can therefore cautiously submit 

to the idea that hyperglycaemia causes an upwelling of intraneuronal glucose likely to 

hold implications for cellular fitness. 

20 Diabetes mellitus is described in section 1.2.5.1. 

2 \ Previous studies reporting these concentrations were recently demonstrated to be tlawed, owing to 
differing transport kinetics between glucose and the tagged analogues employed for quantifications 
(Dienel et al., 2017). 
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1.2.3 Neuronal glucose metabolism 

Before addressing the metabolic singularities that characterize neurons, a brief 

outline of glucose metabolism is warranted (see for review Stryer et al. , 2007) 

(Figure 1.13). In the cytosol, glucose is first engaged along a glycolytic fate upon 

irreversible phosphorylation by an important rate-limiting, ATP-consuming enzyme, 

hexokinase. Resulting glucose 6-phosphate (G6P) is a gateway metabolite, not only to 

the glycolytic pathway, but also to glycogenesis, relevant to astrocytes, or to the pentose 

phosphate pathway (ppp)22. In glycolysis, G6P undergoes isomerization into fructose 

6-phosphate (F6P), which is in turn transformed by phosphofructokinase-l (PFK) into 

fructose 1,6-bisphosphate. Importantly, PFK is another rate-limiting, energy-consuming 

enzyme that drives glycolysis and is allosterically inhibited by high ATP:adenosine 

monophosphate (AMP) ratios, which equally ensures activation of glycolysis in times of 

energy depletion. Continuing along the glycolytic pathway, fructose 1,6-bisphosphate is 

converted into a pair of triose intermediates, glyceraldehyde 3-phosphate (GA3P), 

further metabolized by glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

into 1,3-bisphosphoglycerate. From 1,3-bisphosphoglycerate, a series of enzymatic 

transformations yields the final glycolysis metabolite, pyruvate, through irreversible 

cleavage of the phosphate group by pyruvate kinase. At this level, pyruvate can enter 

mitochondria and undergo catalysis mediated by pyruvate dehydrogenase, yielding the 

gateway intermediate to the tricarboxylic acid cycle, acetyl coenzyme A 23 . In certain 

circumstances, it can also be metabolized in the cytosol by the bidirectional lactate 

dehydrogenase enzyme to give lactate, a process termed the Warburg effecr24 (Warburg, 

1956). Exogenous lactate may also be provided as a fuel at this level through its 

transformation to pyruvate, once again via lactate dehydrogenase. Generated along the 

course of glycolysis and tricarboxylic acid cycling are matrix-dwelling electron donors, 

22 The ppp is later discussed in section 1.2.3. 1. Of note, the ppp yields GA3P and F6P, an additional 
connection between glycolysis and the PPP. 

23 This is also the access point for alternate fue ls, like ketone bodies, provided during glucose depletion, 
which is beyond the scope of this thesis. 

24 In mammalian ce lls, the Warburg effect occurs under aerobic conditions, contrarily to the lactate
producing anaerobic glycolytic process. Tt should not be confused with the Warburg effect that occurs 
in plants, describing decreased photosynthesis in hyperoxic conditions. 
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namely reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine 

dinucleotide (F ADH2), whose electrons are funnelled through the electron transport 

chain of the inner mitochondrial membrane and are relinquished to the terminal 

electron acceptor, oxygen, to yield water. Concurrently, this electron traffic establishes 

a transmembrane proton gradient serving to power the synthase that ultimately pro duces 

ATP (30-36 per molecule of glucose). 

Although this energy production pathway is present in sorne form or other in 

aIl ceIls, it is highly ramified and shares intermediates with a plethora of other parallel 

metabolic routes. A few of these are indeed relevant in the brain and in a 

hyperglycaemic setting, but, for the sake ofbrevity, only the most salient ofthese will be 

discussed in the next subsections. 

Glucose 

(il) ppp - - -~ H' 
c ~ Glucose- 6P 

NAOf>+ X GSSG X ROOH 

NAOPH GSH ROH 

~ ... ...;;......;..---~, GPI + 
(iii) ~ 

Fructose- 6P 

PFK ~ 
Fructose-l.6P, 

Aldolil5e ,/' 

OHAP ~GA3P 
TPI 

GAP OH 
2Aœ+2NAO+ 

2ATP+ 2 NADH 

CO, 

Ribulose-SP 

~ __ R_ibo_se-_ S_P_XTKXylUIOse-SP 

~ 
Sedoheptulose-7P 

TA 
Erythrose-4P 

TK 

Pyruvilte ___ ). +- 0, 
NAOH ~ 

NAO+ 4 
... _.....;. Lactate 

\ ... 
(l) Glycolysis 

Lactate 

3G-36ATP ~CO,+H,O 
, 

(Iv) Oxidiltive 
Phosphoryliltlon 

Figure 1.13 Schematic representation of glucose metabolism and pertinent 
connecting pathways in neurons and astrocytes. 
Continued on next page. 
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(Continued.) Glucose is processed principally via glycolysis (i) leading up 
to oxidative phosphorylation (iv) with the intent of producing ATP for 
energy. However, glucose metabolites can also be diverted into tangential 
pathways. In astrocytes, glucose 6-phosphate (G6P) can be transformed 
into glycogen by glucokinase (iii). In neurons, the pentose phosphate 
pathway (PPP) is crucially provided by G6P for the maintenance of 
a proper redox status via the regeneration of the reduced form of 
glutathione (ii). ADP, adenosine diphosphate; DHAP, dihydroxyacetone 
phosphate; GA3P, glyceraldehyde 3-phosphate; GAPDH, glyceraldehyde 
3-phosphate dehydrogenase; GPI, glucose 6-phosphate isomerase; GSH, 
glutathione; GSSG, glutathione disulphide; HK, hexokinase; NAD, 
nicotinamide adenine dinucleotide (NAD+ oxidized, NADH reduced) ; 
NADP, nicotinamide adenine dinucleotide phosphate (NADP+ oxidized, 
NADPH reduced); PFK, phosphofructokinase; ROH, alcohol; 
ROOH, hydroperoxide compound; TPI, triosephosphate isomerase; 
TA, transaldolase; TCA, tricarboxylic acid; TK, transketolase. 
(From Magistretti and Allaman, 2015.) 

1.2.3.1 Specifie metabolic Jates 

Extracellular glucose levels in the CNS are always in excess of demand due to 

favourable GLUT 1 kinetics. Yet, to ensure uninterrupted intracellular glucose 

availability, it is also crucial that the velocities of uptake and metabolism be tightly 

coupled. In neurons, the first step of glycolysis holds a particular importance in this 

regard. Indeed, hexokinase phosphorylates glucose more slowly th an it is taken up by 

GLUT3 (Lowry and Passonneau, 1964; Whitesell et al., 1995; Wilson, 2003). In other 

words, GLUT3 uptake is never limiting and free cytosolic glucose is constantly available 

(Dienel, 2012). Similarly, to secure glycolysis with a sustained flow of metabolites, 

especially during neuronal activity, engagement of glucose in the pathway must not be 

rate-limiting. In this respect, processing of glucose by hexokinase allows neurons to 

"stock" fuel in the form of G6P. However, since hexokinase is inhibited by G6P, 

its accumulation is somewhat limited. Nevertheless, A TP levels dwindle during neuronal 

activation, thereby relieving the inhibition on downstream rate-limiting PFK and 

favouring the expenditure of accrued metabolites between hexokinase and PFK. In tum, 

hexokinase is disinhibited due to the consequent reduction of G6P pools and can once 

again phosphorylate glucose to provide the glycolytic pathway with substrates. 

These gating processes allowing the accumulation of glycolytic intermediates act as a 
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buffering system to account for the short-lived gap between activity-induced ATP 

utilization and its metabolic renewal (Mangia et al., 20 Il). 

As previously stated, the brain almost fully oxidizes the glucose it takes up. 

Precisely, the oxygen-glucose index ratio (equation 1) in humans is estimated at 5.5 in 

a resting state and 5.0 during neuronal activation, where 6 represents full stoichiometric 

oxidation (equation 2) (Shulman et al., 2001; Siesjo, 1978; Sokoloff, 1999). 

cerebral metabolic rate of O2 
oxygen-glucose index = . 

cerebral metaboltc rate of glucose 
(1) 

(2) 

These observations have been interpreted as the utilization of glucose for non-oxidative 

processes, which infers bypassing oxidative phosphorylation (Shulman et al., 2001). 

The engagement of glucose in the Warburg effect25
, the synthesis of amino acids, 

the glycation of macromolecules and the ppp are al! non-oxidative mechanisms 

suggested to explain the oxygen-glucose index gap. However, within the context of this 

thesis, we will only discuss the fate of glucose in the ppp (Clarke and Sokoloff, 1999; 

Dienel, 2009; Shulman et al., 2001). 

The ppp is best known for its pivotaI role in supplying ribose 5-phosphate for the 

synthesis of nuc1eic acids in mitotic cells (see for review Lehninger et al., 1995). 

However, its importance in neurons rather dwells in the recyc1ing of nicotinamide 

adenine dinuc1eotide phosphate (NADPH), a vital redox cofactor (Kletzien et al., 1994). 

The glycolysis metabolite G6P is the entrance point to the ppp via the rate-limiting 

enzyme glucose 6-phosphate dehydrogenase (Figure 1.13). A sequence of non-oxidative 

25 The Warburg effect consists in the non-oxidative transformation of 1 molecule of glucose into 
2 molecules of pyruvate through glycolysis, which yields 2 ATPs and uses up 2 NAD+ cofactors. 
Subsequent reduction of 2 pyruvates into 2 lactates via the Warburg effect restores 2 NAD+ cofactors. 
During sustained neuronal activity, ATP can be produced very rapidly from glucose without the need 
for oxidative phosphorylation via a self-renewing cycle. The lactate produced can be additionally 
converted into pyruvate to drive the tricarboxylic acid cycle and, therefore, oxidative phosphorylation. 
However, its concentrations harvested through the Warburg effect are predicted to outstrip energetic 
needs and may therefore be released unprocessed into the circulation via monocarboxylate transporters, 
accounting for part of the 0.5 oxygen-glucose index gap between resting and active states (Shulman 
et al., 2001). 
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reactions regenerates 2 molecules of NADPH from G6P and returns the intermediate 

back on the glycolytic track through the production of GA3P or F6P. Irnportantly, 

NADPH produced by the ppp is employed by glutathione reductase to restore oxidized 

glutathione to its reduced and useful form26 (Hothersall et al. , 1979; Kletzien et al., 

1994). Indeed, by virtue of glutathione's detoxifying action on ROS, studies support a 

potent antioxidative role for the ppp in neurons and astrocytes (Ben-Yoseph et al., 

1996a, 1996b; Bolafios et al., 2008; Herrero-Mendez et al., 2009; Kussmaul et al., 1999; 

Vaughn and Deshmukh, 2008). Pertaining to the oxygen-glucose index gap, attention 

must rather be drawn to the shared metabolic intermediate between glycolysis and PPP, 

F6P, since it stands upstream from any irreversible reactions in the glycolytic pathway, 

as opposed to GA3P found downstream from the unidirectional PFK enzyme and 

destined to oxidative phosphorylation. Combined with evidence for a bottleneck effect 

at the level of PFK in neurons27 (Bolafios et al., 2010; Herrero-Mendez et al., 2009), 

sorne have suggested that F6P is recycled through the PPP by catalytic revers ion to G6P 

(Bouzier-Sore and Bolafios, 2015). Therefore, any fraction ofthese metabolites that keep 

cycling through the non-oxidative PPP may weil account for a portion of the 

0.5 stoichiometric gap between glucose and oxygen use (Bouzier-Sore and Bolafios, 

2015). 

1.2.3.2 Current hypotheses in neuroenergetics 

For the most part, the metabolic processes described above have not been clearly 

ascribed to neurons or other brain cells on account of the lack of consensus per the 

proportion of glucose absorbed and metabolized by each compartment. For the past 

20 years, the field of neuroenergetics has been a battleground of ideas around this 

26 Glutathione, or y-L-glutamyl-L-cysteinylglycine, is a pseudo-tripeptide whose thiol moiety acts as a 
reducing agent. Glutathione peroxidase catalyzes the transfer of electrons between two glutathiones and 
one hydrogen peroxide molecule, yielding water and one glutathione disulphide, a condensation of 
two oxidized glutathiones. Glutathione disulphide is reverted to its useful form, reduced glutathione, 
by glutathione reductase. Glutathione transferase can also catalyze the addition of glutathione onto 
potentially toxic xenobiotics. 

27 The bottleneck effect is described in section 1.2.3 .2. 
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emgma, ansmg mainly from two groups that allot differential importance to these 

processes in neurons and astrocytes28. 

The first group, spearheaded by Pellerin and Magistretti, defends the position that 

astrocytes, and not neurons, are the principal site of glucose uptake, especially during 

neuronal activation (Pellerin and Magistretti, 1994). In tum, astrocytes pro vide energy to 

neurons in the form of lactate, a hypothetic process hence termed the astrocyte-neuron 

lactate shuttle29 (Figure 1.14). According to this the ory, astrocytes are predominantly 

glycolytic, meaning that the y utilize glucose to produce lactate through glycolysis and 

the Warburg effect. On the other hand, neurons are rather oxidative and transform 

astrocyte-derived lactate into pyruvate, which is metabolized through the tricarboxylic 

acid cycle to power oxidative phosphorylation. The authors put forward two central 

arguments: 1) astrocytes import more glucose than neurons; 2) neurons cannot 

upregulate their rate of glycolysis. The first contention hinges on evidence 

demonstrating astrocytes as importing more than 50-90% of available brain glucose 

(Barros et al., 2009; Nehlig et al., 2004; Vega et al. , 2003). The second is based 

on studies revealing that the levels of a specific enzyme, 6-phosphofructo-2-

kinase/fructose-2,6-bisphosphatase 3 (Pfkfb3), are markedly downregulated in neurons 

compared to astrocytes due to constant proteasomal degradation (Bolaiios et al., 2010; 

Herrero-Mendez et al., 2009). Pfkfb3 phosphorylates F6P to produce fructose 

2,6-bisphosphate (Fru-2,6-P2) known to activate one of the key rate-limiting glycolytic 

enzymes, PFK. The authors therefore con tend that sparse expression of Pfkfb3 in 

neurons explains the bottleneck effect at the level of PFK, liable for its lirnited glycolytic 

capacities. 

28 A heated debate took place a few years ago between these two groups in the Journal of Cerebral Blood 
Flow and Metabolism. A succession of commentaries offers very interesting insight into the arguments 
hired by both parties to support their theories (Jolivet et al., 2010; Mangia et al., 20 II) . 

29 Later biophysical computations and physiological applications came in support of this model 
(Aubert and Costalat, 2005; Aubert et al., 2007; Béland-Millard et al., 2017; Machler et al., 2016). 
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The second theory, termed the core model3o, is advocated by Mangia, Simpson and 

Vannucci, and rather posits that the lactate shuttle effect is negligible (Mangia et al., 

2009; Simpson et al., 2007). Their computational model relies on the same variables 

used by the former group, with the exception that it considers experimentally measured 

transporter kinetics and distribution patterns throughout the brain. Taking into account 

these additional parameters, this group arrives at the conclusion that neurons constitute 

the main site of glucose uptake. To bolster their position, they recapitulated and 

invalidated the two main arguments in support of the former model. First, regarding the 

preferred astrocytic uptake of glucose, sorne of the studies demonstrating a greater 

glucose influx in favour of astrocytes (80-90%) were performed in cerebellar slices 

(Barros et al., 2009) and ex vivo rat vagus nerves (Vega et al., 2003), which may po orly 

represent physiological situations. Other reports in freely moving animais indeed 

moderate these numbers and rather support equal partitioning or even preferential 

neuronal uptake (50-80%) (Nehlig et al., 2004; Zielke et al., 2007). Second, while the 

former group argues that glycolytic activity is capped in neurons due to the bottleneck 

effect at PFK (Bolafios et al. , 2010; Herrero-Mendez et al., 2009), Mangia and 

colleagues contend instead that PFK may be activated by metabolites other th an 

Fru-2,6-P2, thus, that glycolysis can be enhanced31 (Ogushi et al. , 1990). In support of 

this, other neuronal monosaccharidic metabolites were found to be more potent 

activators of PFK, and Fru-2,6-P2 appears to be expendable in the amplification of 

glycolysis during neurotransmission (Ogushi et al., 1990; Pauwels and Trouet, 1984). 

Based on these arguments, the core model stipulates that neurons, and not astrocytes, 

take up more glucose and account for lactate transients during brain activity. 

In a final attempt to reach a consensus, one group gathered both models into a 

unified computational framework, which ultimately favoured the theory that astrocyte

neuron lactate shuttling is negligible, that neurons are the principal glucose consuming 

30 This position is bolstered by physiological evidence that contradicts the studies in support of the 
astrocyte-neuron lactate shuttle (Diaz-Garcia et al. , 2017; Drulis-Faidasz et al. , 2019; Hall et al., 201 2). 

31 Simpson and colleagues further provide reports that indirectly contradict the alleged lack of glycolysis 
upregulation, showing ri ses in surface GLUT3 in response to neuronal activity a nd, by the same token, 
proving that neurons di spose of purposeful pathways for controlling internaI energy supplies, Iikely via 
glycolytic processes (Ferreira et al. , 2011 ; Weisova et al. , 2009) . 



53 

cells of the CNS, and that they can carry out both glycolysis and oxidative 

phosphorylation (DiNuzzo et al., 2010). Regardless of whether neurons constitute the 

preferential consumers of glucose, we can cautiously surmise that intraneuronal glucose 

levels rise during hyperglycaemia and that they fuel ATP production at least partially 

through oxidative phosphorylation. However, these models have not been specifically 

applied to different neuronal subtypes such as dopaminergic neurons or to various brain 

regions, such as the midbrain and striatum, which aU are likely to exhibit distinct 

metabolic behaviours. 
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Figure 1.14 A schematic representation of the astrocyte-neuron lactate shuttle 
theory. 
The premise of this school of thought provides that astrocytes are more 
glycolytic and neurons are more oxidative. It is proposed that the 
bottleneck effect at the level of PFK is seemingly more pronounced in 
neurons and accounts for their low glycolytic capacity. A direct corollary 
of this is that lactate must be shuttled to neurons for it to be able to 
produce ATP. Glo, glyoxalase; Ox Phos, oxidative phosphorylation; 
PDH, pyruvate dehydrogenase; Pfkfb3 , 6-phosphofructo-2-kinase/ 
fructose-2 ,6-bisphosphatase 3; PKM, pyruvate kinase lsozymes. 
(From Magistretti and AUaman, 2015.) 
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1.2.4 Neuronal oxidative stress in hyperglycaemia 

The clinical significance of hyperglycaemia emerged upon its formai identification 

as the prime culprit in comorbid diabetic complications (Diabetes Control and 

Complications Trial Research Group, 1993; Gaede et al. , 2008; Giacco and Brownlee, 

2010; UK Prospective Diabetes Study Group, 1998). The most affected collateral targets 

in diabetes mellitus are the kidneys, the cardiovascular system and the nervous system 

(Nathan, 1993). Within each ofthese tissues dwell cells that are preferentially vulnerable 

to hyperglycaemia, namely mesangial cells of renal glomeruli, endothel ial capillary 

celIs, and brain cells. Despite their many functional and phenotypic differences, 

these cells share the distinct liability of taking up glucose in a manner that is reliant on 

extracellular concentrations (Heilig et al. , 1995; Kaiser et al., 1993). Indeed, mesangial 

and endothelial cells predominantly express insulin-independent GLUT1 (Brosius and 

Heilig, 2005; Mueckler and Thorens, 2013 ; Sone et al. , 2000); likewise, brain cells 

express several insulin-independent GLUTs, chiefly GLUT1 and GLUT3 (Mantych 

et al. , 1992; Nagamatsu et al. , 1993; Simpson et al. , 2008). Although it is c1ear that 

glucose concentrations rise in these ce Ils un der conditions of hyperglycaemia, 

how exactly cellular damage occurs is not as forthright. The CUITent concensus is that 

oxidative stress explains hyperglycaemia-induced diabetic complications32 (Araki and 

Nishikawa, 2010; Brownlee, 2005; Ceriello, 2003 ; Giugliano et al. , 1996) . 

Oxidation is a ubiquitous phenomenon common to al! organisms that engage in 

aerobic respiration for energy. Indeed, ROS are mainly produced from the leakage of 

the mitochondrial electron transport chain during oxidative phosphorylation, but can also 

arise from other endogenous (e.g. , monoamine oxidase activity, dopamine auto

oxidation, Fenton reactions in the presence of transition metals, etc.) or exogenous 

sources (e.g., exposure to pesticides, smoking, ultraviolet and ionizing radiations, 

pollution, etc.). Although required for a number of desirable physiologica1 processes, 

the excessive generation of ROS can affect almost aIl cellular components, namely 

32 Understanding the link between hyperglycae mia and diabetic complications required the discovery of 
particular markers in the blood and tissues of diabetic patients indicating a state of oxidative stress 
(Cheng and Gonzalez, 1986; Jones el al. , 1988; Matkovics et al. , 1982). 
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DNA, lipids and proteins (Barzilai and Yamamoto, 2004; Niki, 2008). To cope with 

the unavoidable production of ROS, antioxidative defences are provided endogenously, 

by superoxide dismutase (SOD), catalase, urate, ascorbate and glutathione, or 

exogenously, by vitamins, polyphenols and other nutrients found in the di et. Per se, 

oxidative stress arises from an imbalance between the generation and clearance of ROS, 

in favour of the former, and may ultimately provoke cell death. This inability to cope 

with an oxidative overload constitutes a key pathological element, not only in 

hyperglycaemia (Brownlee, 2005; Wolff et al. , 1991), but also in Parkinson ' s disease 

(Hwang, 2013; Schapira and Jenner, 2011 ; Tsang and Chung, 2009) and aging (Finkel 

and Holbrook, 2000; Pérez et al. , 2009). 

In consummg approximately 20% of total inhaled oxygen (Jain et al. , 20 lO; 

Quastel and Wheatley, 1932), the brain is doubtlessly susceptible to undergo oxidative 

stress. Indeed, processing of this oxygen implies engagement of oxidative 

phosphorylation, which inexorably entails the generation of mitochondrial ROS (Kudin 

et al. , 2004; Liu et al. , 2002). Owing to their steep demands in ATP, neurons possess a 

high basal oxidative metabolism compared to other types of cells in the brain or 

elsewhere, and are thus plausibly more vulnerable to additional sources of stress. 

Although the literature do es not provide an adequate account of the mechanisms 

underlying hyperglycaemia-induced oxidative stress in the CNS, let alone in nigrostriatal 

dopaminergic neurons, we can speculate on the events that contribute to this critical 

coping threshold based on experimental data and our knowledge of neuronal glucose 

metabolism. 

1.2.4.1 Mitochondrial mechanisms 

Following an upsurge in intraneuronal glucose, a plausible event that may occur is 

an amplified flux of electron donors toward oxidative phosphorylation. In a first 

scenario, high intraneuronal glucose concentrations may provide the glycolysis pathway 

and tricarboxylic acid cycle with more fuel , culminating in the increased production of 

electron donors and the improvement of oxidative phosphorylation. In a second scenario, 
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ta king into account the possibility of an astrocyte-neuron lactate shuttle in 

hyperglycaemia, lactate may be converted to pyruvate to power the tricarboxylic acid 

cycle in neurons. The end result remains the enhanced solicitation of the electron 

transport chain. 

Many have indeed advocated the theory elaborated by Brownlee and colleagues, 

postulating that the production of superoxide anion by the overworked electron transport 

chain constitutes the initial oxidative insult that takes place in cells vulnerable to 

hyperglycaemia, including neurons (Brownlee, 2005; Du et al. , 2001; Giacco and 

Brownlee, 2010; Nishikawa et al., 2000; Tomlinson and Gardiner, 2008). The premise 

of this theory hinges on electron transport chain overload, resulting from increased 

delivery of electrons by donors formed via the glycolytic pathway or the tricarboxylic 

acid cycle (Figure 1.15). Normally, electron transport chain leaks are estimated to occur 

at a rate of 1-3% (Boveris, 1977; Kudin et al., 2004; Liu et al., 2002), but other studies 

demonstrate that hyperglycaemia elicits an early production of superoxide anion beyond 

basal levels (Du et al. , 2001; Nishikawa et al. , 2000). Hence, superoxide anion exceeds 

antioxidative defences and reacts with mitochondrial molecules to form secondary ROS 

that are apolar, thus, free to diffuse across membranes and to damage the various 

constituents of the ceIl, including nuclear DNA. The resulting strand breaks activate the 

NAD+-dependent DNA repair enzyme, poly(adenosine diphosphate-ribose) polymerase 

(PARP), whose catalytic activity inhibits a key glycolytic enzyme, GAPDH33 (Du et al. , 

2003) (Figure 1.16). Obstruction of glycolysis at GA3P causes upstream intermediates to 

be rerouted toward deleterious tangential pathways. It is proposed that generation of 

ROS by these pathways contributes to a self-perpetuating cycle of DNA damage, P ARP 

activation and GAPDH inhibition, leading to a permanent glycolytic impasse and 

sustained oxidative stress (Brownlee, 2005). 

33 Alongside adenosine di phosphate (ADP)-ribosylation by PARP, oxidative stress also di rectly inhibits 
GAPDH. Together, these mechanisms a\low for the dynamic rerouting of glucose through the ppp with 
the aim of producing NADPH co factors for the renewal of the cofactor glutathione by glutathione 
reductase (Ralser et al., 2007). The sum result remains the impediment of glycolysis. 
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Figure 1.15 Hyperglycaemia-induced generation of superoxide anion at the level 
of the mitochondrial electron transport chain. 
Electron traffic through the complexes (I-IV) of the chain allows the 
pumping of protons into the mitochondrial intermembrane space, which 
affords an electrochemical potential difference that powers A TP synthase 
(Trumpower, 1990). Protons are usually trafficked back into the matrix by 
ATP synthase, paired to its catalytic activity, and by uncoupling protein-
1, which generates heat to alleviate overly steep gradients. However, 
when electron transport is profuse, the transmembrane potential increases 
faster than it can be dissipated by ATP synthase and uncoupling protein-
1. Above a certain potential threshold, certain complexes, especially 
complex III, of the electron transport chain undergo inhibition and begin 
to leak their electrons, which are in turn captured by oxygen to pro duce 
superoxide anion (Adam-Vizi, 2005 ; Korshunov et al., 1997; Kwong and 
Sohal, 1998; Starkov et al., 2004). Owing to its negative charge that 
prevents it from crossing phospholipid bilayers, superoxide anion remains 
trapped within mitochondria. There, it is usually deactivated by the 
mitochondrial superoxide dismutase (SQD) into peroxide, another 
reactive oxygen species (ROS) that can cross phospholipid bilayers and 
damage other components of the cell. An upsurge in oxidative 
phosphorylation as it occurs in states of high intracellular glucose 
availability will necessarily increase superoxide anion generation. 
Cyt c, cytochrome c; e-, electron; 0 2·-, superoxide anion; Pi, inorganic 
phosphate; Q, quinone; UCP, uncoupling protein. (From Brownlee, 
2005.) 
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Figure 1.16 Detrimental activation ofPARP in response to DNA damage. 
Oxidative stress leads to ROS-induced nuclear DNA damage responsible 
for activating poly(adenosine diphosphate-ribose) polyrnerase (PARP). 
Besides repairing single-stranded DNA nicks, it also operates as an 
adenosine diphosphate-ribosyl transferase (Sawa et al., 1997; Schmidtz, 
2001). One of its targets is GAPDH, known to shuttle between the cytosol 
and the nucleus. Upon ADP-ribosylation, GAPDH is inactivated, thereby 
contributing to the accrual ofupstream glycolysis rnetabolites. Moreover, 
if PARP is not inactivated, it can lead to the depletion of the NAD+ 
cofactor. ADPR, adenosine diphosphate ribosyl; NA, nicotinamide. 
(From Brownlee, 2005.) 

It is important to note that the key results in support of Brownlee's theory were 

obtained in bovine aortic endothelial cells treated with 30 mM of glucose for 7 da ys 

(Du et al., 2001; Nishikawa et al., 2000). Consequently, these conditions may not reflect 

what occurs in the brains of animais exposed to high levels of glucose. A small body of 

literature investigating these mechanisms in the CNS and the periphery of rodents does 

not clearly validate this model in neurons. In fact, whether at the level of glycolysis or 

the tricarboxylic acid cycle, the data inconsistently reports up- or downregulation of 

these pathways, both in peripheral nerves or brains of hyperglycaemic rodents (Akude 

et al., 2011; Chowdhury et al., 2010; Hinder et al., 2013; Kaur and Bhardwaj, 1998; 

Price et al., 2006; Thakran et al., 2003; Thurston et al., 1995; Zheng et al., 20 17) . 

However, with regard to oxidative phosphorylation, most studies revealed a decreased 

activity or expression of electron transport chain constituents in the brain and in 

peripheral sensory neurons (Aghanoori et al., 2017; Akude et al., 2011; Chowdhury 
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et al., 2010; Kaur and Bhardwaj, 1998; Stancié et al. , 2013). A closer look at the 

duration of hyperglycaemia affords a clearer understanding of the process. Early events 

in hyperglycaemia cause the upregulation of glycolysis and tricarboxylic acid cycling 

(Kaur and Bhardwaj, 1998; Price et al., 2006; Thakran et al. , 2003; Thurston et al., 

1995). Later, however, these pathways are impeded (Aghanoori et al., 2017; Akude 

et al., 2011; Chowdhury et al., 2010; Hinder et al., 2013; Zheng et al., 2017). At aIl time 

points, oxidative phosphorylation is impaired (Aghanoori et al., 2017; Akude et al., 

2011; Chowdhury et al., 2010; Kaur and Bhardwaj, 1998; Stancié et al., 2013). In other 

words, dysfunction of mitochondrial respiration likely occurs before glycolysis and 

tricarboxylic acid cycle hindrance. This supports the theory that hyperglycaemia induces 

an early upsurge in glucose metabolism leading to the initial insult arising from 

mitochondrial respiration (Brownlee, 2005; Du et al., 2001; Giacco and Brownlee, 2010; 

Nishikawa et al., 2000; Tomlinson and Gardiner, 2008). However, since the model 

proposed by Brownlee does not account for precise cellular effects of long-term 

hyperglycaemia, it cannot explain the global impairment of glucose metabolism 

observed at later time points. 

Among these studies, very few groups measured superoxide amon levels and 

proper mitochondrial respiration. In these reports, solely performed in peripheral sensory 

neurons of long-term hyperglycaemic rats, superoxide anion production and respiration 

rates were downscaled even when corrected for mitochondrial numbers, despite overt 

manifestations of oxidative stress (Aghanoori et al., 2017; Akude et al., 20 Il; 

Chowdhury et al., 2010). This may indicate that sustained hyperglycaemia causes the 

waning of mitochondrial respiratory functions over time, sparing superoxide anion 

production while ROS generation is maintained by non-mitochondrial sources. 

One explanation provides that the initial superoxide anion overload proposed by 

Brownlee's model may cause deleterious mutations in mitochondrial DNA, leading to 

defects in electron transport chain components that in tum generate more ROS34
. 

34 Unlike nuclear DNA, mitochondrial DNA lacks protection afforded by histones and repair enzymes. 
For this reason, the rates of mutagenesis in mitochondria are relatively high. Sorne subunits of 
complexes l and IV of the electron transport chain are encoded in mitochondrial DNA and, thus, 
are highly susceptible to mutation-induced impairments (Wei , 1998). 
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In the long term, excessive oxidative damage to mitochondrial DNA may impair 

respiratory chain expression altogether, causing the observed shortfall in superoxide 

anion35 (see for reviews Guo et al., 2013; Wei, 1998). Although studies employing 

proper animal models of hyperglycaemia have not investigated very early mitochondrial 

events in neurons, a prompt increase in superoxide anion is observed following 

ischaemia-reperfusion, a paradigm similar in sorne respects to a transient nse ln 

glycaemia (Iwata et al., 2014; Muranyi and Li, 2006; Won et al. , 20 15). 

1.2.4.2 Rerouting mechanisms: polyol pathway and macromolecule glycation 

Aside from ROS generated through mitochondrial failure, hyperglycaemia may 

trigger the onset of oxidative stress via pathways that dwell upstream in glycolysis. 

As previously demonstrated, free glucose is present in the cytosol of neurons and its 

concentrations rise during hyperglycaemia. Under normal circumstances, hexokinase is 

mandated to transform available glucose into G6P. However, due to substrate-mediated 

inhibition, it can only engage a fraction of cytosolic glucose along the glycolytic 

pathway before it is saturated. Excess glucose is therefore consumed by other pathways 

and is constantly replenished by high extracellular levels. The principal compensatory 

outlets are the polyol pathway and macromolecule glycation. 

The polyol pathway is driven by aldose reductase whose affinity for glucose is 

relatively low (Gabbay et al., 1966). Under normal glycaemia, aldose reductase does not 

appoint glucose to the polyol pathway, but high intraneuronal concentrations drive its 

catalytic activity. Aldose reductase preferentially employs the NADPH cofactor, 

produced by the PPP, to reduce glucose into the polyalcohol sorbitol (Lee and Chung, 

35 Another explanation is that the increased glucose availability may provide ample supply of ATP via 
the non-respiratory Warburg effect, thereby circumventing the need for oxidative phosphorylation 
and culminating in a downward adjustment of mitochondrial functions , akin to the Crabtree effect 
(Hamberger and Hyden, 1963; Ibsen, 1961). Accounts of thi s are , however, inconsistent in 
hyperglycaemic models (Herse and Petchell, 1998; Koziel et al. , 2012 ; Padnick-Silver and Linsenmeier, 
2003). 



61 

1999)36. Sorbitol then undergoes enzymatic converSIOn to fructose by sorbitol 

dehydrogenase, which exploits the important co factor NAD+ (Verdin, 2015; Williamson 

et al., 1993; Wu et al., 2016) (Figure 1.17). Increased processing of glucose through the 

polyol pathway thus drains pools of cofactors required for the activity of a plethora of 

enzymes, including glutathione reductase, GAPDH and others in the glycolytic pathway 

and tricarboxylic acid cycle (Vander Jagt et al., 1995). 
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Figure 1.17 NAD in glucose metabolism. 
This schematic represents the nurnerous enzymes that require the 
NAD+ cofactor to function and highlights the hazard that its depletion 
represents for the maintenance of normal metabolism. Acetyl-CoA, acetyl 
coenzyme A. (From Wu et al., 2016.) 

36 A possible noxious effect of driving the polyol pathway was first proposed to be osmotic damage, 
seeing as cells do not export sorbitol efficiently. However, sorbitol concentrations measured in diabetic 
nerves and capillaries were too low to endorse thi s effect (Brownlee, 2001). 
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The second outlet of excess glucose is via macromolecule glycation, which may 

indirectly contribute to oxidative stress (Vicente Miranda et al., 2016). Glycation 

consists of the slow non-enzyrnatic, energy-independent, covalent addition of a 

monosaccharide to macromolecules, usually lipids or proteins termed advanced 

glycation end-products (AGEs)37 (Figure 1.18). Although glucose is a poor glycating 

agent, one of its downstream metabolites, methylglyoxal, exceeds its reactivity 

20000 times (Thomalley, 2005). Methylglyoxal is formed from the non-enzyrnatic 

degradation of triose phosphates, such as the glycolysis intermediate GA3P, and readily 

glycates proteins at the level of arginine and lysine residues (Ahmed et al., 1997; 

Oya et al., 1999; Phillips and Thomalley, 1993; Richard, 1984; Shipanova et al., 1997; 

Thomalley et al., 1999). Intracellular AGEs produced via this pathway are harmful to 

cells because of the loss or alteration of their normal prote in or lipid functions, but also 

by virtue of the mechanisms in place to ensure the prophylactic clearance of glycating 

agents (Ahmed et al. , 2003). Indeed, methylglyoxal and other agents are enzyrnatically 

degraded by glyoxalase and aldose reductase (Izaguirre et al., 1998; Monder, 1967; 

Sousa Silva et al., 20 13; Vander Jagt et al., 1992). In the setting of hyperglycaemia, 

excess glycating agents may overwhelm these pathways and lead nonetheless to AGEs, 

evidenced by the proportional rise in CNS glycation as a function of glycaemia, which 

can reach an exorbitant 34-fold increase (Uchiki et al., 2012). Most importantly, 

however, glyoxalase employs gluthathione to deactivate molecules, while we know that 

aldose reductase depletes pools of NADPH (Schieber and Chandel, 2014; Thomalley, 

1988). Therefore, methylglyoxal and other glycating agents derived from glucose or 

its metabolites indirectly worsen the oxidative status of neurons by monopolizing 

endogenous antioxidative defences or the cofactors necessary for their restoration. 

Since glycation is a non-specific and spontaneous reaction, AGEs may also occur 

extracellularly. These activate deleterious inflammatory pathways by binding their 

designated membrane receptor, RAGE (Jakus and Rietbrock, 2004; Singh et al., 2001). 

37 In diabetic patients, the gold standard in the assessment of systemic glycation, thus of the severity of 
hyperglycaemia, consists in quantification of circulating glycated haemoglobin (Kovatchev, 2017). 
In fact, on account of the graduaI nature of these reactions, this measure is insensitive to daily glycaemic 
fluctuations and rather indicates glycaemic control spanning over the previous few weeks. 
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Binding of RAGEs by AGEs or other endogenous ligands induced by hyperglycaemia is 

a known mechanism of systemic inflammation in diabetes mellitus and can trigger 

intracellular signalling cascades that lead to the activation of nuc1ear factor kappa-light

chain-enhancer of activated B cells (NF-KB) (Bierhaus et al., 2005; Haslbeck et al., 

2007; Rong et al., 2005). In the brain parenchyma, neuroinflammation primarily 

mediated by glial cells can exert additional extraneuronal oxidative injuries38. 
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Figure 1.18 The chemistry of protein glycation. 

CH , - NH - Protein 
1 

c=o 
1 

• HO-C-H 
1 

H-C-OH 
1 

H-C-OH 
1 

CH,OH 

Ketoamine 
(Amadori Product ) 

1 
AGE - Protein - AGE 
(Protein crosslink) 

Glycation begins by the formation of a Schiff base wherein the aldehyde 
group of a glycating agent will bind the amino group of a lysine or 
arginine molecule in a protein. This is followed by the formation of an 
Amadori product, consisting in a rearrangement of the hydrogen from the 
hydroxyl group adjacent to the imine of the Schiff base onto the nitrogen, 
which yields a ketone function. The ultimate formation of an advanced 
glycation end-product (AGE) requires the oxidation of the Amadori 
product, usually catalyzed by transition metals (see for review Jakus and 
Rietbrock, 2004; Singh et al., 2001). (From Gkogkolou and B6hm, 2012.) 

Gathering ail the evidence, hyperglycaemia wields its detrimental effects on 

neurons by an assortment of conceivable mechanisms leading to oxidative stress: 

1) The initial rise in glucose metabolism enhances oxidative phosphorylation, 

which intensifies the rate of superoxide anion formation at the electron transport 

38 We have reviewed the cellular and molecular mechanisms underlying neuroinflammation 10 

Appendix A. The article was published in the French language. 
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chain. On the one hand, superoxide anion damages mitochondrial DNA, causing the 

expression of respiratory components prone to generate more ROS, which may lead 

to global mitochondrial failure in the long term. On the other hand, superoxide 

anion creates more ROS that cause nuclear DNA strand breaks, thereby activating 

PARP. 

2) Increased expenditure of NAD+ by P ARP slows the rates of glycolysis, 

tricarboxylic acid cycling and oxidative phosphorylation operating via enzymes that 

require this cofactor. PARP may also ADP-ribosylate and inhibit the glycolytic 

enzyme GAPDH, which provokes upstream accumulation of metabolites. 

3) Accrued levels of GA3P upstream of GAPDH are non-enzymatically converted into 

the glycating agent methylglyoxal whose decomposition by glyoxalase and aldose 

reductase expends antioxidative cofactors, such as glutathione and NADPH. 

4) Excess glucose can be diverted into the deleterious polyol pathway, powered once 

again by aldose reductase that further depletes stocks of NADPH required for the 

renewal of the antioxidative co factor glutathione. 

What emerges here is a number of different pathways that collectively cause a 

shortage of antioxidant defences layered with mitochondrial dysfunction, two pivotai 

factors likely responsible for pushing vulnerable cells beyond the critical coping 

threshold. The sum of these undesirable processes appears to be particularly relevant in 

neurons, in light of their relatively low glutathione levels and their reliance on the ppp 

for its rapid regeneration (Bolafios et al., 1995; Kang et al., 1999). In fact, insufficient 

provision of the ppp leads to poor regeneration of glutathione and neuronal apoptosis 

(Herrero-Mendez et al., 2009). Neurons may reach the coping threshold quicker than 

other brain cells, for instance astrocytes that display comparatively greater ppp activity 

(Garcia-Nogales et al. , 2003; Herrero-Mendez et al., 2009). 

Most importantly, the proposed molecular events leading to neuronal oxidative 

stress in hyperglycaemia, explicitly via increased superoxide anion generation (Ziegler 

et al. , 2015), mitochondrial dysfunction (see for review Patti and Corvera, 2010), 

PARP activation (Obrosova et al., 2005), impairment of the PPP (Ziegler et al., 2017), 
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glycation (Aubert et al., 2014) and glutathione system deficits (Kasznicki et al., 2012 ; 

Mendez et al., 2015), are all cogently established in diabetic patients with neuronal 

pathology. Remarkably, clinical trials employing pharmacological agents to target sorne 

of these pathways, notably aldose reductase inhibitors to diminish polyol pathway influx 

(Greene et al., 1999; Kawai et al. , 2010; Obrosova et al., 2002) or exogenous SOD to 

quench superoxide anion (Bertolotto and Massone, 2012), are demonstrated to improve 

diabetic peripheral nerve damage and oxidative status, further solidifying the importance 

of oxidative stress in neuronal affections arising from hyperglycaemia in humans. 

Unquestionably, though, glycaemic control remains the most accessible means to 

preclude oxidative stress-induced diabetic complications in the brain and in peripheral 

nerves (Van den Berghe et al., 2005). 

1.2.5 Vulnerability of the nigrostriatal pathway 

In light of their comparatively heightened basal oxidative burden39, it may be 

surmised that sustained hyperglycaemia may precipitate the death of nigrostriatal 

dopaminergic neurons. The validity of this hypothesis transpires from epidemiological 

evidence suggesting a link between the prime pathologies involving the nigrostriatal 

pathway and hyperglycaemia, explicitly Parkinson 's disease and diabetes mellitus. 

Before describing how they are pathologically interlaced, the latter disease will be 

defined in more detail for contextual purposes. Bearing in mind that a handful of other 

medical conditions also cause hyperglycaemia and may be associated with Parkinson 's 

disease, as is the case for metabolic syndrome (Saaksjarvi et al., 2015), we deliberately 

hold our focus on diabetes mellitus that offers a more tangible collection of experimental 

and clinical evidences to work with. 

1.2.5.1 Epidemiological basis: Parkinson 's disease in diabetic patients 

Diabetes mellitus is the most widespread chronic metabolic disorder estimated to 

affect over 400 million adults worldwide, its prevalence having doubled since 1980 on 

39 Refer to the list ofphenotypic liabilities in section 1.1 .3.4. 



66 

the likely account of the marked ri se in overweight or obese phenotypes in the 

population (World Health Organization, 2016). Today, diabetes has joined the infamous 

list of leading causes of death, responsible for 8.4% of global mortality in adulthood 

(International Diabetes Federation, 2013). Both types l and II diabetes occur from the 

progressive failure of the body to manage circulating blood glucose. However, 

the etiopathogenesis of type l diabetes (5-10% of diabetic patients) is specifically rooted 

in the auto immune destruction of insulin-producing pancreatic ~ cells and usually, 

but not always, develops before adulthood (Yoon and Jun, 2001). On the other hand, 

type II diabetes ensues from peripheral resistance to and deficient production of insulin, 

alongside other secondary metabolic elements. It is more frequently diagnosed in adults 

although youth-onset forrns are dramatically on the rise (Correia et al. , 2008; Nadeau 

et al., 2016). The perceived relative or absolute lack of insu lin control, which especially 

wields its effects on cells harbouring GLUT4 like striated muscle cells and adipocytes, 

culminates in prolonged hyperglycaemia and impaired ability to control glycaemic 

fluctuations , known as glucose intolerance (see for detailed review of their 

pathophysiology Cnop et al., 2005). Other symptoms also include polyuria, polydipsia 

and hyperphagia (increased urination, thirst and hunger, respectively). 

Granted the multiple aspects of health it impinges on, diabetes nurtures the 

development of a myriad Qf diverse comorbid conditions. As previously stated, 

a number of central (encephalopathies) and peripheral (neuropathies) complications are 

associated with diabetes, regardless of the type (Biessels et al. , 2002). Neuropathies 

remain the most prevalent neuronal affections in diabetes, as peripheral nerves are 

devoid of blood-brain barrier protection, which, as we know, serves to limit exposure 

to circulating glucose (Bansal et al. , 2006; Rajabally et al., 2017). Nonetheless, 

encephalopathies are a widely acknowledged feature of diabetes (DeJong, 1950) and 

manifest themselves in the forrn of cognitive decline (Brands et al., 2007; Brayne et al., 

2005; Hofman et al., 1997), white and grey matter atrophy (Moran et al. , 2013), altered 

cortical connectivity (Lyoo et al. , 2013; van Duinkerken et al., 2012), and 

neurodegenerative diseases, predominantly Alzheimer's and Parkinson ' s diseases 

(Armstrong et al. , 2005 ; Correia et al. , 2011; Verdile et al., 2015 ; Vicente Miranda 

et al. , 2016). 
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The first accounts of a possible association between diabetes and Parkinson's 

disease date back to almost 60 years ago. Studies conducted in parallel showed that 

diabetes exacerbates the progression of motor and cognitive deficits in Parkinson's 

disease (Schwab, 1960), and that non-diabetic parkinsonian patients present impaired 

glucose tolerance (Barbeau et al. , 1961) and hyperglycaemia (Boyd et al., 1971). 

Since then, these findings have been reiterated numerous times in treated individuals40 

(Cereda et al., 2012; Lipman et al., 1974; Sandyk, 1993), but also in drug-naïve patients 

who still displayed higher-than-normal levels of fasting blood glucose, within the 

prediabetic diagnostic range41 (Santiago and Potashkin, 2015). In addition, dietary habits 

featuring an elevated intake of high glycaemic indexed carbohydrates42 have more 

recently been associated with greater odds of developing Parkinson's disease (Cheng 

et al., 2009; Murakami et al. , 2010; Okubo et al., 2012; Stafstrom and Rho, 2012; Yang 

and Cheng, 2010). 

In light of accumulating reports showing a possible association between the 

two pathologies, numerous prospective cohort studies were elaborated to unravel their 

temporal relationship (see for reviews Santiago and Potashkin, 2013; Wirdefeldt et al., 

2011) (Table l.8). Most, though not all (Becker et al., 2008; Cereda et al., 2011; Driver 

et al., 2008) showed that pre-existing diabetes is a risk factor for the development of 

Parkinson's disease (Arvanitakis et al., 2007; Cereda et al., 2012; Hu et al., 2007; 

Xu et al., 20 Il). To dispel any doubt, one group addressed the question in a cohort 

10 times larger (1.8 million patients) than previously, and robustly confirmed the risk 

that diabetes represents for the future development ofParkinson's disease (Klimek et al., 

2015). Today, little doubt remains as to the hazard that a diabetic prelude represents in 

the development ofParkinson's disease. 

40 If anything, many dopaminergic drugs employed in the treatment of Parkinson's disease actually exert a 
blood glucose lowering effect (Cincotta et al., 1999; Lopez Vicchi et al. , 2016). 

4\ Prediabetes is defined in humans as fasting blood glucose 5.5-7 mM (100-126 mg/dL), postprandial 
blood glucose 7.8- 1l.! mM (140-200 mg/dL) or glycated haemoglobin 5.7-6.5% (American Diabetes 
Association, 2016). 

42 The glycaemic index of a food is defined as the rise in glycaemia that it occasions 2 hours after 
consumption in humans. Low glycaemic indexed nutrients release glucose slowly and steadily, 
in contrast to high glycaemic indexed foods that cause a rapid hyperglycaemia. 
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Table 1.8 

Recent studies investigating the association between diabetes and Parkinson's disease 

Hu er al., 2007 (5) Cohort study, Finnish population 

Moran er al., 2008 (14) Meta-analysis 

D'Amelia er a/., 2009 (122) Case-<:ontrol 

Palacios er al .. 2011 (101 ) Cohort Sludy 

Schernhammer er al., 2011 [1231 Case-<:ontrol , Danish population 

Xu er al., 2011 (4) 

Bosco er al., 2012 [181 

Menon er al., 2011 [491 

Cereda er a/., 2011 (121) 

Cereda er a/., 2012 (19) 

Cohort study 

Case-control , Italian population 

Genome-wide association study 

Meta-analysis 

Case-control 

PD: 633 Contrais: 51 552 T2DM is associated wlth an increased risk 
01 PD. 

NIA Shared blological pathwavs between PD, 
T2DM, cancer, and inllammation. 

PD: 318 Contrais: 318 Inverse association between PD and 

PD: 656 

PD. 1931 Contrais: 9651 

diabetes preeeding PD onset. 

No association. 

T2DM Is assoclated wlth an increased 
risk 01 PD, espeeially younger onset PD. 

Dlabetes: 21 611 Contrais: T2DM is associated with an increased 
267 051 risk 01 PD. 
PD~emenlia: 53 PD: 57 Insulin resistance is associated with 

an increased risk 01 dementla in PD. 

NIA Shared pathways between PD and T1 DM. 

lA Diabetes appears ta be a risk lactor lor 
PD. 

Diabetes prlor ta PD onset: Dnset 01 T2DM belore onset 01 PD is 
89 Contrais: 89 associated wlth an increased severity 01 

PD symptoms. 

Sun er al., 2012 (124) Case-<:ontrol , Chinese population Diabetes: 603413 Contrais: Diabetes is associated with an increased 
472 718 risk 01 PD onset. 

WahlqviSl er al. , 2012 (61) Case-control , Talwanese population Diabetes: 64 166 Contrais: T2DM is associated with an increased risk 
698587 in PD. Metlormin-sullonylurea therapy 

reduces the rlsk 01 PD. 

& TlDM, type l diabetes melli tus; T2DM, type Il diabetes mellitus. 
(From Santiago and Potashkin, 2013 .) 

From this point onward, the particuJar bond between diabetes and Parkinson's 

disease Joses focus . What exactly triggers nigrostriatal degeneration in Parkinson's 

disease among the multifarious metabolic changes that occur in diabetes remains 

unclear. The two predominant lines of thought grant importance to the dimensions of 

dysfunctional insulin signalling and oxidative stress. Although insulin occupies an 

increasingly acknowledged role in the human CNS, by activating neuron-bound insulin 

receptors responsible for controlling appetite, reward, cognition and memory (Anthony 

et al., 2006; Benedict et al. , 2004, 2007; Craft et al. , 1996; Hallschmid et al. , 2008; 

Khanh et al. , 2014; Reger et al. , 2008), we will address these dimensions in the 

discussion and maintain our focus on oxidative stress for now. 

1.2.5.2 Molecular and cellular bases 

Aside from the epidemiological relationship between Parkinson 's disease and 

diabetes, further clues support the possible susceptibility of nigrostriatal dopaminergic 

neurons in hyperglycaemia. As previously discussed, oxidative stress mediated 

by sustained hyperglycaemic conditions arises from 1) mitochondrial dysfunction, 
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2) activation of the polyol pathway, and 3) macromolecule glycation, which together 

accentuate ROS production and expenditure of antioxidative resources. We will briefly 

illustrate how these features manifest themselves in Parkinson ' s disease and how they 

can be traced back to the phenotypic risk factors identified in nigrostriatal dopaminergic 

neurons. 

One of the most prominent liabilities specific to nigrostriatal dopaminergic 

neurons consists in their vulnerability to mitochondrial dysfunction. Indeed, 

their characteristic pacemaking activity leads to steep intracellular calcium 

fluctuations, known to augment oxidative phosphorylation, mitochondrial membrane 

hyperpolarization and superoxide anion production (Guzman et al. , 2010; PaceUi et al. , 

2015). On top of this, nigrostriatal neurons have a limited ability to bind excess 

intracellular calcium (Dopeso-Reyes et al. , 2014; Iacopino and Christakos, 1990; 

Liang et al., 1996; Yamada et al., 1990) and comprise a relatively high number of 

mitochondria to sustain their dense arbours (Pacelli et al., 2015). It is, therefore, not 

surprising that mitochondrial dysfunction has long been associated with Parkinson 's 

disease (Perier and Vila, 2012). This pathological node first emerged upon identifying 

potent parkinsonian toxins (e.g. , MPTP and rote none) whose detrimental effects are 

principally conveyed by means of complex l inhibition in the electron transport chain 

(BeaI, 2001 , 2003; Betarbet et al. , 2000; Greenamyre et al., 2001; Langston et al. , 1983). 

The relevance of these findings was then fully recognized upon disceming complex l 

deficiencies and accumulation of mitochondrial DNA deletions in the substantia nigra 

pars compacta of parkinsonian patients (Bender et al., 2006, 2008; Schapira et al., 

1989). Later, robust support for impaired respiration was provided by the identification 

of genes that cause familial forms of Parkinson ' s disease and that are involved in 

mitochondrial homeostasis, for instance leucine-rich repeat kinase 2 (LRRK2) 

(Mortiboys et al., 2010; Wang et al. , 2012), DJ-1 (Irrcher et al. , 2010; Krebiehl et al., 

2010), and the mitochondrial duo, PTEN-induced putative kinase 1 (PINK1) and parkin 

(Ashrafi et al., 2014; Deng et al. , 2008; Exner et al. , 2007). 

Parkinson ' s disease does not directly point to a hyperactive polyol pathway, 

although one isolated study showed increased plasma levels of sorbitol in drug-naïve 
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parkinsonian patients, suggested to arise from glucose metabolism via non-oxidative 

pathways ensuing from mitochondrial dysfunction (Ahmed et al., 2009). There is sorne 

indirect evidence for a link between polyol pathway activation and neurodegeneration, 

via downregulation of nerve growth factor (NGF) as demonstrated in hyperglycaemia

induced neuropathies (Hounsom et al., 2001 , 1998; Obrosova et al., 2001). Levels of 

brain growth factors , like NGF, that promote neuronal survival and differentiation 

indeed de cline in the substantia nigra pars compacta and dorsal striaturn of parkinsonian 

patients (Mogi et al. , 1999). More substantially, though, endogenous antioxidant 

depletion, provoked by polyol pathway activation, has been repeatedly suggested to 

partake in the pathogenesis of Parkinson's disease. Indeed, exhaustion of the reduced 

glutathione cofactor is one of the earliest events to occur in the brains of parkinsonian 

patients (Jenner, 1993; Pearce et al. , 1997; Sian et al. , 1994), markedly so in 

nigrostriatal dopaminergic neurons, which are inherently endowed with limited stocks of 

glutathione (Bharath et al. , 2002; Kang et al., 1999). 

Spontaneous methylglyoxal formation and macromolecule glycation are 

particularly salient elements linking Parkinson's disease to hyperglycaemia. The most 

obvious connection dwells in the inhibition of the ubiquitin proteasome system caused 

both by protein and ubiquitin glycation, as it occurs in the CNS (Munch et al. , 2012; 

Rabbini and Thomalley, 2012; Uchiki et al., 2012; Vicente Miranda et al., 201 6). 

In fact, the pathologically relevant a-synuclein protein is glycated in Lewy bodies 

(Auburger and Kurz, 2011 ; Cereda et al. , 2012; Kurz et al. , 2011 ; Vincent et al., 

2012). Interference with the ubiquitin proteasome system may therefore trigger a 

self-perpetuating cycle, wherein increased levels of glycated a-synuclein further obstruct 

proteasome function, consequently contributing to accumulation of the former, but also 

to its oligomerization, aggregation and purported toxicity (Chen et al., 2006; Tanaka 

et al., 2001). Additionally, RAGE polyrnorphisms have been shown to both offer 

protection against and favour the development ofParkinson ' s disease (Gao et al. , 201 4) . 

Insightful in vitro studies further demonstrate the shielding effect of ablating the 

receptor in a dopaminergic neuronal model of the disease (Sathe et al. , 2012; Teismann 

et al., 2012). Interestingly, not only can methylglyoxal glycate proteins and erode stocks 
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of NADPH VIa glyoxalase and al do se reductase activation, it participates like other 

aldehydes in deleterious reactions with dopamine to form salsolinol-like compounds 

(Deng et al. , 2012; Song et al., 2014; Szent-Gyorgi and McLaughlin, 1975), 

which resemble 6-0HDA, MPTP and endogenous dopamine derivatives already 

recognized for their toxicity (Kurnik-Lucka et al., 2018; Maruyama et al., 1999; Naoi 

et al., 2002; Su et al., 2013). Of prime significance, parkinsonian patients display 

particularly elevated levels of salsolinol-like compounds in the substantia nigra pars 

compacta and dorsal striatum (Deng et al., 2012). Since nigrostriatal neurons express 

relatively low levels of VMAT2 responsible for the vesicular uptake of lingering 

cytosolic dopamine, they may also offer ideal temporal conditions for the transformation 

of the latter into salsolinol-like compounds in a hyperglycaemic setting (Liang et al., 

2004). 

To surnmarize, hyperglycaemia represents an additional cause of superoxide anion 

production, mitochondrial dysfunction, antioxidative bankruptcy, ubiquitin proteasome 

system failure and dopamine toxicity that may well favour the early demise of 

nigrostriatal dopaminergic neurons. Although buttressed by a wealth of epidemiological, 

molecular and cellular evidence, this hypothesis has not been directly tested. In the aim 

of establishing the selective vulnerability of nigrostriatal neurons to a supplementary 

oxidative burden, proper demonstrations would require43 a) the testing of a single 

exogenous insult, for instance sustained hyperglycaemia; b) the comparison of 

neurodegeneration III each loci involved in the nigrostriatal and mesocorticolimbic 

pathways, preferably with concomitant verifications in other brain regions; c) the 

assessment of neurodegeneration at more than one time point; d) the evaluation of glial 

populations to gain insight into non-neuronal outcomes, and; e) the full appraisal of 

behavioural alterations that may arise from nigrostriatal neurodegeneration. It is 

precisely in this perspective that were elaborated a series of experiments presented 

43 The most pertinent studies in this sense have only demonstrated neurodegeneration in the substantia 
nigra pars compacta of rodent models of diabetes, without investigating the repercussions on the totality 
of central doparninergic pathways, on other populations of brain cells, or on the range of behavioural 
alterations that may arise from neuronal death (Brambilla Bagatini et al., 2014; do Nascimento et al., 
2011). Other studies have also combined various parkinsonian insults with a hyperglycaemic challenge, 
which does not address the intrinsic hazard that hyperglycaernia represents to nigrostriatal neurons in 
otherwise healthy subjects (Choi et al., 2005; Morris et al., 2010; Roterrnund et al., 2014). 
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herein to fulfil these interrogations that warrant answers, in light of the epidemiological 

risk incurred by diabetic patients with regard to the potential development of 

Parkinson's disease. 

1.3 The antioxidative polyphenol resveratrol 

The proposaI that a heightened vulnerability to oxidative stress is at the origin of 

the preferential degeneration of nigrostriatal dopaminergic neurons can be tested by 

verifying the ability of an exogenous antioxidant to prevent this death. In the present 

thesis, we hire this strategy by employing a well-known antioxidative polyphenol, 

resveratrol, ln dopaminergic neurons exposed to high glucose conditions. 

Although resveratrol and other dietary polyphenols can offer protection in various 

disease settings, the scope of our CUITent work does not encompass providing evidence 

of its already widely acknowledged neuroprotective potential44
. Used here as an 

antioxidative tool, the following section thus focuses on resveratrol's ability to preclude 

oxidative stress. Before detailing its protective mechanisms in dopaminergic neurons, 

we will nonetheless provide sorne background information on resveratrol pertaining to 

its origins, its dietary sources and the chemico-structural peculiarities that shape its 

antioxidative properties. 

1.3.1 Background 

1.3.1.1 Historical context 

Centuries of traditional medicine practiced in native cultures worldwide have 

revolved around the potency of edible medicinal herbs and plants ri ch in polyphenols to 

ameliorate human health (Manyam et al., 1999; Song et al., 2012). When dietary habits 

and health status were initially associated, the role of polyphenols in human health 

44 We have already reviewed the therapeutic potential of polyphenols in Parkinson ' s disease elsewhere 
(Regl6di, Renaud et al. , 2017; Renaud et al., 2015). A critical appraisal of the employment of 
polyphenols against neurodegenerative diseases is also presented in Appendix B. Specifically regarding 
resveratrol, our group has extensively discussed its anti-inflammatory mechanisms in the CNS 
(Appendix C) and has detailed the various demonstrations of its protective properties in preclinical 
models (Renaud and Martinoli, 2014). 
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immediately sparked vivid scientific interest. At the root of polyphenol studies, 

a mixture of flavonoids extracted from citrus fruit was initially coined "vitamin P" 

because of its anti-scurvy, vitamin C-sparing effects (Bentsath et al. , 1936; Rusznyak 

and Szent-Gy6rgi, 1936). The term was later abandoned upon disceming that "vitamin 

P" was not truly essential , although the observed health benefits still held true. A host of 

controlled epidemiological reports have since then supported the protective role of 

polyphenols in abating numerous health issues, su ch as cardiovascular diseases (Estruch 

et al., 2013 ; Hertog et al. , 1993; Joshipura et al. , 2001 ; von Ruesten et al. , 2013), 

diabetes (Carter et al., 2010; Sargeant et al., 2001) and cancer (Lunet et al. , 2005 ; 

Masala et al., 2012; Steinmetz and Potter, 1996). As evidence amassed, intervention 

studies were warranted to bolster the significance of these findings, and most, though not 

all (Anderson et al. , 2002; Conquer et al. , 1998; Simons et al. , 2000), confirmed a 

positive function for specific dietary polyphenols in hurnan health (see for review 

Williamson and Manach, 2005). As research progressed, certain biofunctional 

polyphenols gained more attention than others by virtue of their promising protective 

competences. 

In the field of polyphenol research, resveratrol holds a special place. Indeed, 

its popularity shot through the roof in the 90s following the airing of an episode of 

"60 minutes" on the CBS network wherein Dr. Serge Renaud was interviewed on the 

topic of the "French Paradox", a term henceforth etemalized (Renaud and de Lorgeril, 

1992). The expression was employed to describe the apparently low incidence of 

coronary heart diseases in Southem France populations despite their relatively elevated 

consumption of saturated fats in comparison to other industrialized countries (Wu et al. , 

2001). A vital food staple in Southem France, red wine was thought to afford 

cardioprotection (Renaud and de Lorgeril, 1992) and resveratrol was later proposed to 

be one of the key bioactive constituents responsible for these observed health 

benefits (Fauconneau et al. , 1997; Frankel et al. , 1993; Pace-Asciak et al. , 1995). 

Robust demonstrations that resveratrol exerts antioxidative effects (Frankel et al. , 1993 ; 

Kerry and Abbey, 1997; Jang et al. , 1999) and mitigates carcinogenesis (Della Ragione 

et al. , 1998; Gehm et al., 1997; Hsieh et al. , 1999; Jang et al., 1997; Lu and Serrero, 

1999; Mgbonyebi et al. , 1998) truly launched the field from thereon (Figure 1.19). 
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Figure 1.19 Resveratrol in the scientific Iiterature. 
A 2018 PubMed search employing the term "resveratrol" yields an 
approximate total of 10000 hits since 1987. A trending rise can be 
observed as early as 1997. 

1.3.1.2 Dietary origins 

Polyphenols are usually derived from phenylpropanoid metabolism in plants 

(Parr and Bolwell, 2000). As such, polyphenols usually comprise an assembly of phenyl 

rings with variable carbon connectors and hydroxylation patterns. Several subclasses 

arise from the variable complexity of these molecules, for instance phenolic acids 

(C6-C3 and C6-C 1), flavonoids (C6-C3-C6), lignans (C6-C3-C3-C6) and stilbenes 

(C6-C2-C6) to which belongs trans-3,5,4'-trihydroxystilbene, better known as 

resveratrol (Figure 1.20). 

Polyphenols confer plants with evolutively gainful signalling and protective 

systems. Regarding resveratrol, its exact functions remain uncertain but they are 

generally recognized to act as phytoalexins (plant-synthetized antimicrobial substances) 

(Chang et al., 2011). Resveratrol is produced in high concentrations in response to 

environmental stressors such as pathogenic insults, nutrient deficiency, temperature 

fluctuations and ultraviolet radiation (Orallo, 2008; Soleas et al., 2001). As such, it is 

found in substantial quantities in grapevines (Vitis vinifera), possibly as an evolutionary 

adaptation in response to fungal infections (Chong et al., 2009; Dercks and Creasy, 
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1989). Remarkably, stilbene synthase involved in the biosynthesis of resveratrol 

promotes disease resistance when artificially expressed in plants (Hain et al., 1993). 
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Figure 1.20 Frequently encountered polyphenols. 

Found ubiquitously in fresh herbs, fruits, vegetables, nuts, grains and legumes, 

polyphenols represent on average 1 g/day of a balanced diet (Scalbert and Williamson, 

2000). However, resveratrol is one of the least encountered polyphenols in the 

human di et. Akin to most other polyphenols, stilbenes predominantly accumulate in the 

outer component of foodstuffs . In the skins of grapes, its levels can reach 50-100 mg/g 

of fresh weight. Due to the maceration process, red wines generally present greater 

concentrations of stilbenes th an whites or rosés, with resveratrol reaching levels 

of approximately 0.3-7 mg/L (Bertelli et al., 1998; Lamuela-Ravent6s and de la 

Torre-Boronat, 1999; Siemann and Creas y, 1992; Vitrac et al., 2002). Besides grapes, 

numerous other plants were shown to synthesize stilbenes, though, among the 72 plant 
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specles identified, mulberries and peanuts are the only other typical sources rich ln 

resveratrol in the human diet (Langcake and Pryce, 1977). 

1.3.1.3 Structure, chemistry and antioxidative functions 

Insofar as the > 8000 polyphenols known to date are structurally diverse, 

they share several hall marks that undoubtedly underlie their therapeutic potential in 

living organisms, namely phenyl rings, hydroxyl moieties and conjugated double bonds. 

These chemico-structural features grant polyphenols like resveratrol the potential to 

tackle a keystone of dopaminergic neurodegeneration, explicitly oxidative stress. 

Resveratrol wields its antioxidative effects via both direct and indirect mechanisms 

(Foresti et al., 2013; Leonard et al., 2003). Its hydroxyl groups are thought to account 

for the near totality ofits direct antioxidative actions (Fauconneau et al. , 1997; Frémont, 

2000; Kawada et al. , 1998; Stivala et al., 2001). Indeed, resveratrol scavenges free 

radical species principally by lending its most acidic hydrogen from the para-phenol 

group or other hydrogen atoms from the meta-hydroxyl groups of the resorcinol moiety 

(Stivala et al., 2001) (Figure 1.20). It may also cede a 1t bond from the resorcinol ring 

to accommodate radicals (Khanduja and Bhardwaj , 2003). The radicalized form of 

resveratrol is stabilized by its multiple conjugated double bonds that allow the 

delocalization of the unpaired electron (Figure 1.21). 

While resveratrol is appreciated for its ability to directly scavenge free radical 

species, it is not among the most efficient metal chelators. Since divalent transition 

metals like iron are toxic, cells are endowed with tight control systems to regulate their 

availability in a free form. When in excess, however, they are known to participate in 

deleterious reactions that generate ROS45
. Chelation by bidentate molecules possessing 

phenol rings is possible, but is best achieved when there are two or three hydroxyl 

45 For example, Fenton reactions occur between ferric ions and superoxide anion to yield ferrous ions and 
oxygen (Jomova et al., 2010). In turn, Haber-Weiss reactions between ferro us ions and hydrogen 
peroxide further give ferric ions and hydroxyl radicals, the most reactive kind of ROS (Valko et al. , 
2004). In the substantia nigra pars compacta endowed with appreciable levels of iron ions, 
these deleterious reactions are extremely pertinent. 
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groups next to each other (hydroxyl groups in the ortho-position), such as in galloyl or 

catechol groups (Petry et al. , 2010) (Figure 1.20). Resveratrol possesses a resorcinol 

group wherein two hydroxyl groups are far apart, and, by the same token, it is a much 

less potent monodentate chelator (Chan et al. , 2016; Hider et al., 2001 ; Purawatt et al., 

2007). 
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Figure 1.21 Resveratrol's putative direct scavenging mechanisms. 
Two examples of reaction partners were provided: superoxide anion and 
the hydroxyl radical. Superoxide anion is ubiquitous in cells, especially at 
the level of the electron transport chain. As for the hydroxyl radical, 
it is the most reactive physiological ROS. 

In contrast to direct scavenging mechanisms, the chemico-structural features 

responsible for polyphenols' indirect antioxidative actions are more difficult to pinpoint. 

These indirect effects are likely conveyed via the activation of endogenous antioxidative 

mechanisms and oblige knowledge of polyphenolic interactions. Resveratrol's stilbene 

carbon scaffold likely contributes to its capacity to interact with molecular effectors of 

endogenous antioxidative pathways, discussed later. Indeed, resveratrol is planar and 

relatively hydrophobic, which theoretically should increase its affinity and specificity for 

hydrophobic pockets found in proteic binding sites (Figure 1.20). In addition, it harbours 

polar hydroxyl moieties in a conformation that resembles certain endogenous 
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ligands, such as estrogen. These hydroxyl groups participate in hydrogen bonds with 

multiple amino acid side chains within hydrophobic pockets. A few studies have also 

demonstrated the importance of resveratrol's phenol rings, especially the one bearing 

the para-hydroxyl moiety, and its trans stereoisomery in binding certain proteins 

(Nwachukwu et al., 2014; Stivala et al., 2001). In other instances, resveratrol may not 

require its hydroxyl functions to mediate its neuroprotective effects. Studies tested this 

hypothesis by preparing a plethora of resveratrol analogs devoid of hydroxyl functions 

(Heynekamp et al., 2006; Solberg et al., 2014). Despite their inability to scavenge ROS, 

these stilbene compounds were nonetheless capable of dampening neuroinflammation in 

a NF-KB-Iuc reporter ceIl line (Heynekamp et al., 2006) and reducing ~-amyloid plaque 

density in the CNS of a mouse model of Alzheimer's disease (Solberg et al., 2014). 

Such studies highlight the importance of resveratrol 's multiple chemico-structural 

singularities in shaping both the nature and the variety of molecular interactions it can 

engage in, which undoubtedly account for its multifarious modes of action. 

1.3.2 Protection of dopaminergic neurons against oxidative stress 

Resveratrol 's ability to improve various clinical endpoints has been demonstrated 

m myriads of disease settings, including neurodegenerative diseases (Moussa et al. , 

2017), diabetes (Goh et al., 2014; Imamura et al., 2017), obesity (Xue et al., 2016) , 

polycystic ovary syndrome (Banaszewska et al., 2016) and ulcerative colitis 

(Samsamikor et al., 2016). Its antioxidative potential has been shown to contribute to its 

protective effects in preclinical models of diabetes (Jezek et al., 2014; Jiang et al., 2013 ; 

Sadi et al., 2014) and neurological disorders, such as ischemic stroke (Rodrigo et al. , 

2013; Saleh et al., 2013; Sun et al., 2010), neurodegenerative diseases (Karuppagounder 

et al., 2009; Maher et al., 2011; Varamini et al., 2014) and traumatic brain injuries 

(Gatson et al., 2013; Hall et al., 2010; Liu et al., 2011). SpecificaIly re1ated to our work, 

resveratrol improves the oxidative status of the CNS in rodent models of diabetes 

(Bagatini et al., 2017; Sadi and Konat, 2016), but this parameter has not been addressed 

in dopaminergic neurons challenged with high glucose concentrations. Nevertheless, 

its antioxidative properties have been verified numerous times in preclinical models of 

Parkinson's disease. As a basis for the employment of resveratrol in dopaminergic 
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neurons to antioxidative ends, this section will therefore briefly review the findings 

provided by these studies. 

To study Parkinson's disease, several models were developed in vitro as well as 

in vivo that depend on pro-oxidative mechanisms to induce dopaminergic neuronal 

death. Typical parkinsonian toxins include the aforementioned 6-0HDA and I-methyl-

4-phenylpyridinium (MPP+, the active metabolite of MPTP), as well as pesticides like 

rotenone and paraquat, which instigate ROS overproduction by various means (Deumens 

et al. , 2002; Dut Y and Jenner, 2011 ; Jackson-Lewis et al., 2012; Nagatsu, 1997). 

Accordingly, studies consistently show resveratrol to rescue dopaminergic neurons from 

the various oxidative assaults that typify these models (Blanchet et al. , 2008; Gélinas 

and Martinoli, 2002; Wu et al. , 2011). Neuroprotection is complemented with reduced 

levels of ROS, like the hydroxyl radical (Lu et al. , 2008), which prevents neuronal 

oxidative damages from arising, as assessed by the measurement of lipid peroxidation 

and prote in carbonyl by-products (Anandhan et al. , 2010; Khan et al. , 2010; Okawara 

et al. , 2007; Palle and Neerati, 2018). Most remarkable is the recovery of motor 

behaviour in animal models, which reflects the concrete protection afforded by 

resveratrol on dopaminergic neurons in models of Parkinson 's disease (Anandhan et al. , 

2010; Jin et al. , 2008; Lu et al. , 2008; Makhija and Jagtap, 2014; Palle and Neerati et al. , 

2018; Zhao et al. , 2017). 

A recurring the me in parkinsonian models is the apoptotic death46 of dopaminergic 

neurons. Indeed, this mode of programmed cell death is particularly relevant in 

Parkinson ' s disease (Anglade et al. , 1997; Mochizuki et al. , 1996; Toulorge et al. , 

2016), but also in diabetes (Maiese et al. , 2007; Russell et al., 1999). In this respect, 

resveratrol is weil appreciated for its ability to abrogate oxidation-induced apoptosis. 

Congruently, resveratrol favourably modulates various pro- or anti-apoptotic proteins, 

su ch as p53 , protein kinase B (Akt) and glycogen synthase kinase 3 (GSK-3) (Bournival 

et al. , 2009; Feng et al. , 2015; Lin et al. , 2014; Okawara et al. , 2007; Wu et al., 2011 ; 

Zeng et al. , 2017). As mitochondria are a nexus of apoptotic processes, studies 

46 We address apoptotic mechanisms in greater detail in section 1.5.104. 
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specifically uncovered resveratrol's aptitude to repeal the leakage of mitochondrial pro

apoptotic factors , such as apoptosis inducing factor and cytochrome c, likely through 

modulation of proteins involved in the formation of the mitochondrial permeability 

transition pore, exemplarily B cell Iymphoma 2 (Bcl-2) and Bcl-2-associated X protein 

(Bax) (Bournival et al., 2009; Mud6 et al., 2012; Zeng et al., 2017). 

Among these studies, many have reported certain upstream events that may 

account for the antioxidative and anti-apoptotic effects afforded by resveratrol. 

On the one hand, resveratrol remarkably restores endogenous antioxidative defences, 

for instance glutathione, SOD, thioredoxin, heme oxygenase and catalase (Anandhan 

et al. , 2010; Khan et al., 2010; Lin et al. , 2014; Mud6 et al. , 2012; Okawara et al. , 2007; 

Palle and Neerati, 2018; Srivastava et al., 2012). On the other hand, resveratrol displays 

a striking ability to foster mitochondrial homeostasis, by ameliorating respiration (Palle 

and Neerati, 2018; Mud6 et al., 2012) and providing protection against ultrastructural 

changes (Jin et al., 2008; Peng et al. , 2016). Interestingly, in primary skin fibrob last 

cultures from patients with early-onset Parkinson's disease caused by different PARK2 

mutations, encoding parkin, resveratrol markedly improved mitochondrial functions, 

substantiated by increased ATP production, complex l activity, oxygen consumption, 

and decreased generation of lactate and ROS (Ferretta et al. , 2014). 

The sum of these results obtained in vanous cell lines, pnmary cultures, 

organotypic midbrain slice models and rodent paradigms leaves no doubt as to the 

capacity of resveratrol to protect dopaminergic neurons by virtue of its ability to 

counteract oxidative stress, a key contributor of apoptosis. These neuroprotective 

benefits seem to stem from the improvement of endogenous antioxidative defences 

and mitochondrial functions . Taking into consideration the mechanisms by which 

hyperglycaemia induces oxidative stress, that is, by expending endogenous antioxidants 

and causing mitochondrial dysfunction, it is reasonable to expect resveratrol to confer 

protection against high glucose conditions in dopaminergic neurons. 
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1.3.3 Direct putative targets 

Although polyphenols like resveratrol are theoretical ROS scavengers, their ability 

to do so in a physiological environment remains controversial. First, polyphenol 

scavenging dictated by the transfer of a proton or the breaking of a double bond must 

occur faster than any reaction between the free radical species and susceptible 

constituents of the cell, for instance lipids (Di Meo et al. , 2013). Second, in order to 

offer significant antioxidative support, polyphenols are theoretically required to accrue 

in similar concentrations to that of endogenous antioxidants such as ascorbate 

(30-100 !lM) and urate (140-200 !lM) (Hollman, 2014). However, tissue or plasma 

concentrations of polyphenols rarely exceed micromolar magnitudes at any given time 

(Del Rio et al., 2013). Consequently, the direct scavenging properties of polyphenols 

like resveratrol may be trivial in a physiological context (Benzie et al. , 1999; Hollman 

et al., 20 Il). In this regard, it is argued that cellular events occurring at nanomolar 

concentrations might better uphold polyphenols ' antioxidative actions. These indirect 

effects are likely conveyed via the activation of endogenous antioxidative mechanisms 

and require only very low concentrations owing to the diverging and amplifying nature 

of many cell signalling cascades. 

In an attempt to reconcile resveratrol's bioefficacy with the improbability of 

firsthand scavenging, efforts have been deployed to identify these putative direct targets 

(see for review Britton et al. , 2015) (Table 1.9). Among the multiple molecules 

identified to date, a few are directly or indirectly linked to oxidative stress, namely 

ribosyldihydronicotinamide dehydrogenase (quinone) (NQ02) (Buryanovsky et al., 

2004; Wang et al. , 2004), phosphodiesterases (PDEs) (Park et al. , 2012), and the 

mammalian target of rapamycin (mTOR) (Park et al. , 2016). In neurons, the se effectors 

are notorious for executing noxious processes and their inhibition by resveratro1 may 

explain the latter' s beneficial properties in the CNS (Cant6 and Auwerx, 2009; 

Chaturvedi and BeaI, 2013; Lee et al. , 2012; Li et al. , 2010; Sharma et al. , 2012; 

Wang et al., 2008). 
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Table 1.9 

Direct putative targets of resveratrol 

Molecular target& 

CycJooxygenase-l 
CycJooxygenase-2 
Fatty acid synthase 
NQ02 
GSTP1 
AKT-1 
HDACs 
PDE1, 3, and 4 

ATM 
SIRTl 
PKCa, [3I, and PKD1 
Aromatase 
DNA/RNA 
Lipoproteins 
DNA polymerase a and 8 
F1-ATPase 
CBR1 

LTA-tH 
PPAR-y and 8 
Various kinases 
TyrRS 

aUnder oxidizing conditions (H202). 
bDirect binding disproved. 
'Cocrystal with cis-resveratrol. 

Enz Inhib, Xray 
Chem Pro t, Enz Inhib 

Enz Inhib 
Chem Prot, Xray, Enz Inhib 
Chem Prot 
Chem Prot 
Enz Inhib 
Fluor 
Kinase assay 
Fluor 
Kinase assay 
Enz Inhib, in silico 

Spec 
HPLC 
Enz Inhib 
Xray 
Chem Prot, Enz Inhib 
Chem Prot, in silico 
Xray, Affin Chrom 
Activity assay 
Enz Inhib, Xray' 

Observation& 

IC50 = 0.535 !-LM 
IC50 = 0.996 !-LM 
IC50 = 8.5 !-LM 
Binding, KI = 35 nM 
Binding 
Binding 
pan-HDACi 

IC50 = 6, ID, and 14 !-LM 
Activationa 

Activationb 

IC50 = 2,100, and 800 !-LM 

IC50 = 12.8 !-LM 
Destabilizing 
Binding 
Ki = 3.3 and 5.0 !-LM 
Binding 
Binding, Ki = 55.8 !-LM 
Binding 
Kd = lA and 2.7 !-LM 
Moderate to no effect 

Ki = 22 !-LM 

& Affin Ch rom, affinity chromatography; AKT - l , protein kinase B; ATM, ataxia telangiectasia mutated 
serine/threonine kinase; Chem Prot, chemical proteomics; CBRI , carbonyl reductase 1; Enz lnhib, enzyme 
inhibition assay; FI-ATPase, FI portion of adenosine triphosphatase; Fluor, fluorescence assay; GSTPI , 
glutathione S-transferase P; HDAC, hi stone deacetylase; HPLC, high-performance Iiquid chromatography; IC5o, 
half maximal inhibitory concentration ; Kd, di ssoc iation constant; Ki, inhibition constant, L T A4H, leukotriene A4 
hydrolase; NQ02, ribosyldihydron icotinamide dehydrogenase (quinone); PDE, phosphodiesterases; PKC, 
protein kinase C; PKD, protein kinase D; PPAR, peroxisome proliferator-activated receptor; SIRTl, silent 
mating type information regulation 2 homologue 1; Spec, spectroscopie assay; TyrRS, tyrosine-transfer RNA 
ligase; Xray, X-ray cocrystal structure. 
(Adapted from Britton et al., 2015.) 

1.3.3.1 Ribosyldihydronicotinamide dehydrogenase (quinone) and oxidative stress 

NQ02 is a detoxifying enzyme mandated to catalyze the reduction of quinones to 

hydroquinones (Monks et al., 1992; Vella et al., 2005). At first sight, it appears to 

operate as an endogenous antioxidative enzyme, due to its role in reducing quinone 
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ROS. However, it was recently found to produce ROS by-products during quinone 

reduction in sorne settings (Gong et al. , 2008; Reybier et al. , 2011). In fact, NQ02 

appears to impart the noxious effects of certain parkinsonian toxins and of exogenous 

dopamine on dopaminergic neurons (Janda et al., 2013 , 2015 ; Wang et al. , 2008). 

Interestingly, NQ02 has emerged as a novel risk factor for Parkinson's disease. 

Indeed, genetic polymorphisms associated with the pathology were initially speculated 

to result in decreased NQ02 expression (Harada et al. , 2001). However, later findings 

showed these polymorphisms to occur in the promoter and to enhance NQ02 

expression, which was further sustained in human fibroblasts of individuals with or 

without the genetic modification (Wang et al. , 2004). In this light, it was concluded that 

amplified expression of the reductase constitutes a risk factor for the development of 

Parkinson's disease. 

Likely the most relevant target in oxidative stress, NQ02 displays the greatest 

affinity for resveratrol to date (nanomolar range) . Its interaction with the polyphenol has 

also been ascertained by no less than three methods carried out by two independent 

groups (Buryanovsky et al. , 2004; Wang et al. , 2004). It follows that resveratrol ' s 

inhibitory action on NQ02 is presumed to confer protection in this setting, but this 

remains to be confirmed in neurons. 

1.3.3.2 Phosphodiesterases and the energy sensing axis 

Many of the abovementioned studies demonstrating resveratrol's antioxidative and 

neuroprotective properties in dopaminergic neurons also expose its modulatory effect 

on a selection of interrelated bioenergetic power players, namely 5' adenosine 

monophosphate-activated prote in kinase (AMPK) , silent mating type information 

regulation 2 homologue 1 (SIR T 1) and peroxisome proliferator-activated receptor 

gamma coactivator l-alpha (PGC-l a) (Albani et al., 2009; Feng et al., 2015; Ferretta 

et al., 2014; Mudè et al., 2012; Wu et al. , 2011). The signalling axis to which they 

belong is thought to be responsible for lifespan amelioration provided by exercise and 

calorie restriction (Tennen et al. , 2012). 
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In this growingly popular axis, PGC-1 a is key effector of mitochondrial biogenesis 

and efficient respiration (Canto and Auwerx, 2009) (Figure 1.22). As upstrearn energy 

sensors, AMPK is activated when cellular ATP:AMP ratios are low and SIRTI is 

stirnulated by elevated NAD+:NADH ratios (Canto et al., 2009; Spasié et al. , 2009). 

SIRT1 and AMPK also maintain an intirnate bidirectional relationship, since SIRTI 

deacetylates liver kinase BI (LKB1) that in turn phosphorylates and activates AMPK 

(Hou et al., 2008; Lan et al., 2008), whereas AMPK increases NAD+ leve ls responsible 

for stirnulating SIRT1 (Canto et al., 2009). In concert, SIRT1 and AMPK enhance 

rnitochondrial function by deacetylating and phosphorylating PGC-l a, which is required 

for its activation (Canto and Auwerx, 2009). Although allosteric activation of SIRT1 

was at first greatly advocated to explain resveratrol's effects on this bioenergetic 

crossroads (Dai et al. , 2010; Howitz et al., 2003), methodological oversights came to 

light and direct binding was refuted (Beher et al. , 2009; Borra et al. , 2005; Kaeberlein 

et al., 2004; Pacholec et al., 2010). Later identification of PDEs as direct targets of 

resveratrol finally shed sorne light on this cell signalling puzzle (Park et al., 2012). 

PDEs play a key rnodulatory role on intracellular levels of nucleotidic secondary 

rnessengers by hydrolysing cyclic adenosine monophosphate (cAMP) and cyclic 

guanosine monophosphate (cGMP) to their respective AMP and GMP forms. 

By competing with cyclic nucleotides and inhibiting PDEs, resveratrol fosters an 

environment rich in cAMP, which triggers a series of events leading to the activation of 

AMPK responsible for the ensuing cascade of events (Park et al., 20 12) (Figure 1, 

Appendix C). The PDE-AMPK-SIRTI-PGC-la axis is indirectly yet critically involved 

in arneliorating the oxidative status of neurons. By improving mitochondrial biogenesis 

and respiration, energy can be afforded to the clearance of ROS and to damaged 

organelles through activation of autophagy (Canto and Auwerx, 2009). This axis has 

congruently triggered discussions on possible therapeutic avenues to explore in 

Parkinson's disease, in view of the vital role occupied by mitochondrial homeostasis in 

this disease (Chaturvedi and BeaI, 2013; Maiese, 2016). 
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By sensing levels of cyclic adenosine monophosphate (cAMP) and 
NAD+, and by acting on each other, this highly ramified pathway 
promotes equilibrium in instances of metabolic deficits. Moreover, 
they protect cells against a slew of noxious molecular events and 
are thought to mediate the beneficial effects of calorie restriction. AMPK, 
adenosine monophosphate kinase; CamKK~, calcium/calmodulin
dependent prote in kinase kinase 2 or beta; Epac l , exchange factor 
directly activated by cyclic adenosine monophosphate 1; PGC-l a, 
peroxisome proliferator-activated receptor gamma coactivator l-alpha; 
PKA, protein kinase A. (From Tennen et al., 2012.) 

1.3.3.3 Mammalian target ofrapamycin and autophagy 

Autophagy is an intricately structured cascade of events that promotes the 

equilibrium between clearance and production of organelles and proteins. Per se, 
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autophagy degrades non-essential or damaged cellular components and is therefore 

activated in settings of energy depletion and oxidative stress. Moreover, its role in 

Parkinson's disease has been evoked time and again, as it is a process required to clear 

misfolded proteins, pathogenic fibrils and full-fledged aggregates expressed in 

a-synuclein pathology (Hashimoto et al., 2003; Schapira and Gegg, 20 Il; Schneider and 

Zhang, 2010). 

Focal to autophagy is mTOR, an inhibitor of the initial stages of this process, 

which is of capital importance in tissues disposing of meagre regenerative capacities, 

like the CNS (Lee et al., 2012). Akin to AMPK and SIRT1, mTOR is an energy sensor, 

but it is activated in instances of energy and nutrient abundance, thus occupying a 

central position in bridging energy levels and autophagy (Kundu, 2011) (Figure l.23). 

mTOR phosphorylates the initial effector of autophagy, autophagy-related protein 13 

(Atg13), thereby obstructing the onset of autophagy (Chan et al., 2009). However, 

mTOR is repressed both by AMPK activation (Boister et al., 2002) and oxidative 

modifications (Dames et al., 2005), in which context autophagy is accordingly activated 

to restore cellular homeostasis. mTOR therefore collaborates narrowly with the 

PDE-AMPK-SIRT 1-PGC-l a axis to alleviate oxidative stress and restore favourable 

bioenergetic dynamics. 

Resveratrol was recently shown to bind and inhibit mTOR by competing with 

A TP, thereby promoting autophagy in proper cellular contexts (Park et al., 2016). 

Correspondingly, previous reports demonstrating resveratrol 's neuroprotective capacities 

in dopaminergic neurons challenged with rotenone concurrently found it to stimulate the 

autophagie flux (Lin et al., 2014; Wu et al., 2011). Moreover, suppression of the master 

metabolic regulator AMPK dampened these beneficial effects, which bolsters the 

pertinence of bioenergetics-autophagy crosstalk in the neuroprotection afforded by 

resveratrol against oxidative stress (Wu et al., 2011). 
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A tri ad of kinases senses nutrient and energy availability, acting in 
concert to promote cellular homeostasis by modulating cell growth and 
autophagy. The central bioenergetic power player, AMPK, can have 
opposite effects in the cell depending on the ATP:adenosine 
monophosphate (AMP) ratio. ln a replete, high ATP setting, AMPK 
will activate the tuberous sclerosis complex (TSC) duo that inhibits 
mammalian target of rapamycin complex 1 (mTORCl), a complex 
constituted of mammalian target of rapamycin (mTOR) and its regulators, 
thereby promoting ceU growth and silencing autophagic pathways. 
ln circurnstances of energy depletion, AMPK will rather activate Unc-51 
like autophagy activating kinase (ULKl), which wiU stimulate autophagy 
and inhibit cell growth. This toggle is highly sensitive and meticulously 
regulated by feedback loops between the different components of 
this triad. Atg13, autophagy-related protein 13; FIP200, retinoblastoma 
l-inducible coiled-coil protein 1; LKB 1, liver kinase BI; Lst8, mTORC 
subunit lethal with SEC13 protein 8. (From Dunlop and Tee, 2013.) 

1.3.3.4 Other targets 

While focus has only been granted to three of numerous putative direct targets of 

resveratrol, other binding partners may likely play an indirect though significant role in 

conveying this polyphenol's antioxidative effects. Worthy of mention is a ho st of 
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important players in the arena of inflammation, for instance cyclooxygenases-l and 

-2 (Calamini et al., 2010; Murias et al., 2004; Zykova et al., 2008), leukotriene 4A 

hydrolase (Oi et al., 2010) and estrogen receptors (Bowers et al., 2000; Nwachukwu 

et al. , 2014), which have been reviewed elsewhere with respect to resveratrol's anti

inflammatory potential (Appendix C). Neuroinflammation is greatly acknowledged to 

actively participate in the etiopathogenesis ofParkinson's disease and is interwoven with 

oxidative processes, as suggested by microglia-derived oxidative bursts and oxidative 

stress-induced microglial activation (Langston et al., 1999; More et al. , 2013; Russo 

et al., 2014; Zecca et al., 2008). As such, resveratrol's antioxidative effects in the CNS 

of rodents and humans may also be conveyed via impeding pro-oxidative enzymes in 

microglial cells that may injure neurons in the substantia nigra pars compacta, su ch as 

myeloperoxidase and NADPH oxidase (Chang et al., 2013). 

Ali evidence considered, its capacity to modulate a wide array of proteic activities 

affords resveratrol tangible pathway-modifying properties that converge toward the 

prevention of oxidative stress in dopaminergic neurons. Although mostly tried in 

parkinsonian paradigms or in non-neuronal diabetic models, the literature grants a 

credible role for resveratrol in protecting cultured dopaminergic neurons against high 

glucose conditions. 

1.4 Research aims and hypotheses 

Provided the pre mIse that dopaminergic neurons of the nigrostriatal pathway 

are relatively more susceptible to insults that overwhelm their endogenous coping 

mechanisms in Parkinson's disease, it is reasonable to surmise that other sources of 

stress, not specific to this pathology, may lead to their death, thereby shoring up this 

concept. As already mentioned, Parkinson's disease occurs more frequently in patients 

suffering from pathologies featuring a generalized state of oxidative stress, su ch as 

diabetes (Cereda et al., 2012; Santiago and Potashkin, 2013; Sun et al., 2012). 

Although awareness of these pathological associations has been growing, the selective 
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vulnerability of nigrostriatal dopaminergic neurons in the se settings has never been the 

object of investigations. 

In this respect, the core work of my thesis addresses the following central 

hypothesis: nigrostriatal dopaminergic neurons are more vulnerable to hyperglycaemic 

conditions compared to other neuronal populations, expressly the mesocorticolimbic 

pathway. 

Accordingly, we elaborated a senes of experiments employing dopaminergic 

neuronal cultures in high glucose conditions as well as a rat model of hyperglycaemia. 

We assessed the degeneration of dopaminergic neurons in vitro and in vivo, and 

described the ensuing behavioural alterations in rats. By offsetting the production of 

ROS using a well-known antioxidant, resveratrol, we also verified the role of high 

glucose-induced oxidative stress in the death of dopaminergic neuronal cultures. 

1.4.1 Objective 1: Evaluate the degeneration of cultured dopaminergic neuronal 
cells in high glucose conditions 

We first tested whether dopaminergic neurons in culture undergo degeneration in 

sustained high glucose conditions. We employed an in vitro model of dopaminergic 

neurons cultured in elevated though physiologically plausible concentrations of glucose. 

The production of ROS was measured and dopaminergic neuronal cell death was 

assessed. We specifically quantified the superoxide anion radical, as it is thought to 

constitute the initial toxic species overproduced in hyperglycaemia and liable for the 

cascade of oxidative events leading up to cellular injuries (Brownlee, 2005). 

Next, we investigated the mechanisms by which dopaminergic neuronal cells degenerate 

in high glucose conditions, focusing on the apoptotic cascade. Particular indices of 

apoptosis were examined, expressly the terminal events occurring at the level of the 

DNA supported by changes in the expression of various proteins involved in the process. 
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1.4.2 Objective 2: Determine the potential of the antioxidative polyphenol 
resveratrol to hamper the high glucose-induced degeneration of cultured 
dopaminergic neuronal cells 

Alongside objective 1, we employed a strategy aimed at moderating oxidative 

stress to demonstrate its role in dopaminergic neurodegeneration. In this regard, 

we selected the stilbene resveratrol whose protective competences were extensively 

studied by virtue of its antioxidative potential. In line with objective 1, we verified the 

ability of resveratrol to prevent dopaminergic neuronal cell death, diminish superoxide 

anion radical production, and impede the apoptotic cascade. 

Results for objectives 1 and 2 are reported in the article entitled "Resveratrol 

protects dopaminergic PC12 cells against high glucose-induced oxidative stress and 

apoptosis: effect on p53 and glucose-regulated protein 75 colocalization" published in 

November 2013 in the peer-reviewedjournal Neurotoxicity Research (see Chapter II). 

1.4.3 Objective 3: Characterize dopaminergic neurodegeneration in a rat model 
of long-term hyperglycaemia 

On the grounds of results acquired in vitro, the preferential degeneration of the 

nigrostriatal pathway compared to the mesocorticolimbic pathway was next assessed 

in vivo in a well-established rat model of hyperglycaemia induced by a toxin that targets 

insulin-producing pancreatic ~ cells. Neurodegeneration assessments were performed 

following long-term hyperglycaemia, allowing the graduai instatement and maintenance 

of oxidative stress required to overwhelm susceptible targets. Accordingly, we measured 

glucose concentrations at source and terminal regions of the nigrostriatal and 

mesocorticolimbic pathways to inquire whether ail areas were equally exposed to 

circulating glucose. By immunohistochemical and immunoblotting methods, 

we appraised neurodegeneration in both pathways as weil as in the hippocampus for 

comparative means. Dopamine was measured at the terminais of these neurocircuits to 

corroborate observations of neurodegeneration in the midbrain. We also assessed the 

fate of glial cells in these regions to gain a better understanding of the effects of long

term hyperglycaemia in the substantia nigra pars compacta of rats. 
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1.4.4 Objective 4: Assess the behavioural alterations resulting from nigrostriatal 
neurodegeneration in a rat model of long-term hyperglycaemia 

Degeneration of neurocircuits involved in the regulation of behaviours, as is the 

case for the nigrostriatal and mesocorticolimbic pathways, often leads to measurable 

behavioural alterations. Although both the nigrostriatal and mesocorticolimbic pathways 

fulfil highly complex mandates that can in sorne ways overlap, it remains that the former 

specializes in regulating motor behaviours. In keeping with our hypothesis, motor 

behavioural assessments were performed in the same subjects as in objective 3 to 

determine whether observed nigrostriatal neurodegeneration may lead to discernable 

motor deficits. Rats executed motor tasks typically employed in models of Parkinson 's 

disease. To comparative ends, a cognitive novel object recognition test was performed to 

evaluate non-spatial working memory regulated by the hippocampus (Bast, 2007; 

Bast et al., 2009), but also involving the mesocorticolimbic components nucleus 

accumbens (Annett et al., 1989) and prefrontal cortex (Akirav and Maroun, 2006). 

Insights of these behavioural tests in conjunction with the results pertaining to 

objective 3 are reported in the article entitled "Dopaminergic neurodegeneration in a 

rat model of long-term hyperglycemia: preferential degeneration of the nigrostriatal 

motor pathway" published online in May 2018 and issued in September 2018 in the 

peer-reviewed journal Neurobiology of Aging (see Chapter III). 

Given the role of dopamine in social reward, social cognition and rough-and

tumble play processes (Narvaes and Martins de Almeida, 2014; Plavén-Sigray et al., 

2014; Trezza et al., 2010), we next investigated whether nigrostriatal degeneration 

disrupts these behaviours in our rat model of long-term hyperglycaemia. In order to 

evaluate social behaviour, interactions between unacquainted conspecifics and emissions 

of ultrasonic vocalizations (USVs) were recorded simultaneously. USVs inform on the 

emotional state of rats during social contexts such as mating, play or aggression 

(Burgdorf et al., 2008) and are largely regulated by dopamine (Brudzynski, 2009). 
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Complementary to the evaluation of motor deficits, these inquiries into the social 

behaviours of our model further extend our comprehension of the various ways that 

dopaminergic neurodegeneration may manifest itself. These specific results are reported 

in the article entitled "Long-term hyperglycaemia modifies social behaviour and 

emission of ultrasonic vocalisations in rats: a possible experimental model of altered 

sociability in diabetes" (see Chapter IV). The manuscript was submitted to the peer

reviewed journal Scientific Reports on July 9th, 2018. 

1.5 Methodology 

1.5.1 Objective 1: Evaluate the degeneration of cultured dopaminergic neuronal 
cells in high glucose conditions 

1.5.1.1 Cell culture 

To elucidate the possible neurodegenerative effects of a hyperglycaemic state 

on dopaminergic neurons in vitro, we employed the well-established model of 

dopaminergic neurons, the NGF-differentiated pheochromocytoma (PCI2) cell line. 

These cells were initially derived from a neuroendocrine turnour in the adrenal medulla 

of a rat (Greene and Tischler, 1976), and as such they can be subcultured almost 

indeterminately. PC12 cells both synthesize and store catecholamines, principally 

dopamine, in large dense-core vesicles that are released upon depolarization (Greene and 

Rein, 1977; Greene and Tischler, 1976). PCI2 cells share embryonic origins with 

neuroblastic cells. Thus, they can be differentiated into neuron-like cells with NGF 

treatments that phosphorylate and activate the tropomyosin receptor kinase A (Huang 

and Reichardt, 2003). Differentiation to a neuronal phenotype is enhanced by low serum 

concentrations (Yung et al., 2010). Ensuing signal transduction abrogates cell division 

and enhances the activity of the rate-limiting enzyme in dopamine synthesis, 

TH (Schubert et al., 1980), as weIl as the outgrowth of neurites and the expression of 

neurofilaments (Greene and Tischler, 1976; Lee et al., 1982). The PC12 cell line also 

expresses dopamine transport and metabolic machinery, such as DAT, VMATI 
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(preferentially expressed in adrenal glands, as opposed to neuronal VMAT2) and 

monoamine oxidase (Kadota et al., 1996; Liu et al., 1994; Youdim et al., 1986). 

Figure 1.24 Characterization of dopaminergic neuronal cell cultures. 
Top: From left to right are shown naïve pheochromocytoma (PCI2) cells 
and 3-, 5-, 7-day nerve growth factor (NGF)-differentiated neuronal 
PC12 cells. Bottom: Immunofluorescent assessment of the expression 
of neuronal and dopaminergic markers. From left to right: 7 -day 
differentiated neuronal PC12 cells marked for TH (green), neurofilaments 
(red) and nuclei (blue); dopaminergic N27 cells with Hoechst-stained 
nuclei marked for neurofilaments (yellow), DAT (green), and TH (red). 

In this respect, our group employs 5-1O-day NGF-differentiated neuronal PC12 

cells (50 ng/mL) cultured in low concentrations of fetal bovine serum (1%) (Achour 

et al., 2016; Bournival et al., 2012a, 2012b; Renaud et al., 2014). Figure 1.24 displays 

representative microphotographs of naïve (undifferentiated) PC12 cells and neuronal 

PC12 cells cultured in our laboratory. Pertinent to the present project, the y also express 

markers necessary for a high glucose context, expressly insulin-independent GLUT347 

(Mah~r et al., 1991). 

47 PC12 cells also express insulin-dependent GLUT4 (Hudson et al. , 1993), as weil as insulin-independent 
GLUTl and GLUT8 (Maher et al. , 1991), although the latter dwells in intracellular compartrnents and 
has not yet been found to translocate to the cell surface (Widmer et al. , 2005). Given the high affinity 
and capacity of GLUT3 compared to ail other GLUTs (Maher et al., 1996), it is the most relevant 
glucose transporter in our model in the absence of insulin. Accordingly, midbrain dopaminergic neurons 
express GLUT3 and only very little GLUT4, at least in the rat brain (El Messari et al., 1998; Maher 
et al., 1991). 
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1.5.1.2 High glucose conditions 

High glucose conditions in vitro alm to emulate the increase in extracellular 

glucose concentrations that takes place in hyperglycaemia. Depending on the culture 

medium, typical glucose concentrations range between 5.5 mM (1 g/L) to 17.5 mM 

(3.5 g/L). Taking into consideration the normal concentrations at which neurons are 

cultured, careful optimization of D-glucose concentrations and treatment times are 

required to achieve a faithful model of a physiologically hyperglycaemic state in cell 

cultures. In this respect, undiagnosed, untreated or uncontrolled diabetes can lead to a 

ri se in glycaemia reaching 25 mM (450 mg/dL), qualified as severe hyperglycaemia 

(Amblee et al., 2016; Marchese et al., 2017; Saul et al., 2016). In rats exhibiting a 

glycaemia of 30 mM48
, neurons are predicted to be exposed to ~9 mM of glucose, 

while at normoglycaemic values of 6 mM, they are exposed to 1.2 mM (Simpson et al., 

2007) (Table 1.7). This represents a 7.5-fold increase between normal and severe 

hyperglycaemic conditions. Since PC12 cells are normally cultivated in I l mM of 

glucose, we tested the following concentrations within this physiological 7.5-foid 

increase in dose-response and time course studies: 25, 50 and 75 mM (Figure 1.25). 

Seeing as we were aiming for a moderate cytotoxic effect averagmg 30-50% 

(or 50-70% viability) with the lowest dose of D-glucose, results of these kinetic 

dose-response studies allowed for the selection of a concentration of 25 mM (4.5 g/L) 

administered for a duration of 96 h in neuronal PC 12 cells. We also tested the effect of 

D-glucose on naïve PC 12 cells and irnrnortalized fetal mesencephalic dopaminergic 

N27 cells. Akin to PC12 cells, the latter secrete dopamine in addition to expressing the 

principal dopaminergic neuronal proteins, namely TH, DAT, nestin, neurofilaments and 

a neuron-specific enolate (Adams et al., 1996; Prasad et al., 1994), also characterized in 

our laboratory (Figure 1.24). These additional kinetic dose-response investigations ruled 

out the use of naïve PC12 cells, in light oftheir proliferative response, at least at 25 mM. 

These data also confirm that dopaminergic neuronal cells are vulnerable to high glucose 

48 We williater see that this glycaemia was indeed sustainable for 6 months in our rat mode\. 
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conditions, even when these are rather moderate (25 mM), strengthened by experiment 

repetitions in dopaminergic N27 cells. 
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Figure 1.25 Time-course and dose-response study of the toxicity of glucose on 
dopaminergic cells in culture. 
Cells were cultured in high glucose conditions ranging between 
25-75 mM for 0-120 h and cell viability (top A-C) or cell death (bottom 
D-F) were measured by MTT assay and lactate dehydrogenase 
quantification, respectively. Differentiated neuronal PCI2 ceIls (red lines) 
demonstrated a greater vulnerability th an naïve ceIls (blue lines). 
Dopaminergic N27 ceIls exhibited intermediate susceptibility (green line). 
There seems to be a slight proliferative effect for non-differentiated ceIls 
(B, C), likely owing to the fact that these populations were not in a 
post-mitotic state: glucose may have stimulated ceIl growth at low 
concentrations. This effect was lost at the highest dose. The chosen 
concentration, 25 mM, is portrayed as a bold !ine. 

As with any ceIl line, the PCI2 model presents limitations. In this regard, 

we performed tests in a rat model of hyperglycaemia, detailed later. Nonetheless, among 
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the vanous utilizations of the PC12 cell line, our paradigrn is advantaged by the 

differentiation of the cells to a clear neuron-like phenotype with pronounced expression 

of dopaminergic markers and cessation of division. In contrast, most other publications 

utilizing PC12 cells do not differentiate them, implying a tumoural phenotype and 

tapered dopaminergic properties, or use much higher concentrations of D-glucose that 

are not physiologically explainable (75-300 mM)49 (Aminzadeh, 2017; Fouda and 

Abdel-Rahman, 2017; Rayegan et al. , 2017; Song et al. , 2017; Wang et al. , 2017; Zhao 

et al., 2015). Additionally, naïve and NGF-treated PC12 cells are differentially 

susceptible to oxidative stress particularly caused by methylglyoxal, a by-product of 

sustained exposure to high glucose concentrations (Okouchi et al., 2005). Differences in 

cellular redox states, specifically regarding the reduced glutathione-to-oxidized 

glutathione disulphide ratio, are likely accountable for these distinct responses. 

1.5.1.3 Superoxide anion quantification 

The primary goal of this part of the thesis was to verify that oxidative stress likely 

underpins the death of dopaminergic neuronal cells cultured in high glucose conditions. 

We measured the initial oxidative event that is believed to occur early in response to a 

glucose overload, that is, the overproduction of superoxide anion (Brownlee, 2005). 

Quantification of superoxide anion at the level of mitochondria is possible using a 

modified hydroethidine superoxide anion fluorogenic probe marketed under the name 

MitoSOXTM (Robinson et al., 2006) (Figure 1.26). Hydroethidine is a reduced form of 

ethidium (3,8-diamino-5-ethyl-6-phenylphenanthridinium), shown to undergo oxidation 

by potassium superoxide into a red fluorescent molecule (Rothe and Valet, 1990). 

Since its discovery, hydroethidine has been widely used as an intracellular superoxide 

anion detector (Perticarari et al., 1994; Rothe and Valet, 1990; Tarpey et al., 2004). 

The modified hydroethidine molecule is conjugated with a triphenylphosphonium 

moiety that steers molecules toward mitochondria. The three lipophilic phenyl groups 

49 Such high concentrations of any solute, in fact, constitute a risk for noxious hypertonie effects that can 
be mistaken for the toxicity of the molecule per se. Although we remained within a reasonable 
concentration range, our work also provides D-mannitol control s, scarcely metabolized by mammalian 
cells, to rule out the possibility ofa toxic osmotic effect in our mode!. 
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facilitate movement across membranes of live cells and the positively charged 

phosphonium group further favours accumulation in the mitochondrial matrix endowed 

with a negative membrane potential. As such, MitoSOXTM almost exclusively reacts 

with mitochondrial superoxide anion (Robinson et al. , 2006) (Figure 1.27). 

H2 ~ li ~!J NH2 2-hydroxy-5-
- \ JJ=\1 (triphenylphosphonium) 

- (CH2)e- PNJ hexylethidium 
~ li 3 590 nm 

Figure 1.26 Structure and fluorescent mechanism of MitoSOXTM Red. 
Vpon reacting with superoxide anion, MitoSOXTM adopts a more 
highly conjugated structure enabling it to produce red fluorescence when 
it is excited at a wavelength of 510 nm. We can also appreciate 
the hydroethidine structure to the left and the positively charged 
triphenylphosphonium responsible for driving MitoSOXTM to 
mitochondria. 

Granted superoxide anion overproduction in response to stress is a very early event 

in cell cultures (Carange et al. , 2011; Ronson et al. , 1999), we performed time course 

studies and identified 3 h as the optimal incubation time when to perform measurements 

in high glucose conditions. We have also previously shown that levels of nitrates and 

nitrites, reactive nitrogen species arising from secondary reactions between superoxide 

anion and nitric oxide (Pacher et al. , 2007), are increased at a later time point in our 

model (Boumival et al., 2012a). In the article presented in Chapter II, the use of 

diethyldithiocarbamate, a selective inhibitor of SOD causing the accumulation of 

superoxide anion (Khazaei et al. , 2009; Puglia and Loeb, 1984), substantiated the 

specificity of MitoSOXTM in our paradigm. 
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Figure 1.27 Selectivity of MitoSOXTM Red. 
The speeifieity of two ROS probes, dihydrorhodamine 123 (white bars) 
and MitoSOXTM Red (black bars), were tested on a variety of speeies. 
While dihydrorhodamine 123 was not specifie for any partieular ROS, 
MitoSOXTM Red more readily seavenged superoxide anion, as evideneed 
by measures of fluorescence. It remains that this probe emits a weaker 
signal than dihydrorhodamine 123. The inset graph with grey bars 
displays Griess nitrite determination results, as a control for the detection 
of reactive nitrogen species. H202, hydrogen peroxide; HRP, horseradish 
peroxidase. (From the product information sheet provided by Molecular 
Probes, 2015.) 

1.5.1.4 Evaluation of ap op to tic death 

Apoptosis is a key contributor to the degeneration of neurons in Parkinson 's 

disease50 (Anglade et al., 1997; Moehizuki et al., 1996; Toulorge et al., 2016) as weB as 

in diabetes (Maiese et al., 2007; Russell et al., 1999). Alongside autophagie death, 

neeroptosis, ferroptosis, anoikis and many others, apoptosis belongs to a family of 

programmed cell death processes that occur in multicellular organisms (Ke et al., 2016) 

50 Several apoptotic hall marks were revealed in post-mortem substantia nigra pars compacta samples of 
parkinsonian patients, for instance chromatin condensation and DNA fragmentation (Tatton, 2000), 
p53 and Bax overexpression (Mogi et al. , 2007; Tatton, 2000), and elevated caspase-3 activity (Mogi 
et al. , 2000; Tatton, 2000). 
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(Figure 1.28). Cellular apoptosis is a profitable course of death for an organism owing to 

its tight regulation and to the cleanliness of the process that does not induce overt 

inflammation, as opposed to necrosis (Alberts et al., 2008). The importance of apoptosis 

becomes aIl the more apparent in cancer, wherein its pathological impairment is at the 

basis of several forms of the disease (Evan and Vousden, 2001; Green and Kroemer, 

2009). However, excessive apoptosis, due to lax cellular control or elevated death 

signais in the immediate environment, is also cause for pathology especially in tissues 

with scant regenerative potential such as the CNS (Bredesen et al. , 2006). 
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Figure 1.28 The classic intrinsic and extrinsic pathways in apoptosis. 
Continued on next page. 



100 

(Continued.) The intrinsic pathway is usually triggered by an endogenous 
stress, which activates p53 responsible for the initiation of the apoptotic 
cascade via transcriptional upregulation of pro-apoptotic factors. These 
will disrupt mitochondrial homeostasis at the level of the permeability 
transition pore, allowing for pro-apoptotic factors to escape into the 
cytoplasm where they will participate in the formation of the apoptosome. 
This multiproteic structure activates effector caspases, which will then 
execute the remainder of the apoptotic program. The extrinsic pathway 
is rather instigated by external death or stress, which will lead to 
the activation of terminal effector caspases via the stimulation of 
intermediary caspases. Both pathways are intimately linked. Akt, protein 
kinase B; Apaf-l , apoptotic protease activating factor 1; Ap02L/TRAIL, 
apoptosis antigen 2 ligand/tumour necrosis factor-related apoptosis
inducing ligand; Bad, B cell lymphoma 2 (Bcl-2)-associated death 
promoter; Bak, Bcl-2 homologous antagonist/killer; Bax, Bcl-2-
associated X protein; Bcl-XL, B cell lymphoma-extra large; Bid, Bcl-2 
homology 3 interacting-domain death agonist; c-FLIP, first apoptosis 
signal receptor-associated protein with death domain-like interleukin-l
beta converting enzyme (FLICE/caspase 8)-like inhibitory protein; DISC, 
death-inducing signalling complex; DR4/DR5, death receptor 4/5; F ADD, 
first apoptosis signal receptor-associated death domain; IAP, inhibitor of 
apoptosis proteins; Mcl-l, induced myeloid leukemia cell differentiation 
protein; Noxa, phorbol-12-myristate-13-acetate-induced prote in 1; PI3K, 
phosphatidylinositol 3-kinase; Puma, p53 upregulated modulator of 
apoptosis; Smac/DIABLO, second mitochondria-derived activator of 
caspases/direct IAP binding protein with low pl. (From Ashkenazi, 2008.) 

Numerous archetypal events occur over the course of apoptosis, for instance cell 

shrinkage, chromatin condensation, DNA fragmentation and blebbing, to name a few. 

The point of no retum in apoptosis is often regarded as the modification of chromatin 

and DNA. We verified this in our model by employing a DNA denaturation method that 

specifically detects cells whose chromatin is condensed (Frankfurt and Krishan, 2001) 

(Figure 1.29). This technique harnesses the amplified sensitivity of condensed apoptotic 

chromatin to thermal denaturation (Allera et al., 1997). Therefore, following high 

glucose treatments, we heated neuronal PC12 cells and applied formamide to induce 

denaturation of sensitive apoptotic chromatin. Using a HRP-conjugated monoclonal 

antibody that specifically targets single-stranded DNA, we were able to measure the 

proportion of terminally apoptotic neuronal cells by colorimetric detection. 
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Figure 1.29 Specificity with respect to temperature kinetics of formamide
induced DNA denaturation. 
Formamide was applied in cells submitted to several kinds of treatments 
described in the box. DNA denaturation was quantified over the course of 
rising temperatures. Apoptotic cells begin to exhibit DNA denaturation at 
manifestly cooler temperatures compared to other non-apoptotic cells, 
which corroborates the specificity of this test, performed at 70°C. 
(From Frankfurt and Krishan, 2001.) 

To bolster our findings , we also verified other events that accompany the major 

phenotypic changes that occur during apoptosis, mainly modifications in the expression, 

subcellular localization or post-translational alterations of proteins. Activation of the 

caspase cascade, a sequence of proteic cleavage events controlled by caspase proteases, 

is a hallmark of apoptosis (Sakahira et al. , 1998). Caspase-3 is the terminal effector of 

this cascade that, upon cleavage, is responsible for the activation of a DNA 

fragmentation enzyme, caspase-activated deoxyribonuclease. Therefore, we verified 

terminal caspase activation and DNA fragmentation in our model, by employing 

immunofluorescence for cleaved caspase-3 labeling combined with the terminal 

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method to isolate cells 

displaying DNA fragmentation. To ensure the exclusive counting of apoptotic cells, 

we only identified ones that exhibited both fluorescent signais. The specificity of our 

results was also substantiated by the use of an irreversible inhibitor of cleaved caspase-3 , 
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the fluormethy1ketone-conjugated tetrapeptide Z-DEVD-FMK, expected to yie1d cells 

with very little or no TUNEL signal. 

Next, we evaluated the expressIOn of proteins upstream or downstream from 

caspase-3 by immunoblotting. Upstream at the level of the mitochondria, one of the 

pro-apoptotic member of the Bcl-2 family, Bax, spearheads the formation of the 

mitochondrial permeability transition pore responsible for the cytosolic release of 

apoptogenic molecules, such as cytochrome c (Gollapudi et al. , 2003). Bcl-2, an anti

apoptotic member of the Bcl-2 family, interacts with Bax to prevent permeabilization 

(Renault et al. , 2013) (Figure 1.30). It follows that an elevated Bax to Bcl-2 expression 

ratio is a faithful indicator that apoptosis is on-going (Cory and Adams, 2002). 

At the level of the nucleus, the DNA repair enzyme P ARP constitutes a downstream 

target of caspase-3 and its cleavage in 24 and 89 kDa fragments is a recognized feature 

of apoptosis (Kaufmann et al., 1993). Thus, a low ratio of full-Iength-to-cleaved PARP 

constitutes a marker of apoptosis. Farther upstream of caspase activation, the tumour 

suppressor p53 was also assessed in light of its role in evoking apoptosis and sensing 

oxidative stress. Indeed, p53 is stabilized by oxidative stress and localizes to the nucleus 

where it induces the transcription of pro-apoptotic factors (Lee et al., 2008; Macip et al., 

2003; Nair, 2006). Consequently, we studied the cytoplasmic and nuclear localization of 

p53 in neuronal PC12 cells following high glucose treatments, a high nuclear-to

cytoplasmic ratio likely indicating its active promotion of apoptosis in our model. 

Directly linked to this, we also verified by immunoblotting and 

immunofluorescence the subcellular localization of a constitutively expressed chaperone 

of the heat shock protein family, glucose-regulated protein 75 (GRP75), known to 

sequester p53 in the cytoplasm, thereby preventing apoptosis in multiple models 

(Kaul et al., 2005). Fluorescence colocalization analyses were performed to evaluate its 

aptitude to bind p53 in the cytoplasm in conditions of oxidative stress. Normally, GRP75 

acts as a mitochondrial chaperone and guardian against oxidative stress among a 

plethora of other functions. However, its role under conditions of stress is highly 

variable (Londono et al., 2012) (Figure 1.31). One of our aims was to define its role in 
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high glucose-induced oxidative stress due to its purported implication III 

neurodegeneration. Indeed, GRP75 is depleted in the affected brain regions of 

Parkinson's disease patients (Burbulla et al. , 2010; Jin et al. , 2006) and knocking out its 

expression leads to neurodegeneration that can be rescued by the parkinsonian gene 

product parkin (Yang et al., 2011). In addition, it is a well-recognized binding partner of 

other genes mutated in Parkinson ' s disease, namely DJ-l and a-synuclein (Jin et al. , 

2006; Li et al., 2005) . 

Bcl-2 

inactive Bax 

activator 
BH30 

Bad 

Figure 1.30 Mitochondrial translocation of Bax followed by the formation of 
the mitochondrial permeability transition pore. 
Bax is usually found in an inactive state (light blue) in the cytoplasm. 
When Bcl-2 homology 3 (BH3)-only proteins such as tBid, Bcl-2-like 
protein Il (Bim) or Puma are produced in response to an apoptosis
inducing stress, these can activate Bax, rende ring it more liable to insert 
itself in the mitochondrial membrane leading to the generation of the 
permeability transition pore. Anti-apoptotic members of the Bcl-2 family, 
on the other hand, prevent Bax from inserting itself in the membrane. 
Considering the ratio of these proteins can offer insight into events 
occurring at the level of the mitochondrial membrane during apoptosis. 
p38MAPK, p38 mitogen-activated protein kinases. (From Renault et al., 
2013.) 



104 

o morùlln 

~ FGF-l 

• p66Shc 

pS3 

MVDl 

- Alds proteln refoldlng 

- Gu.rdI.., ~.Inst 
oxldMive stress 
.nd .poptosis 

- MetJlbolism .nd 
rnItochondri. homeostMis 

- Intercelul.r trllfllcklng 

7.FGF-1 .Â.... 
C..J -Regul.tlon of cell prollfer.tlon 

Figure 1.31 The multiple roles of GRP75. 

Unfolded 
polypeptide 

MorUllnu 
cMperone 

... 

p21 modlflutlon 

S.IL-1R 

Glucose-regulated prote in 75 (GRP75 or mortalin) is primarily involved 
in the mitochondria, where it fulfils chaperone, import, and oxidation
sensing functions. In the advent of cellular stress, GRP75 is recruited to 
the cytoplasm where it can regulate several processes, including 
apoptosis. By binding p53, it abrogates this transcription factor 's 
translocation to the nucleus where it usually perforrns pro-apoptotic 
operations. Nevertheless, much remains to be elucidated pertaining to 
its functions. FGF-l , fibroblast growth factor 1; Hsp, heat shock 
protein; IL-IR, interleukin-l receptor; MVD 1, diphosphomevalonate 
decarboxylase; p66Shc, 66 kDa proto-oncogene Src homologous-collagen 
homologue adaptor protein; VDAC, voltage-dependent anion channel. 
(From Londono et al., 2012.) 

Further methodological details conceming the utilization of neuronal PC12 cells 

cultured in 25 mM of D-glucose for 96 h, the measurement of superoxide anion at 3 h, 

or the assessment of apoptosis in our model are provided in Chapter II. 



105 

1.5.2 Objective 2: Determine the potential of the antioxidative polyphenol 
resveratrol to hamper the high glucose-induced degeneration of cultured 
dopaminergic neuronal cells 

1.5.2.1 Resveratrol treatments 

In addition to measunng superoxide amon production in neuronal PC12 cells 

treated with high glucose conditions, we employed an antioxidative strategy to verify the 

importance of oxidative mechanisms in dopaminergic neurodegeneration in vitro . 

The polyphenol resveratrol was chosen for its potent antioxidative capacities 

demonstrated in various cellular (Karlsson et al., 2000; Savaskan et al., 2003; Wu et al. , 

2017; Zhuang et al., 2003) and animal models (Kiziltepe et al., 2004; Palle and Neerati, 

2018; Sinha et al., 2002). In neuronal paradigms, resveratrol is best known for its ability 

to enhance the activity of SOD, an enzyme that catalyzes superoxide anion 

inactivationS! , both in vitro (Bai et al., 2013; Lee et al., 2012; Yuan et al., 2013) and 

in vivo (Cheng et al. , 2014; Kesherwani et al., 2013; Nalagoni and Karnati, 2016; 

Ren et al., 2011). 

Very few studies have used resveratrol on neuronal PC12 cells, solely focusing on 

demonstrating its pro-differentiation competences (Lecomte et al., 2017; Ma et al. , 

2014; Sugino et al., 2010). These projects established resveratrol's effects at 

concentrations ranging from 0.5 )lM to 20 )lM. Most other applications of resveratrol on 

cultured neurons typically provide its use at 1-120)lM (Calabrese et al., 2010; Jardim 

et al., 2017). In our paradigm, resveratrol was administered at an optimized 

concentration of 0.1 )lM, constituting the lowest dose that reliably protects our model 

against various oxidative insults (Bournival et al., 2009; Bureau et al., 2008; Gélinas and 

Martinoli, 2002). To verify the ability of resveratrol to modulate superoxide anion 

concentrations in mitochondria, neuronal PC 12 cells were co-treated with the 

polyphenol for the duration of high glucose treatments. 

5\ In purified neuronal mitochondria, resveratrol also demonstrates direct scavenging properties for the 
superoxide anion (Zini et al., 1999, 2002). One group employed PC 12 cells challenged with high 
glucose concentrations to demonstrate its protective effects via the activation of the phosphatidylinositol 
3-kinase/ Akt/forkhead box 03 (PI3K1 Akt/Fox03a) pathway (Liu et al., 2015). However, the authors 
used undifferentiated cells, which, as previously discussed, respond differently to oxidative insults 
(Okouchi et al., 2005). 
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The differentiation of PC12 cells with NGF is important, not only to yield a clear 

neuronal phenotype, but also to prevent adverse effects from resveratrol treatments. 

Indeed, resveratrol exhibits both protective (Agrawal et al. , 20 Il; Dasgupta and 

Milbrandt, 2007; Della-Morte et al. , 2009) and toxic (Muqbil et al., 2012; Trincheri 

et al., 2007; Wenner, 2012) properties depending on cellular contexts. In naïve PC1 2 

cells, resveratrol is cytotoxic, whereas it promotes neurite outgrowth, mitochondria 

renewal and energy balance in NGF-differentiated ones (Hayakawa et al., 2013). 

For this reason, PC12 cells were differentiated for at least 5 days with NGF before high 

glucose or resveratrol treatments were employed. 

The application of polyphenols m cell cultures also reqUlres certain 

methodological adjustments. One of these is to ensure the absence of other phenolic 

substances in the cell culture medium to mIe out any effect not attributable to the 

polyphenol treatrnent. To that end, ail sera used during experiments were charcoal

stripped to remove steroids, the principal phenolic compounds found in these ceU culture 

additives (Boumival et al., 2009; Bureau et al., 2008; Cao et al., 2009; Gélinas and 

Martinoli, 2002). 

Further methodological information concernmg the use of resveratrol ln our 

dopaminergic model is provided in Chapter II. 

1.5.3 Objective 3: Characterize dopaminergic neurodegeneration in a rat model 
of long-term hyperglycaemia 

1.5.3.1 Rat model oflong-term hyperglycaemia 

Selection of an appropriate paradigm to simulate long-term hyperglycaemia in 

rodents likely constituted the most critical aspect of the in vivo portion of this thesis. 

Attempts to model diabetes and other metabolic diseases as working platforms to 

develop treatments and elucidate pathological mechanisms have yielded today a slew of 

weU-described paradigms (see for reviews Baxter and Duckworth, 2004; Islam and 

Loots, 2009; Kim et al., 1998; Srinivasan and Ramarao, 2007; Van Belle et al., 2009). 
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Our choice was founded on accessibility, operational simplicity and hyperglycaemia 

sustainability. While the aim of this thesis is not to provide an extensive description of 

the multiple paradigms of diabetes, an overview of the most salient rodent models is 

offered next with respect to our selection criteria. 

Diabetic rodent models are conveniently separated into two categories: genetic and 

experimentally-induced (Table 1.10). Various genetic and transgenic models of diabetes 

mellitus have been developed to date, sorne of the most common being Long Evans 

Tokushima Fatty rats (cholecystokinin receptor deficiency), Zucker fatty rats (leptin 

receptor deficiency), and db/db (leptin receptor deficiency) or ob/ob (leptin deficiency) 

strains of mice, reflective of a type II diabetes-like state, as well as the non-obese 

diabetic mouse strain (polygenic cause) and BioBreeding diabetes-prone rats (polygenic 

cause), rather mimicking a type I-like pathology (Bell and Hye, 1983; Kawano et al. , 

1992; Shafrir, 2003; Verdaguer et al. , 1996). These models bear the advantage of 

developing a spontaneous pathology. However, they are costly and require meticulous 

maintenance, which diminishes their accessibility. In addition, frank hyperglycaemia is 

not observed in sorne instances, as is the case for Zucker fatty rats or ob/ob mice. 

Conversely, when hyperglycaemia is readily present, for example in db/db or non-obese 

diabetic mice, insulin treatrnent may be required to main tain the animaIs. 
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Experimentally-induced models are, on the other hand, generally inexpensive, 

flexible and require little to no special maintenance (Islam and Loots, 2009). 

This category can further be subdivided into chemical-, diet- and surgically-induced 

models. Partial or total pancreatectomies were formerly common procedures to generate, 

respectively, type II or type 1 diabetes-like phenotypes presenting prominent 

hyperglycaemia (Foglia, 1950; Pauls and Bancroft, 1950). However, their popularity 

dwindled with the recognition that much simpler chemical protocols cou Id efficiently 

deplete insulin-producing pancreatic ~ cells. By a large amount, the two most prominent 

toxins are alloxan (Goldner and Gomori, 1943) and streptozotocin (Rakieten et al. , 

1963). Both operate via oxidative mechanisms to cause the necrosis of pancreatic ~ cells 

(Rerup, 1970; Yamamoto et al. , 1981) (Figure l.32) . Owing to its greater stability and 

longer half-life, streptozotocin is sometimes preferred over alloxan in rats and mice, 

but not in rabbits who are in sensitive to the former (Rerup, 1970; Srinivasan and 

Ramarao, 2007). Depending on the intravenous (i.v.) dose52
, these molecules can yield 

either type 1- (higher dose) or type II-like (lower dose) diabetic features (Rakieten et al., 

1963). However, most agree that, regardless of the dose, i.v. alloxan and streptozocin 

induce a diabetic phenotype that closely resembles type 1 diabetes with manifestations of 

acute hypoinsulinaemia instead of insulin resistance. Intraperitoneal (i.p.) injections in 

adult or neonatal rodents were later adopted to moderate the outcomes and to enhance 

their maintainability (lto et al. , 1999, 2001 ; Kodama et al. , 1993; Portha et al. , 1974, 

2007). 

Other methods used to generate more sustainable experimentally-induced models 

consist in laye ring different treatrnents to modulate extreme phenotypes. One of the most 

widely hired strategies in this sense employs single i.p. injections of nicotinamide prior 

to streptozotocin administration (Masiello et al., 1998; Nakamura et al. , 2006). 

Nicotinamide moderates the necrosis of pancreatic ~ cells induced by streptozotocin, 

thereby generating a model that is hypoinsulinaemic and hyperglycaemic, but viable for 

52 When administered i.v., alloxan is usually given in doses ranging From 40-200 mg/kg body weight 
[b.w.] in rats or 50-200 mg/kg b.w. in mice. Streptozotocin, on the other hand, is administered i.v. 
in doses ranging From 35-65 mg/kg b.w. in rats or 40-200 mg/kg b.w. in mice. 



110 

several months without the need for insulin treatment53
. In recent years, mixed chemical

diet paradigms were implemented that more faithfully emulate type II diabetes (Reed 

et al. , 2000; Srinivasan et al., 2005). Indeed, standalone specialized diets (high-fat, 

high-carbohydrate, high-fat low-carbohydrate, etc.) present the disadvantage of causing 

a very progressive form of metabolic syndrome, characterized mostly by obesity and 

insulin resistance, but rarely associated with frank hyperglycaemia or glucose 

intolerance (Houssay and Martinez, 1947; Surwit et al., 1988; Winzell and Ahren, 

2004). Combined with a low i.p. dose of streptozotocin, high-fat diets induce increased 

body weight, hyperglycaemia, hyperinsulinaemia and dyslipidaemia in rodents (Reed 

et al. , 2000; Srinivasan et al., 2005). Uniting insults in the form of diets and toxins is 

today considered a core framework for the development of long-term type II diabetic

like models (Zhang et al. , 2003). Nevertheless, despite attempts to refine existing 

models, none described to date are fully representative of either type l or II diabetes in 

humans (Baxter and Duckworth, 2004; Islam and Loots, 2009; Van Belle et al. , 2009). 

Granted the purpose of our work dwells in evaluating the effects of a sustained 

hyperglycaemic phenotype and not in faithfully simulating a specific disease, we were 

principally interested in models displaying this key feature for a long period of time 

without the need for ectopic insulin interventions. In this spirit, moderate chemical

induced and diet-chemical mixed paradigms constituted the simplest and most accessible 

protocols. Thus, we tested two well-documented paradigms in parallel: moderate dose 

nicotinamide-streptozotocin-treated rats and low dose streptozotocin-treated rats fed a 

high-fat diet (Reed et al., 2000; Srinivasan et al., 2005). In the first protocol, ovemight 

fasted rats were simply injected with nicotinamide (i.p. 100 mg/kg b.w.) 20 min prior to 

administration of streptozotocin (i.p. 55 mg/kg b.w.), as previously described (Badole 

et al., 2015; Masiello et al. , 1998). In the second protocol, rats were maintained on a 

60% high-fat di et adjusted for calories that began two weeks prior to a single i.p. 

injection of streptozotocin (35 mg/kg b.w., overnight fasted) (Srinivasan et al. , 2005). 

Hyperglycaemia was first assessed 72 h following injections and thereafter measured on 

53 Precise ly, nicotinamide inhibits PARP, who se exaggerated activation by streptozotocin-induced DNA 
alkylation leads to the depletion of NAD+ and ATP, liable for pancreatic P cell necrosis. Nicotinamide 
also offers protection by serving as a precursor of NAD+ (Szkudelski, 201 2). 
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a regular basis, alongside body weight and food intake. Figure 1.33 surnmarizes these 

monitored metabolic parameters in our models. 
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Figure 1.32 Mechanisms of pancreatic P cell death in chemical-induced diabetes. 
Alloxan and streptozotocin both enter pancreatic ~ cells via GLUT2, 
competing with glucose on the way. Alloxan engages in different 
mechanisms to participate in the death of pancreatic ~ cells. For instance, 
alloxan fuels a redox cycle with its reduction product, dialuric acid, 
thereby producing highly reactive ROS, such as the hydroxyl radical 
(-OH) via Fenton and Haber-Weiss reactions, and depleting antioxidative 
cofactors, like GSH and NADPH. Alloxan may also inactivate 
glucokinase, leading to hampered A TP production and insu lin secretion, 
a mechanism inhibited by the presence of glucose. Contrary to alloxan, 
streptozotocin's primary mechanism is quite straightforward and 
implicates firsthand alkylation of DNA. Exposure to either toxin leads to 
damaged DNA and the activation of the reparation enzyme PARP whose 
overstimulation will deplete stocks of the NAD+ cofactor: pancreatic 
~ cells thereby undergo necrosis. Fe2

+, ferrous iron ions; Fe3+ , ferric iron 
ions; GS-, glutathione radical ; GSSH, glutathione disulphide; NO, nitric 
oxide. (Adapted from Radenkovié et al. , 2016.) 
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Figure 1.33 Metabolic follow-up of nicotinamide-streptozotocin or high fat
streptozotocin treated rats. 
Weight (A), glycaemia (B), cumulative food intake (C) and calorie 
intake (D) per cage were measured for over two months in two different 
models of diabetes. High fat-fed rats injected with streptozotocin 
(purple tines) clearly did not develop hyperglycaemia or hyperphagia, 
while nicotinamide-streptozotocin rats (red lines) were manifestly 
hyperglycaemic and hyperphagic. CTRL, control; HF, high-fat diet. 

Protocol 1 yielded the best results regarding the maintenance of a moderate to 

elevated hyperglycaemia. Despite manifestations of a progressive hyperphagia, rats from 

protocol 1 stopped gaining weight. Conversely, protocol 2 did not render rats either 

hyperglycaemic or hyperphagic54
. Indeed, rats administered the high-fat diet did not 

seem to find the food palatable. Accordingly, they did not gain weight faster than control 

rats. As the diet contained a great amount of fat (Table 1.11), it is possible that the food 

pellets became rancid quicker at room temperature upon contact with air. In fact, 

54 We suspected the amount of calories to contribute to the diminished intake of weighted food, 
but correcting for the energetic value of the diets did not provide further insight. 
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the high-fat di et did not conta in antioxidants to prevent rancidification known to give 

foods an off flavour. In addition, high-fat food pellets were much softer, which may 

have contributed to the rats' indifference or dislike toward this diet. The manufacturers 

of this diet could not provide any explanations, either. 

Table 1.11 

Ingredient lists of the rat diets provided by Harlan 

Ingredients 

Casein 
L-Cysteine 
Maltodextrin 
Sucrose 
Soybean oil 
Cellulose 
Mineral mix 
Vitamin mix 
Choline bitartrate 
TBHQ antioxidant& 
Corn starch 
Lard 
Calcium phosphate dibasic 
Blue food colour 

& TBHQ, tert-butylhydroquinone. 

AfN-93G purified diet 
(TD.94045) 

(g/kg) 

200 
3 

132 
100 
70 
50 
35 
10 
2.5 

0.014 
397 
o 
o 
o 

Adjusted calories diet (60/fat) 
(TD.064 14) 

(g/kg) 

265 
4 

160 
90 
30 

65.5 
48 
21 
3 
o 
o 

310 
3.4 
0.1 

The sum of these observations led us to adopt protocol 1 for the project at hand, 

while rats from protocol 2 were redirected toward another study. Nicotinamide

streptozotocin55 injected rats, hereafter designated hyperglycaemic, and vehic1e-injected 

control rats fed a normal diet were employed to produce the results presented in 

Chapter III. Rats were maintained for up to 6 months without the need for insulin 

interventions. In the brains of our mode l, we studied the various regions of the 

nigrostriatal and mesocorticolimbic pathways, explicitly the substantia nigra pars 

compacta, ventral tegmental area, dorsal striatum, nucleus accumbens and prefrontal 

cortex, but also the hippocampus for comparative means. In addition, experiments were 

conducted at two time points, either at 3 or 6 months following induction of 

55 Noteworthy, peripherally administered streptozotocin does not enter the brain (Bhuyan et al., 1974). 
Other models do employ intracerebroventricular injections of streptozotocin to cause insulin resistance 
in the CNS, a model of Alzheimer's disease (Correia et al., 20 Il) . 



114 

hyperglycaemia, in order to gam a clearer insight regarding the time necessary for 

neurodegeneration to manifest itself in our mode!. Moreover, many experiments were 

repeated in different cohorts and in different institutions (Université du Québec à 

Trois-Rivières, and University of Cagliari, Italy) , thereby solidifying our findings. 

Chapter III offers further details pertaining to the experimental design and the various 

metabolic parameters monitored along the course of this project, including haemoglobin 

glycation measurements and a terminal oral glucose tolerance test commonly used in 

humans and in animal models to assess the severity of hyperglycaemia and glucose 

intolerance, respectively. 

1.5.3.2 Intracerebral glucose measurements 

The central hypothesis of this thesis requires firsthand observations of a rise in 

glucose concentrations in the brain regions of interest, namely the substantia nigra pars 

compacta and dorsal striatum of the nigrostriatal pathway, and the ventral tegmental 

area, nucleus accumbens and prefrontal cortex of the mesocorticolimbic pathway. 

As previously stated, precise quantifications of intraneuronal glucose are lacking in the 

literature. Extracellular levels of glucose have, however, been appraised in rodents, 

but reports usually coyer one single brain region at a time during specific tasks56
. 

More pertinent to our project, several studies demonstrated that hyperglycaemic or 

hypoglycaemic challenges in otherwise healthy rodents provoke same-direction changes 

in extracellular glucose levels, as previously discussed (Abi-Saab et al., 2002; Béland

Millar et al. , 2017; Macauley et al., 2015; Osborne et al., 1997). In diabetic paradigms, 

rises in extracellular glucose concentrations were only measured in the inferior 

colliculus of the brainstem (Jacob et al., 2002; McCrimmons et al., 2003), the striaturn 

(Gomez and Barros, 2003) and the ventromedial hypothalamus (de Vries et al., 2003). 

Several reports in humans account for cerebral glucose levels but were mostly conducted 

in pathological states, for instance in partial seizures (Abi-Saab et al. , 2002), following 

56 Many experiments have been conducted during various tasks or in response to several stimuli, such as 
anaesthetics, tail pinching or hypo/hyperoxia. The brain regions targeted during the se studies are the 
striatum (Osborne et al. , 1997; Fellows and Boutelle, 1993; Lowry et al., 1998a, 1998b, 1 998c), 
hippocampus (Macauley et al. , 2015; McNay et al. , 2000, 2001a, 2001b, 2004; Rex et al., 2009; 
Su et al., 2015) and motor cortex (Béland-Millar et al. , 2017). 
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a cardiac arrest (Hifumi et al. , 2017) and especially in traumatic brain injuries (Jalloh 

et al. , 2013 ; Rostami, 2014). 

Despite these reports indicating a nse In extracellular glucose levels in 

hyperglycaemic or diabetic states, no adequate account exists to support the supposition 

that concentrations increase evenly throughout several neuroanatomical locations. 

We therefore performed glucose measurements in the multiple regions of interest in our 

hyperglycaemic model by two different methods allowing us to estimate both 

intracellular and extracellular concentrations. For intracellular glucose assessments, 

brain homogenates were prepared from the striatal, midbrain, prefrontal cortex and 

hippocampal regions, the latter serving for comparative means. We used a standard 

glucose measurement kit that employs a mutarotase enzyme to transform a-D-glucose to 

~-D-glucose, further oxidized by glucose oxidase. This generates hydrogen peroxide that 

can be colorimetrically quantified upon its reaction with a chromogenic agent (Crystal 

Chem, Downers Grove, IL, USA). Since rats were perfused upon sacrifice with ice-cold 

phosphate-buffered saline, it is possible that the results obtained may provide an 

underestimation of intracellular glucose concentrations. 

For extracellular assessments, the intracerebral microdialysis technique in freely 

moving and awake rats was employed, later described in greater detail. Seeing as 

separation of the different subregions of the striatum and midbrain was not possible in 

the previous method, intracerebral microdialysis advantageously allowed us to 

specifically target the ventral tegmental area, substantia nigra pars compacta, nucleus 

accumbens and dorsal striatum by stereotactic vertical insertion of dialysis probes that 

coUect interstitial fluid solutes in real time. Given the various glycaemic and feeding 

profiles of our rats, especiaUy between control and hyperglycaemic individuals, 

our protocol required to standardize these parameters. We therefore fasted aU rats 

ovemight and administered a specific amount of food diluted in water by intragastric 

gavage precisely 30 min before the beginning of microdialysis experiments. To obtain a 

reliable baseline measurement, samples were collected over a I-hour lapse of time and 

glucose was quantified using the same kit employed for brain homogenates. 
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Combining these methods ensured a robust confirmation of the increase in 

intracerebral glucose levels in our model. It also allowed us to verify that glucose 

concentrations rise evenly across the brain regions of interest. 

1.5.3.3 Assessment ofneurodegeneration 

Objective 3 aimed to characterize the effects of long-term hyperglycaemia on the 

nigrostriatal and mesocorticolimbic pathways with a keen focus on neurodegeneration. 

We combined immunoblotting and immunohistochemical techniques to strengthen any 

findings of neurodegeneration upon which hinges this part of the project. TH and DAT 

were employed as dopaminergic markers expressed in the whole length of dopaminergic 

neurons of either the nigrostriatal or mesocorticolimbic pathways. NeuN served as a 

general neuronal marker, as it is expressed in ail neuron ceil bodies, but not in processes, 

regardless of their type. Harvesting one brain hemisphere for immunoblotting and the 

other for immunohistochemistry maximized the use of animaIs. 

Immunoblotting assays allowed for a semi-quantitative measurement of the 

expression levels of dopaminergic and neuronal markers in the midbrain, striatum, 

prefrontal cortex and hippocampus of our model, 3 and 6 months following induction of 

hyperglycaemia. Altered TH and DA T expression levels in our model provided hints of 

dopaminergic modifications, perhaps indicative of neurodegeneration, whereas NeuN 

measurements served to support these results. We exercised caution when analysing 

NeuN expression in the striatum, since dopaminergic neuronal cell bodies are not found 

in this region but rather in the midbrain. 

The immunohistochemical method served to confirm whether changes in 

expression were attributable to a proper loss of dopaminergic neurons. It also permitted 

the precise neuroanatomical identification of these changes. Since expression levels of 

TH, DAT and NeuN were altered only at 6 months in the striatum and midbrain of our 

hyperglycaemic model, we performed immunohistochemical analyses at this time point. 

Post-fixed frozen hemispheres were sliced rostrocaudally in coronal sections and 
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neuronal markers were revealed immunohistochemicaIly. In the substantia mgra 

pars compacta and ventral tegmental area, TH-positive dopaminergic neurons or 

NeuN-positive overall neurons were counted. In the various regions of the striatum, 

the density of TH-positive dopaminergic fibres originating from the midbrain was 

measured by optical densitometry. As such, we were able to verify proper 

neurodegeneration of either neuronal cell bodies or terminal arbours in both pathways. 

NeuN-positive neurons were also counted in the striatum, prefrontal cortex and 

hippocampus to make sure that other non-dopaminergic populations remained 

unchanged. TH-positive dopaminergic fibre staining was not seen In the prefrontal 

cortex, as it is only lightly innervated by the ventral tegmental area. Likewise, the 

hippocampus, which receives minor dopaminergic input from the ventral tegmental 

area57 (Lisman and Grace 2005), did not display any staining. 

1.5.3.4 Assessment of glial profiles 

In an attempt to gain better insight into the changes that take place in the CNS of . 

our hyperglycaemic rat model, the fate of glial populations was studied alongside that of 

neurons. Astrocyte proliferation, or astrogliosis, is a well-appreciated feature of the 

diabetic nervous system, both in humans (Araszkiewicz and Zozulinska-Ziolkiewicz, 

2016; DeJong, 1977; Lu et al., 2014) and in models (Alomar et al., 2016; Baydas et al., 

2003; Duarte et al., 2009; Nagayach et al., 2014; Rostami et al., 2017; Saravia et al. , 

2002). However, studies have not addressed astrogliosis in multiple regions at a time nor 

have they tackled this feature in long-term hyperglycaemia. Likewise, microgliosis is an 

appreciated feature of retinal and peripheral nerve pathologies in models of diabetes 

(Gaucher et al., 2007; Krady et al., 2005; Mazzeo et al., 2017; Zeng et al., 2000) as weIl 

as in patients (Altmann and Schmidt, 2018; Zeng et al., 2008), but many gaps remain 

pertaining to the CNS (Oliveira et al., 2016; Nagayach et al., 2014). Conversely, the loss 

of microglial cells or astrocytes may also be indicative of the general distress expressed 

57 The hippocampus and ventral tegmental area form a functional loop. When the hippocampus detects 
new information that is not stored in long-term memory, it sends a novelty signal through the nucleus 
accumbens and ventral pallidum to the ventral tegmental area. Then, the ventral tegmental are a releases 
dopamine in the hippocampus, thereby enhancing long-term potentiation and leaming. (Lisman and 
Grace, 2005). 
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by resident cells of the CNS. Although under-acknowledged, degeneration of glial cells 

may in fact occur in the context of sustained oxidative stress (Streit et al. , 2008). 

The importance of addressing glial populations in our models lies in their 

purported role with regard to neurodegeneration, especially in the context ofParkinson 's 

disease (McGeer et al., 1988; More et al., 2013; Russo et al., 2014). Indeed, glial 

alterations may imply a neuroinflammatory state likely connected to the death of 

dopaminergic neurons (Cabezas et al., 2014; Hirsch et al., 2003), as micro glial cells 

were shown to be more abundant in the substantia nigra pars compacta of post-mortem 

brains of parkinsonian patients (Kim et al., 2000; Lawson et al., 1990). 

The knowledge gaps highlighted above alongside the relevance of glial 

populations in neurodegeneration stress the pertinence of addressing the fate of glial 

populations as an indicator of the severity of the hyperglycaemic insult in our model. 

To that end, microglial cells and astrocytes were immunohistochemically detected using 

antibodies raised against ionized calcium-binding adapter molecule 1 (Iba1) or glial 

fibrillary acidic protein (GF AP), respectively. Cells were counted in all of the 

aforementioned brain regions using the method previously described. 

1.5.3.5 Intracerebral dopamine measurements 

ldeally, observed losses of neurons or their terminaIs should be supported by 

further neurochemical investigations. To that end, we measured extracellular dopamine 

in the terminal regions of the nigrostriatal and mesocorticolimbic pathways, that is, 

the dorsal striatum, the nucleus accumbens and the prefrontal cortex. The microdialysis 

technique, also used to measure extracellular brain glucose, allows for the accurate 

assessment of these regions. However, it entails complicated surgical procedures that 

could not be performed in our model at the 6-month time point. Instead, we conducted 

experiments at 3 months to evaluate the possibility that a functional loss of 

dopaminergic neurotransmission could emerge before the neurodegeneration observed at 

6 months. Information provided at this time point was nonetheless relevant to our 
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interpretation of several behavioural manifestations observed at 3 months in our model, 

presented next in objective 4. 

Ever since its design was optimized (Ungerstedt and Pycock, 1974; Un gers te dt 

et al., 1982), intracerebral microdialysis has been extensively used to measure small 

solutes in the interstitial fluid of the brain (see for review Chefer et al., 2009) 

(Figure 1.34). This technique employs a minute probe composed of a metal cannula that 

contains in its centre a tubular dialysis membrane permitting free transport of solutes 

smaller than the molecular weight cut-off, typically of 20 000 Da. The probe is equipped 

with an inlet, to transport the perfusate, and an outlet, to collect the microdialysate. 

Referring to an atlas of neuroanatomical coordinates, the probe is vertically inserted in 

the brain region of choice with the assistance of a stereotactic apparatus. A defined 

portion of the semipermeable dialysis membrane at the very tip of the probe is directly 

exposed to the parenchyma; only this surface participates in molecular exchanges and 

can be modified to accommodate the dorsoventral thickness of the region of interest. 

Perfusion begins as soon as the probe is inserted and the automatic syringe dispenser is 

activated. Typical perfusion rates range between 0.3-3 ~Llmin and have a direct 

incidence on the recovery rate, that is, the fraction of solute collected by the probe found 

to be inversely proportional to the speed of its production, diffusion and replacement in 

the interstitial fluid (Wages et al., 1986; Zetterstrom et al., 1988). Aiso depending on the 

perfusion rate as well as on the sensitivity of the analytical apparatus, sample collection 

times range from 1-20 min. The perfusate c1i1ssically consists of a solution that most 

faithfully represents the extracellular environrnent in which the probe is inserted, except 

that it is completely depleted in the solute meant to be sampled. Indeed, it is usually 

accepted that uptake occurs by diffusion along a concentration gradient58
. In our 

experiments, we prepared the probes according to the widely employed protocol 

established in Prof. Gaetano Di Chiara's laboratory (Bassareo et al., 2011; Di Chiara 

et al., 1993; Tanda et al., 1996). This protocol presents the advantage of employing a 

dialysis membrane mounted on a tungsten fibre and covered in an impermeable silicone 

58 This also means that retrodialysis is possible if a certain solute is included in the perfusate, but found 
in lower concentrations in the brain parenchyma (Khan-Dawood et al., 1994; Wei et al., 1997). 
Such strategies allow for the delivery of drugs to very precise neuroanatomical loci. 
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sheath. As they are rigid and do not reqmre a cannula to guide them, the brain 

parenchyma is not in direct contact with metal. 

.yringo pump (aCSF, 1 !JI/min) 

signai ttansduetlon 

fradion colledor (10·20 min) 

ventriculaf space 
CSF 

Figure 1.34 Schematic representation of solute exchanges during microdialysis 
experiments. 
Not only do microdialysis probes uptake neurotransmitters, they can also 
sample most any molecule present in the environment that is smaller than 
the molecular weight cut-off. These can come from glial cells and blood 
capillaries, in addition to neurons. Likewise, solutes can be infused in 
discrete brain regions employing a retrodialysis paradigm, wherein a 
greater concentration of the substance is supplied in the perfusate (H6cht 
et al., 2007). aCSF, artificial cerebrospinal fluid; CSF cerebrospinal fluid. 
(From Bossers et al., 2013.) 

Our protocol did not involve behavioural assessments or pharmacological 

interventions sensitive to the state of the animal that, in these circumstances, must 

recover for several days. As such, baseline dopamine was measured on the day 

following acute cannulations in well-rested, awake and healthy rats. An intermediate 

perfusate rate of 1 ilL/min was employed and 9 samples were collected over 20-min 
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periods for a total of 3 h. Microdialysates were collected and analyzed by high

perfonnance liquid chromatography. This technique separates the various molecules 

present in a liquid according to their affinity for a stationary (solid column) phase that is 

usually polar, for instance silica. However, microdialysates usually conta in rather 

hydrophilic solutes whose retention times on the column are too long, hence the use of 

a reverse-phase high-performance liquid chromatography wherein the stationary phase is 

non-polar to allow the movement of these molecules (Irnperato and Di Chiara, 1984). 

Solutes are electrochemically detected and their identity is confinned by appraisal of 

their signature elution time. 

Although microdialysis offers great neuroanatomical precision, it does not offer 

very good temporal resolution. The sensitivity of the analytical apparatus usually 

requires samples to be at least a few microlitres, which, at best, implies collection times 

of 1 min. Consequently, phasic bursts are difficult to quantify by microdialysis as they 

occur below the l-second threshold and require voltammetric or electrophysiological 

methods that are sensitive to infrasecond fluctuations caused by behaviour or stimuli 

(Hauber, 2010; Schultz, 2010; Segovia et al., 2011 ; Wightman and Robinson, 2002). 

Tonic release, however, is feasibly quantified by intracerebral microdialysis experiments 

that measure events dependent on time constants greater than 1 min (Di Chiara, 1990). 

Extracellular concentrations of dopamine measured in our experiments therefore 

represent dopaminergic tonic firing59 at baseline and hold important implications for 

behavioural interpretations that we will address in the discussion. 

To fulfil objective 3, the joint evaluation of neurodegeneration, glial disturbances 

and dopamine release in the various brain regions of the nigrostriatal and 

mesocorticolimbic pathways offered a broad appreciation of the dopaminergic neuronal 

alterations present in our hyperglycaemic model. Supplementary information, especially 

pertaining to probe insertion locations in microdialysis experiments, can be found in the 

article presented in Chapter III. 

59 We must bear in mind that a loss of tonie firing in the dorsal striatum is most eonspieuously observed 
in Parkinson's disease and leads to bradyki nesia and rigidity. 

J 
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1.5.4 Objective 4: Assess the behavioural alterations resulting from nigrostriatal 
neurodegeneration in a rat model of long-term hyperglycaemia 

Video samples of the behavioural experiments described below can be viewed 

at the following address: goo.gl/9HF6ux. Copy and paste this shortened URL in your 

browser to access the Dropbox file. 

1.5.4.1 Assessment ofmotor deficits 

In consonance with the three previous objectives, we wanted to achieve a broad 

perception of the effects of long-term exposure to high concentrations of glucose on 

dopaminergic neurons. Working with a rodent model allowed us to appreciate 

behavioural consequences arising from dopaminergic neurodegeneration. lndeed, several 

well-established tests exist to evaluate nigrostriatal or mesocorticolimbic functions. 

As previously mentioned, the nigrostriatal pathway is prominently involved in the 

production of movement owing to its important pacemaker activity that provides the 

striatum, especially the dorsal region, with tonic dopamine (Lanciego et al., 2012) . 

Rat models ofParkinson's disease are commonly subjected to specifically designed tests 

to uncover motor symptoms that may arise from the degeneration of the nigrostriatal 

pathway (see for reviews Dunnett and Lelos, 2010; Meredith and Kang, 2006; Pinna and 

Morelli, 2014; Plowman and Kleim, 2011). They are also used to develop treatments to 

alleviate motor symptoms that are thought to arise from loss of dopamine tonicity 

(Bergstrom and Garris, 2003; Bergstrom et al., 2011). 

Among the great many experimental tools developed to assess motor deficits in 

rodents, only a few were applicable to our model. Indeed, many tests are designed for 

asymmetrically lesioned animais induced, for instance, by a unilateral injection of 

6-0HDA into the ascending nigrostriatal bundle of rats (Schwarting and Huston, 1996; 

Ungerstedt and Arbuthnott, 1970; Vellucci et al., 1993). These tests are usually based on 

the evaluation of tuming behaviour in response to stimuli that is due to the enhanced 

sensitivity of postsynaptic receptors following striatal denervation rather th an the proper 
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loss of dopamine tonicity (Creese et al., 1977). Unilateral utilization of limbs in tasks is 

another behaviour that can be scored in hemiparkinsonian rodents. However, the CNS 

of our model is evidently subjected to a wide bilateral exposure to high glucose 

concentrations and therefore asymmetric neurodegeneration is unlikely. In light of this, 

we chose tests typically employed in bilateral models ofParkinson's disease or ones that 

could be adapted to our needs. We did not expect our rats to express overt motor 

symptoms and, as such, we performed the most sensitive tests possible to uncover 

bradykinesia or akinesia, as weil as gait disturbances and sensorimotor deficits (Pinna 

and Morelli, 2014). We also selected tests that could be performed at multiple time 

points, expressly before the induction of hyperglycaemia, then at 3 and 6 months 

following that mark so as to link results with our neurobiological evaluations. 

The stepping test, a form of beam traversai task, is used in rats to assess three 

different parameters: time of initiation, time to cross and numbers of steps made 

. (Meredith and Kang, 2006; Olsson et al., 1995; Pinna et al., 2007, 2010). The test 

employs a 20 cm-wide beam inclined at 15 degrees leading to the home cage. 

Briefly, rats are trained to depart from the hands of the experimenter with one forelimb 

placed at the beginning of the beam. Protracted initiation of movement toward the home 

cage and time to cross the beam both uncover bradykinesia or akinesia. The numbers of 

steps made, usually greater in parkinsonian rodents, inform on the gait. The stepping test 

therefore reliably picks up subtle basal ganglia alterations and has been used in genetic 

models and aged animais that present little nigrostriatal damage (Drucker-Colin and 

Garcia-Hemandez, 1991). In our model based on a bilateral hyperglycaemic insult to the 

CNS, differences between starting forelimbs were not found and results were pooled. 

We also employed the horizontal bar test typically used to measure 

pharmacologically-induced catalepsy in rodents (Alvarez-Cervera et al., 2005; Ciucci 

and Connor, 2009; Kuschinsky and Homykiewicz, 1972; Sanberg et al. , 1981 , 1988). 

In our model, however, this test rather served to identify bradykinetic or akinetic 

individuals. In this task, the experimenter places untrained rats habituated to the test 

cage in an unusual posture by placing both its front limbs on a cylindrical bar placed at a 

1 

J 



124 

convenient height. Normal rodents naturally seek to correct imposed postures and will 

quickly remove both limbs. Latency to disengage from the bar is thought to expose basal 

ganglia dysfunction (Duvoisin, 1976; Sanberg, 1980), although it is less sensitive than 

the previous method, at least in certain genetic models (Kelm-Nelson et al. , 2015). 

This test is however criticized for its sensitivity to recurring trials (Costall and Olley, 

1971 ; Stanley and Click, 1976) likely ensuing from repeated handling that may cause 

tonic immobility (Sanberg et al., 1980). Since we performed tests at wide intervals, 

at 0, 3 and 6 months, these confounding events were unlikely. Nevertheless, overt 

manifestations of proper catalepsy in otherwise active control or hyperglycaemic rats 

were extremely rare and were omitted from data, as they could have been the result of 

tonic immobility. 

We conducted a third test to evaluate limb gait and bradykinesia, termed the 

forelimb adjusting step test (Chang et al., 1999; Meredith and Kang, 2006; Pinna et al., 

2007, 2010). Briefly, trained rats are held by the torso with only one forelimb placed on 

a surface and bearing weight. During trials, rats are laterally moved back and forth 

across the surface at a fixed speed, and forehand (forelimb adjusts toward the torso) or 

backhand (forelimb adjusts away from the torso) steps are counted (Chang et al., 2003 ; 

Kirik et al., 2000, 2002; Olsson et al. , 1995; Schallert et al. , 2003; Tillerson and Miller, 

2002). Akin to the stepping test, the forelimb adjusting step test is performed unilaterally 

but results were combined upon confirmation that both limbs responded similarly in all 

animaIs . 

Many other tests were considered for their application in our model but either 

failed to expose any deficits or were impractical. This was the case for the vibrissae

elicited forelimb placement test wherein a rat's whiskers are brushed upon a surface, 

which normally .evokes a paw placement response (Meredith and Kang, 2006; Pinna 

et al., 2007, 2010). Sensorimotor integrative deficits are identified when rats fail to 

respond to brushing of their vibrissae. Our hyperglycaemic model did not perform 

differently compared to control rats at any time point. We also attempted to perform an 

adapted pole test for rats, which evaluates coordination and motor skills (Chompoopong 
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et al., 2016; Zaitone et al., 2012), as weil as an adhesive removal task, highly sensitive 

for uncovering sensorimotor deficits and fine motor impairment in minimally dopamine

deficient animais (SchaUert et al., 1982), but rats failed to perform the tasks correctly for 

vanous reasons. 

Nonetheless, results obtained with the three abovementioned tests were 

sufficient to draw up a picture of the key motor deficits displayed by our long-term 

hyperglycaemic model, especiaUy with respect to bradykinesia/akinesia and gait 

disturbances. Detailed experimental designs foUowed to fulfil this part of the objective 

are provided in Chapter III. 

1.5.4.2 Evaluation of social behaviour 

Although best appreciated in the regulation of motor processes, nigrostriatal 

dopamine also partakes in the modulation of many other behaviours. Owing to its role in 

goal-directed conducts and habit leaming (Bromberg-Martin et al. , 2011 ; Faure et al., 

2005; Gunaydin et al. , 2014; Haber et al. , 2000; Redgrave et al. , 2010; Saddoris et al., 

2013; Schultz, 2002; Seger and Spiering, 2011 ; Wang et al. , 2011), nigrostriatal 

dopamine has recently emerged as a regulator of social interactions and affective-based 

decisions, which were hitherto exc1usively lent to the mesocorticolimbic pathway (Burke 

et al. , 2010; King-Casas et al. , 2005; Lamichhane et al. , 2014; Narvaes and Martins 

de Almeida, 2014; Ong et al. , 2011 ; Palmeri et al., 2017; Plavén-Sigray et al., 2014; 

Stoeckel et al. , 2014; Trezza et al. , 2010). Although a proper correlation with 

nigrostriatal degeneration has not been drawn, Parkinson ' s disease patients do 

experience an altered quality of social life very early in the pathology. In particular, 

social interactions, communication and emotion recognition are impaired to variable 

extents in these individuals (PeU et al. , 2006; Schrag et al. , 2000; Y oshimura et al. , 

2005). 

For this reason, we designed experiments wherein social behaviours were scored 

concomitantly to the measurement of an outwardly accessible indicator of dopaminergic 

1 
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functions modulated in social encounters, namely USV caUs (Figure 1.35). In social 

behaviour research, US Vs constitute a growingly valuable instrument in the assessment 

of the valence of encounters, as they convey information on the affective state of rodents 

during courtship, rough-and-tumble play, cooperation and aggression (Brudzynski, 

20l3 ; Burgdorf et al., 2008; Knutson et al., 1998; Lopuch and Popik, 2011 ; Wëhr and 

Schwarting, 2013). Most importantly, however, they provide information on the 

activation of midbrain dopaminergic pathways involved in their production. The two 

principal neurotransmitters involved in the emission of ultrasonic calls are dopamine and 

acetylcholine, which function together as a switch that can quickly activate positive or 

negative affective states, respectively (Brudzynski, 2007; Cragg, 2006; Rakovska et al., 

2003). Dopamine and acetylcholine are sensitively released in response to salient and 

novel environmental stimuli, inc1uding social encounters, and cooperate at the striatal 

interface to select the appropriate affective state. This is accompanied by the emission of 

USVs at different ranges of frequency6o. Dopamine is principally associated with the 

emission of 50-kHz caUs, which are positively valenced and produced during social 

interactions, su ch as tickling (Panksepp and Burgdorf, 2000), playing (BruneUi et al. , 

2006) or mating (Bialy et al., 2000). Acetylcholine is rather linked to 22-kHz USVs 

reflecting negative affective states in various contexts, for instance social isolation 

(Francis, 1977) and aggression (Kaltwasser, 1990). Sorne suggest that 22-kHz caUs are 

also emitted in paradigms of chronic pain (Calvino et al. , 1996; Jourdan et al. , 1995), 

but this association was disproven in the streptozotocin-treated rat model of neuropathic 

pain (Jourdan et al. , 2002). 

Affiliative/exploratory and aggression-related behaviours were scored in our rats 

and associated with the emissions of 50- and 22-kHZ USVs. Rats interacted in a novel 

and neutral arena, and not in resident-intruder paradigms (Hilakivi-Clarke et al., 1990; 

Meehan et al. , 1986), to obtain insight into the reactions driven by socialization, which 

more faithfuUy represent encounters between humans in day-to-day life. Behaviours and 

USVs were related to the degree of striatal dopaminergic denervation and to insulin 

levels and function. This allowed us to draw up the socioaffective profiles of our rat 

60 Examples ofUSV audiograms are presented in Figure 4.7 of Chapter IV. 



127 

model of hyperglycaemia and to identify neurobiological or hormonal influences on 

social behaviours and associated USV caUs. These results also constitute the first report 

of USV emissions in a rodent paradigm of hyperglycaemia and are found in Chapter IV 

alongside precise details on the experimental design. 

Figure 1.35 Experimental setup of social behaviour assessments. 
Pairs of unacquainted rats were placed in a neutral and novel environment 
for the duration of the tests. A !id with a microphone was placed on top of 
the cy!indrical arena and two cameras were positioned on opposite sides 
to record ultrasonic vocalizations (USVs) emitted during the encounters. 

To briefly summarize the introduction of this thesis, we have laid the foundations 

for the purpose of our investigations, by discussing the selective vulnerability of the 

nigrostriatal pathway in Parkinson's disease and by offering robust arguments in support 

of the hazard that hyperglycaemia may represent to this population of neurons. 

Precisely, we have committed to demonstrating how nigrostriatal dopaminergic neurons 

are more vulnerable to oxidative stress and how hyperglycaemia may contribute to 

oxidative injury in neurons. Both these suppositions are supported by epidemiological 

evidence. Based on CUITent knowledge, we designed a series of in vitro and in vivo 

experiments exploring multiple dimensions of dopaminergic neurodegeneration and 
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have also used a strategy employing an antioxidant, resveratrol, to offer further 

validation of the pertinence of oxidative stress in high glucose-induced neuronal death. 

The results of these experiments are presented in Chapters II, III and IV, and offer 

molecular, cellular, neurochemical, neuroanatomical and behavioural evidence in 

support of our central hypothesis that nigrostriatal dopaminergic neurons are more 

vulnerable to hyperglycaemic conditions compared to other neuronal populations, 

expressly the mesocorticolimbic pathway. 
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RESVERATROL PROTECTS DOPAMINERGIC PC12 CELLS FROM HIGH 
GLUCOSE-INDUCED OXIDATIVE STRESS AND APOPTOSIS: EFFECT ON 

P53 AND GLUCOSE-REGULATED PROTEIN 75 LOCALIZATION 
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2.2 Résumé 

Le resvératrol est un composé polyphénolique dont les propriétés 

cardioprotectrices et anti-inflammatoires sont déjà bien connues. Il détient également 

des capacités antioxydantes permettant de protéger des neurones dopaminergiques 

contre l'apoptose engendrée par le stress oxydant dans des paradigmes de la maladie de 

Parkinson. De récentes études ont démontré qu'une hyperglycémie soutenue peut causer 

un stress oxydant pouvant être nocif pour le système nerveux central. À la lumière de ce 

qui précède, notre étude avait pour but a) d'évaluer le potentiel antioxydant du 

resvératrol contre des concentrations physiologiquement élevées de glucose dans des 

neurones dopaminergiques en culture, b) d'étudier les capacités anti -apoptotiques du 

resvératrol dans ce contexte, et c) d'analyser la relation particulière entre le facteur de 

transcription pro-apoptotique p53 et son séquestreur cytoplasmique GRP75 dont les 

niveaux sont faibles dans le cerveau de patients parkinsoniens. Nos résultats démontrent 

que le resvératrol protège les neurones dopaminergiques en culture contre un stress 

oxydant induit par de fortes concentrations de glucose, précisément en diminuant les 

niveaux d'anion superoxyde. De plus, les neurones dopaminergiques en culture traités 

avec le resvératrol ne succombaient pas à l'apoptose qu'engendrait le glucose à des 

doses élevées. En particulier, le resvératrol prévenait la fragmentation de l'ADN et 

l'altération des profils d'expression de plusieurs marqueurs de l'apoptose. De fortes 

concentrations de glucose causaient une translocation de p53 vers le noyau, et une forte 

augmentation des niveaux de GRP75 dans le cytoplasme qui répondait à un besoin d'y 

séquestrer le facteur de transcription pro-apoptotique. En effet, une augmentation du 

taux de colocalisation entre GRP75 et p53 était observée. À cet égard, le resvératrol était 

en mesure de prévenir la translocation nucléaire de p53. Ces résultats appuient les études 

épidémiologiques soulignant que les patients diabétiques courent un plus grand risque de 

développer la maladie de Parkinson que la population générale. Notre étude suggère 

également que le resvératrol détient un rôle neuroprotecteur pouvant se prêter au 

développement de thérapies préventives ou complémentaires contre le développement de 

complications neuronales dans le diabète. 
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2.3 Full article in English: Resveratrol protects dopaminergic pe12 cells from 
high glucose-induced oxidative stress and apoptosis: effect on p53 and 
glucose-regulated protein 75 localization 

Abstract 

Resveratrol (RESV), a polyphenolic natural compound, has long been 

acknowledged to have cardioprotective and anti-inflammatory actions. Evidence 

suggests that RESV has antioxidant properties that reduce the formation of reactive 

oxygen species leading to oxidative stress and apoptotic death of dopaminergic 

(DAergic) neurons in Parkinson's disease (PD). Recent literature has recognized 

hyperglycemia as a cause of oxidative stress reported to be harmful for the nervous 

system. In this context, our study aimed a) to evaluate the effect of RESV against high 

glucose (HG)-induced oxidative stress in DAergic neurons, b) to study the anti-apoptotic 

properties of RESV in HG condition, and c) to analyze RESV's ability to modulate p53 

and GRP75, a p53 inactivator found to be under-expressed in post-mortem PD brains. 

Our results suggest that RESV protects DAergic neurons against HG-induced oxidative 

stress by diminishing cellular levels of superoxide anion. Moreover, RESV significantly 

reduces HG-induced apoptosis in DAergic cells by modulating DNA fragmentation and 

the expression of several genes implicated in the apoptotic cascade, such as Bax, Bcl-2, 

cleaved caspase-3, and cleaved PARP-I. RESV also prevents the pro-apoptotic increase 

of p53 in the nucleus induced by HG. Such data strengthens the correlation between 

hyperglycemia and neurodegeneration while providing new insight into the high 

occurrence of PD in patients with diabetes. This study enlightens potent neuroprotective 

roles for RESV that should be considered as a nutritional recommendation for 

preventive and/or complementary therapies ln controlling neurodegenerative 

complications in diabetes. 

Introduction 

Glucose is the essential energy substrate of the central nervous system and large 

amounts of it are required to fill the high energetic needs of neurons. Unlike muscle cells 
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or adipocytes that depend on insulin, glucose uptake in neurons depends mainly on 

its extracellular concentration (Tom lins on and Gardiner, 2008). Persistent episodes of 

long-term glucose exposure may induce oxidative stress that results in cellular damage 

(Giaccari et al. , 2009), such as neuropathic complications resulting from hyperglycemia 

in uncontrolled diabetes (Rajabally, 2011). Accumulating evidence has enlightened the 

relationship between diabetes and neurodegenerative disorders, including Alzheimer's 

disease (AD) (Vignini et al. , 2013) and Parkinson ' s disease (PD) (Jagota et al. , 201 2) . 

Recent literature has reported an increased risk of developing PD in patients with type 2 

diabetes mellitus (Hu et al., 2007; Sun et al., 2012) . 

PD is a neurodegenerative disorder characterized by the progressive loss of 

nigrostriatal dopaminergic (DAergic) neurons in the substantia nigra pars compacta 

(SNpc). DAergic neurons in this region are selectively lost due to the high activity of 

monoamine oxidase and elevated levels of iron which both lead to increased generation 

of reactive oxygen species (ROS) (Cui et al., 2012; Pearce et al. , 1997). At the cellular 

level, mechanisms of high glucose (HG)-induced toxicity are similarly sustained by 

oxidative stress in vitro (Boumival et al., 2012; Cao et al. , 2012) as weIl as in vivo 

(Styskal et al. , 2012). By increasing aerobic respiration, raised sugar metabolism 

promotes excessive formation of ROS that, jointly with insufficient antioxidant 

defences, may damage cells (Apel and Hirt, 2004). Indeed, generation of mitochondrial 

superoxide is increased and is thought to be at the origin of several HG-induced 

complications (Brownlee, 2001). Currently, it is weIl known that oxidative stress may 

lead to apoptosis (Circu and Aw, 2010) and increased production of ROS in HG 

conditions may account for glucose neurotoxicity duly observed. 

In addition, several genes are known to be implicated in the pathogenesis of 

PD, such as PINK 1 and DJ-l. Glucose-regulated protein 75 (GRP75, also called 

mortalinimtHSP70/mot-2), a member of the cytoprotective Hsp70 family of chaperon es, 

interacts with both PINKI (Jin et al., 2006, 2007; Li et al. , 2005; Rakovic et al., 2011 ) 

and DJ-l (Jin et al. , 2005; Li et al. , 2005). GRP75 is mainly localized within the 

mitochondria matrix of neurons where it accomplishes several functions such as 
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mitochondrial import and oxidative stress management (Yaguchi et al., 2007). 

Overexpression of GRP75 leads to the extension of life span in nematodes and human 

cells. On the other hand, it serves as a major target for oxidation and it was shown to be 

involved in aging of nerve cells and in particular in the degeneration of DAergic neurons 

(Burbulla et al., 2010). In mitotic ceIls, GRP75 localized in the cytoplasm sequestrates 

and inactivates p53 preventing its nuclear translocation and apoptosis (Kaul et al. , 2001 , 

2005; Wadhwa et al., 2002). Indeed, p53 is a tumor suppressor protein known to play an 

important role in evoking apoptosis when located in the nucleus by encouraging the 

transcription of several pro-apoptotic genes such as Bax (Macip et al. , 2003). 

p53 activity is stabilized in response to oxidative stress through posttranslational 

modifications disrupting interactions with negative regulators (Neilson et al., 2008). 

It is also a recurrent target in PD given the involvement of oxidative stress in p53 

activation (Nair, 2006) and the evidence of DNA fragmentation and chromatin 

condensation in DAergic neurons of the SNpc in PD patients (Hartmann and Hirsch, 

2001; Tatton, 2000). 

Prevention of neuronal loss in PD has not yet been addressed by existing 

syrnptomatic treatments. Neuroprotection by dietary polyphenols may be an interesting 

avenue in CUITent attempts to overcome oxidative stress induced by hyperglycemia. 

We have recently shown that quercetin and sesamin, antioxidant polyphenols, exert 

neuroprotective effects in neurons exposed to HG (Bournival et al. , 2012). The stilbene 

resveratrol (RESV) is another polyphenol, primarily found in red wine, known for its 

potent cardioprotective, anti-inflammatory and anticarcinogenic actions (Aluyen et al. , 

2012; Rosa et al., 2012). Our group, as weIl as others, have highlighted its potential in 

defending neurons against oxidative assaults induced by a spectrum of treatments, 

including neurotoxins (Blanchet et al. , 2008; Boumival et al. , 2009; Gélinas and 

Martinoli, 2002; Peritore et al., 2013) or cerebral ischemic injury (MOITis et al. , 2011; 

Simào et al. , 2012). Abundant literature suggests that RESV plays a protective role in 

several neurodegenerative diseases including PD, AD and Huntington's disease (Albani 

et al. , 2010; Hung et al., 2010) as weIl as against neuroinflammation (Foti Cuzzola 

et al. , 2011). 



134 

Although the beneficial properties of RESV in neurodegenerative diseases are 

extensively depicted in the literature, its role in defending neurons against HG-induced 

damage has yet to be elucidated. The present study was designed to examine the 

neuroprotective effects of the polyphenol RESV in differentiated DAergic PC12 cells 

maintained in HG condition. NGF-differentiated PC12 cells are a reliable model for the 

investigation of oxidative stress and neuroprotection of DAergic neurons. They express 

tyrosine hydroxylase (TH), high-affinity dopamine transporter, estrogen receptor-a and 

-~ , neurofilaments and secrete high levels of dopamine (Gélinas and Martinoli, 2002; 

Kadota et al. , 1996; Nilsen et al. , 1998). In this comprehensive investigation, we outline 

the roles of RESV in preventing neural parameters of cellular oxidative stress and 

apoptosis induced by HG exposure in a cellular DAergic system. Our results 

demonstrate that RESV can modulate the expression and localization of GPR75 and thus 

might mediate mitochondria pathways of ce Il stress. 

Materials and methods 

Drugs and chemicals 

All reagents and chemicals were purchased from Sigma (St. Louis, MO) unless 

noted otherwise. Mouse anti-GRP75 (raised against amino acids 525-679 of GRP75 of 

human origin), rabbit anti-p53 (raised against full length p53 of human origin, 

for immunofluorescence), rabbit anti-Bcl-2 (raised against a peptide mapping at the 

N-terminus of Bcl-2 of human origin), rabbit anti-Bax (raised against a peptide mapping 

near the N-terminus of Bax of mouse origin), mouse anti-cleaved PARP-l (poly(ADP

ribose) polymerase, raised against C-terminal purified thymus PARP-l of calf origin), 

goat anti-HDAC 1 (histone deacetylase 1, raised against amino acids 450 to 

C-terminus of human HDACl), and mouse anti-GAPDH (glyceraldehyde 3-phosphate 

dehydrogenase, raised against recombinant GAPDH of human origin) antibodies were 

purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Mouse anti-p53 (raised 

against amino acids surrounding Ser20 of hum an p53 , for Western blotting) and rabbit 

anti-cleaved caspase-3 (raised against amino-terminal residues surrounding Asp 175 in 



135 

human caspase-3) antibodies were purchased from Cell Signaling (Boston, MA). 

Rabbit anti-VDAC (voltage-dependent anion channel , raised against amino acids 

152-169 of VDAC of human origin), mouse anti-TH (raised against rat TH) primary 

antibodies, and anti-mouse and -rabbit horseradish peroxidase-conjugated secondary 

antibodies were purchased from Sigma. Anti-mouse Cy3 (cyanine 3)-conjugated 

secondary antibody was purchased from Medicorp (Montreal, QC, Canada). Goat anti

rabbit FITC (fluorescein isothiocyanate)-conjugated secondary antibody was purchased 

from Millipore (Temecula, CA). 

Cell culture and treatments 

PC 12 cells, obtained from American Type Culture Collection (ATCC, Rockville, 

MD), were maintained in a humidified environment at 37°C and 5% C02 atmosphere. 

Cells were grown in Roswell Park Memorial Institute medium 1640 (RPMI 1640) 

supplemented with 10% (v/v) heat-inactivated horse serum, 5% (v/v) heat-inactivated 

fetal bovine serum (FBS) and gentamicin (50 Jlg/mL). PC 12 cell neuronal differentiation 

was evoked by administration of nerve growth factor-7S (NGF, 50 ng/mL) in 

Dulbecco's Modified Eagle medium (DMEM) supplemented with 1 % FBS for 7 days, as 

already described (Bournival et al., 2009, 2012). The DMEM containing 1.0 g/L of 

D-glucose (Sigma D5523) is further called control (CTRL) medium, whereas HG 

DMEM containing 4.5 g/L of D-glucose (Sigma D7777) is named HG medium. DAergic 

PC12 cells were incubated with CTRL or HG medium for 96 h, unless stated otherwise. 

We previously performed lactate dehydrogenase-based cytotoxicity assays to determine 

the appropriate time of treatment in order to study the apoptotic process in the remaining 

live cells (Bournival et al., 2012). For the last 24 h of treatment, DAergic PC12 cells 

were incubated with or without RESV (0.1 JlM). RESV concentration was selected after 

dose-response and kinetic studies (Boumival et al. , 2009; Bureau et al. , 2008). 

An osmotic control consisting of CTRL medium supplemented with 3.5 g/L of 

D-mannitol (MANN) was used to rule out a hypertonic effect of HG medium on PC12 

ceUs. Charcoal-stripped serum was used in aU experiments to ensure that media were 

free from steroids. For each experiment, initial seeding density was 30 000 ceUs/cm2. 

1 

J 
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Detection of mitochondrial superoxide radical 

DAergic PC12 cells were grown and treated on collagen-coated circular glass 

coverslips (Fisher Scientific, Ottawa, ON, Canada). Intracellular superoxide anion ("02-) 

production was measured with MitoSOX™ Red (Invitrogen, Burlington, ON, Canada), 

a fluorogenic dye used for the selective detection of superoxide in the mitochondria of 

live cells. After treating cells with CTRL or HG medium for 3 h with or without RESV, 

the cells were incubated with MitoSOX™ Red (5 mM) for 10 min at 37°C. MitoSOX™ 

Red is rapidly and selectively targeted to the mitochondria. Once in the mitochondria, 

it is oxidized by superoxide and exhibits red fluorescence. Cells were washed with 

Hank's balanced salt solution (HBSS, Invitrogen), and Hoechst 33342 counterstained 

all nuclei. Cells were fixed in 4% paraformaldehyde for 6 min at 37°C. Coverslips were 

mounted with Molecular Probes ' ProLong® Antifade Kit (Invitrogen). Images were 

acquired by a Leica SD AF confocal microscope, and analyzed with Leica Application 

Suite 3.l.3 software (Leica Microsystems, Concord, ON, Canada). To demonstrate 

MitoSOX™ Red selectivity, a positive control was performed using sodium 

diethyldithiocarbamate (DDC), a superoxide dismutase (SOD) inhibitor, in CTRL 

medium. 

Immunojluorescence and terminal deoxynucleotidyl transferase dUTP nick end 
labeling assay 

Apoptotic cells were also detected by both terminal deoxynucleotidyl transferase 

dUTP nick end labeling (TUNEL) assay (Roche Diagnostics, Laval, QC, Canada) and 

activated caspase-3 immunofluorescence. DAergic PC12 cells were grown and 

treated on collagen-coated circular glass coverslips. Cells were then fixed in 4% 

paraforma1dehyde for 15 min at 37°C, washed with phosphate-buffered saline (PBS) and 

further incubated in a blocking and permeabilizing solution (1 % bovine serum albumin 

[BSA], 0.18% fish skin gelatin, 0.1% Triton-X and 0.02% sodium azide) for 30 min 

at RT. Fixed cells were incubated with polyclonal anti-cleaved caspase-3 antibody 1:500 

in PBS overnight. The slides were washed and treated with Cy3-conjugated secondary 

antibody diluted 1 :500 in PBS for 4 h and then incubated with the TUNEL enzyme and 



137 

fluorescent dUTP mixture for 1 h at 37°C. Nuclei were counterstained 4',6-diamidino-2-

phenylindole (DAPI). Coverslips were mounted with ProLong® Antifade Kit. 

Images were acquired by a Leica SD AF confocal microscope. DAergic PC 12 cells were 

considered to be apoptotic when they were positive for cleaved caspase-3 and their 

nuclei were stained with TUNEL. The number of apoptotic DAergic PC12 ce ll s among 

300 randomly chosen neuronal was counted on 10 different optical fie lds from three 

slides per group, as already reported (Bournival et al. , 2009, 2012), with Leica 

Application Suite 3.1.3 software. In each experiment 50 !lM of fluormethylketone

conjugated tetrapeptide Z-DEVD-FMK (Bachem, Torrance, CA), a cell-permeable 

caspase-3 inhibitor, was used on DAergic PC12 cells in HG and HG RESV conditions as 

internai control for caspase-3 activation (Bournival et al., 2009, 2012). 

Specifie apoptotic DNA denaturation analysis 

Specific DNA denaturation in apoptotic cells was assessed with a single-stranded 

DNA (ssDNA) apoptosis ELISA kit (Chemicon International, Temecula, CA). 

This procedure is based on the selective denaturation ofDNA by formamide in apoptotic 

cells but not in necrotic cells (Frankfurt and Krishan, 2001). After treatment with CTRL 

or HG medium with or without RESV, denatured DNA was detected with a monoclonal 

antibody highly specific to ssDNA and a peroxidase-Iabeled secondary antibody. 

The reaction was then stopped with a hydrochloric acid solution and ssDNA 

fragmentation was quantified by measuring absorbance at 405 nm with a Multiscan 

Ascent microplate reader (Thermolab System, Franklin, MA). ssDNA was quantified 

with reference to CTRL conditions. Absorbance of positive (wells coated with ssDNA) 

and negative controls (wells treated with SI nuclease) served as quality control for the 

ELISA. 

Protein extraction 

DAergic PC12 cells were grown and treated in collagen-coated 6-well plates. 

Total proteins were extracted using a nuclear extraction kit (Active Motif, Carlsbad, 
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CA). Briefly, cells were washed with a mixture of ice-cold PBS and phosphatase 

inhibitors, and then harvested in centrifuge tubes. Cell lysis was performed using the 

supplied buffer and samples were centrifuged to obtain membrane-free supernatants 

containing total proteins. 

Cytoplasmic-nuclear fractionation was achieved using the nuclear extraction kit. 

Briefly, cells were washed with a mixture of ice-cold PBS and phosphatase inhibitors, 

and then harvested in centrifuge tubes. Cytoplasmic membranes were ruptured by 

treatment with a hypotonic buffer and detergent. Samples were centrifuged to pellet the 

intact nuclei, and soluble material was preserved as the cytoplasmic fraction. Nuclei 

were then lysed and conserved in the provided lysis buffer. 

Mitochondrial-cytoplasmic fractionation was achieved usmg a mitochondrial 

extraction kit (Active Motif, Carlsbad, CA). Cells were washed with a mixture of 

ice-cold PBS and phosphatase inhibitors, and then harvested in centrifuge tubes. 

Cells were incubated on ice with isotonic cytosol buffer for 15 min. Cell membranes 

were ruptured with a pestle homogenizer. Intact cells and nuclei were pelleted after two 

centrifugations and discarded. Supernatants containing cytoplasm and mitochondria 

were centrifuged twice to obtain a pellet of mitochondria. The resulting supernatant was 

preserved as the cytoplasmic fraction. Mitochondria were washed with cytosol buffer 

and lysed with detergent. 

Electrophoresis and Western blotting analysis 

Protein dosage was performed with a bicinchoninic acid-based sodium dodecyl 

sulfate (SDS)-compatible Protein Assay Kit (Pierce, Rockfort, IL) for each fraction of 

every sample. Equal amounts of protein were loaded onto 12% SDS polyacrylamide 

gels. After electrophoretic separation, the gels were transferred to polyvinylidene 

difluoride membranes (0 .22)lm pore size, BioRad, Hercules, CA). The blots were 

blocked for 1 h at RT in Blotto B (1 % non-fat powdered milk, 1 % BSA, 0.05% Tween 

20, 0.5 mg/mL sodium azide, in Tris buffered saline). Dilution of primary anti-GRP75, 
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anti-p53 , anti-Bax, anti-Bcl-2, anti-cleaved PARP-1 , anti-GAPDH, anti-HDAC1 , 

anti-VDAC and anti-TH (1 :200, 1:200, 1 :50, 1 :50, 1: 1000, 1:50, 1 :50, 1 :500 and 

1: 10000 respectively) antibodies was prepared in Blotto B. The blots were then 

incubated with peroxidase-conjugated secondary antibody (l : 10 000) in Blotto B for 2 h 

at RT and finally developed with an enhanced chemiluminescence substrate solution 

(Haan and Behrmann, 2007). 

Glucose-regulated protein 75-p53 colocalization 

DAergic PC12 cells were grown and treated on collagen-coated circular glass 

coverslips. Then, the y were fixed in 4% paraformaldehyde for 15 min at 37°C, washed 

with PBS and further incubated in a blocking and permeabilizing solution for 30 min 

at RT. Fixed cells were incubated with both rabbit anti-p53 antibody 1: 100 and mouse 

anti-GRP75 1: 100 in PBS ovemight. The slides were washed with and subsequently 

treated with anti-rabbit Cy3-conjugated and anti-rabbit FITC-conjugated secondary 

antibodies both diluted 1 :500 in PBS for 4 h. Nuclei were counterstained with DAPI. 

Coverslips were mounted with Molecular Probes ' ProLong® Antifade Kit. Images were 

acquired by a Leica SD AF confocal microscope. Colocalization was assessed for 

100 randomly chosen PC12 cells on 6 different optical fields from three slides per group 

with Leica Application Suite 3.1.3 software. 

Statistical analysis 

Significant differences between groups were ascertained by one-way analysis of 

variance (ANOVA), followed by Tukey's post-hoc analysis with the GraphPad Instat 

program, version 3.06 for Windows (San Diego, CA; www.graphpad.com). Ail data, 

analyzed at the 95% confidence interval, are expressed as means ± standard error of 

the mean (SEM) from at least 3 independent experiments. Asterisks indicate statistical 

differences between the treatrnent and CTRL condition (***p < 0.001 , **p < 0.01 and 

*p < 0.05); plus signs show statistical differences between the treatment and HG 

condition (+++p < 0.001 , ++p < 0.01 and +p < 0.05). 
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Results 

Resveratrol rescues high glucose-induced production of superoxide 

To study the mechanisms underlying the neuroprotective effects of RESV against 

HG, we measured the production of superoxide with a derivative of ethidium bromide, 

MitoSOX™ Red, after administration of HG with or without RESV for 3 h. This time 

period was considered since free radical generation and eventually oxidative stress 

are early events in the causative process of cellular death (Carange et al. , 2011; 

Pérez-De La Cruz et al. , 2010; Zhou et al. , 2008). Figure 2.1A disc10ses low 

fluorescence levels in CTRL and MANN conditions as well as in cells treated with 

RESV in CTRL medium after 24 h, whereas a marked signal was detected in HG- and 

DDC-treated cells. When RESV was added to HG medium, fluorescence was strongly 

reduced. Figure 2.1B also reports the semi-quantitative analysis of mitochondrial 

superoxide anion presented in Figure 2.1 A, revealing high fluorescence levels with HG 

and positive control DDC as well as a very significant reduction (p < 0.001) when 

DAergic PC12 ce Ils in HG medium were treated with RESV. In the DDC condition, 

inhibition of SOD supports the specific detection of superoxide anion. AlI nuc1ei are 

stained blue by Hoechst 33342 (Figure 2.1A). 
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RESV reduces HG-induced superoxide anion production in DAergic 
PC12 cells. 
Resveratrol (RESV) reduces high glucose (HG)-induced superoxide anion 
production in dopaminergic (DAergic) PC12 cells. (A) Fluorescence 
microphotographs. Blue: DAergic PC12 nuclei counterstained with 
Hoechst 33342. Red: MitoSOX™ Red superoxide indicator signal. 
A marked red signal is evident in DAergic PC12 cells treated with 
HG or diethyldithiocarbamate (DDC) (control [CTRL] + DDC). 
Red fluorescence was less intense in cells treated with CTRL medium, 
RESV alone or when RESV was added in HG medium (HG RESV). (B) 
Semi-quantitative image analysis. ***p < 0.001 compared with CTRL, 
+++p < 0.001 compared with HG, as determined by one-way one-way 
analysis of variance (ANOV A), followed by Tukey's multiple
comparison test. Fluorescence units (F.U). 

Resveratrol reduces high glucose-induced apoptosis 

We measured DNA denaturation induced by formamide, a specific hallmark 

of apoptosis (Frankfurt and Krishan, 2001), using a ssDNA specific antibody 

(Figure 2.2A). Specific apoptotic DNA denaturation is observed in early as well as 

in late apoptotic cells. HG condition showed a 43% increase in apoptotic cells in 

comparison to CTRL wells. This increment was fully reversed by RESV treatment in 

HG medium (Figure 2.2A). MANN medium did not yield significant apoptosis. 
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We then examined the effect of HG and RESV on later events of the apoptotic 

cascade leading to DNA fragmentation. Detection of cleaved caspase-3, the terminal 

effector caspase responsible for late apoptosis-mediated DNA fragmentation (Fan et al., 

2005), was conducted by immunofluorescence alongside a TUNEL assay measuring 

DNA degradation (Figure 2.2B and C). In the HG condition, immunofluorescence 

revealed the presence of cleaved caspase-3 positive cells (Figure 2.2C, red signal), 

while TUNEL assay stained numerous nuclei undergoing DNA fragmentation 

(Figure 2.2C, green signal). Total nuclei were stained with DAPI (Figure 2.2C, blue 

signal). DAergic PCI2 cells were considered to be in late apoptosis when they hosted 

both caspase-3 activation and DNA fragmentation events (Figure 2.2C, cells pointed by 

white arrows). Treatment with RESV for 24 h clearly reduced the presence of apoptotic 

nuclei as implied by the lower number ofDAergic PCI2 cells exhibiting both green and 

red fluorescence . The number of apoptotic cells was also counted (Figure 2.2B), 

as described in the Materials and Methods section. Administration of RESV decreased 

the number of apoptotic cells compared to the HG condition. MANN medium did not 

yield a significant rise in apoptotic cells compared to CTRL. To show that caspase-3 

activation is a key step in the HG-induced apoptotic pathway, DAergic PCI2 cells were 

pretreated with 50 ).lM Z-DEVD-FMK, a cell-permeable selective caspase-3 inhibitor, 

followed by treatment with HG with or without RESV (Figure 2.2B and C). 
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RESV reduces HG-induced apoptosis in DAergic PC12 cells. 
Continued on next page. 
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(Continued.) (A) Histogram of specific apoptotic DNA denaturation by 
formamide in DAergic PC12 cells as detected with a monoclonal 
antibody against single-stranded DNA (ssDNA). CTRL, MANN and 
RESV alone do not affect specific apoptotic DNA denaturation. 
HG increases apoptotic DNA denaturation. Treatment of HG-exposed 
cells with RESV elicits a significant decrease in specific apoptotic DNA 
denaturation (HG RESV). (B) The number of apoptotic DAergic cells 
among 300 randomly chosen DAergic cells was counted on 10 different 
optical fields from 3 slides per group, as illustrated in panel C on a 
subsequent page. (C) Microphotographs of immunofluorescence detection 
of apoptotic DAergic PC12 cells. Blue: DAergic PC12 nuclei 
counterstained with 4',6-diamidino-2-phenylindole (DAPI). Red: anti
cleaved caspase-3 signal. Green: Terminal deoxynucleotidyl transferase 
dUTP nick end labeling (TUNEL) staining of nuclei exhibiting DNA 
fragmentation. Triple-staining (cells points by white arrows) clearly 
reveals several apoptotic cells on si ides treated with HG and fewer 
apoptotic cells when DAergic PC12 cells are treated with CTRL medium, 
RESV alone or wh en RESV is administered in HG conditions 
(HG RESV). To show that caspase-3 activation is a key step in the 
HG-induced apoptotic pathway, DAergic PC12 cells were pretreated with 
50)lM of fluormethylketone-conjugated tetrapeptide Z-DEVD-FMK, 
a cell-permeable caspase-3 inhibitor, followed by treatment with HG, 
with or without RESV (HG- Z-DEVD-FMK and HG RESV- Z-DEVD
FMK, respectively). MANN condition is similar to CTRL cells. Enlarged 
microphotographs: HG and HG RESV merge microphotographs, to show 
apoptotic nuclei in these key conditions. **p < 0.01 and ***p < 0.001 
compared with CTRL, +p < 0.05, ++p < 0.01 and +++p < 0.001 
compared with HG, as determined by one-way ANOVA, followed by 
Tukey's multiple-comparison test. 

In order to further support these findings, we analyzed the expression of several 

proteins acting in the apoptotic cascade. Western blotting was performed on total 

proteins extracted from DAergic PC 12 cells treated with HG or CTRL medium, with or 

without RESV (Figure 2.3). We analyzed the pro-apoptotic Bax and anti-apoptotic Bcl-2 

protein ratio (Figure 2.3A) reported to be correlated with apoptosis (Cory and Adams, 

2002). A high BaxlBcl-2 ratio favors the release of mitochondrial factors leading to the 

activation of effector caspases in the apoptotic cascade (Kang and Reynolds , 2009). 

Our results demonstrate that the administration of HG medium for 96 h increases the 

Bax/Bcl-2 ratio two-fold compareq to CTRL medium, supporting that HG-induced 

apoptosis in DAergic PC12 cells is mediated, at least in part, by the mitochondrial 

pathway (Figure 2.3A, histogram full grey line). The HG-induced raise of the Bax/Bcl-2 
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ratio was fully reversed in DAergic PCl2 cells treated with RESV. Explicitly, 

HG medium increases Bax expression (Figure 2.3A, histogram white bars, Bax Western 

bands) but does not modulate Bcl-2 (Figure 2.3A, histogram black bars, Bcl-2 Western 

bands). RESV reverses the HG-induced increase in Bax expression and increases Bcl-2 

expression. We also examined the ratio of full-Iength PARP-l on inactivated cleaved 

PARP-l (Figure 2.3B). As Chaitanya et al. (2010) have demonstrated, PARP-l is a 

major player in the prevention of programmed cell death and its cleavage by activated 

caspase-3 is a hallmark of apoptosis. HG treatment markedly reduced full-length/cleaved 

ratio, which was fully reversed by RESV administered in HG medium (Figure 2.3B, 

histogram full grey line) . MANN medium did not have a substantial effect on either the 

Bax/Bcl-2 ratio or the P ARP-l full-lengthlcleaved ratio. HG increased PARP-l cleavage 

while RESV prevented this rise (Figure 2.3B, histogram black bars, cleaved P ARP-l 

Western bands). Full-length PARP- Iexpression was not affected in any condition 

(Figure 2.3B, histogram white bars, full-length PARP-l Western bands). 
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RESV modulates the expression of apoptotic protein markers. 
(A) Effect of RESV on the B cell lymphoma 2 (Bcl-2)-associated X 
protein (Bax)/Bcl-2 ratio in DAergic PC12 cells (full grey line). 
CTRL, MANN and RESV al one do not modulate the Bax/Bcl-2 ratio. 
HG increases the Bax/Bcl-2 ratio significantly and the addition of RESV 
to HG medium strongly prevents this increment (HG RESV). Bottom: 
Bax and Bcl-2 bands, as revealed by Western blotting. (B) Analysis of 
poly(ADP-ribose) polymerase (PARP-l) protein expression. These results 
are presented as the ratio of full-length (white bars)/cleaved (black bars) 
PARP-l. CTRL, MANN and RESV alone do not modulate the PARP-l 
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ratio in DAergic PC12 cells (full grey line). A decrease ofPARP-l ratio 
is apparent in HG condition. When RESV is delivered in HG condition, 
a significant increase of full-Iength/cleaved P ARP-l was evident 
(HG RESV). Bottom: Western blot bands of full-Iength and cleaved 
PARP-l. **p < 0.01, ***p < 0.001 compared with CTRL and +p < 0.05, 
+++p < 0.001 compared with HG, as determined by one-way ANDV A, 
followed by Tukey's multiple-comparison test. 

Resveratrol modulates p53 and glucose-regulated protein 75 subcellular localization 
and colocalization 

We studied the expression levels ofp53, a tumor suppressor, and GRP75, a stress 

response protein (Figure 2.4). In several models, GRP75 binds and inactivates pro

apoptotic p53 in the cytosol, therefore helping to prevent apoptosis. In order to elucidate 

this alleged relationship between both markers, protein levels were measured in the 

cytoplasm and the nucleus (p53) or in the cytoplasm and the mitochondria (GRP75) 

(Figure 2.4A and B). Treatment of DAergic PC12 ce lis with HG medium for 96 h 

noticeably decreased p53 cytoplasmic/nuclear ratio (Figure 2.4A, histogram full grey 

line). This was prevented by administration with RESV. Expressly, HG increased p53 

expression in the nucleus (Figure 2.4A, histogram black bars, p53 nuclear Western 

bands) while it did not seem to affect cytoplasmic levels (Figure 2.4A, histogram white 

bars, p53 cytoplasmic Western bands). RESV in HG medium preserved p53 levels 

at CTRL range in both compartments. HG administration for 96 h increased GRP75 

expression both in the cytoplasm and in the mitochondria (Figure 2.4B, histogram white 

and black bars, GRP75 mitochondrial and cytoplasmic Western bands). Treatment with 

RESV in HG medium prevented GRP75 levels from rising in the cytoplasmic 

fraction only. The result is a small but significant decrease m the GRP75 

cytoplasmic/mitochondrial ratio (Figure 2.4B, histogram full grey line). MANN medium 

did not affect the expression of either GRP75 or p53. 
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Effeet of RESV on the subeellular loealization of p53 and GRP75. 
(A) HG medium significantly increases nuclear localization of p53 
(black bars) and administration of RESV in HG medium prevents this 
increase (HG RESV). RESV and MANN alone do not modulate p53 
cellular localization. Cytoplasmic p53 (white bars) is not affected in any 
condition. Ratio of cytoplasmic/nuclear p53 is decreased in HG condition, 
which is prevented by RESV administration (HG RESV, full grey line). 
Bortom: p53 , cytoplasmic fraction (C) purity marker tyrosine hydroxylase 
(TH) and nuclear fraction (N) purity marker histone deacetylase 1 
(HDAC1) bands as revealed by Western blorting. (B) Effect of RESV on 
the cellular localization of glucose-regulated protein 75 (GRP75) in 
DAergic PC12 cells. HG treatment increases both cytoplasmic and 
mitochondrial content of GRP75 . Administration of RESV in HG 
medium (HG RESV) significantly reduces cytoplasmic levels of GRP75 
(white bars) while it does not amend mitochondrial levels (black bars). 
Ratio of cytoplasmic/mitochondria GRP75 is decreased in HG condition, 
which is prevented by RESV administration (HG RESV, full grey line). 
Bottom: GRP75, cytoplasmic fraction purity marker glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) and mitochondrial fraction (M) 
purity marker voltage-dependent anion channel (VDAC) bands, 
as revealed by Western blotting. **p < 0.01 , ***p < 0.001 compared with 
CTRL and +p < 0.05, ++p < 0.01 compared with HG, as determined by 
one-way ANOV A, followed by Tukey' s multiple-comparison test. 

Finally, to evaluate the potential for GRP75 and p53 to interact in the cytoplasm, 

immunofluorescence colocalization measurements were performed following treatment 

ofDAergic PCI2 cells with HG medium with or without RESV. Scatter plots show that 

p53 (Figure 2.5A, green signal distribution) and GRP75 (Figure 2.5A, red signal 

distribution) signaIs are mainly independent from one another except for slight 
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colocalization (Figure 2.5A, plots and micrographs, Figure 2.5B). However, treatment 

with HG medium still appears to yield more colocalization on the scatter plot 

(Figure 2.5A, plots), which is also supported by the colocalization rate histogram 

(Figure 2.5B). Overlaid pictures ofp53 and GRP75 staining (Figure 2.5A, micrographs) 

in CTRL, MANN, and RESV condition show dispersed punctual staining (white signal) 

in the cytoplasm, while in the HG condition a perinuclear dense staining is clearly 

visible. Administration of RESV in HG medium reveals a more scattered staining than 

in HG condition alone. 
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Figure 2.5 RESV modulates p53 and GRP75 colocalization. 
Continued on next page. 
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(Continued.) (A) Scatter plots and corresponding overlaid micrographs of 
p53 and GRP75 . Scatter plots show signal intensity for p53 (green signal) 
on the y axis and GRP75 (red signal) on the x axis. Each dot represents 
one event of fluorescent signal. Thresholds for green and red signal are 
optimized at 85% (two white lines) and mean background at 10% (arched 
delimitation), in each condition. Signal is colocalized when signais in 
scatter plots are located between the threshold lines on the outside of the 
background delimitation. White signal in microphotographs indicates 
high probability of colocalization. CTRL, RESV and MANN conditions 
are similar in that p53 and GRP75 colocalization is scarce and scattered in 
the cell cytoplasm. HG increases the white signal around the perinuclear 
area as well as the nurnber of dots in the region of interest on the plot. 
Treatment with RESV yields a scatter plot and overlaid white signal 
(HG RESV) similar to the CTRL condition, suggesting its potential to 
diminish colocalization between GRP75 and p53. (B) Histogram 
depicting the colocalization rate of GRP75 and p53 observed in panel A. 
HG increases the colocalization rate significantly. RESV administration 
in HG medium reverses this increase in colocalization rate (HG RESV). 
Ail other conditions are similar to CTRL. ***p < 0.001 compared with 
CTRL and ++p < 0.001 compared with HG, as determined by one-way 
ANOVA, followed by Tukey' s multiple-comparison test. 

We previously reported that several natural polyphenols, including the stilbene 

RESV, exert powerful neuroprotective activity in DAergic PC12 cells against the 

oxidative burden triggered by the administration of the potent parkinsonian toxin 

1-methyl-4-phenyl-1 ,2,3,6-tetrahydropyridine (MPTP) in vivo (Blanchet et al. , 2008) or 

its active metabolite I-methyl-4-phenylpyridinium (MPP+) in vitro (Bournival et al. , 

2009; Gagné et al. , 2003 ; Lahaie-Collins et al. , 2008). Since hyperglycemia has also 

been listed as a growing risk factor for PD (Hu et al. , 2007; Jagota et al., 2012; 

Sun et al. , 2012), we focused our study on the neuroprotective effect of RESV on 

HG-induced oxidative stress and apoptosis in DAergic PC12 cells with regard to GRP75 

and p53 localization. 

The Diabetes Control and Complications Trial (1993) together with the u.K. 
Prospective Diabetes Study (1998) have determined that hyperglycemia is the culprit to 

blame for tissue damage in type l and type II diabetes. Currently, we know that 
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overproduction of superoxide is the single upstream event leading to the following 

pathways involved in glucose toxicity (Giacco and Brownlee, 2010): 1) increased flux 

of glucose and other sugars through the polyol pathway; 2) increased intracellular 

formation of advanced glycation end-products (AGEs); 3) increased expression of the 

receptor for AGEs and its activating ligands; 4) activation of protein kinase C (PKC) 

isoforms; 5) overreactivity of the hexosamine pathway. The formation of AGEs and 

activation of AGE receptors (Shaikh and Nicholson, 2008), the activation of PKC (Aoki 

and Li, 20 Il) and the dysfunction of the polyol pathway (Ahrned et al., 2009) have been 

identified as contributors in the development of PD. These mechanisms suggest a strong 

link between neuronal apoptosis observed in PD and hyperglycemic damage in diabetes 

(Klein et al., 2004; Li et al., 2002; Li et al., 2008) . 

In this study, we demonstrated the defensive role of RESV in counteracting 

cellular distress parameters evoked by HG in DAergic PC12 cells. We tested 

NGF-differentiated PC 12 cells, a known, reliable and efficient model for the 

investigation of oxidative stress, apoptosis and neuroprotection of DAergic neurons 

(Bournival et al., 2012; Gélinas and Martinoli, 2002; Lahaie-Collins et al., 2008). 

Since oxidative stress is an essential factor in glucose toxicity and in the pathogenesis of 

PD, we investigated whether RESV protects DAergic PC12 cells by reducing levels of 

mitochondrial superoxide in HG condition. Our results show that RESV effectively 

diminishes superoxide production after as early as 3 h. In PD, superoxide reacts with 

iron cations to form hydroxyl radical (Ramas arma, 2012), known to exert very 

deleterious effects on DNA, lipids and proteins. This ROS can also react with nitric 

oxide, an important signaling molecule in the brain, to form peroxynitrite, a powerful 

oxidant shown to play a significant role in protein aggregation pertinent to PD 

(Danielson and Andersen, 2008). 

It is currently weil known that oxidative stress may cause apoptosis through 

several pathways: 1) ROS-induced expression or activation of nuclear factor-kappa B 

(NF-KB) (Gloire et al. , 2006); 2) mitochondria-mediated cell apoptosis (Circu and Aw, 

2010); 3) ROS-mediated DNA damage and p53 activation (Liu and Xu, 2011); 
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4) stress-activated protein kinases pathway to apoptosis (Johnson and Nakamura, 2007). 

We performed a set of experiments to investigate the apoptotic cascade in DAergic 

PC 12 cells ensuing oxidative stress to further demonstrate the preventive role of RESV. 

A specific apoptotic DNA denaturation assay demonstrated that RESV significantly 

prevents apoptosis in cells exposed to HG. We further examined markers of late 

apoptosis to determine whether the prote in cascade leads to terminal events such as the 

irreversible fragmentation of DNA. RESV in HG clearly reduced the number of 

apoptotic PC12 cells in comparison to the HG condition alone as shown by the decline 

in TUNEL and cleaved caspase-3 double-positive cells. Another target of activated 

caspase-3 is PARP-l , a protein known to participate in the repair of damaged DNA 

(Wang et al. , 2012). Our findings reveal that the PARP-l protein ratio, full-Iength versus 

cleaved, was decreased after HG treatment and was then improved by RESV 

administration, hence supporting once more the neuroprotective anti-apoptotic role of 

RESV in a HG paradigm. In addition, the Bax and Bcl-2 expression was studied to 

determine the apoptotic events surrounding the mitochondria. Bax contributes to the 

leakiness of the outer mitochondrial membrane, while Bcl-2 blocks the permeability 

transition pore, thus inhibiting mitochondria-mediated programmed cell death (Smith 

et al., 2008). The rise in the Bax to Bcl-2 ratio is a characteristic feature in apoptosis 

(Cory and Adams, 2002) equally observed in glucose toxicity (Allen et al. , 2005) and in 

several models of PD including hum an post-mortem brains (Vila and Perier, 2008). 

Our data reveal that the Bax/Bcl-2 protein ratio is increased after HG administration, and 

is decreased by RESV treatment in the HG condition, strongly suggestive of a role for 

mitochondrial dysfunction in the mechanisms underiying the apoptosis of DAergic 

neurons in our cellular paradigm of hyperglycemia. 

GRP75 has often been linked to PD pathogenesis as reported in studies showing 

binding properties to PD-associated proteins in the mitochondria (Jin et al., 2005 , 2006, 

2007; Li et al. , 2005; Rakovic et al., 2011) and reduced levels of the protein in 

post-mortem PD brain samples (Burbulla et al. , 2010; Jin et al. , 2005; Shi et al. , 2008). 

While GRP75 is mainly confined to the outer membrane of mitochondria, several studies 

have shown that it may bind and sequestrate pro-apoptotic p53 in the cytosol thereby 
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preventing its entry ln the nucleus, impeding apoptosis and ultimately promoting 

p53 degradation by the MDM2 proteasome degradation pathway (Kaul et al., 2001, 

2005; Wadhwa et al., 2002). Such studies were mainly conducted in cancer cells (Kaul 

et al., 2001 , 2005; Wadhwa et al., 2002) or in naïve, mitotic PC12 cells (Guo et al. , 

2009; Li et al., 2011). Our results obtained in post-mitotic PC12 cells, show that 

HG treatment increases GRP75 expression in the cytoplasm as weIl as in mitochondria 

thus suggesting that GRP75 is induced by HG cellular stress. While RESV reduced 

GRP75 levels in the cytoplasm, it did not ensure a significant effect in diminishing 

mitochondria GRP75 localization. Apparently, in our cellular paradigm, RESV 

modulates the subcellular distribution of GRP75 by preventing cytoplasmic levels from 

rising. RESV may be responsible for quenching HG-induced stress signais that promote 

the induction of GRP75 in the cytoplasm. Moreover, p53 localization is increased in the 

nucleus, which points toward a pro-apoptotic effect of HG on DAergic PC12 cells. 

RESV in HG medium maintains the cellular distribution of p53 , which partially accounts 

for its anti-apoptotic properties. Altogether, these results show an increase of GRP75 in 

the cytoplasm while p53 levels rise significantly in the nucleus in HG condition, 

suggesting relatively weak interaction between both markers in post-mitotic cells. 

Colocalization studies deepened our understanding of the relationship between GRP75 

and p53 in our cellular model. We show that GRP75 and p53 have a potential to bind in 

the cytoplasm but to a limited extent. Binding in HG condition is significantly enhanced, 

perhaps due to increased expression of both pro teins in the cytoplasm, but still remains 

limited. We show for the first time that post-mitotic DAergic PC12 cells exert weak 

binding of GRP75 and p53, which contrasts with findings in non-differentiated mitotic 

PC12 cells (Guo et al. , 2009; Li et al. , 2011). Moreover, GRP75 levels are decreased in 

post-mortem PD brains (Burbulla et al., 2010; Jin et al., 2005; Shi et al. , 2008) while we 

see an increase of expression in HG condition. Perhaps long-term mitochondrial 

dysfunction is responsible for the depletion of stress markers such as GRP75 in PD. 

Altogether, our results demonstrate that HG-induced oxidative stress and apoptosis 

of DAergic PC12 cells can be improved by RESV, sustaining an important role for this 

naturally occurring polyphenol in diabetes treatment. RESV has been the object of 
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several diabetes studies because of its ability to improve insulin sensitivity, protect 

pancreatic ~ cells and control glycaemia (Lee et al., 2012; Milne et al., 2007; Szkudelski 

and Szkudelska, 2011). lndeed, RESV protects against retinopathy in rats with diabetes 

(Soufi et al., 2012) and prevents nephropathy in db/db mice by inhibiting lipotoxicity

related apoptosis and oxidative stress in the kidney (Kim et al., 2013). Additional 

beneficial effects of the stilbene RESV may contribute to alleviate obesity-induced 

metabolic complications (Rosenow et al., 2012) often related with diabetes. A recent 

clinical study has found oral administration of RESV to be effective in improving 

glycaemia in type 2 diabetes mellitus (Bhatt et al. , 2012). 

Even though RESV is principally metabolized into its glucoronide and sulfate 

conjugates, recent data show that these metabolites may possess beneficial properties 

(Delmas et al. , 20 Il). lncreased bioavailability due to a synergistic effect with other 

polyphenols or compounds, such as curcumin or the glycemic control drug metformin, 

must also be taken into account (Bruckbauer and Zernel, 2013 ; Du et al. , 2013). Besides, 

recent pharmacological advances have improved bioavailability of RESV (for details see 

Amiot et al. , 2013; Neves et al., 2013). Finally, the potential beneficial properties of 

RESV on hurnan health are broadly displayed in the literature and justify the need to 

further unravel the powerful cellular role of this dietary polyphenol. 
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3.2 Résumé 

De nombreuses études épidémiologiques soutiennent une corrélation entre le 

diabète et les maladies neurodégénératives liées à l'âge, telles les maladies d'Alzheimer 

et de Parkinson. En effet, l'hyperglycémie engendre un stress oxydant auquel est 

vulnérable le système nerveux central. Nous avons récemment démontré que des 

concentrations physiologiquement élevées de glucose causent un stress oxydant menant 

à la mort de neurones dopaminergiques en culture. Les altérations dopaminergiques 

survenant avec l'âge dans le diabète demeurent méconnues. Dans cette optique, le but de 

notre étude était de caractériser l'état des deux voies dopaminergiques principales du 

système nerveux central dans l 'hyperglycémie chronique. Nous avons donc employé un 

modèle modéré de rat diabétique, soit le paradigme nicotinamide-streptozotocine 

permettant le maintien d' une hyperglycémie à long terme. Spécifiquement, nous nous 

sommes attardés à la voie nigrostriée, bien connue pour son rôle dans le contrôle de 

la motricité et dans la maladie de Parkinson, ainsi qu'à la voie mésocorticolimbique, 

un circuit voisin davantage associé au système de la récompense. Les neurones et 

les cellules gliales ont fait l'objet d'analyses 3 et 6 mois suivant l'induction de 

l'hyperglycémie. Nos résultats démontrent une neurodégénérescence préférentielle de 

la voie nigrostriée, celle-ci étant accompagnée d'une prolifération marquée des 

astrocytes et de la mort des cellules micro gliales à 6 mois. Des tests comportementaux 

ont confirmé l'existence de déficits moteurs évoquant les symptômes de la maladie 

de Parkinson, survenant de cette neurodégénérescence. La somme de ces résultats 

démontre une relation entre l'hyperglycémie et la mort préférentielle des neurones 

dopaminergiques de la VOle nigrostriée, appuyant de surcroît les études 

épidémiologiques soulignant le risque que comporte un diabète préexistant pour le 

développement de la maladie de Parkinson. 
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3.3 Full article in English: Dopaminergic neurodegeneration in a rat model of 
long-term hyperglycemia: preferential degeneration of the nigrostriatal 
motor pathway 

Abstract 

Epidemiological evidence suggests a correlation between diabetes and 

age-related neurodegenerative disorders, including Alzheimer's and Parkinson ' s 

diseases. Hyperglycemia causes oxidative stress in vulnerable tissues such as the brain. 

We recently demonstrated that elevated levels of glucose lead to the death of 

dopaminergic neurons in culture through oxidative mechanisms. Considering the lack of 

literature addressing dopaminergic alterations in diabetes with age, the goal of this study 

was to characterize the state of two critical dopaminergic pathways in the nicotinamide

streptozotocin rat model of long-term hyperglycemia, specifically the nigrostriatal motor 

pathway and the reward-associated mesocorticolimbic pathway. Neuronal and glial 

alterations were evaluated 3 and 6 months after hyperglycemia induction, demonstrating 

preferential degeneration of the nigrostriatal pathway complemented by a noticeable 

astrogliosis and loss of microglial cells throughout aging. Behavioral tests confirmed the 

existence of motor impairments in hyperglycemic rats that resemble early parkinsonian 

syrnptomatology in rats, ensuing from nigrostriatal alterations. These results solidify the 

relation between hyperglycemia and nigrostriatal dopaminergic neurodegeneration, 

providing new insight on the higher occurrence of Parkinson's disease in diabetic 

patients. 

Introduction 

Glucose is the obligate energy substrate of adult neurons. Owing to the 

preponderant expression of glucose transporter 1 (GLUTl) at the blood-brain 

barrier (Anraku et al. , 2017) and GLUT3 at the neuron plasma membrane (Patching 

et al. , 2017, Simpson et al. , 2007), uptake overwhelmingly occurs in an insulin

independent fashion. Thus, intraneuronal glucose concentrations directly depend on 

extracellular concentrations, i.e. , on plasma glucose concentrations (Jacob et al., 2002) . 



166 

Indeed, neurons belong to the most severely hit targets in hyperglycemia, along 

with mesangial and capillary endothelial ceUs (for review see Brownlee, 2005). 

Well appreciated is the fact that persistent hyperglycemia induces oxidative stress 

occasioning damage in the peripheral nervous system, as is the case in comorbid 

neuropathies of uncorttrolled diabetes (Rajabally, 2017). Fewer studies have focused 

their attention on hyperglycemia in the human central nervous system (Moulton et al., 

2015) but go as far as to draw relationships between diabetes and age-related 

neurodegenerative disorders, including Alzheimer's and Parkinson's diseases (Jagota 

et al., 2012, Vicente Miranda et al., 2016, Vieira et al., 2017, Vignini et al., 2013). 

Notwithstanding the wealth of evidence supporting a toxic role for glucose ln 

neurons of the central nervous system (see for review Tomlinson and Gardiner 2008, 

Vicente Miranda et al., 2016), details are lacking in the bigger picture. Most studies 

have addressed neurodegeneration in discrete brain regions on a short-term scale 

(Do Nascimento et al., 2011, Kamboj and Sandhir, 2011), which do not represent 

temporal or spatial breadths of hyperglycemic distress in aging diabetic patients. 

Moreover, literature describing dopaminergic neurodegeneration in hyperglycemic 

models remains modest. Our group demonstrated a role for chronic glucose exposure in 

apoptotic death of dopaminergic neurons through oxidative mechanisms (Bournival 

et al., 2012, Renaud et al., 2014) and several studies report dopaminergic alterations in 

diabetes or acute hyperglycemia (Lozovsky et al., 1981 , Murzi et al. , 1996, Sevak et al. , 

2007). Nevertheless, the state of entire dopaminergic pathways in the long-term has not 

been inquired. 

In order to improve our understanding of central dopaminergic neurodegeneration 

in hyperglycemia, we focused on two critical central dopaminergic systems, namely 

the nigrostriatal and mesocorticolimbic pathways (for review see Haber, 2014). 

The nigrostriatal pathway is primarily involved in the generation of movement. 

Cell bodies of nigrostriatal neurons are found in the substantia nigra pars compacta 

(SNe), lodged in the ventral midbrain, and extend their dopaminergic fiber terminaIs to 

the dorsal striatum (DS). The mesocorticolimbic pathway is often termed the reward 

system. Cell bodies of mesocorticolimbic neurons are also found in the ventral midbrain, 
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though in a neighboring subregion named the ventral tegmental area (VT A). 

This pathway innervates both the ventral striatum (VS, mesolimbic pathway), 

which contains the nucleus accumbens (NAcc) and the olfactory tubercle (ûT), as weil 

as the prefrontal cortex (PFC, mesocortical pathway) (Squire et al. , 2008). We thus 

evaluated neurodegeneration and analyzed glial populations in these regions to obtain a 

better appreciation of the global state of the dopaminergic pathways in long-term 

hyperglycemia. Finally, behavioral assessments were carried out to uncover motor and 

cognitive alterations possibly expressed as a consequence of neurodegeneration. 

Research design and methods 

Subjects 

A total of 91 rats were used ln this study. For immunoblotting, 

immunohistochemical and behavioral studies, two different cohorts totaling 61 male 

Sprague-Dawley rats (Charles River, St-Constant, Canada) weighing 175-200 g and 

aged 5-6 weeks were housed under standard laboratory conditions (12 h light/dark 

cycle). In Italy, motor and cognitive behavior analyses were repeated and 

complementary microdialysis studies were carried out in 30 male Sprague-Dawley rats 

(Harlan Italy, Udine, Italy) of the same weight and age, also housed under standard 

laboratory conditions. In all experiments, standard food and water were available 

ad libitum. Rats were acclimated for 2 weeks and were therefore 7 -8 weeks of age upon 

induction of hyperglycemia described below. 

AH experiments were conducted in accordance with the guidelines for animal 

experimentation of the EU directives (2010/63/EU; L.276; 22/09/2010), of the Ethical 

Committee of the University of Cagliari , of the AnimaIs for Research Act and following 

the legislation and policies of the Canadian Council on Animal Care, as well as with the 

guidelines established by the Animal Care Committee of the Université du Québec 

(Trois-Rivières) (2014-M.G.M.5) . Maximal efforts were made to minimize discomfort 

and numbers of animaIs used. 



168 

Induction of long-term hyperglycemia 

Rats were randomly divided Ïnto two groups; control (CTRL) and hyperglycemic 

(HG). Long-term hyperglycemia was induced in fasted rats (overnight, 12-16 h) by a 

single i.p. injection of freshly dissolved streptozotocin (STZ, 0.1 M cold citrate buffer, 

pH 4.5, 55 mg/kg b.w.). Nicotinamide (NA, 100 mg/kg b.w.) dissolved in physiological 

saline was administered i.p. exactly 20 min prior to the STZ injection to minimize the 

destruction of insulin-producing pancreatic beta cells, yielding HG rats that would 

survive for 6 months without the need for glycemia-Iowering treatments (Badole et al., 

2015, Masiello et al., 1998). CTRL rats received i.p. injections ofvehicles. All rats were 

injected on mornings within a time frame of 3 h. Hyperglycemia was confirmed 72 h 

after NA-STZ injections using a digital glucose meter (UltraMini with One Touch Ultra 

strips) to analyze blood collected from the tail vein. Only rats with a glycemia steadily 

above 10 mM were used in this study. Exhaustive metabolic follow-ups were conducted 

regularly throughout experiments (Supplementary Figure SI). 

Motor behavior assessments 

We investigated the possibility that the degeneration of neurons and neuronal 

fibers may be accompanied by alterations in motor behavior. Rats were submitted to 

motor behavior assessments, beginning with baseline evaluations prior to hyperglycemia 

induction, followed by trials 3 and 6 months later. 

Stepping test and forepaw adjusting step test: Both tests were adapted for 

non-parkinsonian models, implying bilateral rende ring of results, and conducted as 

previously described (Pinna et al., 2007). The stepping test measures the rapidity of rats 

to initiate movement and cross a beam. Briefly, rats were held with one forelimb placed 

at the beginning of a beam leading to the home cage. The initiation time was measured 

from the moment the free forelimb was placed on the beam until the rat started to step 

using the same forelimb. Time to reach the home cage and nurnbers of strides were 

also recorded. The adjusting step test measures akinesialbradykinesia (Chang et al., 

1999) in rats by dragging their forepaw sideways on a surface at a constant speed. 
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Briefly, rats were moved s10wly sideways along the table surface by an experimenter, 

first in a forehand and then in a backhand direction. Adjusting steps made in forward 

and backward directions were counted. 

Horizontal bar test: Healthy rats typically correct their position quickly when 

placed in an awkward posture. To evaluate the ability of rats to correct an extemally 

imposed posture, we performed a horizontal bar test (Sanberg et al. , 1981). Following a 

10-min habituation phase to the test cage, rats were tested by gently placing both 

forepaws on a horizontal bar (0.8 cm diameter, 3 cm from floor). Descent latency was 

measured as the time span from placing the animal on the bar until both paws were 

removed. The test cage was washed after each animal. 

Cognitive behavior 

Novel object recognition task: Evaluation of novel object recognition (NOR) 

performance is widely used for assessing non-spatial working memory in rodents 

(Ennaceur, 2010), a function regulated by limbic and cortical areas such as the 

hippocampus (HPC), NAcc and PFC. NOR experiments were performed as previously 

described (Simola et al., 2008). The experimental procedure consisted of habituation, 

acquisition and testing phases. Habituation to the test cage took place on the day before 

tests during a single 5-min trial. The following day, the acquisition phase was performed 

by placing the rat in the test cage together with two identical copies of an object 

(familiar objects). Rats were left to freely explore the objects for 3 min. The testing 

phase took place 60 min after acquisition and consisted in exposing the rat to one copy 

of the objects presented previously and a novel object. Results were obtained 3 months 

after injections but not after 6 months since HG rats develop cataracts and their sight is 

likely to be impaired. 

Sacrifices and tissue harvest 

At 3 or 6 months, rats were intracardially perfused with ice-cold PBS containing 

protease and phosphatase inhibitors. The brain was sectioned into hemispheres. One was 
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irnmediately used to sequester the striatum, the midbrain and the PFC, which were 

frozen in dry ice-cooled isopentane and stored at -80°C for later irnmunoblotting 

analyses or intraceUular glucose quantification in tissues. The HPC was also harvested 

for comparison purposes, as it constitutes a secondary DA hub receiving dopaminergic 

input from the VT A through the hippocampal-VT A loop (Lisman and Grace, 2005). 

The other hemisphere was post-fixed in 4% paraformaldehyde, cryoprotected through 

gradients of sucrose, and conserved at -80°C for immunohistochemical analyses. 

The Paxinos and Watson rat brain atlas (1998) served as a reference for aU tissue 

harvests. 

Immunohistochemistry 

Frozen post-fixed brain hemispheres were cut into 20 I-lm-thick coronal free

floating seriaI sections. By systematic random sampling (West, 2012), one out of every 

six sections was immunoreacted with antibodies raised against either the specific 

dopaminergic neuron marker anti-tyrosine hydroxylase (anti-TH), the general neuronal 

marker anti-NeuN, the astrocyte marker anti-glial fibriUary acidic protein (anti-GFAP), 

or the microglial ceU marker anti-ionized calcium-binding adapter molecule l (anti

Thal) (for list of antibodies, concentrations and manufacturers see Supplementary 

Table SI). Then, sections were incubated with a HRP-conjugated secondary antibody, 

revealed with 3,3' -diaminobenzidine, mounted on microscope slides, dehydrated, and 

analyzed under a microscope in brightfield mode (MBF Bioscience, WiUiston, VT, 

USA). Neuroanatomical loci were determined according to the atlas of Paxinos and 

Watson (1998) and were identicaUy delimited in aU sections of the same anteriority 

between animaIs. Because of the systematic random sampling method, the same 

numbers of sections at the same anteriorities per region were consistently analyzed in 

each animal, foUowing guidelines already established for stereology (West, 2012). 

Total counts of overaU neurons (NeuN+), dopaminergic neurons (TH+), astrocytes 

(GFAP+) and microglial ceUs (Tha1+) were performed in the SNc and in the VTA 

(bregma -4.80 to -6.30 mm) using the manual ceU counting marker function provided by 

the NIH ImageJ software version 1.49. In the DS (lateral and media l, bregma 2.2 to 
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-1.0 mm), the VS (NAcc and OT, bregma 2.7 to 0.5 mm), the PFC (bregma 4.0 to 

2.0 mm) and the HPC (bregma -2.3 to -6.0 mm), we counted total numbers of NeuN+, 

GF AP+ and Iba+ cells. Density of TH+ dopaminergic terminais in the striatum (Iateral, 

medial, NAcc and OT, refer to aforementioned bregmas) was evaluated by densitometric 

assays using ImageJ. These were systematically performed on non-overlapping spherical 

regions of interest (3 x 1 mm2 for lateral or medial DS; 5 x 0.5 mm2 for NAcc or OT). 

Immunoblotting 

Frozen tissues were homogenized by steel bail milling in RIPA buffer and proteins 

were quantified by the bicinchoninic acid method before running them in a SDS-PAGE. 

Proteins were transferred cnte polyvinylidene difluoride membranes, which in tum 

were incubated with primary antibodies raised against the dopaminergic markers TH 

or dopamine transporter (DAT), or against the general neuronal marker NeuN. 

Following incubation with HRP-conjugated secondary antibodies, blots were finally 

developed with an enhanced chemiluminescence substrate solution and immunopositive 

chemiluminescent signaIs were visualized using the AlphaEase FC imaging system and 

software (San Leandro, CA, USA). Densitometric blot analyses were performed using 

ImageJ. ~-tubulin blots served as a loading comparative standard and ail immunoblotting 

results have been accordingly normalized to ~-tubulin levels. 

Intracerebral microdialysis in freely moving rats 

Two microdialysis trials in separate experiment-naïve groups of rats were 

conducted to verify extracellular glucose or DA concentrations in discrete brain regions 

in order to support and complete data obtained by the other techniques in this study. 

Probe preparation: Vertical microdialysis probes were prepared with AN69 

membranes (Hospal Dasco, Bologna, Ital y) according to the method described by 

Di Chiara et al. (1993) further modified by Tanda et al. (1996). Probes had a dialyzing 

portion of 1.5 mm for the NAce, the SNe and the VT A, and of 3 mm for the DS and 

the PFC. 
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Surgery: Three months after hyperglycemia induction, rats underwent stereotaxic 

acute probe-insertion surgery as previously described by Bassareo et al. (2011). 

Briefly, the probes were inserted vertically under the following coordinates: 

NAcc (A: 1.9, L: 1.1 from bregma; V: -7.6 from dura), DS (A: 0.7, L: 2.8 from bregma; 

V: -6.5 from dura), PFC (A: 3.8, L: 0.9 from bregma; V: -5.0 from dura), SNc (A: -5.8, 

L: 1.7 from bregma; V: -8.3 from dura) and VTA (A: -6.0, L: 0.5 from bregma; V: -8.2 

from dura) according to the atlas of Paxinos and Watson (1998). A maximum of 

two regions on opposite hemispheres were targeted in each rat (for glucose: VTA and 

NAcc, VTA and DS, SNc and NAcc, or SNc and DS; DA: DS and NAcc, NAcc and 

PFC, or PFC and DS), and each subject was tested only once during the experimental 

session. We collected data in 3-month HG rats for glucose and DA microdialysis 

experiments. Rats did not undergo surgery at 6 months due to their delicate health. 

Methods specific to microdialysis experiments dedicated to glucose 

measurements: Prior to analytical procedures, rats were fasted overnight to normalize 

the contribution of feeding on glycemia. Thirty minutes before the start of experiments, 

each rat was fed with normal chow diluted in water (1.5 g/kg b.w. by intragastric 

gavage). Glycemia was monitored before, during and after microdialysis experiments 

to ensure its stability. 

Microdiaysis experiments: On the day following surgery, microdialysis 

experiments were conducted in freely moving and awake rats, as previously described 

(Bassareo et al., 2011). Briefly, dialysate samples (20 ~L) were taken every 20 min, 

for a total of 9 samples (180 min) for DA quantification and 3 samples (60 min) 

for glucose measurements. For DA quantification, 20 ~L samples were immediately 

injected into a high-performance liquid chromatography, whereas, for glucose 

measurements, samples were pooled and immediately frozen for later quantification. 

Basal dialysate DA was calculated as the area under the curve of the 9 consecutive 

samples collected during the 180-min session, varying by no more than 10% (for time 

course see Supplementary Figure S2). 
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Histology: At the end of experiments, rats were sacrificed and transcardially 

perfused with 50 mL of saline and 50 mL of a 4% forrnaldehydell % calcium 

acetatellOO mM NaCI solution. Sections were cut with a vibratome and probe location 

was ensured as reported by Bassareo et al. (2011) (Supplementary Figure S3). 

Brain tissue and microdialysate glucose concentrations 

In order to investigate whether glucose concentrations may be altered differentially 

in the various brain regions of interest following long-terrn hyperglycemia, glucose 

concentrations in homogenized brain tissue and intracerebral microdialysis samples were 

measured according to the manufacturer' s protocol using a Rat Glucose Assay kit 

(Crystal Chem, Downers Grove, IL, USA). For homogenized brain tissue, frozen 

striatum, midbrain, PFC or HPC tissues were homogenized by steel baIl milling in 

volume/weight equivalents of RIPA buffer and immediately deproteinized by 

trichloroacetic acid precipitation before glucose quantification. 

Statistical analyses 

Statistical analyses were carried out using GraphPad Prism 7 software (San Diego, 

CA, USA; http: //www.graphpad.com). Significant differences between groups were 

ascertained by Student's unpaired two-tailed t-test, or by two-way ANOV A followed 

by Sidak's post-hoc analysis. Ali data, analyzed at the 95% confidence interval, 

are expressed as means ± SEM. T and F statistics for each figure are described in 

Supplementary Table S2. 

Results 

Glucose concentrations increase in ail brain regions of interest 

At 3 (Figure 3.1 A) and 6 months (Figure 3.1 B), glucose concentrations in HG rats 

(black bars) were increased compared to CTRL rats (white bars) in homogenized tissues 
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of midbrain, striatum, PFC and HPC. Microdialysis experiments confirmed these results 

at 3 months in discrete brain regions, namely the SNc and VTA of the midbrain and the 

DS and NAcc of the striatum (Figure 3.1C). 
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Figure 3.1 Brain glucose concentrations in HG rats compared to CTRL rats. 
(A, B) Frozen striatum, midbrain, prefrontal cortex (PFC) and 
hippocampus (HPC) brain tissues were homogenized by steel ball 
milling and deproteinized before glucose quantification. Three (A) and 
six (B) months after hyperglycemia-inducing nicotinamide-streptozotocin 
(NA-STZ) injections, hyperglycemic (HG) rats displayed increased 
intracellular glucose concentrations in all brain regions analyzed 
compared to the control (CTRL) group. (C) Three months after injections, 
microdialysis samples were obtained from acute probes inserted in the 
nucleus accumbens (NAcc), the dorsal striatum (DS), the substantia nigra 
pars compacta (SNc), and the ventral tegmental area (VTA). 
Thirty minutes before the start of experiments, ovemight fasted rats were 
fed with normal chow diluted in water (1.5 g/kg body weight [b.w.] by 
intragastric gavage). Glucose was measured in the samples, confirming 
higher extracellular concentrations in ail the brain regions of HG rats 
compared to CTRL rats . Data presented as means ± SEM. Asterisks 
indicate statistical differences between the HG group and CTRL group 
(***p < 0.001, **p < 0.01 and *p < 0.05). 

Long-term hyperglycemia causes preferential degeneration of dopaminergic neurons 
in the substantia nigra pars compacta 

By immunoblotting (Figure 3.2A and B), we observed no difference in the 

expression levels of TH (Figure 3.2A and C), DAT (Figure 3.2A and D) or NeuN 

(Figure 3.2A and E) in the midbrain of 3-month HG rats compared to CTRL rats . 

At 6 months, all three markers were decreased (Figure 3.2B, C, D and E), suggesting 

dopaminergic degeneration. We confirmed these results by immunohistochemical 

<D 
.j. 
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analyses, focusing on discrete dopaminergic subregions within the ventral midbrain, 

namely the SNc and the YTA (Figure 3.2F). Six months after hyperglycemia induction, 

HG rats displayed a significant loss of dopaminergic neurons in the SNc but not in the 

VTA, as ascertained by reduced TH+ (Figure 3.2G) and NeuN+ (Figure 3.2H) neuron 

counts. 
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Figure 3.2 Analyses of midbrain markers of neurodegeneration in HG rats 
compared to CTRL rats. 
Continued on next page. 
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(Continued.) (A-E) Immunoblotting analyses of midbrain homogenates. 
A SDS-PAGE was performed on steel baIl milled frozen midbrain 
homogenates. The midbrain contains the SNc and the VT A. (A, B) 
Representative immunoblots of dopaminergic markers TH and dopamine 
transporter (DAT), and the general neuronal marker NeuN 3 (A) and 
6 (B) months following hyperglycemia-inducing NA-STZ injections. 
(C-E) TH (C), DAT (D) and NeuN (E) expression levels are lower in HG 
rats 6 months, but not 3 months, after injections compared to CTRL rats. 
Expression levels are normalized to ~-tubulin. Blots were independently 
repeated at least 3 times each. (F-H) Immunohistochemical analyses of 
the midbrain region. Six months after hyperglycemia-inducing NA-STZ 
injections, frozen post-fixed brain hemispheres were cut into 20 )..lm-thick 
coronal seriai sections and stained for the dopaminergic neuronal marker 
TH or the general neuronal marker NeuN. (F) Representative midbrain 
microphotographs of TH staining at 2 different anteriorities and of NeuN 
staining. The midbrain subregions include the SNc and the VTA, isolated 
by dotted lines in the NeuN microphotograph. Scalebar 1 mm. (G, H) Cell 
counts in the SNc and VTA demonstrated lower numbers of both TH+ 
(G) and NeuN+ (H) cells in the SNc of HG rats compared to CTRL rats. 
No differences were found in the VT A. AlI data presented as means ± 
SEM. Asterisk indicates statistical differences between the HG group and 
CTRL group (*p < 0.05). 

Long-term hyperglycemia causes preferential degeneration of dopaminergic fiber 
terminais in the dorsal striatum 

By immunoblotting (Figure 3.3A and B), we observed no difference in the 

expression levels of TH (Figure 3.3A and C), DAT (Figure 3.3A and D) or NeuN 

(Figure 3.3A and E) in the striatum of 3-month HG rats compared to CTRL rats. 

At 6 months, HG rats expressed lower levels of the dopaminergic markers TH 

(Figure 3.3B and C) and DAT (Figure 3.3A and D), indicative of dopaminergic fiber 

terminal degeneration in the striatum. NeuN, mainly expressed in the ceIl bodies of 

neurons, remained unchanged in HG rats at 6 months (Figure 3.3B and E), suggesting 

that no neurons were lost in the striatum. Irnmunohistochemical assays in the various 

subregions of the striatum (Figure 3.3F) confirmed a significant loss of dopaminergic 

fiber terminaIs in 6-month HG rats, especiaIly in the DS, both in the DMS and DLS 

subregions, as ascertained by quantification of the density of TH+ fibers (Figure 3.3G). 

No distinctions between 6-month HG and CTRL rats were detected in the ventral 

regions of the striatum, namely the NAcc and the OT (Figure 3.3G). NeuN+ ceIl counts 
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did not differ between CTRL and HG groups in any of the reglOns investigated 

(Figure 3.3H), corroborating previous immunoblotting observations of unchanged 

striatal NeuN expression levels. 

Degeneration of dopaminergic fiber terminaIs may be accompanied by alterations 

in regional DA release (G6rska et al., 2017). To address this possibility, microdialysis 

samples were collected at 3 months in the main central DA terminaIs, namely the DS, 

the N Acc and the PFC. We noticed that, even in the absence of TH loss made apparent 

at 3 months by immunoblotting (Figure 3.3A and C), HG rats displayed impaired basal 

DA release in the DS, but not in the other brain regions (Figure 3.31). Together, these 

data suggest early (3 months) dopaminergic fiber terminal dysfunction, and later 

(6 months) degeneration in the DS coinciding with loss of neurons in the SNc where the 

fibers originate. It is also possible that a moderate amount of neurodegeneration was 

present at 3 months that we failed to detect by immunoblotting, due to the fewer 

numbers of rats employed at this time point. If this were the case, dampened dopamine 

release at' 3 months wou Id coincide with this loss of dopaminergic neurons or fibers. 

Immunohistochemical analyses of brains at 3 months are required to confirm either of 

these hypotheses. The main finding remains that neurodegeneration was observed in 

6-month HG rats, as corroborated by 2 different techniques. 
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Analyses of striatal markers of neurodegeneration in HG rats 
compared to CTRL rats. 
(A-E) Immunoblotting analyses of striatum homogenates. A SDS-PAGE 
was performed on steel ball milled frozen striatum homogenates. 
The striatum contains the DS and the NAcc. (A, B) Representative 
immunoblots of dopaminergic markers TH and DAT, and the genera1 
neuronal marker NeuN 3 (A) and 6 (B) months following hyperglycemia
inducing NA-STZ injections. (C-E) TH (C) and DAT (D) expression 
levels are lower in HG rats 6 months, but not 3 months, after injections 
compared to CTRL rats. No differences in NeuN (E) expression levels 
were observed at either 3 or 6 months. Expression levels are normalized 
to ~-tubu1in. B10ts were independently repeated at least 3 times each. 
(F-H) Immunohistochemical analyses of the striatal region. Six months 
after hyperglycemia-inducing NA-STZ injections, frozen post-fixed brain 
hemispheres were cut into 20 Ilm-thick coronal seriaI sections and stained 
for the dopaminergic terminal fiber marker TH or the general neuronal 
marker NeuN. (F) Representative microphotographs of TH and NeuN 
staining in the striatum. The striatal subregions include the DS (including 
the dorsomedial striatum [DMS] and dorsolateral striatum [DLS]), 
the NAcc and the olfactory tubercle (OT), iso1ated by dotted lines in the 
far right panel. Scalebars 1 mm. (G) Density of TH+ fibers was assessed 
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by densitometric assays in the DMS, DLS, NAcc and the OT, showing 
less dense dopaminergic terminal fibers in the DMS and DLS, but not in 
the NAcc or the OT, of HG rats compared to CTRL rats. (H) Cell counts 
in the DMS, DLS, NAcc and OT demonstrated no differences between 
HG and CTRL rats. (1) Three months after injections, microdialysis 
samples were obtained from the NAcc, the DS and the PFC. 
Measurements of DA in the samples were performed by high
performance liquid chromatography and revealed lower extracellular 
concentrations in the DS, but not in the NAcc or the PFC, in HG rats 
compared to CTRL rats. Ali data presented as means ± SEM. Asterisk 
indicates statistical differences between the HG group and CTRL group 
(*p < 0.05, **p < 0.01). ac, anterior commissure; AUC, area under curve; 
DA, dopamine. 

Long-term hyperglycemia does not cause substantial neurodegeneration in the 
prefrontal cortex or in the hippocampus 

In the PFC and the HPC, we report no sensible changes of TH or DAT expression 

at either 3 (Figure 3.4A, C and D; Figure 3.5A, C and D) or 6 months (Figure 3.4B, C 

and D; Figure 3.5B, C and D) as revealed by immunoblotting assays (Figure 3.4A 

and B; Figure 3.5A and B). In addition, hyperglycemia sustained for 6 months did not 

modulate NeuN expression (Figure 3.4A, Band E; Figure 3.5A, Band E), suggesting no 

visible degeneration in neuronal cell bodies housed in the PFC or the HPC. 

Immunohistochemical analyses confirmed these findings since no changes in NeuN+ 

cell counts were observed in HG rats at 6 months compared to the CTRL group 

(Figure 3.4F and G; Figure 3.5F and G). Lack of neuronal degeneration in the HPC is 

corroborated by another study in long-term diabetic mice (Duarte et al. , 2012). 
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Analyses of prefrontal markers of neurodegeneration in HG rats 
compared to CTRL rats. 
(A-E) Irnmunoblotting analyses of PFC homogenates. A SDS-PAGE 
was perfonned on steel baIl milled frozen PFC homogenates. (A, B) 
Representative immunoblots of dopaminergic markers TH and DAT, 
and the general neuronal marker NeuN 3 (A) and 6 (B) months following 
hyperglycemia-inducing NA-STZ injections. ~-tubulin blots served as a 
loading standard. (C-E) No differences in TH (C), DAT (D) or NeuN (E) 
expression levels were observed at either 3 or 6 months. Expression levels 
are nonnalized to ~-tubulin . Blots were independently repeated at least 
3 times each. (F, G) Irnmunohistochemical analyses of the PFC region. 
Six months after hyperglycemia-inducing NA-STZ injections, frozen 
post-fixed brain hemispheres were cut into 20 Ilm-thick coronal 
seriaI sections and stained for the general neuronal marker NeuN. 
(F) Representative microphotographs of NeuN staining. Prelimbic (PL) 
and infralimbic (IL) subregions of the medial PFC are isolated by dotted 
lines. Scalebar 1 mm. (G) No differences in NeuN+ cell counts in the 
PFC of HG rats compared to CTRL rats. Ali data presented as means ± 
SEM. cc, corpus callosum. 
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Analyses of hippocampal markers of neurodegeneration in HG rats 
compared to CTRL rats. 
(A-E) Immunoblotting analyses ofHPC. A SDS-PAGE was performed on 
steel bail milled frozen HPC homogenates. (A, B) Representative 
immunoblots of dopaminergic markers TH and DAT, and the general 
neuronal marker NeuN 3 (A) and 6 (B) months following hyperglycemia
inducing NA-STZ injections. B-tubulin blots served as a loading standard. 
(C-E) No differences in TH (C), DAT (D) or NeuN (E) expression levels 
were observed at either 3 or 6 months. Expression levels are normalized 
to B-tubulin. Blots were independently repeated at least 3 times each. 
(F, G) Immunohistochemical analyses of the HPC region. Six months 
after hyperglycemia-inducing NA-STZ injections, frozen post-fixed brain 
hemispheres were cut into 20 J..lm-thick coronal seriai sections and 
stained for the general neuronal marker NeuN. (F) Representative 
microphotographs of NeuN staining in the dentage gyms (DG), Cornu 
ammonis (CA) 1 and 3 regions of the HPC. Scalebars 0.5 mm. 
(G) No differences in NeuN+ cell counts in the HPC of HG rats compared 
to CTRL rats. Ali data presented as means ± SEM. 
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Long-term hyperglycemic rats display astrogliosis and loss of microglial cells 
in degenerated dopaminergic regions 

Six months following hyperglycemia induction, HG rats exhibitedgreater GF AP+ 

staining revealed by immunohistochemistry in the SNc and DS (Figure 3.6A), 

both regions displaying dopaminergic degeneration. Interestingly, these same regions 

also showed a significant decrease of Tha+ staining (Figure 3.6A). In 6-month HG rats, 

this apparent astrogliosis and 10ss of microglial cells was confirmed by GF AP+ 

(Figure 3.6B) and Thal + (Figure 3.6C) cell counts. Although we could not demonstrate 

neurodegeneration in the NAcc (Figure 3.3F, Gand H), we detected an increase in 

numbers of astroglial cells (Figure 3.6A and B) together with a 10ss of microglial cells 

(Figure 3.6A and C) in HG rats compared to CTRL rats. The PFC, on the other hand, 

displayed signs of astrogliosis (Figure 3.6A and B) without a decrease in Thal + cells 

(Figure 3.6A and C). No effects were identified in the HPC, the VTA (Figure 3.6A, B 

and C) or the OT (Figure 3.6B and C). 
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Immunohistochemical analyses of astrocytes and microglial cells in 
the brains of HG rats compared to CTRL rats. 
Six months after hyperglycemia-inducing NA-STZ injections, frozen 
post-fixed brain hemispheres were cut into 20 f.lm-thick coronal seriai 
sections and stained for the astrocytic marker glial fibrillary acidic protein 
(GFAP) or the microglial marker ionized ca1cium-binding adapter 
molecule 1 (Tha 1). (A) Representative microphotographs of GF AP or 
Thal staining in the different brain regions analyzed in this article 
with neuroanatomical landmarks isolated by dotted lines. The HPC 
microphotographs are taken from the CAl region and the PFC 
microphotographs are taken from the PL region. Not shown: OT and 
subregions of the DS (DMS and DLS). Scalebar 100 f.lm. (B) Cell counts 
in the various regions demonstrated higher numbers of GF AP+ cells in 
the SNc, DMS, DLS, NAcc and PFC of HG rats compared to CTRL rats. 
No differences were observed in other regions. (C) Cell counts in the 
various regions demonstrated lower numbers of Thal + cells in the SNc, 
DMS, DLS and NAcc of HG rats compared to CTRL rats. No differences 
were observed in other regions. Ail data presented as means ± SEM. 
Asterisk indicates statistical differences between the HG group and CTRL 
group (* **p < O.OOI , **p < O.OI and *p < 0.05) . SNr, substantia nigra 
pars reticulata. 

Long-term hyperglycemic rats show altered motor behaviour 

In the stepping test, HG rats took longer to cross the beam (Figure 3.7B) and made 

more strides (Figure 3.7C) at 3 and 6 months compared to the CTRL group. Time to 

initiate movement was not different between CTRL and HG groups at any time point 

(Figure 3.7A). While no changes were detected at the 3-month mark in the horizontal 

bar test, 6-month HG rats exhibited an increase in the latency to remove paws compared 

to their baseline results and in relation to the CTRL group (Figure 3.7D). In the adjusting 

step test, HG rats performed lower numbers of adjustments with either forepaw, in both 

forehand (white bars for CTRL or black bars for HG) and backhand (horizontally lined 
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white bars for CTRL or checkered bars for HG) directions, compared to CTRL rats at 

both time points (Figure 3.7E). In the NOR test, we did not find any difference in the 

am ou nt of time HG rats spent exploring novel objects compared to the CTRL group 

(Figure 3.7F). This was confirmed by expressing novel object exploration times in 

relation to old object exploration times, yielding a discrimination index that did not 

significantly contrast between CTRL and HG rats (Figure 3.7G). 
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Figure 3.7 Behavioral assessments of HG rats compared to CTRL rats. 
Three or six months after hyperglycemia-inducing NA-STZ injections, 
rats were subjected to behavioral tests to evaluate the presence of motor 
(A-E) or memory impairments (F, G). (A-C) A stepping test was 
conducted, consisting in a beam-crossing task. Both groups improved 
their time to initiate movement at 3 and 6 months compared to baseline, 
although no differences were observed between CTRL and HG rats (A). 
At 3 and 6 months, however, HG rats took longer than CTRL rats to cross 
the beam, and their results at 6 months grew significantly different from 
baseline (B). HG rats also made more strides to cross the beam than 
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CTRL rats at 3 and 6 months, and only the latter performed better than 
baseline tests at both 3 and 6 months (C). (D) For the horizontal bar test, 
descent latency was measured as the time taken for rats to remove both 
forepaws from a horizontal bar. At 6 months, but not 3 months, HG rats 
took longer to remove both paws compared to CTRL rats and their own 
baseline. (E) During the forepaw adjusting step test, the rat was moved 
slowly sideways along the table surface by an experimenter, first in a 
forehand and then in a backhand direction. Numbers of adjusting steps 
made were fewer in HG rats at 3 and 6 months compared to CTRL rats 
and their own baseline. (F, G) A novel object recognition task, based on 
exploratory behavior of newly introduced elements in an environment, 
was used to assess non-spatial working memory in rats at 3 months. 
Rats were not tested at 6 months due to loss of eyesight (cataracts) of HG 
rats. Both CTRL and HG groups explored the nover object for a longer 
period of time than the old object (F). No differences were seen between 
groups in their capacity to discriminate old and nover objects (G). 
AU data presented as means ± SEM. Asterisk indicates statistical 
differences between the HG group and CTRL group (***p < 0.001 and 
*p < 0.05). Plus signs indicate statistical differences between results at the 
3- or 6-month time point and the baseline evaluation (+++p < 0.001 , 
++p < 0.01 and +p < 0.05). For the novel object recognition (NOR) task, 
circles indicate statistical differences between exploration time of the 
novel object and the old object (OOp < 0.01 and Op < 0.05). 

The CUITent study sheds a new light on neuronal degeneration in long-term 

hyperglycemia, innovative in that the condition was extended to a penultimate length of 

6 months in the NA-STZ rat model without the need for glycemia-Iowering treatments. 

The noxious effects of long-term hyperglycemia were evaluated in the nigrostriatal 

and mesocorticolimbic pathways. Our findings are relevant to elucidate the interplay 

between hyperglycemia and age-related neurodegenerative conditions, such as 

Parkinson' s disease. 

To the best of our knowledge, this is the first time that hyperglycemia-induced 

neuropathological manifestations have been related to glucose measurements in brain 

tissue homogenates and extracellular intracerebral microdialysates. Since glucose 

overload is one of the major contributors to diabetic complications (Brownlee, 2005 , 

Tomlinson and Gardiner, 2008), the sole observation that glucose levels are significantly 
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increased indiscriminately in all brain regions studied herein raises the question as to 

why sorne structures degenerate preferentially over time. It is now well appreciated that 

oxidative stress is a key player in the nigrostriatal degeneration observed in Parkinson ' s 

disease (Schapira and Jenner, 20 Il), a relative susceptibility attributable to various 

factors: 1) All dopaminergic neurons are submitted to oxidative insults from dopamine 

auto-oxidation and the elevated activity of mono amine oxidase (Goldstein et al., 2014); 

2) Specifically, the SNc holds high levels of iron ions that generate highly reactive 

hydroxyl radicals, but also possesses low levels of the ubiquitous antioxidant molecule 

glutathione (Chinta and Andersen, 2008); 3) Dopaminergic nigrostriatal neurons are 

endowed with an exceptionally dense dendritic arborization, rich in mitochondria and 

constantly requiring costly metabolic sustenance (Surmeier et al., 2017). On the basis of 

these physiological peculiarities, we argue that the relative vulnerability of the 

nigrostriatal pathway, as compared here to the mesocorticolimbic pathway, stems from 

its elevated basal oxidative burden paired with its scanty survival mechanisms faced to 

sustained hyperglycemia over the course of aging. 

In our long-term model of hyperglycemia, other pathological indices manifested 

themselves concurrently to dopaminergic neurodegeneration, expressly a prominent 

astrogliosis and loss of micro glial cells both in the SNc and the DS. Astrogliosis has 

been observed in several animal models of diabetes (Nagayach et al., 2014, Rostami 

et al., 2017), with implications for dopaminergic neuron death (Cabezas et al., 2014). 

However, our present study constitutes an original report of the fate of glial cells 

following long-term hyperglycemia, moreover demonstrating astrogliosis in the SNc of 

STZ-treated rats for the first time. Microgliosis is well appreciated in retinas and 

peripheral nerves of diabetic models (Mazzeo et al., 2017) though less well known in the 

central nervous system (Nagayach et al., 2014, Oliveira et al., 2016). Yet, microglial cell 

degeneration is an under-recognized feature in diabetes as well as in neuropathologies. 

In our model, it is likely that microglial cells are lost due to the sustained oxidative 

burden, supported by observations that this population is susceptible to oxidative stress 

in health and in disease (Streit et al. , 2008). In fact, iron accumulation in the aging 

human brain promotes oxidative stress and may lead to microglial degeneration 
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(Streit et al., 2008). lnterestingly, in patients deceased from septic shock, microglial 

apoptosis was correlated to hyperglycemia, possibly due to lack of GLUT5 

downregulation (Polito et al. , 2011). Other studies have found that advanced-glycation 

end-products (AGEs), abundant in diabetic and aging brains, cause microglial apoptosis 

in a dose-dependent manner (Khazaei et al., 2008, Sabokdast et al., 2015). Microglial

derived AGEs were further shown to promote dopaminergic neuron death (Bayarsaikhan 

et al. , 2016). lnasmuch as previous reports reveal microgliosis in rodent models of 

diabetes within 2 months (Nagayach et al., 2014, Oliveira et al. , 2016), we suggest that 

microglial cells are activated early in hyperglycemia, in turn causing the activation and 

proliferation of astrocytes (Liddelow et al. , 2017). The latter persist in high numbers at 

6 months while microglial ce Ils degenerate over time due to the overwhelming oxidative 

load of sustained hyperglycemia. Although confirmation of this tentative timeline is 

required, it remains interesting that this astrogliosis paired to microglial cell loss 

preferentially targets dopaminergic regions. 

Motor deficits possibly ansmg from this nigrostriatal neurodegeneration 

expressed themselves in tests employed to characterize motor impairment in rat models 

of Parkinson's disease (Pinna and Morelli , 2014). ln particular, HG rats showed 

bradykinesia and made greater numbers of sm ail steps, bearing likeness to motor 

symptoms found in parkinsonian patients (Pinna and Morelli , 2014). Together with 

immunohistochemical, immunoblotting and microdialysis studies, these data provide 

new insight on the higher occurrence of Parkinson's disease in aging diabetic patients 

(Cereda et al. , 2011 , Santiago and Potashkin, 2013, Sun et al. , 2012). One study 

investigating blood biomarkers in 99 de nova patients of Parkinson ' s disease even found 

their average fasting glycemia (5.64 mM) comparable to that of pre-diabetic individuals 

(5.55 mM) (Santiago and Potashkin, 2015). Of high interest, recent clinical trials (Barker 

et al. , 2013) are employing drug-repurposing strategies in Parkinson ' s disease patients 

using anti-diabetic treatments such as exenatide (Aviles-Olmos et al., 2013) and 

thiazolidinediones (NET-PD FS-ZONE, 2015). Whereas the link between Parkinson 's 

disease and diabetes remains foggy, sorne have suggested shared dysfunctional cellular 

pathways (Santiago and Potashkin, 2013) or neurochemical hypotheses (Deng et al., 
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2012). Indeed, high reactivity between the glycation metabolite methylglyoxal and DA 

was recently shown to yield a salsolinol-like toxin specifie to dopaminergic neurons 

(Song et al., 2014). Interestingly, this toxin can be found in brains of parkinsonian 

patients (Deng et al. , 2012). 

In summary, our results mend our appreciation of the relationship that may exist 

between diabetes and Parkinson's disease, by demonstrating the preferential nigrostriatal 

dopaminergic neurodegeneration that occurs in long-term hyperglycemia. As it is 

expressed in uncontrolled diabetes, hyperglycemia may cause premature aging of the 

central nervous system, fostering the development of age-related neurodegenerative 

disease. 
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Supplementary data 

Metabolic follow-up and disease progression 

Each individual rat's weight (Supplementary Figure SlA), food and water intake 

(Supplementary Figure SlB), glycemia (Supplementary Figure SIC), and general health 

were monitored on a regular basis. Glycemia was estimated twice a week and weight 

was measured weekly. Food and water intake was assessed for group-paired cages, 

since rats were not housed individually. 

Oral glucose tolerance test: On the moming of their sacrifice, 6 months after 

NA-STZ injections, we performed an oral glucose tolerance test (OGTT; Supplementary 

Figure SIE and F) on 6 CTRL rats and 16 HG rats. Fasted rats (12-16 h) were 

administered 2 glkg of a D-glucose solution by intragastric gavage. Approximately 

0.5 mL of blood was collected by the jugular vein right before the OGTT (0 min) and 

at 30, 60 and 120 min after administration of the bolus. Samples were kept on ice and 

plasma glucose and insulin were quantified immediately after. Rats were lightly 

anesthetized by isoflurane inhalation prior to blood sampling. Plasma glucose 

concentrations following the terminal OGTT were measured using the Rat Glucose 

Assay kit provided by Crystal Chem (Downers Grove, IL, USA), whereas plasma insulin 

was quantified using a Milliplex Adipokine Magnetic Bead Multiplex Assay (Millipore; 

Etobicoke, ON, Canada). 

Glycated hemoglobin: In a different group of rats, plasma hemoglobin A1c 

(HbA1c) levels (Supplementary Figure SlD) were assessed terminally at 3 or 6 months 

following NA-STZ injections. On the moming of their sacrifice, intracardiac blood 

samples from CTRL (3 months n = 4; 6 months n = 10) and HG (3 months n = 5; 

6 months n = 16) rats were drawn when under deep anesthesia by isoflurane inhalation. 

Glycated Hb was measured immediately using a rat HbAlc assay kit (Crystal Chem; 

Downers Grove, IL, USA). 
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Table 81 

Antibodies used for immunohistochemical (IRC) or immunoblotting (WB) experiments 

Antibody Antigen Host/Isotype/ Class Manufacturer 
Catalog 

Dilution 
number 

Rat ~-tubulin 
mouselIgG2a K light Santa Cruz 

sc-80005 1:2000 
chain/monoclonal Biotechnology 

Dopamine rabbit/IgG/ Santa Cruz 
sc-14002 1:100 

transporter polyclonal Biotechnology 

Glial fibrillary rabbit/IgG/ 
Abcam ab7260 

1:5000 
acidic protein polyclonal (IHC) 

Ionized calcium-
1 :2500 

binding adapter rabbit/ polyclonal Wako 019-19741 
(IHC) 

Primary molecule 1 

NeuN 
mouse/IgG 11 Millipore 

MAB377 
1:1000 

monoclonal Sigma (IBC) 

NeuN 
rabbit/IgG/ Cell Signaling 

24307 
1:1000 

polyclonal Technology (WB) 

1:4000 
Tyrosine mouse/IgG 11 Millipore 

Tl299 
(IBC) 

hydroxylase monoclonal Sigma 1 :4000 
(WB) 

mouse/IgG/ 
1:5000 

Rabbit monoclonal 
Santa Cruz 

sc-2357 
(IBC) 

(HRP conjugated) 
Biotechnology 1: 10 000 

(WB) 
Secondary 

1:5000 
recombinant IgGK 

Santa Cruz (IBC) 
Mouse light chain (HRP 

Biotechnology 
sc-516102 

1:10000 
conj ugated) 

(WB) 

Table 82 

Detailed statistics 

Figure Statistical test Factor T- or F-value P-value 

Midbrain glycemia T(7) = 3.823 p = 0.0065 

Figure 3.1A 
Unpaired, two-tailed Striatum glycemia T(7) = 2.627 p = 0.0341 
(-test PFC glycemia T(5) = 2.982 P = 0.0307 

HPC glycemia T(4) = 3.755 p = 0.0199 

Midbrain glycemia T(12) = 2.36 P = 0.0360 

Figure 3.1B 
Unpaired, two-tailed Striatum glycemia T(15) = 3.401 P = 0.0040 
(-test PFC glycemia T(22) = 2.785 p = 0.0108 

HPC glycemia T(14) = 2.181 P = 0.0467 

SNe glycemia T(6) = 3.488 p = 0.0130 

Figure 3.1C 
Unpaired, two-tailed VTA glycemia T(7)= 5.515 p = 0.0009 
(-test DS glycemia T(6) = 4.03 P = 0.0069 

NAcc glycemia T(8) = 3.461 P = 0.0086 
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Figure Statistical test Factor T- or F-value P-value 

Figure 3.2C 
Unpaired, two-tailed 3 months glyeemia T(7) = 0.9727 P = 0.3631 
(-test 6 months glyeemia T(43) = 2.589 p = 0.013 

Figure 3.2D 
Unpaired, two-tailed 3 months glyeemia T(6) = 0.6376 P = 0.5473 
(-test 6 months glyeemia T(17) = 2.274 P = 0.036 

Figure 3.2E 
Unpaired, two-tailed 3 months glycemia T(7) = 0.2629 p = 0.8002 
(-test 6 months glyeemia T(43) = 2.462 p = 0.018 

Figure 3.2G 
Unpaired, two-tailed SNe glyeemia T(7)= 3.471 p = 0.0104 
(-test YT A glyeemia T(7) = 0.4764 P = 0.6483 

Figure 3.2H 
Unpaired, two-tailed SNe glyeemia T(7) = 2.439 p = 0.0448 
(-test YTA glyeemia T(7) = 0.1207 P = 0.9073 

Figure 3.3C 
Unpaired, two-tailed 3 months glyeemia T(7) = 0.5223 p = 0.6176 
(-test 6 months glyeemia T(43) = 2.432 P = 0.019 

Figure 3.3D 
Unpaired, two-tailed 3 months glyeemia T(7) = 0.9898 p = 0.3552 
(-test 6 months glyeemia T(lo) = 2.256 P = 0.048 

Figure 3.3E 
Unpaired, two-tailed 3 months glyeemia T(7) = 0.4726 p = 0.6509 
(-test 6 months glyeemia T(42) = 0.5358 P = 0.595 

DMS glyeemia T(7) = 2.443 P = 0.0446 

Figure 3.3G 
Unpaired, two-tailed DLS glyeemia T(7) = 2.628 P = 0.0340 
(-test NAee glyeemia T(7) = 1.495 p = 0.1785 

OT glyeemia T(7) = 1.462 p = 0.1871 

DMS glyeemia T(7) = 0.7135 P = 0.4986 

Figure 3.3H 
Unpaired, two-tailed DLS glyeemia T(7) = 0.1507 P = 0.8845 
(-test NAee glyeemia T(7) = 1.134 P = 0.2942 

OT glyeemia T(7) = 0.0886 p = 0.9319 

Region x glyeemia F(2 ,14) = 3.60 P = 0.0546 

Figure 3.31 Two-way ANOY A Region F(2, 14) = 34.3 P < 0.0001 

G1yeemia F(I ,14) = 7.59 P = 0.0155 

Figure 3.4C 
Unpaired, two-tailed 3 months glyeemia T(7) = 0.4794 P = 0.6463 
(-test 6 months glyeemia T(44) = 0.9042 P = 0.3708 

Figure 3.4D 
Unpaired, two-tailed 3 months glyeemia T(7) = 0.30 13 p = 0.7719 
(-test 6 months glyeemia T(l5) = 0.7387 P = 0.472 

Figure 3.4E 
Unpaired, two-tailed 3 months glyeemia T(7) = 1.705 p = 0.1319 
(-test 6 months glyeemia T(44) = 0.8821 P = 0.3825 

Figure 3.4G 
Unpaired, two-tailed 

PFC glyeemia T(7) = 1.168 p = 0.2810 
(-test 

Figure 3.5C 
Unpaired, two-tailed 3 months glycemia T(5) = 0.6179 P = 0.5637 
(-test 6 months glyeemia T(45) = 0.6687 P = 0.5071 

Figure 3.5D 
Unpaired, two-tailed 3 months glyeemia T(5) = 0.8448 P = 0.4368 
(-test 6 months glyeemia T(25) = 1.272 p = 0.215 

Figure 3.5E 
Unpaired, two-tailed 3 months glyeemia T(5) = 1.365 P = 0.2303 
(-test 6 months glyeemia T(47) = 0.4349 P = 0.6656 

Figure 3.5G 
Unpaired, two-tailed 

HPC glyeemia T(7) = 0.9185 P = 0.3889 
(-test 
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Figure Statistical test Factor T- or F-value P-value 

SNc glycemia T(7) = 2.546 P = 0.0383 

YT A glycemia T(7) = 0.4241 P = 0.6842 

DMS glycemia T(7) = 2.637 P = 0.0336 

Figure 3.6B 
Unpaired, two-tailed DLS glycemia T(7) = 3.100 p = 0.0173 
(-test NAcc glycemia T(7) = 3.432 p = O.OllO 

OT glycemia T(7) = 1.038 p = 0.3340 

PFC glycemia T(7) = 3.292 p = 0.0133 

HPC glycemia T(7) = 0.7282 p = 0.4901 

SNc glycemia T(7) = 2.564 P = 0.0373 

YTA glycemia T(7) = 1.295 p = 0.2363 

DMS glycemia T(7) = 5.882 p = 0.0006 

Figure 3.6C 
Unpaired, two-tailed DLS glycemia T(7) = 3.885 p = 0.0060 
(-test NAcc glycemia T(7) = 3.077 P = 0.0179 

OT glycemia T(7) = 0.2407 p = 0.8167 

PFC glycemia T(7) = 0.2923 P = 0.7785 

HPC glycemia T(7) = 1.282 P = 0.2405 

Time x glycemia F (2,60) = 0.28 P = 0.7554 

Figure 3.7A Two-way ANOY A Time F (2 ,60) = 13.7 P < 0.0001 

Glycemia F(I ,30) = 0.18 P = 0.6742 

Time x glycemia F (2 ,60) = 2.61 p = 0.0816 

Figure 3.7B Two-way ANOY A Time F (2,60) = 1.66 p = 0.1972 

Glycemia F (I ,30) = 24.2 p < O.OOOI 

Time x glycemia F (2 ,60) = 7.20 p = 0.0016 

Figure 3.7C Two-way ANOY A Time F (2 ,60) = 11 .1 P < 0.0001 

Glycemia F(I ,30) = 10.5 P = 0.0029 

Time x glycemia F (2 ,60) = 3.23 P = 0.0463 

Figure 3.7D Two-way ANOY A Time F (2 ,60) = 7.51 p = 0.0012 

Glycemia F(I ,30) = 2.96 P = 0.0952 

Time x glycemia F (2 ,60) = 8.95 P = 0.0004 
Figure 3.7E 

Two-way ANOY A Time F (2 ,60) = 23 .6 p < O.OOO I 
forehand 

Glycemia F(I ,30) = 13 .3 p = O.OOIO 

Time x glycemia F (2,60) = 9.99 p = 0.0002 
Figure 3.7E 

Two-way ANOY A Time F (2 ,60) = 18.3 P < 0.0001 backhand 
Glycemia F(I ,30) = 10.5 P = 0.0028 

Object x glycemia F (I ,60) = 0.13 P = 0.7102 

Figure 3.7F Two-way ANOY A Object F(I ,60) = 18.4 P < 0.0001 

Glycemia F(I ,60) = 4.17 P = 0.0455 

Figure 3.7G 
Unpaired, two-tailed 

Glycemia T(3o) = 0.0628 p = 0.9503 [-test 
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Metabolic follow-up. 
(A) Mean weight of CTRL and HG rats from the beginning to the end 
of experiments. (B) Mean total cumulative intake of water (left y-axis) 
and food (right y-axis) over time. In blue, mean cumulative intake of 
cages containing solely CTRL animais . In red, mean cumulative intake of 
cages containing solely HG animais. In purple, me an cumulative intake of 
cages containing both CTRL and HG animaIs. (C) Mean glycemia of 
CTRL and HG rats from the beginning to the end of experiments. 
(D) Percentage of glycated hemoglobin (Hb) of CTRL and HG animais 
3 and 6 months after NA-STZ injections. CTRL 3 months: 6.6% 
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(49 mmol/mol). CTRL 6 months: 6.0% or (42 mmol/mol). HG 3 months: 
22.3% or (220 mmol/mol). HG 6 months: 21.9% or (215 mmol/mol). 
(E) Oral glucose tolerance test (OGTT) of fasted CTRL and HG rats 
6 months after injections. (F) Ratio of AUC of insulin on glucose from 
the OGTT. Asterisks indicate statistical differences between the HG and 
the CTRL groups (***p < 0.001 and **p < 0.01). 

Glycated Hb: In a different group of rats, plasma HbAlc levels (Supplementary 

Figure SlD) were assessed terminally at 3 or 6 months following NA-STZ injections. 

On the moming of their sacrifice, intracardiac blood samples from CTRL (3 months 

n = 4; 6 months n = 10) and HG (3 months n = 5; 6 months n = 16) rats were drawn 

wh en under deep anesthesia by isoflurane inhalation. Glycated Hb was measured 

immediately using a rat HbAlc assay kit (Crystal Chem; Downers Grove, IL, USA). 

Figure 82 
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Time course of microdialysis experiments performed to measure 
basal DA. 
Three months after injections, microdialysis samples were obtained from 
the NAcc, the DS and the PFC. Measurements of DA in the sampi es were 
performed by high-performance liquid chromatography and revealed 
lower extracellular concentrations in the DS, but not in the NAcc or 
the PFC, in HG rats compared to CTRL rats. Data presented as 
means ± SEM. Statistical analysis was carried out by Statistica for 
Windows. Basal dialysate DA values, expressed as femtomoles per 20-j.!L 
dialysate, were compared between groups by two-way ANOV A. 
Results showing significant differences between CTRL and HG groups 
were subjected to Tukey's post-hoc test with p < 0.05 (*) as statistically 
significant. 
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Localization of dialysis probes (dialyzing portion) in microdialysis 
experiments performed to measure basal DA or extracellular glucose. 
Three months after NA-STZ injections, microdialysis samples were 
obtained from acute probes inserted in (A) the NAcc, the DS, the VTA 
and the SNc, for glucose measurements or in the NAcc, the DS, and the 
PFC for DA measurements (B). At the end of experimental procedures, 
rats were deeply anesthetized and transcardially perfused with 50 mL of 
saline and 50 mL of a 4% formaldehydell % calcium acetatell 00 mM 
NaCI solution. Sections were cut with a vibratome and probe location was 
reconstructed by referring to the Paxinos and Watson atlas (1998). 
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4.2 Résumé 

Il ne fait plus de doute que le diabète soit un facteur de risque contribuant au 

déclin cognitif et aux troubles de l 'humeur se manifestant avec l'âge. Néanmoins, 

des études adressant les effets de l'hyperglycémie chronique sur les comportements 

sociaux, tels que le jeu et l'agressivité, se font toujours attendre. Dans cette étude, 

nous avions pour but d'évaluer les comportements sociaux manifesté par des rats 
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chroniquement hyperglycémiques. Dans cette optique, nous avons examiné les 

interactions de type affiliation/exploration et agression entre des paires de rats dans une 

enceinte neutre, et ce, 5 mois suivant l'induction de l'hyperglycémie dans le paradigme 

nicotinamide-streptozotocine. Simultanément, les vocalisations ultrasoniques, porteuses 

de l'état affectif des sujets, étaient enregistrées. Nos résultats démontrent que les rats 

chroniquement hyperglycémiques sont manifestement agressifs et hyper-sociables dans 

des contextes de nouveauté sociale. Ceux-ci émettent également beaucoup plus de 

vocalisations ultrasoniques régulées en partie par le neurotransmetteur dopamine. 

En fait, ces comportements corrélaient avec le degré de perte d'innervation 

dopaminergique du striatum, mais pas avec des paramètres liés aux concentrations ou 

aux fonctions de l' insul ine. En somme, nos résultats suggèrent un lien entre 

l'hyperréactivité sociale causée par l'hyperglycémie chronique et la neurotransmission 

dopaminergique dans le striatum, déjà reconnu pour son rôle modulateur sur les 

comportements sociaux. Cette étude jette une nouvelle lumière sur de possibles substrats 

neurobiologiques, soit la dopamine, pouvant sous-tendre les difficultés psychiatriques et 

socioaffectives auxquelles font face les patients diabétiques. 
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4.3 Full article in English: Altered social behaviour in long-term hyperglycemic 
rats displaying dopaminergic striatal denervation: an ultrasonic vocalisation 
study 

Abstract 

Diabetes is a well-known risk factor of cognitive decline and mood disorders . 

However, there is no adequate account of the effects of long-term hyperglycaemia on the 

various dimensions of social behaviours, such as play and aggression. In this study, 

we evaluated the social behaviour presented by the nicotinamide-streptozotocin 

rat model of long-term hyperglycaemia. Five months following induction of 

hyperglycaemia, we scored affiliative/exploratory or aggressive social interactions 

between pairs of unacquainted rats in a neutral arena. Concurrently, we recorded 

ultrasonic vocalisations (USVs), envisaged as behavioural markers of emotional states in 

rats. Our results demonstrate alterations in the behaviour of long-term hyperglycaemic 

rats faced with social novelty. Specifically, hyperglycaemic rats engaged in hyper

sociable and hyper-aggressive encounters, while emitting greater numbers of USVs. 

The magnitude of social interactivity and vocalisations was associated with the degree of 

striatal denervation observed in the brains of long-term hyperglycaemic rats, but not 

with insulin levels or functions . Altogether, our data suggest a lack of social 

appropriateness in long-term hyperglycaemic rats, which may be parti y linked to 

changes in striatal dopamine known to regulate social behaviour. This study exposes 

additional dopaminergic neural substrates that may underlie the social dimensions of the 

psychiatric challenges faced by diabetic patients. 

Introduction 

The ability to suitably engage in social encounters occupies a significant role in 

the lives of individuals, epitomized by the debilitating nature of the behavioural 

inappropriateness manifested in neuropsychiatric disorders like autism, schizophrenia 

and attention deficit hyperactivity disorder [1-4]. Although less acknowledged, altered 

social behaviours are also a feature of diabetes. lndeed, recent studies link diabetes with 
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increased aggression and agitation in patients [5-7]. In addition, both hypoglycaemic 

« 70 mg/dL or 3.88 mM) and hyperglycaemic (> 120 mg/dL or 6.66 mM) states are 

known to foster hostility and aggression [8-11]. To date, very few studies have sought to 

investigate social interactions in diabetic-like rodents and these have yielded highly 

inconsistent results [12-14] . Moreover, none have employed long-term paradigms of 

hyperglycaemia that could better represent the chronicity of diabetes in humans. 

Perhaps for this reason, the possible neural substrates of inappropriate behaviours in 

diabetes remain iU defined. 

Ultrasonic vocalisations (USVs) are a valuable tool in social behavioural research, 

carrying information on the affective state of rats during aggressive and playful 

interactions [15-18]. USV scan be categorized based on average frequency and 

frequency modulation in the two large families of 22-kHz caUs and 50-kHz caUs, which 

are thought to have different behavioural significance [19]. USVs of 22-kHz are 

considered markers of negative affective states, since rats emit these calls in aversive 

situations, for example, during aggressive social interactions with conspecifics or upon 

exposure to predators [20]. On the other hand, rats mainly emit 50-kHz USVs in 

pleasurable situations such as mating and playful interactions with conspecifics or 

familiar humans [15]. Moreover, 50-kHz US Vs can be further classified in the 

two subcategories of frequency modulated (FM) and fiat caUs based on the modulation 

of sound frequency [16]. FM caUs have a sound frequency that varies substantially, 

whereas fiat caUs present a sound frequency that remains nearly unchanged within 

individual caUs [16]. Moreover, FM 50-kHz USVs are thought to be tightly linked to 

positive emotional states, and to function as affiliative calls to elicit approach behaviour 

and to maintain playful interactions [21, 22]. Flat 50-kHz caUs, on the other hand, are 

unclear in the exact functions they serve [23 , 24], but appear to bear a role in pacing 

social behaviour, supposedly acting as ambivalent contact caUs [25,26]. 

In addition to conveymg information on the affective state of rats, USVs are 

intimately linked with the activation of specific neuronal circuits [15]. In particular, 

activation of the ascending mesolimbic dopaminergic system produces 50-kHz US Vs 
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[27, 28], whereas activation of the ascending mesolimbic cholinergie system produces 

22-kHz caBs [15]. Notably, dopamine and acetylcholine extensively interact at the 

striatal interface to dynamically regulate the affective state of rodents [15]. As such, 

dopamine and acetylcholine antagonize each other in a cooperative system wherein one 

or the other prevails in a context-dependent manner, allowing for the rapid and 

appropriate activation of one of two states: positive or negative [29]. These states are 

thus mutually exclusive and are rendered specifically in rats by the categories of USVs 

emitted [15, 30]. From this perspective, it is reasonable to believe that alterations in 

mesostriatal dopaminergic neurotransmission may be reflected at the behavioural level 

by modifications in social interactions and USV emission. 

A recent study by our group demonstrated the occurrence of mesostriatal 

dopaminergic neurodegeneration in a rat model of long-term hyperglycaemia [31]. 

In light of these results, we evaluated herein the presence of social behavioural 

abnormalities that may arise from hyperglycaemia-induced dopaminergic denervation 

III the striatum. In particular, we measured the occurrences of specifie 

affiliative/exploratory as weIl as aggressive behaviours in pairs of unacquainted rats in 

a neutral, novel environment. Since no other studies have investigated USVs in 

hyperglycaemic rats in a social context, we quantified the numbers of 22-kHz, 

FM 50-kHz and flat 50-kHz calls emitted during these encounters. Lastly, we evaluated 

the impact of the degree of striatal denervation on the magnitude of social interactivity 

and USV emissions. 

Results 

Occurrences of social behaviours and ultrasonic vocalisations 

The occurrences of affiliative/exploratory (dorsal contacts, allogrooming, 

anogenital sniffmg and crawl-overs) and aggression-related (freezing, nose-offs, boxing, 

pins) behaviours were scored during 10-min encounters between pairs of unacquainted 

rats of the same group, namely control (CTRL) or hyperglycaemic (HG). Noticeably, 

many behaviours occurred more often between pairs of HG rats compared to duos of 
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the CTRL group, whether affiliative/exploratory (Figure 4.1A) or aggression-related 

(Figure 4.1B). In particular, among the affiliative/exploratory behaviours scored, 

anogenital sniffing and crawl-overs were markedly recurrent. Moreover, aggression 

events were more numerous between HG rats, as evidenced by significantly greater 

occurrences of freezing (***p < 0.001), boxing (**p < 0.01) and pmnmg events 

(*p < 0.05). USVs were also recorded and analysed for the entire duration of the 

encounters. Figures 4. 1 C, D and E show that subjects of the HG group emitted greater 

numbers of distinct USVs than CTRL rats during these encounters. In particular, HG rats 

emitted a greater number of negatively valenced 22-kHz (*p < 0.05, Figure 4.1 C). 

In addition, caUs of the 50-kHz group were significantly more numerous in pairs of 

HG rats (**p < 0.01 for FM 50-kHz caUs and ***p < 0.001 for fiat 50-kHz caUs, 

Figure 4.1D and E). Altogether, these data demonstrate the hyper-sociable and 

hyper-aggressive nature of social encounters between pairs of HG rats in relation to 

the CTRL group. 
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(Continued.) The number of occurrences of affiliative/exploratory (A) 
and aggression-related (B) behaviours were scored during 10-min 
encounters between pairs of rats of the same group (control [CTRL] or 
hyperglycaemic [HG]). Negatively valenced (22-kHz) (C), positively 
valenced (frequency modulated [FM] 50-kHz) (D) and supposed 
ambivalent (flat 50-kHz) (E) Ultrasonic vocalisations (USVs) emirted by 
pairs of rats during these confrontations were also scored. AIl data 
presented as means ± SEM. Asterisks indicate statistical differences 
between the HG group and CTRL group, ascertained by a multiple t-test 
for A and B, or by Mann-Whitney's U test for C, D and E (*p < 0.05, 
**p < 0.01, ***p < 0.001). 

Behavioural covariance profile 

Pearson correlation coefficients were calculated for each pair of behavioural 

variables measured during encounters between two rats of the same group, and rendered 

in a covariance matrix wherein values of + l, 0 and -1 signify the tendency for 

two variables to covary similarly (positive covariance), differently (no covariance) or 

oppositely (negative covariance), respectively. The CTRL group matrix (Figure 4.2A) 

revealed tendencies for most behaviours of the affiliative/exploratory type to positively 

covary together within the same 10-min encounter (upper-Ieft quadrant). In particular, 

dorsal contacts most positively covaried with crawl-overs. More significantly, 

aggression-related behaviours positively covaried together within the same encounter 

between pairs of CTRL rats (lower-right quadrants, *p < 0.05 or ***p < 0.001). Boxing 

and pins were the strongest associated behaviours of the aggression type (***p < 0.001). 

This is indeed expected in an escalating sequence of rough-and-turnble play where 

upright boxing between rats usuaIly leads to pinning of one of the animaIs in a 

supine position. In addition, bortom-left and upper-right quadrants iIlustrate that 

affiliative/exploratory behaviours and aggression behaviours negatively covaried within 

the same 10-min encounter. This was most significant for allogrooming behaviours 

(*p < 0.05). These data reflect coherence in the interactions between healthy CTRL rats. 

Compared to the CTRL group, HG rats displayed a visibly altered behavioural 

profile (Figure 4.2B). Although there were strong associations between most behaviours 

of the same nature, whether affiliative/exploratory (upper-left quadrant) or aggression-
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related (lower-right quadrant), other behaviours not shown to similarly covary in 

CTRL rats within the same encounter were markedly positively associated in HG rats. 

Specifically, the affiliative/exploratory anogenital sniffing behaviour tended to 

positively covary with aggressive behaviours such as boxing and nose-offs, but was 

most tightly associated to pins (***p < 0.001). Relatedly, we found a strong positive 

covariance between pins and dorsal contacts (**p < 0.01). Despite their higher rate of 

occurrence (Figure 4.2B), freezing events did not consistently positively covary with any 

other behaviour during encounters between pairs of HG rats. With respect to the pattern 

of association displayed by the CTRL group, rats of the HG group seem to engage in 

incoherent social interactions characterized by episodes of play and fight intertwining 

within the same encounter. 
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Affiliative/exploratory and aggression behavioural covariance 
matrices. 
Matrices show strength of association, expressed as Pearson correlation 
coefficients, for each combination of behaviour laid out on the x- and 
y-axes as measured during 10-min encounters between two rats of 
the same group. Values of 1 (deep red), 0 (white) and -1 (deep blue) 
signify the tendency for two variables to covary similarly (positive 
covariance), di fferentl y (no covariance) or oppositely (negative 
covariance), respectively. Affiliative/exploratory behaviours are dorsal 
contacts, allogrooming, anogenital sniffing and crawl-overs. Aggression 
behaviours are freezing, nose-offs, boxing and pins. Behavioural profiles 
are provided for the CTRL (A) and HG (B) groups. Asterisks indicate 
statistical significance of the positive or negative covariance of two 
variables (*p < 0.05, **p < 0.01, ***p < 0.001). 
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Behaviour-vocalisation covariance profile 

A similar strategy was employed to evaluate whether the emlSSlOn of certain 

categories of USVs covaried with distinct types of behaviours within the same 10-min 

encounter between pairs of same-group rats (Figure 4.3). Between pairs of CTRL rats 

(left quadrants), the emission of negatively valenced 22-kHz caUs and aggression 

behaviours of aU types positively covaried (***p < 0.001). ln addition, FM 50-kHz 

USVs positively covaried with one of the most positively valenced behaviours, that is, 

aUogrooming [32] (*p < 0.05). Accordingly, 22-kHz US Vs negatively covaried with this 

behaviour (*p < 0.05). Flat 50-kHz caUs, on the other hand, were more often emitted 

during encounters wherein anogenital sniffing activities were nurnerous (**p < 0.01), 

but also slightly positively covaried with aUogrooming and pins. This is in line with 

the proposed ambivalent nature of flat calls, which may have served here to pace 

intrusive exploratory behaviours, su ch as anogenital sniffing and allogrooming, or to 

signal discomfort or uncertainty during pinning events. 

With respect to the CTRL group, HG rats (Figure 4.3, right quadrants) presented 

pronounced distortions in the covariance relationships between the USVs they emitted 

and the behaviours they exhibited during the same 10-min encounter. Most striking is 

the lack of a c1ear positive covariance between 22-kHz calls and behaviours likely to 

induce these USV s, such as nose-offs, boxing and pins. ln addition, FM 50-kHz and 

affiliative/exploratory behaviours did not positively covary. The most coherent pattern 

of positive covariance remained the significantly nurnerous emissions of 22-kHz calls 

during encounters that also featured numerous freezing events between HG rats 

(***p < 0.001). 
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Figure 4.3 
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Behaviour-vocalisation covariance matrix. 
Matrices show strength of association, expressed as Pearson correlation 
coefficients, for each combination of USV category (x-axis) and type of 
behaviour (y-axis) as measured during 10-min encounters between 
two rats of the same group. Values of 1 (deep red), 0 (white) and -1 
(deep blue) signify the tendency for two variables to covary similarly 
(positive covariance), differently (no covariance) or oppositely 
(negative covariance), respectively. Affiliative/exploratory behaviours are 
dorsal contacts, aUogrooming, anogenital sniffing and crawl-overs. 
Aggression behaviours consist in freezing, nose-offs, boxing and pins. 
Twenty-two-kHz USVs are negatively valenced, FM 50-kHz US Vs 
are positively valenced, and flat 50-kHz USVs are supposed ambivalent 
caUs. Behaviour-vocalisation profiles are provided for the CTRL 
(left quadrants) and HG (right quadrants) groups. Asterisks indicate 
statistical significance of the positive or negative covariance of two 
variables (*p < 0.05, **p < 0.01, ***p < 0.001). 

Magnitude of social interactivity and ultrasonic vocalisations in relation to the degree 
of striatal denervation, hypoinsulinaemia and glucose intolerance 

We performed densitometric immunohistochemical analyses of striatal tyrosine 

hydroxylase (TH)-positive terminal fibres in the brains of certain CTRL (n = 3) and 

HG rats (n = 6) utilized in the experiments described above. This allowed for the 

division of these HG subjects into two distinct subgroups: low denervation and high 

denervation (Figure 4.4A). Figure 4.4B displays representative microphotographs of the 

striatal denervation observed in HG brains compared to healthy CTRL rats. The baseline 

insulinaemia and glucose tolerance of certain CTRL (n = 5-6) and HG (n = 17-20) rats 
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utilized in the experiments described abovewere also obtained on the day of their 

sacrifice following an oral glucose tolerance test. This allowed for the division of 

HG subjects based on the severity of their hypoinsulinaemia (Figure 4.4C, low and 

high hypoinsulinaemia) or glucose intolerance (Figure 4.4D, low and high glucose 

intolerance ). 
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(Continued.) (A, B) Irnmunohistochemical analyses of the striatal region 
of CTRL and HG rat brains. At the end of behavioral experiments, frozen 
post-fixed brain hemispheres were cut into 20 Ilm-thick coron al seriai 
sections and stained for the dopaminergic terminal fiber marker, tyrosine 
hydroxylase. A. Densitometric analyses allowed for the distinction of 
two subgroups, LOW (> 50% of CTRL) or HIGH « 50% of CTRL), 
within the HG group concurring to the degree of striatal dopaminergic 
denervation. B. Representative microphotographs of tyrosine hydroxylase 
staining in the striatum (Bregma ~ 1 mm, scalebar 1 mm). C: Baseline 
insulinemia measurements upon sacrifices allowed for the separation of 
HG rats between LOW hypoinsulinemia (> 200 pg!mL) and HIGH 
hypoinsulinemia « 200 pg/mL). D: Following an oral glucose tolerance 
test performed on the moming of their sacrifice, are as under the curve of 
glycemias on areas under the curve of insulinemias yielded indices of 
glucose intolerance. Rats were separated on this basis between LOW 
(> 0) and HIGH (0) glucose intolerance. AlI data presented as 
means ± SEM. Asterisks indicate statistical differences between the 
HG group and CTRL group (**p < 0.01). 

The mean rate of occurrence of specific affiliativelexploratory and aggression

related behaviours was obtained for each abovementioned subgroup ranked by degree 

of striatal denervation, hypoinsulinaemia and glucose intolerance (Figure 4.5). 

In particular, HG rats exhibiting the highest levels of striatal denervation engaged in 

more numerous affiliativelexploratory (Figure 4.5A) and aggression-like (Figure 4.5B) 

behaviours than rats from the other two subgroups, significantly for dorsal contacts 

(***p < 0.001 compared to CTRL and +p < 0.05 compared to the low denervation 

subgroup), anogenital sniffing (***p < 0.001 compared to CTRL and ++p < 0.01 

compared to the low denervation subgroup), boxing (***p < 0.001 compared to CTRL 

and +++p < 0.001 compared to the low denervation subgroup) and pinning 

(***p < 0.001 compared to CTRL and ++p < 0.01 compared to the low denervation 

subgroup). No c1ear trend for increased affiliativelexploratory or aggression behaviour in 

relation to the degree of hypoinsulinaemia (Figure 4.5C and D) or glucose intolerance 

(Figure 4.5E and F) was revealed. In fact, dorsal contacts were less frequent in the high 

hypoinsulinaemia subgroup than in the low insulinaemia subgroup (+p < 0.05). 
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Figure 4.5 Occurrences of social behaviours in relation to the degree of striatal 
denervation, hypoinsulinaemia or glucose intolerance. 
Occurrences of affiliative/exploratory (A, C, E) or aggression-related 
(B, D, F) behaviours performed by pairs ofCTRL rats or pairs of HG rats 
belonging to the low or high striatal denervation (A, B), hypoinsulinaemia 
(C, D) or glucose intolerance (E, F) groups were plotted. AH data 
presented as means ± SEM. Asterisks indicate statistical differences 
between groups and the CTRL group, ascertained by two-way ANOVA 
followed by Tukey's post-hoc analysis (*p < 0.05, **p < 0.01 , 
***p < 0.001). Plus signs indicate statistical differences between high and 
low groups, ascertained by two-way ANOVA followed by Tukey' s 
post-hoc analysis (+p < 0.05, ++p < 0.01 , +++p < 0.001). 
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Next, the mean rate of occurrence of USVs emitted was obtained for the same 

defined subgroups (Figure 4.6). In particular, HG rats exhibiting the highest levels of 

striatal denervation emitted more numerous FM 50-kHz USVs compared to the CTRL 

subgroup (*p < 0.05), which was not the case for the low denervation subgroup 

(Figure 4.6A). In addition, nonoticeable link was found between the degree of 

hypoinsulinaemia (Figure 4.6D, E and F) or glucose intolerance (Figure 4.6G, H and 1) 

and emissions of USVs of any category. Together with the previous data, Figure 4.6 

supports previous observations of a hyper-sociable and hyper-aggressive behavioural 

phenotype in long-term HG rats that appears to be partly dictated by the degree of 

striatal denervation exhibited by individual subjects. 
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Figure 4.6 Numbers of social behaviours in relation to the degree of striatal 
denervation, hypoinsulinaemia or glucose intolerance. 
Continued on next page. 
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(Continued.) Numbers of US Vs emitted by CTRL rats or HG rats 
belonging to the low or high striatal denervation (A-C), insulinaemia 
(D-F) or glucose intolerance (G-I) groups were plotted. (A, D, G) 
Negatively valenced 22-kHz USVs. (B, E, H) Positively valenced FM 
50-kHz USVs. (C, F, 1) Supposed ambivalent flat 50-kHz USVs. Ali data 
presented as means ± SEM. Asterisks indicate statistical differences 
between groups and the CTRL condition, ascertained by Kruskal-Wallis 
ANOVA followed by Dunn's post-hoc analysis (*p < 0.05). 

Although awareness of behavioural alterations in diabetic patients has been on the 

rise lately, research offers limited insight on the physiological factors that may impinge 

on these issues. While acute hypo or hyperglycaemic states are acknowledged to foster 

more aggressive states in humans [8-11], little is known about the effects of long-terrn 

dysglycaemia. Prior studies have employed acutely hyperglycaemic mice (duration of 

hyperglycaemia < 1 month) in resident-intruder paradigms [13 , 14] or hyperglycaemic 

rats in mating paradigms [12] , but have yielded inconsistent findings on the social 

effects of hyperglycaemia in paradigms that, further, poorly reflect the chronicity of 

the diabetic condition. 

To the best of our knowledge, the present report constitutes the fIfst detailed 

account of alterations in social behaviour and USV communications in a rat model of 

long-terrn hyperglycaemia. In aIl evidence, rats of the HG group were hyper-sociable 

and hyper-aggressive, as supported by marked increases in the occurrences of both 

affiliative/exploratory and aggression-related behaviours. Accordingly, compared to 

CTRL rats, they emitted many more USVs thought to operate both as social contact caIls 

[21 , 33] and expressions of affective states [15]. In addition to the rise in occurrences of 

social behavioural or vocalisation events, the covariance profiles of these variables were 

radically different between CTRL and HG groups. Coherent associations between 

behaviours of the same kind or between behaviours and USVs that supposedly have the 

same valence were aimost completely lost in HG rats. 
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ln an attempt to better understand the neurobiological underpinnings of impaired 

social behaviour and disjointed USV communications in our mode l, results were related 

to the degree of TH-positive fibres in the striaturn. lndeed, focal to social behaviour 

are a variety of neurotransmitters acting via circuits that can be modulated by 

pharmacological interventions [34, 35]. One such neurotransmitter is dopamine, 

exemplarily targeted by dopaminergic antagonists to treat abnormal aggresslve 

behaviours in autism, schizophrenia and excessive stress [36-40]. By releasing dopamine 

in the striatum, midbrain neurons partake in the regulation of social behaviours but also 

of other goal-directed operations ranging from movement production to reward-seeking 

processes [41-44]. ln agreement with the purported role of mesostriatal dopamine in 

social conduct, we found the altered social behaviours between pairs of unacquainted 

rats to be predicted by the degree of striatal TH-positive fibre loss. This is supported by 

the differences in 50-kHz USV emissions between CTRL and HG rats, also importantly 

modulated by mesostriatal dopamine [15]. Nevertheless, we cannot exclude that our 

results may have been partly influenced by toxic and/or adaptive modifications induced 

by long-term hyperglycaemia in non-dopaminergic neurotransmitter systems, which also 

critically regulate social behaviour and emission of USVs [35, 45-50]. For example, 

based on the loss of striatal TH-positive fibres, it could be hypothesized that 

hyperglycaemic damage of the noradrenergic system may have participated in the 

behavioural abnormalities observed here. Further studies will be necessary to precisely 

determine the interplay between social and vocal behaviour and neurotransmitter 

systems in HG rats. 

The role for increased mesostriatal dopamine neurotransmission in the promotion 

of impulsive, social and reward-related behaviours as weIl as in the emission of 50-kHz 

USVs seems to challenge our results showing an apparent correlation between striatal 

denervation and increased sociability, aggression and vocalisation. Nevertheless, our 

findings on the emission of 50-kHz USVs by HG rats are consistent with results from a 

previous study in male rats bearing a unilateral terminal denervation of the dopaminergic 

nigrostriatal system [51] . lndeed, the latter study showed that dopamine-denervated rats 

showed a trend towards an increase in the numbersof 50-kHz USVs emitted during 
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mating, compared with neurologically intact rats. It is possible that the occurrence of 

dopamine receptor supersensitivity due to deafferentiation and/or an imbalance in tonic 

and phasic firing may account for the increased reactivity to social novelty in our model 

[52]. Indeed, we have previously shown a decrease in tonic dopaminergic transmission 

in the striatum oflong-term HG rats [31]. Tonic firing consists in the slow and irregular 

single-spike release of dopamine produced by the baseline pacemaker activity of 

mesostriatal dopaminergic neurons, which main tains a certain level of striatal dopamine 

"noise" [53]. Tonic dopamine is required to enable striatal postsynaptic targets 

embedded in corticostriatal circuits involved in the selection of pre-Ieamed programs 

[54-56] . Phasic firing, on the other hand, involves a stimulus-mediated discharge of 

spikes in a short amount of time [57] . These bursts raise the levels of striatal dopamine 

above the noisy tonicity, acting as a "signal" that directs attention to a salient stimulus. 

When striatal tonicity is low, phasic dopamine becomes much more relevant over the 

reduced noisy background; thus, when produced in response to salient stimuli like 

exposure to a novel social context or emission of 50-kHz USVs [58], phasic firing might 

cause inappropriately intense reactions as observed in our mode!. Notably, transcending 

neurodegeneration, receptor supersensitivity, altered dopamine concentrations or 

imbalances in tonic-to-phasic (noise-to-signal)firing have aIl been proposed to explain 

various psychiatric disorders such as schizophrenia [59, 60] and attention deficit 

hyperactivity disorder [61 , 62]. Importantly, hyper-sociable and hyper-aggressive traits 

are typical of the latter and very similar to those present in our model [63-65]. 

The overt hyper-sociable and hyper-aggressive behaviours exhibited by HG rats 

are also reminiscent of impulsive traits found in the streptozotocin model, albeit in 

other contexts. Indeed, drugs that modulate mesostriatal dopamine are more rewarding 

in streptozotocin-treated rats than in untreated conspecifics [66-68]. In addition, 

hyperphagia, a hallmark of the model, is at least partly regulated by mesostriatal 

dopamine [69, 70]. To aIl appearances, the streptozotocin model increases the rewarding 

properties of several environmental stimuli. We show here that this could include social 

interactions as supported by the concomitant increase in the emission of 50-kHz USVs, 

which are a marker of positive affective states [15]. While metabolic hormonal 
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imbalances may be implicated to sorne extent in the hyper-reactive phenotype of 

streptozotocin-treated rats, as suggested by sorne [66, 69], it remains that the extent of 

behavioural alterations was tightly associated with striatal denervation and not with 

insu lin concentrations or functions in long-term hyperglycaemia. Given its implication 

in modulating behaviour in short- and medium-term [71-73], a role for the 

hypothalamic-pituitary-adrenal axis cannot be ruled out in the behavioural abnormalities 

observed here in streptozotocin-treated rats and should be addressed in future works 

[14, 74] . 

In summary, the present results demonstrate explicit manifestations of hyper

sociable and hyper-aggressive traits in our model of long-term hyperglycaemia. 

The striking overall increases in positively and negatively valenced events, either 

behavioural or vocal, combined with the loss of coherence between the affective states 

represented by USVs and the social behaviour displayed may arise from neurobiological 

alterations. This is supported by the tight association between striatal denervation as 

opposed to the lack of a clear link between insulin and hyper-reactivity. These findings 

may ultimately lead to the formaI identification of dopaminergic neural substrates that 

may be targetable by pharmacological treatments, both to prevent striatal denervation 

and to palliate neurochemical imbalances in diabetic patients faced with psychiatric 

challenges. 

Methods 

Subjects 

Fort y male Sprague-Dawley rats (Charles River, St-Constant, Canada) weighing 

175-200 g were housed under standard laboratory conditions (12 h light/dark cycle). 

In all experiments, standard food and water were available ad libitum. Rats were housed 

two per cage to rule out any effect of social isolation on their subsequently measured 

behaviours [75]. Experiments were conducted in accordance with legislation and 

policies of the Canadian Council on Animal Care, as weIl as with the guidelines 
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established by the Animal Care Committee of the Université du Québec (Trois-Rivières) 

(2014-M.G.M.5). 

Induction of hyperglycaemia 

Rats were randomly assigned to the control or hyperglycaemic group (CTRL 

n = 18; HG n = 22). Hyperglycaemia was induced as previously described [31]. 

Briefly, fasted rats of the HG group were intraperitoneally injected with nicotinamide 

(100 mg/kg b.w.) followed by the beta cell toxin streptozotocin (55 mg/kg b.w., 

Enzo Life Sciences, Farmingdale, NY, USA). Pre-injections with nicotinamide restrain 

the death of insulin-producing pancreatic beta cells and yield long-term HG rats that 

do not require glycaemia-Iowering treatments [31 , 76]. CTRL rats received vehicle 

injections. Throughout experiments, glycaemia was estimated using an UltraMini digital 

glucose meter and matching strips (One Touch Ultra) both purchased at a local Brunet 

pharmacy (Trois-Rivières, QC, Canada). Hyperglycaemia was confirmed 3 days after 

nicotinamide-streptozotocin injections and rats from the HG group that did not display a 

glycaemia steadily above 10 mM were discarded from this study. Importantly, rats from 

both groups were matched for age and experience, meaning that they were handled in 

the same manner and at the same frequency, in light of studies showing the role of age 

and experience on the emission ofUSVs [26]. 

Oral glucose intolerance test and baseline insulinemia 

On the morning of their sacrifice, we performed an oral glucose tolerance test 

(OGTT) on fasted rats, as previously described [31] . Briefly, rats were intragastrically 

administered 2 glkg of a D-glucose solution. Glycaemia and insulinaemia were measured 

right before the OGTT (0 min, baseline) and at 30, 60 and 120 min after administration 

of D-glucose using the Rat Glucose Assay kit provided by Crystal Chem (Downers 

Grove, IL, USA) and the Milliplex Adipokine Magnetic Bead Multiplex Assay 

(Millipore; Etobicoke, ON, Canada), respectively. The ratio of the area under the curve 
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of plasma insulin concentrations on the area under the curve of plasma glucose 

concentrations yielded indices of glucose intolerance. 

Ultrasonic vocalisations and social behaviour 

We began experiments 5 months following the induction of hyperglycaemia, at the 

time when rats were fit to engage in social interactions. Experiments consisted in 3 trials 

separated by 7 days each in order to prevent the behavioural habituation of rats to 

multiple encounters in a short amount of time [77]. Experiments were performed in 

3 different quiet rooms to rule out any environmental effects on the behaviour of the 

rats. USV recordings were performed as previously described [78]. Two group-paired 

unacquainted rats (CTRL 9 pairs times 3 trials; RG Il pairs times 3 trials) were placed 

in a Plexiglas cylinder (diameter, 25 cm; height, 30 cm) with fresh bedding, surrounded 

by walls to enhance the feeling of security, and topped with a sound-insulating lido 

An ultrasonic microphone (CM16/CMPA, Avisoft) was placed through a tight-fitting 

hole in the lid and was connected to an ultrasound-recording device (UltraSoundGate 

116 Rb, Avisoft). During USV recordings, constant gain was maintained. Figure 4.7 

shows examples of 22- and 50-kHz USVs recorded during this study. Two video 

cameras were positioned on opposite sides of the cylinder to record the encounters. 

USVs and images were recorded for 10 min, starting immediately after both rats were 

simultaneously placed in the cylinder. Rence, neither rat was an intruder in this context. 

Recording time was selected based on previous studies that evaluated the emission of 

US Vs by rats that engaged in social contacts [49, 71]. A blinded experimenter scored 

eight types of interactions provided by the video recordings. Affiliative/exploratory 

behaviours consisted in dorsal contacts (with both paws), allogrooming, anogenital 

sniffing, and crawl-overs (one rat crawls over the other rat) [79-81]. Aggression-related 

behaviours consisted in freezing (a submissive rat remains 5 consecutive seconds or 

more without movement except sniffing), nose-offs (both rats are immobile, facing each 

other, four paws on the ground or front paws raised, but do not box), boxing (one or both 

rats stand on their hind legs and push or paw their opponent), pins (one rat tops another 

one that is in supine position) [16, 82]. Occurrences of any of these behaviours were 
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counted for both rats, regardless of the amount of time the y lasted. Rats were never 

opposed to the same partner twice, thus social novelty was preserved throughout trials. 
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Examples of sonograms of ultrasonic vocalisations. 
Representative sonograms of 22-kHz (A) and 50-kHz (B) USVs. 
FM 50-kHz USVs (B, right) differ from flat ones (A and B left) in that 
there is a change in frequency within the cali. Ultrasonic vocalisations 
reported are examples of independent calls emitted by different rats. 

Immunohistochemistry 

At the end of the 3 trials, isoflurane anesthetized rats were intracardially perfused 

with cold PBS supplemented with protease and phosphatase inhibitors. Brains were 

harvested and post-fixed in 4% paraformaldehyde, cryoprotected through gradients of 

sucrose and conserved at -80oe for immunohistochemical analyses [15]. Frozen post

fixed tissues were cut into 20 )..lm-thick coronal free-floating seriaI sections and 

immunoreactions were performed with a primary antibody raised against the rate

limiting enzyme of dopamine synthesis, TH. Sections were then incubated with 

a horseradish peroxidase-conjugated secondary antibody, exposed with 3,3'

diaminobenzidine, mounted on microscope slides, dehydrated and coverslipped. 
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Using a microscope ln brightfield mode (MBF Bioscience, Williston, VT, USA), 

the density of striatal terminais positive for TH was quantified densitometricaUy using 

the NIH ImageJ software version 1.49, and averaged in 4 slices per animal. A total of 

3 brains from the CTRL group and 6 brains from the HG group were randomly selected 

and analysed. Due to normal interindividual variability, degrees of denervation differed 

across the 6 HG rats, allowing for the separation of these individuals into high (n = 3) or 

low (n = 3) denervation subgroups. 

Statistical analyses 

USV recordings were converted into spectrograms using the software SASLab 

Pro 4.52 (Avisoft) with the foUowing settings: 512 FFT-Iength, Hamming window and 

75% overlap frame set-up [83]. A ski lied experimenter visually inspected and manuaUy 

cleaned aU signaIs that could not be univocaUy classified as vocalisations. Nurnbers of 

22-kHz and 50-kHz USVs were then counted using the SASLab Pro 4.52 software. 

Moreover, an experienced experimenter unaware of treatments manually counted 

numbers of FM and fiat 50-kHz USVs. USVs of 22-kHz were defined as caUs with 

sound frequency maintained between 20- and 35-kHz and long duration, higher than 

300 ms for a single caU [19]. In the present study, no 22-kHz USVs of duration shorter 

than 300 ms were observed [84]. USVs of 50-kHz were defmed as caUs with sound 

frequency maintained between 35- and 80-kHz and short duration, usually 10-15 ms for 

a single caU [19]. USV s of 50-kHz were further divided in fiat and FM USV s, based on 

the modulation of their sound frequency. Thus, fiat calls have the sound frequency 

within 35-50-kHz that remains nearly unchanged over the duration of the individual 

USVs [26]. Conversely, FM 50-kHz caUs have the sound frequency within 40-80-kHz 

that shows substantial changes within individual USVs [16]. 

Ail data were submitted to statistical analyses performed using GraphPad Prism 7 

software (San Diego, CA, USA; http://www.graphpad.com). Data were tested for 

normality and homoscedasticity, and were analysed accordingly. Behaviour-behaviour 

and behaviour-USV covariation matrices (Figure 4.2 and Figure 4.3) were derived from 
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Pearson correlation coefficients calculated for each pair of variables, where + 1, 0, and 

-1 respectively indicate the tendency for two variables to covary similarly (positive 

covariance), differently (no covariance) or oppositely (negative covariance) [85]. 

Occurrences of social behaviours, relative density of TH fibres , and measures of 

insulinaemia and glucose intolerance were parametrically distributed. Thus, significant 

differences between groups shown in Figure 4.lA and B were ascertained by multiple 

t-tests , ones in Figure 4.4A, C and D were ascertained by one-way ANOV A followed by 

Tukey's post-hoc analysis, and those shown in Figure 4.5 were determined by two-way 

ANOVA followed by Tukey's post-hoc analysis. On the other hand, emissions of VSVs 

were non-parametrically distributed. Therefore, significant differences between groups 

shown in Figure 4.1C, D and E were ascertained by Mann-Whitney's U test, 

while significant differences between groups shown in Figure 4.6 were ascertained by 

the Kruskal-Wallis ANOVA, followed by Dunn' s post-hoc analysis. All data were 

analysed at the 95% confidence interval and are expressed as means ± SEM. 
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CHAPTERV 

DISCUSSION 

Based on evidence of a unique phenotypic liability, and supported by the greater 

prevalence of Parkinson ' s disease in diabetic patients, the work presented in this thesis 

aimed to verify the hypothesis that nigrostriatal dopaminergic neurons are more 

vulnerable to hyperglycaemic conditions compared to other neuronal populations, 

expressly the mesocorticolimbic pathway. In the process, we attempted to coyer as 

man y dimensions of dopaminergic functioning as possible, harvesting evidence on a 

molecular, cellular, neurochemical, neuroanatomical and behavioural level to render a 

comprehensive picture of hyperglycaemia-induced neurodegeneration. To that end, four 

objectives were fulfilled and will be examined in light of elements brought to the table in 

the introduction. l will conclude these discussions by translating the significance of our 

results to the realities of diabetic and parkinsonian patients. 

5.1 Objectives 1 and 2: In vitro, high glucose-induced oxidative stress leads to the 
death of dopaminergic neurons avertible by 'resveratrol treatments 

In Chapter II, we successfully demonstrated that dopaminergic neurons degenerate 

when cultured in high glucose conditions. Using neuronal PC12 ceUs treated with the 

antioxidant resveratrol, we confirmed the implication of oxidative stress in high glucose

induced apoptosis. This first step of the project provided a crucial comerstone upon 

which we built subsequent in vivo work. 

5.1.1 Drawing parallels with Brownlee's theory 

Brownlee's theory proposes that superoxide anion production is the earliest event 

leading up to oxidative stress in a hyperglycaemic setting (Brownlee, 2005; Du et al., 

2001; Giacco and Brownlee, 2010; Nishikawa et al., 2000). As previously stated, 
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early superoxide amon generation has not been investigated in animal models of 

hyperglycaemia. Our group was the first to verify the production of this specifie ROS 

in cultured neurons exposed to high concentrations of glucose (Boumival et al. , 2012a). 

In the present work, we further confirmed that this event occurs as early as 3 h following 

high glucose treatments, thereby supporting Brownlee's hypothesis. 

5.1.1.1 From oxidative stress to apoptosis 

Trailing this theory's mechanistic progression, superoxide anion should lead to the 

formation of other ROS that can damage nuclear DNA. In high glucose conditions, 

p53 was indeed markedly upregulated61 (Figure 5.1A and B) and it strongly localized to 

the nucleus at 96 h, indicating its probable transcriptional activation, stabilization and 

recruitment to damaged DNA, ail ensuing from oxidative insults (Lee et al. , 2008; Liu 

and Xu, 2011 ; Macip et al. , 2003; Norbury and Zhivotovsky, 2004; Sun et al. , 1995). 

Following its nuclear localization, p53 can either induce DNA reparation or prompt the 

activation of apoptosis when injuries are too substantial (Liu and Kulesz-Martin, 2000). 

Accordingly, our results show that neuronal PC12 cells undergo apoptosis in high 

glucose conditions, as evidenced by chromatin modifications, caspase-3-induced DNA 

fragmentation, PARP cleavage and a rise in Bax-to-Bcl-2 expression ratios. 

Supplementary evidence that oxidative stress is ongoing in our model is the rise in 

GRP75 expression under high glucose conditions (Figure 5.1 C and D), which confirms 

other reports of its induction during cellular stress (Londono et al. , 2012). Furthermore, 

we observe an increase in GRP75 and p53 colocalization in the cytoplasm62
, which 

likely occurs as a result of oxidative stress (Lee et al., 2007). Indeed, in response to 

oxidative insults, p53 is phosphorylated, which enables its interaction with GRP75 in 

the cytoplasm (Figure 5.2). Bound by GRP75 , p53 cannot enter the nucleus and induce 

61 Other groups also found the induction of p53 in response to DNA damage to consti tute a key event in 
the provocation of apoptosis. Indeed, p53 upregulation in dopaminergic neurons challenged with 
parkinsonian toxins seems to occur before any other apoptotic event (Li et al. , 2016; Nair, 2006). 

62 During cytoplasmic sequestration, GRP75-p53 colocalization is noticeably peri nuclear in our model, 
which corroborates the findings of others (Taurin et al., 2002) . 



237 

apoptosis ln otherwise lethal conditions. However, when p53 is steeply expressed, 

as in our model, it may partially evade GRP75 sequestration in the cytoplasm and enter 

the nucleus to induce apoptosis. 

A 

Figure 5.1 
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Total levels of p53 and GRP75 in neuronal pe12 cells treated with 
high glucose concentrations. 
Previously, we showed subcellular modulation of p53 and GRP75 levels. 
Here, total cellular levels are addressed. Neuronal PCl2 cells were treated 
with 25 mM of glucose for 96 h, with or without 0.1 !lM of resveratrol. 
Isotonie mannitol served as an osmotic control. (A, C) Relative total 
p53 or GRP75 immunofluorescence levels. (B, D) Relative total p53 or 
GRP75 expression measured by immunoblotting. High glucose 
concentrations increased total p53 expression levels, which was rescued 
by resveratrol treatments. In response to the glucose-induced rise in 
p53 levels, GRP75 expression is accordingly enhanced, with or without 
resveratrol treatments. *p < 0.05 , ***p < 0.001 compared with CTRL and 
+p < 0.05, +++p < 0.001 compared with HG, as determined by one-way 
analysis of variance (ANOVA), followed by Tukey' s multiple
comparison test. Refer to Chapter II for methodological details. 
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Figure 5.2 
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Role of GRP75 in oxidative stress-induced apoptosis. 
As a sensor of oxidative stress and protein chaperone, GRP75 (mortalin) 
fulfils numerous functions in cells that are dependent on context. 
Under normal circumstances, GRP75 is thought to promote homeostasis 
in the subcellular localizations it occupies, expressly mitochondria. 
In conditions of stress, GRP75 is upregulated and translocates to the 
cytoplasm where it can also convey protection by preventing apoptosis 
(1). In particular, GRP75 can bind the phosphorylated form of the pro
apoptotic effector p53. Under sustained amounts of stress, GRP75 can 
undergo deleterious alterations, which impede its protective functions (2). 
When the cell is only mildly stressed, GRP75 is poorly recruited to the 
cytoplasm, likely owing to a lack of significant p53 activation (3). 
OS, oxidative stress; P, phosphate group. (From Londono et al., 2012.) 

5.1.1.2 Paradoxical poly(adenosine di phosphate-ribose) polymerase inactivation 

Brownlee's model provides that the activity of the DNA repair enzyme PARP is 

augmented early in hyperglycaemic conditions, in response to ROS-induced DNA 

damage. This leads to the ADP-ribosylation of GAPDH and its consequent inhibition, 

inducing an accumulation of upstream glycolysis metabolites responsible for the 

rerouting of glucose into deleterious pathways. However, we observe that activated 

caspase-3 cleaves P ARP in its 24 and 89 kDa fragments, thereby preventing its 
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ADP-ribosylation function (Kaufmann et al., 1993). In fact, PARP cleavage is required 

in order to carry out apoptosis (Boulares, 1999). Irreversible binding of the 24 kDa 

portion to damaged DNA inhibits DNA repair and conserves energy pools in 

anticipation of apoptosis (D'Amours, 2001). Indeed, in its activated form, PARP is a 

heavy user of NAD+ whose exhaustion can lead to energy depletion-induced necrosis 

(Boulares, 1999). Since the full-Iength-to-cleaved ratio was measured in our model after 

96 h of exposure to high glucose conditions, it is probable that P ARP inactivation occurs 

late in the apoptotic cascade, which does not contradict a possible transient early 

increase in its activity. 

5.1.1.3 Validating Brownlee's model 

Although our results corroborate the implication of oxidative stress in the high 

glucose-induced apoptosis of dopaminergic neurons in culture, a deeper mechanistic 

insight is warranted to verify the neuronal suitability of Brownlee's theory, originally 

elaborated in bovine aortic endothelial cells. In this view, a step-by-step analysis of 

the events leading up to the death of dopaminergic neurons in culture is presently 

under way. 

The strategy we envision calls upon the inhibition of the most salient checkpoints 

in glucose metabolism dysfunction in the neuronal PC12 and N27 dopaminergic models. 

First, we will characterize by immunofluorescence the regulation of GLUT localization 

at the surface of neuronal cultures in response to glucose in a series of kinetic 

dose-response studies. In parallel, we will appraise the effect of varying glucose 

concentrations on its uptake at various time points, keeping in mind that accurate 

quantifications are not possible with CUITent fluorescent glucose analogues (Dienel et al., 

2017). Next, we will ver if y if GLUT inhibitors, such as cytochalasin B63
, can fully 

abrogate high glucose-induced neuronal death. Early events of mitochondrial 

63 Cytochalasin B is a competitive inhibitor of ail GLUT isoforms. In fact, this inhibitor is used to estimate 
absolute concentrations of GLUT proteins at the surface of cells, by measuring its equilibrium binding 
(Kalaria et al. , 1988; Maher and Simpson, 1994; Maher et al. , 1994). Such measurements were utilized 
in computing glucose and lactate transport capacities of brain cells in the core model (Simpson et al., 
2007) (Table 1.6). 
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dysfunction will be investigated as per the strategy hired by Brownlee and colleagues, 

which employed inhibitors of the electron transport chain, like rotenone (complex l 

inhibitor) and antimycin A (complex III inhibitor), to confirm the site of superoxide 

anion generation (Du et al., 2001; Nishikawa et al., 2000). Ideally, application of 

a mitochondrial uncoupler or upregulation of mitochondrial SOD should also be 

performed to verify, respectively, that dissipating the elevated transmembrane potential 

induced by the overworked electron transport chain and that quenching superoxide anion 

at the site of production are individually sufficient to prevent the death of neurons 

(Du et al., 2001; Nishikawa et al., 2000). We also plan to employ PJ34 and INO-I00l, 

specific P ARP inhibitors, to uncover the importance of enhanced P ARP activity in the 

death of neurons, especially in view of our current results demonstrating its cleavage in 

late apoptosis. Correspondingly, we will assess the level of GAPDH ADP-ribosylation 

and measure this enzyme's activity in conditions of high glucose. It would also be 

interesting to verify whether the inhibition of GAPDH by koningic acid is sufficient to 

elicit the death of neurons in a way that emulates high glucose conditions. Last, the 

polyol pathway will be investigated, on the one hand, by weighing the benefits of 

inhibiting aldose reductase with sorbinil in high glucose conditions, and on the other, by 

measuring the state of reduced glutathione-to-oxidized glutathione in our mode\. 

Considering the lack of evidence pertaining to the chain of early events that lead to 

neuronal degeneration in high glucose or hyperglycaemic conditions, it would be highly 

pertinent to determine whether neuronal apoptosis occurs before a tangible loss of 

mitochondrial respiration. For the moment, the literature only reports a drop in the 

respiratory rate of cultured peripheral nerves from diabetic rodents at later time points 

(Aghanoori et al. , 2017; Akude et al., 2011; Chowdhury et al. , 2010). This question 

should be investigated both in vitro and in vivo in order to determine whether cultured 

neurons are faithful mechanistic models of what occurs in the CNS. The elaboration of 

proper in vitro frameworks provided with a valid precinct of applicability would 

therefore allow for more cautious and robust conclusions to be drawn from cultured 

neurons. In our case, we simply aimed to verify the death of cultured dopaminergic 
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neurons in high glucose conditions, permitting a careful inference of their probable 

demise in a rodent model ofhyperglycaemia. 

5.1.2 Resveratrol: partial antioxidative effects, but full neuroprotection 

In addition to demonstrating that high glucose concentrations trigger the oxidative 

stress-induced apoptosis of dopaminergic neurons, Chapter II also provides evidence for 

the protection conferred by the antioxidant resveratrol in these conditions. These results 

constitute the first report of the protective effect of resveratrol on neurons challenged 

with high glucose concentrations or hyperglycaemia. Studies performed in the CNS of 

diabetic rodents were issued later and support our results (Bagatini et al. , 2017; Sadi and 

Konat, 2016). 

Although we did not aim to unravel the mechanistic underpinnings of resveratrol 's 

effects, it is possible to surmise that direct scavenging of ROS occurred in our model, 

as it was shown to be possible in vitro (Fauconneau et al. , 1997; Frémont, 2000; Kawada 

et al. , 1998; Stivala et al., 2001). Additional antioxidative mechanisms may have been 

mediated indirectly through inhibition of PDE, mTOR or NQ02, respectively leading to 

activation of the AMPK-SIRTI-PGC-la axis, stimulation of autophagy, and reduced 

production of cytoplasmic ROS. Ali of these events may have contributed to mitigate 

oxidative stress and to prevent the apoptotic death of neuronal PC 12 cells in high 

glucose conditions. 

It remains that sorne of the protective effects exerted by resveratrol treatments 

were admittedly limited. This was the case for the inhibition of superoxide anion 

generation and the reversai of GRP75 , s compensatory overexpression. Our results show 

that resveratrol did not completely prevent the formation of superoxide anion at 3 h. 

However, we did not verify this effect at later time points, and the antioxidant may weil 

have exerted its full effect by 96 h. More plausible is that resveratrol's antioxidative 

effect was indeed partial, but sufficient to confer total neuroprotection, as evidenced by 

the complete abrogation of apoptosis. The lack of mitochondrial GRP75 downregulation 
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in neuronal PC12 cells treated with high glucose concentrations and resveratrol indicates 

a likely need for the chaperone to wield a protective response in this organelle still 

displaying higher-than-norrnal levels of superoxide anion. However, in the cytoplasm, 

resveratrol treatments successfully prevented the overexpression of GRP75. This could 

be attributable to the fact that DNA damage was no longer critical, that p53 was not 

upregulated, and that GRP75 was not required to impound this apoptotic factor in the 

cytoplasm. It follows that resveratrol may have exerted just enough protection to 

preclude apoptosis by diminishing superoxide anion production to sublethallevels. 

Polyphenols often exert partial effects in biological systems that can only partially 

be optimized by increasing doses. One theory provides that a biphasic dose-response 

relationship, for instance horrnesis, may explain the limited though significant 

bioefficacy of this class of molecules (Figure 5.3). We have discussed this topic in 

greater detail elsewhere (Appendix B). 

Figure 5.3 

Maximum response 
(averages 130-160% of control) 

/ 

Hormetic Zone 
(averages 10- to 20-fold) 

Increasing Dose 

Distance to NOEL 
(averages 5-fold) 

NOEL (No Observed Effect Level) 

Control 

Dose-response curve depicting the quantitative features of hormesis. 
Horrnesis is most commonly expressed as a J or inverted U dose-response 
curve, which either dips below or rises above a threshold of efficacy, 
depending on the observed endpoint. In this horrnetic zone, effects are 
consistently predicted to be moderate, ranging between 30-60%. 
(From Calabrese et al. , 2013.) 
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5.1.3 The relevance of glucose-regulated protein 75 in Parkinson 's disease 

Reports showed the depletion of GRP75 in post-mortem substantia nigra pars 

compacta samples of patients before our paper was published (Burbulla et al. , 2010; 

Jin et al., 2006). Gaining momentum as a possible novel genetic risk factor, reports 

today are rather equivocal regarding its association with the disease. Indeed, one group 

found two point mutations, albeit rare, in the GRP75 gene of parkinsonian patients 

(Wadhwa et al. , 2015), whereas another study concluded that this chaperone was not 

genetically associated to Parkinson ' s disease (Chung et al. , 2017). Nevertheless, 

evidence converges toward the reduced expression of GRP75 in specific affected brain 

regions, expressly the substantia nigra pars compacta, both in patients and in rodent 

models of Parkinson ' s disease (Cook et al. , 2016; Koo et al. , 2017; Liu et al., 2015). 

In this view, our results rather show a rise in GRP75 expression levels in response 

to a cellular stress. What occurs in our in vitro model challenged with high 

concentrations of glucose is likely not representative of these physiological observations 

harvested in brain samples having sustained months, in rodents, or years, in humans, 

of Parkinson's disease-related stress. It is nevertheless interesting to see how GRP75 is 

systematically downregulated in the substantia nigra pars compacta and invites the 

question of whether this protective chaperone may be a supplementary phenotypic 

liability specific to the neurons harboured in this structure. 

5.2 Objectives 3 and 4: In vivo, long-term hyperglycaemia causes preferential 
nigrostriatal dopaminergique neurodegeneration and consequential 
behavioural alterations 

Upon validating that dopaminergic neurons cultured in high glucose conditions 

undergo cell death, we elaborated a rodent paradigm wherein neurodegeneration 

could be assessed following long-term hyperglycaemia. Through immunoblotting, 

immunohistochemical, neurochemical and behavioural analyses, we obtained data 

presented in Chapter III demonstrating a decrease in dopamine neurotransmission in the 

dorsal striatum, the degeneration of nigrostriatal neurons, motor impairments and glial 
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alterations in long-term hyperglycaemic rodents. Chapter IV provided further 

information on the behavioural manifestations displayed by hyperglycaemic rats In a 

social context, correlated to the level of striatal denervation. 

5.2.1 Intracerebral glucose concentrations 

The first element discussed in Chapter III was the nse ln CNS glucose 

concentrations in hyperglycaemic rats. This firsthand demonstration was required to 

solidify the argument that sustainably elevated intracerebral glucose concentrations may 

induce neurodegeneration. Precisely, providing proof that glucose concentrations were 

not altered differentially in the various brain regions of interest was crucial. 

As previously stressed, aIl studies reporting intracerebral glucose measurements to date 

have provided quantifications in, at best, two brain regions at a time (Abi-Saab et al., 

2002; Béland-Millar et al., 2017; de Vries et al., 2003; Gomez and Barros, 2003; Jacob 

et al., 2002; Macauley et al., 2015; McCrimmons et al., 2003; Osborne et al., 1997). 

Granted inter- and intra-individual variability ainong hyperglycaemic models, we thus 

sought to rely on our own measurements to confirm - instead of presuming, like others 

have - a uniform rise in glucose concentrations throughout various brain regions at a 

time64
. 

In this Vlew, we aimed to verify the rise in brain glucose by more than one 

single method. Using the microdialysis technique, we were able to obtain estimations of 

extracellular glucose concentrations in uniformly-fed rats. This technique also allowed 

us to distinguish midbrain and striatal subareas, owing to the spatial precision afforded 

by the probes. By homogenizing brain tissues, we also appraised intracellular glucose 

concentrations, although we were fully aware that terminal perfusion of the animaIs 

constituted a cause for underestimations due to efflux through bidirectional GLUTs 

driven by concentration gradients. Nevertheless, the purpose of these procedures was to 

assess if there was a significant rise in glucose concentrations throughout the brain, 

64 Speculative computations performed by Simpson and colleagues (2007) sti ll provided a theoretical basis 
for an initial assumption that glucose concentrations may rise in the brain in hyperglycaemic conditions 
and for justifying the purpose of our in vivo investigations (Table l .7). 
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and if there were substantial differences between neuroanatomical loci. We also aimed 

to verify that intra- and extracellular observations coincided. For these reasons, 

ail results were reported in relative and not absolute values. 

Our results provided a firm validation that intracerebral glucose concentrations 

increase significantly and uniformly throughout the midbrain, striatum, prefrontal cortex 

and hippocampus of hyperglycaemic rats. Elevated concentrations were also sustained 

over the course of 6 months. These results were important to unravel several remaining 

interrogations with respect to a possible downregulation of glucose uptake in long-term 

hyperglycaemia. Indeed, there is no adequate account of the regulation of GLUTs over 

long periods of hyperglycaemia (Anitha et al. , 2012; Nagamatsu et al., 1994; Santiago 

et al. , 2006; Simpson et al. , 1999), nor is there evidence to sustain reduced glucose 

uptake due to reductions in cerebral blood flow arising from abnormal vascular features 

in this chronic setting (Carruthers and Helgerson, 1989; Duckrow et al., 1987; Levine 

et al. , 1998; Lowe and Walmsley, 1986; McCall, 1992; Nishimura et al. , 2007). We are 

currently quantifying GLUT expression in brain slices from our model in the aim of 

filling these knowledge gaps. There is, nevertheless, reason to believe that intracellular 

glucose concentrations remain significantly elevated after 6 months of sustained 

hyperglycaemia in our rat mode\. 

5.2.2 Altered glial profiles as an indicator of oxidative stress 

On the quest to coyer as many aspects of CNS dysfunction III our paradigm, 

we reported the effects of long-term hyperglycaemia not only in neurons, but also in 

glial populations. These glial alterations are discussed first on account of the information 

they can convey with respect to the oxidative status of the CNS, directly linked to our 

in vitro work. 

By immunohistochemical staining, we discovered a marked proliferation of 

astrocytes in the substantia nigra pars compacta, the dorsal striatum, the nucleus 

accumbens and the prefrontal cortex. Conversely, there was a noticeable loss of 
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microglial ceIls in the substantia nigra pars compacta, the dorsal striatum, and the 

nucleus accumbens. A first appraisal of these results aIlowed us to conclude that both 

pathological features are present in the substantia nigra pars compacta, but not in the 

ventral tegmental area, further underlining a regional vulnerability to pathological 

alterations ensuing from hyperglycaemia. They also manifested themselves throughout 

the striatum. 

In Chapter III, we discussed the well-appreciated association between astrogliosis 

and diabetes. We also proposed a role for oxidative stress in causing the death of 

microglial ceIls, an under-recognized feature in CNS affections. We can further 

elaborate on the tentative timeline proposed in this article, which stipulated that an initial 

microglial ceIl activation in turn conduces to astroglial activation, foIlowed by the death 

of the former, which are not equipped to cope with sustained oxidative stress. lndeed, 

CNS microgliosis occurs early in hyperglycaemic rodent models (Nagayach et al. , 2014; 

Oliveira et al., 2016). Importantly, microgliosis can be triggered by oxidative stress, as 

demonstrated in various paradigms (Bordt and Poister, 2014; Kang et al., 2001; Mander 

et al., 2006; Rojo et al., 2010). This event th en directly contributes to the activation of 

astrocytes (Liddelow et al., 2017) whose elevated levels can be appraised in our model 

6 months following hyperglycaemia induction. One question that dweIls here is the 

physiological pertinence of upregulating astrocyte proliferation by oxidative stress

activated microglial cells. Recalling the importance of the ppp in protecting against 

oxidative stress offers one clue. With neurons, astrocytes constitute the main ceIl type to 

process important amounts of G6P through the ppp for the recovery ofNADPH serving 

to regenerate the antioxidative co factor glutathione. In fact, the ppp is 4-5 times more 

active in astrocytes th an in neurons and is upregulated in high glucose conditions65 

(Ben-Yoseph et al., 1996a, 1996b; Garcia-Nogales et al., 2003; Takahashi et al., 2012) 

(Figure 5.4). Remarkably, microglial cells can also mediate the increase in astroglial 

ppp activity, independently of its influence on the proliferation of these cells (Iizurni 

et al., 2016). It is therefore reasonable to surmise that microglial activation serves to 

65 Similarly, the ppp is downregulated when glucose levels are reduced, thereby dulling the antioxidative 
potential of neural cells (Takahashi et al., 2012). Sorne have suggested this phenornenon to explain the 
risks that sharp glycaernic variations represent in diabetic patients. 
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promote the proliferation of astrocytes, alongside their ppp flux , in order to respond to 

oxidative insults. Interestingly, the ppp also serves to generate ribose 5-phosphate for 

the synthesis of nucleic acids required for mitosis, such as in proliferating astrocytes, 

constituting yet another way by which this compensatory effect is coupled with 

purposeful cellular functions (Lehninger et al. , 1995). 

Figure 5.4 

A B c 

Metabolic activities of astrocytes and neurons. 
In primary neuronal (black) and astroglial (white) cultures, the rate of 
ppp activity (C) was obtained by measuring the difference between 
radio-carbon dioxide ('4C02) production ensuing from the ppp and the 
tricarboxylic acid cycle (A) or the tricarboxylic acid cycle alone (B) by 
employing glucose isotopes labelled at the Cl or C6 positions. Focusing 
on the graph on the right, astroglial cultures display ppp activities 
4-5-fold times greater than neuronal cultures. Means ± standard 
deviation. *p < 0.05 ; ***p < 0.001 between groups, according to t-test. 
(From Takahashi et al., 2012 .) 

The functional relationship between oxidative stress-induced microglial activation 

and astrogliosis clearly emerges upon disceming the near-perfect correspondence 

between loci displaying high levels of astrocytes and those harbouring significantly 

fewer micro glial cells. If indeed microglial cells perish due to sustained oxidative stress, 

as granted by several lines of evidence (Khazaei et al., 2008; Sabokdast et al. , 2015 ; 

Streit et al. , 2008), it follows that these identified loci were prone to oxidative events in 

our mode!. It is therefore likely that, before their demise, microglial cells were indeed 

activated by this oxidative stress, as supported by previous demonstrations (Bordt and 

Poister, 2014; Kang et al., 2001 ; Mander et al., 2006; Rojo et al. , 2010). In these 

J 
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reglOns, we can infer that activated microglial cells may have initiated a reactive 

astrogliosis, still perceptible 6 months foilowing hyperglycaemia. In other words, 

regions displaying high levels of oxidative stress led to consequent changes in glial 

profiles to promo te ROS clearance via the purposeful activation of the ppp and the 

generation of antioxidative cofactors. Several supplementary firsthand verifications 

would be required to support this proposed timeline of events occurring in glial 

populations. Nonetheless, we can say without a doubt that this possible coping 

mechanism provided by a reactive astrogliosis did not afford sufficient protection to 

dopaminergic neurons of the nigrostriatal pathway nor to micro glial cells in oxidation

prone areas, which ail visibly degenerated in our model 6 months following 

hyperglycaemia induction. 

What remains unclear is why the substantia nigra pars compacta and the striaturn 

were auspicious to oxidative stress-related events, precisely astrogliosis and microglial 

death, whereas the hippocampus was relatively spared. One explanation might be that 

these regions share the liability of processing large amounts of dopamine66
, known to 

react with hyperglycaemia-induced methylglyoxal to form oxidative salsolinol-like 

compounds (Deng et al., 2012; Song et al., 2014; Szent-Gyorgi and McLaughlin, 1975). 

Another option is that the substantia nigra pars compacta is rich in iron (Chinta and 

Andersen, 2008; Hirsch and Faucheux, 1998), whereas the entire striatum is rich in 

midbrain dopaminergic fibres that harbour a wealth of mitochondria (Pacelli et al. , 

2015), two independent elements conducive to ROS generation. These lines of thought 

in fact boil down to the risk phenotypes characteristic of nigrostriatal neurons. We are 

currently in the process of measuring advanced glycation end-products in these various 

regions employing antibodies raised against glycated arginine and lysine residues. 

By these means, we aim to identify differential levels of glycation throughout the CNS, 

an indirect marker of oxidative stress, and to determine vulnerable cell types between 

neurons, astrocytes or micro glial ceils. 

66 In fact, the prefrontal cortex contains smaller amounts of dopamine than these two regions, 
as evidenced by our own microdialysis studies (Figure 3.31), and was also partially spared as it did not 
display signs of microglial cell death (Figure 3.6A and C); perhaps the proliferation of PPP-utilizing 
astrocytes in this region was sufficient to partially protect microglial cells against oxidative stress. 
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5.2.3 Nigrostriatal dopaminergic neuronal death: beyond the validation of 
our hypothesis 

The work presented ln Chapter III was pivotaI to this project, as it provided 

a direct confirmation of the core hypothesis. Indeed, our results show that the 

nigrostriatal pathway is preferentially targeted in a hyperglycaemic setting, compared to 

mesocorticolimbic neurons. Bridging these findings with observed motor deficits and 

tracing the sequence of events offer further insight into how nigrostriatal dopaminergic 

neurodegeneration may have operated in our rat model of long-term hyperglycaemia. 

5.2.3.1 Subtle neurodegeneration and motor deficits 

Upon inspecting the results presented in Chapter III, it is possible to observe 

that most changes occurring because of long-term hyperglycaemia are subtle. Indeed, 

the reduction in the expression of dopaminergic markers in the midbrain and striaturn, 

the relative loss of dopaminergic nigrostriatal neurons, and the dampened tonic 

dopamine release in the dorsal striatum do not exceed 50% of age-matched controls. 

Other groups also observed these modest effects in a similar rodent paradigm 

(Brambilla Bagatini et al., 2014; do Nascimento et al., 2011). Both groups found small 

amounts of neurodegeneration in the substantia nigra pars compacta in streptozotocin

treated animais. However, these results were obtained 60 (Brambilla Bagatini et al., 

2014) or 90 days (do Nascimento et al., 2011) following streptozotocin injections, while 

we did not observe neurodegeneration at the 3-month mark, at least wh en considering 

expression levels of dopaminergic and neuronal markers67
• This could be explained by 

the fact that these studies employed considerably harsher chemical-induced rodent 

paradigms of diabetes, thereby accelerating the neurodegenerative process. It is unclear 

whether these models would exhibit more dopaminergic neuronal death at 6 months or 

67 Brambilla Bagatini and colleagues employed i.p. injections of 65 mg/kg b.w. of streptozotocin 
without nicotinamide, a fairly high concentration in rats affording complete insulin depletion 
(Brambilla Bagatini et al. , 2014). In an even harsher paradigm, the other group administered rats with 
streptozotocin at a dose of 50 mg/kg b.w. i.v. , once again without nicotinamide (do Nascimento et al., 
2011). 
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whether neurodegeneration would slow down to reach a stable degree of modest 

denervation that could resemble the levels found in our paradigm. However, granted the 

severity of the hyperglycaemic phenotype, it is unlikely that such models could survive 

to the 6-month time point. 

Other findings corroborating our work contrast with studies performed 

ln paradigms combining parkinsonian and diabetic insults in which overt 

neurodegeneration can be observed (Choi et al., 2005; Morris et al., 2010; Rotermund 

et al., 2014). For example, after one week on a high-fat diet following MPTP treatments, 

mice display almost complete nigrostriatal neurodegeneration (Choi et al., 2005). 

Although such studies provide information suggesting that metabolic alterations 

exacerbate the deleterious effects of parkinsonian toxins, they do not provide insight into 

the natural processes that may underlie neurodegeneration in a longstanding metabolic 

syndrome. Our model thus presents the advantage of mimicking the dopaminergic 

neurodegeneration that occurs in a hyperglycaemic setting over the course of aging 

without other exogenous effects: this neuronal loss is realistically modest. 

Most importantly, our findings support the moderate motor deficits observed in 

our rat model of hyperglycaemia, recalling bradykinesia and gait disturbances in 

parkinsonian patients. In fact, as already mentioned, sorne tests did not reveal any 

differences between control and hyperglycaemic rats, such as in the vibrissae-elicited 

forelimb placement test used to assess sensorimotor integrative deficits. 

These observations evoke the compensatory neurocircuit redundancies in the basal 

ganglia of parkinsonian patients that account for the fact that 30-70% of nigrostriatal 

dopaminergic neurons and 50-80% of their striatal projections have usually perished 

before the initiation of gross motor symptoms (Bernheimer et al., 1973; Cheng et al. , 

2010; Feamley and Lees, 1991). Accordingly, we found approximately 30% of neuronal 

loss in the substantia nigra pars compacta and 50% of denervation in the striatum of 

long-term hyperglycaemic rats. This level of neurodegeneration stands at the threshold 

of symptomatic detection and likely explains why we observe modest, yet significant, 

indices ofbradykinesia and gait disturbances. 
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5.2.3.2 Time course of neurodegeneration 

In Chapter III, we investigated dopaminergic and motor alterations at 3 and 

6 months in our model of hyperglycaemic rats. At 6 months, hyperglycaemic rats 

displayed clear neurodegeneration of the nigrostriatal pathway, as substantiated by 

immunoblotting and immunohistochemical assays. However, sorne indications of 

dopaminergic dysfunction were already apparent at the 3-month mark before 

immunoblotting measurements could attest of any neurodegeneration. 

Specifically, tonic dopamine release in the dorsal striatum was already dampened 

at 3 months. We cannot exclude the possibility that the immunoblotting method 

may not have allowed for the detection of inconspicuous neurodegeneration in 

striatal dopaminergic fibres, which could have been picked up by more sensitive 

immunohistochemical analyses at 3 months. Nevertheless, the literature consistently 

shows a dulling of dopamine neurotransmission occurring without visible 

neurodegeneration. Indeed, our observations bolster other reports showing that neither 

TH activity or expression are reduced in the striatum of streptozotocin rats, despite 

visible downregulation of dopamine neurotransmission as early as 2 weeks following the 

induction of hyperglycaemia (Bitar et al. , 1986; Lim et al., 1994). Depreciation of 

striatal dopamine neurotransmission despite undetectable neurodegeneration is also 

typical of sorne transgenic models of Parkinson ' s disease (Abeliovich et al. , 2000; 

Li et al. , 2009). 

Although neurodegeneration was unnoticeable at 3 months, several motor deficits 

were already apparent, as highlighted by the stepping and forepaw adjusting step tests. 

In support of our observations, others have reported modest impairments of motor 

functions in rodent models of Parkinson's disease despite the absence of nigrostriatal 

neurodegeneration (Abeliovich et al. , 2000; Li et al. , 2009). Yet, the horizontal bar test 

did not uncover any motor abnormalities in our model at 3 months. As previously 

mentioned, it is the least sensitive of the 3 tests, which may explain why modest 

dopaminergic dysfunctions at 3 months may not have manifested themselves in this 

specific task (Kelm-Nelson et al., 2015). Another group reported horizontal bar deficits 
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in a similar model 60 days following the induction of hyperglycaemia. However, these 

rats were submitted to a harsher streptozotocin regimen and also displayed substantial 

immobility in the open field test (Brambi lla Bagatini et al. , 2014). In contrast, although 

we did not perform this specific test, our rats did not manifest signs of hypolocomotion, 

on the contrary68 . 

Ail evidence considered, it appears that dopaminergic neurotransmission 

dysfunctions occur before a detectable loss of nigrostriatal neuron bodies or their 

projections in our hyperglycaemic rat mode!. Dampened tonic dopamine release and 

manifestations of motor deficits preceding neurodegeneration sustain this proposed time 

course. Nevertheless, a proper immunohistochemical appraisal of the density of striatal 

dopaminergic fibres at 3 months is warranted to confirm this. It would also be interesting 

to measure dopamine release at 6 months to assess the extent of neurotransmission 

deterioration once neurodegeneration is perceptible. However, the surgical procedures 

inherent to the microdialysis method are risky in our model at that time point, explaining 

why we didn ' t perform these analyses. 

5.2.4 Hyper-aggressive and hyper-sociable manifestations 

In addition to motor deficits highlighted in Chapter III, we discovered hyper

aggressive and hyper-sociable traits in our model of long-term hyperglycaemia. In fact, 

these results presented in Chapter IV constitute the first adequate account of social 

behaviour in hyperglycaemic rats obtained in neutral circumstances69. In addition, 

we report the first USV recordings ever performed in a diabetic model, whether 

chemical-induced, diet-induced or genetic. 

68 Observations of hyperactivity in our hyperglycaemic model were partly responsible for sparking our 
interest in their atypical social behaviour, related in Chapter IV. 

69 Ali other behavioural investigations in similar models relied on resident-intruder paradigms that may 
uncover submissive or dominant traits, but the y do not report normal interspecies interactions (File and 
Seth, 2003 ; Hilakivi-Clarke et al. , 1990; Meehan et al. , 1986). 
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5.2.4.1 A possible relationship with nigrostriatal dopaminergic neurodegeneration 

A rapid analysis of our results reveals much more frequent emissions of all types 

of USVs and manifestations of affiliation/exploration or aggression-related behaviours 

made by long-term hyperglycaemic rats. Covariance profiles between kinds of 

behaviours or between behaviours and USVs are also noticeably altered. Our results 

converge toward the conclusion that long-term hyperglycaemic rats are hyper-aggressive 

and hyper-sociable, displaying behaviours that do not coincide with the affective valence 

of their communications. Importantly, we found a correlation between the degree of 

striatal denervation and the severity of these phenotypes. Because the article presented in 

Chapter IV did not precisely address nigrostriatal neurodegeneration, we separated our 

rats into groups according to overall striatal denervation. However, as we know from 

Chapter III, this denervation is greatest in the dorsal area; separating the animaIs on the 

basis of dorsostriatal denervation still yields the same 3 groups (Figure 5.5). Therefore, 

although not within the scope of the article presented in Chapter IV, we can still say in 

the context of this thesis that hyper-aggressive and hyper-sociable manifestations 

alongside USV emissions were specifically associated with the degree of nigrostriatal 

dopaminergic neurodegeneration. 

Figure 5.5 
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Classification of long-term hyperglycaemic rats based on the degree 
of striatal denervation in multiple regions. 
In Figure 4.4, hyperglycaemic rats were already divided in groups 
according to total striatal denervation. Using the same animaIs in identical 
groups, we show here that dorsomedial and dorsolateral denervation are 
responsible for this total observed striatal denervation reported in 
Chapter IV. Ali data presented as means ± SEM. Asterisks indicate 
statistical differences between the HG group and CTRL group 
(**p < 0.01). Refer to Chapters III and IV for methodological details. 
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5.2.4.2 A possible relationship with phasie and tonie dopaminergie 
neurotransmission 

Our findings raise the legitimate question of how dampened dorsostriatal 

dopaminergic neurotransmission can account both for a rise in motor deficits and for 

abnormal social reward-related behaviours. The link between insufficient tonic firing in 

the dorsal striatum and manifestations of motor deficiencies reported in our model and 

manifested in parkinsonian patients in the form of bradykinesia and rigidity is weil 

appreciated (Dreyer, 2014). However, the association between a loss of dopamine tone 

and increased reactivity to novel or rewarding elements in the environment is much less 

obvious. In fact, parkinsonian patients usually exhibit apathy or motivational deficits, 

which starkly contrast with the hyper-sociable and hyper-aggressive traits found in our 

model (Drui et al., 2014; Magnard et al., 2016). A challenge therefore emerges upon 

attempting to reconcile these two seemingly divergent behavioural manifestations in 

light of evidence of depleted dorsostriatal dopamine in our model of long-term 

hyperglycaemia. 

Identifying neuropathologies bearing similar social abnormalities is a sensible 

place to start in the aim of unravelling this daunting question. Our model quite 

noticeably exhibits archetypal behavioural features of attention-deficit hyperactivity 

disorder70
. This neuropathology is strongly associated with hyper-reactivity to novel 

elements in the environment, whether social or not, which can manifest itself in the form 

of inappropriate impulsivity, curiosity and aggression, both in animal models and 

in humans (Hopkins et al., 2009; Jhang et al., 2017; King et al., 2003; Ko et al., 2013 ; 

Rosa-Neto et al., 2005). Like Parkinson's disease, its pathophysiological underpinnings 

are tightly linked to dopaminergic dysfunction7 \ (Levy, 1991; 2004; Sikstrom and 

Soderlund, 2007). Recent studies have slowly begun to extricate the neuroanatomical 

loci implicated in this disease, and the dorsal striatum and substantia nigra pars 

compacta have emerged among the most important regions. Indeed, patients with 

70 The highly complex epidemiological relationship between Parkinson ' s disease and attention-deficit 
hyperactivity disorder is discussed in a short commentary provided in Appendix D. 

71 In fact, the dopamine reuptake inhibitor methylphenidate remains the benchmark treatment. 
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attention-deficit hyperactivity disorder present an altered nigral morphology (deI Campo 

et al., 2013; Romanos et al., 2010). In addition, others have reported diminished tonic 

and enhanced phasic dopaminergic neurotransmission in the dorsal striatum of these 

subjects (Badgaiyan et al., 2015; Sikstrom and Soderlund, 2007). 

This last piece of evidence provides important insight into what may occur in our 

modei of long-term hyperglycaemia. There is cause to believe that low dopamine 

tonicity, or background noise, favours the saliency of phasic signaIs. As previously 

stated, the dorsal striaturn is normally submitted to higher noise-to-signal ratios than the 

ventral striatum 72, owing to the marked pacemaking activity of nigrostriatal neurons 

(Dreyer, 2014; Zhang et al., 2009). In a context of partial tonic depletion, signais 

provided by phasic dopamine are overstated when apposed to a diminished background 

of tonic noise, and also by means of a compensatory upregulation of postsynaptic 

dopamine receptors 73. However, when dopaminergic denervation is substantial, as m 

Parkinson's disease, neither phasic nor tonic dopaminergic neurotransmission IS 

properly fulfilled, giving rise to motor symptoms and loss of hyper-reactivity, or even to 

the apparition of apathy (Dreyer, 2014). On this basis, we can carefully submit to the 

idea that our hyperglycaemic paradigm yields a model that is sufficiently denervated to 

allow the timely overlap between a moderately hypotonic phenotype responsible for 

subtle motor deficits and a relative hyperphasicity accounting for social hyper-reactivity. 

We could suppose that if the nigrostriatal pathway had undergone greater levels of 

degeneration, our model would have more closely resembled the apathetic, motor

deficient parkinsonian phenotype. Noteworthy, proper demonstrations of enhanced 

dorsostriatal phasic signalling are warranted to confirm this, and would require the 

employment of methods allowing the infrasecond detection of dopamine transients, 

72 In fact, the low noise-to-signal ratio in the ventral striatum is conducive to proper phasic signalling by 
ventral tegmental area neurons, which underlies the mesocorticolimbic pathway's prominent role in 
encoding reward saliency and value. 

73 Recently emerged complementary evidence in humans and rodents supports a role for nigrostriatal 
hyperphasicity in behavioural alterations. In particular, self-driven curiosity, motivation, and 
aggression-related behaviours, ail applicable to social settings, are enhanced by phasic nigrostriatal 
dopaminergic neurotransmission (Di Domenico and Ryan, 2017; Rossi et al., 2013; Skibsted et al., 
2017). 
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for instance fast-scan cyc1ic voltarnrnetry or electrophysiological techniques (Hauber, 

2010; Schultz, 2010; Segovia et al., 2011; Wightman and Robinson, 2002). 

5.2.5 Effects attributable to hypoinsulinaemia 

To obtain a long-term hyperglycaemic phenotype, rats were rendered permanently 

hypoinsulinaemic. Given insulin's highly complex roles in the healthy and diseased 

CNS, extensively reviewed elsewhere (Blazquez et al. , 2014; Ghasemi et al., 2013 ; 

Gray et al., 2014; Porte et al., 2005), our challenge arises upon attempting to pick apart 

the effects attributable to hypoinsulinaemia or hyperglycaemia in the multiple neuronal 

and behavioural alterations observed in our mode!. 

5.2.5.1 Insulin in neurodegeneration 

As described in section 1.2.2, insulin is not required for glucose transport in the 

brain parenchyma or in most resident cells. Nevertheless, this hormone is ubiquitous in 

the CNS where it mediates developmental, differentiation, plasticity and survival 

signaIs. In a normal setting, insulin 's concentrations are highest in the pons, medulla and 

hypothalamus, and lowest in the occipital cortex and thalamus (Banks et al., 1998), 

our brain regions of interest falling within the average. As well, the insulin receptor is 

also widely expressed throughout the CNS, especially so at the neuronal surface 

(Havrankova et al. , 1978a; Hill et al. , 1986; Schulirigkamp et al., 2000; Unger et al., 

1991), and possesses similar kinetic properties to its peripheral counterpart (LeRoith 

et al. , 1988; Zahniser et al., 1984). Insulin signalling in neurons is quite similar to that in 

peripheral cells and leads to the activation of PI3K1Akt and RAS-extracellular signal

related kinase (ERK) pathways responsible for the stimulation of synaptic plasticity and 

gene transcription, among many other effects (Figure 5.6). By modulating these 

pathways, it is generally accepted that insulin acts as a neurotrophic factor, 

promoting the survival of neurons. Accordingly, several demonstrations of insulin 's 

neuroprotective competences have been carried out in vitro, for instance in settings of 

excitotoxicity or oxidative stress (Duarte et al., 2006; Kim and Han, 2005; Ribeiro et al., 
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2014; Sun et al., 2010). In vivo, near-direct application of insulin on the CNS, 

via intranasal or interacerebroventricular treatments, are highly effective in promoting 

various aspects of neuronal health, as demonstrated in a rat model of Parkinson's disease 

(Haas et al., 2016; Pang et al., 2016) . 

Figure 5.6 
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Overview of insulin and insulin-Iike peptide signalling in the brain. 
In the periphery as in the brain, insulin and insulin-like peptides bind 
3 kinds of receptors: the insulin receptor (IR), insulin-like growth factor 
receptors (IGFIR and IGF2R), and hybrid receptors. Insulin preferentially 
binds the IR but can also bind IGFIR or hybrids. In the central nervous 
system (CNS), insulin and insulin-like peptides are produced locally or 
provided by the circulation. Insulin transport across the blood-brain 
barrier is not weil understood. Focusing on insulin, its action on receptors 
triggers canonical pathways via the insulin receptor substrate that lead to 
a plethora of cellular changes favouring plasticity and differentiation. 
4 EBP l , eIF 4 E-binding protein 1; ELK l , ETS-like transcription factor; 
ERKs, extracellular signal-related kinases; FOXO, forkhead box 0 ; 
GS3K, glycogen synthase kinase 3; IGF, insulin-like growth factor; 
IGFBF and IGFBP, insulin-like growth factor binding proteins; IRS, 
insulin receptor substrate; LRP1, low-density lipoprotein receptor-related 
protein 1; PLC, phospholipase C. (From Benarroch, 2012.) 
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Although the neuroprotective competences of in situ insulin treatment are 

undeniable, the abovementioned reports do not directly address the possible harmful 

effects of hypoinsulinaemia pertinent to our project. Other studies attempting to 

demonstrate that neuronal death directly ensues from hypoinsulinaemia employ 

peripheral insulin administration to reverse cellular or structural damage induced by 

streptozotocin treatments in the CNS of rodents 74 (Hung et al., 2014; Moreira et al., 

2005, 2006; Ramanathan et al., 1999). However, they do not take into account the 

various peripheral benefits exerted by this hormone replacement therapy, for instance on 

glycaemic control. Such strategies exploiting organism-wide paradigms to establish 

causality between hypoinsulinaemia and CNS neuronal death are based on the 

misconception that Intracerebral insulin is solely provided from the circulation, 

itself supplied by the pancreas. As a matter of fact, insulin concentrations are 

considerably greater in the brain parenchyma than in the plasma, and are unexpectedly 

upregulated in hypoinsulinaemic, hyperglycaemic streptozotocin-treated rats (Banks 

et al., 1997b; Gupta et al., 1992; Havrankova et al., 1978a, 1978b, 1979) (Figure 5.7). 

In support of this, insulin receptors are modulated in the periphery but not in the brain 

of streptozotocin models (Pacold and Blackard, 1979; Pezzino et al. , 1996). 

These preliminary findings led to the discovery that, besides being taken up through the 

blood-brain barrier (Banks et al., 1997 a; Margol is and Altszuler, 1967; Woods and 

Porte, 1977), insulin is synthesized by neurons within the mammalian brain (Birch et al. , 

1984; Deltour et al., 1993; Devaskar et al., 1994; Dom et al., 1983; Frolich et al., 1998; 

Mehran et al., 2012; Molnar et al. , 2014; Schechter et al., 1994; Young, 1986). 

Importantly, one group demonstrated that high glucose conditions enhance insulin 

production by cortical neurons (Molnar et al., 2014), which may be a mechanism to 

maintain appropriate Intracerebral concentrations of insu lin when pancreatic supplies 

plunge (Banks et al., 1997b; Gupta et al., 1992; Havrankova et al., 1979). As the 

aforementioned studies have not quantified insulin in the injured regions of the 

74 One group did c1aim to show that streptozotocin-induced hypoinsulinaemia to cause CNS injuries, 
albeit without cell loss, and to further uncover the protective effects of intranasal insulin treatments 
(Francis et al. , 2008). However, this article, along with 7 others from the same group on the sa me 
subject, was retracted in 2014. 
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CNS following its peripheral depletion, there is no way to assertively avow a direct 

negative influence of hypoinsulinaemia on neurons. 

54 • 
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Insulin content and binding in the brain of streptozotocin-treated 
rats. 
Left, top: Brain insulin levels (black bars) are not diminished one month 
after the induction of hyperglycaemia by streptozotocin compared to 
control conditions (hatched bars), although serum insulin is clearly 
reduced (white bars). Left, bottom: Pancreatic insulin levels are depleted 
in the pancreas of streptozocin-treated rats. Right: Insulin binding does 
not differ between control (C, hatched bars) and streptozotocin-treated 
(S, black bars) rats across various brain regions. Hepatic insu lin binding, 
on the other hand, is greatly increased in hyperglycaemic rats, owing to 
an enhanced sensitivity of receptors. White bars indicate non-specific 
binding. (From Havrankova et al. , 1979.) 

Regarding our studies, we did not measure insulin concentrations in the brain 

regions of interest in our long-terrn hyperglycaemic mode!. However, faced with the 

unverified possibility that hypoinsulinaemia can trigger neuronal death, we re-exarnined 

our data in a similar manner to Chapter IV by factoring in our rats' insulin profiles. 

In our model, hypoinsulinaemia and glucose intolerance clearly do not correlate with 

the loss of nigrostriatal neurons (Figure 5.8). Yet, we strongly agree that future 

investigations would require quantifications of insulin and its receptor in targeted brain 

reglOns to corroborate hypoinsulinaemia' s apparent lack of influence on 

neurodegeneration in our mode!. 
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Nigrostriatal dopaminergic neurodegeneration in relation to the 
degree of hypoinsulinaemia or glucose intolerance. 
Streptozotocin-treated 6-month hyperglycaemic rats were classified 
according to the degree of hypinsulinaemia (A, B) or glucose intolerance 
(C, D). Numbers of TH-positive neurons in the substantia nigra pars 
compacta were related to the degree of hypoinsulinaemia (A) or glucose 
intolerance (C): no correlation is observed between both variables in these 
circumstances. Similarly, the density of TH-positive fibres in the various 
regions of the striatum were related to the degree ofhypoinsulinaemia (B) 
or glucose intolerance (D), and no association is found. All data presented 
as means ± SEM. Asterisks indicate statistical differences between the 
LOW or HIGH subgroups within the HG group and the CTRL group 
(*p < 0.05, **p < 0.01 , ***p < 0.001). Refer to Chapters III and IV for 
methodological details . 

5.2.5.2 Insulin in behaviour 

Not only is insulin endowed with neurotrophic competences, it is a potent 

regulator of behaviours such as feeding, reward valuation, cognition and memory 

(Anthony et al., 2006; Benedict et al., 2004, 2007; Craft et al., 1996; Hallschmid et al., 

2008; Khanh et al., 2014; Reger et al. , 2008). Indeed, intracerebroventricular or 

intranasal administration of insu lin reduces food intake, Improves memory, 
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and ameliorates cognitive performances in humans and rodents (Babri et al. , 2007; 

Benedict et al., 2004; Haj-ali et al. , 2009; Park et al., 2000; Stockhorst et al. , 2004). 

Under physiological circumstances, postprandial peripheral insulin most significantly 

regulates the hypothalamus, directly at the level of the median eminence devoid of 

blood-brain barrier protection, where it normally conveys satiety signais. Ail of these 

regulatory effects, wh ether physiological or exogenous, are mediated by insulin ' s ability 

to promote neuronal plasticity, but also by its modulatory role on neurotransmission 

itself (Gupta et al. , 1992; Ohtani et al., 1997). An emerging and important 

neurotransmitter on which insulin exercises its control is striatal dopamine. Granted the 

central position it holds in our project, we will focus here on the relationship between 

insulin75 and mesostriatal (nigrostriatal and mesolimbic) dopaminergic signalling, 

especially pertaining to ensuing effects on food intake behaviours, which are overtly 

altered in streptozotocin-treated models. This will allow us to draw parallels with the 

abnormal behaviours we uncovered in our hypoinsulinaemic, hyperglycaemic rat mode!. 

lnsulin ' s effect on the midbrain is primarily indirect. By inhibiting neuropeptide Y 

/GABA/agouti-related protein (NPY/GABA/AgRP or NGA) neurons and by activating 

pro-opiomelanocortinlcocaine and amphetamine regulated transcript (POMC/CART) 

neurons, both located in the arcuate hypothalamus, insulin allows for the stimulation of 

anorexigenic neurons and the silencing of orexigenic neurons (Abizaid et al. , 2006; 

Cone et al. , 2005; Morton et al. , 2006) (Figure 5.9). The sum of these effects converges 

toward decreased food intake and increased catabolism. Pertinent to our project, 

orexigenic neurons in the lateral hypothalamus innervate many targets including 

midbrain dopaminergic neurons in the ventral tegrnental area and the substantia nigra 

pars compacta (Sakurai et al., 1998). lmpeding orexigenic signaIs onto midbrain neurons 

leads to decreased dopaminergic neurotransmission in the striatum and diminished food

seeking behaviours. Although insulin ' s effects are broadly conveyed to mesostriatal 

circuits, dopaminergic neurotransmission in the dorsal striatum appears to be essential 

for feeding, whereas signalling to the nucleus accumbens plays only a secondary role in 

75 In an attempt to simplify this part of the di scussion, we will disregard other hormonal changes that occur 
in our model, namely the depletion of leptin and the rise in ghrelin, which more or less mimic the effects 
of insulin on behaviour (see for review Palmiter, 2007). 



262 

modulating food anticipation behaviours (Baldo and Kelley, 2007; Cannon et al., 2004; 

Drago et al. , 1994; Salamone and Correa, 2002; Ungerstedt, 1971). 

Figure 5.9 
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Insulin 's action on the hypothalamus. 
The arcuate nucleus is directly exposed to blood-bome hormones, 
as it is located at the level of the median eminence devoid of the 
blood-brain barrier. As such, insulin has a direct effect on the two 
principal populations that dwell therein. Neuropeptide Y (NPY)/gamma
aminobutyric acid (GABA)/agouti-related protein (AgRP) neurons 
(NGA) neurons innervate the paraventricular nucleus (PVN) and 
inhibit anorexigenic neurons. Its projections onto orexigenic neurons 
of the lateral hypothalamic area (LHA) rather activates them. 
Pro-opiomelanocortin/cocaine and amphetamine regulated transcript 
(POMC/CART) neurons innervate the same targets but have opposite 
effects than NGA neurons. Orexigenic and anorexigenic neurons project 
to the nucleus of the solitary tract (NTS), thereby regulating food intake. 
Since insulin inhibits NGA neurons and stimulates POMC/CART ones, 
its sum effect is to inhibit food intake and promote energy expenditure. 
Not shown here are the LHA's projections to the midbrain. GSHR, 
growth hormone secretagogue receptor or ghrelin receptor; INSR, insulin 
receptor; LepR, leptin receptor; MC4R, melanocortin 4 receptor; a-MSH, 
alpha-melanocyte-stimulating hormone; YIR, neuropeptide Y receptor 
y 1. (From http: //www.cellbiol.net/ste/alpobesity2.php.) 
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In this vlew, one wou Id expect a hypoinsulinaemic setting, resulting from 

fasting or streptozotocin treatments for instance, to lead to the disinhibition of orexigenic 

neurons and the enhancement of midbrain dopaminergic neurotransmission; 

the consequential rise in striatal dopamine, encoding the subjective reward value of 

food, would compel the organism to feed itself, as it is a goal-directed behaviour. In fact, 

hyperphagia is archetypal in the spectrurn of abnormal behaviours displayed by 

streptozotocin-treated rodents, confirmed by our own findings (Figure 1.33). However, 

what actually occurs at the level of striatal dopamine is highly inconsistent with these 

theoretical extrapolations. 1ndeed, almost ail studies 76 performed in genetic or chemical

induced hypoinsulinaemic models, including ours (Figure 3.31), report low basal levels 

of striatal dopamine (Bradberry et al. , 1989; Chen and Yang, 1991 ; Crandall and 

Femstrom, 1983; Kono and Takada, 1994; Kowk and Jurio, 1986; Kwok et al. , 1985; 

Lim et al., 1994; O'Dell et al. , 2014; Saller, 1984; Samandari et al. , 2013; Trulson and 

Himmel, 1983). Once again, we are faced with ostensibly irreconcilable and opposite 

outcomes evoked by - what appears to be - one factor. 

To date, no adequate explanation has accounted for this dualism. However, we and 

others propose that, since striatal dopamine transients have ne ver been measured in 

hypoinsulinaemic models by techniques sensitive enough to detect infrasecond events, 

it is probable that we are missing very important pieces of the puzzle pertaining to 

phasic neurotransmission77 (Palmiter, 2007, 2008). Sorne indications of a role for phasic 

firing that could explain overt feeding behaviours in hypoinsulinaemic subjects despite 

low levels of dopamine are provided by experiments employing psychostimulants. 

Indeed, streptozotocin-treated rodents manifest a greater sensitivity to addictive 

substances like nicotine78 (O 'Dell et al. , 2014; Samandari et al. , 2013). In addition, 

76 Sorne reports have shown enhanced dopamine levels in the brains of streptozotocin-treated rodents, 
but today the consensus remains that concentrations are in fact lower in the striatum (S itar et al., 1986; 
Gupta et al., 1992; Lackovié et al. , 1990). 

77 One study did measure phasic dopamine in striatal neurons by fast-scan cyclic voltammetry, but data 
were obtained in organotypic slices to which insulin was applied (Stouffer et al. , 2015). As we know, 
it is not clearly known whether peripheral insulin may have a direct effect on regions protected by the 
blood-brain barri er. 

78 In fact, smoking rates in diabeti c pati ents are higher than in the general population (Bishop et al. , 2009). 
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amphetamine and apomorphine, which flood the striatum with dopamine thereby raising 

the noise-to-signal ratio, exert a hypophagic effect on fasted, hypoinsulinaemic rats that 

would normally engage in feeding (Cannon et al., 2004; Sotak et al., 2005). Moreover, 

knocking out DAT, especially important in clearing phasic dopamine transients from the 

extracellular space, enhances motivation for food rewards and yields a hyperphagic 

phenotype (Cagniard et al., 2006; Pecifia et al., 2003). Without providing a clear answer, 

these data do converge toward a heightened production of or sensitivity to phasic 

dopamine bursts in streptozotocin-treated models like ours. 

This proposai bears significant implications for other behaviours mediated by 

mesostriatal dopaminergic neurotransmission. We observed marked hyper-sociable and 

hyper-aggressive behaviours in our long-term hypoinsulinaemic, hyperglycaemic rats, 

which we explained by a possible drop in the noise-to-signal ratio. Admittedly, it is 

unlikely that the sole decrease in tonic firing in the dorsal striatum arising from 

hyperglycaemia-induced nigrostriatal neurodegeneration could have accounted for a 

low-enough noise-to-signal ratio conducive to these hyper-reactive behaviours. 

Chronic hypoinsulinaemia favouring enhanced mesostriatal dopamine phasicity may 

well have participated in reducing this ratio. However, our data presented in Chapter IV 

evokes a lack of correlation between the degree of hypoinsulinaemia or glucose 

intolerance and the intensity of behavioural abnormalities (Figure 4.5 and Figure 4.6). 

This can either signify that long-term hypoinsulinaemia do es not hold a role in 

heightening phasicity and hyper-reactivity, or that the low and high subgroups were not 

different enough to yield a perceptible gradation of behaviour. We reiterate here the 

need for experiments addressing phasic dopamine transients in hypoinsulinaemic rats. 

At any rate, substantial gaps remam m our understanding of the role held by 

insulin, or lack thereof, on the CNS. Investigations are warranted to explain low 

dopamine levels in hypoinsulinaemic rats, apparent even after a few days of treatment 

and, in our model, observed before nigrostriatal neurons had perished at 3 months. 

It would be imprudent not to contemplate the prospect of a plethora of peripheral and 
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central substances modulating the effects of insulin on the brain, likely exerting a 

compensatory effect in times of induced depletion. 

5.2.6 Improving the model 

The nicotinamide-streptozotocin rat model of long-term hyperglycaemia has 

allowed us to verify our main hypothesis, but still leaves certain questions pending. 

Uncertainties remain over the influence that a systemic defect can have on the CNS, 

a caveat shared by ail experimental strategies employing complex peripheral disease 

models and attempting to ascribe noxious effects on the brain to a single pathological 

component. In our model , much more than a single variable is tampered with; 

thus, while it is tempting to attribute selective nigrostriatal dopaminergic 

neurodegeneration solely to a hyperglycaemic state, we can truly only interpret that the 

sum of physiological disruptions arising from nicotinamide-streptozotocin injections in 

our rats maintained over 6 months leads to the preferential death of this subpopulation of 

neurons. It remains that this multilayered physiological condition constitutes a stress 

conducive to CNS oxidative stress to which nigrostriatal neurons were manifestly more 

susceptible. Demonstrations achieved in the introduction section firmly support the 

legitimacy of this basis upon which hinges our conclusion. 

The literature offers a collection of astutely constructed experiments aiming to 

circurnvent this problem. Ideally, the need for tampering with peripheral hormones 

should be avoided in creating a high glucose environment. In addition, concentrations of 

glucose should be controlled between individuals. In this view, it is reasonable to 

propose verifying the selective degeneration of certain populations of neurons 

throughout the brain by chronic infusions of glucose via the intracerebroventricular route 

(Park et al. , 2009). Worthy of mention, glucose infusion in the brain al one can have 

peripheral effects by modulating central homeostasis hubs, thus pilot studies would be 

required to identify these outcomes (Carey et al., 2013 ; Park et al., 2009). In the same 

vein, retrodialysis, described earlier, could address certain issues with widespread effects 

of high or low circulating levels of glucose or insulin on behavioural endpoints 
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(see for review H6cht et al., 2007). Although this has never been attempted before, 

glucose could easily be administered directly in the brain regions of interest following 

a chronic daily regimen. Behaviour or neurotransmission responses could then be 

measured in acute or chronic paradigms. This would dissipate any doubt regarding the 

neuroanatomical loci responsible for the behavioural effects observed. Advantageously, 

in situ measurement of oxidative stress could also be conducted in parallel using the 

salicylate trapping method, which implies administering salicylic acid through the 

microdialysis cannula and measuring stable oxidized adducts by high-performance 

liquid chromatography (Mertens et al. , 20 Il) . 

These kinds of experiments are appealing on the account that they specifically 

target the CNS or precise regions therein, allowing for the identification of clear-cut 

causal relationships between high glucose levels, oxidative stress, neuronal death and 

behavioural outcomes. However, since such experiments imply maintaining a chronic 

cannula in the CNS of rodents, they cannot be performed for more than a couple of 

months on end. A methodological compromise would dwell in the employment of 

a more moderate peripheral phenotype via the maintenance of appreciable levels of 

circulating insu lin without sacrificing the hyperglycaemic condition. To that end, 

Femyhough ' s group designed a strategy utilizing streptozotocin-treated rodents injected 

with subcutaneous insu lin implants into the nape of the neck that can be renewed 

monthly (Aghanoori et al. , 2017; Akude et al. , 2011). Using a small implant limits the 

amount of insulin dispensed and yields a low-maintenance model of long-term 

hyperglycaemia that do es not display overt hypoinsulinaemia. Peripheral alterations are 

accordingly less pronounced than in the classic streptozotocin model, reducing the risk 

of inferring inaccurate associations between hyperglycaemia and CNS affections. 

5.3 Therapeutic perspectives 

This thesis addressed the selective vulnerability of dopaminergic neurons to 

hyperglycaemia-induced oxidative stress. In the process, we touched upon Parkinson 's 

disease and diabetes whose pathophysiological facets and epidemiological relationship 
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are directly linked to the core question. We can extend the significance of our findings 

to these pathologies. 

5.3.1 Implications for diabetic patients 

Diabetic patients present highly heterogeneous clinical profiles, on account of high 

inter-individual variations in lifestyle, in disease management and in the presence of 

additional pathological conditions. However, whether they suffer from type 1 or type II 

diabetes mellitus, medical authorities have reached the consensus that glycaemic control 

constitutes the topmost priority for the prevention of severe comorbidities. Our data 

provide further support for this approach by demonstrating that uncontrolled 

hyperglycaemia can, in the long term, lead to dopaminergic neurodegeneration. 

Importantly, hyperglycaemia on its own was sufficient to cause this modest neuronal 

death. 

The importance of glycaemic control emerged from large trials that marked a 

milestone in diabetes research by demonstrating that tight blood glucose management 

could delay the ons et of complications (Diabetes Control and Complications Trial 

Research Group, 1993; Holman et al., 2008; Nathan et al. , 2005; UK Prospective 

Diabetes Study Group, 1998). Most striking was the discovery that these benefits 

persisted long after efforts of glycaemic control had been abandoned with respect to a 

cohort of patients who had never undergone tight blood glucose management. 

This phenomenon is termed "glycaemic memory" and is thought to at least partially 

arise from oxidative damage to mitochondrial DNA that is vulnerable to permanent 

mutations leading to irreversible respiratory defects (Giacco and Brownlee, 2010). 

Seeing as certain neuronal subtypes are intrinsically susceptible to oxidative stress, 

as we have demonstrated here, there is an imperative need to stress the importance of 

early blood glucose control in diabetic patients: the mindfulness of practitioners has 

accordingly evolved in this direction. Because the existence of a glycaemic memory 

implies that damage appearing at any moment of the disease is irretrievable and 

accumulative, the current state of the field is more actively striving for the development 
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of therapies that could reverse cellular defects thought to underlie this phenomenon 

(Giacco and Brownlee, 2010; Lovre and Fonseca, 2015; Misra and Bloombarden, 2018). 

One legitimate question remams concernmg the relative risk that constitutes 

pre-existing diabetes for the development of Parkinson's disease. As previously stated, 

certain epidemiological studies did not find diabetic patients to present an increased 

chance of developing this neurodegenerative disease (Becker et al., 2008; Cereda et al., 

20 Il; Driver et al., 2008). However, the sum of the other positive reports converges 

toward a mode st two-fold increase in this risk (Arvanitakis et al., 2007; Cereda et al., 

2012; Hu et al., 2007; Klimek et al., 2015; Xu et al., 2011). It is possible to surmise that 

the life expectancies of patients with type 1 or II diabetes, respectively shortened by as 

much as 15 or 5-10 years (Canadian Diabetes Association, 2009), may account for these 

moderate findings 79. If diabetic patients lived longer, one could expect the incidence of 

age-related neurodegenerative disorders like Parkinson's disease to be substantially 

superior than in the general population. Bearing in mind the idiopathic and multifaceted 

nature of Parkinson's disease, uncontrolled glycaemia may interact with other risk 

factors besides aging to additively or synergistically hasten the ons et of oxidative stress

induced neurodegeneration; this is plausibly what is picked up by epidemiological 

studies. 

5.3.2 Implications for parkinsonian patients 

The keynote finding of our studies provides that hyperglycaemia can lead to the 

selective degeneration of the nigrostriatal pathway. On the one hand, these results 

support the hypothesis that nigrostriatal dopaminergic neurons present a characteristic 

phenotype that rend ers them susceptible to what we suspect is oxidative stress. On the 

other, they warn of a possible additional risk factor, especially present in diabetic 

patients, which could contribute to the development of Parkinson's disease. 

These results are important in light of persisting doubts regarding the significance of 

79 0ther explanations for the heterogeneity of these data could be variations in the type of studies 
employed (case control vs. cohort), the diagnosis of Parkinson's disease and diabetes (medical 
examination vs. self-reported) and, as previously stated, the sizes of the populations evaluated. 
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reports stating that parkinsonian patients display elevated glycaemias (Boyd et al. , 1971 ; 

Cereda et al. , 2012; Lipman et al., 1974; Sandyk, 1993; Santiago and Potashkin, 2015). 

It is unclear whether hyperglycaemia appears after the onset of the disease or if it 

manifests itself upstream; a direct corollary of the latter would be that hyperglycaemia 

may contribute to the development of Parkinson's disease. Our work offers strong 

support in favour of this second option, without however refuting a possible 

bidirectional relationship between parkinsonian neurodegeneration and blood glucose 

control (Brunerova et al. , 2013). 

For parkinsonian patients who already suffer from this disease, war must be waged 

on further nigrostriatal dopaminergic neurodegeneration; sorne rather prioritize tackling 

the deterioration of their syrnptoms, which is not always directly linked to further 

neurodegeneration. Our findings, though not obtained in a parkinsonian model (Choi 

et al. , 2005; Morris et al. , 2010; Rotermund et al., 2014), clearly expose the hazard that 

uncontrolled hyperglycaemia represents for the survival of nigrostriatal dopaminergic 

neurons. Moreover, other studies provide evidence supporting a possible link between 

diabetes and the severity of the syrnptoms in Parkinson's disease (Cereda et al., 2012; 

Schwab, 1960). Likewise, in older persons without Parkinson's disease, parkinsonian 

syrnptoms like gait disturbances are more intimately correlated to existing diabetes 

(Arvanitakis et al., 2007). Considering the elevated rates of hyperglycaemia in 

parkinsonian patients (Barbeau et al., 1961 ; Boyd et al., 1971; Cereda et al., 2012 ; 

Lipman et al. , 1974; Sandyk, 1993), exercising a tighter glycaemic control constitutes an 

achievable target to prevent the exacerbation of both neurodegeneration and worsening 

of syrnptoms. 

Among the most recent clinical advances, anti-diabetic drugs have emerged as 

strong candidates for the development of disease-modifying therapies. A sharp interest 

in these substances surfaced following reports evoking a decreased risk of 

developing Parkinson 's disease in diabetic patients employing such drugs. Specifically, 

the incidence of Parkinson's disease was found to be lower in diabetic patients treated 

with metformin or thiozolidinediones, two glucose-lowering medications (Brauer et al., 



270 

2015; Wahlqvist et al. , 2012). For example, CUITent clinical trials are investigating the 

anti-diabetic and glucose-Iowering drug exenatide, a glucagon-like peptide 1 (GLP-l) 

receptor agonist that largely mimi cs insulin's action (see for review Athauda and 

Foltynie, 2017). An initial open label trial carried out in 44 medicated parkinsonian 

patients showed that twice-daily injections of exenatide for 12 months improved 

ovemight off-medication motor symptoms and dementia, rated according to the unified 

Parkinson's disease rating scale and the Mattis dementia rating scale, respectively 

(Aviles-Olmos et al. , 2013). This trial employed a washout design wherein exenatide 

treatments were ceased at 12 months and patients were re-evaluated at later time points. 

Remarkably, the benefits observed at 12 months still held at 14 (Aviles-Olmos et al., 

2013) and 24 months (Aviles-Olmos et al. , 2014). This encouraged the elaboration of 

subsequent double-blinded, placebo-controlled trials once aga in designed to include a 

washout period and to measure symptoms in off-medication patients. The benefits of 

exenatide were reiterated and supplementary DaTscan neuroimaging results, which 

conveyed information on the amount of presynaptic DAT left in the striatum of patients, 

confirmed a significant positive difference between treated and control parkinsonian 

patients (Athauda et al., 2017). 

These results are very encouragmg and are pavmg the way for further 

investigations that will perhaps address the mechanistic underpinnings of exenatide's 

efficacy. In this regard, it is surprising that glycaemic profiles were not drawn 

throughout these clinical trials . We can nonetheless suppose that glycaemic control was 

improved in parkinsonian patients based on robust evidence provided by trials in 

diabetic patients (Bergenstal et al., 2010; Buse et al. , 2009). However, a link between 

improved glycaemia and symptomatic amelioration in these investigations cannot be 

presumed. Indeed, GLP-l and exenatide are neurotrophic factors, akin to insulin 

(Athauda and Foltynie, 2016b; Perry et al., 2002). Exenatide may therefore wield its 

disease-modifying effects independently of glycaemic ameliorations. It remains that our 

data grant indirect evidence of the benefits of reducing hyperglycaemia, which we 

believe is a contributing factor in the efficacy of exenatide treatments in Parkinson 's 

disease. 
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5.3.3 Employing resveratrol to therapeutic ends 

There is compelling evidence to suggest that oxidative stress occuples a 

central position in both diabetic complications and nigrostriatal dopaminergic 

neurodegeneration in Parkinson's disease. Accordingly, antioxidants like the polyphenol 

resveratrol have been the object of much scientific and public interest for their 

therapeutic potential, either as complementary or preventive treatments. Although not 

the aim of this thesis, we previously introduced the idea of utilizing resveratrol as a 

neuroprotective strategy. The many sensitive elements that impinge on the employment 

of polyphenols in the CNS are reviewed in Appendix B. 

5.4 Concluding remarks 

The etiopathogenesis of Parkinson 's disease remains largely enigmatic, in part 

due to our lack of comprehension regarding the seemingly selective vulnerability of 

the nigrostriatal pathway to undergo degeneration, despite the neuroanatomical breadth 

of neuropathological manifestations in this illness. Ascending hypotheses grant a 

preeminent role to the existence of a particular phenotypic liability that characterizes 

neurons of the substantia nigra pars compacta and that may render them more sensitive 

to oxidative stress. In the aim of verifying the preferred susceptibility of nigrostriatal 

dopaminergic neurons to oxidative stress, we hired a strategy that employed high 

glucose conditions to induce the graduaI death of neurons in vitro and in vivo. For the 

first time, we provided robust evidence for the selective demise of the nigrostriatal 

pathway compared to mesocorticolimbic neurons over the course of 6 months of 

sustained hyperglycaemia, attended by alterations in glial profiles that indirectly 

supported a role for oxidative stress as a key conspirator in this neuronal death, further 

evinced by in vitro groundwork. Despite mode st neurodegeneration, hyperglycaemia 

evoked motor deficits strikingly reminiscent of parkinsonian motor symptoms. We also 

reported noticeably abnormal social behaviours in a hyperglycaemic mode l, which 

further informed us on a possible imbalance between phasic and tonic dopaminergic 

signalling arising from nigrostriatal neurodegeneration and, perhaps, hypoinsulinaemia. 
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These findings also direct our attention toward a rising need to better understand how 

diabetes may alter the quality of patients' social encounters. 

Across the se experiments, we demonstrated the various advantages that a long

term hyperglycaemic model presents, especial1y regarding the physiological significance 

of inducing a graduaI and moderate neuronal death without layering additional 

parkinsonian insults. Indeed, by revealing that hyperglycaemia is sufficient to induce 

nigrostriatal dopaminergic neurodegeneration, we lend vigorous support to rather 

modest epidemiological accounts of the relationship between pre-existing diabetes and 

the development of Parkinson's disease in later years. According to our findings, it is 

critical that the efforts recently deployed to tighten glycaemic control in diabetic patients 

be firmly maintained. We further wish to express the tangible risk that an inappropriate 

glycaemic health may represent for the survival of remaining nigrostriatal dopaminergic 

neurons in the CNS of parkinsonian patients. 

From this wealth of information, we can also fully appreciate the complexity of 

several dimensions specifie to the CNS that, in remaining unsettled, dwell at the core of 

numerous longstanding debates. There is a profound lack of clarity pertaining to the 

bond shared between the brain and the periphery, especially in pathological settings. 

In our project, this was apparent upon attempting to identify the elements responsible for 

neurodegeneration in a model presenting multifaceted peripheral alterations. 

Dopaminergic systems also exposed their intricate nature that emerged on our daunting 

venture to draw connections between neurodegeneration, dopamine functions and 

behaviour. Most evidently, our understanding of the se pending issues is at its infancy, 

but formaI identification of these chasms in our knowledge draws us closer to their 

unravelling. 
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Full review article in French: La neuro-inflammation : Dr Jekyll ou Mr Hyde? 

Abstract 

Sheltered in a bony cage, populated by cells with little regenerative potential, 

the central nervous system (CNS) could likely not withstand classic inflammation 

without risking major sequelae. As a consequence, it had to develop an original way to 

provide surveillance, defence and reparation, which relies on both, the complex 

architecture of the periphery-nervous parenchyma exchange zones and the tightly 

regulated collaboration between all the cell populations that reside in or pass through 

the CNS. Despite its tight regulation, neuroinflammation is sometimes the cause of 

irreversible loss but it is also where the solution stands. The specific immune crosstalk 

that takes place in the CNS needs to be decoded in order to identify the best therapeutic 

strategies aimed at helping the CNS to restore homeostasis in problematic situations 

such as is the case in neurodegenerative disorders. This review deals with this double

edged sword nature of neuroinflammation. 

Résumé 

Enchâssé dans une cage osseuse, peuplé de cellules qui ont peu de pouvoir de 

régénération, le système nerveux central (SNC) ne peut supporter une réaction 

inflammatoire telle qu'elle se déroule en périphérie sans en subir de graves 

conséquences. Il lui a donc fallu développer une façon originale pour assurer 

surveillance, défense et réparation, qui repose à la fois sur l'architecture complexe des 

zones d'échange entre la périphérie et le parenchyme nerveux et sur la collaboration 

hautement contrôlée de toutes les cellules du SNC. Bien que parfois source de 

problèmes comme c'est le cas dans les maladies neurodégénératives, la neuro

inflammation est aussi porteuse de la solution. C'est de cette double nature dont il est 

ici question. 
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Introduction 

On a longtemps cru le système nerveux central (SNC) à l'abri de la majorité 

des effets dévastateurs de la réaction inflammatoire. On le disait immunoprivilégié, 

protégé qu'il était des agressions étrangères par la barrière hémato-encéphalique (BHE) 

(Figure 1) et camouflé du système immunitaire par le peu d'expression des produits du 

complexe majeur d'histocompatibilité (CMH) et l'absence de drainage lymphatique. 

Mais, au cours de la dernière décennie, l'accumulation des évidences a fait s'écrouler le 

paradigme. S'il n'y a maintenant plus de doute quant à l' existence d'une réaction 

inflammatoire dans le SNC et quant à l'utilisation du langage commun de cytokines et 

de chimiokines pour contrôler ses actions [1], force est aussi de constater que la réaction 

inflammatoire du SNC se comporte de façon suffisamment différente de son homologue 

périphérique pour se mériter l'appellation particulière de «neuro-inflammation ». 

Cette façon unique de gérer l'inflammation et les étapes premières de la réaction immune 

à travers un drainage soluble plutôt que cellulaire tient aux propriétés particulières des 

différentes composantes du parenchyme nerveux [pour revue, voir 2]. La notion de 

privilège, toujours de mise, ne concerne donc plus que le parenchyme, excluant ainsi les 

zones limitrophes que sont les espaces péri vasculaires, les méninges et les ventricules. 

Privilège bien relatif car, aussi différente soit-elle de l'inflammation, la neuro

inflammation demeure un pari risqué pour un tissu aussi fragile que celui du SNC si on 

s'en fie aux pertes fonctionnelles auxquelles on l'associe dans les maladies 

neurodégénératives telles que l'Alzheimer, la maladie de Parkinson ou la sclérose en 

plaques [3]. 

La reconnaIssance d'une perturbation interne est un prérequis essentiel à 

l'induction de la réaction inflammatoire. Cette reconnaissance est assurée par un 

ensemble de récepteurs, baptisés PRR (pattern-recognition receptors) , dont on connaît 

pour le moment une vingtaine de membres [4]. Ces PRRs peuvent être solubles, 

membranaires ou cytosoliques et reconnaissent tout autant les signatures moléculaires de 

classes de pathogènes (PAMPs pour pathogen-associated molecular patterns) que des 

molécules générées au cours de stress cellulaires autres qu ' infectieux (DAMPs pour 

damage-associated molecular patterns) . On compte parmi les DAMPs des protéines 
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agrégées, modifiées ou simplement mal repliées telles l' a-synuc\éine, la protéine Tau ou 

la ~-amyloïde qui, toutes, ont été associées à des maladies neurodégénératives. 

On compte aussi parmi les DAMPs de simples molécules comme l'ATP ou le glutamate, 

abondamment libérées dans le milieu lors de nécroses cellulaires au sein du SNC [5]. 

L'interaction des PAMPs/DAMPs avec leur récepteur induit une cascade de 

signalisation qui, en recrutant protéines adaptatrices et kinases, aboutit à l'activation de 

facteurs de transcription qui modifient de façon drastique le phénotype cellulaire. 

Cette modification se manifeste tant par l'acquisition de nouveaux récepteurs que par 

l'expression d'un éventai 1 de cytokines et de chimiokines qui, par des actions à la fois 

autocrines et paracrines, guident les cellules de défense au site de l'agression, permettent 

le déploiement focalisé des mécanismes de défense (phagocytose, production de dérivés 

toxiques de l'oxygène, apoptose) et préparent les étapes de la reconstruction. 

Dans le SNC, lorsqu'il est question d'inflammation, c'est la cellule microgliale, 

la cellule résidente à vocation immune du tissu, qu'on accuse d'emblée de 

débordements. L'accusation est d'autant plus facile qu'on la retrouve toujours dans 

les zones inflammées et, qui plus est, avec sa morphologie de cellule « activée» [6]. 

Cependant, au contraire de ce qu'on observe en périphérie où l'expression constitutive 

des PRRs est un attribut plutôt spécifique des cellules de la défense innée, on constate 

que, dans le SNC, les astrocytes, les oligodendrocytes et les neurones expriment leur 

propre répertoire de PRRs par lequel ils contribuent eux aussi à toutes les étapes de la 

neuro-inflammation (Tableau 1 et Figure 2) [4]. 
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Jonctions communicantes 

Lame basale 

Schématisation de la barrière hémato-encéphalique. 
La barrière hémato-encéphalique (BHE) empêche la pénétration de la 
grande majorité des agents et des cellules circulant dans le sang vers 
le système nerveux central (SNC). Elle est composée de cellules 
endothéliales, de péricytes, de la lame basale et de la glia limitans. 
Les cellules endothéliales recouvrent complètement la lumière des 
capillaires du SNC et son non-fenestrées, contrairement à la majorité 
des cellules endothéliales périphériques. Elles sont reliées entre-elles 
par des jonctions serrées constituées de protéines transmembranaires -
occludines, claudines, et JAM (junctional adhesion molecules) - ainsi que 
par des jonctions adhérentes assurées par l'interaction entre des 



394 

cadhérines_ Ces protéines transmembranaires sont liées au cytosquelette 
à l'aide de protéines adaptatrices, tantôt ZOI et Z02 (zonula occludens 
protéines 1 et 2), tantôt des caténines_ Quant aux péricytes, elles sont 
distribuées sur 20-30 % de la surface des cellules endothéliales et régulent 
leur différenciation et prolifération, De par les propriétés contractiles de 
leurs projections cellulaires qui entourent les cellules endothéliales, 
elles peuvent modifier le diamètre des vaisseaux sanguins en réponse à 
l'activité neuronale. De plus, la lame basale tapisse intégralement 
l'extérieur des péricytes et des cellules endothéliales. La lame basale 
assure un support physique pour l' arrimage et la migration de certaines 
cellules par l' expression d ' intégrines, mais agit également comme 
barrière contre le passage de cellules ou de macromolécules indésirables 
de par sa constitution matricielle. Finalement, la glia limitans recouvre 
> 99 % de la surface des capillaires du SNe. Les pieds astrocytaires qui la 
forment sont reliés entre eux par des jonctions communicantes et 
adhérentes. La glia limitans régule la morphologie et la perméabilité de la 
BHE en contrôlant l'expression de certaines protéines des cellules 
endothéliales, 

Tableau 1 

Rôles pro- et anti-inflammatoires des divers acteurs cellulaires du SNC dans 
la neuro-inflammation (suite à la page suivante) 

Arteur 
cellulaire 

Ctll""s Micro
Ilia •• 

Neurones 

Promotion de 'ca ,..uro ... inftCUftmotlon 

Adlon.& Fade"",lmpllqu.& 

uprenlon de cytokines pro+mflammo+ 
toires 

Expression de protéines membranolresl 
rétepteun/PRR 

ExpreSSion de chimloltlnes 

Polarisation des Th yers Thl 

Présentation d'antieènes soutenant 
,'activation d!$ cellul!$ Th activées 

Production de monoxyde d'azote 

Production de prostollandlne$ pro
inflammatOi res 

Induct ion de $trtU oxydont et mtrasatlf 

Facllitatton de la mllrahon d!$ c!lIule$ 
défense pérlphénques 

TNF-<l, IFN-r, Il-6, Il- Ill 

TlR, RAGE, lU- l , MAC- l, CRs, FcRjl 

CXClI , 2, 12 ; cm, s, 10, 19 

Il-12,ll- 23 

CMH classe Il, facteurs de coUlmulatlon 

iNOS 

COX-2 

ROS, RNS 

MMP 

Génération de molKules neurotollques Glu, acide quinohnique (100) 

SoutJen de l'immumté innée molécules du complément 

ProductIon de OAMP ATP, HMGa l, H5P 

Sécrétion de chlmiolcines 

Ex pression de PRR 

Génération de molécules neurotoxlqulS 

Skrétion de neurotransmetteurs pro
inflammatoires 

Production de monoxyde d'olote 

Focilitatton de la mlJfabon des cellules 
dt défense périphériques 

CXClIO, CCl21 

TLR 

Glu 

DA, substance P 

iN05 

MHP 

Inhibition de Ica neW"O-lnfla"'ftlClt'on 

Adlon.& fod_"'" impliqu'& 

Sécrétion de cyto&clntS anti · mflommo· 

toires 

ExpreSSion de protéines membronolresl 

récepteurs· 

Polarisation des cellules Th vers Tree 

Diminution de la production de NO por 

détournement de "Ara 

Production de Pfostoe'andlnes tons t,· 
tutins 

Exprtulon de facteurs neurotrophlqufS 

Inhibition de la prolifération des cel
lules T par détournement du Trp 

Inhibition des AAP 

Induction de l'opoptose des cellules 
défense périphériques et autoréplatlon 

Sécrétion de cytollines 

Sécrétion de chimiokines anti- inflam
matoires 

Expreuion de protéines membranaires 
Inhibant cellules immunitaires" 

Polorisation des Th vers Tre. 

Sécrétion de neurotransmetteurs et 

neuropeptides anti- inflammatoires 

Remodela,t de la matfl te. extracellu
laire 

1l-4, ll- IO,IFN-Il, TGF-Il 

C045, C041, CO 56 (NCA.I4), C091, 
C0200R, C0112, CX3CRI , TREM2, TSa, 
Fosl, Fos 

TGF-Il 

COX-I ou détriment de COX-2 

aONF, GONF 

100 

TIHP 

Fost, Fos 

Il-IO, TGF-p 

froctalkine soluble 

C022, COH, C056 (NCA.I4), C0200, froc
tollune, Fosl 

TGF-p 

GABA, VIP, NE, a -MSH, somatostotlRe, 
CGRP 

Protéo&1ycones 



Acte"r 
c.n.&loJ .. 

N.urones 

Astrocytls 

Olipdtndroqtes 

Promotion cie la neuro-fnftommation 

Adlono& Fact • ..,. Impllqu4io & 

Production de DAMP 

ExpreSSion de cytolnnes pro

Inflammatoires 

expression de prot~lnes membranairesl 
ricept.urs/PRR 

ATP, HMGBI, HSP, protéin .. mol rephées 
(protélnopothllS neurodéeénérotlvH) 

THF-a,IFN-y,ll-11I 

cxm, 2, 12; ecu, 5, 10, 19 

TLR, RAGE,ICAMI, CR 

Gin~ratlon de molécules n.urotoxlques Glu (diminution dt son intffnalisatlon) 

Présentation d'antilines soutenant 
"actrvation des c.llules Th adivNs ? 

Facilitation dl la mllrollon des cellules 

de déf .... p'''ph.''qu .. 

Production de monOlyde d'azote 

Soutien de l'immuniti InnH 

Production de DAMP 

Dédifférenciation tn rod,o/-,Ua-lilte 
ctlls 

Expression de PRR 

CMH classe Il, fad.urs d. costimulotton 

MMP 

INOS 

Molécules du comp~ment 

ATP, HMGBI, HSI' 

cm 

TlR 
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Inhibition de la neuro-Inflammation 

Adlono & FOd •• ". impllquh& 

upression de fadeurs neurotrophiques 

Induction de "opoptose des microllies 
et cellules défense périphériques 

Absence d'QcUvotion des cellules cyto

toxiques coa' 
Inhibition des cellules HK par activation 

du KIR 

Sécrétion de cytolunes ontt-Inflamma
toires 

uprtsSlon de prot~ntS membranaires 
Inhibant cellules Immunitaires 

Polarisation des lh nrS lItt 

Remodelact d.la matrlc, atlacellu
laire 

upression de fad.urs neurotrophiques 

Inhibition des MMP 

InductlOll de l'apoptoH des microl'ies 
et cellules défense plnphtriques 

Oécilfférenclotlon en radlal-I"a-/d,e 
(fils 

Sécrétion de cytolcines 

Expression de protéines membranai"s 
inhibant cellules immunitaires 

HGf, BONf, NTl, GOHF, CHTF 

Fosl 

Abs.nce de HLA A, BouC (CMH cl .... 
10) 

HLA G (CMH cl .... lb) 

IH, Il- ID, IFN-II, TGF-II 

Inhibiteurs du complément, CTlA-4 

TGF-II, atm 

BONF, GONf, HGF, CTHF, FGf 

TIMP 

f.sl, PO-LI (chez coll.lu T octi .... 
.. primont PO-I) 

FGF2,IGFI, SOFl, VEGF 

TGF-II 

(0200, fractalkine 

& Arg, argmme; ATP, adénosine triphosphate; BDNF, brain-derived neurotrophic factor; CCL, chemokine 
[C-C motif] ligand; CD, cluster of difJerentiation; CD200R, cluster of difJerentiation 200 receptor; CMH, complex 
majeur d' histocompatibil ité; CNTF; ciliary neurotrophic factor; COX-2, cyclooxygénase-2; CR, complement 
receptor; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; CX3CR, chemokine [C-X3-C motif] receptor; 
CXCL, chemokine [C-X-C motif] ligand; DAMP, damage-associated molecular pattern; Fas,flrst apoptosis signal 
receptor; FasL, flrst apoptosis signal receptor ligand ou ligand Fas; FcR~, fragment crystallizable region (Fe) 
receptor beta subunit; FGF, flbrob last growth factor; GDNF, glial flbrillary acidic protein; Glu, glutamate; HLA, 
human leucocyte antigen; HMGB l, high mobility group box J; HSP, heat shock protein; ICAMl, intercellular 
adhesion molecule; IDO, indoleamine 2,3-dioxygenase; IFN, interferon; IGF, insulin-like growth factor; IL, 
interleukine; iNOS, inducible nitric oxide synthase; KIR, !..:iller-cell immunoglobulin-like receptor; LF A, lymphocyte 
fitnction-associated antigen-1; MAC-l, macrophage-J antigen; MMP, matrix metalloproteinases; NCAM, neural 
cell adhesion molecule; NGF, nerve growth factor; NK, natural killer; NO, oxyde nitrique; Nn, neurotrophin-3; 
PD- l , programmed cell death protein J; PD-LI, programmed death-ligand 1; PRR, pattern-recognition receptors, 
RAGE, receptor for advanced glycation end-products; RNS, reactive nitrogen species; ROS, reactive oxygen 
species; SDF l , stromal cell-derivedfactor 1; TGF-~, transforming growthfactor-beta; Th, T helper cell subtype; 
TIMP, tissue inhibitor of metalloproteinase; TLR, toll-like receptor; TNF-a, tumor necrosis factor-alpha; 
Treg, regulatory T cell; TREM2, triggering receptor expressed on myeloid cells 2; TSB, thrombospondin; 
VEGF, vascular endothelial growthfactor. 
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C microgliales activées 
classiquement 

• 
t 

C de défense 

C microgliale au repos 

CT cytotoxique 

légende 

~ molécules du CMH de classe 1 

.: PAMPs/DAMPs 

~ molécules du CMH de classe Il 

\" antigènes présentés 

récepteurs de C T 

~. cytokines pro-inflammatoires 

~. cytokines anti-inflammatoires 

y PRRs 

..... effet anti-inflammatoire ..... effet pro-inflammatoire 

.11 couples membranaires d'immunorégulation 

.. transformation phénotypique 

Figure 2 Dialogues entre les cellules neuronales dans un contexte de neuro
inflammation. 
Dans un contexte de neuro-inflammation, des molécules de danger 
nommées P AMPs (pathogen-associated molecular patterns) ou 
DAMPs activent les cellules munies de récepteurs PRRs, principalement 
les cellules microgliales_ L'activation de la microglie mène à leur 
multiplication et à leur transfonnation vers le phénotype pro
inflammatoire, caractérisé par une fonne amiboïde et l'expression accrue 
de cytokines et de molécules du CMH de classe IL Suite à leur activation 
par les P AMPs ou DAMPs, les astrocytes subissent également des 
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changements phénotypiques tendant vers l'expression accrue de 
cytokines, la présentation d'antigènes et la prolifération. Les cellules du 
SNC, en particulier les cellules microgliales activées classiquement, 
produisent des cytokines capables de perméabiliser la BHE et sécrètent 
des chimiokines, permettant la transvasation de cellules de défense 
périphériques - lymphocytes, granulocytes, macrophages, etc. - des 
capillaires vers le parenchyme. Ces cellules peuvent également 
reconnaître des PAMPs et des DAMPs dans le parenchyme, ce qui 
soutient leur activation et leur prolifération accompagnées de l'expression 
de cytokines pro-inflammatoires. Néanmoins, plusieurs acteurs expriment 
constitutivement des cytokines anti-inflammatoires ou des molécules 
membranaires donc la fonction immunomodulatrice permet de contenir 
la réaction inflammatoire, par la polarisation des cellules Th en types 
anti-inflammatoires et par la transformation de la microglie en un état 
réparateur. L'exposition à long terme aux cytokines pro-inflammatoires 
endommage les neurones et les oligodendrocytes, les types cellulaires les 
plus sensibles à une neuro-inflammation chronique dû à leur faible 
potentiel régénérateur. 

La microglie constitue en moyenne 10 % de l'ensemble des cellules gliales. 

Originant du sac vitellin à partir d'un précurseur érythro-myéloïde CSF1R+ (coiony 

stimuiating factor 1 receptor) commun aux macrophages résidents [7] , les cellules 

microgliales colonisent très tôt le neuroépithélium où elles poursuivent leur 

différenciation selon une voie originale dans l'environnement particulier du SNe. 

Elles conservent tout au long de la vie un certain pouvoir de régénération qui leur permet 

à la fois de maintenir leur pool et de répondre à des demandes ponctuelles [8]. Après la 

naissance, une sous-population de cellules microgliales semblerait également provenir 

de source hématopoïétique par l'infiltration de monocytes dans le parenchyme [9] . 

Toujours à explorer leur environnement à travers les mouvements rapides de leurs 

extensions cytoplasmiques qui se chevauchent très peu, dotées d 'un très vaste potentiel 

d'activités, elles se métamorphosent en réponse aux influences qu 'elles subissent. 

Essentielle à la structuration du SNC et à l' exercice des fonctions nerveuses supérieures, 

un rôle dont on commence à peine à percevoir l' importance [10] , c'est cependant pour 

son rôle en situation traumatique que la microglie est le mieux connue. Exprimant tous 

les PRRs identifiés à ce jour, les cellules microgliales sont particulièrement bien 
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équipées pour percevoir les perturbations de leur environnement, fussent-elle causées 

par la concentration anormale d'une molécule, son format inhabituel ou par l'apparition 

d'un composé inusité [11]. La reconnaissance induit le passage de l'état de veille à 

celui d'activation, l'objectif étant, dans un premier temps, d'éliminer la source de la 

perturbation et, dans un second temps, de favoriser le remodelage et la régénération. 

En présence d'un signal de danger, les cellules microgliales adoptent un profil 

amiboïde qui facilite à la fois leur division et leur déplacement. Elles sont recrutées soit 

directement par les molécules de danger elles-mêmes, soit par des chimiokines libérées 

par les autres cellules neuronales alertées du danger. Elles forment autour de la région 

lésée un bouclier protecteur qui vise à en limiter l'étendue. Les conséquences précises de 

l'activation dépendent du contexte parti cul ier dans lequel se fait la rencontre du stimulus 

initiateur, les cellules microgliales oscillant entre deux états extrêmes: un état 

d'activation classique et un état d'activation alternatif à vocation réparatrice [12]. 

Dans son état d'activation classique, la microglie exhibe un profil pro

inflammatoire (Tableau 1) caractérisé par 1) la sécrétion d'un large éventail de cytokines 

pro-inflammatoires et de polarisation Th1 (T helper cell subtype 1); 2) l'expression de 

chimiokines; 3) l'expression d'iNOS (inducible nitric oxide synthase) et de COX-2 

(cyclooxygénase-2); 4) la production de dérivés toxiques de l'oxygène et de l'azote; 

5) l'augmentation de l'expression des molécules du CMH de classe l et II et des facteurs 

de costimulation; 6) la sécrétion de métalloprotéinases matricielles; et 7) un pouvoir 

phagocytique accru. Si dans un état pro-inflammatoire la microglie possède l'arsenal 

nécessaire pour altérer l'étanchéité de la BHE, attirer les leucocytes - principalement les 

lymphocytes, monocytes et granulocytes - , faciliter leur déplacement dans la matrice 

extracellulaire, présenter des antigènes, soutenir l'activation de l' immunité spécifique et 

mettre KO les agents perturbateurs, elle a aussi le pouvoir de causer des dommages 

collatéraux souvent irréversibles au SNC. Ce potentiel auto-destructeur de la microglie 

activée classiquement est tempéré par les propriétés immunosuppressives du milieu, en 

grande partie attribuables aux neurones. 



399 

Dans son état réparateur, dicté par le contexte du milieu, la microglie adopte plutôt 

1) un métabolisme aérobie; 2) une expression accrue des récepteurs éboueurs; 

3) la synthèse de COX-1 au détriment de COX-2; 4) la synthèse d'arginase-1 ; ainsi que 

5) la sécrétion de divers facteurs neurotrophiques et d'éléments matriciels. Ainsi, la 

microglie détient également le potentiel de participer à la réparation des tissus lésés et le 

retour à l'homéostasie (Tableau 1), favorisant l'angiogenèse et stimulant la génération 

de nouveaux oligodendrocytes, astrocytes, voire même neurones, à partir de cellules 

souches toujours présentes dans le parenchyme nerveux adulte. 

Les états d'activation classique et réparateur ne constituent que les deux pôles 

d'un continuum d'états entre lesquelles les cellules microgliales oscillent en fonction des 

particularités activatrices du milieu dans lequel elles baignent [13]. Avec l'âge, pour 

des raisons qu 'on s' explique encore mal, l'induction du profil réparateur se fait plus 

difficile, une situation à mettre en lien avec l'augmentation des maladies 

neurodégénératives associée au vieillissement [14]. 

Les neurones 

Les neurones jouent un rôle primordial dans l'établissement des privilèges 

immunitaires du SNC en agissant tant en amont qu ' en aval de la réponse [15]. 

Ils expriment quelques PRRs par lesquels ils perçoivent les signaux de danger présents 

dans leur environnement et expriment plusieurs récepteurs pour les cytokines qui leur 

permettent d'ajuster leur contribution à l' immunosuppression en situation d'agression. 

Les neurones expriment notamment le récepteur TLR3 (toll-like receptor 3) dont le 

P AMP déclencheur est l' ARN double brin. La dimérisation de TLR3 mène à la 

production d'interférons de type 1 dont le rôle est crucial dans la défense innée contre les 

virus, par exemple lors d'une infection par le virus neurotropique de la rage [16]. 

La microglie avec son imposant arsenal pro-inflammatoire est une des 

cibles préférentielles de l'attention neuronale qui se veut généralement atténuante. 

La régulation de la microglie implique à la fois des contacts cellule-cellule et des 
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facteurs solubles contribuant à freiner l'inflammation (Tableau 1). La majorité de ces 

protéines sont exprimées de façon constitutive et créent donc d'entrée de jeu un mil ieu 

immunosuppresseur capable de contenir les débordements de la microglie. Ces protéines 

membranaires agissent principalement en interférant avec les voies de signalisation, 

inhibant des kinases essentielles telle la famille des MAPK (mitogen-activated protein 

kinase) et les Pi3K (phosphoinositide 3-kinases), réduisant l'expression de facteurs de 

transcription tds c-jun ou c-myc ou inhibant leur translocation nucléaire comme c'est le 

cas pour Nrf2 (nuclear factor erythroid 2-related factor 2) ou NF-KB (nuclear factor 

kappa-light-chain-enhancer of activated B ceUs). Elles permettent, en conséquence, 

de diminuer la production de cytokines inflammatoires et de dérivés toxiques de 

l'oxygène ou de l'azote dès l'engagement des PRRs de la microglie. Les neurones 

expriment en plus et de façon constitutive le FasL (ligand Fas ou CD95L) par lequel 

ils contrôlent l'apoptose des cellules microgliales activées. Outre ces facteurs 

membranaires, les neurones libèrent nombre de facteurs solubles qui contribuent aussi à 

contraindre l'activation de la microglie. Il yale TGF-~ (transforming growth factor

beta) et la fractalkine soluble que les neurones expriment de façon constitutive et dont la 

production peut être amplifiée en situation traumatique, tandis que l 'interleukine-l 0 

(IL-I0) est plutôt sécrétée en situation de crise. À ces facteurs immunorégulateurs 

viennent s'ajouter l'activité neuronale dont l'action anti-inflammatoire est arbitrée 

par un bon nombre de neurotransmetteurs et plusieurs neurotrophines (Tableau 1). 

Sous cette influence, les cellules microgliales produisent moins de cytokines 

inflammatoires, réduisent leur stress oxydant, diminuent leur expression des molécules 

du CMH et, ainsi, soutiennent moins efficacement l'activation des cellules de défense 

périphériques ayant gagné accès au parenchyme nerveux. Quant à leur pouvoir 

phagocytaire, il peut être selon les particularités du contexte soit amplifié, soit diminué. 

Le caractère immunosuppresseur des neurones ne contient pas que les ardeurs de 

la microglie au moment de son activation; il tempère aussi les conséquences de son 

activation en s'exerçant sur les cellules de la défense périphérique qui, répondant à 

l'appel, ont gagné ou tentent de s'introduire dans le parenchyme. Ici encore, l'effet 

s'exerce tantôt par des contacts cellule-cellule impliquant entre autres des cadhérines, 
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des molécules du CMH, et le FasL, tantôt par l' intermédiaire de facteurs solubles 

dont le TGF-~ et les sémaphorines 3 et 7. Les interactions aboutissent à l'immobilisation 

des macrophages, la neutralisation des cellules cytotoxiques NK (natural killer) et 

CD8+, la polarisation des Th vers des phénotypes plus immunorégulateurs que pro

inflammatoires tels Th2 (T helper cell subtype 2) ou Treg (regulatory T cel!) et la mort 

par apoptose des cellules activées. 

Les astrocytes 

D'origine neuroectodermique, les astrocytes sont les cellules les plus abondantes 

du SNC, comprenant jusqu'à 70 % de la névroglie. Ce sont des cellules étoilées qui, 

avec leurs extensions cytoplasmiques, participent à la formation de la glia limitans de 

la BHE (Figure 1), enrobent les synapses, communiquent entre elles par le biais de 

jonctions communicantes et contribuent au drainage glymphatique du liquide interstitiel 

parenchymateux vers le liquide céphalo-rachidien (LCR) [17]. Ils délimitent ainsi un 

territoire sur lequel ils peuvent exercer leur influence grâce aux récepteurs, canaux 

ioniques, transporteurs et enzymes de toutes sortes dont ils sont pourvus [18, 19]. 

En plus de leur rôle clé dans l'homéostasie du SNC, le métabolisme neuronal 

et la modulation dynamique de la transmission synaptique, les astrocytes sont 

particulièrement bien outillés pour appuyer la microglie dans sa fonction de sentinelle et 

de défense [20, 21]. Ils expriment le TLR3 de façon constitutive et peuvent être induits 

à exprimer plusieurs des PRRs. Tout comme les cellules microgliales, ils sont donc aptes 

à reconnaître et à réagir à un large éventail de situations dangereuses pour le SNe. 

En réponse à l'activation, les astrocytes deviennent hypertrophiques, prolifèrent et 

altèrent leur expression génique. Ils sécrètent nombre de facteurs pro-inflammatoires 

(Tableau 1) servant à attirer les cellules de défense périphériques et faciliter leur 

migration dans le parenchyme, expriment des récepteurs éboueurs par lesquels ils 

contribuent à la phagocytose, et produisent les molécules du CMH de classe II leur 

permettant de soutenir l'activation des cellules Th activées, bien que leur capacité à 

présenter des antigènes, comme le fait la microglie, est controversée. L'activation les 
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amène même à diminuer leur internalisation de glutamate et à perturber le réseau 

astrocytaire en diminuant la production de connexine 43 , ce qui contribue de surcroît au 

caractère neurotoxique de la réaction inflammatoire. 

S'ils participent foncièrement aux processus pro-inflammatoires lorsqu'activés, 

Is répondent néanmoins à l'IL-l~ par la sécrétion de TGF-~ et par la libération de 

différents facteurs neurotrophiques (Tableau 1) qui soutiennent la réparation de la BHE, 

la remyélinisation, le remodelage de la matrice ainsi que la survie des neurones et des 

oligodendrocytes. Ils contrôlent l'activation des lymphocytes T par leur expression du 

récepteur immunorégulateur CTLA-4 (cytotoxic T-lymphocyte-associated protein 4 ou 

CD152) et peuvent déclencher l'apoptose des cellules de défense activées par 

l'expression constitutive du FasL. En situation d'inflammation chronique, leur capacité 

d'activer les Th est compensée par une interaction qui biaise la réponse en faveur des 

Th2, un profil plutôt immunorégulateur que le profil Thl pour le SNC [22]. De plus, 

certains signaux d'agression permettent aux astrocytes de se dédifférencier en « radial

glia-like ceUs» capables d'exprimer d'autres facteurs neurotrophiques (Tableau 1) qui 

ensemble promeuvent la multiplication des cellules souches neuronales et leur migration 

vers le site de lésion [23] . Enfin, les astrocytes sont particulièrement reconnus pour leur 

rôle dans la formation de la cicatrice gliale. En effet, lorsqu'activés ils se multiplient 

abondamment, circonscrivent le site d'inflammation, occupent les espaces créés par la 

mort ou la phagocytose de cellules neuronales et produisent des éléments de la matrice 

extracellulaire tels que de l'acide hyaluronique. Cependant, cette réaction de défense qui 

a pour but d'inhiber la propagation de l'inflammation et d'offrir un effet restructurant a 

aussi comme conséquence néfaste d'inhiber la migration et la différentiation des cellules 

souches neuronales [23]. 

Les oligodendrocytes 

Les oligodendrocytes partagent la même ongme neuroectodermique que les 

astrocytes et les neurones. Derniers à entrer en scène, ils établissent avec les neurones 

une relation symbiotique. Les oligodendrocytes sont tout aussi essentiels au 
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développement et à la survie des axones que les neurones le sont à la myélinisation 

[24-26]. 

Comme les neurones, les oligodendrocytes contribuent au caractère 

Immunosuppresseur du parenchyme nerveux par leur production constitutive de 

TGF-~ et par leur expression du CD200 et de fractalkine. À l'instar des autres cellules 

du SNC, ils expriment des PRRs, notamment TLR2 et TLR3 , qui leur permettent de 

réagir à certains signaux de danger. Bien que les conséquences de l' engagement de ces 

récepteurs demeurent pour le moment mal connues, elles devraient se répercuter sur 

l'ensemble du réseau d'influence des oligodendrocytes. Ce réseau, relativement vaste, 

implique tout autant les astrocytes avec lesquels les oligodendrocytes sont en lien par le 

biais de jonctions communicantes que les neurones auxquels ils sont associés par la 

gaine de myéline, un oligodendrocyte pouvant enrober jusqu'à une cinquantaine 

d'axones distincts. 

Si les oligodendrocytes peuvent participer activement à la mise en place d'une 

immunité innée par l'intermédiaire de leurs TLRs, ils peuvent aussi être eux-mêmes 

générateurs de danger. Très sensibles au stress oxydant tout comme ils le sont à la 

toxicité du glutamate ou à celle de l'A TP, les oligodendrocytes peuvent causer des 

dommages sérieux à leur environnement et entretenir l'inflammation sans être 

nécessairement les cellules initialement visées par l'agression. 

Les cellules de défense périphériques 

Au niveau du SNC sain, rares sont les leucocytes qui arrivent à s' échapper de la 

vasculature. Leur présence, bien que limitée, permet tout de même d'assurer une 

immunosurveillance dont l'importance nous apparaît indéniable lorsqu'on mesure les 

dommages encourus par la suppression de la patrouille des cellules de défense 

périphériques [pour revue, voir 27]. Dans le cas du JC polyomavirus, un virus 

ubiquitaire chez l'humain, l'arrêt del'immunosurveillance secondaire à des thérapies 
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immunosuppressives entraîne la leucoencéphalopathie multifocale progressIve, 

une maladie du SNC généralement mortelle. 

Les leucocytes qUI parviennent à pénétrer le SNC, uniquement des 

mononucléaires, prennent avantage à la fois de leur expression de certaines protéines 

d'adhésion et de l'existence de zones plus permissives de la BHE, telles que la glande 

pituitaire, l'éminence médiane, l'aire postrema, l'aire préoptique, la paraphyse, 

la glande pinéale et l'endothélium des plexus choroïdes. Les monocytes utilisent la 

voie leptoméningée pour venir peupler les espaces de Virchow-Robin en bordure des 

artérioles et en continuité avec l'espace sous-arachnoïdien. Quant aux lymphocytes, 

et uniquement les T activés, ils s'affranchissent de la barrière sang-LCR (BSLCR) en 

empruntant la voie du plexus choroïdien qui exprime constitutivement des molécules 

nécessaires à leur admission, telles que le CCL20 (chemokine [C-C motif] ligand 20) 

indispensable au recrutement des cellules CCR6+ (C-C chemokine receptor type 6) [28] . 

Une fois traversés, ils sont entraînés par le LCR, patrouillent les espaces et quittent soit 

vers le sang par le biais des villosités arachnoïdiennes, soit vers les ganglions cervicaux 

profonds par le biais de la plaque cribriforme de l'os ethmoïde ou par le biais d'un 

système lymphatique propre au SNC récemment mis en évidence [29, 30]. On constate 

donc qu'en situation normale, des cellules de défense d'origine médullaire occupent des 

niches stratégiques du SNC sans jamais pénétrer le parenchyme, qu'elles exercent 

patrouille et immunosurveillance comme elles le font en périphérie et qu'elles possèdent 

tous les attributs qui leur permettent de réagir efficacement à l'agression [27, 31-33]. 

En réponse à l'agression, les cellules du parenchyme s'activent. Elles libèrent dans 

le milieu des cytokines pro-inflammatoires qui modifient l'étanchéité de la BHE 

ainsi que des chimiokines (Tableau 1) qui guident les cellules de défense, y compris les 

granulocytes, et les autorisent à pénétrer au sein même du parenchyme [34]. 

Les macrophages périvasculaires participent au recrutement par la production de 

facteurs de croissance (Tableau 1), la modification des cellules endothéliales et par la 

sécrétion de métalloprotéinases qui facilitent les déplacements. Bien que nécessaire à 

la résolution des problèmes, l'afflux de cellules sur le pied de guerre dans le parenchyme 
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nerveux comporte des risques importants pour un tissu aussi fragile. Pour contrer les 

risques encourus, les cellules du parenchyme limitent le temps de vie des cellules de 

défense en provenance de l'extérieur ou les réorientent vers des phénotypes plus 

immunorégulateurs, notamment par l'expression constitutive de FasL ou de TGF-~ de 

l'environnement nerveux. 

Conclusion 

La neuro-inflammation est un phénomène hautement complexe par lequel le SNC 

s'allie au système immunitaire pour assurer sa protection et maintenir son homéostasie 

[35] (Figure 2). La complexité du phénomène, qui le rend difficilement abordable 

dans le contexte fragmentaire des études in vitro ou des systèmes modèles, tient tout 

autant à la multiplicité des intervenants cellulaires qu'à l'enchevêtrement des voies de 

signalisation et aux effets tantôt synergiques, tantôt antagonistes, tantôt neurotoxiques, 

tantôt neurotrophiques des signaux émis. Les conséquences en sont difficilement 

prévisibles car elles dépendent à la fois de la nature, de l'intensité, de la durée que de 

l'historique de l'agression [36] . Il semble cependant que si elle est source du mal, 

la neuro-inflammation soit aussi source de la solution [37, 38]. Il nous faut donc 

apprendre à décoder son langage et à identifier, pour chaque problématique, le maillon 

faible du réseau afin de mettre au point des stratégies d'intervention ciblées qui 

permettent de contrer la neurodégénération [39]. 

Remerciements 

JR est récipiendaire d'une bourse doctorale Vanier-Canada. MGM est 

récipiendaire d' une subvention à la Découverte-CRSNG (Canada). 



406 

Références 

1. Galic MA, Riazi K, Pittman QJ. Cytokines and brain excitability. Front 
Neuroendocrinol2012; 33: 116-25. 

2. Galea l, Bechmann l, Perry VH. What lS Immune privilege (not)? Trends 
Immunol 2007; 28: 12-8. 

3. Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative 
diseases. Immuno1201O; 129: 154-69. 

4. Lee H, Lee S, Cho IH, Lee SJ. Toll-like receptors : sensor molecules for detecting 
damage to the nervous system. Curr Protein Pept Sci 2013; 14: 33-42. 

5. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal Os 
that spur autophagy and immunity. Immunol Rev 2012; 249: 158-75. 

6. Cunningham C. Microglia and neurodegeneration: The role of systemic 
inflammation. Glia 2013; 61: 71-90. 

7. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, 
Garner H, Trouillet C, de Bruijn MF, Geissmann F, Rodewald HR. Tissue
resident macrophages ongmate from yolk-sac-derived erythro-myeloid 
progenitors. Nature 2015; 518: 547-51. 

8. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. Local self-renewal can 
sustain CNS microglia maintenance and function throughout adult life. 
Nat Neurosci 2007; 10: 1538-43. 

9. Chen SK, Tvrdik P, Peden E, Cho S, Wu S, Spangrude G, Capecchi MR. 
Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 2010; 
141: 775-85. 

10. Tremblay M-E, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjanh A. The role 
ofmicroglia in the healthy brain. J Neurosci 2011; 31: 16064-9. 

11. Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: 
mechanisms and therapeutic potential. Clin Sci (Lond) 2011; 12: 367-87. 

12. Boche D, Perry VH, Nicoll JAR. Review : Activation patterns of microglia and 
their identification in the human brain. Neuropathol Appl Neurobiol 2013; 
39: 3-18. 



407 

13 . Eggen BJL, Raj D, Hanisch U-K, Boddeke HWGM. Microglial phenotype and 
adaptation. J Neuroimmunol Pharmacol 2013 ; 8: 807-23 . 

14. Norden DM, Godbout JP. Review: microglia of the aged brain: primed to be 
activated and resistant to regulation. Neuropathol Appl Neurobiol 2013 ; 39: 
19-34. 

15. Suzumura A. Neuron-microglia interaction in neuroinflammation. CUIT Prot Pept 
Sci 2013 ; 14: 16-20. 

16. Ménager P, Roux P, Mégret F, Bourgeois JP, Le Sourd AM, Danckaert A, Lafage 
M, Préhaud C, Lafon M. Toll-like receptor 3 (TLR3) plays a major role in the 
formation ofrabies virus Negri Bodies. PLoS Pathog 2009; 5: e1000315. 

17. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, 
Vates GE, Deane R, Goldrnan SA, Nagelhus EA, Nedergaard M. A paravascular 
pathway facilitates CSF flow through the brain parenchyma and the clearance of 
interstitial solutes, including amyloid~ . Sci Trans Med 2012; 4: 147rall1. 

18. Bélanger M, Magistretti PJ. The role of astroglia in neuroprotection. Dialogues 
Clin Neurosci 2009; Il : 281-295. 

19. Nedergaard M, Verkhratsky A. Artifact versus reality-how astrocytes contribute 
to synaptic events. Glia 2012; 60: 1013-23. 

20. Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate 
immunity. Trends Immuno12007; 28: 138-45. 

21. Giemsa U, Mitchison NA, Brunner-Weinzierl MC. Immune privilege as an 
intrinsic CNS property : astrocytes protect the CNS against T -cell-mediated 
neuroinflammation. Mediators Inflamm 2013 ; 2013: 320519. 

22 . Jager A, Dardalhon V, Sobel RA, Bettelli E, Kuchroo. Th1 , Th17, and Th9 
effector cells induce experimental auto immune encephalomyelitis with different 
pathological phenotypes. J Immunol 2009; 183: 7169-77. 

23. Müller FJ, Snyder EY, Loring JF. Gene therapy: can neural stem cells deliver? 
Nat Rev Neurosci. 2006; 1: 75-84. 

24. Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin ln the 
mammalian central nervous system. Physiol Rev 2001 ; 81: 871-927. 



408 

25. Wake H, Lee PR, Fields RD. Control of local prote in synthesis and initial events 
in myelination by action potentials. Science 2011; 333: 1647-51. 

26. Frühbeis C, Fr6hlich D, Kuo WP, Amphornrat J, Thilemann S, Saab AS, 
Kirchhoff F, M6bius W, Goebbels S, Nave KA, Schneider A, Simons M, 
Klugmann M, Trotter J, Kramer-Albers EM. Neurotransmitter-triggered transfer 
of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol 2013; 
11: e1001604. 

27. Ousman SS, Kubes P. Immune surveillance ln the central nervous system. 
Nat Neurosci 2013 ; 15: 1096-101. 

28. Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, 
Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F. C-C chemokine receptor 6-
regulated entry of TH-17 cells into the CNS through the choroid plexus is 
required for the initiation ofEAE. Nat Immuno12009; 10: 514-23 . 

29. Louveau A, Smimov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, 
Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J. Structural and functional 
features of central nervous system lymphatic vessels. Nature 2015. 

30. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, 
Alitalo K. A durai lymphatic vascular system that drains brain interstitial fluid 
and macromolecules. J Exp Med 2015; 212: 991-9. 

31 . Bechmann I, Galea I, Perry VH. What is the blood-brain barrier (not)? Trends 
ImmunoI2007; 28 : 5-11 . 

32. Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune 
surveillance in the central nervous system. Nat Rev Immuno12012 ; 12: 623-35. 

33 . Carare RO, Hawkes CA, Weller RO. Afferent and efferent immunological 
pathways of the brain. Anatomy, function and failure. Brain Behav Immun 2013 ; 
59: 11-4. 

34. Takeshita Y, Ransohoff RM. Inflammatory cell-trafficking across the blood-brain 
barrier: chemokine regulation and in vitro models. Immunol Rev 2012; 
248: 228-39. 

35. Lampron A, Elali A, Rivest S. Innate immunity in the CNS: redefining the 
relationship between the CNS and its environment. Neuron 2013; 78: 214-32. 



409 

36. Nagajima K, Kohsaka S. Microglia : Neuroprotective and neurotrophic cells in 
the central nervous system. CUIT Drug Targets Cardiovasc Haematol Disord 2004; 
4: 65-84. 

37. Rawji KS, Yong VW. The benefits and detriments of microphages/microglia in 
models of multiple sclerosis. Clin Dev Immuno12013; 2013: 948976. 

38. Hanamsagar R, Hanke ML, Kielian T. Toll-like receptor (TLR) and 
inflammasome action in the central nervous system. Trends Immunol 2012; 
33: 333-42. 

39. McPherson RC, Anderton MC. Adaptive immune responses in CNS autoimmune 
disease: mechanisms and therapeutic opportunities. J Neuroimmune Pharmacol 
2013; 8: 774-90. 





APPENDIXB 

OLD MOLECULES, NEW INSIGHTS: THERAPEUTIC CONSIDERATIONS 
FOR THE USE OF POLYPHENOLS IN NEURODEGENERATIVE DISEASES 

Renaud, J., and Martinoli, M. G. (in preparation). 

The content of this appendix will be submitted in Fall 2018 to the peer-reviewed 

journal Nutrients. 

Author contributions 

Justine Renaud wrote 95% of the manuscript. Maria-Grazia Martinoli, 

Justine Renaud ' s research supervisor, was the guarantor of the work and provided 

supervision, preparation and editing of the manuscript. 



412 

Full review article in English: Old molecules, new insights: therapeutic 
considerations for the use of polyphenols in neurodegenerative diseases 

Abstract 

Over the last two decades, neurodegenerative diseases have received increasing 

attention due to the rapid rate at which the population is aging and the consequent rise 

in the incidence of such illnesses, itself entailing a major social and economic 

burden. Today, an increasingly large body of literature lends functional foods and 

their biofunctional molecules potential neuroprotective capacities. Among the most 

prominently studied dietary molecules, polyphenols stand in a class of their own on 

account of their multiple and often overlapping modes of action. However, ambiguity 

exists as to the significance of their influence on human health. This review discusses 

the many characteristics and functions of polyphenols that shape their possible 

therapeutic applications in neurodegenerative diseases. Knowledge gaps that remain 

under-explored will be highlighted. 

1. Introduction 

It has long been acknowledged that dietary habits play a key role in the occurrence 

and progression of non-communicable diseases . A hoard of epidemiological evidence 

shows that a diet rich in fruit and vegetables reduces the incidence of cardiovascular 

diseases [1-4], type 2 diabetes [5,6] , stroke [7,8] and nurnerous cancers [9-11]. 

Others find inverse associations between the consurnption of green tea and cognitive 

decline [12, 13]. These observed health benefits are thought to be at least partly 

attributable to a class of non-essential nutrients named polyphenols, abundantly found in 

fruit, vegetables and other edible plants [14, 15]. 

Alongside cancer and cardiovascular diseases, neurodegenerative disorders 

constitute a popular field of application for the benefits of polyphenols [see for review 

refs 16, 17] . This is the case for Parkinson's and Alzheimer's diseases, conditions that 

are often ill defined and lack a clear etiopathogenetic origin besides that they seem to 
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anse from the interaction between agmg, the environment and genetic risk factors. 

The etiology of these diseases is further convoluted by a number of proposed causative 

mechanisms, such as oxidative stress, neuroinflammation, protein aggregation, 

iron toxicity and mitochondrial dysfunction. As such, the number of proposed actions of 

polyphenols, both in terms of the numerous disease states they appear to improve and 

the manifold cellular mechanisms the y are reported to modulate, makes their use in 

complex neurodegenerative disorders compelling. In this review, the factors that 

impinge on the biofunctionality and bioavailability of dietary polyphenols in the central 

nervous system (eNS) are discussed with a particular focus on therapeutic applications 

and limitations. 

2. Chemico-structural characteristics 

2.1 Classification 

Plant polyphenols were originally c1assified in early literature as "vegetable 

tannins" owing to their tanning action on animal skins [18]. The first comprehensive 

description, referred to as the WBSSH definition, recommended that the term 

polyphenol be exclusively ascribed to water-soluble phenolic compounds having a 

molecular mass ranging between 500 to 4000 Da, possessing at least 12 phenolic 

hydroxyl groups, and 5 to 7 aromatic rings per 1000 Da [19]. A less restrictive 

interpretation was proposed by Quideau, offering a broader view of the WBSSH 

definition - that was hitherto limited to the structural characteristics common to aIl 

phenolics endowed with tanning properties (vegetable tannins) - to include simpler 

phenolic compounds with potential biological activities others than tanning [20]: 

The term "polyphenol" should be used ta define compounds exclusively 

derived from the shikimate/phenylpropanoid and/or the polyketide pathway, 

featuring more than one phenolic unit and deprived of nitrogen-based 

fitnctions . This definition lets out ail monophenolic structures as weil as ail 

their naturally occurring derivatives such as phenyl esters, methyl phenyl 

ethers and O-phenyl glycosides. 
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A majority of plant polyphenols originate from phenylalanine that is deaminated to 

cinnamic acid, which then enters the phenylpropanoid pathway [21]. Plant metabolism 

utilizes the phenylpropanoid unit C6-C3, a phenol ring with a 3-carbon side chain, 

as a building block to construct polyphenols. Classification of the resulting molecules is 

dictated by the number of phenol rings (C6) they contain and the structural elements 

binding these rings to one another. The main subclasses, varying in complexity, are 

phenolic acids (C6-C3 and C6-Cl), flavonoids (C6-C3-C6), stilbenes (C6-C2-C6) and 

lignans (C6-C3-C3-C6). Within these subclasses, hydroxylations and O-glycosylations 

at various positions as weIl as cis-trans isomerization give rise to the thousands of 

polyphenols (estimated to > 8000) known to date, offering a tremendously intricate bank 

of molecules with prospective pharmacological value to explore. These polyphenols 

alongside their content in various food products are available on databases such as 

Phenol-Explorer managed by the Institut National de la Recherche Agronomique 

(www.phenol-explorer.eu). 

2.2 Structure versus biofunctionality in neuroprotection 

The particular chemico-structural properties shared by polyphenols are pertinent 

to their therapeutic application, especially in the field of neuroprotection. Indeed, the 

presence of phenol rings, variable hydroxylation patterns and conjugated double bonds 

grants polyphenols metal-chelating, fibril-destabilizing, estrogen-like, enzyme-binding 

and antioxidative properties. These numerous modes of action afford polyphenols the 

ability to tackle the multifarious pathophysiological aspects of several neurodegenerative 

diseases, namely oxidative stress, neuroinflammation, protein aggregation, Iron toxicity 

and mitochondrial dysfunction. 

The redox properties of divalent metals, such as copper, zinc and iron, are essential 

for cellular homeostasis. When in excess, however, these metals contribute to generate 

surplus reactive oxygen species. Polyphenols that comprise at least one gallo yi or 

catechol group (hydroxyl groups in the ortho-position) are powerful bidentate chelators 

of divalent metals [22] , whereas ones having only a phenol substitution (one hydroxyl 
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function) or possessing a resorcinol group (meta-position hydroxyl pair) are less potent 

monodentate chelators [23 , 24]. For chelation to occur, a deprotonation step of the 

phenolic group is necessary and has been shown to be possible at physiological pH [23]. 

Self-assembly of amyloidogenic fibrils involves interactions between aromatic 

residues [25], as in neuropathologically relevant proteins including tau, beta amyloid 

(AB) and a-synuclein, for example. Using the same kind of aromatic interactions, phenol 

moieties in polyphenols can Interfere with fibril assembly [26], possibly by weakening 

cross-B structures. This Interference seerns to arise from hydrophobic and 7r stacking 

interactions [27], although the formation of covalent bonds through Schiff base reactions 

has also been proposed for the green tea polyphenol epigallocatechin-3-gallate (EGCG) 

[28, 29]. Upon analyzing binding energies between polyphenols and prote in fibrils , 

favorable entropic and enthalpic dynamics were discovered that also suggest the 

stabilization of H-bonds [30]. 

Sorne polyphenols, also referred to as phytoestrogens, have the ability to bind 

estrogen receptors (ERs), usually with a greater affinity for ERB [31, 32]. Depending on 

structure, dose, cell type and estrogen response element (ERE) sequence, sorne 

polyphenols have a weak or strong antagonistic or agonistic effect on ERs, affording a 

very wide spectrum of activities in cells [33-36]. As a requirement to bind ERs, 

the structure should be composed of a phenolic ring with a configuration resernbling that 

of estradiol, as found in flavonoid isoflavones or the stilbene resveratrol, for instance. 

Indeed, a specific hydroxylation pattern and an adequate distance between substituted 

hydroxyl groups are necessary to bind ERs. 

Sorne polyphenols also share structural similarities with endogenous ligands, such 

as cyclic AMP (cAMP) or nucleoside triphosphates, endowing thern with the aptitude to 

activate or inhibit key enzymes [37, 38]. To date, modulatory effects on enzymes have 

been confirmed in cellular or animal models for several polyphenols, su ch as resveratrol 

on cAMP phosphodiesterases [39] , theaflavins on the ATP synthase and respiratory 

chain [40], and curcumin on gl yoxalase 1 [ 41], to name a few. The presence of 

appropriately spaced ketone and hydroxyl groups in a planar configuration, bestowing 
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sorne polyphenols su ch as curcurnin with the ability to mimic an enediolate intennediate 

in physiological conditions [42], is a remarkable example of structural elernents that 

make enzyme binding possible. 

Notwithstanding the aforementioned functions emergmg from their umque 

chernical structures, the most vastly studied characteristic of polyphenols is their 

antioxidative action. Polyphenols are thought to exert their antioxidative action directly, 

by scavenging free radical species firsthand, and/or indirectly, by activating endogenous 

antioxidative pathways. Direct antioxidative effects usually occur through H-atom 

transfer from polyphenols' (ArOH) hydroxyl (OH) groups to the free radicals (R-): 

ArOH + R- ~ ArO- + RH (1) 

The existence of multiple conjugated double bonds in polyphenols allows for the 

unpaired electron to be delocalized over the aromatic ring, yielding a much more stable, 

hence mu ch less reactive, polyphenolic radical (ArO-) (Eq. 1). Sorne polyphenols 

also exert indirect antioxidative effects through the Kelch-like ECH-associated 

protein lInuclear factor erythroid 2-related factor 2/antioxidant response elements 

(Keap l/Nrf2/ ARE) regulatory pathway made possible by the presence of electrophilic 

functions (a,~-unsaturated carbonyl group, 1,2- and l,4-quinones, or other groups) that 

alkylate thiol sensors in the cysteine pocket of Keap 1 [43, 44]. Others, like stilbenes, 

engage their resorcinol hydroxyl functions in hydrogen bonds with the Kelch pocket of 

Keap 1 [45]. Both these events lead to the disruption of the Keap l/Nrf2 complex, 

allowing Nrf2 to translocate to the nucleus where it can trigger the expression of 

antioxidant proteins like herne oxygenase-l via binding of AREs. This cysteine

modifying function of polyphenols may also bear other implications in various enzymes 

[44]. 

3. Factors influencing pharmacokinetics and bioavailability 

To be effective in the prevention or amelioration of neurodegenerative diseases, 

polyphenols must be bioavailable in the CNS. Extensive reports on the bioavailability of 
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the most common dietary polyphenols can be found elsewhere [46-48]. Within the scope 

of this review, we will first discuss the principal obstacles that hinder polyphenol 

bioavailability and later address CNS permeability. 

3.1 Food matrix or vehicle 

Oral administration is by far the most practical of pharmacological routes, 

but often raises daunting challenges in terms of bioavailability. Particular factors to 

consider wh en developing an oral drug are the molecule's interaction with the vehicle, 

the transformations it undergoes by digestive and microbial enzymes, and its absorption 

in the gastrointestinal tract [49] . 

Acting as the vehicle of administration, food matrices are central to the bioefficacy 

of polyphenols [50]. Of the few studies conducted, inconsistent results have been 

obtained, demonstrating either a negligible [51 , 52] or a significant [53-56] contribution 

of the food matrix in polyphenol absorption. For instance, bioavailability differs for 

quercetin among dietary sources, largely depending on the glycoside form they exist in. 

Indeed, onions, which contain quercetin conjugated to glucosyl functions, are better 

sources of bioavailable quercetin th an are apples and tea, which contain different 

quercetin glycosides [57, 58] . It is also unclear whether ethanol bears a role in 

polyphenol absorption in light of studies showing improved bioavailability of quercetin 

in rats when administered in a 30% solution of ethanol, an alcohol content that is 

physiologically improbable in an every day diet [59]. In fact, confounding results were 

obtained in humans administered red wine or dealcoholized red wine that showed no 

differences in catechin plasma levels and also demonstrated increased catechin excretion 

likely due to a diuretic effect [60]. 

3.2 Gastrointestinal transformations and absorption 

Once in transit, sorne polyphenols remain stable though most are converted with 

galloyl [61] or methyl [62] groups in the duodenum by digestive enzymes. As a rule, 
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the best-absorbed polyphenols in hurnans are isoflavones (in soybean-derived products) 

and gallic acid (in sumac and green tea), followed by catechins (in green tea), flavanones 

(in citrus), and quercetin glucosides (in onions), whereas the least absorbed are 

proanthocyanidins and anthocyanins (in berries), galloylated tea catechins, and stilbenes. 

Whereas aglycones are normally weIl absorbed by the small intestine, nutritional 

polyphenols are more commonly detected in the form of glycosides, esters and 

polymers, which cannot be efficiently assimilated in the upper portion of the gut. 

Molecules not absorbed in the upper gastrointestinal tract continue to the colon to 

become substrates to the gut microbiota, responsible for a very wide array of reactions, 

sorne of which yield monomers from polymers or aglycones from glycosylated 

polyphenols [see for review ref 63]. SmaIler, better-absorbed phenolic acids may also be 

produced by the gut microbiota. For example, quercetin microbiotic degradation mainly 

generates 3,4-dihydroxyphenylacetic, 3-methoxy-4-hydroxyphenylacetic (homovanillic 

acid), and 3-hydroxyphenylacetic acids [64]. Among volunteers challenged with 75 mg 

of rutin, a quercetin glycoside, the total urinary excretion of microbial metabolites 

accounted for as much as 50% of the ingested dose [65]. Importantly, the sum of these 

gastrointestinal transformations and food matrix interactions can either mcrease or 

decrease the absorption of the resulting metabolites in the bloodstream. 

3.3 Plasma bioavailability, transformations and cellular uptake 

Once in the blood, drug-metabolizing enzymes mainly found in the liver and 

kidneys further modify polyphenols into various conjugated forms, a process that serves 

to detoxify potentially harmful substances. Molecules are rendered more hydrophilic in 

order to facilitate their urinary elimination, which usually lowers bioavailability [66, 67]. 

To date, the green tea polyphenol EGCG remains the only known molecule 

to abundantly persist in a free form in the human plasma (up to 90%) [68]. 

While metabolites usually constitute the greatest fraction of circulating polyphenolic 

species, sorne forms undergo enterohepatic recirculation via biliary secretion, followed 

by deconjugation into free polyphenols by the gut microbiota and reabsorption in the 
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colon [69, 70] . Additional hepatic reactions may also occur thus reverting circulating 

metabolites back to their free form [71-73], as is the case for the conversion of 

resveratrol sulphates to bioactive resveratrol by human-expressed sulphatases [73]. 

Moreover, glucuronide and sulphate metabolites were found to retain sorne of their 

beneficial effects in vitro [74, 75]. Chronic administration of polyphenols may be an 

efficient strategy to increase plasma bioavailability in humans, as reported for EGCG 

[76]. 

As the finality of drug administration consists in cellular uptake, the notion of 

bioavailability encompasses the accessibility of polyphenols to target cells, which 

depends not only on their aforementioned metabolism but also on their complexation 

with plasma molecules such as proteins, fatty acids and lipoproteins [77]. In fact, the 

bioefficacy of therapeutic agents heavily relies on their capacity to bind such serum 

transporters [78]. Taking resveratrol for example, its lipophilic nature requires it to be 

conjugated into a more hydrophilic form, by sulphation or glucuronidation, or to be 

bound to proteins in order to circulate in high concentrations, making its passive 

unbound transport in the plasma rather arduous [79]. Complexation of resveratrol to 

transporter proteins, principally albumin [80-82] and lipoproteins [83-86], occurs at the 

expense of its aptitude to be taken up by cells [79]. Fatty acids are also known to 

improve the ability of resveratrol to bind transporter proteins [87]. 

While the binding of polyphenols by transporter proteins may diminish the 

former's availability in the free form , it is thought to provide a reservoir, playing a focal 

role in the systemic distribution of bound species [77]. Sorne studies have even proposed 

that these complexes could be retained at the cell membrane by albumin and lipoprotein 

receptors, offering a carrier-mediated mechanism by which polyphenols may gain entry 

to cells [77] aside from passive diffusion [79]. There remains the possibility that 

polyphenols need not enter cells to have an effect, as is the case when free resveratrol 

binds integrin aV~3 [88] to fulfill part of its angiosuppressive effects and its ability to 

trigger p53-dependent apoptosis ofbreast cancer cells [89]. 
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3.4 Accumulation in the brain parenchyma 

Drugs targeted to the brain must ultimately be able to accumulate in the 

parenchyma, both in a biologically active form and in sufficient concentrations. 

Three important obstacles stand in the way of brain penetration: the blood-brain barrier 

(BBB), efflux transporters, and multidrug resistance-associated proteins [90, 91]. 

y oudim and colleagues were the first to demonstrate polyphenols crossing through the 

BBB in an in vitro model, describing superior permeation of lipophilic molecules 

(methylated conjugates) in comparison to hydrophilic ones (sulphated or glucuronidated) 

[92, 93]. Another team identified a stereoselective process in the passage of flavonoid 

catechins across the BBB [94] . Yet, elucidation of the exact mechanisms used by 

polyphenols to penetrate the brain in vivo, either by simple diffusion or by transporters 

at the BBB, remains to be achieved. 

Although information on brain permeation 1S limited compared to plasma 

availability, an increasing number of studies have directly detected polyphenols and 

their metabolites in the brains of rodents and even pigs [95], as reviewed elsewhere 

[90, 96, 97]. CNS penetration of the most commonly studied polyphenols has been 

recurrently confirmed in vivo, as is the case for resveratrol [67, 98-101], EGCG 

[102, 103] and quercetin [93, 104-106]. 

For example, tritiated resveratrol was administered orally to rats (50 mg/kg b.w.) 

and levels after 2 ho urs were found to reach 1.7% of the ingested dose in the plasma 

and below 0.1% in the brain [67]. Interestingly, 18 hours following administration, 

the CNS retained 43% of the concentration measured at 2 h, mainly in the form of free 

resveratrol. Despite its persistence in the brai n, resveratrol nonetheless permeates the 

brain lowest compared to liver, kidney, testicle and 1ung tissues as confirmed by high

performance liquid chromatography (HPLC) [99]. Despite evidence of entry into the 

brain, another study was unable to detect the polyphenol or its metabolites in the 

brains of rats fed a 0.2% resveratrol diet for 45 days using a HPLC assay with 

a detection limit of 0.5 pmol/ml/mg of tissue [107]. Other teams also used 

chromatographic quantification in rat brains using different protocols. In one study, 
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15 mg/kg b.w. ofresveratrol were administered intravenously (i.v.) - which by this route 

constitutes a high dose - and brain tissue concentrations reached -0.17 nmol/g 

90 minutes after injections [99]. Another team administered escalating oral doses of 

resveratrol (100-400 mg/kg b.w.) for 3 days allowing the detection of -l.7 nmol/g of 

brain tissue by liquid chromatography-mass spectrometry [100]. Evidently, the detection 

ofpolypheno1s in the brain is sensitive to methodo10gical disparities and caution must be 

exercised when drawing conclusions from these studies. 

Sorne polypheno1s are extensively transformed before they reach the brain, 

which possibly dampens their bioavailability, as discussed above. As an example, 

curcumin is highly lipophilic and, in theory, should easily gain entry to the brain [108]. 

However, before reaching the BBB, the free form of curcumin is very rapidly 

conjugated, rende ring it only sparingly bioavailable in the CNS [109]. Conversely, 

catechins efficiently cross the BBB after oral administration, but are found in 

glucuronidated and 3' -O-methyl glucuronidated forms in the brain tissue [102, 11 0]. 

To date, it remains unclear whether conjugation occurs before or after entry into the 

brain. Nevertheless, strategies exist to boost CNS concentrations of the aglycone form, 

for example by continuous administration aimed at promoting tissue accumulation [103]. 

Following 24 hours of continuous intragastric administration, EGCG levels in the 

CNS reached 5-10% of concentrations measured in the plasma [103]. These results 

imply, however, that a very high plasma concentration is needed for EGCG to 

accumulate in therapeutically reasonable concentrations in the brain. The necessity of 

maintaining high circulating concentrations may raise questions regarding the safety and 

tolerability of polyphenols. 

3.5 Synergistic effects 

Sorne polyphenols interact beneficially wh en administered in combination. 

Synergistic pharmacokinetics are at the basis of emerging multi-drug therapies 

[111-113] developed to surmount shortcomings such as low efficacy, acquired resistance 

and undesirable side effects in standalone treatments. Polyphenols exert synergy by 



422 

multiple means, extensively reviewed elsewhere [114-116]. Although synergistic 

chemosensitization properties of polyphenols are well appreciated, for example with 

respect to EGCG-induced downregulation of the endoplasmic reticulum stress response 

elements that renders temozolomide treatments synergistically more efficient in a mouse 

model of glioma [117] , what follows will concentrate solely on neuroprotective 

mechanisms. 

Perhaps at the basis of herb and extract efficacies, different polyphenols may 

concurrently regulate identical or separate targets in cells, resulting in a concerted 

agonistic effect. For instance, combinations of resveratrol and quercetin [118, 119] or 

epicatechin and quercetin [120] afford synergistic protection against amyloid-like 

aggregation, oxidative stress and oxygen-glucose deprivation in vitro. An earlier report 

of synergy between polyphenols showed that treatment of neuronal PC12 cells with 

subliminal doses of resveratrol in combination with catechin conferred greater protection 

against A~ toxicity than the sum of their individual actions [121]. However, when 

measuring their direct free radical scavenging capacity, the authors found their 

combined antioxidative effect to be merely additive, suggesting that their synergistic 

neuroprotective competences at combined subliminal doses must depend on other 

cellular mechanisms [121]. Very few studies have addressed neuroprotective synergy in 

vivo though a combination of polyphenols was found to synergistically rescue 

photoreceptors in an animal model ofretinal degeneration [122]. 

Synergy can also occur between polyphenols and drugs. Many in vitro reports 

support this, as is the case for the potentiation of neurite outgrowth by a subeffective 

dose of brain-derived neurotrophic factor (BDNF) in conjunction with green tea 

catechins [123 , 124], as weIl as for the protection of primary neurons and astrocytes by 

a cocktail of subliminal doses of resveratrol and melatonin via upregulation of heme 

ox ygenase-l [125]. One of the first reports of pol yphenol-drug synergy in rodents 

showed EGCG to favorably interact with rasagiline, an irreversible inhibitor of 

dopamine-metabolizing monoamme oxidase B (MAO-B) undergoing clinical 

investigations for the treatment of Parkinson's disease [126, 127]. When administered 
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alone in subliminal doses, neither EGCG nor rasagiline were capable of rescuing 

nigrostriatal neurons in a 1,2,3,6-tetrahydropyridine (MPTP)-injured mouse model of 

Parkinson's disease [128]. However, a combination of these agents at the se subeffective 

doses promoted the survival of the dopaminergic nigrostriatal pathway, demonstrating 

their synergistic effect. Interestingly, rasagiline's ability to promote the expression of 

BDNF in concert with EGCG-induced augmentations of prote in kinase C at the 

membrane appeared to produce a sum agonistic effect converging at their downstream 

effector Akt/protein kinase B, thought to account for their neuroprotective action. 

Other polyphenol-drug synergies exist for valproate and resveratrol in ischemic stroke 

[129] as weil as for glatiramer acetate and EGCG in experimental autoimmune 

encephalomyelitis [130], among others. 

Many polyphenols readily regulate absorption in the gastrointestinal tract, 

clearance at the level of the kidneys, and detoxification in the liver by modulating the 

activity of transport proteins or drug-metabolizing enzymes, which may improve their 

own oral bioavailability or that of other agents. In this respect, the flavonoid EGCG 

bears promising potential for use in Parkinson's disease owing to its ability to minimize 

levodopa methylation in the liver by inhibiting hum an catechol-O-methyl transferase 

(COMT), thereby enhancing bioavailability of the drug [131] . Flavonoids in general are 

also known to be potent inhibitors of cytochrome P450 (CYP) drug-metabolizing 

enzymes [132, 133] whose aforementioned activity reduces polyphenol bioavailability. 

This potential to enhance bioavailability of metabolism-sensitive drugs constitutes a 

clear example of polyphenol synergy that may be possible to harness in humans. 

4. Safety and tolerability 

Beyond favorable pharrnacokinetics, polyphenols must be safe and well-tolerated 

when employed in humans in the proposed conditions and posology. Several 

investigations have already addressed safety and tolerability issues in humans [see for 

review refs 134-137]. What follows will summarize these findings . 
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4.1 Side effects from dosage and chronicity 

Virtually ail human investigations perfonued with a wide array of polyphenol 

preparations demonstrate that they are safe and tolerable on the short [138, 139], 

medium [46, 140] and long tenu [141-143]. Generally, side effects are uncommon, mi Id 

and transient, expressing themselves as minor gastrointestinal troubles and, more rarely, 

in the fonu of headaches, dizziness and rashes. In a phase II trial , 24 Alzheimer's 

patients were administered 2 or 4 g of curcuminoids daily for 48 weeks and 3 withdrew 

due to minor gastrointestinal issues [143]. A study using a single 5 g/70 kg b.w. intake 

of resveratrol, representing 1/40 of the nephrotoxic dose and 1/4 of the highest dose 

reported to be safe in rats [144], did not uncover any serious adverse effects [138]. 

A great number of investigations have also addressed the safety of specific diets 

enriched in polyphenol-rich functional foods. Of particular interest, black cohosh, soy, 

and red clover regimens aimed at reducing menopausal symptoms in women have 

proven to be safe, with occasional manifestations of mi Id gastrointestinal issues, 

musculoskeletal and connective tissue troubles, as weil as weight gain [see for review 

ref 134]. 

4.2 Adverse pharmacological interactions 

While a consensus has been reached for the safety and tolerability of polyphenols 

in most individuals, certain contexts preclude their use. The case of grapefruit juice is a 

notorious example of the possible noxious effects of polyphenols in specific settings. 

In 1998, Bailey et al. demonstrated that grapefruit juice potently inhibits drug

detoxifying enzymes, explicitlY members of the CYP family responsible for the 

metabolism of several prescribed drugs [145, 146]. Apigenin, naringenin, nobiletin and 

hesperetin contained in citrus fruits are thought to be the principal culprits [132, 147, 

148]. Interestingly, enzymatic inhibition is apparently irreversible following the 

ingestion of 200-300 mL of juice, leading to increased drug bioavailability and toxicity 

for up to 24 hours after intake. With this knowledge, medical professionals are now 

mindful of the risks of consuming grapefruit juice in individuals already taking 

antidepressants such as buspirone (Buspar) and sertraline (Zoloft), beta-blockers, 
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anti-cancer agents, fexofenadine (Allegra), or certain statins (atorvastatin) among many 

other drugs [149-152] . Several other adverse interactions exist between polyphenols and 

drugs [153,154] and have been extensively discussed elsewhere [136]. 

4.3 Turnorigenicity 

As previously discussed, certain polyphenols, termed phytoestrogens, owe part 

of their biofunctionality to their resemblance to steroid hormones. Members of the 

flavonoid and stilbene subclasses indeed possess the capacity to bind ERs [155] and 

testosterone receptors [156] , albeit with much lower affinities than endogenous ligands. 

Many studies find phytoestrogens to be safe with respect to incidences of cancers 

[157, 158], and support their role in inhibiting aberrant cell proliferation [159-165]. 

Nevertheless, a few publications draw attention to the possible carcinogenic actions of 

sorne phytoestrogens that should not be disregarded [166]. In particular, soy genistein 

and daidzein (0.001-10 )lM) may stimulate the growth of malignant breast tumors, both 

in vitro and in vivo [166, 167]. 

In the case of the stilbene resveratrol, studies confirmed its ability to bind both 

ERs equally [168] , however with 7000 times less affinity than estradiol [33]. 

Interestingly, its effects are ostensible for select EREs regulated by ERu, but not for 

EREs dependent on ER~ activation. Unlike other ERu agonists, resveratrol does not 

appear to provoke mammary or uterine tissue proliferation in rats [169] and even 

promotes neuronal differentiation in vitro [170]. In light of this, resveratrol's favorable 

effects may in fact partially hinge on tissue-specific expression profiles of ERu and ER~ 

[171] . More recently, an eloquent study delineated the discriminatory ability of 

resveratrol to impede inflammation without promoting cell proliferation through 

pathway-selective ERu activation [172]. Crystallographic renderings of the ligand

binding domain revealed resveratrol to bind in an opposite orientation compared to 

estradiol, which may be at the core of its pathway selectivity and its proven safety in 

humans [135] , especially concerning risks of carcinogenesis. 
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5. A portrait of clinicat progress 

The therapeutic potential of polyphenols is hardly contestable when taking into 

account the overwhelming body of lite rature supporting their beneficial effects in 

countless preclinical disease settings [see for review refs 16, 17]. N otwithstanding the 

weight of epidemiological, anecdotal and fundamental evidence, translation from 

bench-to-bedside has proven extremely challenging despite relentless efforts to test 

polyphenols in clinical trials [see for review ref 90] . As of yet, a single trial addressing 

polyphenols in neurodegenerative diseases has reached phase III clinic,al testing [173]. 

In this prospective, randomized, double-blind, placebo-controlled parallel group study, 

disease progression will be assessed after 48 weeks of daily oral EGCG treatments in 

multiple system atrophy patients. Results are still pending as of July 201 8. 

The case of standardized Ginkgo biloba extracts, rich in flavonoids, yielded 

particularly disappointing results in light of nurnerous failed phase l trials with respect to 

the high hopes he Id by many [106, 174-176]. These studies addressed dementia 

prevention in large cohorts of healthy or mildly cognitively impaired elderly individuals 

administered oral Ginkgo biloba twice daily for several years [177], but no reduction in 

the incidence of cognitive decline or Alzheimer's disease was found between groups 

[178-182]. Other phase l and II clinical attempts have also been unsuccessful in 

confirming the putative positive effects of curcumin in Alzheimer's disease patients 

[143 , 183]. The reasons behind these discrepant results are not understood: have 

preclinical models failed to fulfill their predictive purpose or are the clinical trials simply 

incapable of detecting the beneficial effects of polyphenols due to a flawed approach? 

What is important to keep in mind is that successful clinical trials are not common, on 

account of the Inherent difficulty of translating drug applications between rodent 

paradigms and humans. Poor choice of participants, administration strategies or clinical 

endpoints will inexorably undermine the outcomes of these studies. As such, lack of 

positive results may not in themselves imply invalid preclinical evidence. 

In that respect, the required enrolment profile for testing Ginkgo biloba extracts 

was re-evaluated, yielding positive results in a new round of clinical trials, this time 



427 

performed in full-blown Alzheimer's disease and vascular dementia. These trials 

successfully uncovered the benefits of several months of a daily Ginkgo biloba treatment 

on cognition and neuropsychiatric symptoms [141, 142]. Changing the endpoints and 

focusing on prefrontal dopaminergic functions in elderly humans with self-reported mild 

cognitive decline was another fruitful strategy to expose the beneficial effects of Ginkgo 

biloba [184]. Nevertheless, the cholinesterase inhibitor rivastigmine, commercially 

known as Exelon, has been shown to be more efficient than Ginkgo biloba in treating 

Alzheimer's disease and remains the drug of choice to ameliorate cognitive impairment 

in mi Id to moderate forms of the disease [185]. 

Regarding other phase l trials, several have been successful in confirming discrete 

positive effects in healthy individuals. A variety of polyphenols, including resveratrol, 

were found to increase cerebral blood flow without, however, improving cognitive 

performances in young adults, whether administered in a single dose [186-188] or 

chronically over 28 days [189]. However, other groups found that longer chronic 

interventions in elderly humans using either cocoa flavanols or resveratrol enhanced 

dentate gyrus-related cognitive functions [190] or hippocampal-related memory 

functions [191], respectively. In Alzheimer's disease patients, resveratrol reached phase 

II investigations on the basis of its modulatory role on neuroinflammation, cognitive 

decline, and cerebrospinal fluid (CSF) levels of A~40 [192, 193]. Following a twice

daily oral regime for one year, resveratrol and its metabolites were discovered in the 

CSF, validating its ability to cross the BBB in humans [192]. Despite its relatively low 

bioavailability, resveratrol maintains the hopes of the scientific community towards its 

potential use in human neurodegenerative diseases. 

6. Future strategies for pharmaceutical development 

Polyphenols hold interesting properties that justify the intense scientific efforts 

devoted to translating their purported neuroprotective effects in humans. However, 

their questionable bioavailability, their mode st effects in humans and the impossibility 

of applying exclusive patent protection on natural molecules strips dietary polyphenols 
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of their appeal for pharmaceutical expansion. Nevertheless, several strategies espoused 

by drug developing teams in recent years have tackled these issues. 

6.1 Alternative formulations 

Engineering of novel structural analogues inspired by existing polyphenols or 

formulating specific preparations of polyphenols, such as the well-defined Ginkgo 

Biloba extract 761 , may be patentable options. Among the latest innovations, chemical 

engineering of pro-drug polyphenolic structures has shown promising results. 

For instance, acetylation of EGCG or resveratrol via esterification of their hydroxyl 

moieties yields stable pro-drugs in vivo whose acetyl groups can be hydrolyzed 

intracellularly by esterases to release the free polyphenol within the cell [194-196]. 

This strategy minimizes polyphenol auto-oxidation and allows better lipophilicity

dependent cellular uptake [197-199]. Production of conjugates with improved 

bioefficacy has also been a good experimental approach to promote polyphenol 

absorption and activity. For example, the glutamoyl diester of curcumin is a more pote nt 

neuroprotective agent than is curcurnin alone [200]. Similar efforts have been deployed 

for resveratrol [201-203]. 

6.2 Alternative drug delivery systems 

One of the more hopeful avenues employed by several teams is the development 

of novel encapsulation technologies. Progress in vehicle formulation made by 

pharmaceutical companies have allowed the preparation of polyphenols captured in lipid 

nanocapsules [204-206] , nanoparticles [206, 207], exosomes [208], nanocomposites 

[209], emulsified formulations [206,210,211] or in gel form [212]. Promisingly, several 

reports demonstrate increased bioavailability in rodents administered encapsulated 

polyphenols [see for review ref 213] . Another unusual packaging approach consists in 

the administration of biologically compatible carbon nanotubes [214] grafted with 

pol yphenols, such as gallic acid [215]. This method was shown to enhance the 

antioxidative properties of grafted agents [215] and to improve their ability to traverse 
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biological barriers [214, 216], although the application of such conjugates lS still 

not common and the outcome of using them has not been sufficiently addressed. 

Possible health concerns arising from the peculiar physicochemical properties of carbon 

nanotubes also warrant further investigations [214, 217]. Another simple tactic consists 

in improving a polyphenol's solubility in circulation, such as for the lipophilic 

resveratrol [218], via complexation with cyclodextrins whose capacity to form inclusion 

complexes has already been exploited in other drug delivery strategies [219]. On the 

who le, each of these methods possesses its own advantages and disadvantages, but brain 

accessibility is generally augrnented owing to improved BBB infiltration by lipophilic 

vehicles, brain targeting by functionalized capsules, and efficient evasion of metabolism 

[220]. 

6.3 Alternative administration routes 

In order to target the human brain with more efficiency, the administration route is 

another variable that can be altered, as long as it remains easy to market. Likely the most 

interesting of these alternative options is intranasal administration, usually paired 

with one of the previously mentioned encapsulation technologies, which has produced 

successful results with brain-bound drugs in humans, at least when considering 

bioavailability and the capacity to avoid peripheral side effects as c1inical endpoints 

[221 , 222]. Notable examples are the administration of insulin for the treatment of 

Alzheimer' s disease [223] and apomorphine for the treatment of Parkinson' s disease 

[224]. The me chanis ms by which drugs are delivered to the brain parenchyma have only 

begun to be elucidated. It would appear that drugs administered nasally either enter the 

brain through retrograde axonal transport at the level of the olfactory sensory cells, or by 

their penetration into the CSF across the nasal epithelium [225]. Although studies with 

polyphenols are scarce in preclinical models [226-228], intranasal curcumin 

administration has gained much attention [see for review ref 229] due to its very poor 

oral bioavailability [230] yet promising neuroprotective actions. Curcumin, which is 

highly lipophilic, may easily cross the BBB [108] if it is efficiently incorporated in the 

bloodstream and preserved from enzymatic modifications [231]. While it is recognized 
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as a very safe route, intranasal administration sometimes leads to minor adverse effects, 

principally nasal irritation, constituting a potential roadblock in the development of 

intranasal polyphenol administration [224, 232]. Less discussed administration systems 

verified preclinically with polyphenols include rectal suppositories for efficient systemic 

distribution, bone-marrow administration to improve immunomodulatory effects in situ 

and controlled-release implant strategies for direct targeting of tumors, although 

intrathecal administration for direct distribution in the CSF remains the only other 

interesting yet invasive option for brain targeting [see for review ref 229]. 

7. On the topic of dose-response 

The previous sections have highlighted studies focused on improving polyphenol 

bioavailability for their therapeutic use. While bioavai lability remains a core issue 

regarding their therapeutic potential, little is known about the actual dosage required for 

polyphenols to wield beneficial effects in humans. This constant struggle to prove that 

polyphenols can accumulate in high-enough concentrations in target tissues is likely 

deeply rooted in a history of earlier reports that lent these molecules potent antioxidative 

properties in vitro [233, 234]. 

More recently, the physiological significance of polyphenols' direct antioxidative 

actions is met with much skepticism, particularly with regard to the brain, due to their 

modest gastrointestinal absorption, propensity to undergo heavy biotransformations and 

rapid excretion by the kidneys [97,235]. On the one hand, H-atom transfer must always 

occur faster th an at least one of the reactions of free-radical-production cascades 

(e.g., the limiting propagation step in lipid peroxidation), and this is improbable [236] . 

On the other, polyphenol concentrations, which rarely exceed micromolar concentrations 

in plasma or tissues at any given time [237], are substantially inferior to those of 

endogenous antioxidants such as ascorbate (30-100 !-lM) and urate (140-200 !-lM) [238]. 

Consequently, it is argued that their contribution to plasma's total antioxidative capacity 

never exceeds 2% and may therefore be irrelevant in a physiological context [235, 239]. 

In fact, direct antioxidative effects of polyphenols have not been measured in the brain 
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and sorne recommend assuming the "absence of evidence as evidence of absence" [97]. 

Studies demonstrating the anti-inflammatory properties of polyphenol analogues devoid 

of direct antioxidative capacities challenges the idea by which their health virtues stem 

from their ability to hamper oxidative stress [201 , 202]. 

Nowadays, it is acknowledged that high circulating concentrations of polyphenols 

may not be required to achieve certain clinical endpoints. Indeed, by interacting with 

various enzymatic targets, for instance Keapl , very small doses of polyphenols may 

bene fit from the cascades of events that ensue in cells. Despite this, efforts continue to 

foc us on enhancing bioavailability rather than on identifying an adequate dose-response 

framework that could predict the behavior of this class of molecules. This oversight may 

partly account for the apparent difficulty of translating preclinical findings into actual 

positive outcomes in humans. Where disappointingly mode st clinical benefits have been 

shown, is increasing the dose always a judicious strategy? The answer may not be as 

obvious as once thought. 

Sensible explanations have been proposed to explain the bioefficacy of 

polyphenols at very low doses. One of these is that polyphenols exert their biological 

effects in a non-linear fashion, more precisely by abiding to the kinetics of a biphasic 

dose-response profile. One such model predicts dose-response curves in the shape of a 

J or an inverted U depending on the endpoint quantified [240, 241]. The biphasic theory 

stipulates low-dose stimulatory and high-dose inhibitory effects [242, 243]. It describes 

an agent's direct stimulatory effects at low concentrations followed by the organism 's 

overcompensation riposte at higher doses [244]. In neuroprotection, hormesis predicts 

very low doses to be beneficial and higher doses to be potentially harmful. 

The application of this theory is thus intimately linked with whether polyphenols are 

indeed stressors that induce a defense response in cells. This has yet to be confirmed. 

Today, the biphasic hypothesis to explain polyphenols ' bioefficacy at very low 

doses is gaining momentum, resveratrol constituting the best example. A wealth of 

reports lends resveratrol hormetic properties in various fields of application, ranging 
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from cancer to neuroscience research, extensively reviewed elsewhere [245]. In sorne 

instances, resveratrol stimulates cancer cell proliferation at very low doses, but inhibits 

carcinogenesis in higher concentrations [246]. Other reports show resveratrol 

inducing atherosclerotic les ions at high doses, while it remains cardioprotective at 

lower concentrations [247]. In neurons, resveratrol promotes survival at very low 

concentrations, but is neurotoxic at higher doses [121 , 248]. One study performed in 

mice and primary cortical neurons proposed a mechanism possibly underlying the 

biphasic response of energy-depleted neurons to resveratrol, showing protection at low 

doses and toxicity at higher doses [249] . The authors explained resveratrol' s bimodal 

effects via its stirnulatory action on silent mating type information regulation 2 homo log 

1 (SIRT1), whose low-grade activity can suppress oxidative stress [250] . However, 

wh en stimulated by greater doses of resveratrol, SIRT1 expends too much reduced 

nicotinamide adenine dinucleotide (N AD+) where neurons are already energeticall y 

depleted, causing energy failure. During an ischemic event, resveratrol administration 

could either be beneficial or detrimental, depending on dosage and timing to which the 

bioenergetic status of neurons is sensitive. 

For now, these studies are more often than not performed in pre-clinical models 

and do not necessarily reflect what could occur in humans. The best-documented 

evidence of biphasic dose-responses in humans pertain to radiation events, for instance 

in cancer treatments or in atomic bomb survivors [251, 252]. However, reservations 

dwell on the significance of such a dose-response relationship in polyphenols applied to 

the hum an brain, seeing as it is highly unlikely that treatments could ever afford to 

increase their bioavailability in the parenchyma beyond very low concentrations. 

This could mean that the observed bioefficacy of polyphenols may already be optimal 

where mode st benefits are found in trials. Indeed, one distinct feature of the 

biphasic hypothesis provides that low dose beneficial effects stem from cellular 

overcompensation mechanisms in response to the stress charged by polyphenols [253]. 

Beyond the optimal concentration at which maximal benefits are yielded, this 

compensation reaction is slowly overwhelmed by the increasing stress polyphenols 

directly exert on the cell. Even at the optimal concentration, these beneficial effects are 
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thus thought to be at best partial. If this theory holds true, this could explain the 

mitigated results clinical trials have harvested to date, even upon increasing dosages. 

8. Concluding remarks 

In theory, polyphenols hold a very attractive therapeutic potential. Their structure 

confers them metal-chelating, fibril-destabilizing, estrogen-like, enzyme-binding and 

indirect antioxidative competences supporting their usefulness in neurodegenerative 

diseases. Epidemiological evidence shows a strong association between their 

consumption and a reduced occurrence of various neurodegenerative diseases. 

Preclinical models lend them neuroprotective properties. Sorne clinical trials have even 

been successful in revealing small but noticeable improvements in human health and 

have confirmed their safety in various settings. Nevertheless, the limited bioavailability 

of polyphenols faced with their apparent bioefficacy remains an under-explored 

dimension of their employment In diseases. To achieve clinical dissemination, 

investigators must demonstrate that polyphenols exert significant health benefits, 

fulfilling fixed endpoints. However, in neurodegenerative diseases, polyphenol trials 

consistently faU through in early clinical testing phases. To overcome this, researchers 

must optimize the design of their trials, with respect to the subjects (disease stage, 

participant profile, cohort age, medical history), the administration paradigm 

(polyphenol formulation, route, dosage, frequency, duration) and endpoints (motor 

symptoms, cognitive decline, neuroinflammation, neuron integrity, CNS vascular health, 

etc.). This should logically require a clear notion of the relationship between doses and 

outcomes in very specific human disease settings, as well as the extent to which 

beneficial effects should be expected to manifest themselves. Indeed, as reviewed here, 

polyphenols are sensitive to a great number of physiological conditions that impinge on 

their bioavailability and biofunctionality, which may account for the markedly high 

interindividual variation observed in clinical investigations. Even biphasic dose-response 

theories cannot explain this variability. 
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Despite having collected a large amount of information from many pre-clinical 

models and applications, the scientific community still cannot agree on a working 

theoretical framework that could aid in predicting outcomes in humans. Until then, 

optimization of clinical trials remains an exercise of futile guessing. A priority would 

consist in determining the maximal health benefits that could be achieved from 

polyphenol monotherapies as they most usually stand in trials. Can we really expect 

standalone treatments to fui fi Il hard-to-reach clinical endpoints? If epidemiological 

evidence is strong for the protective effects of consuming complex mixtures of 

polyphenols in food, it may be precarious to expect single molecules to be as effective. 

Perhaps concentrating on the concerted effects between polyphenols with each other or 

with other drugs that show partial benefits, such as the MAO-B inhibitor rasagiline [127] 

or levodopa [131], ma y overcome the as of yet modest effects in humans. Evaluating 

polyphenols in preventive clinical paradigms may also constitute a more realistic 

strategy. Future research should cease to avoid addressing the limitations of polyphenols 

employed in neurodegenerative diseases; it should rather clearly define and hamess 

these frontiers in emitting educated projections of their true therapeutic potential in 

human health. 
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Full chapter in English: Prevention of neuroinflammation by resveratrol: focus on 
experimental models and molecular mechanisms 

Abstract 

The central nervous system (CNS) is normally protected by the blood brain barrier 

(BBB) from systemic inflammation, and the role of immunity is fulfilled by its resident 

cells, mainly microglia. Resveratrol, trans-3,5,4'-trihydroxystilbene, has long been 

acknowledged as a dietary polyphenol bearing potent anti-oxidative and neuroprotective 

properties in experimental paradigms of neurodegenerative diseases with a component 

of neuroinflammation, such as Parkinson's disease (PD) and Alzheimer's disease (AD). 

Nowadays, a growing number of studies indicate that resveratrol is implicated in 

slowing or altering the pathological progression of neurodegeneration by modulating 

specifie cellular pathways and parameters of neuroinflammation. Here, we present a 

global portrait of this polyphenol's role in the neural environ ment with a specifie 

emphasis on the experimental paradigms demonstrating resveratrol's molecular and 

cellular action on neuroinflammation. 

1. Introduction: neuroinflammation 

For a long time, the central nervous system (CNS) was considered an immune 

privileged region of the organism. This apparent state of retreat was attributed to the 

presence of tight junctions at the boundary between the endothelial membrane and nerve 

cells named the blood-brain barrier (BBB), and the relatively low expression of major 

histocompatibility complex (MHC) molecules. Today, we know this paradigm to be 

inaccurate as major evidence demonstrates support dynamic crosstalk between central 

and peripheral immunity as established by cytokine-mediated coordination of the 

inflammatory reaction (1), active immune surveillance by intruding cells of the 

peripheral immunity (2-4), and even the newfound demonstration of a lymphatic 

drainage system (5,6). 
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The CNS remams immunologically specialized inasmuch as resident cells 

accomplish the bulk of surveillance, defense, and reparation tasks. The principal 

antigen-presenting immune cells of the CNS are microglia that, in their resting ramified 

state, monitor their environrnent for disruptions of the fragile homeostasis required for 

the proper functioning of nerve cells (7-9). Vpon activation, microglia partake in 

neuroinflarnrnation by secreting inflarnrnatory mediators, producing toxic reactive 

species, and by executing reparation tasks through phagocytosis of debris (10,11). 

Astrocytes, which constitute up to 70% of glial cells, also actively participate during the 

inflammatory reaction by becoming hypertrophic, proliferating (astrogliosis), presenting 

antigens, expressing both pro- and anti-inflarnrnatory molecules, producing neurotrophic 

factors, and confining the lesion through the production of a glial scar (12,13) . Just as 

important is the presence of neurons that constitutive express transforming growth 

factor-beta (TGF-~), soluble fractalkine, and fas ligand (FasL), thus helping to contain 

inflammation (14,15). As such, all resident cells of the CNS are capable of fulfilling pro

and anti-inflammatory tasks depending on their expression phenotype that greatly 

depends on surrounding soluble and cellular signaIs. 

Sustained and uncontrolled neuroinflarnrnation can easily take on auto-destructive 

proportions as observed in several neurodegenerative diseases such as Alzheimer's 

disease (AD) or Parkinson's disease (PD) (16,17). As such, strategies aiming to 

modulate neuroinflammation are of great interest in the development of neuroprotective 

therapies for various neurological pathologies. 

2. Resveratrol in neuroinflammation 

With respect to their proven anti-inflarnrnatory properties, an expanding number of 

studies have addressed the potential neuroprotective effects of dietary polyphenols in the 

CNS, especially regarding neurodegenerative diseases (18-20). Among the most 

promising anti-inflammatory polyphenols, resveratrol (trans-3 ,5,4'-trihydroxystilbene), 

a stilbenoid found in important quantities in the roots of Polygonum cuspidatum 

(Fallopiajaponica) and to a lesser extent in red wine, grapes, peanuts, and berries (21), 
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has attracted much attention over the past twenty years since its anticancer properties 

were first brought to light (22). Resveratrol has also been shown to possess broad 

anti-oxidative (23), cardioprotective (24), and anti-inflammatory (25,26) effects. 

Its neuroprotective actions in a wealth of in vitro and in vivo models (recently reviewed 

in 27 and 28), together with its sufficient bioavailability, oral safety, and ability to cross 

the BBB (29,30-36), earn resveratrol a prime role for its potential to counteract 

neuroinflammation in a pathological context. The following sections review the advance 

made in the characterization of resveratrol's neuroprotective properties pertaining to its 

anti-inflammatory actions, with a particular focus on experimental models and the latest 

proposed molecular mechanisms. 

2.1 Resveratrol and neuroinflammation: In vitro models 

2.1.1 Microglia monocultures 

Resveratrol's anti-inflammatory effects have been tested repeatedly ln 

monocultures of microglial cell lines or primary cultures treated with pro-inflammatory 

molecules such as the endotoxin lipopolysaccharide (LPS), a component of gram

negative bacteria outer membranes. LPS elicits a potent inflammatory response by 

binding toll-like receptor 4 (TLR4), which leads to receptor homodimerization and 

activation that ultimately enhance transcription of pro-inflammatory proteins. 

Using BV2 microglial cells treated with LPS, resveratrol attenuated the release of 

pro-inflammatory cytokines such as interleukin- l ~ (IL-l~) and tumor necrosis factor-a 

(TNF-a) (37), as weil as it lowered levels (mRNA and protein) of the pro-inflammatory 

enzymes inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX-2) alongside 

their products, nitric oxide (NO) and prostaglandin E2 (PGE2), respectively (38). 

Both mRNA and protein levels of the pro-inflammatory transcription factor K-light

chain-enhancer of activated B cells subunit RelA (NF-KB/RelA) were reduced as a result 

of resveratrol's inhibitory effect on upstream regulators, in particular the prevention of 

mitogen-activated prote in kinases (MAPKs) phosphorylation (38). Of importance, these 

anti-inflammatory effects were fully or partially impaired by a treatment with 
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rapamycin, meaning that the mechanistic target of rapamycin (mTOR) was required to 

fulfill resveratrol ' s beneficial effects (38). Wh en used as a co-treatment in the 

LPS-activated N9 micro glial celIs, resveratrol was also shown to be anti-inflammatory 

by reducing iNOS expression and TNF-a release by acting through inhibition of 

p38 MAPK phosphorylation (39). More recently, comparable anti-inflammatory effects 

were observed in the N13 microglial celI line treated with LPS wherein resveratrol 

upregulated suppressor of cytokine signaling-l (SOCS-l), a regulator of inflammation 

that drives a negative feedback loop to temper cytokine production (40). Remarkably, 

resveratrol was found to inhibit aIl three pathways downstream of TLR4 activation, 

namely the MAPK, NF-KB pathway, and janus kinase (JAK)/signal transducer and 

activator of transcription (ST AT) axes, leading to hampered cytokine production. 

Noteworthy, silencing the expression of SOCS-l impaired resveratrol's pleiotropic anti

inflammatory actions, suggesting a pivotaI role for this regulatory switch in mediating 

this polyphenol ' s beneficial effects. 

In pnmary rat microglia treated with LPS, resveratrol reported to prevent 

microglial activation not only by inhibiting the activity of cyclooxygenases (COXs), 

but also through the downregulation of the transcription and expression of the inducible 

microsomal PGE synthase-l (mPGES-l) known to be importantly involved in 

LPS-activation (41). This observation was not accompanied by altered COX expression 

nor modulated by COX-l inhibitors, suggesting that resveratrol's newfound inhibitory 

effect on mPGES-1 expression is independent of its action on COX-l. 

The use of A~ in mediating glial activation has become an increasingly popular 

tool in mimicking neuroinflammation in light of discoveries that demonstrate a clear-cut 

link between AD and inflammation (42). One study compared the potential of 

resveratrol to antagonize pro-inflammatory events in BV2 microglial celIs activated by 

either A~ or LPS (43). Resveratrol inhibited the NF-KB pathway in both models, 

and apparently interfered with TLR4 oligodimerization upon activation by LPS as 

shown by co-immunoprecipitation experiments in homogenates from murine bone 

marrow-derived pro-B Ba/F3 celIs coexpressing two differently tagged versions of 
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TLR4. Although there is no doubt that resveratrol blocked downstream TLR4 pathways, 

direct interference with TLR4 oligomerization is unlikely given that this polyphenol 

does not possess the structural motif to perform Michael addition on the receptor (44). 

Very recently, another group employed oligomeric A~ instead of A~ monomers to 

activate BV2 microglial ceIls and found that resveratrol successfully mitigated 

microgliosis and production of cytokines, NO, and reactive oxygen species (ROS) (45). 

In addition, resveratrol was shown to reduce mRNA and prote in levels of nicotinamide 

adenine dinucleotide phosphate oxidase (NADPH oxidase) subunits p47phox and 

gp91 phox, thereby explaining the decrease in ROS formation. 

2.1.2 Astrocyte monocultures 

As astrocytes are the most abundant type of nerve ceIl in the CNS, their regulatory 

role in neuroinflammation cannot be ignored. In the C6 astroglial cell strain derived 

from a rat glial tumor, resveratrol revoked activation of the NF-KB pathway and 

impeded the expression of downstream target genes COX-2 and iNOS, foIlowing LPS 

activation (47). Similarly, in primary murine astrocyte cultures activated by LPS, 

resveratrol was found to reduce levels of several pro-inflammatory cytokines including 

regulators of T cell polarization, IL-12 subunit ~ (IL-12p40) and IL-23, and the 

chemokine monocyte chemotactic protein-l (MCP-I) (48). Moreover, another study 

used pharmacological inhibitors of the inducible heme oxygenase-l (HO-I), ERKl/2, 

and p38, in primary rat astrocytes, to show that HO-I was necessary to mediate 

resveratrol's beneficial effects (49). Of note, HO-I is a known inhibitor of NF-KB 

nuclear translocation and of iNOS activity (50). Comparable results were obtained in 

primary rat astrocyte cultures activated by A~, sustaining a role for resveratrol ln 

diminishing COX-2 and iNOS protein levels as weIl as in impeding astrogliosis (51). 

In a comparative study using primary murine microglia and astrocytes as weIl as 

the N9 microglial ceIl, resveratrol precluded the activation of NF-KB in ail cell types, 

but it only successfully inhibited activator protein 1 (AP-I), another key pro

inflammatory transcription factor, in microglia thereby offering a reasonable explanation 
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for resveratrol's less potent anti-inflammatory response in astrocytes (52). Interestingly, 

resveratrol had no effect on the phosphorylation levels of ail three members of the 

MAPK family, contrary to other data collected albeit from different experimental 

models (38-40,53-55). Another comparative study using primary hippocampal astrocyte 

cultures from newbom, adult, and aged Wistar rats, revealed that pro-inflammatory 

cytokine production was slightly though significantly more elevated in astrocyte cultures 

derived from older rats, while expression levels of the anti-oxidant enzyme glutathione 

synthase and its product, glutathione, were consistently lower (56). Remarkably, 

resveratrol was able to decrease levels of inflammatory markers and ameliorate the 

glutathione anti-oxidant response in each one of these unchallenged astrocyte cultures. 

2.1.3 Glia-neuron co-cultures 

As inflammatory reactions rely heavily on crosstalk between the multiple actors of 

immunity, co-cultures have emerged as very useful tools to study these interactions. 

Using LPS-challenged mixed primary cortical cultures, one group showed that 

resveratrol can reduce microglial activation as demonstrated by a decrease in levels of 

ionized calcium-binding adapter molecule 1 (Thal), a marker of activated microglia, and 

concomitant drops in TNF-a, IL-lB, and NO secretion (57). Similar results were found 

in mesencephalic mixed primary cultures where resveratrol protected dopaminergic 

neurons against LPS toxicity (58). The same group further revealed that resveratrol 

could impair NADPH oxidase activation, an enzyme that like MPO is responsible for 

respiratory burst, thereby preventing the production of ROS. This was likely due to the 

inhibition of MAPK phosphorylation, in particular extracellular signal-regulated kinase 

(ERKI /2), a known activator of NADPH oxidase. Similar NADPH oxidase-inhibition 

effects for resveratrol had also been previously reported in AB-chaUenged BV2 

microglia (45). Moreover, resveratrol could not protect the dopaminergic neurons 

in mixed cultures from NADPH oxidase-deficient mice, implying that its anti

inflammatory properties may require the inhibition ofthis ROS-producing enzyme. 
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It should be noted, however, that mixed cultures cannot distinctively detect 

interactions that are solely based on paracrine signaling in the absence of cell-cell 

contact, as is the case for sorne cellular relationships seen in inflammation. To palliate 

this problem, the use of conditioned medium was developed as a method for the 

compartmentalization of cellular populations. Wang and colleagues (59) demonstrated in 

a conditioned medium experiment that secreted soluble factors from LPS-activated 

primary microglia reduce the viability of primary hippocampal neurons while resveratrol 

co-treatment afforded anti-inflammatory effects, leading to decreased secretion of 

cytokines, lower expression of iNOS, and repression of the NF-tcB pathway. Of interest, 

resveratrol preserved the physiology of the primary neurons treated with conditioned 

medium on the basis of numbers of growth cones, dendrites, and spines. Ye and 

colleagues also administered cytokine-rich conditioned medium from LPS-activated 

BV2 microglia monocultures as a toxic treatment on separate native PC12 cells (60). 

Resveratrol treatrnents were performed either on the BV2 microglial or PC12 cell 

population, resulting in protection against LPS-induced PC12 apoptosis, decreased 

microglial cytokine release, and all-around increased expression of silent mating type 

information regulation 2 homologue 1 (SIRTl), a deacetylase with pleiotropic beneficial 

effects. 

While the use of conditioned medium does solve the compartmentalization 

problems that arise from employing mixeq cultures, this method still bears important 

drawbacks. Indeed, in conditioned medium, the communication occurs unidirectionally 

instead of bidirectionally, secreted factors become diluted as they diffuse over time, 

and short-lived molecules, such as ROS that often go hand in hand with inflammatory 

reactions, decay before the conditioned medium is even transferred to the second 

population of cells. Currently, insert co-culture systems solve several of these problems. 

Our group tested the neuroinflammatory paradigm using LPS-activated N9 microglia 

grown in cell culture inserts overlaid in wells containing nerve growth factor

differentiated dopaminergic PC12 neurons (61). Secreted cytokines diffused through the 

micropores of the inserts and triggered the apoptotic cascade of the neuronal PC 12 

neurons underneath, events that were counteracted by a resveratrol pre-treatment. 
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Similar results were found in the same co-culture neuroinflammation system using the 

parkinsonian neurotoxin I-methyl-4-phenylpyridiniurn (MPP+) to activate the microglial 

cellline (62). 

One group used an array of co-culture techniques to demonstrate the link between 

resveratrol neuroprotection and the expression of myeloperoxidase (MPO), a peroxidase 

enzyme necessary during micro glial respiratory burst (46). Resveratrol succeeded to 

prevent rotenone-induced increases in MPO activity and expression while other anti

inflammatory drugs could not. Remarkably, in a mixed culture of MPO-deficient glial 

cells, resveratrol greatly ameliorated the impaired inflammatory response to rotenone

induced production of nitrite and transcriptional up-regulation pro-inflammatory 

markers. In the same study, the authors reported that neurons cultured without microglia, 

were much more susceptible to rotenone toxicity despite being treated with resveratrol, 

suggesting that this polyphenol's mode of action may rely at least partly on MPO 

inhibition. Similar results were also obtained by Zhang et al. showing that solely mixed 

primary cultures containing microglia were protected against MPP+ by resveratrol 

administration (58) . 

One of the earliest studies employing A~ as a pro-inflammatory insult showed that 

resveratrol could prevent the activation of the NF-KB axis in a mixed culture of cortical 

neurons and glia (63) . Concomitantly, expression of the deacetylase SIRTl , a known 

inhibitor ofNF-KB activation, was significantly increased. Either overexpressing SIRTI 

or treating the mixed culture with resveratrol could suppress increased levels of 

cathepsin Band iNOS, two effectors of neuronal injury in AD, suggesting a role for this 

deacetylase in resveratrol 's anti-inflammatory actions. 

2.1.4 Organotypic slice cultures 

Organotypic slice cultures offer interesting advantages over other in vitro 

platforms such as preservation of tissue architecture, maintenance of intact local 

synaptic circuitry, and pharmacological accessibility (64). In that respect, resveratrol's 
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anti-inflammatory potential was investigated in rat hippocampal slice cultures stimulated 

by A~ (65). Resveratrol administered both in a free form or loaded in lipid-core 

nanocapsules was found to diminish cytokine release and ROS formation, thereby 

protecting the slice cultures against cell death. Remarkably, resveratrol-Ioaded lipid-core 

nanocapsules were further able to increase the release of IL-lO, an anti-inflammatory 

cytokine. On the other hand, free form resveratrol was less effective than lipid-core 

nanocapsules in mediating all-around anti-inflammatory effects and was unable to 

stimulate IL-10 release, which opens the way for the improvement of administration 

routes for this polyphenol in pre-clinical experimental models. 

Another set of interesting studies employing organotypic rat hippocampal slice 

cultures · have shown the noxious effects of the neurotransmitter glutamate and the 

neurotoxic viral protein Tat, derived from the human immunodeficiency virus-l (HIV -1) 

(54,55). Tat is actively secreted by HIV -infected immune cells and is known to be 

elevated in the CNS of patients suffering from HIV -associated dementia (HAD) (66), 

whereas glutamate plays a role in several neurological diseases with a component of 

excitotoxicity such as AD but also in HAD (66,67). Both toxic treatments increased the 

expression of pro-inflammatory MCP-l, however they acted through different 

mechanisms. Whereas glutamate required ERK1/2-induced IL-l ~ production to 

mediate its pro-inflammatory action (54), Tat rather necessitated activation of both 

ERK1I2 and tyrosine kinase (TK) to promote TNF-a release (55). In these paradigms, 

resveratrol exerted anti-inflammatory protective effects through preventing ERK1I2 

phosphorylation and subsequently mitigating cytokine production and ultimately led 

to decreased expression of MCP-l, as shown previously (48,52). Noteworthy, 

pharmacological manipulations ruled out the implication of any of the two other 

MAPKs, which reiterates the pivotai function that ERK1I2 holds in mediating 

resveratrol's anti-inflammatory effects in these models and others (38-40,53). 
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2.2 Resveratrol and neuroinflammation: In vivo models 

2.2.1 Neurodegenerative disease models 

The most common neurodegenerative diseases and brain injuries are attended by 

inflammatory events that participate either in their ons et or progression. In the two most 

common neurodegenerative disease, AD and PD, neuroinflammation has been broadly 

characterized ever since seminal work by McGeer and colleagues exposed the existence 

of unusually elevated levels of MHC class II molecules on the surface of activated 

microglia in post-mortem brains of PD patients (68). 

Experiments perforrned in rodents challenged with LPS have substantiated 

resveratrol ' s general potential to prevent neuroinflammation by improving CNS levels 

of oxidative markers and pro-inflammatory cytokines, as weIl as ameliorating locomotor 

and cognitive behaviors (37,69). Further experimenting using the well-known MPTP 

mouse model of PD revealed that orally-administered resveratrol could reduce glial 

activation and dopaminergic neuronal death in the substantia nigra pars compacta, 

the key region targeted by neurodegeneration in PD. (70). In particular, resveratrol 

upregulated the transcription and expression of SOCS-l , reduced cytokines release and 

lowed transcription levels of their respective receptors. In 6-hydroxydopamine 

(6-0HDA)-treated rats, another rodent model of PD, resveratrol administered per os 

showed similar anti-inflammatory effects alongside improving dopaminergic neuronal 

morphology, such as chromatin condensation, mitochondrial tumefaction, and 

vacuolization (71). Noteworthy, resveratrol was able to attenuate the characteristic 

apomorphine-induced tuming behavior observed in these rats. 

Resveratrol's anti-inflammatory properties have further been supported in models 

of AD. Indeed, resveratrol was shown to diminish plaque area in correlation with 

impeded microglial activation in the hippocampus of APP/PS 1 transgenic mice, a well

documented model of early onset AD (43). Resveratrol mixed in the diet and fed to the 

mice for a period of one year was found to significantly reduce A~ plaque density in the 

cortex, caudate-putamen, and hippocampus (72), and concurrent micro glial activation 
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was hampered in these brain regions. In rats infused with A~ intracerebroventricularly, 

resveratrol loaded in lipid-core nanocapsules was shown to improve hippocampal 

synaptic integrity and gliosis (73) by inhibiting c-Jun N-terminal kinases (JNK) MAPK 

and the ~-catenin pathway through rescuing glycogen synthase kinase 3~ (GSK-3 ~) 

phosphorylation. In addition, improvement of spatial working memory and long-term 

recognition memory was observed following treatment with resveratrol-Ioaded lipid

core nanocapsules (65). Zaky and colleagues reported that resveratrol could reduce 

NF-KB activation and cytokine production and plaque formation in a rodent model 

administered with alup1inum chloride (74). Besides, resveratrol was able to increase the 

levels of A~40 peptide, a potentially protective form of A~40 and rescued the expression 

of apurinic/apyramidic endonuclease 1/redox factor-I (APE 1/Ref-I), an important 

player in DNA repair and a redox regulator of transcription factors su ch as NF-KB and 

AP-l. 

2.2.2 Brain in jury models 

Traumatic brain injuries (TBI) represent the importance of controlled and 

well-steered neuroinflammation intended to effectively repair CNS lesions. TBI implies 

glial activation, cytokine production, debris clearance, and even the recruitment of 

a substantial cast of blood-derived inflammatory effectors due to loss of BBB integrity 

(75-77). Thus, it is of prime importance to tackle the inflammatory component of TBI to 

limit neuronallesions and dysfunction. 

Resveratrol administered post-in jury m a munne model of mild TB l, indeed 

displayed anti-inflammatory actions by attenuating microgliosis in the corpus callosum, 

cerebral cortex, and dentate gyms (78), and elevated levels of IL-6 and IL-I2 observed 

in the hippocampus following the injury were rescued by resveratrol administration. 

As for TB l, patients with spinal cord injuries (SCI) sustain ongoing inflammatory 

damage long after the traumatic event (75). In a rat model of acute SCI, resveratrol 

administered post-in jury improved the extent of damages in the CNS by reducing 

necrosis, hemorrhage, oxidative stress, and edema, as well as by rescuing neuronal 

morphology and apoptosis (79). Alongside the se observations, pro-inflammatory 
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cytokine production and MPO expression were hampered. On the other side, resveratrol 

also reduced levels of anti-inflammatory IL-l 0, suggesting an all-around buffering effect 

of inflammatory signaling. Remarkably, rats treated with resveratrol displayed improved 

locomotor activity. 

Following an ischemic event, reperfusion is a key contributor to the up rai se in 

robust neuroinflammation (76). A pre-treatrnent of resveratrol in rats challenged with 

global cerebral ischemia/reperfusion remarkably attenuated glial activation particularly 

in the CAl hippocampal region (80). In parallel, NF-KB and JNK activation were 

hampered, leading to decreased production of COX-2 and iNOS. 

Status epilepticus (SE), a state of persistent seizure and a known cause of CNS 

injury, may implicate neuroinflammation (77). Resveratrol ' s anti-inflammatory potential 

has been tested in a rat model of SE, particularly regarding its possible effect on 

mTOR (81). Indeed, resveratrol could downregulate the activity of mTOR shown to be 

increased in SE rats, leading to the impediment of the NF-KB pathway and reduction of 

the classical downstream gene targets. Similar results were obtained with the mTOR 

inhibitor rapamycin. Remarkably, resveratrol enhanced the levels of mTOR antagonists 

5' adenosine monophosphate-activated protein kinase (AMPK) and SIRTI. However, 

further experiments showed that pharmacological inhibition of AMPK but not SIRTI 

could reverse resveratrol's beneficial effects, implying a role for AMPK activation in 

this polyphenol's mTOR-inhibitory and anti-inflammatory actions. This is in opposition 

to results obtained in vitro where resveratrol rather activated mTOR (38). 

3. Molecular mechanisms of resveratrol action in neuroinflammation 

It is undeniable that resveratrol possesses potent anti-inflammatory properties in 

light of the compelling in vitro and in vivo evidence that has pointed out its potential to 

downregulate distinct pathways implicated in inflammation, in particular the NF -KB, 

AMPKlSIRTl , and MAPKs axes, as weil as pivotai actors such as MPO, NADPH 

oxidase, and HO-l, to name a few. Figure 1 presents an overview of the potential key 

molecular axes underlying resveratrol's anti-inflammatory benefits. 
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Figure 1 Possible mechanisms by which resveratrol affords its anti
inflammatory actions, particularly in microglia activated by LPS. 
Firstly, resveratrol is suggested to directly inhibit phosphodiesterases 
(PDEs) or to activate si lent mating type information regulation (Sir) 2 
homolog 1 (SIRT 1). Both targets are responsible for triggering multiple 
intracellular cascades, sorne of which depicted herein, leading to the 
activation of adenosine monophosphate kinase (AMPK). Thereafter, 
AMPK is capable of inhibiting nuclear factor kappa-light-chain-enhancer 
of activated B cells (NF-K13) activation. Similarly, SIRTI deacetylates 
both NF-teE and activator proteinl (AP-l), thereby preventing their 
activation. Moreover, resveratrol has been demonstrated to directly 
activate heme oxygenase-l (HO-l), an inhibitor of NF-K13, and to 
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stabilize KH-type splicing regulator protein (KSRP), a protein responsible 
for the degradation of pro-inflammatory mRNAs. As weil, resveratrol 
is a known inhibitor of apurinic/apyramidic endonuclease lIredox 
factor-l (APElIRef-1), which potentiates NF-KB- and AP-l-mediated 
transcription, and of pro-inflammatory enzymes such as cyclooxygenases 
(COXs) and leukotriene A4 hydrolase (LTA4H), which respectively 
synthesize the pro-inflammatory mediators prostaglandin E2 (POE2) and 
leukotriene B4. Finally, resveratrol's role in directly modulating estrogen 
receptors (ERs) has also been highlighted as a potential anti-inflammatory 
pathway. This aU-inclusive schematic demonstrates a convergence in the 
multiple pathways activated or inhibited by resveratrol that ultimately 
lead to the offset of pro-inflammatory processes in microglia. EPAC, 
exchange factor directly activated by cyclic adenosine monophosphate 1; 
LKB 1, liver kinase BI ; LPS, lipopolysaccharide; MAPK, mitogen
activated prote in kinase; MPO, myeloperoxidase; NADPH, nicotinamide 
adenine dinucleotide phosphate; TLR4, toll-like receptor 4. 

3.1 Pro-inflammatory enzymes 

COXs are convincingly sorne of the most probable direct targets of resveratrol ' s 

attention. Both COX -1 and COX -2 catalyze the conversion of arachidonic acid to pro

inflammatory prostaglandins. Pezzuto ' s group proved resveratrol 's inhibitory effect on 

both COX isoforms, with regard to its anti-cancer potential (22), and these observations 

have been reinstated in recent days (82). Another inflammation-related protein, 

leukotriene 4A hydrolase (LTA4H), has recently been shown to be directly inhibited by 

resveratrol (83). LT A4H catalyzes the final step of the neutrophil chemoattractant 

leukotriene B4 synthesis pathway. Nonetheless, thwarting results showing LT A4H to 

de grade another neutrophil chernoattractant, proline glycine proline peptide (POP), make 

it difficult to predict the SUffi anti-inflammatory effect of inhibiting this hydrolase 

(84,85). 

3.2 Pro-inflammatory mRNAs 

More recently, resveratrol has also emerged as a potent disruptor of pro

inflammatory mRNAs. lndeed, using a target-fishing method, resveratrol was found to 

bind KH-type splicing regulator prote in (KSRP) whose main activity in the cell consists 

in binding inherently instable mRNAs, such as the ones encoding pro-inflammatory 
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proteins IL-8, iNOS, and TNF-a, and recruiting decay machinery (86). Accordingly, 

resveratrol was able to increase KSRP stability and to concurrently reduce the life of 

pro-inflammatory mRNAs. In primary cells from mice in which KSRP was inactivated, 

resveratrol displayed significantly lower anti-inflammatory aptitudes. Interestingly, these 

effects were observed independently of SIRTI involvement. 

3.3 APElIRefl 

Resveratrol's anti-inflammatory actions could furthermore operate by inhibiting 

APElIRef-l (74,87-89), a DNA repair prote in that also comprises a redox sensitive 

catalytic activity, the Ref-l domain, known to bind to pro-inflammatory factors AP-l 

and NF-KB and to activate their transcriptional activity. It would appear that resveratrol 

not only acts through modulating the cell's redox environment, but also by directly 

binding pockets located in the redox domain (90). Interestingly, APElIRef-l has also 

been linked to neurodegenerative diseases and holds a special place among the most 

recent emerging therapeutic targets (91,92). Conversely, previous work has rather shown 

that resveratrol may be responsible for increasing APE lIRef-l levels, though evidence 

of direct binding was not provided (74) . 

3.4 ERs 

Another indirect mechanism by which resveratro1 could mediate its anti

inflammatory effects in the CNS is through activation of estrogen receptors (ERs), 

which it is weil known to directly bind (93,94). More recently, resveratrol was 

successfully crystalized in a complex with ERa, and was found to bind the receptor in a 

unique orientation that would explain why it do es not behave like estrogen in several 

cell types (95). In fact, this "flipped" binding orientation explains why resveratrol acts as 

a pathway-selective ERa activator, since it perturbs the receptor's coactivator-binding 

surfaces. In the same published data, resveratrol was proven to require ERa to inhibit 

IL-6 expression. 
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3.5 AMPKlSIRTl 

The most reputable aXIs renowned to be activated by resveratrol is the 

AMPKlSIRTl pathway. AMPK is a metabolic power player that is thought to afford 

several of resveratrol's pleiotropic effects, not only pertaining to inflammation. AMPK 

integrates information on the intracellular energy status, thus acting as an A TP:AMP 

sensor. Upon ATP depletion, AMPK is activated and increases the NAD+/NADH ratio, 

itself leading to SIRTI activation. SIRTI is also in itself an indirect activator of AMPK 

as it deacetylates liver kinase B 1 (LKB 1) that in tum phosphorylates and activates 

the kinase. Whether resveratrol binds and activates SIRTI or whether it inhibits 

phosphodiesterases (PDEs), which eventually leading to AMPK activation, is still a 

debated topic (see 27 for a detailed review on this topic), as findings in different 

models and at different concentrations have yielded confounding results (96-103). 

The activation of the AMPKlSIRTI axis may well explain resveratrol's anti

inflammatory effects through 1) deacetylation of AP-l and NF-KB (104) and 2) NADPH 

oxidase inactivation by AMPK (105-107). 

4. Summary and perspectives 

Resveratrol remains today the center of much scientific attention in the global 

effort to develop therapeutic options to improve or cure neurological diseases, most of 

which comprise a neuroinflammatory facet. As it has been demonstrated in countless 

models, resveratrol possesses a very large number of possible modes of action that 

explain its promiscuity in exerting such a wide range of physiological effects. 

This chapter has reviewed in details the experimental paradigms that contribute to 

improve our knowledge of the possible molecular mechanisms of resveratrol action on 

neuroinflammation. Even if the key direct interactions between resveratrol and its 

possible molecular target are still under investigation (reviewed recently in 109), 

resveratrol has been demonstrated as a promising therapeutic strategy in ameliorating 

neuroinflammation and other pathological expressions with a component of 

inflammation. 
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To temper our fervor, it should be reiterated that ail the promlsmg anti

inflammatory pathways elicited by resveratrol in nerve cells and reported in this article, 

derive from cell culture or small animal model systems with no report on resveratrol 

action on hurnan health or alternate animal models. Indeed, translation of resveratrol 

body of work from basic sciences to the clinics is still difficult, and the scarce data 

obtained in controlled studies are disappointing and controversial, especially so with 

respect to the human response to different doses of resveratrol (reported in 110). 

It appears capital to us that the next efforts of the resveratrol community should 

accurately study the molecular target of resveratrol as weil as improve the application of 

pre-clinical advances in large animal models in order to proper understand the 

unambiguous anti-inflammatory effects, safety and efficacy of resveratrol and any more 

potential benefits it may have in humans. 
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APPENDIXD 

THE LINKBETWEEN PARKINSON'S DISEASE AND ATTENTION-DEFICIT 
HYPERACTIVITY DISORDER: AN ACCOUNT OF THE EVIDENCE 

In this thesis, the nicotinamide-streptozotocin model of long-term hyperglycaemia 

was employed to demonstrate the selective vulnerability of the nigrostriatal pathway to a 

supplementary source of oxidative stress. In achieving this goal, we were arrested by the 

remarkably singular behaviours manifested by our model: not only did long-term 

hyperglycaemic rats display bradykinesia and gait abnormalities, they were also 

paradoxically hyper-reactive in contexts of social novelty. 

Given the paucity of literature addressing behavioural alterations ansmg from 

sustained hyperglycaemia, we were solely supplied with our own data and cIues from 

seemingly unrelated neuropsychiatric models on the quest to untangle this enigma. 

On the one hand, we knew that the dorsal striatum of our model was poorly supplied 

with dopamine at baseline. On the other hand, the social behaviour of our 

hyperglycaemic rats bore a striking likeness with that of attention-deficit hyperactivity 

disorder models. Seeking to sharpen our understanding of this disease, we discovered 

that attention-deficit hyperactivity disorder and Parkinson ' s disease share a common 

dopaminergic neuropathological element. Even more striking is the implication of the 

nigrostriatal pathway in both disorders. As mentioned in the discussion, patients with 

attention-deficit hyperactivity disorder present alterations at the level of the substantia 

nigra pars compacta (deI Campo et al. , 2013 ; Romanos et al. , 2010) and of the dorsal 

striatum (Badgaiyan et al., 2015 ; Sikstrom and Soderlund, 2007). 

While these two neuropathologies appear to be quite distinct, at least by virtue of 

their symptomatic signatures, it is reasonable to question the possibility that they are 

more intimately linked than first appearances would allow. In this view, the aim of this 

appendix is to briefly recount the evidence supporting such an association. 
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1. Nigral morphology 

We mentioned that the substantia nigra pars compacta is altered in patients with 

attention-deficit hyperactivity disorder (deI Campo et al. , 2013; Romanos et al. , 2010). 

In fact, these abnormalities were identified with various kinds of imaging techniques 

more commonly employed in parkinsonian patients, such as transcranial sonography and 

positron emission tomography. 

Figure 1 Transcranial sonographies of the midbrain in patients with attention
deficit hyperactivity disorder and Parkinson 's disease. 
In aIl transcranial sono graphies, the midbrain is circled by the dotted line 
and the echogenic area of the substantia nigra is traced with a full white 
line. Top: In patients with attention-deficit hyperactivity disorder (B), 
the echogenic area is enlarged compared with control individuals (A). 
(From Romanos et al. , 2010.) Bottom: Similar findings of an enlarged 
echogenic substantia nigra pars compacta can be observed in patients with 
Parkinson's disease (right) in comparison with healthy individuals (Ieft) . 
(From Gaenslen et al., 2008.) 
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ln particular, evidence of an enhanced echogenicity was gathered in children 

with attention-deficit hyperactivity disorder (Romanos et al. , 2010), a pathological sign 

linked to increased iron content paired with a susceptibility for nigrostriatal dysfunction 

(Becker et al., 1995; Berg et al. , 2002; Gaenslen et al. , 2008). Remarkably, the same 

pattern of echogenicity can be observed in parkinsonian patients (Figure 1). 

These important findings launched investigations aimed at uncovering the role of 

oxidative stress, perhaps linked to nigral iron contents, in this neuropsychiatric condition 

(Hess et al., 2017). It is unc1ear how iron contents are linked to neuropathogenicity in 

both these diseases. 

2. Animal models 

Looking into animal models also provides sorne indications of a possible link 

between the se pathologies. Quite teIling is the existence of a longstanding model of 

attention-deficit hyperactivity disorder, used for sorne 40 years now, that employs 

6-0HDA. ln neonate rats, this parkinsonian toxin destroys the near totality of 

nigrostriatal neurons, sparing the ventral tegmental area, and causes a compensatory 

serotoninergic hyperinnervation of the striatum that is thought to underlie behavioural 

aberrations (Breese et al. , 2005; Kostrzewa et al. , 2004, 2006). The exact underpinnings 

of the hyper-reactive phenotype remains ill understood. Noteworthy, total depletion of 

dorsostriatal dopamine is likely not physiologicaIly relevant in patients with attention

deficit hyperactivity disorder. The hypotonic and hyperphasic aspects thought to 

underlie this illness are therefore not represented therein (Badgaiyan et al., 2015; 

Sikstrom and Soderlund, 2007). 

More recently, in an attempt to model Parkinson's disease, one group uncovered 

a hyper-reactive phenotype resulting from subeffective treatments. lndeed, primates 

treated with varying chronic doses of the parkinsonian toxin MPTP displayed early 

premotor social alterations, inc1uding enhanced aggressive and affiliative behaviours, 

highly correlated with dorsostriatal denervation. ln the later phase of the pathology 

wherein aIl evaluated dopamine-related cortical and subcortical structures were 
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fully degenerated, these hyper-reactive behaviours were drastically decreased and 

conspicuous motor symptoms emerged. This study actually sheds light on a possible 

continuum of nigrostriatal dopaminergic manifestations, ranging from hyper-reactivity at 

low levels of neurodegeneration to apathy and motor impairments at high degrees of 

denervation (Durand et al. , 2015). In relation to our own findings, we reiterate the 

possibility that long-term hyperglycaemic rats examined between 3 and 6 months 

display mixed moderate behaviours representative of both ends of the continuum. It is 

tempting to propose that sorne forms of attention-deficit hyperactivity disorder and 

Parkinson's disease may overlap. 

3. Epidemiological evidence 

Last, we can address existing epidemiological data suggesting a link between 

attention-deficit hyperactivity disorder and Parkinson's disease or related pathologies. 

Indeed, a growing body of literature has addressed the relationship between early-life 

attention-deficit hyperactivity disorder or its symptoms and late-life parkinsonism 

(Golimstok et al., 2011; Kim et al., 2013; Walitza et al., 2007). Interestingly, 

Parkinson's disease and attention-deficit hyperactivity disorder may share certain 

genetic underpinnings. Specifically, PARK2, a causative gene in Parkinson's disease 

encoding parkin, was found to be associated with attention-deficit hyperactivity disorder 

(Jarick et al., 2014). For sorne researchers, this invites the interrogation ofwhether both 

diseases are in fact the early- and late-life continuum of a single dopaminergic pathology 

(Golimstok et al., 2011). We wish to stress, however, that in this setting it is 

unclear whether treatments addressing attention-deficit hyperactivity disorder, like 

methylphenidate, may in fact contribute to overt nigrostriatal neurodegeneration found 

in Parkinson's disease (Sadasivan et al., 2012). 

Although any conclusions based on this scanty yet evocative evidence would be 

deemed premature, the relationship between attention-deficit hyperactivity disorder and 

Parkinson's disease does merit to be addressed by serious investigations aiming to 

expose any possible overlapping neurobiological mechanisms. It remains that no study 
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has appropriately accounted for the history of hyperactivity, aggression or impulsivity in 

large cohorts of parkinsonian patients. 

These findings do, however, provide novel insight into often overlooked 

non-motor behavioural alterations that may arise from nigrostriatal dopaminergic 

neurodegeneration. Indeed, the nigrostriatal pathway is just leaving the shadow of the 

mesocorticolimbic circuit as a regulator of social interactions (Burke et al. , 2010; 

King-Casas et al. , 2005; Lamichhane et al. , 2014; Ong et al. , 2011 ; Palme ri et al., 2017; 

Plavén-Sigray et al. , 2014; Stoeckel et al., 2014). Impaired social aptitudes recognized 

to dim the quality of life of parkinsonian patients - even besides the well-appreciated 

impulse control disorders that ensue from dopaminergic treatments (Cilia, 2012) - are 

gaining attention in the scientific community (Schrag et al., 2000; Yoshimura et al., 

2005; PeU et al. , 2006). Granted this era of neuroscientists is shining a powerful 

limelight on non-motor symptoms in Parkinson's disease, there is hope that these 

interrogations will soon be addressed. 
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