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Abstract 

Lignocellulosic biomass (LCB) is the most abundant, renewable and sustainable feed­

stock, allowing for our ever-increasing energy demand to be satiated as fossil fuels pro­

gressively disappear. The development of a viable bio-based economy, however promis­

ing, is ridden with challenges related to the cost-effective utilization of LCB, namely our 

imperfect understanding of biomass structure and suboptimal industrial processes. To 

achieve economic viability requires direct and rapid monitoring of lignocellulosic poly­

mers as they are physically, chemically, and/or enzymatically treated. Unfortunately, such 

monitoring is difficult as CUITent methods are non-specific, cumbersome, time-consuming, 

incompatible with on-site use and require the availability of specialized equipment and 

expertise. In this Ph.D. work, we have developed a novel, rapid, convenient, unambiguous 

and affordable monitoring approach named Fluorescent protein-Tagged Carbohydrate­

binding modules Method (FTCM). This approach is based on the use of four highly spe­

cific probes composed of fluorescent-tagged carbohydrate-binding modules. The carbo­

hydrate-binding module (CBM) component of the se genetically modified probes recog­

nizes and binds to biopolymers (i.e. mannan, xylan, crystalline and non-crystalline cellu­

lose) while its specific fluorescent protein component makes it possible to quickly detect 

and measure the binding of each probe to their intended target. Throughout this Ph.D. 

study, FTCM was used to specifically track mechanical, chemical and enzymatically-in­

duced variations of lignocellulosic polysaccharides at the surface of diverse wood fibers 

(i.e. wood pulps and agricultural crop residues). This monitoring approach was used to 

study 5 different objectives: 1) tracking xylan, a physical barrier which limits cellulose 

accessibility; 2) tracking enzymatic hydrolysis of lignocellulosic polymers; 3) tracking 

impact of wood fibers processing and correlating such impact with their strength proper­

ties; 4) predicting the most appropriate wood biomass for industrial applications; and 5) 

determining optimal biomass pretreatment strategies for biofuel production. 

The FTCM approach allowed for rapid, unambiguous and high-throughput analysis of the 

enzymatic hydrolysis of lignocellulosic polymers, enzyme inactivation and the apparent 
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complementarity (additive and/or synergistic effect) between cellulase and other enzymes 

(xylanase and mannanase). Subsequent addition of cellulase, xylanase and mannanase en­

zymes provided cogent evidence regarding cell wall ultrastructure and its organization. 

Furthermore, FTCM efficiently monitored and predicted the impact of various treatments 

on the strength properties ofwood pulps produced from such processed fibers. Monitoring 

fiber surface using FTCM also revealed that treatments with enzymes from Trichoderma 

were most appropriate for generating the crystalline cellulose from wood fibers for nano­

cellulose and composites applications (nanofibrillated cellulose). Moreover, a xylan spe­

cific FTCM probe enabled the highly sensitive detection ofxylan variations at the surface 

of kraft wood fibers which can be applied where partial or complete xylan removal is 

required. Finally, clear and robust correlations were observed between cellulose accessi­

bility by FTCM probes and enzymatic hydrolysis rates which can be evolved into a pow­

erful prediction tool for the determination of optimal biomass pretreatment strategies for 

biofuel production. 

This study proposes that the implementation of this simple, rapid and environmentally­

friendly approach can revolutionize wood fiber processing and de construction within bi­

omass industries, thereby substantially improving the cost-effectiveness of the production 

ofbioenergy and other LCB-based products. 

Keywords: Carbohydrate-binding module, Fluorescent protein, FTCM, Lignocellulosic 

biomass 
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Résumé 

La biomasse lignocellulosique est la matière première renouvelable qui est la plus abon­

dante et qui pourrait combler les besoins énergétiques de l'humanité à mesure que les 

carburants fossiles disparaissent. Bien que prometteur, le développement de cette filière 

énergétique est pour l' instant mitigé à cause de notre compréhension limitée de la structure 

de la biomasse forestière et aussi à cause d 'un manque d'efficacité des processus indus­

triels associés à la production de bioénergie. En fait , l'impossibilité de suivre l'état des 

fibres lignocellulosiques en temps réel, pendant ou après divers traitements (physique, 

chimique et/ou enzymatique) mine notre capacité à atteindre des conditions qui soient 

économiquement positives. Bien sur il existe des méthodes pour étudier l ' impact de ces 

traitements, mais ces méthodes manquent de spécificité, sont compliquées, demandent du 

temps et de l'expertise pointue, et sont incompatibles avec une utilisation en temps réel, 

sur un site industriel. Dans ce cadre nous avons développé une nouvelle méthode qui soit 

rapide, facile d 'utilisation et spécifique qu 'on a baptisé Fluorescent protein-tagged Car­

bohydrate-binding Method (FTCM). Cette méthode repose sur l'utilisation de quatre 

sondes faites d'une portion «carbohydrate-binding module» (CBM) et d'une protéine 

fluorescente (obtenues par fusion des gènes correspondants). Le module CBM se lie avec 

discrimination avec un type de polymère (parmi différentes versions de celluloses et d'hé­

micelluloses) tandis que la protéine fluorescente (de couleur variée) permet de suivre la 

liaison d'une sonde à la surface des fibres et ce, indépendamment des autres sondes. Dans 

cette étude, nous avons utilisé la FTCM pour étudier l'impact de traitements mécaniques, 

chimiques et enzymatiques sur les polymères de différentes fibres (pâte, papiers, résidus 

agricoles). Ceci nous a permis de nous attaquer à cinq objectifs: 1) détection du xylan, une 

barrière importante qui empêche d'accéder à la cellulose; 2) détection de l'hydrolyse des 

polymères lignocellulosiques; 3) étude de l'impact du traitement des fibres du bois et la 

corrélation de cet impact avec les propriétés papetières; 4) prédiction des meilleures ap­

plications possibles pour différentes biomasses forestières et 5) détermination de la meil­

leure stratégie de prétraitement pour la production de biocarburant à partir de différentes 

biomasses agricoles. 
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Tout au long de ce projet, nous avons démontré que la ITCM est rapide, spécifique, et 

utilisable en mode <<haut débit» pour la détection de l'hydrolyse enzymatique des fibres, 

pour la détection de l'inhibition des enzymes pendant ce procédé et pour l'étude des sy­

nergies entre la cellulase et d'autres enzymes (xylanases, mannanases). L'ajout subsé­

quent de ces différentes enzymes ont permis de révéler des détails de l'ultrastructure de la 

paroi cellulaire végétale et de son organisation. L'application de ITCM a non seulement 

permis de détecter l' impact de divers procédés industriels sur les propriétés physiques du 

papier, mais aussi permis de prédire cet impact avant de mesurer les propriétés. Pour des 

applications importantes comme la production de cellulose cristalline menant à des com­

posites innovants, nous avons montré que le traitement des fibres avec les enzymes de 

Trichoderma était très approprié. D'autre part, la grande sensibilité des sondes pour la 

détection du xylan a permis de détecter les variations du xylan à la surface des fibres de 

bois traitées chimiquement (pâtes kraft) fort utile pour des applications où l'enlèvement 

partiel ou total du xylan est déterminant. Finalement, nous avons démontré une corrélation 

claire et solide entre l'accessibilité de la cellulose et l'efficacité des enzymes hydroly­

tiques. Cette corrélation pourrait être développée en un outil de prédiction et de suivi des 

procédés de prétraitement dans une usine de production de bioéthanol. 

Cette étude permet de démontrer le potentiel de la méthode FTCM pour révolutionner 

l' industrie de la modification et de la déconstruction de la biomasse. En effet, l'adaptation 

de la FTCM en milieu industriel pourra augmenter de façon substantielle l ' efficacité éco­

nomique de la production de bioénergie à partir de biomasse lignocellulosique. 

Mots-clé: Module de liaison aux hydrates de carbone (<<Carbohydrate-binding module»), 

Protéines fluorescentes, ITCM, Biomasse lignocellulosique 
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Chapter 1 - Introduction 

Global production ofbiofuels and bioproducts is increasing steadily, allowing our 

ever-increasing energy demand to be satiated while fossi! fuels progressively disappear 

[1 ,2]. In addition, the greenhouse gas mitigation and near carbon neutrality afforded by 

the conversion ofbiomass to bioenergy (biofuel) and chemicals are important advantages 

over conventional fossil fuels [2]. Concomitantly, numerous new products and technolo­

gies based on the conversion ofbiomass have been developed over the last decade [3-5]. 

Securing sufficient biomass as raw materials is a prerequisite to moving from a petro­

chemical to a bio-based economy. Using food-based feedstocks, namely corn and sugar, 

to support first-generation biofuel and bioproducts has shown its limits and produces cer­

tain undesirable socio-economic and environmental outcomes [6,7]. The use of lignocel­

lulosic biomass (LCB, including dedicated lignocellulosic crops, agricultural and forestry 

residues and municipal and industrial wastes), to produce second-generation biofuel and 

bioproducts would avoid the negative impacts associated with frrst-generation feedstocks 

use [8]. 

1.1 Lignocelluloslc sources 

LCB is the most abundant, renewable and sustainable feedstock. There are vast 

groups of lignocellulosic materials that are differentiated according to their origin, com­

position and structure. Forestland materials comprises woody biomass (hardwood and 

softwood) while grassland martials include agricultural residues (food or non-food crops) 

and grasses (switch grass, alfalfa, etc.). Municipal and industrial wastes, such as food 

waste and paper mill sludge, are also potential recyclable cellulosic materials [9-11]. The 

availability ofbiomass for bioenergy production is summarized in Table 1.1. 



Table 1.1 Annual total tonnages of biomass for biofuel in the V.S. (V.S. Depart­

ment of Energy Biomass Program) (adapted from [9]) 

Lignocellulosic biomass 

F orestry resources 

Agricultural residues 

Energy crops 

Grains and corn 

Municipal and industrial wastes 

Aigae Biomass 

Total 

1.1.1 Forest woody feedstocks 

Million dry tons/year 

370 

428 

377 

87 

58 

46 

1320 

There are mainly two different types of woody feedstocks, namely softwood and 

hardwood. Softwood are conifers and gymnosperm trees which possess lower densities 

and grow faster [12]. Softwood trees include mostly evergreen species such as spruce, 

pine, cedar and redwood. In contrast, hardwood originate from mostly deciduous and an­

giosperm trees which comprise trees such as poplar, oak, cottonwood and aspen [13]. Un­

like agricultural biomass, forest woody feedstocks offer high density, minimal ash con­

tent, flexible harvesting times and avoid long latency periods of storage [14]. 

1.1.2 Agricultural residues, herbaceous and municipal solid wastes 

Agricultural crop residues mostly comprised of agricultural waste such as corn 

stover, corn stalks, sugarcane bagasse, rice and wheat straws. The use of agricultural res­

idues is environmental friendly which minimize our dependence over forest woody bio­

mass and thus reduce excessive deforestation. In addition, short-harvest rotation makes 

crop residues more consistently available than forest woody biomass for the production 

ofbioenergy and various value-added by-products [15]. Aside from crop residues, switch 
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grass is the primary herbaceous grass and energy crop of interest due to their abundance, 

low-cost investment, diseases resistance and high yield of sugar per acre. Moreover, 

switch grass is fast-growing grass with little or no fertilization required. In addition, the 

utilization of municipal and industrial solid wastes limits various environmental problems 

associated with the disposaI of municipal garbage and wood, textile and food industries 

waste and processing by-products. These biomasses contain relatively less lignin than 

woody feedstocks and thus they are less recalcitrant [9] (Table 1.1). 

1.1.3 Aigae blomass 

Algae biomass is the most interesting third generation biofuel feedstock due to the 

rapid expansion ofbiorefmeries which are leading to the shortage of CUITent energy crops 

(switch grass and Miscanthus giganteus) designated for bioethanol industries [9]. Algae 

feedstock has a very high carbohydrate composition and is capable of yielding 10-60 times 

more alcohol than corn and soybeans per acre of land [16,17]. Unlike woodybiomass and 

agricultural crop residues, algae biomass does not compete directly with food and does 

not require fresh water and agriculturalland to be cultivated. In addition, algae also con­

sume very high level of C02 and act as an environmentally friendly C02 sink [18]. On the 

other hand, one of the major disadvantage of algae biomass for biofuel production is the 

higher capital cost and the rather intensive care required by algal farming compared to 

conventional agricultural farming [18]. 

1.2 Lignocellulosic biomass composition 

LCB is a complex structure consisting of cellulose (P-1 ,4-linked glucose polymer), 

hemicellulose (polysaccharide of varying composition) and lignin. Cellulose and hemi­

celluloses, which make up approximately 70% of the entire biomass, are tightly linked to 

the lignin via covalent and hydrogen bonds that makes LCB structure highly recalcitrant 

(Figure 1.1 and 1.2 [19]. Figure 1.2 illustrates a typicallignocellulosic wood fiber with 

its complex organization. Potential LCBes and their composition are summarized in Table 

1.2 [9]. 
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Figure 1.1 

Others (Extractives, Ash etc.) 
5-15% 

General composition of lignocellulosic biomass feedstock 

• Crystalline Cellulose 
• Non-crystalline (8lllorphous) Cellulose 

• Xylan 
• Ma1l1lan 

• Lignin 

Figure 1.2 Schematic representation of lignocellulosic wood fiber 
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Table 1.2 Potentiallignocellulosic biomass source and their composition (% dry 

weight) (adapted from [9]) 

Lignocellulosic Others 
Cellulose Hemicelluloses Lignin 

biomass (i.e., ash) 

Hardwood 45-47 25-40 20-25 0.80 

Softwood 40-45 25-29 30-60 0.50 

Agricultural residues 37-50 25-50 5-15 12-16 

Grasses 25-40 35-50 

Waste papers from 
50-70 12-20 6-10 

chemical pulps 

Newspaper 40-55 25-40 18-30 

Switch grass 40-45 30-35 12 

1.2.1 Cellulose 

Cellulose is the MOst abundant polysaccharide in nature and constitutes about 35-

50% of the total LCB [20]. Cellulose is a linear pol ymer that consists of a long-chain of 

D-glucose subunits linked to each other by P-(1 ,4)-glycosidic bonds (Figure 1.3). The hy­

drogen bonds and van der Waals interactions packed long-chain cellulose polymers into 

microfibrils which give the cellulose more strength and compactness [21]. Cellulose in 

LCB is present in two different forms: highly ordered crystalline form (major proportion 

of cellulose) and a small percentage ofunorganized non-crystalline (also known as amor­

phous) form. Cellulose has been shown to be more susceptible towards enzymatic degra­

dation in its non-crystalline form [22]. In general, softwood and hardwood comprise ap­

proximately 45% of cellulose while cotton, flax and chemical pulp represent the purest 

sources of cellulose (80-95% and 60-80%, respectively) [9,23]. 
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n 

Figure 1.3 Schematic representative structure of cellulose [27] 

1.2.2 Hemicellulose 

Hemicelluloses, which represent about 20-30% of the total biomass, are the second 

most common polysaccharides [20,24]. Unlike cellulose, hemicelluloses are heterogene­

ous polymers of pentoses (xylose, arabinose), hexoses (mannose, glucose, galactose) 

and/or uronic acids (glucuronic acid, galacturonic acid) [19,25]. Hemicellulose in soft­

wood (from gymnosperms) contains mostly glucomannans whereas in hardwood (from 

angiosperms) it mostly consists of xylan [26]. Xylan backbone is made up of P-(1 ,4)­

linked D-xylose subunits that may include arabinan and glucuronic acid side chains (Fig­

ure I.4A). In contrast, mannan comprises of P-(1 ,4)-linked D-mannose backbone with 

aimost no branching (Figure I.4B). Galactomannans have a-(1 ,6)-galactose branches 

linked to the P-(I,4)-mannose backbones. Glucomannans and galactoglucomannans con­

tain both P-(1 ,4)-mannose and P-(1 ,4)-glucose backbones. In addition, galactoglucoman­

nans have a-(1 ,6)-galactose branches linked to the mannose backbone [27]. The hemicel­

luloses distribution on the surface ofwood fibers/cellulose fibrils is ofutrnost importance 

for the complex structure of LCB, since hemicelluloses have been proposed to act as a 

physical barrier which increases the stiffness of the cellulose fiber network by coating the 

rigid cellulose crystallites and forming links between the fibrils [28,29]. 
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Schematic representative structures ofhemicelluloses. A) xylan and B) 

mannan [27] 

Lignin is an aromatic biopolymer with an average molecular weight of 10,000 Da 

synthesized from phenylpropanoid precursors [30]. Lignin is covalently bond to the xylan 

and gives rigidity, impermeability, resistance against microbial attack and high level of 

compactness to the plant cell wall [31] . Lignin is composed of three different phenyl pro-
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pionic alcohol: coniferyl alcohol (guaiacyl propanol), coumaryl alcohol (para-hydroxy­

phenyl propanol), and sinapyl alcohol (syringyl alcohol) (Figure 1.5). In general, herba­

ceous and agricultural residues contain the lowest amount oflignin (10-30% and 3-15%, 

respectively), whereas softwood contain highest level of lignin (30-60%) followed by 

hardwood (30-35%) [9,32]. Ladish et al. (2010) have demonstrated that lignin compo­

nents, recovered from the biofuel process, can be used as a potential energy self-sustaining 

source to make CUITent biorefmeries more economical viable [33]. 

MeO r 
Sinapylak:ohol unit 0 o~OH 

~-;:o%~ 0 ~~ Ot<~0H HO .. ; "Y'~ h '"";' 
MeO _ . - r 0 #' 1 um 1 al h J unit 

~ 1. - o-o-r' y-f-OH OH MeO ~JO ~ /; 
MeC '\s 

OH 

Figure 1.5 Schematic representative structure of lignin [32] 

1.3 Llgnocellulosic blomass recalcitrance 

LeB is a promising, abundant and renewable resource of sugars for the production 

ofbiofuel [34,35]; however, its production has always been hindered by several econom­

ical and technical obstacles [28,36]. The main obstacle for biofuel and chemicals produc­

tion is associated with the inherent recalcitrant nature of LeB [1 ,28,37-39]. The recalci­

trance nature of cellulosic biomass translates into strong resistance against pathogens, en­

zyme/microbes, and/or chemicals, and is perceived to be mainly contributed by lignin (in­

cluding its amount, location, and type (coniferyl vs. coumaryl vs. sinapyl)) [37,40-42]. 

Both macroscopic and microscopie barriers contribute to the plant cell wall recalcitrance 

(Figure 1.6 ). The macroscopic barriers involve species, tissue and cell wall heterogeneity 

while microscopie factors comprise lignin-carbohydrate cross linking and cellulose crys­

tallinity. Due to this structural complexity of LeB (cellulose fibrils wrapped in a network 
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oflignin and hernicelluloses), the complete hydrolysis ofits polysaccharides remains dif­

ficult. The network of lignin and hemicelluloses, collectively referred as the lignin-carbo­

hydrate complexes, is highly recalcitrant and limit the access of cellulase to cellulose 

[34,37]. Consequently, several steps including pretreatments and enzymatic hydrolysis are 

needed to improve access to polysaccharides, mainly cellulose, before it can be used in 

value-added applications [43]. 

Figure 1.6 Plant cell wall recalcitrance, a multi scale phenomenon spanning sev­

eral orders of magnitude encompassing both macroscopic and micro­

scopie barriers (adapted from [60]) 

1.3.1 Pretreatments 

The main objective of pretreatments for subsequent biochemical conversion is to 

increase cellulose accessibility, which can later be hydrolyzed by enzymatic hydrolysis 

processes (Figure 1.7) [43]. However, pretreatments vary greatly in the way they help to 

expose cellulose. Physical pretreatments help reduce particles size and fiber crystallinity 

[44,45]; alkali (and acid) pretreatments remove lignin and hernicelluloses but can lead to 

loss of cellulose [46-48] ; solvent fractionation leads to disruption ofbiomass components 

with lesser impact on lignin [49-51], while liquid hot water mainly removes hemicellu­

loses [29,52] . Because of the variety of lignocellulosic composition found among feed­

stocks, not all feedstocks require the same pretreatment [39,53]. 
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Figure 1.7 Schematic representation ofpretreatment oflignocellulosic biomass 

An in-depth understanding of the impact of a given pretreatment on a particular 

biomass is believed to be a key issue for reducing costs associated with biofuel production 

[54,55]. Pretreatment is the most important and costly step in biofuel production [56]. 

Accordingly, optimizing pretreatment is part of on-going development efforts that will 

help the competitiveness of LCB-derived ethanol. Furthermore, ideally, any variation in 

such impact (due to variation in feedstock properties, chemicals efficiency, mechanical 

wearing, changes in temperature and humidity) should be monitored on a continuous ba­

sis, or "on line" when feasible, in order to maintain optimal process operations. Currently 

no methodology allows for such on line monitoring. 

1.3.2 Enzymatlc hydrolysls 

Due to the structural complexity of LCB, the bioconversion of biomass to biofuel 

is a multiple stage process [36,42] . The enzymatic hydrolysis of the lignocellulosic com­

ponent to fermentable su gars is a crucial step in this bioconversion. It is considered as one 

of the major rate limiting and costly step [22,57-61]. Apart from lignin, the complex re­

calcitrance nature of biomass is partly attributed to hemicelluloses. As described earlier, 

hemicelluloses constitute about 20-30% of the total biomass, and are the second most 
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common polysaccharides [19,20,24] in nature, after cellulose. The hemicelluloses have 

frequently been recognized to act as a physical barrier that coyer the outer surface of cel­

lulose fibers and interfibrillar space, limiting the accessibility of cellulase enzymes to cel­

lulose [62-70]. The hemicellulose-degrading activities in most commercially available 

cellulase enzymes are too low to achieve sufficient hydrolysis of the hemicelluloses 

[71 ,72] . Therefore, addition of enzyme extracts or additives with higher level of hemicel­

lulases are important for eliminating the significant hindering effect of residual hemicel­

luloses (mostly xylan and mannan) on the enzymatic hydrolysis of cellulose [62,64,70,73-

78]. Moreover, the inherent recalcitrance nature of plants directly or indirectly impacts 

enzyme accessibility [70,73] , inactivation [79] , inhibition [75,76,80-89] and, as a conse­

quence, cost ofuse [62,90,91]. The recent improvement in enzymes stabilization, activity, 

cost-effectiveness [76,91 ,92-97] and development ofnew promising pretreatrnent condi­

tions [50,98,99] improved enzyme-lirnited production yields. However, the high dose re­

quirements of these enzymes often jeopardize commercial viability [62,77,79,100-103]. 

One way to better understand and control hydrolysis of LeB is to monitor the complex 

polymers composition of fibers at every stage of processing. Therefore, investigating bi­

omass recalcitrance of typical wood biomass substrates, and correlating process parame­

ters such as enzyme dosage, temperature, incubation time, inactivation and inhibition, 

with polymers hydrolysis efficiency is important. 

Pulp and paper production is another LCB based industry which has to deal with 

the complexities described above. In addition, this industry faces immense pressure from 

the society and/or governments to move toward green chemistry. Biocatalysts (enzymes) 

are recognized as a key element of green chemistry and are being progressively introduced 

in a number of processes with extremely positive consequences for the environment 

[104,105]. An increasing number of enzymatic strategies are used by paper makers, in­

cluding the application of hemicellulases enzymes in the pre-bleaching or bio-bleaching 

of kraft pulp. The presence of hemicelluloses, and their re-deposition on the surface of 

cellulose fiber during the kraft pulping of hardwood, inhibits the bleaching process. Hem­

icellulases enzymes have been found to be most effective for limiting this problem and 
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are now in use at several mills worldwide for biobleaching [26,62,104-106]. The use of 

enzymatic strategies has shown to improve the quality of end products thus minimize the 

capital investment related to the conventional bleaching processes [104]. Further, hemi­

celluloses are also known to contribute to fiber strength and their removal is known to 

influence pulp fiber properties [62,107,108]. Xylan and mannan are believed to contribute 

to physical properties of the paper by enhancing the inter-fiber bonding [107]. Here again, 

the close monitoring of hemicelluloses would help optimizing the enzymatic treatment, 

better control paper properties, and minimizing its cost. 

1.4 Analytical methods for investigatlng blomass recalcitrance 

The development of a bio-based economy, however promising, is faced with chal­

lenges related to the cost-effective utilization of the LCB. Improving biomass pro cesses 

wou Id increase co st effectiveness and competitiveness for large scale applications 

[1 ,90,91]. Therefore, in addition to pretreatments and enzymatic hydrolysis ofhemicellu­

loses, it is considered to be highly important to utilize aU wood fiber constituents (in­

cluding hemicelluloses and lignin) in an economically feasible way (providing other 

valuable wood-derived materials beside biofuel) in order to increase the efficiency of 

wood fiber utilization. However, this requires a better understanding of the ultrastructure 

of the cell wall and its organization, which are not yet fully understood [60]. 

To date, different chromatographie, spectroscopie and microscopie analytical tech­

niques such as compositional analysis (e.g., by NRELrrp-510-42618), X-ray photoelec­

tron spectroscopy (XPS or ESCA) [109,110], atomic force microscopy (AFM) [Ill], 

scanning electron microscopy (SEM) [110], time-of-flight secondary ion mass spectrom­

etry (ToF-SIMS) [110], gas chromatography (GC) [112] , Fourier transform infrare4 spec­

troscopy (FTIR) [113] , nuclear magnetic resonance (NMR) and compositional analysis 

methods [114,115] have been used to study pretreatments [60], lignin-carbohydrate com­

plexes [73] , polymers interactions [78] and plant cell wall deconstruction [60]. For in­

stance, a compositional analysis method [115] , provided by the National Renewable En­

ergy Laboratory (NREL), is extensively used in the literature for the determination of 
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carbohydrates, lignin and ash contents for application in the second-generation biofuels 

production. In addition, microscopy (i.e. AFM, SEM, TEM), XPS and NMR were used to 

visualize and characterize the lignocellulosic plant cell wall deconstruction during pre­

treatments. These studies greatly enhance our understanding about the ultrastructure of 

plant cell wall and enzyme accessibility to cellulose [60]. Furthermore, an FT-IR study of 

softwood fiber (kraft pulp) dedicated to investigating the interactions between wood pol­

ymers revealed that glucomannan was closely associated to cellulose while there existed 

no mechanical interactions between xylan and cellulose [78]. CUITent models suggest that 

hemicelluloses play a major role in biomass recalcitrance and are closely associated with 

both lignin and cellulose, forming lignin-hemicellulose complexes and cellulose-hemicel­

lulose complexes [73,78]. These techniques revealed important information on location 

and types of hemicelluloses and their influence on the recalcitrance nature of fibers , and 

improved our understanding of the structural arrangement offibers. However, use ofthese 

methods for LCB analysis is laborious, requires specialized equipment, tedious sample 

preparation and long analysis time (typically hours for each sample) [116,117]. One of the 

major difficulties in studying biomass recalcitrance and process parameters is the lack of 

rapid, high throughput and reliable tools for monitoring and/or tracking lignocellulosic 

composition at the surface of wood fibers . In addition, CUITent methods for tracking sur­

face exposure ofbiomass are vague and are not compatible with industrial constraints. As 

a result, it is highly challenging to select a MOst efficient pretreatment for a given biomass 

and to tightly modulate processing variables such as the amount of enzymes used for re­

Moval (complete or selective) of a particular lignocellulosic component for process opti­

mization. 

Over the past decade, other techniques have been developed for the direct and 

rapid detection of LCB polymers. The use of chemical dyes to stain lignocellulosic bi­

opolymers was one of the initial approaches for the detection of cellulose within various 

materials. Unfortunately, these dyes are rarely specific to cellulose [118]. In recent years, 

several in situ detection techniques have been developed, not only for cellulose but also 
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for other cell wall components, including hemicellulose and pectic polysaccharides detec­

tion [119] . Among these techniques, monoclonal antibodies (mAbs) have been used suc­

cessfully for developmental studies of vegetal materials. However, antibodies targeting 

complex polysaccharides, made of crystalline and insoluble structures, are difficult to gen­

erate [118,120]. Somewhat like antibodies, carbohydrate-binding modules (CBMs) are 

nature 's detection molecules that are highly specific towards their substrate polysaccha­

rides. In addition, they have been shown to discriminate crystalline cellulose from non­

crystalline cellulose [118,120]. The high specificity of CBMs toward lignocellulosic pol­

ymers and their cost of production make them more interesting as probes compared to 

mAbs [118-121]. 

1.5 Carbohydrate-binding modules 

The molecular recognition of carbohydrates by proteins, such as carbohydrate-ac­

tive enzymes (CAZymes), is vital for several biological processes, including cell-cell 

recognition, cellular adhesion and host-pathogen interactions. Many CAZymes are mod­

ular proteins with at least two distinct modules: the catalytic module and the CBM 

[122,123]. CBMs are the non-catalytic polysaccharide-recognizing module ofCAZymes 

[121 ,124,125]. The CBM were originally defined as cellulose binding domains (CBDs), 

because the fust example of these protein domains bound crystalline cellulose as their 

primary target [121 ,123]. Subsequently, the broader term CBM evolved to depict the di­

verse ligand specificity ofthese modules [124] . The CAZymes, su ch as glycoside hydro­

lases, glycosyltransferases, polysaccharide lyases, carbohydrate esterases, and auxiliary 

activities (redox enzymes that act in conjunction with CAZymes), with their polysaccha­

ride-recognizing module (CBMs) are classified in the Carbohydrate Active enZymes 

(CAZy) database (http://www.cazy.org/).Briefly. the CAZy database describes the fami­

lies ofstructurally related catalytic module and the CBMs (or functional domains) of CA­

Zymes that degrade, modify, or create glycosidic bonds [121 ,124]. Most of the CBMs are 

an integral part of either bacterial or fungal glycoside hydrolases. 
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1.5.1 CBMs classification 

Currently, CBMs are grouped into 83 different families, based on amino acid se­

quence homology, binding specificity and structure, ln the CAZy 

(http://www.cazy.org/Carbohydrate-Binding-Modules.html) database [121 ,124]. These 

characterized CBMs display substantial variation in ligand specificity. Sorne CBMs rec­

ognize and bind to crystalline cellulose, non-crystalline cellulose, xylan, mannan, chitin 

and starch, while sorne CBMs display ' lectin like ' specificity and bind to a variety of cell 

surface glycans. Thus, CBMs are excellent model systems for studying the mechanism of 

protein-carbohydrate recognition and have been used for numerous biotechnological ap­

plications [124] . 

1.5.1.1 Protein fold classification 

The catalytic modules of glycoside hydrolases are classified into 149 different 

families and 17 different clans or ' superfamilies ' based on the criteria of conservation of 

prote in fold and others, but there are currently no formaI 'super' groupings of the 83 CBM 

families . According to the Boraston et al. (2004) besides amino acid similarity classifica­

tion, CBMs can also be classified into 7 ' fold families ' (Table l.3 and Figure l.8) confer­

ring to their protein fold and tridimensional structure [124] . The dominant fold among the 

CBMs, in terms of total number of families and entries in CAZy database, is the ~-sand­

wich fold (fold family 1). This fold comprises two ~-sheets , each consisting ofthree to six 

antiparallel ~-strands . Almost all the CBMs with ~-sandwich fold have at least one bound 

metal atom, except for CBM2a from Cellulomonasfimi xylanase 10A. The second most 

frequent fold among the CBMs is ~-trefoil fold (fold family 2). This fold is characterized 

by twelve strands of ~-sheet, forming six hairpin turns [121 ,124]. 
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Table 1.3 CBM fold families (Adapted from [121 ,124]) 

Fold Family Fold CBM families 

2, 3, 4, 6, 9, 11 , 15, 16, 17, 20, 21 , 22, 

1 ~-Sandwich 25, 26, 27, 28, 29, 30, 31 , 32, 33 , 34, 

35, 36, 40, 41 , 42, 44, 47, 48, 51 , 70 

2 ~-Trefoil 13,42 

3 Cysteine knot 1 

4 Unique 5,12 

5 OB fold 10 

6 Hevein fold 18 

7 
Unique; contains 

14 
hevein-like fold 

Among these twelve strands, the six strands form a ~-barrel structure associated 

with three hairpin turns. The remaining three hairpin turns form a triangular cap on one 

end of the ~-barrel called the 'hairpin triplet' . Each trefoil domain, as detined by Boraston 

et al. (2004), contributes one hairpin (two ~-strands) to the ~-barrel and one hairpin to the 

hairpin triplet [124]. The members of cysteine knot (fold family 3), unique (fold family 

4), OB (oligonucleotide/oligosaccharide binding) fold (fold family 5), hevein fold (fold 

family 6) and hevein-like fold (fold family 7) are small 30-60 amino acids polypeptides. 

The members of families 3-5 comprises only ~-sheet and coi!. Further, the members of 

families 6 and 7 contains mainly coil, but also have two small ~-sheets and a small region 

ofhelix (121 ,124). 
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Figure 1.8 CBM fold families and functional types (CBMs represented as ribbon 

structures, assumed biological molecule) 

CBMs shown are as follows: (A) family 3 CBM from Clostridium ther­
mocellum (CtCBM3) , pnB code 4B9C; (B) family 4 from Clostridium 
thermocellum (CtCBM4) , pnB code 3P6B; (C) family 9 from Thermotoga 
maritima (TmCBM9), pnB code 1182; (D) family 1 CBM from Tricho­
derma reesei (TrCBM1), pnB code 4BMF; (E) family 13 from Clostridium 
botulinum (CbCBM13), PDB code 3WIN; (F) family 5 from Moritella ma­
rina (MmCBM5), pnB code 4HMC; (G) family 18 CBM from Triticum 
kiharae (TkCBMI8) pnB code 2LB7; (H) family 10 CBM from Cellvibrio 
japonicus Ueda107 (CjCBMI0) , PDB code lE8R; (1) family 14 CBM from 
Homo sapiens (HsCBMI4) pnB code 1 WAW (adapted from [121]). 

1.5.1.2 Structural and functional classification 

The prote in fold classification ofCBMs is based on the conservation of the protein 

fold and are not predictive of their function. Thus, CBMs are further classified into three 
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types A, B and C, based on three-dimensional structure and functional similarity. Type A 

or ' surface-binding' CBMs recognize and bind to the surface of insoluble, highly crystal­

line cellulose and/or chitin with little or no affinity for soluble polysaccharides [126]. Type 

A CBMs binding sites exhibits a planer architecture, which compliments the flat surfaces 

ofcellulose or chitin crystals [127,128]. Type Bor 'glycan-chain-binding' CBMs recog­

nize and displays high affinity towards the hexasaccharides and show no interaction with 

oligosaccharides with a degree ofpolymerization ofthree or less. The binding site archi­

tecture of Type B CBMs displays grooves or clefts, and comprise several subsites able to 

accommodate the individual sugar units of the oligosaccharides (Figure 1.9 and 1.10). 

Type C 'small-sugar-binding' CBMs are identified as binding modules that recognize ter­

minal (exo-type) glycans such as mono-, di- or tri-saccharides. The binding site architec­

ture of Type C CBMs lacks the extended binding site grooves of Type B CBMs [125,129]. 

1.5.2 Structural determinants of CBMs blnding speclficlty 

The binding-site topography is a key determinant ofbinding specificity ofCBMs. 

One of the major factor for varying binding-site topography is the aromatic amino acid 

side chains of tryptophan, tyrosine and phenylalanine. The aromatic amino acid side 

chains interaction with ligand is ubiquitous to CBM polysaccharide recognition. The side 

chain form hydrophobic platforms in CBM-binding sites, which can be planar, twisted, or 

sandwich (Figure 1.11). The 'planar' platforms of aromatic ami no acid side chains are a 

hallmark of Type A CBMs (Figure 1.llA) while 'twisted ' and 'sandwich' binding-site 

platforms are common in Type B CBMs and accommodate the conformations of soluble 

oligosaccharide ligands (Figure 1.11B and C) [124] . 

1.5.3 CBMs functlons 

CBMs play a central role in the optimization of the catalytic activity of plant cell 

wall hydrolases by their specific binding to plant polysaccharides. The CBMs present in 

most CAZymes are believed to have one or more of the following functions with respect 

to the function of their associated catalytic modules: proximity effect, substrate targeting 

and disruptive function. 
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Figure 1.9 Schematic diagram showing the location ofbinding sites in the p-sand­

wich Type B CBMs 

This figure was produced by overlapping the C-a carbons for all the ~­
sandwich Type B CBMs for which ligand bound complexes were available. 
Only the ribbon structure of the family 4 CBM from the N -terminus of 
Cel9B from Cellu/omonas fimi is shown as a representative ~-sandwich 
Type B CBM. Oligosaccharide ligands are shown in 'liquorice' represen­
tation and colored as follows: cyan, cellotetraose from CcCBM17 (POB 
code 1184); blue, laminariohexaose from TmCBM4-2 (pOB code 1 GUI); 
pink, cellopentaose from CjCBM4-2 (POB code 1 GU3); marine/aqua, xy­
lotriose from CsCBM6-3 (PDB code INAE); orange, cellohexaose from 
PeCBM29-2 (POB code IGWM); green, mannopentaose from TmCBM27 
(POB code 10F4); purple, xylopentaose from CjCBM15 (PDB code 
1 GNY) (adapted from [124]). 

19 



A 

B 

Figure 1.10 Solve nt-accessible surface representation of two CBMs showing the 

depth of binding grooves in Type B CBMs 

(A) Example of a cellopentaose molecule occupying a deep binding groove 
in CjCBM4-2 (pnB code 1 GU3). (B) Example of a cellotetraose molecule 
occupying a shallow binding groove in CcCBM17 (pnB code 1184). The 
surfaces created by the aromatic ami no acid side chains involved in binding 
are shown in magenta (adapted from [124]). 
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Figure 1.11 Tbe tbree types of binding-site 'platforms' formed by aromatic amino 

acid residues (adapted from [124]) 

(A) The 'planar' platform in the family 10 Type A CBM, CjCBMIO. (B) 
The 'twisted' platform of the Type B family 29 CBM, PeCBM29-2. (C) 
The ' sandwich' platform of the Type B family 4 CBM, CjCBM4-2. The C­
a backbone is shown as grey cylinders, the aromatic amino acid side chains 
forming the binding sites are shown in grey 'liquorice' representations, and 
the bound oligosaccharide are shown in blue ' liquorice' representation. 

The CBMs recognize and bind to the accessible sites on a polysaccharides sub­

strate to form a complex via specific, non-covalent, thermodynamically favorable bonds 

[122,130]. Consequently, the CBMs promote the association of the enzyme with the sub­

strate to secure a prolonged contact and effectively increase the enzyme concentration on 

the surface of the substrate thus enhancing enzymatic activity (the so-called proximity 
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function) [121 ,122,124]. Numerous studies have shown that removal of CBM decreases 

the hydrolytic activity of the catalytic domain on insoluble, crystalline substrate, whereas 

their activity on soluble, non-crystalline cellulose remains mostly unaffected 

[59,131 ,132]. 

CBMs are highly specific towards their substrate and able to recognize different 

polysaccharides such as crystalline cellulose, non-crystalline cellulose and cello-oligosac­

charides (the so-called substrate targeting function). The substrate targeting effect of the 

CBMs has been studied extensively and used in various biotechnological applications, 

namely protein-carbohydrate interaction mechanism and as molecular probes for various 

polysaccharides localization, tracking and quantification [121]. 

In addition, sorne CBMs isolated from both bacteria and fungi have been proposed 

to facilitate cellulose hydrolysis by disrupting the fibrous cellulosic network thus increas­

ing the substrate accessibility (the so-called disruptive function) . In recent studies, the 

CBMs have been shown to promote non-hydrolytic disruption of crystalline cellulose by 

weakening and splitting the hydrogen bond in the cotton fibers [133,134]and reducing the 

interfiber interaction in Whatman CFII cellulosic fibers [135]. 

The proposed mechanism of amorphogenesis of cellulose fibers starts with the ad­

sorption of the CBM at cellulose micro-cracks or defects (disturbance in the crystalline 

structure of cellulose) (Figure 1.12A), followed by the penetration of CBM into the inter­

fibrillar space. This indu ce a mechanical pressure on the cellulose micro-cracks, swelling 

the cellulose structure and accommodating water molecules within the micro-cracks (Fig­

ure 1. 12B). The mechanical pressure aids water molecules to penetrate further into the 

interfibrillar space, breaking the hydrogen bonds, resulting in the disassociation of the 

individual microfibrils (Figure 1.12C). This consequently helps catalytic domain of the 

glycoside hydrolase for cellulose hydrolysis. The adsorbed enzyme also prevents the re­

aligning and re-adhering of the cellulose chains [122,136-140] . 
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Figure 1.12 Schema tic representation of amorphogenesis of cellulose fibers medi­

ated by the carbohydrate-binding module (CBM) of cellobiohydrolase 

1 (CBHI) 

For clarity, the carbohydrate-binding module is oversized compared with 
the catalytic domain (adapted from [122]). 

Although the functions of CBMs during the enzymatic hydrol ysis of pol ysaccha­

rides are still partly unclear and that consequently more research is needed, it is well un­

derstood that the primary role of a CBM is to anchor the catalytic module of the glycoside 

hydrolase to polysaccharide [141]. 

1.5.4 Applications of CBMs 

In recent years, CBMs have been used for several applications related to biomed­

icine, environment, molecular biology, microarrays, paper, textile, food and biofuel in­

dustries [142] (Figure 1.13). There are three basic properties of CBMs which contributes 
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to their compatibility for the applications mentioned above: (1) CBMs are independent 

folding modules and can function autonomously in a chimeric protein; (2) CBMs are di­

verse, abundant, highly substrate specific and inexpensive (in terms of their production 

and purification as both wild type and recombinant proteins) with excellent chernical and 

physical properties; and (3) the binding specificities and affinities of CBMs can be, in 

principle, controlled according to an existing problem (using directed evolution for in­

stance) [121 ,124,142]. 

1.5.4.1 Bloprocesslng 

One of the major applications ofCBMs is in bioprocessing ofbiologically active 

molecules for various biotechnological applications. CBMs have been studied and used 

as high-capacity purification tags for the isolation, production and purification of biolog­

ically active target peptides and proteins at relatively low cost. Numerous other reports 

have also shown CBM as an affinity tag for enzyme immobilization and processing. An­

other area of CBMs bioprocessing application includes enhanced bioethanol production 

from cellulosic materials. A study by Berdichevsky et al. showed that a CBM could be 

used for matrix-assisted refolding of a single-chain antibody in order to prevent the ag­

gregation of protein during the course of renaturation [143] . In another study, a CBM 

fused to single chain antibody increased the efficiency of the phage display screening pro­

cess for recombinant antibodies [144]. 
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Figure 1.13 CBMs applications (adapted from [121]) 

1.5.4.2 Targeting 

Cellulose is the most abundant and renewable substrate with various commercial 

applications. Therefore, CBMs can be used for targeting desired functional molecules to 

the substrate containing cellulosic fibers , such as cotton fibers in the textile industries. 

CBMs have been used extensively for the denim washing, an alternative to the original 

abrasive stonewashing and laundry powders for targeting recombinant enzymes (amyl­

ases, proteases and lipases) and fragrance particles to the cellulosic fibers [145,146]. 
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1.5.4.3 Cell immobilization 

CBMs have been used efficiently for the cell immobilization technology for vari­

ous applications including ethanol production and phenol degradation. CBMs were also 

used for immobilization of mammalian cells to a cellulosic surface for improving the per­

formance ofvascular graft [147] and cartilage regeneration [148]. 

1.5.4.4 Bioremediatlon 

CBMs have been studied and shown to be an excellent mediator for the bioreme­

diation of the pollutants. They have been used as recombinant proteins for the removal of 

toxic heavy metals such as cadmium [149] and a commonly used pesticide atrazine [150] 

from water. These findings have shown strong potential for the improvement of sustaina­

ble wastewater treatment technologies [151]. 

1.5.4.5 Analytlcal tool 

Many studies have been using CBMs as analytical tools for research and diagnos­

tics of cellulosic fiber surface. McCartney et al. [152] and Jamal-Talabani et al. [153] 

developed novel molecular CBM probes for the detection, characterization and mapping 

of plant cell wall polysaccharides. The CBMs were also used in the optimization of the 

bioprocesses such as fermentation [154] , rapid detection of the pathogenic microbes in 

food samples [155] and production ofCBM based non-DNA microarrays for various med­

ical applications [156]. 

1.5.4.6 Modification of fibers 

The CBMs have also been used for the modification of cellulosic fibers in the pa­

per and textile industries [157-159] . A recombinant CBM3 conjugated with polyethylene 

glycol (PEG) has shown to improve the drainability of the wood pulps without affecting 

the physical properties of the paper sheets [160]. The recombinant CBMs were also ap­

plied to Whatman filter paper and it was found to enhance its me'Chanical properties, such 
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as tensile strength, brittleness, Young's modules and paper dry strength. Moreover, a re­

cent study by Shi et al. (2014) demonstrated that the use of recombinant double CBMs, 

such as CBMI-NL-CBM1 , significantly enhanced the mechanical properties ofpulp and 

papers [161]. Additionally, CBMs were also successfully used for the scouring process, 

one of the most important process determining the fabric quality, to remove the cutical 

layer of cotton fibers and increasing the efficiency of the process [162]. 

1.6 Fluorescent proteln-tagged CBMs 

Fluorescence is a very sensitive and specific spectroscopy where absorption and 

emission wavelengths determine what molecules contribute to the detected signaIs 

[125,163]. Further, plate readers allow increasing measurement throughput, a valuable 

criterion in the development of any novel assay. Rence, detection of CBM probes that 

wou Id emit fluorescence would be advantageous. Fluorescence detection can be achieved 

directly or indirectly depending on the methods used [118]. The indirect methods involve 

the use of a secondary or tertiary reagent such as anti-Ris-IgG coupled to a fluorophore to 

detect the Ris-tag of a CBM, which may also allow amplification of signal intensities. 

This method provides great flexibility in CBM use but has a potential disadvantage related 

to multi-step incubations, which decrease analysis speed and are less compatible with a 

high throughput strategy [118]. On the other hand, in direct methods, coupled CBMs 

would require a straightforward, single-step incubation, affording the possibility of rapid, 

high throughput protocols. In the first direct method reported, a CBM was chemically 

coupled with a fluorophore (such as FITC/Alexa Fluor) [118]. Unfortunately, these mol­

ecules react non-specifically with various moieties at the surface of CBMs, deleteriously 

affecting specificity, affmity and detection reproducibility. Another direct detection 

method uses CBMs genetically fused to a fluorescence protein such as the green fluores­

cent protein (or any of its variants) [118]. This method allows maintenance of the original 

CBM behavior, avoiding the limitations described for the fIfst direct method discussed. 

Rence, CBMs coupled with fluorescence protein have been used for mapping the chem­

istry and structure of various carbohydrate-containing substrates (i.e. LCB) [164,165]. 

The production and purification ofthese fluorescent protein-tagged carbohydrate-binding 
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modules is part of a broader 'recombinant CBM-fusion technology' , which has been used 

to obtain CBMs fused with other proteins for specifie applications. Recombinant CBMs 

can either be produced in heterologous organisms (Escherichia coli and Pichia pastoris) 

or in the CBM's original host. Figure 1.14 illustrate the recombinant CBM-fusion tech­

nology from cloning to applications [121]. 

1.6.1 Fluorescent protein 

1.6.1.1 Green fluorescent proteln (GFP) 

GFP, the famous chemiluminescent protein, was discovered by Shimomura et al. 

[166] from Aequorea jellyfish. GFP is an 11-stranded ~-barrel structure threaded by an (l­

helix running up the axis of the cylinder, which is also known as ~-can (Figure 1.15). The 

ability of fluorescent proteins to emit visible light derives from the post-translational mod­

ification ofthree amino acids at positions 65-67 (Ser-Tyr-Gly in the native protein), which 

result in chromophore formation. The chromophore, a p-hydroxybenzylideneimidazoli­

none, is attached to the a-helix and is buried in the center of the cylinder. Figure 1.16 

shows the mechanism for chromophore formation. First, GFP folds into a nearly native 

conformation, then the imidazolinone is formed by nucleophilic attack of the amide of 

Gly67 on the carbonyl ofresidue 65, followed by dehydration. Finally, molecular oxygen 

dehydrogenates the (l-~ bond ofresidue 66 to put its aromatic group into conjugation with 

the imidazolinone. Only at this stage the chromophore acquires visible absorbance and 

fluorescence. The ~-can structure protects the chromophore and is presumably responsible 

for GFP ' s stability [167] . Figure 1.17 and Table 1.4 describes the different classes of green 

fluorescent proteins and their properties [168]. 
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Figure 1.14 Schematic representation of the recombinant CBM-fusion technology, 

from cloning to application 

(A) Gene fusion between CBM and a gene of interest. CBM can either be 
cloned at the C-terminal or N-terminal of the target gene (the N-terrninal 
fusion is represented). (B) Transformation of ligated plasmid vector into a 
prokaryotic or eu.karyotic expression system. (C) Overexpression of the re­
combinant protein. (D) Purification/immobilization of the fusion protein. 
(E) The immobilized protein is released from CBM and support by proteo­
lytic cleavage of the engineered sequence located between the CBM and 
the prote in (application of CBM-free protein or peptide). (F) The fusion 
protein is eluted from support for further application. (G) The immobilized 
fusion protein is directly used by the addition of a ligand or a substrate 
(adapted from [121]). 
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Figure 1.15 The three-dimensional structure of GFP 

Showing Il p-strands fonning a hollow cylinder through which is threaded 
a helix bearing the chromophore, shown in ball-and-stick representation 
(adapted from [167]). 
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Figure 1.16 Mechanism for the intramolecular biosynthesis of the GFP chromo­

phore (adapted from [167]) 
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Figure 1.17 Fluorescent proteins 

"SHM" stands for 'somatie hypermutation' , "E" stands for enhaneed ver­
sions ofGFP and "m" identify monomerie proteins (adapted from [169]), 
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Table 1.4 Spectral characteristics of the major classes of green fluorescent proteins (GFPs) 

Excitation Emission 
Class Protein Brightness Photostability Oligomerization 

(nm) (nm) 

Red mCherry 587 610 16 96 Monomer 

mStrawberry 574 596 26 15 Monomer 

Orange mOrange 548 562 49 9 Monomer 

mKO 548 559 31 122 Monomer 

Yellow-green mCitrine 516 529 59 49 Monomer 

EYFP 514 527 53 15 Weakdimer 

Green Emerald 487 509 39 0.69 Weakdimer 

EGFP 488 507 34 174 Weakdimer 

Cyan CyPet 435 477 18 59 Weakdimer 

mCFPm 433 475 13 64 Monomer 

(adapted from [168]) 
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Nowadays, GFP is a commonly used protein as a biological marker tool in molec­

ular biology, medicine, and cell biology. The major advantage ofusing GFP as a molecu­

lar marker is its stability and the fact that its chromophore is formed in an autocatalytic 

cyclization that does not require a cofactor. Furthermore, the fusion of GFP to a prote in 

does not alter the function or location of the protein. These advantages enabled GFP 's 

widespread use in cell dynamics and development studies [170] . 

CBMs coupled with fluorescence protein have been used for mapping the chemis­

try and structure ofvarious carbohydrate-containing substrates (LCB) [55,125,171]. Us­

ing fluorescent-tagged CBMs, Gao et al. (2014) and Hong et al. (2007) successfully quan­

tified the change in crystalline and non-crystalline (amorphous) celluloses accessibilities 

during enzymatic hydrolysis [125,171]. 

1.7 Fluorescent proteln-Tagged Carbohydrate-blndlng module Method 

(FTCM) 

Considering the importance of LCB tracking, in this Ph.D. work we have estab­

li shed a novel, rapid, high-throughput, easy-to-use, unambiguous and affordable approach 

to track lignocellulosic polymers at the surface of diverse pulps (mechanically, chemically 

and enzymatically treated) and LCB fibers (raw (untreated) and pretreated). Named "Flu­

orescent protein-Tagged Carbohydrate-binding module Method", or FTCM, this method 

relies on the use of four specifie ready-to-use probes made of recombinant CBMs genet­

ically linked to a designated fluorescent prote in of the GFP family. The CBM part ofthese 

genetically modified probes recognizes and binds to biopolymers (i.e. mannan, xylan, 

crystalline and non-crystalline cellulose) while the fluorescence emitted by the GFP (or a 

selected derivative of GFP with different spectroscopie properties) permits rapid and spe­

cifie quantification of the probes bound to the surface. The fluorescence can be measured 

by using an ordinary fluorescence plate reader. We developed four fluorescent-tagged fu­

sion proteins for FTCM: Probe eGFP-CBM3a (GC3a), specifie to crystalline cellulose 

(made of the fluorescent protein eGFP and CBM3a); Probe mCherry-CBM17 (CC17), 

specifie to non-crystalline cellulose (fluorescent protein mC linked to CBM17); Probe 
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mOrange2-CBMl5 (OCI5), specifie to xylan (composed ofmOrange2 and CBMI5); and 

Probe eCFP-CBM27 (CC27), specifie to mannan (a chimera made of eCFP and CBM27). 

Figure 1.18 iUustrate the construction schemes and 3D structure of the FTCM probes. 

A~ B~ 

c o 

Figure 1.18 Construction schemes and tridimensional structures of the probes 

Unless otherwise noted, the sequence linking the fluorescent protein to the 
CBM is composed of a glycine. A) The crystalline cellulose probe (GC3a) 
was formed by linking eGFP via a thrombin cleavage site to CBM3a (46.26 
kDa). B) The non-crystaUine cellulose probe (CCI7) is composed of 
mCherry linked to CBMl7 (50.56 kDa). C) The xylan probe (OCI5) was 
formed by mOrange2 and CBMl5 (44.68 kDa). D) The mannan probe 
(CC27) was constructed using eCFP and CBM27 (48.06 kDa). AU fluores­
cent proteins C-terminal ends are linked to the N-terminal ends of the 
CBMs. The red portions in the ORFs represent N-terminal six histidine 
tags. The red spheres represent metal ions. 
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Mixing the probes with wood fiber and measuring fluorescence (after removing CBMs 

that are not specifically bound) allows for quick monitoring of the distribution of the tar­

geted polymers on the fiber, as depicted in Figure 1.19. 

C..,·"aWH C. II.1ow x, ln 

Il """0.' Ce'" Il Ma.u. 

Figure 1.19 Schematic representation of probe binding to wood fiber 

The left side of the fiber depicts a partially lignin-free fiber where non­
crystalline cellulose dominates (red strings). On the right side, the straight 
green bars represent crystalline cellulose. Hernicelluloses such as xylan (or­
ange) and mannan (cyan) are shown as polymers that help keep the fiber 
together. The grey cylinders represent the lignin coating. The probes de­
signed in this study were shown to attach specifically to their respective 
target polymer, as indicated in this figure by the matching color of their 
fluorescent module. . 

1.7.1 Family 3 CBM 

The family 3a CBM (CBM3a) comprises the non-catalytic crystalline cellulose­

recognizing module of the scaffolding subunit Cip (Cip-CBD) of the cellulosome from 

Clostridium thermocellum [127]. The crystal structure of CBM3a represents a nine­

stranded ~-sandwich fold with a jellyroll topology with a calcium ion (Figure 1.20). The 
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nine ~ strands align in a way to form two defined surfaces located on opposite si des of the 

molecule. The bottom sheet is comprised of strands 1, 2, 7, and 4; whereas the top sheet 

contains strands 9, 8, 3, 6, 5. The two sheets show different curvatures. The bottom sheet 

surface is dominated by a planar linear strip of aromatic and polar residues that are pro­

posed to interact with crystalline cellulose [127]. 

A B 

c 

Figure 1.20 Overall structural organization of the CBn 

(A) Ribbon diagram ofCip-CBD. The C- and N-termini are labeled C and 
N, respectively, and the position of the calcium ion (Ca) is shown. ~ 
Strands are depicted as arrows and unstructured loops as tubes. Strands 
that form the two ~ sheets are labeled 1-9. (B) 90° rotation around the 
horizontal axis of the CBD molecule in (A). (C) Stereo diagram of the Ca. 
trace of Cip-CBD with every tenth Ca position labeled. The molecule has 
been rotated 40° around the horizontal axis with respect to the view in 
(B). Side chains of conserved surface-exposed residues are shown, and 
those forming the aromatic strip proposed to interact with a single glucose 
chain of crystalline cellulose are labeled (adapted from [127]). 

1.7.2 Famlly 17 CBM 

The family 17 CBM (CBMI7) contains the non-catalytic cellulose-recognizing 

module of a cellulase 5A (CeI5A from Clostridium cellulovorans). Biochemical studies 
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on the CBM17 showed that it binds to non-crystalline cellulose and soluble ~-(I,4)-glu­

cans, with a minimal binding requirement of cellotriose and optimal affinity for cellohex­

aose [172]. CBM17 does not show any affinity towards crystalline cellulose or xylan, 

including substituted xylan and xylooligosaccharides or carbogalactomannan and man­

nooligosaccharides. The crystal structure of CBM 17 complexed with cellotetraose re­

vealed a four by five-stranded ~-sandwich fold with a single a-helix at the base of both 

sheets. Cellotetraose binds to the wide but shallow groove on the surface of CBMI7, 

where two Trp residues (W88 and W135) stack the reducing ends of the oligomer, while 

the polar residues (N52, D54, R92, Q129, N137, and N185) makes contacts with the non­

reducing end of the sugar (Figure 1.21 and 1.22) [172]. 

Figure 1.21 Ribbon representation of the 3D structure of CBM17 

Depicted in gold is the cellotetraose moiety as observed in the crystal struc­
ture. Residues that were predicted to form interactions with the ligand by 
alanine scanning mutagenesis are shown as ball and stick (adapted from 
[172]). 
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Figure 1.22 Cartoon representation of ligand interactions in the binding cleft of 

CBM17 

Green broken lines depict hydrogen bonds (lengths in A). Orange flares 
around atoms represent hydrophobie contacts between ligand and prote in 
(adapted from [172]). 

1.7.3 Family 15 CBM 

Among type B CBMs, the family 15 CBM (CBMI5) includes the non-catalytic 

xylan-recognizing module ofaxylanase (Xyn 1 OC frOID Cellvibrio japonicus) which has 

been demonstrated to bind xylan, including substituted xylan and xylooligosaccharides. 

The CBM 15 was also shown to bind to cellooligosaccharide (cellohexaose) but with 10 

times less affinity than xylohexaose [173] . The 3D structure of the CBM15 reveals a p­

jelly roll structure oftwo p-sheets displaying an extended groove that runs along the face 

of the protein (Figure 1.23). Within this groove two tryptophan residues form hydrophobie 

stacking interactions with two xylopyranose units at n and n+2 (Figure l.24) [173]. 
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Figure 1.23 The three-dimensional structure ofthe Cellvibrio japonicus CBM15 in 

complex with xylopentaose 

(A) The secondary structures of the protein with the location ofbound xy­
lopentaose. (B) The electron density of xylopentaose bound to CBM15 
(adapted from [173]). 
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Figure 1.24 Schematic dia gram of the interactions of CBM15 with xylopentaose 

(adapted from [173]) 

1.7.4 Family 27 CBM 

The Farnily 27 CBM (CBM27) comprises the non-catalytic mannan-recognizing 

module of a mannanase (Man5 from Thermotoga maritima). The CBM27 binds tightly to 

P-(I,4)-mannooligosaccharides, carbogalactomannan, and konjac glucomannan, but not 

to cellulose (insoluble and soluble) or xylan, including substituted xylan and xylooligo­

sac chari des [174] . The 3D structure of the CBM27 reveals a p-sandwich comprising 13 p 

starnds with a single, small a-helix and a single metal atom (modeled as a calcium atom) 

(Figure 1.25). The structure is heptahedrally coordinated by the side chain of D 165; the 

backbone carbonyls ofD12, G46 and D93; and two water molecules. Relative to the in­

teraction of CBM27 with mannohexaose (M6), a hydrogen bond is made with galactose 

side chain and a bond is lost between D59 and the mannose residue in subsite 2 of 63,64
_ 

a-D-galactosyl-mannopentose (G2Ms) (Figure 1.26) [174]. 
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Figure 1.25 Three-dimensional structure of uncomplexed TmCBM27 

(A) The secondary structures of the protein are shown with the aromatic 
amino acids in the binding site shown in "licorice". The bound metal ion is 
shown as a blue sphere. Solvent-accessible surfaces of TmCBM27 com­
plexed with (B) G2Ms and (C) mannohexaose. Purple regions indicate the 
surface contributed by the binding site aromatic residues. The sugar mole­
cules are shown in blue and red licorice (adapted from [174]). 
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Figure 1.26 A schematic showing the interaction of TmCBM27 with G2M5 (A) and 

mannohexaose (B) 

Hydrogen bonds are shown as dashed lines ~ water moleeules as filled eir­
des. Binding subsites referred to in the text are shown undemeath the sehe­
maties with braekets (adapted from [174]). 
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1.8 Objectives 

The main goal ofthis PhD work was to develop and optimize the FTCM and ex­

ploit its potential for five different objectives. 

1.8.1 Objective 1 (scientlfic article 1) 

~ To demonstrate the development, working procedure and the sensitivity of 

FTCM method; 

~ To study the potential of a tluorescent-tagged fusion protein OC15 for 

monitoring xylan at the surface of paper samples. 

1.8.2 Objective Il (sclentlflc article Il) 

~ To investigate and track variations in hemicelluloses after various mechan­

ical, chemical and enzymatic treatments; 

~ To investigate the inherent recalcitrance nature of plants and its impact on 

enzyme accessibility, inactivation, inhibition and, as a consequence, cost of 

use; 

~ To study the location ofhernÏcelluloses with respect to lignin and cellulose. 

1.8.3 Objective III (scientlfic article III) 

~ To demonstrate rapid, high-throughput monitoring of wood fibers and pre­

dicting the impact of various treatments on the strength properties of paper 

produced from such processed fibers. 

1.8.4 Objective IV (scientific article IV) 

~ To investigate that which combination of enzyme treatment and biomass 

substrate is best suited for industrial applications in which various levels 

of fiber deconstruction and precise control of fiber surface composition are 

desirable, such as the production of nanocellulose, fiber-reinforce compo­

sites, or paper. 
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1.8.5 Objective V (scientific article V) 

~ To explore the applicability and adaptability ofFCTM to FTCM-depletion 

assay in order to study the LCB pretreatments in a biofuel production per­

spective. 

~ To characterize suspensions ofbiomass fibers (untreated and after various 

pretreatments) and investigate the correlations between FTCM probes 

binding and enzymatic production of reducing sugars. 
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2.1 Abstract 

Background: Xylan has been identified as a physical barrier which limits cellulose ac­

cessibility by covering the outer surface of fibers and interfibrillar space. Therefore, track­

ing xylan is a prerequisite for understanding and optirnizing LCB processes. 

Results: In this study, we developed a novel xylan tracking approach using a two-domain 

probe called OC 15 which consists of a fusion of Cellvibrio japonicus carbohydrate-bind­

ing domain 15 with the fluorescent prote in mOrange2. The new probe specifically binds 

to xylan with an affinity similar to that of CBMI5. The sensitivity of the OC15-xylan 

detection approach was compared to that of standard methods such as x -ray photoelectron 

spectroscopy (XPS) and chemical composition analysis (NRELffP-51 0-42618). AlI three 

approaches were used to analyze the variations ofxylan content of kraft pulp fibers. XPS, 

which allows for surface analysis of fibers, did not clearly indicate changes in xylan con­

tent. Chemical composition analysis responded to the changes in xylan content, but did 

not give any specific information related to the fibers surface. Interestingly, only the OC 15 

probe enabled the highly sensitive detection ofxylan variations at the surface of kraft pulp 

fibers. At variance with the other methods, the OC15 probe can be used in a high through­

put format. 

Conclusions: We developed a rapid and high throughput approach for the detection of 

changes in xylan exposure at the surface of paper fibers. The introduction of this method 

into the LCB based industries should revolutionize the understanding and optimization of 

most wood biomass processes. 

Keywords: Carbohydrate-binding module, Fluorescent protein, kraft pulp, X-ray photo­

electron spectroscopy, Xylan, Xylanase 
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2.2 Introduction 

LCB is a major source of sugars for the production of biofuel [1 ,2]; however, its 

production has always been hindered by several economical and technical obstacles [3,4], 

One of these obstacles is the complex structure of the lignocellulosic substrate. As a con­

sequence, the enzymatic hydrolysis of lignocellulosic components to fermentable sugars 

is considered as one of the major rate-limiting and costly step [3,5-8]. One way to better 

understand and control hydrolysis of LCB is to monitor the complex polymers composi­

tion of fibers at every stage of processing. 

LCB is a complex structure consisting of cellulose W-1 ,4-linked glucose polymer), 

hemicellulose (polysaccharide of varying composition) and lignin [9]. Cellulose is the 

most abundant polysaccharide in nature and constitutes about 35-50% of the total LCB 

[10]. Hemicelluloses, which represent about 20-30% of the total biomass, are the second 

most common polysaccharides [10,11]. Unlike cellulose, hemicelluloses are heterogene­

ous polymers of pentoses (xylose, arabinose), hexoses (mannose, glucose, galactose) 

and/or uronic acids (glucuronic acid, galacturonic acid) [9,12]. Hemicellulose in softwood 

(from gymnosperms) contains mostly glucomannans whereas in hardwood (from angio­

sperms) mostly consists of xylan [13]. The hemicelluloses distribution on the surface of 

wood fibers/cellulose fibrils is of utmost importance for the complex structure of LCB, 

since hemicelluloses have been proposed to act as a physical barrier which increases the 

stiffness of the cellulose fiber network by coating the rigid cellulose crystallites and form­

ing links between the fibrils [3 ,14]. 

Among hemicelluloses, xylans are the most abundant and complex hemicelluloses 

comprising a backbone of~-l,4-linked xylopyranosyl residues [10,11,13]. Xylan has been 

shown to limit the accessibility of cellulase enzymes to cellulose [15-20]. As a conse­

quence, biomass bioconversion requires the presence of accessory enzymes su ch as xy­

lanase, which allows for controlling the significant effect of residual xylan on cellulose 

accessibility during bioconversion [4]. The cost associated to enzyme utilization is an im­

portant aspect ofbioenergyproduction. [15,21 ,22,23]. Enzymes cost can be minimized by 
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tighter control ofprocess parameters (such as dosage and incubation time). To this end, 

one needs to track lignocellulosic polymers, including xylan, at various stages of pro­

cessmg. 

Pulp and paper production is another LCB based industry which has to deal with 

the complexities described above. In addition, this industry faces immense pressure from 

the society and/or governments to move towards green chemistry. Biocatalysts are recog­

nized as a key element of green chemistry and are being progressively introduced in a 

number of processes with extremely positive consequences for the environment [24,25]. 

An increasing number of enzymatic strategies are used by paper makers, including the 

application of xylanase enzymes in the pre-bleaching or bio-bleaching of kraft pulp. The 

presence of xylan, and its redeposition on the surface of cellulose fiber during the kraft 

pulping of hardwood, inhibits the bleaching process. Xylanase enzymes have been found 

to be most effective for limiting this problem and are now in use at several mills worldwide 

for biobleaching [13,15,24-26]. Further, xylan is also known to contribute to fiber strength 

and its removal is known to influence pulp fiber properties [15,27,28]. Xylan is believed 

to contribute to physical properties of the paper by enhancing the inter-fiber bonding [27]. 

Here again, the close monitoring ofxylan would help optimizing the enzymatic treatment, 

better control paper properties, and minirnizing its cost. 

In order to make these LCB based processes highly productive and cost effective 

while improving quality of end-products, one should correlate the process parameters 

(such as enzyme loading, temperature or treatment time) to the substrate availability in a 

given biomass sample, or to a given percent removal target (i.e. x % decrease in xylan at 

the surface of cellulose fibers) . Unfortunately, CUITent methods for tracking xylan are not 

compatible with industrial constraints. To date, tools such as X-ray photoelectron spec­

troscopy (XPS or ESCA) [29,30], atomic force rnicroscopy (AFM) [31], scanning electron 

microscopy (SEM) [30], time-of-flight secondary ion mass spectrometry (ToF-SIMS) 

[30] , gas chromatography (GC) [32], Fourier transform infrared spectroscopy (FTIR) [33] 

and chemical methods [34,35] have been used to study the surface and bulk chemistry of 
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wood fibers. However, use of these methods for LCB analysis is laborious, requires spe­

cialized equipment, tedious sample preparation and long analysis time (typically hours for 

each sample) [36,37] . As a result, it is highly challenging to tightly modulate the amount 

ofxylanase used for complete or selective xylan removal for process optimization. 

Over the past decade, other techniques have been developed for the direct and rapid 

detection ofLCB polymers. The use of chemical dyes to stain lignocellulosic biopolymers 

was one of the initial approaches for the detection of cellulose within various materials. 

Unfortunately, these dyes are rarely specific to cellulose [38] . In recent years, several in 

situ detection techniques have been developed, not only for cellulose but also for other 

cell wall components, including hemicellulose and pectic polysaccharides detection [39]. 

Among these techniques, monoclonal antibodies (mAbs) have been used successfully for 

developmental studies of vegetal materials. However, antibodies targeting complex poly­

saccharides, made of crystalline and insoluble structures, are difficult to generate [38,40]. 

Like antibodies, carbohydrate-binding modules (CBMs) are highly specific towards their 

substrate polysaccharides. They have been shown to discriminate crystalline cellulose 

from non-crystalline cellulose [38,40]. 

CBMs are the non-catalytic polysaccharide-recognizing module of enzymes such 

as glycoside hydrolases [41-43] . CBMs play a central role in the optimization of the cat­

alytie activity of plant cell wall hydrolases by their specific binding to plant polysaccha­

rides. These CBMs are grouped into 71 different families, based on ami no acid sequence 

homology, in the Carbohydrate Active enZymes (CAZy) database (http://www.cazy.org/) 

[ 41]. CBMs are further classified into three types A, Band C, on the basis of three-dimen­

sional structure and functional similarity. Type A CBMs recognize the surface of crystal­

line cellulose, type B and type C CBMs are identified as CBMs that recognize internaI 

glycan chain (endo-type) and terminal (exo-type) glycans, respectively [43,44] . Among 

type B CBMs, the family 15 CBM (CBMI5) includes the non-catalytic xylan-recognizing 

module ofaxylanase (Xynl OC from Cellvibrio japonicus) which has been demonstrated 

to bind xylan, including substituted xylan and xylooligosaccharides [45]. The high speci­

ficity of CBMs toward lignocellulosic polymers makes them more interesting as probes 
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compared to mAbs [38,40,41]. CBMs have been used for several applications related to 

biomedicine, environment, molecular biology, microarrays, paper, textile, food and bio­

fuel industries [41]. Considering the importance of xylan detection for industrial pro­

cessing of LCB, we propose to use nature 's own recognition molecules (CBMs) as the 

spearhead of an efficient xylan detection method. 

Fluorescence is a very sensitive and specific spectroscopy where absorption and 

emission wavelengths deterrnine what molecules contribute to the detected signaIs 

[43,46]. Further, plate readers allow increasing measurement throughput, a valuable cri­

terion in the development of any novel assay. Rence, detection of CBM probes that would 

emit fluorescence would be advantageous. Fluorescence detection can be achieved di­

rectly or indirectly depending on the methods used [38]. The indirect methods involve the 

use of a secondary or tertiary reagent such as anti-Ris-IgG coupled to a fluorophore to 

detect the Ris-tag of a CBM, which may also allow amplification of signal intensities. 

This method provides great flexibility in CBM use but has a potential disadvantage related 

to multi-step incubations which decrease analysis speed and are less compatible with a 

high throughput strategy [38]. On the other hand, in direct methods, coupled CBMs would 

require a straightforward, single-step incubation, affording the possibility of rapid, high 

throughput protocols. In the first direct method reported, a CBM was chemically coupled 

with a fluorophore (such as FITC/Alexa Fluor) [38]. Unfortunately, these molecules react 

non-specifically with various moieties at the surface of CBMs, deleteriously impacting 

specificity, affinity and detection reproducibility. Another direct detection method uses 

CBMs as fusion with a fluorescence protein su ch as the green fluorescent protein (or any 

of its variants) [38]. This method allows maintenance of the original CBM behavior, 

avoiding the limitations described for the first direct method discussed. Rence, CBMs 

coupled with fluorescence protein have been used for mapping the chemistry and structure 

ofvarious carbohydrate-containing substrates (LCB) [47,48] . More recently, two different 

recombinant fluorescent CBM probes have been used for quantitative study of the change 

of accessibilities of amorphous cellulose and crystalline cellulose regions during the én­

zymatic hydrolysis of Avicel [43]. 
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In this study, we demonstrate the potential of a fluorescent-tagged fusion protein 

mOrange2-CBMl5 probe (hereafter named OCI5) for monitoring xylan at the surface of 

paper samples. To evaluate the potential of our novel method, we decided to use two dif­

ferent grades of kraft pulps (unbleached and bleached), and we analyzed xylanase treated 

pulp in order to study the sensitivity of the developed method. Our results suggest that 

such probes can form the basis of a rapid, easy to use, unambiguous and affordable diag­

nostic approach, helping optimizing treatment strategy and reducing the cost of processes 

which rely on controUed xylan removal. 

2.3 Materials and methods 

2.3.1 Chemicals and stralns 

Unless otherwise noted, aU chemicals were reagent grade and purchased from 

Sigma-Aldrich or Fisher Scientific. Escherichia coli XLIO cells (Agilent Technologies) 

were used for aH DNA manipulations while E. coli BL21-Gold(DE3)pLysS competent 

cells (Agilent Technologies) were used for recombinant protein expression. Trichoderma 

viride xylanase from glycoside hydrolase (GH) family Il (cat no. 95595; Sigma-Aldrich) 

was used for the digestion ofLCBes. Xylanase activity was 16.57 U/g. 

2.3.2 Construction of pET11 a-mOrange2-CBM15 expression vector 

The CBMl5 gene (xylan binding domain) was cloned into the C-terminal end of 

the mOrange2 gene (detection domain) in a pETlla vector. Briefly, Cellvibrio japonicus 

CBMl5 (GenBank Accession Z48928) was synthetized by Genscript and provided as part 

of the pUC57-CBMI5 vector. In order to insert the BsrGI and BamHI restriction sites 

(underlined) at each end of CBM15, we amplified the gene using forward (5 ' ­

TGTACAAGGGTGTCGCTGCCAGC-3 ') and reverse primers (5 ' - GGATCCTTAATT­

GGCTGAATAGGCTTCC-3 '). The resulting PCR product was then purified using Qi­

agen Minelute PCR purification kit. In addition, the mOrange2 gene was excised from the 

pmOrange2 vector (Clontech) using a DraIII and BamHI double digestion and inserted 
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into the corresponding sites of pET11a vector. Finally, the double BsrGI and BamHI di­

gestion of CBM15 was purified and inserted into the corresponding site of the pET 11 a­

mOrange2 vector, resulting into the pETlla-mOrange2-CBMI5 expression vector. At 

each step, the constructs were sequenced to ascertain the integrity and fidelity of the prod­

ucts DNA sequence. 

2.3.3 Expression and purification of OC15 probe 

E. coli BL21-Gold(DE3)pLysS cells (Agilent Technologies) bearing the OC 15 ex­

pression plasmid were grown at 37°C and 200 rpm in Luria-Bertani broth containing 100 

J..lglmL of ampicillin. Induction of recombinant protein expression was performed by the 

addition of 500 J..lM IPTG (ThermoFisher Scientific) to mid-log-phase cells (O.D.6OOnm of 

0.6-0.8) and subsequent incubation for 18 hours at 25°C. Cells were then harvested and 

kept at -80°C. Thawed cell pellets were resuspended in 50 mM sodium phosphate pH 8 

containing 300 mM NaCI, 2 mM imidazole, 1 mM PMSF and then lysed by sonication 

using six cycles of 60 sec (Branson Ultrasonics Corporation) at 200 W. Clarification of 

lysate was achieved by centrifugation at 10,000 g for 30 minutes at 4°C. The protein of 

interest was purified by affinity chromatography over a HisPrep FF 16/10 column (GE 

Healthcare Life Sciences) equilibrated in 50 mM sodium phosphate buffer pH 8.0 con­

taining 300 mM NaCI and 10 mM imidazole. After washing with ten column volumes of 

buffer, the desired protein was eluted using a gradient ofimidazole (10 to 250 mM) in 50 

mM sodium phosphate pH 8.0 buffer containing 300 mM NaCl. A final purification step 

was performed using a Superdex 200 HR 16/50 column (GE Healthcare Life Sciences) in 

50 mM Tris-HCl pH 7.5 buffer containing 300 mM NaCI to insure its homogenous purity. 

The purified probe was then dialyzed in a 20 Tris-HCl pH 7.5 buffer containing 20 mM 

NaCI and 5 mM CaCh at 4°C and concentrated using a 10k Macrosep Advance centrifugaI 

device (Pall Corporation). Concentrated protein solutions were stored at -80°C using flash 

freezing. Protein purity (expected mass 44.68 kDa) was verified by SDS-PAGE. The 

amount ofprotein was quantified by the Bradford method [64]. 
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2.3.4 Affinity gel electrophoresis (AGE) 

AGE was used for qualitative assessment ofOC15 (10 Ilg) specificity toward se­

lected ligands. The experiment was performed as described elsewhere [49,65], by adding 

. 0.5 % (w/v) of beechwood xylan (Sigma-Aldrich), carboxymethyl cellulose (CMC) 

(Sigma-Aldrich) and galactomannan (Megazyme) to a native, 12% polyacrylamide gel. 

Bovine serum album in (BSA) (10 llg/weU) was used as negative control since it has no 

affinity towards carbohydrates [49]. 

2.3.5 Isothermal titration calorimetry (ITC) 

ITC was employed to measure the affinity of the OC15 probe towards selected 

hexaoses (Megazyme). CeUohexaose, xylohexaose and mannohexaose were reconstituted 

in a 20 mM Tris-HCl pH 7.5 buffer which contained 20 mM NaCl and 5 mM CaCh. The 

purified OC15 probe was also dialyzed into that same buffer. AU experiments were per­

formed with a Nano ITC microcalorimeter (TA Instruments) operated at 25°C with a stir­

ring rate set of 250 rpm. Pre-equilibrated solutions of probe (200 IlM) and hexaoses (5 

mM) were used for each assay. The control experiments were based on titrations of hex­

aoses into the buffer and buffer into the OC15 probe. Each experiment consisted of 25 

injections of2 ilL hexaose into the probe solution, with an interval of 130 seconds between 

injections. All experiments were performed in triplicates. Data were analyzed and fitted 

using the NanoAnalyze software v2.3.6 (TA Instruments). 

2.3.6 Pulp characterization 

The kraft pulps used for this study were provided by an Eastern Canadian pulp and 

paper company. The kraft pulping was performed using a mixture of softwood and hard­

wood. Two different grades of pulps, unbleached kraft pulp (UBKP) and bleached kraft 

pulp (BKP), were used. The cellulose, hemicellulose, and lignin contents of these pulps 

were analyzed according to NREUTP-5l0-426l8 protocol [35]. The hydrolyzed mono­

saccharides contents of the pulps (10 III injection) were determined by ion chromatog-
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raphy (ICS-5000, Dionex) and detection was performed using an electrochemical detec­

tion cell (combined pH-Ag/AgCl reference electrode). Each experiment was conducted at 

40°C with 1 mL/min isocratic elution ofNaOH (1 mM) on a Dionex CarboPac SAlO (250 

mm x 4 mm) column coupled with a Dionex CarboPac PAIOO (50 mm x 4 mm) guard 

column. Data analysis was performed using Dionex Chromeleon 7 software. 

2.3.7 Handsheets preparation 

UBKP and BKP were used as lignocellulosic substrates for the preparation of 

handsheets and paper discs. Handsheets (basis weight of 60 ± 2 g/m2
) were prepared from 

pulp according to Tappi standard method T 205 sp-02. Prior to testing, the handsheets 

were conditioned for 24 h at room temperature and 50% of relative humidity according to 

Tappi method T 402 sp-03 [66]. These handsheets were then used for the preparation of 

the paper punches. The paper punches are defme as paper discs having diameter of 3 mm. 

2.3.8 Xylanase digestion of unbleached kraft pulp 

Xylanase digestion of UBKP was done according to Li et al. [66]. Briefly, the 

presoaked, disintegrated pulp at 2 % consistency was incubated Ih at pH 6 and room tem­

perature under continuous agitation (150 rpm), with or without xylanase (500 U/g of pulp). 

The reactions were stopped by a 15 minutes incubation on ice. The pulp was then used for 

chemical composition analysis (NRELlTP-5l0-426l8) and handsheets formation. 

2.3.9 X-ray photoelectron spectroscopy (XPS) 

The 300 Watts, monochromatic Al K-a radiation source originating from an 

AXIS-ULTRA apparatus (KRATOS ANALYTICAL) was used to study xylan. The ana­

lyser was set in the constant pass energy mode, the lens set to the hybrid configuration 

(both magnetic and electrostatic lenses), and the electrostatic lens aperture in the slot po­

sition. This configuration provided the highest sensitivity for scanning 700 /lm x 300 /lm 

area. Three different spots were analysed to obtain an average. The pressure of the system 

was set at 10-8 TOIT. Elemental analysis of the surface area was performed by recording 
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survey spectra at 160 eV with energy increment of 1 eV per channel. High resolution 

spectra were recorded at 20 eV with energy increment of 0.05 eV. This setup gave an 

overall instrumental resolution of 0.6 eV as measured on Ag3dsl2. Analyses of the peak 

decompositions were performed using the CasaXPS software. 

2.3.10 Xylan tracklng on the surface of papers uslng the OC15 probe 

All fluorescence readings were acquired at room temperature with a Synergy Mx 

microplate reader (BioTek) using the area scanning feature (3 x 3) with the top detection 

height set at 4.5 mm and the filters bandwidth at 9 mm. The excitation and emission wave­

lengths were set at 549 and 568 nm for the OCl5 probe. Each experiment was done in 

triplicates. Two different grades of kraft pulps, unbleached (UBKP) and bleached (BKP), 

were investigated regarding their xylan content. The following method is a modified, high 

throughput version of the methodology described by Knox [38]. Hence, it was performed 

into 96-well black microtiter plates (Coming), where each well contained a 3-mm diame­

ter paper disc obtained from 60 g/m2 handsheet. The discs were glued to the bottom of 

each well and first incubated for 1 hour at room temperature with agitation in 3% (w/v) 

milk (20 mM Tris-HCl, pH 7.5 with 20 mM NaCI and 5 mM CaCh) to minimize paper 

auto-fluorescence and the non-specific binding of the OC15 probe. Milk excess was then 

removed with 3 x 5 washing steps using the assay buffer. At this stage, the fluorescence 

intensity of the paper discs was measured and referred as to blank fluorescence. The spe­

cific binding of the OC 15 probe to the surface of the paper discs was initiated by adding 

0.5 1lg/1l1 of the OCl5 probe in assay buffer to each weIl. After a Ih incubation at room 

temperature under agitation, the excess and/or non-specifically bound probe were re­

moved by 3 x 5 minutes washes with buffer that also contained 0.05% (v/v) of Tween 20. 

The residual fluorescence intensity associated with the specific detection of xylan was 

then recorded. Quantification of the bound OC 15 probe was achieved by subtracting the 

value of the mean blank fluorescence from the mean residual fluorescence obtained for 

each weIl. These fluorescence values were then converted into llg/mm2 using the appro­

priate standard curves and the surface area of paper discs. 
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2.4 Results and Discussion 

2.4.1 OC15 expression and purification 

A two-domain recombinant probe named OC 15 was designed for specifie tracking 

of variations of xylan on the surface of lignocellulosic material (Figure 2.1). Cellvibrio 

japonicus CBM15 composed the xylan recognition domain (C-terminal) while monomeric 

fluorescent protein Orange2 constituted the probe detection domain (N-terminal). OC15 

was expressed in E. coli BL21-Gold(DE3)pLysS cells which contained the pETl1a­

mOrange2-CBM15 plasrnid (Figure 2.1A and B). The expected molecular weight of 

OC15 is 44.68 kDa. Following affinity and size exclusion chromatography steps, the 

probe purity was verified using SDS-PAGE (Additional file 2.1). Interestingly, the gel 

analysis ofOCl5 revealed two bands: one intense band, corresponding to OCl5 expected 

size (44.68 kDa), and another, less intense band (less than 1 % on the basis of staining 

intensity) of a smaller size. A similar result has been observed for the purified mCherry­

CBMl7 probe designed by Gao et al. [43]. These authors showed that the smaller band 

was the result of an incomplete denaturation of the probe under standard SDS-P AGE con­

ditions. We investigated this possibility and found that increasing the SDS concentration 

in the gel, sample and running buffers decreased the intensity of the smaller band (data 

not shown). Therefore, we concluded that, like the probes of Gao et al. the OCl5 probe is 

incompletely denatured under standard SDS-PAGE conditions. 

2.4.2 Determination of OC15 ligand speclflclty using afflnlty gel electropho­

resis (AGE) 

Affinity gel electrophoresis (AGE) was used to qualitatively evaluate the specific­

ity of the OCl5 probe towards soluble polysaccharides [49]. Interaction between the stud­

ied protein and the gel-embedded polysaccharide is revealed by a reduced mobility com­

pared to the mobility of the protein in absence of saccharide. 
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Figure 2.1 Plasmid map (A), construction scheme and pictorial representation (B) 

of the OelS probe 

mOrange2 C-terminal end is linked to the N-terminal end of CBM15 
(Cellvibrio japonicus). The red rectangle represents N-terminal six histi­
dines tag. The red sphere represents the metal ion in CBM 15. The structural 
model shown was constructed using PDB files 1 GNY and 2H50 (obtained 
for the closely related mOrange fluorescent protein). The sequence linking 
the fluorescent protein to the CBM is composed of a glycine residue. 

BSA, which has no affinity towards carbohydrates, was used as negative control 

[49]. Figure ,2.2 shows that OC15 interacts only with beechwood xylan (Figure 2.2B). 

Similarly to BSA, no binding was detected between OC15 and carboxymethyl cellulose 

(Figure 2.2C) or galactomannan (Figure 2.2D). These results confrrm that the well-known 

specific binding to xylan ofCBM15 is unaltered by its fusion with mOrange2 in the OC15 

probe. However, the affinity of the recognition module of the OC 15 must still be deter­

mined in order to ascertain its ability to sensitively detect xylan on the surface ofpaper. 
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Control Xylan CMC Galactomannan 

Figure 2.2 Affinity gel electrophoresis (AGE) of OC1S probe 

Panel A) Control (no polysaccharide), Panel B) xylan, Panel C) CMC, 
Panel D) galactomannan. In each panel the first weIl contained BSA (10 
~g) and the second well was loaded with OC 15 probe (1 0 ~g). AU soluble 
polysaccharides were used at final concentration of 0.5% (w/v) and a 12% 
polyacrylamide gel was used for affinity analysis. 

2.4.3 Determination of OC15 ligand affinlty using isothermal tltration calo­

rlmetry (ITC) 

The affinity of OC15 toward hexaoses was also investigated by ITC (Table 2.l 

and Additional file 2.2). Analysis of the binding isotherms showed that the recognition 

module of the OC15 probe bound to both cellohexaose and xylohexaose, albeit with dif­

ferent affinity, but not to mannohexaose (Table 2.l). As expected, OC15 interacted 16 

times more strongly with xylohexaose (34 x 103 M-1
) than with cellohexaose (2.1 x 103 
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M- l
). These affinity values are similar to those previously reported for CBMl5 and con­

firm that the binding site of the recognition module of the OCl5 probe is unaltered by the 

fusion with mOrange2 [45]. However, a smalli. 7-fold increase is observed in the affinity 

constant ofOCl5 toward xylohexaose compared to CBMl5 [45]. We attributed this in­

crease to difference in experimental conditions in our study compared to those used pre­

viously. For instance, the sodium and calcium salt added to the binding buffer in our study 

may account for the observed difference. Such ions have also been observed in the crys­

tallographic structure ofCBMl5 [45] , although no biological relevance to their presence 

was given. We hypothesize that su ch a metallic ion may be important for the affmity and 

specificity of OCl5 towards xylohexaose. We also found that OCl5 bound weakly to 

cellohexaose but not to CMC (Figure 2.2C). This result was unexpected, since the con­

centration of gel-embedded cellulose was 2.9 times higher than the Kd for cellohexaose 

(Table 2.1). This suggests that the bulkier carboxymethyl substitutions found in CMC may 

interfere with the affinity of the binding module ofOCl5 for cellulose. On the other hand, 

the presence ofxylose moieties and/or xylan in a cellohexaose sample ofhigh but imper­

fect purity (90%) would also explain su ch an apparent contradiction. 

Table 2.1 Aff'mity of the OC1S probe for various hexaoses as determined by ITC 

Ligand 

Xylohexaose 34 ± 0.2 

Mannohexaose 

Cellohexaose 2.1 ± 0.3 

a Number of ligand binding sites. 

b No binding detected. 

2.938 x 10-5 ± 0.8 0.922 ± 0.1 

4.795 x 1O-4± 0.1 1 ± 0.7 
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2.4.4 Comparing XPS, NRELlTP-51 0-42618 and OC15 methodologies for the 

detection of xylan 

Pulps composed of a mixture of softwood and hardwood from an Eastern Canadian 

paper mill were used as LCB for the formation of handsheets utilized in this study. Hand­

sheets prepared form two grades ofkraft pulp, UBKP and BKP, were investigated to de­

termine differences in biopolymers content and their exposure at fiber surfaces. Kraft 

pulping, and bleaching processes de grade and/or dissolve lignin. The removal of lignin 

through pulping increased access to xylan. In addition, removed xylan may redeposit onto 

the surface of cellulose fibers during pulping [26,50-53]. The standard methods usually 

used for the detection ofxylan are NRELrrp-510-42618 and XPS [35,54-56]. These two 

approaches will be used and compared to our OC15 probe method. 

The chemical composition ofUBKP and BKP was determined by NRELrrp-510-

42618 (Additional file 2.3) [35]. As expected, the pulp bleaching process decreased lignin 

by 2.3-fold without affecting the other biopolymers. Unfortunately, due to the nature of 

this technique, NREI./fP-51 0-42618 can only provide an overall bulk estimation of bi­

opolymers content. It cannot detect small biopolymers changes nor than measure varia­

tions of biopolymers exposition on the surface of fibers . 

In contrast XPS has been extensively used for surface analysis of simple LCBes to 

detect changes in surface coverage by cellulose, lignin and extractives [54-56]. Elemen­

tary identification and bonding state discrimination are advantages associated to XPS 

analysis [37]. The C Is band associated with LCB which is monitored by XPS carries the 

most relevant information on surface polymers. C Is spectrum has been suggested to result 

from the contribution of four different carbon functionalities : Cl (C-C, C-H, C=C), C2 

(C-O or C-O-C), C3 (C=O or O-C-O) and C4 (O-C=O), which account for the chemical 

heterogeneity of paper fibers [54]. In cellulose, each glucose monomer harbors five C2 

carbon atoms and one C3 carbon. Hemicelluloses are heterogeneous in their composition. 

Its monomers typically comprise fewer than five C2 carbon atoms, less than one C4 car­

bon atom and one C3 carbon atom. In contrast, lignin is more complex, having aH four 
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types of carbons with a greater contribution from Cl and C2 atoms [57-59]. In a typical 

fiber XPS analysis, Cl component mainly arises from lignin and extractives, while C2 

signal is primarily associated to cellulose and hemicelluloses. C3 component is not easily 

assigned to a given polymer, as it is related to either carbonyl groups of lignin and extrac­

tives, or to carbon atoms bonded to two oxygen atoms in cellulose and hemicellulose [57-

60]. Cl to C4 peaks were inferred from the deconvolution of the C ls band for UBKP and 

BKP (Additional file 2.4). These deconvolutions were calculated using spectra as shown 

in Additional file 2.5 and 2.6. The bleaching process led to a 2.2-fold decrease in Cl func­

tionality at the surface of the paper. This difference may be attributed to the removal of 

lignin from the surface as a normal consequence of bleaching. The decrease in lignin as­

sociated to Cl functionality is in line with the corresponding decrease in lignin measured 

by NRELrrp-5l0-426l8 (Additional file 2.3). Interestingly, the bleaching process in­

creased the C2 functionality by l .l-fold, suggesting that cellulose and/or hemicellulose 

are slightly more exposed on the surface ofBKP. The exposure of cellulose and hemicel­

luloses also increased C3 carbon detection by 1.2-fold. Due to the low concentration of 

carboxylic groups on the surface of kraft pulp the C4 carbon functionality was minor and 

rather similar for either pulps. Like NREUTP-510-42618, XPS analysis revealed the im­

pact of the bleaching process on lignin. Moreover, XPS analyses suggested that lignin loss 

resulted in the increased exposure of cellulose and hemicellulose on the surface of BKP. 

Unfortunately, the C ls spectra cannot distinguish cellulose from hemicellulose since both 

biopolymers possess similar carbon types. Moreover, XPS is not always reproducible due 

to problems resulting from X-ray contamination and samples degradation [54,61]. 

Using OCl5 we attempted to monitor the difference in xylan on the surface of 

UBKP and BKP papers resulting from the bleaching process. Complex LCB fluoresces 

naturally when excited at the same wavelength as that for fluorescent protein mOrange2 

i.e. 549 nm (data not shown). This auto-fluorescence is mainly attributed to the lignin 

biopolymer found in kraft paper [62]. Thus, in order to minimize paper auto-fluorescence, 

we added a milk blocking step that also acted as a non-specific binding deterrent. Figure 

2.3 describes the quantification ofOC15 bound to the surface ofUBKP and BKP papers. 
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Figure 2.3 Quantification of OelS binding to the surface of UBKP and BKP pa­

pers 

UBKP and BKP paper punches were incubated with OC15 probe (0.5 
flg/flL) for lh at room tempe rature under agitation. Three percent (w/v) 
milk (20 mM Tris-HCl, pH 7.5 with 20 mM NaCl and 5 mM CaCh) was 
used to minimize paper auto-fluorescence and the non-specific binding of 
the OC15 probe. The fluorescence values were converted to OC15 
(flg/mm2) by using a standard curve (additional file 2.9). The inset above 
each histogram columns represents the fluorescence intensity acquired by 
area scanning of the surface of each paper disco 

The bleached paper bound twice the amount of OC 15 compared to the unbleached 

one, indicating that xylan exposure on the surface of kraft paper has increased after bleach­

ing. This increase is fully compatible with the 2.3-fold decrease in lignin observed by 

chernical analysis, which was shielding xylan from surface detection before bleaching. 

This result confirms the loss of lignin that we measured using NREUTP-5l 0-42618 and 
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XPS, demonstrating that our approach can efficiently detect the impact of the bleaching 

process on xylan. Therefore, introducing this xylan tracking approach as a quality control 

measurement would assured1y bolster the effectiveness of the LCB process for selective 

as weil as complete xylan removal. 

2.4.5 Monitoring xylan hydrolysis using NRELITP-510-42618, XPS and the 

OC15 probe 

The effectiveness ofxylan removal by xylanase hydrolysis ofUBKP was investi­

gated using NREUTP-510-426l8, XPS and the OC15 probe. Chemical composition of 

untreated and xylanase-treated UBKP was analyzed (Additional file 2.7). As expected, 

xylanase treatment ofpulp decreased xylose content by 1.7-fold without affecting lignin. 

The extractive content increased from 0.1 to 3.2 after xylanase treatment. This unexpected 

result is a consequence of the NREL lipids extraction methodology which consists into 

weighting the pulp before and after acetone solubilization oflipids [63]. Since the added 

xylanase accounts for 24.3% of the pulp initial weight, its acetone removal from the pulp 

induces an apparent but false increase in lipids extractives. 

We then studied the surface ofuntreated and xylanase-treated UBKP papers using 

XPS (deconvolution results described in Additional file 2.8). Overall, xylanase treatment 

ofUBKP induced rather small variations in the carbon functionalities (Cl to C4). As such, 

the curve fitting component ascribed to Cl atoms slightly decreased (l.l-fold), indicating 

that the lignin biopolymer was marginally affected by xylose removal. Surprisingly, the 

C2 functionality associated to cellulose and hemicellulose was not altered by xylan hy­

drolysis. This result may be attributed to the exposure of cellulose on the fibers surface as 

a consequence of xylan removal by hydrolysis. The exposure of cellulose also increased 

C3 carbon functionality by 1.2-fold. The C4 carbon signal was minor and rather similar 

for either pulps. This study reveals that the impact ofxylan digestion (which was clearly 

detected by NREUTP-5l0-42618 (Additional file 2.7» cannot be monitored unambigu­

ously or directly by XPS. 
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The impact of xylanase on xylan at the surface of UBKP paper dises was investi­

gated using OC15 probe. A decrease in xylan was clearly indicated by the 7.7-fold de­

crease in OC15 binding after xylanase treatment (Figure 2.4). The use of OC15 probe 

confirmed the loss ofxylan suggested by chemical analysis (NRELffP-51O-42618) with 

the distinction that OC15 specifically probes fiber surface. We also studied the binding of 

OC15 to xylanase-treated UBKP paper dises as a function of time and enzyme dosages 

(0.4 U vs 0.1 U). The xylanase digestions were performed on paper dises glued in 96-

wells microtiter plates over an 18 hours incubation period at room temperature. Figure 2.5 

reveals that after one hour a significant removal of surface xylan was detected. Xylan was 

reduced 8.2-fold by 0.1 xylanase units and 17 -fold when 0.4 units were used. The com­

plete removal ofxylan was detected after 18 hours of incubation (0.4 unit dosage). OC15 

binding responded proportionally to enzyme load and allowed monitoring xylanase treat­

ment kinetics. This high throughput method enables the screening for optimal xylanase 

hydrolysis conditions, necessary for removal of xylan from kraft paper. We predict that 

OC15 usefulness is not limited to kraft paper analysis, but should include optimization of 

any biomass process for which surface xylan is determinant. 

2.5 Conclusion 

Monitoring the impact of mechanical, chemical and enzymatic modifications of 

biopolymers found in LCBes is a complex endeavor. The currently available methods for 

chemical composition analysis ofbiopolymers in pulp, su ch as NRELffP-510-42618, are 

able to only quantify bulk xylan but give no information on biopolymers surface exposi­

tion. On the other hand, XPS, while being highly sensitive, cannot unambiguously monitor 

changes in surface xylan since cellulose and hemicellulose share similar C 1 s carbon func­

tionalities. 
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Figure 2.4 Quantification of oe1S binding to the surface of untreated and xy­

lanase treated UBKP papers 

Pulps were incubated with or without the xylanase (500 U/g ofpulp) for 1 
hour (pH 6) at room temperature under continuous agitation (150 rpm). 
Untreated UBKP and xylanase-treated UBKP paper discs were incubated 
with DCI5 probe (0.5 1lg/IlL) for lh at room temperature under agitation. 
Three percent (w/v) milk (20 mM Tris-HCI, pH 7.5with 20 mM NaCI and 
5 mM CaCh) was used to minimize paper auto-fluorescence and the non­
specific binding of the DCl5 probe. The fluorescence values were con­
verted to DCl5 (llg/mm2) by using a standard curve (additional file 2.9). 
The inset above each histogram columns represents the fluorescence inten­
sity acquired by area scanning of the surface of each paper disc. 
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Figure 2.5 Tracking xylanase hydrolysis of UBKP using OC15 probe 

Paper dises were incubated with xylanase (O.4U/paper dise and 0.1 U/paper 
dise) for up to 18 hours (pH 6) at room temperature under continuous agi­
tation (150 rpm). Untreated UBKP and xylanase treated UBKP paper dises 
were incubated with OC15 probe (0.06 ~gI~L) for lh at room temperature 
under agitation. Three percent (w/v) milk (20 mM Tris-HCl, pH 7.5 with 
20 mM NaCI and 5 mM CaCh) was used to minimize paper auto-fluores­
cence and non-specifie binding of the OC15 probe. The fluorescence values 
were converted to OC15 (~glmm2) by using a standard curve (additional 
file 2.9). 

These standard methods are poorly adapted to important problematics associated 

with biofuels and pulp and paper industries. To address those issues, we developed a novel 

xylan detection approach that is sensitive, specifie, reproducible, rapid (hundreds of sam­

pIes analyzed in less than 4 hours), high throughput, cost-effective and that requires min­

imal specialized equipment. This approach involves solely the utilization of a two-domain 

probe, OC 15, which harnesses the specifie xylan recognition power of CBM 15 and the 

high sensitivity of mOrange2 fluorescence emission. 
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Our results demonstrate that OC 15 enables the specific tracking of chemical and 

enzymatic-induced variations of xylan on the surface of kraft pulps. In addition, we 

demonstrated here that our approach can be readily adapted to a high throughput format 

(tests were performed in multiwell plates and analysed with a plate reader). We believe 

that this tracking approach could perform various functions, such as 1) fine-tuning the 

conditions surrounding the mechanical and enzymatic removal of xylan; 2) decreasing 

costs associated with LCB processes; 3) expanding our understanding ofbiofuels and pa­

permaking productions; 4) correlating surface xylan with performances of the relevant 

lignocellulosic products; and 5) improving the productivity oflarge-scale operations. This 

study testifies to the incredible versatility of CBMs as spearheads of innovations which 

can successfully tackle biotechnological challenges. 

List of abbreviations 

AGE: affinity gel electrophoresis; BSA: bovine serum albumin; BKP: bleached kraft pulp; 

CAZy: carbohydrate active enzymes; CBMs: carbohydrate-binding modules; CBM15: 

family 15 carbohydrate-binding module; CMC: carboxymethyl cellulose; GH: glycoside 

hydrolase; IPTG: isopropyl-p-D-thiogalactopyranoside; ITC: isothermal titration calorim­

etry; LB: Luria-Bertani; mAbs: monoclonal antibodies; mOrange2: mono-orange2; 

NREL: national renewable energy laboratory; OC15: mono-orange2 fluorescent protein 

linked to a family 15 carbohydrate-binding module; PCR: polymerase chain reaction; 

SDS-PAGE: sodium dodecyl sulfate - polyacrylamide gel electrophoresis; UBKP: un­

bleached kraft pulp; XPS: x-ray photoelectron spectroscopy. 
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2.7 Additional Files 

kDa M OC15 

75 

50 

37 

Additional fLle 2.1 SDS-PAGE analysis of the OelS probe purified by affinity 

chromatography 

The expected molecular weight of the Del5 fusion prote in is 44.68 
kDa. A 12% polyacrylamide gel was used for SDS-PAGE analysis. 
Well M: Precision plus protein standards (5 ~g) . Well De15: Puri­
tied Del5 probe (10 ~g). 
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Additional fIle 2.2 Isothermal calorimetrie titration of the OelS probe with xylo­

hexaose 

Top panel: Typical ITC experiment carried out by adding 25 injec­
tions of2 J.1L xylohexaose (5 IlM) into the OCl5 probe (200 mM) 
solution, with an interval of 130 seconds between each injection, 
Bottom panel: Heat release per mole of xylohexaose as a function 
of xylohexaose/OCl5 molar ratio, The titration was performed at 
25°C in a 20 mM Tris-HCI pH 7.5 buffer which contained 20 mM 
NaCI and 5 mM CaCh. Injectant: xylohexaose. 
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Additional file 2.3 Chemical composition of UBKP and BKP determined by 

NRELffP-510-42618 

Compound UBKP(%) BKP(%) 

Extractives 0.3 ± 0.01 0.3 ± 0.01 

Lignin 4.4 ± 0.10 1.9 ± 0.05 

Glucose 80.8 ± 0.92 83.6 ± l.97 

Xylose 7.9 ± 0.63 8.5 ± 0.76 

Mannose 6.7 ± 0.67 7.0 ± 0.65 

Galactose 0.0 ± 0.00 0.0 ± 0.00 

Arabinose 0.0 ± 0.00 0.0 ± 0.00 

UBKP: Unbleached kraft pulp; BKP: Bleached kraft pulp 
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Additional fIle 2.4 XPS analysis of UBKP and BKP 

Functionality 

O/C· 

Cl 

C2 

C3 

C4 

Results include O/C ratios and contributions (%) from each carbon 
type (C1-C4) to curve fitting of the C ls peak measured by low- and 
high-resolution XPS. UBK.P: Unbleached kraft pulp. BK.P: 
Bleached kraft pulp. 

UBKP(%) BKP(%) 

0.61 ±O.04 0.64±0.01 

20.l ±O.l 9.l ±0.5 

63 .0 ±1.6 71.6±1.9 

15.8 ±O.l 18.3 ±O.4 

1.1 ±O.3 1.0 ± 0.7 

Spectra were taken from unextracted pulp samples. 
*Low-resolution XPS spectra was used to obtain the oxygen and carbon percentage in 
order to as certain that the O/C ratio does not vary as a function of chemical treatment. The 
bleaching process did not change the overall percentage of oxygen and carbon. 
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Additional me 2.5 Low-resolution XPS spectrum of UBKP surface 

UBKP: unbleached kraft pulp. Unextracted pulp samples were an­
alyzed. 
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12 Resida31 STD = 1.08205 

10 Name Fos. fWH-'I LSb. Ar_ % Area 
Ch 285.00 1.12 GL(3O) 3564 •. 2 23.70 
Ch 286.75 1.(8 GL(3O) 91(8.7 60.53 
Ch 28&20 1. (8 GL(3O) 2143.9 14.24 
Ch 289.41 1.(8 GL(30) 230.3 1.53 

8 Cls 

4 
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2 
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Additional file 2.6 Deconvolution of high-resolution XPS spectrum of UBKP 

UBKP: unbleached kraft pulp. Unextracted pulp samples were an­
alyzed. 
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Additiona} fIle 2.7 Chemical composition of untreated and xylanase-treated 

UBKP determined by NREL/TP-510-42618 

Compound UBKP(%) 
Xylanase-treated 

UBKP(%) 

Extractives 0.1 ± 0.04 3.2 ± 0.02 

Lignin 4.6 ± 0.07 4.6 ± 0.10 

Glucose 81.0 ± 0.54 81.8 ± 0.73 

Xylose 8.1 ± 0.28 4.8 ± 0.25 

Mannose 2.9 ± 0.37 4.0±0.19 

Galactose 0.4± 0.04 0.4 ± 0.04 

Arabinose 0.7 ± 0.01 0.5 ± 0.08 

UBKP: Unbleached kraft pulp 

82 



Additiona} fIle 2.8 XPS analysis of UBKP and xylanase-treated UBKP 

Functionality 

O/C· 

C l 

C2 

C3 

C4 

Results include O/C ratios and contributions (%) from each carbon 
type (CI-C4) to curve fitting of the C Is peak measured by low- and 
high-resolution XPS. UBKP: Unbleached kraft pulp. 

UBKP Xylanase-treated UBKP 

(%) (%) 

0.52 ± 0.01 0.55 ± 0.04 

24.1 ± 0.5 2l.6 ± 0.4 

61 ± 2.3 61 ± 1.4 

13.8 ± 0.1 16.0 ± 0.9 

1.5 ± 0.4 1.7 ± 0.2 

Spectra were taken from unextracted pulp samples. 
*Low-resolution XPS spectra was used to obtain the oxygen and carbon percentage in 
order to ascertain that the O/C ratio do es not vary as a function of chemical treatment. The 
xylanase treatment did not change the overall percentage of oxygen and carbon. 

83 



80000 

70000 

60000 

~ ;;; 
CI 50000 ~ 

oS 
&1 ... 
CI 40000 &1 ... 
E 
CI 
::1 

30000 li: .. ' 

• 20000 .' 

.... 
10000 • .......... 

• 0 
0 10 20 

• 
.... 

• 
o . 

30 40 50 

OC15 (J1&) 

.. ' 

• .. ' 
..... 

y = 960.41x + 1211.7 
RZ= 0.995 

60 70 80 

Additional fIle 2.9 Standard curve for the conversion of fluorescence intensity in­

to Jlg of OelS probes 

The excitation and emission wavelengths were set at 549 and 568 
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3.1 Abstract 

The development of a bio-based economy requires the utilization ofLCB in a cost­

effective way. The economic viability of LCB-based industries is hindered by our imper­

fect understanding ofbiomass structure and suboptimal industrial processes. To achieve 

such goals requires direct and rapid monitoring of lignocellulosic polymers as theyare 

physically, chemically, and/or enzymatically treated. In this study, the recently reported 

fluorescent protein-tagged carbohydrate-binding modules method (FTCM) was used to 

specifically track mechanical, chernical and enzymatic-induced variations of hernicellu­

loses at the surface of different wood fibers . Our results showed that susceptibility to hy­

drolysis in kraft pulp was higher for xylan, while mannan was more vulnerable in me­

chanical pulps. Furthermore, FTCM rapidly and efficiently detected enzymatic inactiva­

tion and the apparent complementarity (additive and/or synergistic effect) between cellu­

lase and other enzymes (xylanase and mannanase), significantly bolstering cellulose and 

hernicelluloses hydrolysis. Subsequent addition ofxylanase and mannanase enzymes di­

rectly proved that xylan was acting as a physical shield which was covering mannan in 

bleached kraft pulp. This study suggests that mannan was closely associated with cellu­

lose or was deeply embedded in the cell wall organization of such fibers . FTCM pro­

vided direct support for previous models on fiber structure that were based on time­

consurning and complicated approaches (i.e. chromatography, spectroscopy and micros­

copy). FTCM allowed for the monitoring of layers of polymers as they were exposed 

after treatments, providing key information regarding hydrolysis optimization and the 

specific susceptibility of xylan and mannan to biomass treatments. We believe that by 

applying this simple and rapid method on site, biomass industries could substantially 

improve cost-effectiveness of production ofbiofuels and other LCB-based products. 

Keywords: Lignocellulosic polymers, Hydrolysis, Carbohydrate-binding module, Fluo­

rescent protein, Cellulase, Xylanase, Mannanase 
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3.2 Introduction 

LeB is the most abundant, renewable and sustainable feedstock allowing our ever­

increasing energy demand to be satiated while fossil fuels progressively disapear.I-5 In 

addition, the greenhouse gas mitigation and near carbon neutrality afforded by the con­

version of biomass to bio energy (biofuel) and chemicals are important advantages over 

conventional fossil fuels.2,6-s The development of a bio-based economy, however promis­

ing, is faced with challenges related to the cost-effective utilization of the LeB. Improving 

biomass processes would increase cost effectiveness and competitiveness for large sc ale 

applications.3,9,IO The main obstacle for biofuel and chemicals production is associated 

with the inherent recalcitrant nature of LCB.3,11-14 Due to the structural complexity of 

LeB, the bioconversion of biomass to biofuel is a multiple stage process. S,15 The enzy­

matic hydrolysis of the lignocellulosic component to fermentable sugars is a crucial step 

in this bioconversion. It is considered as one of the major rate limiting and costly step.16-
21 

The complex recalcitrance nature ofbiomass is partI y attributed to hemicelluloses. 

They constitute about 20-30% of the total biomass, and are the second most common pol­

ysaccharides22-24 in nature, after cellulose. Unlike cellulose, hemicelluloses are heteroge­

neous polymers of pentoses (xylose, arabinose), hexoses (mannose, glucose, galactose) 

and/or uronic acids (glucuronic acid, galacturonic acid).22,25 Hemicelluloses in hardwood 

(from angiosperms) mostly consist ofxylan, whereas softwood (from gymnosperms) typ­

ically contains glucomannans.26 The hemicelluloses have frequently been recognized to 

act as a physical barrier, that coyer the outer surface of cellulose fibers and interfibrillar 

space, limiting the accessibility of cellulase enzymes to cellulose.27-35 The hemicellulose­

degrading activities in most commercially available cellulase enzymes are too low to 

achieve sufficient hydrolysis of the hemicelluloses.36,37 Therefore, addition ofenzyme ex­

tracts or additives with higher level of hemicellulases are important for eliminating the 

significant hindering effect of residual hemicelluloses (mostly xylan and mannan) on the 

enzymatic hydrolysis of cellulose.27,29,35,3S-43 In order to increase the efficiency of wood 

88 



fiber utilization, it is important to utilize aIl wood fiber constituents (including hemicel­

luloses and lignin) in an economically feasible way (providing other valu able wood­

derived materials beside biofuel). However, this requires a better understanding of the 

ultrastructure of the cell wall and its organization, which are not yet fully understood.20 

Different chromatography, spectroscopy and microscopy techniques have been used to 

study lignin-carbohydrate complexes,38 polymers interactions44 and plant cell wall decon­

struction.20 For instance, an FT-IR study of softwood fiber (kraft pulp) dedicated to inves­

tigate the interactions between wood polymers revealed that glucomannan was closely 

associated to cellulose while there existed no mechanical interactions between xylan and 

cellulose.44 CUITent models suggest that hemicelluloses play a major role in biomass re­

calcitrance and are closely associated with both lignin and cellulose, forming lignin-hem­

icellulose complexes and cellulose-hemicellulose complexes.38 These techniques revealed 

important information on hemicellulose's location and their influence on the recalcitrance 

nature of fibers, and enhanced our understanding of the structural arrangement of fibers. 

They are however invasive, time-consuming, complex and are dependent on specialized 

equipment and expertise. 

The inherent recalcitrance nature of plants directly or indirectly impacts enzyme 

accessibility 12.35.38.43 inactivation 45 inhibition40.41 ,46-55 and as a consequence cost of , , , , 

use.9.10.27 The recent improvement in enzymes stabilization, activity, cost-effective­

ness41.43,56-61 and development of new promising pretreatment conditions62-64 improved 

production yields. However, the high dose requirements ofthese enzymes oftenjeopardize 

commercial viability?7.42.4s.65-68 Therefore, investigating biomass recalcitrance of typical 

wood biomass substrates, and correlating process parameters such as enzyme dosage, tem­

perature, incubation time, inactivation and inhibition, with polymers hydrolysis efficiency 

is important. We anticipate that su ch advances wou Id support engineers for increasing 

yields and mitigate production costs associated with LCB based industries. 

One of the major difficulties in studying biomass recalcitrance and process param­

eters is the lack of rapid, high throughput and reliable tools21 for monitoring and/or track­

ing hemicelluloses at the surface ofwood fibers . Over the past decade, several techniques 
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have been developed for direct and rapid detection ofbiomass polymers.69-71 Among these 

techniques, carbohydrate-binding modules (CBMs) are more powerful and advantageous 

as detection probes compared to others (su ch as chemical dyes, monoclonal antibodies 

etc.) due to their high specificity towards lignocellulosic polymers. 70-72 CBMs are the non­

catalytic polysaccharide-recognizing modules of glycoside hydrolases enzymes. 70,71,72-76 

Until now, CBMs have been implemented for various fundamental research on plant cell 

chemistry and their structure,77,78 cellulose accessibility and surface morphology,74,79,80 as 

well as for several indus trial applications.72;81-83 

Considering the importance ofLCB tracking, we have recently established a novel, 

rapid, high-throughput, easy-to-use, unambiguous and affordable approach to track ligno­

cellulosic polymers at the surface of mechanically, chemically and enzymatically treated 

pulps.82,83 This approach is based on the use of four highly specific probes made offluo­

rescent-tagged carbohydrate-binding modules. The CBM part of these genetically modi­

fied probes recognizes and binds to biopolymers (i.e. mannan, xylan, crystalline and non­

crystalline cellulose) while the fluorescent protein part makes it possible to quickly detect 

and measure binding of probes to their intended targets. This approach, called fluorescent­

protein-tagged CBM method (FTCM), proved to be instrumental for our understanding of 

LCB processing, and exhibited both process optimizing and outcome predicting poten­

tiai. 82,83 

Here we investigated the potential of FTCM for bolstering our understanding of 

hemicelluloses hydrolysis and factors that have an impact on such hydrolysis. To this end, 

we used two fluorescent protein-tagged fusion proteins of FTCM: mOrange2-CBM15 

(OC15) and eCFP-CBM27 (CC27). The family 15 CBM (CBM15) is a xylan recognizing 

module ofaxylanase (XynlOC) from Cellvibrio japonicus84 and farnily 27 CBM 

(CBM27) consists of the mannan recognizing module of mannanase (Man5) from Ther­

mOloga maritima.85 Both CBM15 and CBM27 are classified as type B CBMs and have 

been demonstrated to bind specifically to xylooligosaccharides and mannooligosaccha­

rides, respectively.84,85 Mono-orange2 (mOrange2) and cyan fluorescent protein (CFP) 

were used as fluorescent proteins (detector molecules), and can be quantitatively measured 
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with very high sensitivity and specificity, due to their independent fluorescent signals 

(each probe has its specific pair of emission and absorption maxima). For this study, we 

used four different pulp samples (unbleached mechanical pulp, bleached mechanical pulp, 

unbleached kraft pulp and bleached kraft pulp) to investigate and track variations in hem­

icelluloses after various treatments. Our results showed that FTCM can monitor the impact 

of mechanical and chemical treatment on the surface distribution of hemicelluloses, and 

helped understand and optimize enzymatic-induced hydrolysis of lignocellulosic poly­

mers. We anticipate that FTCM can be developed into a monitoring tool for optimization 

of treatments and process strategies leading to a cost-effective hydrolysis of hemicellu­

loses. 

3.3 Materials and methods 

3.3.1 Chemlcals and mlcroblal stralns 

Unless otherwise note d, aIl chemicals were reagent grade and purchased from 

Sigma-Aldrich and/or Fisher Scientific. Escherichia coli XLIO cells (Agilent Technolo­

gies) were used for aIl DNA manipulations while E. coli BL21-Gold(DE3)pLysS compe­

tent cells (Agilent Technologies) were used for recombinant proteins expression. Tricho­

derma viride xylanase (endo-l ,4-~-xylanase) from glycoside hydrolase (GR) family 11 

(E-XYTRI; Megazyme), Cellvibrio japonicus mannanase (endo-l ,4-~-mannanase) from 

glycoside hydrolase (GH) family 26 (E-BMACJ; Megazyme) and Trichoderma reesei 

Celluclast l.5L (C2730; Sigma-Aldrich) were used for the hydrolysis of LCB. Carbox­

ymethyl cellulose sodium salt (C5678; Sigma), xylan from beechwood (X4252; Sigma) 

and galactomannan (P-GALML; Megazyme) were used for affinity gel electrophoresis 

(AGE) and for enzymatic assays using the 3,5-dinitrosalicylic acid (DNS) method. 

3.3.2 Construction, production and purification of CBM recombinant probes 

Probes were produced and purified from recombinant E. coli BL21-

Gold(DE3)pLysS cells as described by Khatri et al. (2016)82 and Hébert-Quellet et al. 

(2017)83 (note that in this study, probe eGFP-CBM3a was named GC3a; probe mOrange2-
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CBM15 was named OC15 and probe eCFP-CBM27 was named CC27, for the sake of 

simplicity). Following affmity and size exclusion chromatography steps, the probes puri­

ties were verified using SDS-PAGE (Additional files 3.1 and 3.8 ). The amount ofprotein 

was quantified using the Bradford method.86 Concentrated protein solutions were stored 

at -80°C following flash freezing. 

3.3.3 Affinity gel electrophoresls (AGE) 

AGE was used as described by Khatri et al. (2016)82 for qualitative assessment of 

the CC27 (10 Ilg) specificity toward selected ligands. 

3.3.4 Isothermal tltration calorimetry (ITC) 

ITC was employed as described by Khatri et al. (2016)82 to measure the affinity of 

the CC27 probe towards selected hexaoses (xylohexaose (O-XHE; Megazyme), man­

nohexaose (O-MHE; Megazyme), cellohexaose (O-CHE; Megazyme» . AlI experiments 

were performed in triplicates. Data were analyzed and fitted using the NanoAnalyze soft­

ware v2.3.6 (TA Instruments). 

3.3.5 Pulp characterlzatlon 

The mechanical and kraft pulps used for this study were provided by an Eastern 

Canadian pulp and paper company. Both mechanical and kraft pulping were performed 

using a mixture of softwood (80-85%) and hardwood (20-15%). Four different grades of 

pulps: unbleached mechanical pulp (UBMP), bleached mechanical pulp (BMP), un­

bleached kraft pulp (UBKP) and bleached kraft pulp (BKP), were used. The cellulose, 

hemicellulose, and lignin contents of these pulps were analyzed in triplicates using 

NREUTP-51 0-42618 protocol87 as described in Khatri et al. (2016) .82 

3.3.6 Handsheets preparation 

UBMP, BMP, UBKP and BKP were used as lignocellulosic substrates for the 

preparation of handsheets and paper dises. Handsheets (basis weight of 60 ± 2 glm2) were 
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prepared from pulps aeeording to the Tappi standard method T 205 sp-02 as deseribed in 

Khatri et al. (2016).82 These handsheets were then used for the preparation of the paper 

punehes. These punehes were defined as paper dises having a diameter of 3 mm. 

3.3.7 Enzymatie digestion of paper dises 

The enzymatie digestions of paper dises were performed in triplieates using 

Trichoderma viride xylanase, Cellvibrio japonicus mannanase and Trichoderma reesei 

Celluclast 1.5L enzyme(s). Celluclast I.5L is a mixture offungal hydrolytie enzymes eon­

taining mostly two eellobiohydrolases, two endoglueanases and various aeeessory en­

zymes sueh as hemieeHulases.27.88 We used the 3,5-dinitrosalieylie aeid (DNS) method97 

to monitor the aeeessory enzymes aetivities (sueh as xylanase and mannanase) in the Cel­

luclast 1.5L (Additional file 3.12). Xylanase and mannanase treatment concentrations 

ranged from 0.1 to 0.4 U/paper dises. Celluclast 1.5L enzyme was used at 0.1 U/paper 

dises. Cocktail CX was prepared by mixing Celluclast 1.5L (0.1 U/paper dise) with 

Trichoderma viride xylanase (0.1 U/paper dise). Cocktail CM was prepared by mixing 

Celluclast 1.5L (0.1 U/paper dise) with Cellvibrio japonicus mannanase (0.1 U/paper 

dise)) and cocktail CXM was prepared by mixing Celluclast 1.5L (0.1 U/paper dise) with 

Trichoderma viride xylanase (0.1 U/paper dise) and Cellvibrio japonicus mannanase (0.1 

U/paper dise). Units used here were as speeified by respective enzyme suppliers. AlI 

experiments were performed with paper dises plaeedlglued at the bottom of 96-well black 

mierotiter plate (Coming). AH reaetions were performed at room temperature or 50°C, in 

sodium phosphate buffer (100 mM), pH 7.0 supplemented with 0.5 mg/mL BSA under 

eontinuous agitation (150 rpm) in order to reduee enzyme adsorption. Unless otherwise 

noted, after eaeh enzymatie digestion, the reaetions were removed, and paper dises were 

washed (3 x 5 minutes) with buffer (20 mM Tris-HCl, pH 7.5 with 20 mM NaCI and 5 

mM CaCh) and later washed (3 x 5 minutes) with 0.05% (v/v) Tween 20. This buffer was 

shown to rem ove most proteins from paper dises in a previous report.83 Following Tween 

20 washing, paper dises were washed again with buffer (without Tween) before analyzing 

the variations in biopolymers levels, or digested again with refreshing enzymes solution 

every hour to reaeh maximum possible hydrolysis when speeified. 
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3.3.8 Lignocellulosic polymers tracking on the surface of paper dises using 

the OC1S, CC27 and GC3a probes 

The FTCM tracking assay was performed as described by Khatri et al. (2016).82 

An fluorescence readings were acquired at room temperature with a Synergy Mx micro­

plate reader (BioTek). These fluorescence values were then converted into J.lglmm2 using 

the appropriate standard curves (Additional files 3.6 , 3.7 and 3.9) and the surface area of 

the paper discs. 

3.4 Results and Discussion 

3.4.1 Determination of the CC27 probe speclficlty using affinity gel electro­

phoresis (AGE) 

In this study, we have used three FTCM probes (GC3a, OC15 and CC27). GC3a 

and OC15 were previously characterized and shown to be specific to their intended tar­

get.82, 83 Affinity gel electrophoresis (AGE) was used to qualitatively evaluate the speci­

ficity of the CC27 probe (mannan specific) towards soluble polysaccharides.89 In AGE, 

interactions between the studied prote in and the gel-embedded polysaccharide are typi­

cally revealed by a reduced mobility compared to the mobility of the protein in absence 

of saccharide. Figure 3.1 shows that CC27 interacts only with galactomannan (Figure 

3.1B). Similar to BSA, no binding was detected between CC27 and beechwood xylan 

(Figure 3.1C) or carboxymethyl cellulose (CMC) (Figure 3.1D). These results confmn 

that the well-known specific binding of CBM27 to mannan is unaltered by its fusion with 

CFP in the CC27 probe. BSA, which has no affinity towards carbohydrates, was used as 

negati ve control. 89 

3.4.2 Determination of CC27 probe affinity using Isothermal tltration calo­

rimetry (ITC) 

The affmity of the recognition module of CC27 was investigated to quantify its 

sensitivity for a representative derivative of mannan. To this end, the affinity of CC27 

toward various hexaoses was investigated by ITC (Table 3.l and Additional file 3.2). 
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Analysis of the binding isotherms showed that the recognition module of CC27 probe 

bound tightly to mannohexaose (Ka = 692.6 X 103 Mol), but not to cel1ohexaose or xylo­

hexaose (Table 3.1). The affinity value is similar to those previously reported for CBM27 

(Ka (x 104 Mol) =136.5 ± 17.68) confirming that the binding site of the recognition module 

of the CC27 probe is unaltered by its fusion with CFP.85 

A B C D 

Control Galactomanoan Xylan CMC 

Figure 3.1 Affmity gel electrophoresis (AGE) of the CC27 probe 

Panel A) control (no polysaccharide), Panel B) galactomannan, Panel C) 
xylan, Panel D) CMC. In each panel the first well contained BSA (10 J.1g) 
and the second well was loaded with the CC27 probe (10 J.1g). AU soluble 
polysaccharides were used at final concentration of 0.5% (w/v) and a 12% 
polyacrylamide gel was used for affinity analysis. 
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Table 3.1 Affinity of the CC27 probe for various hexaoses as determined by ITC 

Ligand 

Xylohexaose NB 

Mannohexaose 692.6 ± 0.5 

Cellohexaose NB 

n: Number of ligand binding sites. 
NB: No binding detected. 
-: binding not detected 

n 

4.413 x 1O-6±0.2 1.1±0.3 

3.4.3 Tracklng hemlcelluloses at the surface of wood blomass 

Pulps composed ofa mixture ofsoftwood (80-85%) and hardwood (20-15%) from 

an Eastern Canadian paper mill were used as LCB samples. Four different types of pulps 

were used in this study, allowing for the comparison of mechanically and chemically 

treated wood biomass: unbleached mechanical pulp (UBMP), bleached mechanical pulp 

(BMP), unbleached kraft pulp (UBKP) and bleached kraft pulp (BKP). These pulps were 

first investigated to determine differences in the hemicelluloses polymer content and their 

exposure at fiber surface. 

Comparison of CC27 with OC 15 binding to pulps (Figure 3.2) revealed that man­

nan exposure is 2.3-fold higher than xylan exposure in both mechanical pulps (UBMP and 

BMP). Only minute differences were observed between exposures ofboth hemicelluloses 

studied here in kraft pulps: mannan exposure was 1. 13-fold higher than xylan exposure in 

UBKP and only 1.08-fold higher in BKP (Figure 3.2). The dominance ofmannan for aIl 

pulps is compatible with the high softwood content of the four different pulps studied 

here.26 Our results also indicate that mannan was the dominant hemicellulose at the surface 

of mechanical pulps in agreement with an earlier study on lignin-hemicellulose com­

plexes.38 Even though the pulp was primarily composed of softwood fibers, kraft pro­

cessing led to the exposure of similar amounts of xylan and mannan on the surface ofboth 

kraft pulps (Figure 3.2, UBKP and BKP). Note that the trends observed in FTCM signaIs, 

which responds to surface polymers, were in accordance with the bulk measurements of 
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simple sugars by chemical composition analysis (NREUfP-5l0-426l8) of these pulps 

(Additional file 3.3 ). 

Bleaching of mechanical pulp resulted in no significant difference between the 

exposure ofxylan and mannan (Figure 3.2). These results can be attributed to the pulping 

methodology involved. Mechanical pulping is a high yield process which tends to retain 

most wood constituents when producing UBMP and during the transformation of UBMP 

to BMP. 90 FTCM indicates that the distribution of hemicelluloses at the surface of me­

chanically treated fibers were comparable to fiber bulk composition (revealed by 

NREUTP-5l0-42618) (Additional file 3.3 ). 
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Figure 3.2 Tracking hemicelluloses on the surface of UBMP, BMP, UBKP and 

BKP papers using OC15 and CC27 probes 

VBMP, BMP, UBKP and BKP paper discs were incubated with the OC 15 
probe (0.5 1lg/IlL) (for xylan detection) and the CC27 probe (0.5 1lg/1lL) 
(for mannan detection) for lh at room temperature under agitation. Three 
percent (w/v) milk (20 mM Tris-HCl, pH 7.5 with 20 mM NaCI and 5 mM 
CaCh) was used to minimize the auto-fluorescence of paper discs and the 
non-specific binding of the OC 15 and CC27 probes. The fluorescence val­
ues were converted to OCl5 (llg/mm2) and CC27 (1lg/mm2) by using the 
standard curves (Additional file 3.6 and 3.7 ). Orange color represents the 
OC15 probe detection and cyan color represents the CC27 probe detection. 
Error bars represent the standard deviation. 
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The goal of kraft pulping process is to degrade and/or dissolve lignin with mini­

mum dissolution or degradation of hemicelluloses.9o UBKP was characterized by the 

smallest exposure of hemicelluloses, a possible consequence of the dissolution or degra­

dation of lignin-hemicelluloses complexes38 during kraft pulping. Bleaching of kraft pulp 

completely changed hemicelluloses exposure. As shown in Figure 3.2, BKP binds 3.6-

fold the amount ofOC15 and 3.5-fold the amount ofCC27 in comparison to UBKP, indi­

cating that the surface exposure of xylan and mannan has increased after the bleaching 

process. Kraft pulping did not remove alliignin (lignin still represents 4.3% according to 

chemical composition analysis, Additional file 3.3 ) in UBKP. Bleaching revealed addi­

tional hemicelluloses at the surface of BKP, resulting from the removal of this residual 

lignin. These "deep" hemicelluloses wou Id become accessible after the full removal of 

lignin. Another explanation for this higher exposure or detection ofhemicelluloses would 

involve mannan and xylan redeposition onto the surface of cellulose fibers during kraft 

processes.91-93 

The strength ofFTCM lies in its ability to detect changes in hemicelluloses expo­

sure at the surface of fibers. While the trends observed were in general compatible with 

overall composition analysis (Additional file 3.3 ), the amplitude of changes at the surface 

could not be predicted by chemical analysis. For instance, mannan dropped by 71 % when 

comparing both mechanical pulps (UBMP and BMP) with UBKP (Figure 3.2). Chemical 

analysis detected a mere decrease of30-34% in mannan for the same comparison. In kraft 

pulps, the impact ofbleaching on hemicelluloses exposure (an increase of 67%) (Figure 

3.2) could not be predicted by chemical composition analysis (showing an increase of only 

13-15%, Additional file 3.3 ). We also confmned that the fluorescent proteins (alone, 

without CBM) did not bind to the biomass surface (data not shown), and we found no 

difference in binding signaIs, regardless ofusing the OC15 and CC27 probes together or 

separately (Additional file 3.4 and 3.5 ). This indicates that the probes did not interfere 

with one another, as expected from the different targets to which they are specific. We 

also confirmed that there were no unspecific interactions between lignin and probes (data 

not shown). 
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We also investigated physical parameters such as roughness and porosity of paper 

discs made from pulps and their impact on probe binding. For the four pulps and aIl probes 

used in this study, we found that porosity had no obvious impact on probe binding (even 

when porosity was varied over a 40-fold range, see additional files 3.10 and 3.11). Probes 

are much smaller than pores or crevices that may be of various sizes or numbers in pulps 

with different porosities. Roughness Was found to vary by about 10% when we compared 

papers made from pulp in our experiments. Increased roughness did result into moderate 

increase of probe binding, but we did not observe any change in comparative binding of 

probes due to roughness (i.e. relative binding of a probe vs. binding of other probes is 

unchanged by roughness, see additional files 3.10 and 3.11). 

3.4.4 Investigation of reactlon parameters by FTCM 

Figures 3.3 and 3.4 show probe binding to various pulps using increasing concen­

trations of enzymes. Our results revealed that the maximal impact of xylanase and man­

nanase enzymes on pulps were detected at the minimalloading used here (0.1 U of en­

zyme/paper disc). AlI the pulps (UBMP, BMP, UBKP and BKP) showed no significant 

loss in the exposure ofxylan and mannan as we increased the concentration from 0.1 U to 

0.4 U/paper disco This suggests that a 0.1 U/paper disc concentration ofboth xylanase and 

mannanase was sufficient for the maximal digestion of available/exposed xylan and man­

nan. The impact of temperature was also studied. AIl the pulps showed maximal hydroly­

sis or decrease in the exposure of xylan and mannan at 50°C. This suggests that both xy­

lanase and mannanase enzymes were comparatively more active at 50°C than at room 

temperature. At room temperature, an ovemight treatment showed relatively higher dec­

rement in the exposure of hemicelluloses than a treatment duration of one hour. In con­

trast, at 50°C, both Ih and overnight treatments led to a maximal and similar decrement 

for both xylanase and mannanase enzymes treatments. FTCM unambiguously reveals that 

using 0.1 U of enzyme/paper disc for Ih at 50°C was sufficient for maximal reduction in 

available/exposed xylan and mannan. Production ofreducing su gars by enzyme hydroly­

sis was also monitored using the DNS method. Conditions chosen for this control experi-
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ment were the ones that led to maximal removal ofxylan (Figure 3.3D). Using same bio­

mass and same treatments, we found that reducing sugar production correlated with the 

decrease in xylan as detected by the probes (see additional file 3.13). 
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Figure 3.3 Tracking xylan for optimizing hydrolysis conditions for xylanase treat­

ments using the OCIS probe 

A) UBMP, B) BMP, C) UBKP and D) BKP paper discs were incubated 
with xylanase (0.1, 0.2 and 0.4 U/paper disc) at four different opted condi­
tions (lh; RT ( ), ovemight; RT ( ), lh; 50°C (~) and ovemight; 50°C ( 
ei:I» under continuous agitation (150 rpm). Following this, untreated and 
treated paper dises were incubated with the OC15 probe (0.5 J.lg/J.lL) for lh 
at room temperature under agitation to detect xylan exposure. Three per­
cent (w/v) milk (20 mM Tris-HCl, pH 7.5 with 20 mM NaCI and 5 mM 
CaCh) was used to minimize the auto-fluorescence of paper dises and the 
non-specific binding of the OC15 probe. Orange color represents the OC15 
probe detection. Error bars represent the standard deviation. 
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Figure 3.4 Tracking mannan for optimizing hydrolysis conditions for mannanase 

treatments using the CC27 probe 

A) UBMP, B) BMP, C) UBKP and D) BKP paper discs were incubated 
with mannanase (0.1 , 0.2 and 0.4 U/paper disc) at four different opted con­
ditions (lh; RT ( ), ovemight; RT (Rg), lh; 50°C (~) and ovemight; 50°C 
(~) under continuous agitation (150 rpm). Following this, untreated and 
treated paper discs were incubated with the CC27 probe (0.5 J.1g/J.1L) for lh 
at room temperature under agitation to detect mannan exposure. Three per­
cent (w/v) milk (20 mM Tris-HCl, pH 7.5 with 20 mM NaCI and 5 mM 
CaCh) was used to minimize the auto-fluorescence of paper discs and the 
non-specific binding of the CC27 probe. Cyan color represents the CC27 
probe detection. Error bars represent the standard deviation. 

The xylanase enzyme appeared to hydrolyze xylan more efficiently in BKP than 

aU the other pulps (Figure 3.3). Xylanase treated BKP paper discs showed a maximum 

decrement of 82% in the exposure of xylan. This may be ascribed to the most efficient 

removal of lignin in BKP compared to aIl other pulps studied here, as described earlier 

(Figure 3.2 and Additional file 3.3 ). In contrast, the mannanase enzyme was more effi-
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cient on both mechanical pulps (UBMP and BMP) (Figure 3.4) due to the very high ex­

posure ofmannan in mechanical pulps as described earlier (Figure 3.2 and Additional file 

3.3). Both UBMP and BMP paper discs showed a maximum decrement ofat least 55% 

in the exposure of mannan after mannanase hydrolysis under our assay conditions. Alt­

hough hemicelluloses were detectable by our probes, these were not completely hydro­

lyzed or reachable by the enzyme used. This suggests a possible hindrance or inactivation 

of enzymes during our assay. 

Mannanase hydrolysis showed that the relative amounts of mannan removed from 

mechanical pulps are higher than the percentage removed from the kraft pulps (Figure 

3.4). This suggests a higher digestibility of lignin-associated mannan (lignin-hemicellu­

loses complexes) in mechanical pulp. The hydrolysis of mannan polymers in kraft pulps 

might be hindered by significant exposure of xylan (mostly associated to cellulose-hemi­

celluloses complexes), in agreement with an earlier study on lignin-hemicellulose com­

plexes.38 

In contrast, xylanase hydrolysis showed that xylan was more susceptible to hy­

drolysis in kraft pulps compared to mannan. In kraft pulps, bleaching increased the expo­

sure of xylan and eventually increased hydrolysis of xylan by a few percentage points. 

This suggests that after removal of lignin and the so-called lignin-hemicelluloses com­

plexes via kraft pulping, xylan is more vulnerable or exposed at the surface of kraft pulps 

fibers than mannan. The xylanase hydrolysis in mechanical pulps seems to be hindered by 

the abundance of mannan, which is the main hemicellulose associated with lignin and/or 

lignin-hemicelluloses complexes, as shown by the lower binding of OC 15 to xylan in both 

mechanical pulps (Figure 3.2). This study revealed that FT CM, a rapid and high through­

put approach, can improve our knowledge and understanding of biomass hydrolysis as 

well as the economic feasibility of LCB based industries. 

3.4.5 Addressing possible Impact of enzyme inactivation 

Above results suggested that neither of the se enzymes were able to completely 

eliminate aH the available hemiceHuloses at the surface of fibers under our conditions. 
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This might be explained, in part, by the inactivation of enzymes by reaction products, 

plant derived inhibitors, adsorption to fibers or denaturation of the enzymes over time. 41 

Recent studies have suggested that enzyme inhibition by their own end products and other 

components, generated during the bioconversion process, can be a key factor which im­

pedes the hydrolysis processes.40,41 ,46-55 To further investigate a potential inactivation sce­

nario, we chose BKP paper discs and treated them using optimum hydrolysis conditions 

(0.1 U of enzyme/paper disc, 50°C). After a one-hour treatment, the enzymatic reactions 

were removed, and the surfaces of the paper discs were tracked with the OC 15 and CC27 

probes, individually, for residual hemicelluloses. The tracking of xylan and mannan 

showed an 80% and 30% decrement, respectively (Figure 3.5) (similar to the results de­

scribed in Figure 3.3D and 3.4D). Prolonging enzymatic reactions longer than one hour 

(and/or ovemight) at 50°C did not promote any further drop in the exposure ofhemÎcellu­

loses. Therefore, we washed paper discs to remove the inactivated enzyme which might 

be inhibiting hydrolysis. To this end, the BKP paper discs, which were already incubated 

with enzymes for an hour, were washed with buffer and Tween (0.05%) before adding 

another load of freshly prepared enzymes. After refreshing enzymes (xylanase or man­

nanase) solution, the reactions were kept again under optimum hydrolysis conditions (0.1 

U of enzyme/paper disc, 50°C) for another hour. Later, the tracking of xylan and mannan 

showed an additional decrement of2.3% and 5.3%, respectively, in the exposure ofhem­

icelluloses (Figure 3.5). Likewise, the enzymatic reactions were washed again before add­

ing fresh enzymes for an additional one-hour reaction period and then measured by probes, 

for up to 24 hours. The results exhibited a graduaI decrement in the binding ofOCI5 and 

CC27 probes. After 24 hours, the maximum decrement in the exposure ofxylan was 92% 

and 50% in the exposure ofmannan. The maximal impact was reached after 12 hours (in 

the case of xylanase hydrolysis) and 5 hours (in the case of mannanase hydrolysis), re­

gardless ofwashing paper discs and adding freshly prepared enzymes (Figure 3.5 ). 
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Figure 3.5 Tracking A) xylan and B) mannan to address the impact of xylanase 

and mannanase inactivation on BKP paper discs using the OCl5 and 

CC27 probes 

A) Paper dises were ineubated with xylanase (0.1 U/paper dise) at 50°C un­
der eontinuous agitation (150 rpm) with refreshing enzyme solution every 
hour up to 24 hours. Following this, untreated and xylanase treated BKP 
paper dises were ineubated with the OCl5 probe (0.5 J-lg/J-lL) for Ih at room 
temperature under agitation. B) Paper dises were ineubated with man­
nanase (O.1U/paper dise) at 50°C under eontinuous agitation (150 rpm) 
with refreshing enzyme solution every hour up to 24 hours. Following this, 
untreated and mannanase treated BKP paper dises were ineubated with the 
CC27 probe (0.5 J-lg/J-lL) for Ih at room temperature under agitation. Or­
ange eolor ( ) and cyan col or ( ) represent the OC 15 and CC27 probes 
deteetion, respeetively. Error bars represent the standard deviation. 

This suggests that the xylanase and mannanase enzymes might have reaehed their 

maximum possible hydrolysis aetivity, or that sueh aetivity had no more deteetable impact 

on the hemieelluloses. Nevertheless, FTCM indieates that there was an inactivation 
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(and/or inhibition) which was somewhat overcome by washing followed by a fresh load 

of enzyme (xylanase or mannanase). FTCM reveals that despite an apparent interruption 

of net hydrolysis, there remains a large amount of mannan at the surface of BKP fibers. 

Such information cannot be provided by chromatographic analysis ofhydrolysis products. 

Chemical analysis, which depends on total hemicellulose content would not be as sensitive 

as FTCM for detecting changes in hemicellulose hydrolysis at surface and for optimizing 

enzymatic processes. Note that measurements ofreducing sugars production by enzymes 

were also performed, allowing to confirm that smaller quantities of sugars were released 

upon renewing enzymes, but that maximal production of sugars was generated in the first 

hour with the first exposure to enzyme (additional files 3.14 and 3.15). 

3.4.6 Investigating the impact of cellulose on the hydrolysis of hemicellu­

loses 

Despite finding out the optimum hydrolysis conditions and achieving additional 

removal of hemicelluloses by spiking enzymes, both xylanase and mannanase enzymes 

were unable to completely eliminate/hydrolyze aIl the available hemicelluloses that could 

be detected by FTCM. To achieve additional hydrolysis of hemicelluloses and simultane­

ously improve our understanding offiber deconstruction, we explored the potential impact 

of cellulase treatments on hemicelluloses availability. The use of enzyme cocktails com­

prised of cellulase and so-called accessory enzymes (xylanase and/or mannanase) has 

been previously studied and found to enhance the cellulose hydrolysis.27,29,35.37-40.42.43 Here 

we reexamined the apparent complementarity between enzymes using FTCM. To this end, 

BKP paper discs were hydrolyzed with commercial cellulase enzyme (Celluclast 1.5L) 

under conditions which were optimal for hemicelluloses hydrolysis (0.1 U/paper disc, 

50°C) for an hour. Celluclast 1.5L possesses sorne contaminant activity ofboth xylanase 

and mannanase (Additional file 3.12). After hydrolysis, an eGFP-CBM3a (named GC3a 

here) probe was used to track the exposure of crystalline cellulose (as described by Hébert 

Ouellet et al. , 2017).83 Results in Figure 3.6A suggest that Celluclast 1.5L treatment re­

duced exposure of crystalline cellulose by 63%. 
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Figure 3.6 Impact of Celluclast 1.5L, xylanase, mannanase and their cocktails hy­

drolysis of BKP on the exposure of (A) crystalline cellulose, (B) xylan 

and (C) mannan polymers 

A) Paper discs were incubated with Celluclast 1.5L (0.1 U/paper disc), 
cocktail CX, cocktail CM and cocktail CXM at 50°C for 1h under continu­
ous agitation (150 rpm). Following this, untreated and treated BKP paper 
discs were incubated with the GC3a probe (0.5 J..lg/J..lL) for 1h at room tem­
perature under agitation. B) Paper discs were incubated with xylanase (0.1 
U/paper disc), cocktail CX, cocktail CM and cocktail CXM at 50°C for 1h 
under continuous agitation (150 rpm). Following this, untreated and treated 
BKP paper discs were incubated with the OC15 probe (0.5 J..lg/J..lL) for Ih 
at room temperature under agitation. C) Paper discs were incubated with 
mannanase (0.1 U/paper disc), cocktail CX, cocktail CM and cocktail CXM 
at 50°C for Ih under continuous agitation (150 rpm). Following this, un­
treated and treated BKP paper discs were incubated with the CC27 probe 
(0.5 J..lg/J..lL) for Ih at room temperature under agitation. Green (. ), orange 
( ) and cyan (_ ) color represent the GC3a, OC 15 and CC27 probes detec­
tion, respectively. Error bars represent the standard deviation. 
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Then, supplementation of Celluclast l.5L with a xylanase accessory enzyme 

(cocktail CX) and a mannanase accessory enzyme (cocktail CM) was investigated. Addi­

tion of hemicellulases led to an additional reduction of exposed cellulose, suggesting that 

they helped the hydrolysis of cellulose by the Celluclast 1.5L enzyme (Figure 3.6A). Fi­

nally, the supplementation ofCelluclast 1.5L with both xylanase and mannanase enzymes 

(cocktail CXM) drastically decreased the cellulose exposure (down by 88%, see Figure 

3.6A). These results confirm that to achieve highest cellulose hydrolysis at surface ofBKP 

fibers , it is vital to supplement cellulase with accessory enzymes such as xylanase and 

mannanase. These results also suggest that not only one type but both types ofhemicellu­

loses (xylan and mannan) restrict cellulose accessibility or cellulase action. 

We then investigated a potential reciprocal additive and/or synergistic action by 

supplementing xylanase and mannanase enzymes with Celluclast l.5L and monitoring 

hemicelluloses removal after treatment. Using the same BKP paper dises treated as ex­

plained above, we found that the xylanase enzyme led to 81 % decrement in the exposure 

ofxylan (Figure 3.6B), which is compatible with the result shown in Figure 3.3D. BKP 

paper dises were also treated with cocktail cx, cocktail CM and cocktail CXM and aliled 

to the nearly complete elimination of xylan at the surface of BKP fibers. Likewise, BKP 

paper dises hydrolyzed with the mannanase enzyme showed 30% decrement in mannan 

exposure (Figure 3.6C). Subsequently, cocktail CX, cocktail CM and cocktail CXM pro­

moted further hydrolysis ofBKP paper, leading to the near complete elimination ofman­

nan from the surface of BKP fibers . These results suggest that cellulose is an important 

barrier limiting access to hemicelluloses in BKP. 

The presence ofboth hemicellulases (xylanase and mannanase) were required with 

Celluclast 1.5L for maximal hydrolysis of crystalline cellulose. In contrast, either one of 

the hemicellulases or both were required with Celluclast 1.5L for maximal hydrolysis of 

xylan and mannan. This suggests that xylan and mannan were providing protection to 

cellulose, but that a portion of cellulose remains protected by other fiber components, or 

that a portion of exposed cellulose remains stable despite enzymatic attack. Such results 
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are compatible with the existence of deeply embedded hemicelluloses, part of a carbohy­

drate-hemicellulose complexes, shielding the cellulose fibers . Note that in BKP, the hem­

icelluloses associated with lignin are expected to be mostly absent. These results suggest 

that FTCM can also be used to design enzyme cocktails preparations for specific applica­

tions. Exposure offibers to enzymes had a drastic impact on aIl polysaccharides at surface. 

The question of "what is left" at surface after su ch important decrease in probe binding is 

legitimate but not necessarily relevant. Note that when preparing paper discs prior to 

FTCM reading, the discs were washed, and any loosen material was removed. Hydrolysis 

ofhigh surface fragments such as microfibrils and their removal prior to FTCM may ex­

plain the important decrease in probe binding observed here. 

3.4.7 Explorlng the Impact of xylan polymers on the hydrolysls of mannan 

The previous section has revealed the proximity of cellulose and "deep" hemi­

celluloses. Here we focused on the impact of xylan on the hydrolysis of mannan in order 

to address structural relationships and their potential impact on hydrolysis yield. To this 

end, BKP paper discs were hydrolyzed with mannanase enzyme as a control reaction. 

Results showed a decrement of at least 30% in the exposure of mannan for aIl the en­

zyme concentrations used (Figure 3.7A, solid cyan color bars). The results were as ex­

pected and fully compatible with Figure 3.4D. 

In another reaction, BKP paper discs were digested with the xylanase enzyme. 

In order to reach the maximum xylan hydrolysis, the reaction was performed as de­

scribed ab ove (section Addressing possible impact of enzyme inactivation) with refresh­

ing enzyme solution every hour up to 12 hours. By refreshing enzyme solution, this 

treatment led to a stronger reduction in xylan exposure (an additional 10-13%) as de­

tected with the OCl5 probe (Figure 3.7B, solid orange color bars) . The results were as 

expected and fully compatible with Figure 3.5A. The same xylanase hydrolyzed paper 

discs were then inspected using the CC27 probe to track mannan exposure. 
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Figure 3.7 Impact of mannanase and xylanase hydrolysis of BKP on the exposure 

of mannan polymers 

A) Untreated and mannanase treated (0.1 , 0.2 and 0.4 U/paper dise, at 50°C 
for lh) BKP paper dises were ineubated with the CC27 probe (0.5 J..lglJ..lL) 
for lh at room temperature under agitation to deteet mannan exposure (. ). 
B) Untreated and xylanase treated BKP paper dises (0.1 , 0.2 and 0.4 U/pa­
per dise, at 50°C with refreshing enzyme solution every hour up to 12 
hours) were ineubated with the OC15 probe (0.5 J..lglJ..lL) for lh at room 
temperature under agitation ( ) for xylan deteetion. The same xylanase hy­
drolyzed BKP paper dises were also ineubated with the CC27 probe (0.5 
J..lglJ..lL) to deteet mannan exposure (~) . C) Previously xylanase treated 
BKP paper dises (as deseribed in panel B) were later treated with man­
nanase enzyme (0.1, 0.2 and 0.4 U/paper dise, at 50°C for lh). Following 
this, untreated and mannanase treated BKP paper dises were ineubated with 
the CC27 probe (0.5 J..lglJ..lL) (~). Data of panel A ( ) has also shown in 
panel C for eomparison. Orange eolor ( ) represents the OC15 probe de­
teetion and eyan eolor ( ) represents the CC27 probe deteetion. Error bars 
represent the standard deviation. 

The results revealed that mannan exposure at the surfaee ofxylanase hydrolyzed 

BKP paper dises inereased by 20% when pulp was treated with a 0.4 xylanase U/paper 
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disc (Figure 3.7B, cyan color bars with upward diagonal stripes). Xylanase hydrolysis 

for lh or overnight, without refreshing enzyme solution (as described above in section 

Investigation of reaction pararneters by FTCM), lead to no significant mannan exposure 

at the surface ofxylanase hydrolyzed BKP paper discs (data not shown). 

In another reaction, the xylanase hydrolyzed BKP paper discs were later washed 

and exposed to the hydrolysis with mannanase enzyme. In this case, mannan exposure 

decreased by 55% (in case of 0.1 mannanase U/paper disc) which is an additional dec­

rement of25% compared to when xylanase was not used as a pretreatment (Figure 3.7C, 

cyan color bars with checker board). This study showed that xylan hydrolysis exposed 

more detectable mannan on the surface ofBKP wood fibers, leading to higher enzymatic 

hydrolysis ofmannan. This suggests that xylan was wrapping or covering mannan in the 

so-called cellulose-hemicellulose complexes. The mannan detected here seems to be 

deeply embedded in the BKP wood fibers . 

Plant cell wall organization directly affects the nature of biomass recalci­

trance.20
,21 Therefore, it is important to understand the organization of hemicelluloses 

and FTCM offers a unique means of addressing this issue. So far, various studies looking 

for the arrangement of the different wood polymers in delignified samples have revealed 

that mannan is closely associated with cellulose and xylan is more associated with con­

densed lignin in the secondary cell wall of the softwood fibers .44
,94 This FTCM study 

provides direct evidence in support of this suggested model. Using FTCM probes, we 

detected two different mannan populations in the wood fibers. The first mannan popu­

lation was associated with lignin-hemicellulose complexes as seen in mechanical pulps. 

This population was dominant at the outer surface of wood fibers. In contrast, during 

kraft pulping, lignin and lignin-hemicellulose complexes get dissolved and/or degraded, 

which exposes deeper hemicelluloses. The second mannan population was found deeper 

in fiber, probably associated to the earlier proposed cellulose-hemicellulose complexes 

in kraft pulps. Overall the results suggest that xylan was acting as a physical shield which 

was covering or wrapping the mannan polymers in BKP fibers . This also indicates that 

the second population of mannan is hidden beneath the surface of xylan polymers, 
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closely associated to cellulose or deeply embedded in the cell wall organization in BKP 

fibers . FTCM analysis fully supports the concept ofa complex network ofhemicelluloses 

around the cellulose fibers as reported by Varnai et al. (20 Il ) 43 but in addition, FTCM 

highlighted the presence of deeply embedded hemicelluloses. Working with bleached 

softwood dissolving pulp, Gübitz et al. (1998)38 proposed that hemicelluloses hydrolysis 

is stronger when cellulase enzymes are used with hemicellulases and proposed two differ­

ent fractions of hemicelluloses: one associated with lignin and another one with cellulose. 

The FTCM results are compatible with the findings ofGübitz et al. (1998)38 which sug­

gested two different rnannan populations. This study also provides a rationale for the 

findings of Kansoh et al. (2004)95 and Clarke et al. (2000)96 which indicated that the use 

of the mannanase enzyme is not very efficient ifxylan is still present in kraft pulps. 

Overall, FTCM has been shown to help understanding cell wall ultra structure 

and its organization by studying the presence ofhemicelluloses in various parts offibers, 

as lignin is progressively removed by kraft pulping and bleaching processes. Although 

most FTCM investigations reported here were compatible with chemical analysis (de­

pendent on overalllbulk composition analysis; NREurP-510-42618), they revealed that 

changes in surface hemicelluloses after various treatments are much more important than 

indicated by chemical analysis. Monitoring surface modifications is much more in­

formative on biomass recalcitrance than performing analysis of fiber bulk composition. 

3.5 Conclusion 

FTCM showed that it can specifically track mechanical, chemical and enzymatic­

induced variations of hemicelluloses on the surface of different wood fibers in a rapid 

and high throughput format. Optimum hydrolysis parameters for both xylanase and man­

nanase enzymes, for all the studied pulps, were 0.1 U of enzyme/paper disc at 50°C for a 

treatrnent duration of 1h. FTCM identified the major factor limiting hydrolysis efficiency 

as enzyme inactivation (by any mechanism). By directly detecting polymers remaining 

after various enzymatic treatrnents, using CBM probes revealed additive and/or synergis­

tic interactions between Celluclast 1.5L, xylanase and mannanase enzymes. The ability of 
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FTCM to directly map layers of cellulose and hemicelluloses fractions as they were at­

tacked by enzymes provided support for an embedded population of mannan, protected 

by xylan, probably associated to cellulose-hemicellulose complexes.38 We believe that 

this method can enhance our understanding oflignocellulosic polymers response to var­

ious treatments, therefore bolstering development of cost-effective processes for pro­

duction of biofuels and other LCB-based products. 

List of abbreviations 

AGE: affinity gel electrophoresis; BSA: bovine serum albumin; BKP: bleached kraft pulp; 

BMP: bleached mechanical pulp; CAZy: carbohydrate active enzymes; CBMs: carbohy­

drate-binding modules; CBM15: farnily 15 carbohydrate-binding module; CMC: carbox­

ymethyl cellulose; CFP: cyan fluorescent protein; DNS: 3,5-dinitrosalicylic acid; GFP: 

green fluorescent protein; GH: glycoside hydrolase; IPTG: isopropyl-P-D-thiogalactopy­

ranoside; ITC: isothermal titration calorimetry; LB: Luria-Bertani; mOrange2: mono-or­

ange2; NREL: national renewable energy laboratory; CC27: cyan fluorescent protein 

linked to a farnily 27 carbohydrate-binding module; GC3a: green fluorescent protein 

linked to a family 3a carbohydrate-binding module; OCI5: mono-orange2 fluorescent 

protein linked to a family 15 carbohydrate-binding module; SDS-PAGE: sodium dodecyl 

sulfate - polyacrylamide gel electrophoresis; UBKP: unbleached kraft pulp; UBMP: un­

bleached mechanical pulp. 
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3.7 Additional Files 

kDa M CC27 

75 

50 

37 

Additional fIle 3.1 SDS-PAGE analysis of the CC27 probe purified by affinity 

chromatography 

The expected molecular weight of the CC2? fusion protein is 48.06 
kDa. A 12% polyacrylamide gel was used for SDS-PAGE analysis. 
Well M: Precision plus protein standards (5 Ilg). Well CC2?: Puri­
fied CC2? probe (10 Ilg). 
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Additional me 3.2 Isothermal calorimetrie titration of the CC27 probe with man­

nohexaose 

Top panel: Typical ITC experiment carried out by adding 25 injec­
tions of 2 J..lL mannohexaose (5000 J..lM) into the CC27 probe (200 
J..lM) solution, with an interval of 130 seconds between each injec­
tion. Bottom panel: Heat release per mole of mannohexaose as a 
function ofmannohexaose/OC15 molar ratio. The titratioil was per­
formed at 25°C in a 20 mM Tris-HCl pH 7.5 buffer which contained 
20 mM NaCI and 5 mM CaCb. Injectant: mannohexaose. 
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Additional me 3.3 Chemical composition analysis of UBMP, BMP, UBKP and 

BKP determined by NRELffP-510-42618 

Compound 
UBMP BMP UBKP BKP 

(%) (%) (%) (%) 

Extractives 2.79 ± 0.01 2.54 ± 0.01 0.23 ± 0.01 0.27 ± 0.01 

Lignin 29.03 ± 0.12 28.90± 0.20 4.30 ± 0.08 0.96 ± 0.05 

Glucose 42.18 ± 1.01 43.53 ± 1.97 76.78 ± 1.15 79.47 ± 1.28 

Xylose 5.25 ± 0.63 5.50 ± 0.76 5.57 ± 0.51 6.43 ± 0.59 

Mannose 9.37 ± 0.57 9.95 ± 0.65 6.54 ± 0.47 7.74 ± 0.55 

Galactose 1.57 ± 0.01 1.68 ± 0.01 0.24 ± 0.01 0.26 ± 0.01 

Arabinose 0.97 ± 0.01 1.03 ± 0.01 0.46 ± 0.01 0.50 ± 0.01 
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Additional me 3.4 Tracking xylan on the surface of BKP paper discs using OCtS 

and cocktail of OCtS + CC27 probes 

BKP paper discs were incubated with the OC15 (0.5 1lg/IlL) and the 
cocktail ofDC15 (0.5 1lg/IlL) + CC27 (0.5 1lg/IlL) probes for lh at 
room temperature under agitation. The fluorescence readings were 
acquired for the DC15 probe and converted to DC15 (llg/mm2) by 
using standard curve (Additional file 3.6). Orange color represents 
the OC 15 probe detection. 
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Additional file 3.5 Tracking mannan on the surface of BKP paper discs using 

CC27 and cocktail of CC27 + OC15 probes 

BKP paper discs were incubated with the CC27 (0.5 J,lg/J,lL) and the 
cocktail ofCC27 (0.5 J,lg/J,lL) + OCl5 (0.5 ~g/~L) probes for lh at 
room temperature under agitation. The fluorescence readings were 
acquired for the CC27 probe and converted to CC27 (~g!mm2) by 
using standard curve (Additional file 3.7 ). Cyan color represents 
the CC27 probe detection. 
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Additional file 3.6 Standard curve for the conversion of fluorescence intensity into 

J.lg of OelS probe 

The excitation and emission wavelengths were set at 549 and 568 
om, respectively. 
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Additional me 3.7 Standard curve for the conversion of fluorescence intensity into 

J.lg of CC27 probe 

The excitation and emission wavelengths were set at 434 and 477 
nm, respectively. 
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Additiona} fIle 3.8 SDS-PAGE analysis of the GC3a probe purified by affinity 

chromatography 

The expected molecular weight of the GC3a fusion protein is 46.26 
kDa. A 12% polyacrylamide gel was used for SDS-PAGE analysis. 
Well M: Precision plus protein standards (5 Ilg) . Well GC3a: Puri­
fied GC3a probe (10 Ilg) . 

126 



è 
;;; 
= QI -oS 
QI 
Col = QI 
Col 
<Il 

f 
0 
:1 
~ 

45000 

40000 

35000 

30000 

25000 

20000 

15000 

10000 

5000 
...... 

......... ....... 
..... ...... ..... 

y = 463.7lx + 1286 
Rl=0.9959 

...... ..... ........ 
........ 

...... ...... . ;~". ...... ...... 

...... . ... ... ...... 
...... 

...... ,... ......... 
...... 

...... ~ 

...... ...... ...... 

...... ..... ...... , . ' ..... ..... 

o +-----~----~----~----._----._----_r----~----_, 
o 10 20 30 40 

GC3a (J1g) 

50 60 70 80 

Additional fIle 3.9 Standard curve for the conversion of fluorescence intensity into 

Jlg of GC3a probe 

The excitation and emission wavelengths were set at 488 and 510 
nm, respectively. 
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Additional me 3.10 Porosity and roughness analysis of UBMP, BMP, UBKP and 

BKP handsheets 

Pulp Grade 

UBMP 

BMP 

UBKP 

BKP 

(both smooth and rough-side) determined by Tappi standard meth­
ods T 460 om-02 (forporositymeasurements) and T 538 om-16 (for 
roughness measurements) 

Porosity (mL/minute) Roughness (Ilm) 

Smooth-Side Rough-Side Smooth-Side Rough-Side 

211.03 ± 1.7 217.07 ± 1.3 6.29 ± 0.1 8.80 ± 0.07 

208.03 ± 1.2 210.63 ± 1.1 6.19 ± 0.09 9.24 ± 0.6 

8544.67 ± 5.7 8133 .00 ± 4.1 6.47 ± 0.3 9.09 ± 0.1 

6250.33 ± 3.2 6192.33 ± 4.5 5.53 ± 0.3 8.39 ± 0.4 
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Additional me 3.11 Tracking hemiceUuloses on the rough and smooth surface of 

UBMP, BMP, UBKP and BKP papers using GC3a, OClS and 

CC27 probes 

VBMP, BMP, VBKP and BKP paper discs were incubated with the 
GC3a probe (0.5 J.lg/J.lL) (for crystalline cellulose detection) (A), 
OC15 probe (0.5 J.lg/J.lL) (for xylan detection) (B) and the CC27 
probe (0.5 J.lg/J.lL) (for mannan detection) for lh at room tempera­
ture under agitation (C). Three percent (w/v) milk (20 mM Tris­
HCI, pH 7.5 with 20 mM NaCI and 5 mM CaCh) was used to min­
imize the auto-fluorescence of paper dises and the non-specifie 
binding of the GC3a, OC15 and CC27 probes. The fluorescence 
values were converted to GC3a (J.lg/mm2

), OC 15 (J.lg/mm2
) and 

CC27 (J.lg/mm2
) by using the standard curves (Additional files 3.6 

, 3.7 and 3.9). Green color represents the GC3a probe detection, 
orange color represents the OC 15 probe detection and cyan color 
represents the CC27 probe detection. Error bars represent the stand­
ard deviation. 
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Additional file 3.12 Specifie aetivities of Celluclast 1.5L on model substrates 

Specifie activities 

(lU/mg) 

CMCase 

Xylanase 

Mannanase 

Celluclast 1.5L 

24.70 

18.95 

3.94 

130 



0.87 

0.77 

i = 0.67 = 
~ 
GI 

~ 0.57 
~ 

,Q .. 
o 
III 

,Q < 0.47 

0.37 

...... 1h, RT ..... overnight, RT .-.-1h, 50 degree C ~ovemight, 50 degree C 

0.27 IF----~----,----__r---__r---_r---__, 
o 20 40 60 

Time (minutes) 

80 100 120 

Additional fIle 3.13 Sugar release analysis of BKP paper dises hydrolyzed with xy­

lanase (0.1 U/paper dise) at four different opted conditions (lh; 

RT, overnight; RT, 1h; 50°C and over-night; 50°C) 

*This figure supports the FTCM analysis of BKP paper dises hy­
drolyzed with xylanase (O.l V/paper dise) in Figure 3.3D ofmanu­
script. 
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*This figure supports the FTCM analysis of BKP paper dises hy­
drolyzed with xylanase (0.1 U/paper dise) in Figure 3.5A ofmanu­
script. 
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solution every hour up to 24 hours. The results are reported for 

1 &th, 5thh, 12thh and 24thh sugar release 

*This figure supports the FTCM analysis of BKP paper dises hy­
drolyzed with mannanase (0.1 U/paper dise) in Figure 3.5B ofman­
useript. 
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4.1 Abstract 

Wood fiber is a source of raw materials for established wood-based industries and 

for the nascent biofuel sector. Efficient processing of wood fiber polymers such as cellu­

lose and hemicellulose requires close monitoring with methods such as FTIR, XPS or 

chemical analysis. Such methods are time-consuming and require the availability of spe­

cialized equipment and expertise. Recently, the carbohydrate recognition domains of gly­

cohydrolases, known as carbohydrate-binding modules, were used for studying the devel­

opment and the biochemistry of plant cell walls. In this study, we engineered a series of 

color-coded fluorescent carbohydrate-binding modules with specificities for four major 

carbohydrate fiber polymers. This approach allowed for quick, high-throughput analysis 

of fiber surface carbohydrates signatures and is herein used for monitoring and predicting 

the impact of various treatments on the strength properties of paper produced from such 

processed fibers. We believe that the simplicity ofthis environmental-friendly approach 

could change the way industry optimizes wood fibers processing and de construction. 

4.2 Introduction 

Wood fiber is a major source ofraw, renewable material for both the paper and 

biofuel industries. However, its complex organization involves a network of tightly or­

dered cellulose chains intertwined with other biopolymers, making it recalcitrant to mod­

ifications.' Accordingly, LeB conversion into paper and/or its deconstruction for biofuel 

production are costly, energy avid processes.2-4 Key advances in biochemistry have the 

potential to change this situation. One promising way of dealing with plant biomass recal­

citrance involves the manipulation of plant genes that are associated with cell wall archi­

tecture, leading to easier access to cellulose. S In wood-degrading fungi , su ch recalcitrance 

is dealt with by an array of enzymes, which are sometimes associated in cellulosomes.6 

Such organised enzymatic machinery is highly informative when considering how we can 

make biofuel from wood materials more efficiently.7 
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Currently, our ability to track the effect of any industrial processing, including 

enzymatic processing, is limited as most methods are not suitable for quantifying changes 

in individuallignocellulosic biopolymers. Such methods include the following: composi­

tional analysis (FTIR, XPS and NREL), surface imaging (SEM, TEM and AFM), index 

of crystallinity (XRD and NMR) and measurements of the degree of polymerization. They 

are low-throughput, time-consuming and require access to specialized equipment and ex­

pertise.80lO Among these methods, XPS can be used to monitor lignin and the combination 

celluloses (crystalline and non-crystalline) and hemicellulose at the surface of fibers but 

without any distinction between these polymers. AIso, it is sensitive to X-ray contamina­

tion and sample degradation which may prevent XPS analysis reproductibility. 11,l2 Cur­

rently, there is no available method which rapidly provide specific information on each 

major class ofpolymers at the surface offibers. Unfortunately, this greatly impairs mon­

itoring fiber surface composition, which essentially limits technological developments 

and govems the economic viability of several LCBes processes (biofuels production) 

and/or of its end products (papers manufacturing). The development of a diagnostic ap­

proach, which would afford rapid, easy and, if possible, on-site monitoring of fiber struc­

ture and composition, would change the way biomass industries achieve optimization of 

their processes. To this end, carbohydrate-binding modules (CBMs) have tremendous po­

tential. CBMs are defined as small, non-catalytic proteins (which are often attached to 

glycoside hydrolases via a linker) whose function is to act as substrate-recognition devices 

thereby enhancing the catalytic efficiency of these enzymes. 13
014 They have been success­

fullyemployed for the characterization of fiber surfaces composed of simple and complex 

carbohydrates.15017 Specific advances were achieved using CBMs as fusion with a fluores­

cence protein such as the green fluorescent prote in (or any of its variants). 18 CBMs cou­

pIed with fluorescence protein have been used for mapping the chemistry and structure of 

various carbohydrate-containing substrates (LCB). 15,19 Gao et al. using fluorescent CBM3 

and CBMI7, successfully quantified the change of accessibilities to crystalline and amor­

phous celluloses during enzymatic hydrolysis.20 Recently, using fluorescent CBMI5, we 

developed a rapid assay that specifically track surface variations ofxylan which enable a 

better understanding and facilitate the optimization of the LCBes processes.21 
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In this study, we exploited the specificity ofCBMs CBM3, CBM15, CBM17 and 

CBM27 and constructed four fluorescent CBM probes (Figure 1.18), each of which tracks 

a particular lignocellulosic carbohydrate polymer, i.e. mannan, xylan, non-crystalline and 

crystalline cellulose. Mixing the probes with wood fiber and measuring fluorescence (after 

removing CBMs that are not specifically bound) allows for quick monitoring of the dis­

tribution of the targeted polymers on the fiber, as depicted in Figure 1.19. Here we demon­

strate that these probes can monitor processing impact, and help fine-tune wood fiber re­

fining and deconstruction. Applying this approach in an industrial setting willlead to im­

proving the cost efficiency and energy efficiency of fiber treatments. 

4.3 Materials and methods 

4.3.1 Reagents and pulps 

Unless otherwise noted, aIl reagents were supplied by Sigma-Aldrich. Softwood 

(resinous) paper sheets were used here to quantify the variations of the carbohydrates­

recognition probes on their surface. These paper sheets were derived from two different 

kraft pulps, albeit HYKP (Jack pine) and KP (Black spruce). Cellvibrio japonicus man­

nanase (Endo-1, 4-p-Mannanase) purchased from Megazyme was utilized to digest pulp 

and paper discs. 

4.3.2 Pulps Characterizatlon 

Quantification of the pulps cellulose, hemicellulose, lignin as well as monosaccha­

rides contents were determined using NREUfP-510-42618 methodologies.21
,2S Determi­

nation of the surface exposed polymers of the papers was achieved using X-ray photoe­

lectron spectroscopy.ll ,21,29-30 

4.3.3 Pulps reflnlng and paper sheets formation 

A PFI laboratory refiner was used to reproduce the industrial refming process.34 

Refining ofpulps (from 0 to 3000 revolutions) was performed according to the standard 
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Tappi method T248 sp-OO. Afterward, paper sheets of 60 ± 2 g m-2 in density were pre­

pared as per the Tappi T205 sp-02 methodology. 

4.3.4 Enzymatlc digestions of pulps and paper dises 

The enzymatic digestions of pulp and paper dises were performed in duplicates 

using Cellvibrio japonicus mannanase enzyme. AlI reactions were performed over a 1h 

period at room temperature with agitation in 0.1 M phosphate buffer pH 7 supplemented 

with 0.5 mg/ml BSA. Mannanase concentrations ranged from 250 to 50 000 U/g substrate 

for paper dises (3 mm) digestions while pulp trials were done at 250 U /g substrate. 

4.3.5 Flber quallty analysls and paper physlcal properties determination 

The impact of the mechanical and mannanase treatments of pulps on fiber proper­

ties was determined using a HiRes LDA02-090 Fibre Quality Analyzer (Opte st Equipment 

Inc.). Paper sheets physical strength properties such as tear, burst, tensile and internaI bond 

strength were determÏned according to Tappi standard methods T414 om-98, T403 om-

02, T494 om-Ol and T569 pm-OO, respectively. 

4.3.6 Construction of the recombinant probe expression systems 

AlI carbohydrate-recognition probes genes were inserted into pET11a expression 

vectors. CBM 3a (Clostridium thermocellum CipA, NZYTech), CBM15 (Cellvibrio ja­

ponicas, Z48928), CBM17 (Clostridium cellulovorans, U37056) and CBM27 (Thermo­

toga maritima, NC 000853) genes were synthetized by GenScript. The fluorescent protein 

genes (eGFP, mOrange2, mCherry and eCFP) were cloned into the DraIII and BamHI 

sites while the CBM genes were introduced into the BsrGI and BamHI sites. AlI encoding 

genes were sequenced to ascertain the integrity and fidelity of the probes. The resulting 

probes eGFP-CBM3a, mOrange2-CBM15, mCherry-CBM17 and eCFP-CBM27 (Figure 

1.18) were used to detect crystalline cellulose, xylan, non-crystalline cellulose and man­

nan, respectively. 
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4.3.7 Expression and purification of recombinant probes 

E. coli BL21 (DE3) Gold pLysS ceUs (AgilentTechnologies) bearing the selected 

pET11a expression plasmids were grown at 37 oC in Luria-Bertani broth. Induction of 

recombinant protein expression was performed by the addition of 0.5 M IPTG (Ther­

moFisher Scientific) to mid-log-phase ceUs (O.D.6OOnm of 0.6-0.8) and their subsequent 

incubation for 18 hours at 25 oC. Ce Us were afterward harvested and kept at -80 oC. 

Thawed ceU pellets were resuspended in 50 mM sodium phosphate pH 8 containing 300 

mM NaCI, 2 mM imidazole, 1 mM PMSF and then lysed using six cycles (60 sec) of 

sonication (Branson Ultrasonics Corporation) at 200 W. Clarification of the lysate was 

achieved by centrifugation at 10 000 g for 30 minutes at 4 oc. The protein of interest was 

then purified by affinity chromatography over a HisPrep FF 16/10 colurnn (GE Healthcare 

Life Sciences) equilibrated in 50 mM sodium phosphate pH 8.0 buffer containing 300 mM 

NaCI and 10 mM imidazole. Following washes with ten colurnn volumes ofbuffer, the 

desired protein was eluted using a gradient (ten colurnn volumes) of imidazole (lOto 100 

mM) in 50 mM sodium phosphate pH 8.0 buffer containing 300 mM NaCl. A final puri­

fication step was performed using a Superdex 200 HR 16/50 colurnn (GE Healthcare Life 

Sciences) and 50 mM Tris-HCl pH 7.5 buffer containing 300 mM NaCI to insure purity. 

The purified probes were then dialyzed against a 20 Tris-HCl pH 7.5 buffer containing 20 

mM NaCI and 5 mM CaChat 4 oC and concentrated using a 10k Macrosep Advance cen­

trifugaI device (paU Corporation). Concentrated protein solutions were stored at -80 oC 

after flash freezing. Protein purity was verified by SDS-PAGE. The amount of protein 

was quantified by the Bradford method. 

4.3.8 Quantification ofthe variations ofthe carbohydrates signatures on the 

surface of fiber dises 

AU fluorescence readings were acquired at room temperature on a Synergy Mx 

microplate reader using the 3 x 3 area scanning feature with the top detection height set at 

4.5 mm and the filter bandwidth at 9 mn. The excitation and emission wavelengths were 

set at 488 and 510 nm for eGFP-CBM3a, 587 and 610 nm for mCherry-CBM17, 549 and 
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568 nm for mOrange2-CBM15 and 434 and 477 nm for eCFP-CBM27. Fluorescence 

measurements were recorded after each step of the as say. Each experiment was done in 

triplicates. Preparation of the microplate was carried out by gluing 3 mm diameter paper 

discs on the bottom of 96-wells, black microplate (Costar, Coming Life Sciences) using a 

transparent nail polish. The carbohydrates quantification assay started by incubating the 

paper discs lh, at room temperature with agitation in a 20 Tris-HCl pH 7.5 buffer contain­

ing 20 mM NaCI, 5 mM CaCh and 3% milk (binding buffer). Unbound milk constituents 

were removed by washing three times with the 20 Tris-HCl pH 7.5 buffer containing 20 

mM NaCl, 5 mM CaCh (washing buffer). Afterward, the blocked paper discs were incu­

bated with agitation for lh, at room temperature into the binding buffer containing 0.5 

J.1g/J.11 of the appropriate probe. Non-specifically bound probe was removed with three 

buffer washes (washing buffer) followed by three 0.05 % Tween 20 washes. Treatment of 

the resulting data involved subtraction of the mean blocked fluorescence values from the 

mean residual ones. Then these corrected mean residual fluorescence values were con­

verted into J.1g and J.1g/mm2 using the appropriate standard curves and weight of cellulose 

in each fiber discs. 

4.3.9 Determination of the probes affinlty for Avlcel and fiber dises 

Solid state depletion assays43 were used to measure the affinity of aIl probes using 

heterogeneous substrates such as Whatman, HYKP and KP fiber discs, and substrate A v­

icel PHI05 (crystalline cellulose) for eGFP-CBM3a probe. Determination of the affinity 

of eGFP-CBM3a regarding Avicel was performed under the following procedure. The 

assay started with a lh incubation at room temperature of 10 mg of the presoaked Avicel 

with increasing concentrations of eGFP-CBM3a in a 20 Tris-HCl pH 7.5 buffer containing 

20 mM NaCI, 5 mM CaCh and 3 % milk. Following equilibration, the solid phase was 

separated from the liquid phase by centrifugation at 20 000 g for 5 min. Fluorescence 

measurements of the supematant (containing free prote in (Pfree» were acquired using a 

Synergy Mx microplate reader (BioTek) with the end point feature active and the filters 

bandwidth set at 9 mm. The excitation and emission wavelengths for eGFP-CBM3a were 

set at 488 and 510 nm, respectively. Protein concentrations were determined using the 
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appropriate standard curves. All binding isotherms were calculated using the OriginLab 

software and fitted to a one binding site equation follows: 

where (Ka) represent binding affinity and (No) represent the capacity of CBM probe (Ad­

ditional files 4.1 and 4.3). 

The determination of the probes affinity for fibers discs was achieved using the 

acquisition settings as described in the previous paragraph for the quantification. Fluores­

cence measurements were again recorded after each step of the assay. Briefly, the glued 

fiber discs were incubated for lh at room temperature with agitation in the binding buffer. 

Unbound milk constituents were removed by washing three times with the washing buffer. 

Afterward, the blocked paper discs were incubated lh at room temperature with binding 

buffer which contained increasing concentrations of the appropriate probe. Non-specifi­

cally bound probe was then removed with three washing steps. Treatment of the resulting 

data involved subtraction of the mean blocked fluorescence values from the mean residual 

ones. These corrected mean residual fluorescence values were converted into Ilg and Ilg/g 

of substrate using the appropriate standard curves and weight of cellulose in each paper 

disco AlI binding isotherms fitted to a one binding site equation. 

4.4 Resulls and Discussion 

Wood pulping is a well-known treatment that promotes exposure of carbohydrate 

polymers such as cellulose and hemicellulose.22-24 Depending on the treatment, changes 

in polymers are expected. For example, the lignin covering kraft pulp fibers is substan­

tially lower than for high yield kraft pulp (RYK) fiber. Typically, total chemical analyses 

(NREUTP-5l0-426l8) are used to determine the chemical composition of pUlpS.25 As 

expected, these analyses revealed that RYK has a higher lignin content (1.4-fold) than 

kraft pulp (Additional file 4.4). Unfortunately, this approach can only provide an overall 

bulk estimation of polymers content. It cannot detect nor than measure variations of pol-
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ymers specifically located at the surface offibers. Another classical method for fiber anal­

ysis is X-ray photoelectron spectroscopy (XPS). XPS analysis consists in acquiring and 

deconvoluting the C 1 s band of high-resolution spectra in order to expose the Cl to C4 

peaks (Additional files 4.2 and 4.5). The Cl component of the C ls band mainly arises 

from lignin and extractives, while C2 is primarily associated to cellulose and hemicellu­

loses . The C3 component is not easily assigned to a given polymer, as it is related to either 

carbonyl groups of lignin and extractives, or to carbon atoms bonded to two oxygen atoms 

in cellulose and hemicellulose.26
-
28 Consequently, XPS has been used extensively for sur­

face analysis of simple LCBes for detection of changes in surface coverage by cellulose, 

lignin, and extractives. 11 ,29-30 When comparing HYK paper to kraft paper, we found a 1.4-

fold increase in Cl spectral component intensity at HYK surface (Additional file 4.5). 

Again, this result suggests that HYK has a higher lignin content. The C2 functionality in 

HYK paper is 1.1-fold lower than for kraft paper, suggesting that cellulose and/or hemi­

cellulose are slightly less present on its surface. The values of the C3 and C4 functionali­

ties were relatively low and similar for either paper. XPS analysis did reveal the impact 

of the different pulping processes on the exposure of major polymer classes. Unfortu­

nately, the C ls spectra cannot distinguish cellulose (he it non-crystalline or crystalline) 

from hemicellulose since these polymers (or polymer forms) possess similar carbon types. 

Using CBM-probes, we endeavored to avoid such limitations associated with 

chemical and XPS analyses. We attempted to monitor the difference in the exposure of 

carbohydrate polymers on the surface of fibers from the same pulps as described above 

(HYK and kraft). The binding of CBM probes to fiber discs made of two pulp grades is 

shown in Figure 4.1. The calibrated fluorescence signaIs indicate that the most abundant 

carbohydrate pol ymer at the surface of the fiber discs was crystalline cellulose, followed 

by non-crystalline cellulose, and then by hemicelluloses. This distribution of individual 

fiber polymers is compatible with the measured chemical compositions of these pulps 

(Additional file 4.4). 
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Figure 4.1 CBM binding to the surface of unrefined kraft and high yield kraft 

(HYK) fiber dises 

The probes attached to crystalline and non-crystalline celluloses are shown 
in green and cherry, while hemicelluloses xylan and mannan probes are 
shown in orange and cyan, respectively. 

The access of CBM-probes to surface carbohydrates appears to be hindered in 

high-yield kraft pulp (HYK). This pulp contains lA fold the amount of fiber-coating lignin 

found in the other kraft pulp (Additional file 4A). Clearly, the probes allow to quickly 

distinguish between two pulping grades. In addition, the analysis of fiber surface with 

CBM probes indicates that mannan, and not xylan, is the primary hemicellulose carbohy­

drates detected in kraft pulp, confinning that both fiber discs were manufactured princi­

pally from softwood. These results suggest that introducing this tracking approach as a 

quality control measurement would bolster the effectiveness of the LCB processes. 

Mechanical refining is essential for modifying the characteristics ofwood fibers.21
•
31 

One important consequence of refming is the external fibrillation of the wood fiber S2 

layer which promotes the fonnation of hydrogen bonds between fibers. On the molecular 
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level, refining translates into the partial conversion of crystalline into non-crystalline cel­

lulose (made ofhydrated cellulose fibrils), a phenomenon known as amorphogenesis.32,33 

In addition to being the primary source ofhydrogen bonds strengthening the fiber matrices 

in paper, non-crystalline cellulose is also more sensitive to enzymatic hydrolysis into fer­

mentable sugars.2.17.32,33 Monitoring non-crystalline cellulose formation during refining 

would help detect the minimal amount ofmechanical energy required to promote efficient 

amorphogenesis which is critical for both wood based biofuel and papermaking industries. 

Optimizing energy input would also reduce possible mechanical sheer and help maintain 

fiber integrity. 

Figure 4.2 shows the evolution of the carbohydrates surface signatures as a func­

tion of increasing refining intensities as revealed by the CBM probes. This experiment 

revealed that the non-crystalline cellulose to crystalline cellulose ratio (AC/CC) is maxi­

mal at 2000 PFI revolutions, suggesting that amorphogenesis would be optimal using the 

corresponding mechanical energy (Figure 4.2A). Interestingly, the mannan to crystalline 

cellulose ratio (Man/CC) also peaked at 2000 (Figure 4.2B) meaning that exposure of the 

cellulose-sheathing mannan layer is maximal at such refining intensity. In contrast, the 

xylan to crystalline cellulose ratio (Xyl/CC) initially increased but then remained constant 

after reaching 1500 revolutions. Overall, the application of mechanical energy to wood 

fibers lowered the surface detection of aIl carbohydrates. This result is consistent with the 

lowering of probe accessibility that results from the production of a tighter fiber network 

in the paper discs after refming.19,31.34 

A critical issue in the wood biomass industry is the cost of pro cess optimization. 

The ability to not only rapidly monitor, but also predict the impact of a treatment on a 

small scale would be of great benefit to the industry. In this context, we measured the 

physical properties of paper hand sheets after various refining intensities in order to es­

tablish correlations between the carbohydrate to crystalline cellulose ratios (revealed by 

the probes) and the paper strength properties. 
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Figure 4.2 Impact of refining intensity on the binding of CBM-probes to kraft fi­

ber discs 

A) Variations of crystalline (green bars) and non-crystalline (cherry bars) 
cellulose as a function of refining intensity. The cherry open circles corre­
spond to the evolution of the non-crystalline cellulose to crystalline cellu­
lose ratio (AC/CC). B) Variations of xylan (orange bars), mannan (cyan 
bars) and crystalline cellulose as a function of refining intensity. The or­
ange and cyan circles correspond to the variations of the xylan to crystalline 
cellulose ratio (XyUCC) and mannan to crystalline cellulose (Man/CC), re­
spectively. 

Figure 4.3 reveals that the optimal values of a number of important paper strength 

properties (such as internaI bond strength and tear and tensile indices) were effectively 

correlated with optimal AC/CC ratio at 2000 revolutions. Note that all the se parameters 

are a function of fiber mean length, since shorter and deformed fibers lower the paper' s 

strength properties.35,36 However, taking only fiber length into account would have been 

misleading since this parameter peaked at 1500 revolutions. We show here that the carbo­

hydrate surface signatures closely correlated with the paper strength properties. Conse­

quently, we believe that the correlations between the developed probe surface signatures 

and paper strength properties can be evolved into a powerful prediction tool for the quick 

and efficient determination of optimal refining conditions. 
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Figure 4.3 Impact of refining intensity on the relationship between the bound 

probe AC/CC, Man/CC ratios and paper physical properties 

A) Fiber mean length (mm). B) Tear index (mN m2/g) . C) Tensile index (N 
m/g). D) InternaI bound strength (J/m2). The variations in physical proper­
ties values are shown by black lines and circles, while the AC/CC and 
Man/CC ratios are shown with bars in cherry and in cyan, respectively. 

Enzymes have been used for many years to improve papermaking as weIl as for 

the deconstruction processes of LCBes in order to reduce energy consumption and in­

crease productivity.370

39 One such enzyme, mannanase, was found to be particularly effec-
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tive when used on kraft pulp and in relieving mannan inhibition of cellulases. 40-42 Unfor­

tunately, mannanase usage is frequently restricted to certain biomasses and conditions, 

and this mixed success has lirnited its usage on the industrial scale. As a result, efficient 

prediction of the impacts of mannanase activity on biomass properties is imperative. 

Therefore, we developed a small-scale paper discs digestion as say and applied our CBM 

technology to detect the optimal condition required for rnannanase to promote the efficient 

uncovering of crystalline cellulose and thereby improve the reactiveness of fibers towards 

mechanical refming without negatively affecting paper properties. Figure 4.4 shows the 

impact of mannanase hydrolysis on the removal of mannan and on the exposure of crys­

talline cellulose at the surface of unrefined kraft fiber discs. 
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Figure 4.4 Impact of mannanase hydrolysis (250-50 000 U/g substrate) on the 

binding of mannan (cyan) and crystalline ceUulose (green) probes on 

the surface of unrefined kraft fiber discs 
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The negative percentage values indicate that mannan removal was commensurate with 

enzyme concentration (12.9 % for 250 U/g substrate up to 4l.3% for 50 000 U/g sub­

strate). This result shows that our experimental conditions were adequate for hydrolyzing 

mannan in a complex LCB. Optimal crystalline cellulose exposure was detected using 250 

U/g substrate ofmannanase. The probes signaIs indicated that increasing mannanase con­

centrations beyond 250 U/g did not lead to additional detection of cellulose on the fiber 

surface. 

Subsequently we investigated the impact ofmannanase pre-treatment on the fibers 

response to mechanical refining and the consequent paper properties. To identify possible 

correlations between probe binding to surface polymers and paper properties, larger pulp 

samples were treated with mannanase, then by mechanical refinining and then converted 

into handsheets for further analysis. Figure 4.5A shows the changes in polymer detection 

measured on unrefined fiber discs (0 revolution) and on refmed fibers . All samples were 

pre-treated with mannanase. Without refining, mannan and crystalline cellulose detection 

was similar to results previously recorded on smaller samples (Figure 4.4). Before any 

mechanical energy was applied (0 revolution) cellulose (both crystalline and non-crystal­

line) and xylan detection was increased by mannanase treatment. Applying mechanical 

refining on enzyme treated pulp samples resulted in increased binding ofprobes, suggest­

ing that refming generated increased fibrillation, as observed earlier for a similar treatment 

sequence (refining applied onto enzyme-treated pulp, see reference 34). The impact of 

refining on mannanase treated pulp lead to a complete reversaI in mannan exposure (-15% 

without refining, +3.5% after 1500 revolutions, +10% after 3000 revolutions). It appears 

that refming exposed new mannan polymers compensating for surface mannan that was 

hydrolyzed before refining. Crystalline cellulose detection was not stimulated by moder­

ate refining intensity (1500 revolutions) but after 3000 revolutions on a PFI refiner, expo­

sure of crystalline cellulose was increased by 26%. Non-crystalline cellulose steadily in­

creased with refining intensity, in agreement with the well-known impact of refining on 

amorphogenesis, while xylan detection did not correlate with refining intensity. Xylan 
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was severely reduced at moderate refining (from 27% down to 3% variation vs control), 

and then made available again for detection after 3000 revolutions. 
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Figure 4.5 Impact (%) of mannanase hydrolysis (250 U/g substrate) and mechan­

ical refining of kraft pulp on A) the variations of the carbohydrate sig­

natures on the surface of paper discs and on B) the variations of the 

strength properties of the resulting paper sheets 

Variations of mannan, xylan, crystalline and non-crystalline celluloses are 
colored blue, orange, green and cherry while those for fiber mean length, 
tear index, tensile index and internaI bound strength are colored white, dark 
blue, yellow and grey, respectively. 

Figure 4.5B reveals the impact of mannanase bydrolysis and mechanical refining 

of kraft pulp on the strengtb properties of the paper sheets (from which paper dises were 

sampled and exposed to probes (Figure 4.5A). Overall tbese results indicate tbat exposure 
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ofhemicelluloses and cellulose (crystalline or non-crystalline) correlated with important 

paper strength properties (maximal exposure and best properties were observed after treat­

ment with 3000 revolutions on the PFI). Specifie correlations were observed for each 

probe. Mannan detection was correlated with tear index and internaI bond, showing neg­

ative variations after mannan hydrolysis but positive values after refining of mannanase 

treated fibers. Non-crystalline cellulose variations were correlated with tensile and inter­

naI bond in its response to refining. For xylan and crystalline cellulose, detection was 

maximal after 3000 revolutions where optimal paper properties were observed too. But it 

did not correlate with paper properties trends observed at 0 or 1500 revolutions. The fiber 

length peaked at 1500 revolutions where sub-optimal paper properties were observed. 

These results attest to the close relationship that exists between the carbohydrates signa­

tures (especially mannan and non-crystalline cellulose) on the surface of wood fibers on 

the one hand, and the properties ofpaper derived from such fibers on the other hand. We 

suggest that these correlations form the basis of a novel approach for predicting the impact 

of mechanical and enzymatic pro cesses in wood biomass industries. 

4.5 Conclusions 

We developed a simple yet powerful approach that allows for the surface charac­

terization of fiber surfaces. The CBM probes were successfully employed to characterize 

the impacts of pulping, mechanical and enzymatic modifications on the carbohydrates 

distribution on LCB surfaces. Correlations with paper strength properties would enable 

the rapid determination of these properties and allow one to predict in a high throughput 

yet low volume the optimal conditions with which to treat a given biomass. Such probes 

provide a new and nov el approach for monitoring process development and scale-up of 

processes that affect fiber properties - in either the manufacture of paper or the decon­

struction of cellulose into su gars for biofuel production. 
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4.7 Additional Files 
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Additional file 4.1 Affinity of the probes for various paper support 

Binding curves of eGFP-CBM3a (A), mCherry-CBM17 (B), 
mOrange2-CBM15 (C) and eCFP-CBM27 (D) as calculated from 
solid state depletion assays. Cellulose substrates were: Whatman 
paper (open circ/el, kraft paper (filled diamond) and HYK (open 
diamond) unrefined papers. Binding was recorded after a 1h incu­
bation at 23 oC of the various cellulose supports with the probes 
(100 Ilglwell) in a 20 mM Tris-HCl pH 7.5 buffer containing 20 
mM NaCI and 5 mM CaCh. 
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Additional nIe 4.2 XPS analysis of the HYK (A-B) and kraft (C-D) pulps 

Low-resolution spectra of the surface of the pulps (A-C). Deconvo­
lution of the C Is band of the high-resolution spectra (B-D). The 
300 W monochromatic Al K-a radiation source was used to study 
the surface composition of the pulps. The instrument resolution was 
0.6 eV. The average ofthree different spots were recorded and an­
alyzed using the CasaXps software. 
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Additiona} fIle 4.3 Binding affinities (Ka) and capacities (No) of CBM probes for 

various carbobydrates polymers after lb incubation at 23 oC in 

20 mM Tris-HCI pH 7.5 containing 20 mM NaCI and 5 mM 

CaCh 

Probe Binding support 
K. No 

(JlM-l) (Jlmol/g cellulose) 

Avicel 7.999 0.277 

Whatman 0.083 0.205 
eGFP-CBM3a 

KP 0.059 0.049 

HYKP 0.l01 0.019 

mCherry-CBM 17 
Whatman 0.041 0,112 

KP 0.019 0,084 

HYKP 0.008 0.089 

X ylohexaose 0.034 a 0.920 a 

mOrange2-CBM 15 Whatman 0.007 0.335 

KP 0.026 0.049 

HYKP 0.013 0.038 

Mannohexaose 0.227 b 1.100 b 

eCFP-CBM27 Whatman 0.070 0.039 

KP 0.008 0.066 

HYKP 0.009 0.317 

These values e-b
) were determined by ITC. 

a Reference 21. 

157 



Additional me 4.4 Chemical composition of kraft pulps measured using 

NRELrrp-510-42618 method-ologies2l,25 

Pulp polymer 
kraft HYK 

(%) (%) 

Extractives 0.28 ± 0.01 0.43 ± 0.01 

Lignin 4.8 ± 0.07 6.7±0.15 

Glucose 86.9 ± 1.22 81.93 ± 1.38 

Xylose 7.1 ± 0.67 7.4 ± 0.87 

Mannose 8.4 ± 0.58 8.7 ± 0.55 
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Additional me 4.5 XPS analysis of kraft pulps. Results include O/C ratios and con­

tributions (%) from each carbon type (CI-C4) to curve fitting 

of the C 1s peak measured by low- and high-resolution 

XPSll,21,29-30 

Fqnctionality kraft (%) HYK(%) 

O/C· 0.63 ± 0.02 0.56 ± 0.01 

Cl 16.06 ± 0.36 23 .10 ±1.92 

C2 67.63 ± 0.57 6l.25 ±1.35 

C3 15.33 ± 0.27 14.59 ± 0.68 

C4 0.98 ± 0.07 1.07 ± 0.25 

Spectra were taken from unextracted pulp samples. 
*Low-resolution XPS spectra was used to obtain the oxygen and carbon percentage in 
order to ascertain that the O/C ratio does not vary as a function of chemical treatment. 
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5.1 Abstract 

Background: LCB will progressively become the main source of carbon for a nurnber of 

products as the Earth's oil reservoirs disappear. Technology for conversion of wood fiber 

into bioproducts (wood biorefming) continues to flourish, and access to reliable methods 

for monitoring modification of such fibers is becoming an important issue. Recently, we 

developed a simple, rapid approach for detecting four different types of pol ymer on the 

surface of wood fibers. Named FTCM (Fluorescent protein-Tagged Carbohydrate-binding 

module Method), this method is based on the fluorescence signal from carbohydrate-bind­

ing modules (CBM)-based probes designed to recognize specific polymers such as crys­

talline cellulose, non-crystalline cellulose, xylan and mannan. 

Results: Here we used FTCM to characterize pulps made from softwood and hardwood 

that were prepared using kraft or chemical-thermo-mechanical pulping. Comparison of 

chemical analysis (NREL protocol) and FTCM revealed that FTCM results were con­

sistent with chemical analysis of the hemicellulose composition of both hardwood and 

softwood samples. kraft pulping increased the difference between softwood and hardwood 

surface mannans, and increased xylan exposure. This suggests that kraft pulping leads to 

exposure of xylan after removal of both lignin and mannan. Impact of enzyme cocktails 

from Trichoderma reesei (Celluclast 1.5L) and from Aspergillus sp. (Carezyme lOOOL) 

was investigated by analysis of hydrolyzed sugars and by FTCM. Both enzymes prepara­

tions released cellobiose and glucose from pulps, with the cocktail from Trichoderma be­

ing the most efficient. Enzymatic treatments were not as effective at converting chemical­

thermomechanical pulps to simple su gars, regardless of wood type. FTCM revealed that 

non-crystalline cellulose was the primary target of either enzyme preparation, which re­

sulted in a higher proportion of crystalline cellulose on the surface after enzymatic treat­

ment. FTCM confirmed that enzymes from Aspergillus had little impact on exposed hem­

icelluloses, but that enzymes from the more aggressive Trichoderma cocktail reduced 

hemicelluloses at the surface. 
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Conclusions: Overall this study indicates that treatment with enzymes from Trichoderma 

is appropriate for generating crystalline cellulose at fiber surface. Applications such as 

nanocellulose or composites requiring chemical resistance would benefit from this enzy­

matic treatment. The milder enzyme mixture from Aspergillus allowed for removal of 

non-crystalline cellulose while preserving hemicelluloses at fiber surface, which makes 

this treatment appropriate for new paper products where surface chemical responsiveness 

is required. 

Keywords: FTCM, Carbohydrate-binding module, Fluorescent protein, LCB (lignocel­

lulosic biomass), Cellulose, Hemicellulose, Enzymes 

5.2 Introduction 

Global production ofbiofuels and bioproducts is increasing steadily because such 

products are greener alternatives to fossil fuels and their derivatives [1-3]. Concomitantly, 

numerous new products and technologies based on the conversion ofbiomass have been 

developed over the last decade [4-9]. Securing sufficient biomass as raw materials is a 

prerequisite to moving from a petro-chemical to a bio-chemical economy. Using feed­

stocks to support first-generation biofuel and bioproducts has shown its limits and pro­

duces certain undesirable socio-economic and environmental outcomes [10, Il]. The use 

ofLCB, (induding dedicated lignocellulosic crops, agricultural and forestry residues and 

municipal and industrial wastes), to produce second-generation biofuel and bioproducts 

would avoid the negative impacts associated with frrst-generation feedstocks use [12, 13]. 

Although LCB is a promising, abundant and renewable resource, it is difficult to 

treat due to its complex structure consisting of cellulose fibrils wrapped in a network of 

lignin and hemicelluloses. This network, collectively referred to as the lignin-carbohy­

drate complex, is highly recalcitrant and difficult to modify [8, 14-18]. Consequently, 

several steps of pretreatments are needed to isolate each of the components before they 

can be used in value-added applications. 
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For the production ofbiofuels based on carbohydrates from LCB, such as bioethanol, the 

principal goal is the complete hydrolysis of polysaccharide components (mainly cellulose) 

of the raw material into monomers for subsequent fennentation [18-22]. Utilization ofall 

other lignocellulosic components is not as weIl developed but is the focus of intensive 

research efforts [8, 9, 23, 24] . This "integrated biorefinery" concept involves a succession 

of steps for transforming the entire LCB into biofuels and bioproducts. This concept has 

been demonstrated using a variety of physical, chemical and biological treatments [25-

27] in a range of configurations [28-31]. Total utilization ofLCB, will permit commercial 

exploitation of the entire LCB in a wide spectrum of bioproducts and bioenergy [5, 32, 

33]. In this context, new bioproducts (e.g. biomaterials, biocomposites, biomembranes 

and biofilms) from previously unused components ofLCB are receiving growing interest 

because they are also biodegradable, produced from a renewable carbon source, and can 

have a wide variety of applications[5, 7, 34-36]. Unlike bioethanol, specifie bioproducts 

based on lignocellulosic fibers do not require complete separation or deconstruction of the 

raw lignocellulosic polymers. Removal of some specifie components or alteration of 

structural features of fibers leading to modulation of their physical and chernical proper­

ties is often sufficient [5 , 7, 32, 37-39]. 

A largely used green process for the removal or alteration of specifie structural 

features of the biomass is the enzymatic hydrolysis or biocatalysis. Enzymes have been 

used for improving papennaking processes (for fiber cutting action, peeling, delamination, 

weakening effect, bleaching, refining) [40-42] and also for the deconstruction of ligno­

cellulosic biopolymers [7, 43-51]. Actually, cellulases from Trichoderma reesei are sub­

ject to many studies and have been used to efficiently hydrolyze cellulose for decades [40, 

52]. Enzymes have high selectivity and turnover frequency, pennitting processes with 

high selectivity and increased productivity on a variety of substrates [53] . For example, 

enzymatic hydrolysis avoids or drastically decreases the production of degradation prod­

ucts that are generated by classical acid hydrolysis (e.g. 5-hydroxymethylfurfural, 2-fur­

fural) [54, 55]. Many types of enzyme can catalyze LCB hydrolysis: endo- and exo-glu-
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canase, cellobiase, xylanase, mannanase, and many others. Synergy between several en­

zymes in a mixture and with their lignocellulosic substrates has also been demonstrated 

but are not yet completely known [52, 56-58]. In addition to this, enzymes are costly, and 

accordingly, real-time dosage control is an important parame ter in most industrial pro­

cesses [57, 59-63]. 

The effectiveness and impact of enzymatic processes on a substrate can be quan­

tified using physical and chemical methods. Among them, the most commonly used are: 

compositional analysis of the substrate after treatment (using FTIR, XPS) or of the hy­

drolysates (hydrolysis products content, using GC or HPLC), surface imaging (using 

SEM, TEM and AFM), index of crystallinity (using XRD and NMR) and mass balance 

calculations [64-66]. However, current methods of analysis cannot directly monitor en­

zymatic action. It is not possible to determine the precise order in which components of 

the substrate were hydrolyzed as the enzymes penetrate the materials and what compo­

nents are left exposed on fibers after treatment. While direct chemical characterization of 

the surface, a critical parameter for determination of enzymatic effectiveness, is possible 

with XPS, this method is expensive and does not distinguish well between different pol­

ysaccharides because they harbor similar functional groups [67]. 

The ability to directly monitor changes to the surface of LCB fibers during enzy­

matie treatment is essential for controlling and optimizing processes according to the fmal 

bioproducts targeted. To this end, a rapid and low-cost method to directly monitor the 

deconstruction of heterogeneous LCB during enzymatic hydrolysis has been developed 

[67, 68]. Called Fluorescent protein-Tagged Carbohyd!ate-binding module Method, or 

FTCM, this method is based on the use of four specifie ready-to-use probes made of flu­

orescent-tagged recombinant carbohydrate-binding modules (named ft-CBM or probes 

throughout the text). In the se probes, the recombinant CBM part binds to a specifie com­

ponent of the substrate surface. The fluorescence of the probe permits rapid quantification 

of the probes bound to the surface. The fluorescence can be measured byusing an ordinary 

fluorescence plate reader. This new approach allows for specifie surface changes to be 

tracked and for changes to biopolymers, in this case mannan, xylan, crystalline and non-

165 



crystalline cellulose, to be monitored. FTCM can detect these polymers at the surface of 

the substrate before and after any given treatment, be it mechanical, chemical or enzymatic 

[67, 68]. 

In this study, we use FTCM to characterize how the surfaces of a variety of LCB 

are modified by two different commercial enzyme cocktails. The substrates include two 

chemical-thermo-mechanical pulps, referred to as CTM pulps, and two kraft wood pulps. 

This investigation provides infonnation on which combination of enzyme treatment and 

biomass substrate is best suited for industrial applications in which various levels of fiber 

deconstruction and precise control of fiber surface composition are desirable, such as the 

production of nanocellulose, fiber-reinforce composites, or paper. 

5.3 Materlals and methods 

5.3.1 Llgnocelluloslc biomass 

Four wood pulps were selected to evaluate the effect of woody biomass composi­

tion and pretreatment on the experiment. Hardwood mix kraft pulp (here referenced as 

HK) was kindly provided by Burgo Ardennes S.A. (Virton, Belgium). Softwood from 

spruce chemical-thenno-mechanical pulp (referenced as SM) and hardwood from poplar 

chemical-thermo-mechanical pulp (referenced as HM) were kindly provided by SAPPI 

Lanaken N.V. (Lanaken, Belgium). Softwood mix kraft pulp (referenced as SK) was 

kindly provided by Kruger Wayagamac Inc. (Trois-Rivières, Canada). AlI pulps used in 

this study were unbleached. The chemical composition of the of the pulps was deterrnined 

according to the NREL-TP-51 0-42618 standard method [69]. The length, width, fine per­

centage and zero span breaking length of wood pulp fibers were analyzed with a fiber 

quality analyzer (FQA) (LDA02-090 HiRes, OpTest Equipment Inc, Hawkesbury Can­

ada) following the TAPPI T271 om-12 and T231 standard methods. 
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5.3.2 Enzyme solutions 

Two different commercial enzyme mixtures were used in this study, CelluClast 

1.5L (cat no # C2730) and Carezyme 1000L (cat no # C2605), which were purchased from 

Sigma-Aldrich. CelluClast 1.5L (named "T" in this study) is a mixture offungal hydrolytic 

enzymes from Trichoderma reesei and principally consists oftwo cellobiohydrolases and 

two endoglucanases, as well as small amounts of other cellulases and also various acces­

sory enzymes which function as hemicellulases [40, 57, 70] . Carezyme 1000L (named 

"A" in this study) consists of a mixture of several hydrolytic enzymes mixture from As­

pergillus sp. Both enzyme mixtures are widely employed for hydrolysis and deconstruc­

tion of LCB. Both enzymes mixtures contain cellulase (CMCase), xylanase, and man­

nanase enzymes, whose activities were tested using carboxymethyl cellulose, xylan from 

birch wood, and galactomannan as substrates, respectively. The activities of cellulase, 

mannanase and xylanase were assayed quantitatively using the 3,5-dinitrosalicylic acid 

(DNS) method which measures the reducing su gars generated by enzymatic hydrolysjs 

from their absorption at 540 nm) as described by Miller [64]. Protein content was quanti­

fied using the assay developed by Bradford [71]. 

5.3.3 Enzymatlc treatments of pulp 

Three samples of each pulp were prepared in suspension for three different treat­

ments: one without enzyme addition (control sample, called "Std"), a second to which 

CelluClast 1.5L was added (called "T"), and third to which Carezyme 1000L was added 

(called "A"). Prior to enzyme addition, each sample was disintegrated in citrate buffer 

(having a concentration of 0,05 M and pH 4,8) at 1,2 % consistency (24 grams of pulp on 

an oyen dry matter basis in 2 liter ofbuffer) with a standard pulp disintegrator and trans­

ferred into a 4-liter Erlenmeyer flask. Suspensions were pre-heated until 50 oC using a 

controlled-environment incubator-shaker (New Brunswick Scientific Inc.). Enzyme solu­

tions were then added to a finalloading of 1,275 milligrams of enzyme per gram of oyen 

dry pulp. Hydrolysis was carried out in the incubator at 50 oC for 4 h under continuous 

orbital agitation (150 rpm). Enzymatic hydrolysis was stopped by incubating the pulp on 
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ice for 15 minutes. Each sample was filtered, and filtrate was boiled in a 95 oC water bath 

for 10 minutes and kept frozen at -20 oC until su gars analysis. Filtration ofuntreated and 

enzymes treated pulps produced paper sheets, of 60 ± 2 g.m-2 in basis weight, as per the 

T APPI TI05 sp-02 standard methodology. The pH was measured before and after enzy­

matic treatment. Optimization of hydrolysis conditions, such as duration and enzymes 

loading, was done on a small scale at high throughput using 96-wells microtiter plates 

with 3 mm diameter paper discs. After enzymatic digestion of the discs, FTCM test was 

applied to detect the optimal condition required for enzymes to promote the efficient deg­

radation in cellulose and hemicellulose. 

5.3.4 Handsheet and paper dise preparation 

Four different pulps were used for the preparation of handsheets and paper discs. 

Handsheets of 60 ± 2 g.m-2 basis weight were prepared as per the TAPPI T205 sp-02 

standard. 3-mm paper discs were punched from handsheet [67]. 

5.3.5 Construction of recombinant probe expression systems 

AIl carbohydrate-recognition probe genes were inserted into pETlla expression 

vectors. CBM3a (Clostridium thermocellum CipA, NZYTech), CBMl5 (Cellvibrio ja­

ponicas, Z48928), CBMl7 (Clostridium cellulovorans, U37056) and CBM27 (Thermo­

toga maritima, NC 000853) genes were synthetized by GenScript. The fluorescent protein 

genes (eGFP, mOrange2, mCherry and eCFP) were cloned into the DraIII and BamHI 

sites while the CBM genes were introduced into the BsrGI and BamHI sites. AlI encoding 

genes were sequenced to ascertain the integrity and fidelity of the probes. The resulting 

probes GC3a, OCI5, CCl7 and CC27 [67, 68] were used to detect crystalline cellulose, 

xylan, non-crystalline cellulose and mannan, respectively. 

5.3.6 Expression and purification of probes 

All probes were produced in E. coli BL21(DE3) Gold pLysS cells and purified as 

described by Hébert-Ouellet et al. [68]. 

168 



5.3.7 Quantification of the carbohydrates on the surface of fiber paper dises 

using FTCM 

Tracking of the variation of carbohydrate on the surface of paper discs using the 

four different probes was done as described by Khatri et al. and Hébert-OueUet et al. [67 , 

68]. Note that lignin fluorescence was subtracted from total fluorescence, and that affinity 

of all probes used here for their respective substrates was previously characterized, as 

detailed in [67, 68]. 

5.3.8 Sugar analysls 

After enzymatic hydrolysis, a filtered hydrolysate was analyzed for ceUobiose, 

glucose, xylose and mannose concentrations using a HPAEC-PAD (Dionex ICS-5000+) 

and a GC-FID (Agilent Technologies 7890B) following methods from the work of Van­

derghem et al. [72, 73]. Results were processed using Chromeleon 7® and OpenLAB 

CDS ChemStation software. 

5.3.9 Scannlng electron microscope (SEM) images 

Scanning electron microscope (SEM) images were used to analyze surface mor­

phology and to characterize the effect of the pulping process on paper fibers. Samples of 

dried handsheets having a basis weight of 60 g ± 2 g.m-2 were coated with gold in a 

Quorum SC-7620 sputter-coater. Images were produced of several different locations on 

the surface of SM and SK pulp samples with a scanning electron microscope (JEOL, JSM-

5500). 

5.3.10 Statistlcal analysls 

Minitab 17© and Microsoft Excel20 1 O© software were used for statistical analysis 

of data. 
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5.4 Results and discussion 

5.4.1 Enzyme characterization 

Two commercial enzyme mixtures produced by Trichoderma reesei and by Asper­

gillus sp. were used for this study. Under our specific assay conditions, both commercial 

preparations contained cellulase (CMCase), xylanase and moderate mannanase activities. 

Enzyme mixture T was characterized by higher cellulase and xylanase activities, although 

its low mannanase activity was roughly equal to mixture A (Additional file 5.l). 

5.4.2 Pulp fiber characterizatlon 

Pulp fiber characteristics prior to treatments are presented in Table 5.1 , which 

show how the pulp grades used in this experiment differed from one another. 

Table 5.1. Pulp fibers properties before enzymatic treatments. (HM) hardwood 

CTM pulp, (SM) softwood CTM pulp, (BK) hardwood kraft pulp and 

(SK) softwood kraft pulp 

Fibers characteristics 
HM SM HK SK 

(average values) 

Length(mm) 0.71 1.31 0.76 2.35 

Fines (0 to 0.2 mm) (%) 15.31 13.25 13.64 3.01 

Width (Ilm) 22.6 27.4 17.7 26.0 

As expected, softwood fibers were longer and wider than hardwood fibers [17]. 

AlI of the grades contained similar quantities of fme fibers except for the softwood kraft 

pulp. These fine fibers could impair hydrolysis yield on full fibers because finer fibers 

have a greater susceptibility for hydrolysis, so hydrolysis yield is altered by the quantity 

of fine fiber in a sample during our four-hour hydrolysis [74]. Hardwood pulp was only 

slightly affected by kraft pulping, while for softwood pulp, the kraft treatment had an 
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obvious impact on length and fines, but none on width. SEM images showed that softwood 

kraft pulp has lower fibrillation and greater homogeneity than softwood CTM (Figure 5.1 ) 

as observed earlier [75, 76] and which is fully compatible with a decreased content in 

fines . 

a) c) 

b) d) 

Figure 5.1. SEM micrographs obtained from (SM) untreated softwood CTM pulp 

(a, b) and from (SK) untreated softwood kraft pulp (c, d) at two levels 

of resolution 

Mechanically treated pulps contained more lignin than the kraft pulps (Figure 5.2). 

The kraft process dissolves lignin from wood raw material to liberate fibers, while by 

contrast mechanical separation of wood fibers does not involve the extraction of lignin 

[76]. Lignin protects the other components of the biomass against degradation, so the ab­

sence of lignin in kraft pulp permits enzymatic hydrolysis to occur more effectively [77]. 
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As expected, softwood hemicelluloses were glucomannan-rich, while hardwood hemicel­

luloses were xylose-rich [17, 78, 79] . HK and SK pulps yield the greatest quantity of glu­

cose, making them the most promising of the samples as a potential biofuel substrate. 
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Figure 5.2. Lignin and carbohydrate mono mer content of pulps. (HM) hardwood 

CTM pulp, (SM) softwood CTM pulp, (HK) hardwood kraft pulp and 

(SK) softwood kraft pulp 

5.4.3 Hydrolysate analysls 

Hydrolysate sugar content of the control samples (i.e. without enzyme addition) 

was negligible (data not shown). This demonstrates that hydrolysis did not occur in the 

absence of enzymes. Figure 5.3 shows cellobiose, glucose, xylose and mannose concen­

tration ofhydrolysates solutions recovered after treating pulps with T and A enzyme cock­

tails. 

Figure 5.3 presents the amounts of selected mono- and disaccharides which were 

liberated by enzymatic hydrolysis of pulp fibers. The quantity of sugar detected in the 

hydrolysate was better related to pulp grade than to the enzyme cocktail used. Kraft pulps 

released more of each sugar, indicating they are more susceptible to enzymatic hydrolysis 

in the relevant conditions. This can be explained by the difference in lignin content, since 

the presence of lignin protects polysaccharides from enzymatic hydrolysis [60, 80-84]. 
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As discussed earlier and in the literature, pretreatments which remove lignin and hemicel­

lulose expose a greater proportion of the cellulose in the substrate and increase pore vol­

ume and surface area, which results in increased hydrolysis rate [85]. The high glucose 

content of the kraft pulps presented in Figure 5.2 suggests that the se pulps are composed 

primarily of cellulose, an inference that is consistent with the composition of the hydrol­

ysate produced from their enzymatic hydrolysis. 
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Figure 5.3. Concentrations of selected carbohydrates in hydrolysate recovered af­

ter hydrolysis of pulp. T and A refer to mixtures of enzymes used for 

hydrolysis 

Hydrolysate sugar content also demonstrated that enzyme "A" was less effective 

than "T" under same hydrolysis conditions. More xylose was released from hardwood 

pulp in the presence of T enzyme cocktail, which again corresponds with the abundance 

of xylose monomers in the substrate, as shown in Figure 5.2. The cellobiose yield from 

hydrolysis of SK was greater than that from hydrolysis of HK, although HK hydrolysis 

produced more glucose when catalyzed by T treatment. Finally, hydrolysate composition 

suggests that the mannanase activity of both enzyme cocktails is low. Such results may 

indicate that mannans are not as accessible as other polymers, or that mannanase activity 

is too low (consistent with activity measurements for both enzyme preparations; see Ad­

ditional file 5.l). The sugar content of the hydrolysates is a good indicator of enzyme 
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activity with respect to specific carbohydrates, but does not provide any infOImation on 

the surface chemistry of the treated fiber. 

5.4.4 Effect of enzymatic treatment on pulp fibers 

Biofuel production from LCB depends on polymer accessibility during enzymatic 

treatment, but many other applications require specific surface functionality linked to dis­

tribution ofpolymers left after treatment at the surface offibers. One way to obtain infor­

mation about the outcome of an enzymatic treatment on LCB is by investigating properties 

of its fibers and of paper formed using these fibers. Enzyme hydrolysis used here only 

affected the length of kraft pulp grade. Treatment of hardwood kraft pulp with T enzymes 

decreased length by 20 %. Enzymes, A and T, decreased softwood kraft fiber length by 

15 % and 25 % respectively (Additional file 5.2). These results suggest a fiber cutting 

action, ascribed to endoglucanase activity in enzyme cocktails [57, 70]. While kraft pulp 

fiber length decreased as a consequence oftreatment, fmes increased (Additional file 5.3). 

This phenomenon has been suggested as a consequence of the combination of cutting, 

peeling, delaminating and weakening effects on the surface of the fibers by enzymatic 

hydrolysis [40-42] . Although the enzymatic hydrolysis reduced the length of sorne fibers , 

it did not affect the average width of any samples, regardless of pulping or enzymes used 

(Additional file 5.4). Concerning zero span breaking length, a measure of the average 

strength of individual fibers (Additional file 5.5), treatment had no effect on mechanical 

CTM pulps but both enzymes degraded chemical kraft pulp strength. The higher lignin 

content of the mechanical pulps may explain why their mechanical strength was not af­

fected by the treatment. Analysis of these paper properties corroborates previous studies 

of simple sugars release by hydrolysis of paper pulp, and confirms that kraft pulps are 

more susceptible to enzymatic treatments [47, 50, 86]. For applications where strength 

properties are very important, such combination pulp-enzymatic treatments (kraft pulps 

treated with cellulase mixtures) would be deleterious. 
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5.4.5 Detection of pulp fiber polymers using FTCM analysis before and after 

enzymatic treatments 

FTCM probes provide a rapid and cost-effective method to map the surface of 

LCB samples in terms of composition. Running 96 experiments requires a simple plate 

reader, is currently performed in less than 3 houcs and would cost a few dollars when 

scaled up. Here this analysis was performed using the four probes in order to characterize 

pulp fibers prior to enzymatic treatments (Figures 5.4 and 5.5). A probe (GC3a) which 

indicates the presence of crystalline cellulose regions (referred to here as CC) indicated 

greater CC exposure on hardwood surfaces than on softwood. CC made up a greater pro­

portion ofCTM pulps surface than of kraft pulps surface, despite the higher lignin content 

of CTM pulps. This result is counterintuitive, since lignin is thought to act as protective 

barrier around cellulose, but the higher proportion of fibrils and fines in CTM pulps may 

explain the result since fine fibers tend to have greater specific area and therefore offer 

the most accessible polymers for the probes [68]. Fibrils and fmes are partially removed 

by kraft pulping, which may explain su ch results. 

Figure 5.4 also shows the FTCM performed using the amorphous (non-crystalline) 

cellulose (referred to as AC) specific probe (named CC17). Mechanical pulps had the 

strongest AC binding signal, also in accordance with the explanation of its higher content 

in high specific surface areas such as fibrils. Although three of the four pulps exposed 

much less AC than CC, the opposite was observed for SK pulp, where twice as much AC 

was detected compared to CC. Clearly, the distribution of AC did not parallel CC distri­

bution on the surface of untreated fibers. The total cellulose (CC and AC) detected at the 

surface was the lowest for SK pulp, where the fibrillations are almost nonexistent as was 

observed in Figure 5.1. This leads to a decrease in high surface area fibrils or fiber frag­

ments, which are primary targets for CBMs binding to fiber polymers. Despite containing 

more cellulose than CTM pulps, the kraft pulps returned a weaker binding signal for both 

CC and AC. Even if the abundance of glucose in the kraft pulp hydrolysates is consistent 

with higher cellulose content (Figures 5.2 and 5.3), FTCM shows that CTM pulp fiber 
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surface have a greater number of exposed binding sites for cellulose-specific probes, de­

spite containing less cellulose than kraft pulps overall. One has to consider that the size 

of probes used here, with diameters of few nanometers, is closer to water than to most 

fibrous material. Any probe used here has access to aH interstices detectable by electronic 

mlcroscopy. 

OC15 probe, which was used to signal the presence ofxylan, retumed a more in­

tense signal from untreated hardwood pulps than for softwood (Figure 5.5), which is con­

sistent with the previously reported tendency of hardwoods have a greater xylan content 

than softwoods [17, 78] , and with the monosaccharide content of the samples already 

shown in Figure 5.2. This phenomenon resembles the one observed for CC (Figure 5.4), 

with higher signal for hardwood pulps than for softwood. 

The signal produced by the mannan-specific probe (CC27) does not follow the 

trend described by the probes that have already been described in this section. Mannans 

were detected in greater abundance on the surfaces of the CTM pulps, and were nearly 

absent from the kraft pulps. Mechanical pulping of softwoods has been known to partially 

dissolve mannans [88] , but the dearth of mannan on the probe-accessible surface of kraft 

pulps suggests that sorne element of the kraft process removes mannans even more exten­

sively [89], while by contrast the mechanical treatment leaves them available for probe 

binding. The disparity in mannan detected on SK and HK corresponds to the relative abun­

dance of mannose contained in the samples as determined in Figure 5.2. Comparison of 

the four pulps signal suggests that mannans are strongly associated with lignin. These 

observations confirm other studies on the lignin-carbohydrate complex organization and 

changes according to the pulping process [17, 90-93]. 

The impact of enzymatic treatments on the amount of each pol ymer present on the 

surface ofpaper discs was characterized using FTCM. In Figure 5.6, the signal intensity 

from each probe is presented in terms of its change relative to the intensity of the corre­

sponding probe on untreated (Std) pulps shown in Figures 5.4 and 5.5. 
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Generally, enzymatic treatments resulted in a decrease in the number of bound 

probes, although there were sorne exceptions. This decrease can be a consequence of the 

preferred degradation of high specifie surface components such as fines, filaments and 

fibrils by enzymes as discussed above. The overall diminution of probe signal intensity 

may also indicate that the enzymatic treatment results in an increase in the proportion of 

substances on the substrate surface which are affected neither by the enzymes nor by the 

probes (e.g. lignin). AC detection invariably decreased after enzymatic treatments, which 

supports the hypothesis that this component was degraded preferentially by cellulases in 

both enzymatic cocktails during short time hydrolysis suggested by several studies [17, 

56, 94, 95] . In our assay, changes in AC probe binding did not directly correlate to the 

yield ofhydrolysis products of cellulose (cellobiose and glucose, Figure 5.3). Generation 

of simple su gars such as glucose or cellobiose is a consequence not only of AC but of CC 

hydrolysis, and the proportions of AC and CC hydrolysis may vary for different pulps and 

enzyme cocktails. 

A general inspection of Figure 5.6 reveals that differences in signal intensity from 

probes bound to the substrate were due to a combination of the disparity in pulp properties 

and the character of the enzyme cocktails used for their treatment (which both have cellu­

lase, xylanase and mannanase activity). The results of Figure 5.6 show that removal of 

surface hemicelluloses appeared to be more substantial with T enzymes treatment. This 

corroborates chromatographie analyses showing higher liberation of xylose and mannose 

after T enzyme treatment and may be attributed to a superior cellulase and xylanase activ­

ities in T enzyme preparation. AIso, it can be seen that CTM softwood pulp (SM) re­

sponded differently to enzymatic treatments compared to HM. After enzymatic treatroent, 

more CC was detected on the surface of the SM substrate, but less on the surface of the 

HM substrate. 
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Figure 5.6. Impact of enzyme (T and A) hydrolysis on the binding of different pol­

ymer by probes (crystalline cellulose bound by GC3a, amorphous 

(non-crystalline) cellulose bound by CCI7, xylan bound by OCIS and 

mannan by CC27), on the surface of fiber dises 

Results that did not deviate significantly from untreated (Std) values (where 
significance was determined using Dunnet's comparison test) are indicated 
with an asterisk (*)_ . 

The concurrent increase in CC and decrease in AC indicates that the glucose and 

cellobiose recovered from the hydrolysate (shown in Figure 5.3) are principally the prod­

ucts of AC hydrolysis, as opposed to CC hydrolysis. CC hydrolysis cannot be ruled out 

however, since FTCM detects CC probe binding sites left after treatment. Hydrolysis of 

first polymers on the surface (including CC) can le ad to exposure of previously buried 

CC. 

When treated by A enzyme, the increase in CC at the surface of SM pulp was not 

as significant as after treatment with T enzymes. AC was decreased with similar efficacy, 

but other polymers were removed with different intensity. The signal from xylan-binding 
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probes was found to be unaffected at the fiber surface after treatment with A enzyme, 

while that from mannan-binding probes decreased by 15 %. As shown in Figure 5.3, no 

xylose was detected in the hydrolysate from treatment with enzymes A, while the hydrol­

ysate produced by T enzymes cocktail contained sorne xylose. The absence of xylose in 

A hydrolysate is consistent with the hypothesis that xylan was not consumed in this treat­

ment, as shown in FTCM results, although xylanase activity was measured in this enzyme 

cocktail. 

Despite major differences in fiber properties and pulping conditions, the propor­

tion of HK binding sites is modified in a similar way to SM when HK pulp was exposed 

to enzymatic hydrolysis. More CC was exposed at the surface ofHK after T enzyme treat­

ment, despite results on fiber length (Additional file 5.2) and simple sugar analysis (Figure 

5.3) that suggest extensive cellulose hydrolysis. Although more CC was exposed on the 

surface of SM after treatment with T enzymes, this was not accompanied either by fiber 

length reduction or by substantial hydrolysate sugar yields, which suggests that enzyme 

treatment was less severe with SM than with HK. The change in CC exposure was limited 

to 46 % for HK (less CC was left on the surface of HK after T enzyme than on SM). 

Regarding HK pulp, Figure 5.6 shows that both AC and xylan decreased on the surface of 

HK paper dises after either enzymatic treatment, but mannan variations were not signifi­

cant. These results were suggested by chromatographie analyses but were confumed by 

FTCM, which also reveals that CC exposure increased after T treatment, information that 

cannot be obtained by any other method discussed here. 

Enzymatic hydrolysis of softwood (SK) and hardwood (HK) kraft pulps occurred 

in an approximately similar pattern, although both enzymes A and T lead to a smaller 

change in CC on the fiber surface of SK pulp than on HK pulp. AC decreased after both 

treatments by about 30 %. Hydrolysis with cocktail T leads to a 33 % decrease in xylan 

binding in FCTM but treatment with A enzyme left xylan unchanged. This observation is 

compatible with the detection of free xylose in the hydrolysate. Mannans were consumed 

to a greater extent in the softwood pulp. Changes in mannan surface coverage observed 

by FT CM for SK with T enzymes (a decrease of 40 %) were not indicated by hydrolysate 
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analysis, although a decrease in surface polymers does not necessarily lead to simple sugar 

release if the enzymes involved are also of endo-type. In this case, a drop in relative abun­

dance of mannan at the fiber surface cannot be revealed by a chromatographic analysis of 

simple sugars but is easily detected using FTCM. 

5.4.6 Surface polymer distribution after enzymatic treatments 

Here the quantity of each probe bound to surface is expressed as a percent of the 

total number of probes detected, removing from our assessment any general change in 

surface binding or availability for binding (such as the decrease in binding due to loss of 

high surface fragments in kraft pulps or change in sheet density as hypothesized earlier 

[68]). There rnight be sorne cross-reactivity among substrates and CBM15 (i.e. DC15 

binding mainly to xylan, but having sorne affinity toward cellulose). We found that the 

affinity of each probe for its main target surpassed affinity for a similar target by 10-fold 

or more [67, 68]. 

The proportions of polymers on the surface of pulps prior to enzymatic treatment 

are shown in Figure 5.7. As expected, given the nature of kraft pulping, the proportion of 

AC and CC on the surface of kraft pulps is higher than in CTM pulps, and although the 

number of cellulose-binding probes detected on the kraft pulps surface is less than what 

was detected on mechanical pulps, a greater proportion of the probes detected on the kraft 

pulps were cellulose-binding. Also, softwood exposed proportionally more mannan and 

hardwood more xylan, although the difference between hardwood and softwood was less 

pronounced for the mechanical pulps. Such distribution of hemicelluloses on the surface 

is compatible with bulk composition of fibers , and also compatible with the generally­

accepted understanding of softwood and hardwood hemicelluloses composition [17, 78]. 

In general, CC exposure detection was greater than that of AC regardless of wood or pulp­

ing, except for SK pulp, where amorphous (non-crystalline) regions exposure was twice 

the exposure of CC (the same trend was observed in Figure 5.4). 

Treatment with enzyme cocktail T, consistently left a larger proportion of CC on 

substrate surfaces, at the expense of AC at the fiber surface. An exception was for SK 
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pulp, where relative amount of AC probe remained stable regardless of enzymatic treat­

ment. SK pulp had the most balanced proportions of probe binding, and this equilibrium 

between various fractions was barely affected by hydrolysis with T enzyme cocktail. Be­

cause analysis of hydrolysates (Figure 5.3) revealed a significant release of simple su gars 

for SK pulp treated with T enzyme, aIl of the components must have been degraded 

equally during hydrolysis. Conversely, the relatively small yield of hydrolysate sugars 

from SK pulp after A enzyme treatrnent, correlated with nearly same balanced proportion 

of probe binding, means that SK pulp was not significantly degraded after A enzyme hy­

drolysis. 

Inspection of proportions and not individual probe binding allows reconciliation 

of apparent contradictions between the increase in CC in the SM pulp, shown in Figure 

5.6, and the low release of sugar after T enzyme treatment (Figure 5.3), because the pro­

portion of CC for SM is lower than in HK and HM pulps. 

Treatment with enzyme cocktail T results in decreased hemicellulose binding (in 

proportion to total binding) for all pulps, while treatment with enzyme cocktail A results 

probe signal proportions that are in between the control and enzyme T treated substrates. 

Enzyme A also left larger proportions of hemicelluloses on the surface of fibers at the 

expense of AC or CC. 
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Figure 5.7. Proportion (in percent) of each probe by treatment on the total 

probes content for each pulp 

The results presented here can be useful in predicting whether an enzymatic treat­

ment of a given biomass is well suited for a given application of wood biomass. For bio­

fuel production, for example, the hydrolysate analysis suggests that best conditions would 

involve using the most aggressive enzyme (T) with the most exposed fibers (kraft pulp). 

Absolute change in probe binding observed by FTCM confmned the reduction of cellu­

lose at the surface of fibers . FTCM analysis can also be useful for biofuel production, 

because it can provide precious information about the deconstruction of complex sub­

strates and can monitor the progressive removal of polymers, which permits the optimi­

zation of enzymatic treatments. For example, treatment with T enzymes left a higher num­

ber of CC binding sites on aH pulps tested here. FTCM would be instrumental in deter­

mining the operating conditions which allow for total digestion of CC with minimal costs. 
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FTCM could also provide information for partial hydrolysis of fibers for specific 

applications. Unlike other methods, such as hydrolysate analysis, chemical analysis, or 

XPS, FTCM can characterize the surface after treatment. This information can be used to 

select biomass stock and treatment that will yield the surface properties or composition 

needed for a given application. 

Enzyme T was the most effective for increasing the crystalline cellulose surface 

proportion and decreasing amorphous (non-crystalline) cellulose and hemicelluloses. A 

high production of CC was observed for CTM pulps, but kraft hardwood harbored the 

highest proportion of CC at surface after treatment. Treatrnent of HK with T enzymes 

would be more appropriate for production of purified cellulose products, such as nanocel­

lulose. Treatment with enzyme T would promote generating fiber surfaces (nanofibrillated 

cellulose) that are mechanically stronger, more chemically resistant, and less sensitive to 

humidity. These characteristics suggest applications like reinforcement in composite ma­

terials (in industries like transport, furniture or construction). 

Enzyme A is more selective than T. Its use resulted in a significant reduction of 

the proportion of AC on substrate surfaces while leaving mannan and xylan proportions 

relatively untouched. This enzyme mixture also hydrolyzed CTM more efficiently than 

kraft pulp. Enzyme A allowed the relatively reactive xylan and mannan polymers to be 

preserved, yielding a product which could be used to develop specialty paper products or 

insulation materials. The enzymatic treatment of kraft softwood pulp appears more rele­

vant for applications where an equilibrated distribution of amorphous (non-crystalline) 

cellulose and hemicelluloses is preferred. This includes paper products with controlled 

physical properties, although the strength of these paper products may be decreased by 

either enzyme. 

5.5 Conclusion 

FTCM can be used as a rapid, affordable and direct method to evaluate the surface 

composition of lignocellulosic substrates, thereby permitting pro cesses to be understood 

in terms of compositional changes on the substrate surface which could not otherwise have 
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been observed. Comparable methods for fiber analysis such as compositional analysis of 

the substrate after treatment (using FTIR, XPS) or of the hydrolysates (hydrolysis products 

content, using GC or HPLC), surface imaging (using SEM, TEM and AFM), index of 

crystallinity (using XRD and NMR) and mass balance calculations [64--{)6] cannot di­

rectly monitor processing by enzymatic action. The FTCM analysis presented here di­

rectly provided valuable information about the quantification of exposed amorphous (non­

crystalline) and crystalline cellulose, xylan and mannan, which could then be used to de­

termine the effects of pulping and enzymatic hydrolysis on the surface composition of 

substrates. The variation of these components at surface before and after treatment can 

guide strategies for preparation of wood fiber derived products. 
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5.7 Additional Files 

Additional fIle 5.1 Protein content and activities of the two commercial enzymes 

mixtures 

Enzyme cocktail T refers to CelluClast 1.5L from Trichoderma 
reesei and enzyme cocktail A refers to Carezyme 1000L from As­
pergillus sp. 

Characteristic Enzymes T Enzymes A 

Protein content (mg.ml"l) 55,42 10,85 

CMCase activity (IU.mg"l) 24,70 17,87 

Xylanase activity (IU.mg"l) 18,95 13,76 

Mannanase activity (IU.mg"l) 3,94 4,17 
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Additional file 5.4 Arithmetic average values (J1m) and standard deviations of fi­

ber widths for control Std, T and A enzymes treated pulps of 

different grades 

(HM) hardwood CTM pulp; (SM) softwood CTM pulp; (HK) hard­

wood kraft pulp and (SK) softwood kraft pulp. 
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Treated Pulps 

Additional file 5.5 Zero span breaking -1engtb (km) for control Std, T and A en­

zymes treated pulps of different grades 

(HM) hardwood CTM pulp; (SM) softwood CTM pulp; (HK) hard­

wood kraft pulp and (SK) softwood kraft pulp. 
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6.1 Abstract 

Pretreatment of LCB is a key step for its efficient bioconversion into ethanol. De­

termining the best pretreatment and its parameters requires monitoring its impacts at the 

surface of the biomass material because, for biochemical conversion, it is believed that 

pretreatment efficiency is linked to the surface exposure of cellulose (a Iso known as cel­

lulose accessibility). Here we used fluorescent protein-tagged carbohydrate-binding mod­

ules (method known as FTCM) to study the correlation between surface-exposed polysac­

charides and enzymatic hydrolysis ofLCB. FTCM was originally optimized for pulp and 

paper investigations. Hence, we adapted this approach to a FTCM-depletion assay for 

LCB suspension analysis and monitored the impact of three different pretreatments on 

alfalfa stover, corn crop residues, cattail stems and flax shives. Our results indicated that 

alkali-extrusion pretreatment led to the highest hydrolysis rates for alfalfa stover, cattail 

stems and flax shives, despite its lower lignin removal efficiency compared to alkali pre­

treatment. Corn crop residues were more sensitive to alkali pretreatments, leading to 

higher hydrolysis rates. A clear correlation was consistently observed between total sur­

face cellulose detected by the FTCM-depletion assay and biomass enzymatic hydrolysis. 

Changes in surface hemicelluloses did not reflect the hydrolysis yield, despite the presence 

of hernicellulases in the enzyme preparation used for this study. Comparison of biocon­

version yield and total composition analysis ofLCB prior to or after pretreatments did not 

show any close correlation. Lignin removal efficiency and total cellulose content led to an 

unreliable prediction of enzymatic polysaccharide hydrolysis. When considering surface 

crystalline cellulose and non-crystalline (amorphous) cellulose separately, we observed 

that increased exposure of non-crystalline cellulose lead to a faster, short term hydrolysis 

rate, while after 24 hours, the correlation with total surface cellulose (crystalline cellulose 

plus non-crystalline cellulose) was always prevailing, regardless ofbiomass or pretreat­

ment. FTCM-depletion assay provided direct evidence that cellulose exposure is the key 

determinant of hydrolysis yield. The clear and robust correlations that were observed be­

tween the cellulose accessibility by FTCM probes and enzymatic hydrolysis rates could 
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be evolved into a powerful prediction tool for the easy and efficient detennination of op­

timal biomass pretreatment strategies for biofuel production. 

6.2 Introduction 

Global production ofbiofuels from LCB is increasing steadily because such prod­

ucts are greener alternatives to fossil fuels. I
,2 For the production of biofuels from LCB, 

su ch as bioethanol, the principal goal is the complete hydrolysis of the polysaccharide 

components (mainly cellulose) in the raw material into monomers for subsequent fennen­

tation.3 Although LCB is a promising, abundant and renewable resource, the complete 

hydrolysis of its polysaccharides remains difficult. Indeed, it is difficult to treat plant bio­

mass due to its complex structure, which consists of cellulose fibrils wrapped in a network 

oflignin and hemicelluloses. This network, collectively referred to as the lignin-carbohy­

drate complex, is highly recalcitrant and difficult to modify.3,4 Consequently, several steps 

including pretreatments are needed to improve access to polysaccharides, mainly cellu­

lose, before it can be used in value-added applications. 5 

The main objective of pretreatments for subsequent biochemical conversion is to 

increase access to cellulose (also known as cellulose accessibility), which can later be 

hydrolyzed by enzymatic hydrolysis processes.5 However, pretreatments vary greatly in 

the way they help to expose cellulose. Physical pretrea~ents help reduce particles size 

and fiber crystallinity;6,7 alkali (and acid) pretreatments remove lignin and hemicelluloses, 

and can lead to loss of cellulose;s- IO solvent fractionation leads to disruption ofbiomass 

components with lesser impact on lignin, 11-13 while liquid hot water mainly rem oves hem­

icelluloses.14-1 6 Because of the variety oflignocellulosic composition found among feed­

stocks, not all feedstocks require the same pretreatment. 16,17 

An in-depth understanding of the impact of pretreatment on a particular biomass 

is believed to be a key issue for reducing costs associated with biofuel production. IS,19 

Indeed, pretreatment is the most important and costly step in biofuel production.20 Ac­

cordingly, optimizing pretreatment is part of on-going development efforts that will help 

the competitiveness of LCB-derived ethanol. Furthennore, any variation in such impact 
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(due to variation in feedstock properties, chemicals efficiency, mechanical wearing, 

changes in temperature and humidity) should be monitored on a continuous basis, or "on 

line" when feasible, in order to maintain optimal process operations. 

The effectiveness and impact of pretreatment on a biomass substrate can be mon­

itored using physical and chemical methods. Among them, the most commonly used are: 

compositional analysis (e.g., by NRELrrp-510-42618), scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray 

diffraction (XRD), Fourier transform spectroscopy (FTIR), nuclear magnetic resonance 

(NMR), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption, water swelling ca­

pacity etc.21-26 However, unfortunately, these methods are laborious (tedious sample prep­

aration and long analysis time), expensive and low throughpUt.2S-27 

One of the major difficulties in studying pretreatments and process parameters is 

the lack of rapid, high throughput and reliable tools for monitoring and/or tracking ligno­

cellulosic polymers at the surface of biomass. 28 A promising avenue involves the use of 

molecules that bind specifically to a target individual polymer, such as monoclonal anti­

bodies or carbohydrate-binding modules (CBMs). CBMs are more powerful and advanta­

geous as detection probes compared to others (such as chemical dyes, monoclonal anti­

bodies etc.) due to their high specificity towards the polysaccharide components of ligno­

cellulosic polymers.29-31 They are non-catalytic protein modules that are typically attached 

to glycoside hydrolases via a linker and whose function is to act as substrate-recognition 

devices thereby enhancing the catalytic efficiency of the se enzymes.29-3S They have been 

successfully employed for the characterization of fiber surfaces composed of simple and 

complex carbohydrates.29,36.37 Advances in applying CBMs as bioprobes were achieved 

by using CBMs fused to a fluorescence protein, such as the green fluorescent protein (GFP 

or any of its variants). 27,33,38 CBMs coupled with fluorescence protein have been used for 

mapping the chemistry and structure of various carbohydrate-containing substrates 

(LCB).27,38-41 Using fluorescent-tagged CBMs, Gao et al. (2014) and Hong et al. (2007) 

successfully quantified the change in crystalline and non-crystalline (amorphous) cellu­

loses accessibilities during enzymatic hydrolysis.33.39 
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Considering that the ability to directly and rapidly monitor changes to the surface 

ofLCB fibers after a pretreatment is essential, we developed a rapid and low-cost method 

to directly monitor the surface of wood fibers using selected CBMs. Named "Fluorescent 

protein-Tagged Carbohydrate-binding module Method", or FTCM, this method relies on 

the use of four specifie ready-to-use probes made of recombinant CBMs genetically linked 

to a designated fluorescent protein of the Green Fluorescent Protein (GFP) family.27,38,4o,41 

In these probes, the recombinant CBM part binds to a specifie component of the substrate 

surface. The fluorescence emitted by the GFP (or a selected derivative of GFP with dif­

ferent spectroscopie properties) permits rapid and specifie quantification of the probes 

bound to the surface. The fluorescence can be measured by using an ordinary fluorescence 

plate reader. We developed four fluorescent protein-tagged fusion proteins for FTCM: 

Probe GC3a, specifie to crystalline cellulose (made of the fluorescent protein eGFP and 

CBM3a); Probe CC 17, specifie to non-crystalline cellulose (fluorescent prote in mC linked 

to CBM 17); Probe OC 15, specifie to xylan (composed of mOrange2 and CBMI5); and 

Probe CC27, specifie to mannan (a chimera made of eCFP and CBM27). Probes produc­

tion and characterization (spectroscopie maxima, affinity to related substrate, and discrim­

ination among substrates) were described in our earlier reports.27,38,40 

We successfully used FTCM for monitoring mechanical, chemical and enzymatic 

treatment on many wood biomass samples.27.38.40.41 This allowed us to detect layers of 

polysaccharides as they were exposed by treatments (mechanical, chemical and enzy­

matic),27 confmning existing models of the location ofmannan and xylan in relationship 

to cellulose and lignin. 38 An investigation of pulp treatments and papers produced from 

such pulps allowed us to correlate FTCM probes binding with paper properties.40 Re­

cently, the potential of FTCM as a powerful surface analysis method was demonstrated 

using pulps treated with different enzymes. It promoted prediction ofbiomass compatibil­

ity and enzymatic treatments with related target bioproducts, such as nanocellulose pro­

duction, composites or new paper products. 41 Throughout these studies, FTCM was shown 
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to be more informative than X-ray photoelectron spectroscopy (XPS) and total composi­

tion analysis (using NREUTP-5 10-4261 8),27,40 because it specifically detects surface cel­

lulose and hemicelluloses separately. 

In this study, we explored the applicability and adaptability of FCTM to the study 

ofLCB pretreatments in a biofuel production perspective. To this end, four LCB residues 

with varying lignin and cellulose contents (alfalfa stover, corn crop residues, cattail stems 

and flax shives) and three well established pretreatments (liquid hot water, alkali and al­

kali-extrusion) were selected. To characterize suspensions of biomass fibers (untreated 

(hereafter named raw) and after various pretreatments), we used an adaptation ofFTCM 

(named FTCM-depletion assay) and investigated the correlations between FTCM probes 

binding and enzymatic production of reducing sugars. 

6.3 Materials and methods 

6.3.1 Chemicals, microbial strains and LCe 

Unless otherwise noted, all chemicals were reagent grade and purchased from 

Sigma-Aldrich and/or Fisher Scientific. Escherichia coli XLlO cells (Agilent Technolo­

gies) were used for all DNA manipulations while E. coli BL21-Gold(DE3)pLysS compe­

tent cells (Agilent Technologies) were used for recombinant protein expression. Samples: 

a-cellulose (C8002; Sigma-Aldrich) and Avicel PH-I05 microcrystalline cellulose (FMC 

corporation) were used as positive controls, whereas lignin (370959; Sigma-Aldrich) was 

used as a negative control for this study. Regenerated amorphous cellulose (RAC) was 

prepared from Avicel PH-I05 microcrystalline cellulose as described by Zhang et al. , 

2006.42 Four different LCB were used in this study to quantify and compare the lignocel­

lulosic composition and their enzymatic hydrolysis. These LCB were derived from alfalfa 

(Medicago sativa) stover provided by TH-Alfalfa Inc (Quebec, Canada), corn (Zea mays) 

crop residues provided by Ferme Olivier and Sébastien Lépine of Agrosphère Co . (Que­

bec, Canada), cattail (Typha) stems provided by International Institute for Sustainable De-
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velopment (IISD) (Manitoba, Canada) and flax (Linum) shives provided by SWM inter­

national (Manitoba, Canada). Accellerase® DUET (Dupont Industrial Biosciences, USA) 

was used in this study to hydrolyse LCB. Carboxymethyl cellulose sodium salt (CMC; 

C5678; Sigma), 4-nitrophenyl-~-D-glucopyranoside (pNPG; Sigma) and arabinoxylan 

(ABX; Megazyme) were used for enzymatic activity measurements using the 3,5-di­

nitrosalicylic acid (DNS) method.43 The activities of Accellerase® DUET enzyme deter­

mined using commercial substrates are presented in Additional file 6.1. Carboxymethyl 

cellulose sodium salt (C5678; Sigma), xylan from beechwood (X4252; Sigma) and galac­

tomannan (P-GALML; Megazyme) were used for affinity gel electrophoresis (AGE). Xy­

lohexaose (O-XHE; Megazyme), mannohexaose (O-MHE; Megazyme) and cellohexaose 

(O-CHE; Megazyme) were used for determination of the probes affmity using isothermal 

titration calorimetry (ITC). 

6.3.2 Construction, expression and purification of fluorescent-tagged car­

bohydrate-binding module probes 

Four different fluorescent protein-tagged carbohydrate-binding modules were 

used in this study. The fluorescent prote in genes (eGFP, mOrange2, mCherry and eCFP) 

and CBM genes (CBM3a, CBMI7, CBM15 and CBM27) were cloned into the pETlla 

expression vectors. AlI gene fusions were sequenced to ascertain the integrity and fidelity 

of the probes. The resulting probes eGFP-CBM3a (GC3a), mCherry-CBM17 (CCI7), 

mOrange2-CBMl5 (OCI5) and eCFP-CBM27 (CC27) were used to detect crystal li ne cel­

lulose, non-crystalline cellulose, xylan and mannan, respectively. The detailed infor­

mation about these recombinant probes is described in Additional file 6.2. Expression 

systems, production and purification of all the four probes used in this study are described 

in our previous studies.27,40 Probe purity was assessed by SDS-PAGE (Additional file 6.3). 

The amount ofproteins was quantified by the Bradford method.44 
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6.3.3 Determination of probes affinities and specificities 

CBM probe affinities and specificities towards soluble and insoluble polysaccha­

rides, and soluble hexasaccharides, were determined using affmity gel electrophoresis 

(AGE), solid state depletion assay (SSDA) and isothermal titration calorimetry (lTC), re­

spectively (Additional files 6.4 and 6.5). SSDA was used to measure the binding affinities 

of GC3a and CC 17 probes using the insoluble polysaccharides A vicel and RAC. Experi­

mental conditions for AGE, ITC and SSDA are described in Khatri et al., 2016 and 2018 

and Hébert-Ouellet et al., 2017.27
,38,40 Experiments were performed in triplicate. 

6.3.4 LeB preparation and pretreatments 

The LCB residues underwent various pretreatment processes to either partially or 

completely remove hemicelluloses and/or lignin. AlI four raw LCB named: alfalfa stover 

(AR), corn crop residues (CoR), cattail stems (CaR) and flax shives (FR) were subjected 

to three different treatments: 1) liquid hot water 2) alkali and 3) alkali-extrusion. The pre­

treatment conditions were as followed: 1) For liquid hot water pretreatment, 10% (w/v) of 

LCB were mixed with water and held at 121°C and 15 Psi for 60 minutes using a labora­

tory scale autoclave. This pretreatment essentially removes the hemicelluloses. 2) For al­

kali pretreatment, 10% (w/v) ofLCB were mixed with 5% NaOH and held at 121°C and 

15 Psi for 60 minutes using an autoclave. This pretreatment removes a significant portion 

of both lignin and hemicelluloses. 3) For alkali-extrusion pretreatment, LCB were sub­

jected to reactive extrusion fractionation using an E-max 27 mm twin-screw extruder 

(Entek Extruder, OR, US) using 5% NaOH a speed of 200 rpm at 180°C. This pretreat­

ment substantially helps to break the fiber walls, causing them to release their main com­

ponents (cellulose, hemicelluloses and extractives), which are bound together by lignin. 

This pro cess also removes (partially) the lignin and hemicelluloses.4s After each pretreat­

ment, aH the samples were washed 8-10 times with distilled water at room temperature 

until the filtrate becomes clear. These pretreated sample residues were dried at 50°C for 

48 hours to ensure a moisture content of <2%. They were then ground and passed through 

a 2-mm-mesh sieve. 
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6.3.5 Determination of cellulose, hemicellulose and lignin content 

The National Renewable Energy Laboratory (NREUTP-510-42618) standard 

method described by Sluiter et 01., 200821 was used to determine the quantitative compo­

sition of cellulose, hemicellulose and acid insoluble lignin content in a-cellulose, A vicel 

and in the different raw and pretreated LCB. The hydrolyzed monosaccharides contents 

of a-cellulose, Avicel and LCB (raw and pretreated) were determined by ion-exchange 

chromatography (ICS-5000, Dionex) and detection was performed using an electrochem­

ical detection cell (combined pH-Ag/AgCl reference electrode). Each experiment was 

conducted at 40°C with 1 mUmin isocratic elution ofNaOH (1 mM) on a Dionex Car­

boPac SA 1 0 (250 x 4 mm) column coupled with a Dionex CarboPac PA 1 00 (50 x 4 mm) 

guard column. Data analysis was performed using Dionex Chromeleon 7 software. Ex­

periments were performed in triplicate. 

6.3.6 Enzymatic treatment of LCS 

The enzymatic hydrolysis of substrates (a-cellulose, A vicel and LCB all set at 5% 

w/v) were carried out using Accellerase® DUET enzyme (0.25 mL/g) in 0.05 M of citric 

acid buffer at pH 4.4. Each enzymatic hydrolysis was performed over 144-hoUT (6 days) 

period at 55°C with continuous agitation at 200 rpm. An aliquot (1 mL) of the enzymatic 

reactions were collected every 24th houc. All the aliquots were centrifuged at 4000 rpm 

for 1 minute and the supematant was then transferred to a clean tube before storing them 

at -20°C until the analysis of total reducing sugar. The release of the total reducing sugars 

was measured using the 3,5-dinitrosalicylic acid method (DNS) as described by Miller, 

1959Y AlI absorption readings (at 540 nm) were typically performed in triplicates for a 

statistical significance. 

6.3.7 Quantification of the variations of the carbohydrates on the surface of 

LCS uslng FTCM-depletion assay 

The FTCM-depletion assay is a modified version of the FTCM methodology de­

scribed by Khatri et al., 2016 and 201827
,38 and Hebert-Ouellet et al., 2017,40 which is 
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adapted from a SSDA.46,47 SSDA has been defined as a method for qualitative and quan­

titative assessment of the interaction between CBMs and insoluble polysaccharides.46
,48 

Insoluble polysaccharide substrates (o.-cellulose or Avicel or LCB) were prepared by 

weighing 25 mg of dry powder and suspending it in Eppendorf tubes. To keep polysac­

charides suspende d, the reactions were performed under constant tumbling in a 20 Tris­

HCI pH 7.5 buffer containing 20 mM NaCI, 5 mM CaCh and 3% (w/v) bovine serum 

albumin (BSA). Reaction series were set up with identical substrates amounts (2.5% w/v) 

and identical CBM probe concentrations (0.5~g/~L) of either GC3a, CC17, DC15 and 

CC27 (for the detection of crystalline cellulose, non-crystaHine cellulose, xylan and man­

nan, respectively). Following an hour incubation under constant tumbling at room tem­

perature, aH the reactions were centrifuged (20,000 x g for 5 minutes) to separate solid 

and liquid phase. The supernatant was then removed and quantitatively analyzed by fluo­

rescence spectroscopy. A volume of 200 ~L of each reaction supernatant samples were 

transferred into a 96-wells, black microplate (Co star, Corning Life Sciences). Later, fluo­

rescence measurement of supernatants, containing unbound probes or free probes (F Free), 

were acquired using a Synergy Mx microplate reader (BioTek) with the end point feature 

active and the filters bandwidth set at 9 mm. Fluorescence intensities (total (F Total) and 

background (FBackground) ) were measured using the reaction set containing CBM probes 

without polysaccharides and polysaccharides in buffer (without CBM probes), respec­

tively. The excitation and emission wavelengths for measuring fluorescence intensities of 

fluorescent-tagged CBM probes were set at 488 and 510 nm, 587 and 610, 549 and 568 

nm and 434 and 477 nm for GC3a, CCI7, OCl5 and CC27, respectively. The fluorescence 

intensities of bound probes (FBollnd) to the o.-cellulose, Avicel, raw and pretreated LCB 

were calculated using the following equation: 

F BOllnd = F Total - (F F,'ee - F Background) 

These fluorescence values were then converted into ~moUg of substrate using the appro­

priate fluorescence standard curves for each probe (Additional file 6.6), Control experi­

ments using FTCM probes without substrates, and substrates without FTCM probes, were 
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carried out in order to evaluate and eliminate non-specific fluorescence emission contri­

butions to final FTCM signaIs. AU reactions were performed in triplicate. 

6.3.8 X-ray diffraction (XRD) 

X-ray diffraction patterns of a-cellulose and Avicel samples were recorded with 

an X'Pert PRO X-ray diffractometer (PANanalytical) at room temperature from 10 to 

60°C, using CulKa irradiation (1.542 A) at 45 kV and 40 mA. The scan speed was 

0.021425° S·1 with a step size of 0.0167°. CrystaUinity index (CrI) was calculated using 

the peak intensity method49
: 

CrI = (/002 - /am)//002 x 100 

Where /002 is the intensity of the peak at 2e = 22 .5° and /am is the minimum intensity, 

corresponding to the non-crystalline content, at 2e = 18°. 

6.4 Results and Discussion 

6.4.1 Adaptation of FTCM to a depletion assay for Investigation of biomass 

suspensions 

As described earlier, FTCM method was designed to perform monitoring surface 

composition of pulp and paper samples.27,38,40,4 1 The original method relies on the for­

mation of a fiber sheet to which probes are allowed to bind. Then, fluorescence measure­

ments of bound probes on drained sheets are recorded and converted into number of 

probes bound per surface area (typically square mm). Here we adapted the method to bi­

omass suspension analysis, and recorded unbound probe fluorescence in what is hereafter 

referred to as a "FTCM-depletion assay". This adaptation of FTCM to suspension meas­

urements was tested by simple control experiments with well characterized cellulose prep­

aration. To this end, we used two different commercialized cellulose having different crys­

tallinity index (CrI) : a-cellulose (CrI = 62%) and Avicel (CrI = 81 %). Avicel has a higher 

crystallinity index as a consequence of a lower content of non-crystalline cellulose than 

a-cellulose.5
0,51 The binding of all four probes to the se purified cellulose preparations are 
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represented in Figure 6.lA. The surface analysis by the FTCM-depletion assay clearly 

shows the domination of crystalline cellulose at surface of both a-cellulose and A vicel 

samples. The non-crystalline cellulose specifically recognized by CC17 probe was found 

in smaller amount, but it was higher in a-cellulose when compared to Avicel, which is 

compatible with their crystallinity index. Binding of CC17 was more important for a­

cellulose compared to binding to Avicel, indicating that adaptation of the FTCM probes 

to a solid-state depletion assay performed adequately. 

No binding of probes OClS and CC27 were detected for Avicel while very low 

binding ofOC15 (xylan specifie probe) was detected in a-cellulose. This is fully compat­

ible with the high purity of such cellulose preparations and the sensitivity of FTCM-de­

pletion assay. We then added the binding of GC3a and CC 17 to represent total cellulose 

surface exposure or cellulose accessibility to probes; likewise, OC 15 and CC27 binding 

were added to obtain total hemicelluloses accessibility at surface. 

Total cellulose surface exposure was found to be higher in a-cellulose compared 

to Avicel (Figure 6.lB). The total composition analysis (NRELrrp-5l0-426l8) of such 

cellulose preparations also confirmed that both were mainly composed of cellulose in the 

bulk, without information on their exposure at surface (Figure 6.1 C). After demonstrating 

that adaptation of FTCM probes to FTCM-depletion assay worked well with such simple 

cellulose preparations (positive controls), we then applied it to purified lignin (negative 

control). Non-specific binding ofCBMs to lignin was reported earlie~2-54 and such a phe­

nomenon would affect FTCM-depletion assay reliability. No binding was observed be­

tween FTCM probes and lignin under our assay conditions (data not shown), possibly a 

consequence of our blocking strategy that specifically minimizes non-specific probe bind­

ing or adsorption. 13,38,40,53,55 It has been reported that cellulose crystallinity plays a key 

role to determining the enzymatic hydrolysis rate of a biomass: crystalline cellulose was 

shown to be more resistant to the enzymatic hydrolysis compared to non-crystalline cel­

lulose.51,56-60 
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Figure 6.1 Tracking surface accessibility of lignocellulosic components in a-cellu­

lose and Avicel using FTCM-depletion assay (A, B) and total composi­

tion analysis using NRELffP-510-42618 method (C) 

A) a-cellulose and Avicel were incubated with the GC3a probe (0.5 f.1g/f.1L; 
for crystalline cellulose detection), CCl7 probe (0.5 f.1g1f.1L; for non-crys­
talline cellulose detection, OC 15 probe (0.5 f.1g/f.1L; for xylan detection) and 
the CC27 probe (0.5 f.1g/f.1L; for mannan detection) for Ih at room temper­
ature under tumbling agitation. The fluorescence values were converted to 
bound probes (f.1moV g ofbiomass) by using the standard curves (Additional 
file 6.6). Green, cherry, orange and cyan color represents the GC3a, CCI7, 
OCl5 and CC27 probes detection, respectively. B) The addition of the 
binding ofGC3a and CC I7, from Figure 6.1A, represents the total cellulose 
(GC3a + CCI7) and the addition of the binding ofOCl5 and CC27, from 
Figure 6.1A, represents the total hemicelluloses (OCI5 + CC27). C) Total 
composition analysis of a-cellulose and A vicel using standard NRELfTP-
510-42618 method. 

Therefore, in order to detect possible correlations between the binding of FTCM­

depletion assay probes and carbohydrate conversion (reducing su gars released by enzy-
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matic hydrolysis), we studied the enzymatic hydrolysis ofboth commercial cellulose prep­

arations using Accellerase® DUET enzyme. a-cellulose showed a higher rate of carbohy­

drate conversion than Avicel (Figure 6.2A). The results also show a robust correlation 

with the total surface cellulose detected by FTCM-depletion assay and carbohydrate con­

version (Figure 6.2B) which is in full agreement with their crystallinity index. 
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Figure 6.2 Comparison of hydrolysis and surface polysaccharide detected by 

FTCM-depletion assay 

A) Enzymatic hydrolysis of a-cellulose and A vicel. B) Surface polymer 
detection by FTCM-depletion assay and its correlation with the percent car­
bohydrate conversion after 96 hours of enzymatic hydrolysis of a-cellulose 
and Avicel. 

6.4.2 Tracking surface accessibility of lignocellulosic components in Lee 

Four types of biomass were used in this study: alfalfa stover, corn crop residues, 

cattail stems and flax shives. Prior to performing any pretreatments, these biomasses were 

investigated to determine differences in the lignocellulosic polymer content and their ex­

posure at the fiber surface via FTCM-depletion assay. The binding of aIl four probes are 

represented in the Figure 6.3A. We added the binding of GC3a and CCl7 to represent 

total cellulose (GC3a + CC17) and added OC15 to CC27 signaIs in order to represent total 

hemicelluloses (OC15 + CC27) (Figure 6.3B). The surface analysis by the FTCM-deple­

tion assay indicates the dominance of hemicelluloses in all the raw biomass studied here, 
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except for corn crop residues (CoR). Further, the total cellulose surface exposure was 

found to be higher in both corn crop residues (CoR) and cattail stems (CaR) compared to 

other biomasses. 

The total composition analysis of biomass was also conducted using standard 

NREL method (NRELfTP-51 0-42618) for comparison. The total composition analysis of 

biomass indicates the dominance of cellulose (Figure 6.3C) and confirms the earlier ob­

servations that cellulose dominates hemicelluloses by nearly two-fold, and that the lignin 

content is similar to hemicelluloses, in these LCB residues.61
-64 The picture at the fiber 

surface is different: probe binding indicates that hemicelluloses dominate at surface of 

such biomass preparations (probably in the form of lignin-hemicelluloses complexes) 

which is compatible with the typical organization of plant cell wall ultrastructure.65 

The accessibility of lignocellulosic polymers is an important substrate characteris­

tic that influences the enzymatic hydrolysis rates.39
•
66

-68 Based on a previous study ofCBM 

adsorption to cellulose, it has been shown that enzyme access to cellulose was determinant 

for saccharification yield.39 Here, by using multiple CBM probes on diverse biomasses 

we address surface exposure of various polysaccharides, not only cellulose, which might 

reflect on enzymatic efficiency of multi-enzyme commercial cellulase formulations. 

In this context, we studied the enzymatic hydrolysis of the raw biornass in order to 

establish a correlation between the binding of FTCM-depletion assay probes to biomass 

and the hydrolysis of polysaccharide into soluble reducing sugars. Without any pretreat­

ment, the raw LCB residues were exposed to Accellerase® DUET cellulase preparation 

and then the release of reducing su gars was measured over time (Figure 6.4A). 
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510-42618 method and their correlation with the percent carbohydrate con­
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LCB. 

The result showed that highest rates of carbohydrate conversion were detected with 

corn crop residues (CoR) and cattail stems (CaR) biomass (Figure 6.4A). Comparing the 

binding of FTCM-depletion assay probes with the percent carbohydrate conversion re­

veals that the total cellulose content at the surface (as revealed by FTCM-depletion assay) 

was correlated with reducing sugar production (Figure 6.4B). No correlation was observed 

between the total hemicelluloses (as revealed by FTCM-depletion assay) and the percent 

carbohydrate conversion. AIso, there was no clear trend in total composition analysis, 
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which would explain the high rates of hydrolysis measured for corn crop residues (CoR) 

and cattail stems (CaR) biomass (Figure 6.4C). The results suggest that the lignocellulosic 

polymers accessibility monitored by FTCM probes can be used to predict the efficiency 

of enzymatic hydrolysis for such crop and herbaceous residues. 

6.4.3 Tracking surface accessibility of lignocellulosic components in pre­

treated Lee 

Subsequently, we also investigated the impacts of various pretreatments on bio­

mass. AlI four types of LCB were exposed to three different pretreatments: liquid hot 

water, alkali and alkali-extrusion. Biomass (raw and pretreated) were first analyzed for 

their total polymer contents (using NRELffP-510-42618 method) as shown in Additional 

file 6.7. When comparing to raw biomass, all pretreatments lead to a decrease in hemicel­

luloses, while lignin was only removed from fibers treated with alkali and alkali-extrusion 

treatments. These results are consistent with earlier observations on the general impact of 

liquid hot water, alkali and alkali-extrusion on plant fibers .45,69-73 The goal of a pretreat­

ment is to make cellulose more accessible to the enzymatic hydrolysis, which leads to 

improved yield and decreased processing costs.5 From total composition analysis, one can 

reasonably infer that more cellulose will become available at the fiber surface when lignin 

and/or hemicelluloses are removed from biomass. But su ch an interpretation of pretreat­

ment impact is indirect: total composition analysis does not interrogate fiber surface prop­

erties (such as cellulose accessibility). 

The impact of pretreatments on the surface exposure of lignocellulosic polymers 

was studied using FTCM-depletion assay probes. When compared with raw biomasses, 

alkali pretreated biomass led to the highest loss in surface hemicelluloses, followed by the 

alkali-extrusion pretreated samples (Figure 6.5). 
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Figure 6.5 Tracking surface accessibility of lignocellulosic components of un­

treated (raw) and pretreated LCB using FTCM-depletion assay 

A) alfalfa stover B) corn crop residues C) cattail stems and D) flax shives. 

The impact of alkali pretreatment led to significant (5-fold or more) removal of 

hemicelluloses at the surface of alfalfa stover, corn crop residues, cattail stems and flax 

shives. The hemicelluloses removal was accompanied by a moderate increase (less than 

2-fold) in the accessibility of cellulose at the surface of all LCBs (Figure 6.5). Regarding 

alkali-extrusion pretreatment, the hemicelluloses detection was reduced by a lesser extent 

than with alkali and cellulose was increased by about 2-fold for aU LCBs (Figure 6.5). 

The individual binding of aU the four probes to LCB are represented in Additional file 6.8. 

The results from FTCM-depletion assays provide strong support for the contention that 

cellulose accessibility at surface has been increased after both alkali and alkali-extrusion 

pretreatments. Possible correlations between the biomass pretreatments and the hydrolysis 

efficiency were also explored. Polysaccharide hydrolysis is presented in Figure 6.6 for aU 

the raw and pretreated biomasses. 
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Figure 6.6 Enzymatic hydrolysis of the untreated (raw) and pretreated LCB 

A) alfalfa stover B) corn crop residues C) cattail stems and D) flax shives. 

For alfalfa stover, maximal carbohydrate conversion was detected for alkali-extru­

sion pretreated biomass (AB), followed by alkali pretreated biomass (AN) (Figure 6.6A). 

Similar trends were observed for both cattail stems and flax shives biomasses, where max­

imal carbohydrate conversion was observed for alkali-extrusion pretreated (CaE and FE) 

biomass (Figure 6.6 C and D). In the case of corn biomass, alkali pretreatment (CoN) led 

to the highest conversion into reducing su gars, followed by alkali-extrusion (CoE) pre­

treatment of corn crop residues (Figure 6.6B). 

Figure 6.7 provides a direct comparison of probe binding and production ofreduc­

ing sugars after 96 hours. Conversion to reducing sugars by enzymes is clearly correlated 

with total cellulose at the fiber surface (GC3a + CCI7) observed by FTCM-depletion as­

say, for all biomasses and aIl pretreatments. However, there is no su ch correlation between 

reducing sugar production and any polymer content variation shown by total composition 

analysis (using NRELlTP-51 0-42618 method) (Additional file 6.9). 
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Correlation between carbohydrate conversion at 96h and total surface 

cellulose detected by FTCM-depletion assay 

A) alfalfa stover, B) corn crop residues, C) cattail stems and D) flax shives. 

The correlation between exposed total cellulose and conversion into reducing sug­

ars after 96 hours did not prevail for aIl hydrolysis periods. Detailed examination of Figure 

6.6B revealed that alkali-extrusion pretreated corn crop residues (CoE) has a higher car­

bohydrate conversion rate in the first 24 hours of incubation compared to the alkali pre­

treated sample (CoN). Carbohydrate conversion at 24 hours did not correlate well with the 

total cellulose content (GC3a + CCI7) observed by FTCM-depletion assay, as shown in 

Additional file 6.10, while it was clearly correlated after 96 hours (Figure 6.7). The initial 

phase of carbohydrate release over 24 hours did, however, correlate with the exposure of 

the non-crystalline cellulose at surface (detected using CCI7), which was maximal for 

alkali-extrusion pretreated biomass (Figure 6.8). 
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Correlation between carbohydrate conversion at 24h and non-crystal­

line cellulose detected by FTCM-depletion assay 

A) alfalfa stover, B) corn crop residues, q cattail stems and D) flax shives. 

We also observed the same correlation between surface-exposed non-crystalline cellulose 

and early digestion ofpolymers for raw cattail stems (CaR) and liquid hot water pretreated 

cattail stems (Ca W) biomass (Figure 6.6C and Figure 6.8). 

Comparison of the biomass hydrolysis results indicates that FTCM-depletion as­

say corroborates the preferential digestion of non-crystalline cellulose in early phase of 

hydrolysis, and that past this fIrst phase, the yield becomes dependent on total cellulose 

exposure. To our knowledge, there are no other methods available for biomass fIber track­

ing and characterization that can directly and unambiguously demonstrate the sequential 

removal ofvarious forms of cellulose as hydrolysis progresses. 

As described earlier, CUITent analytical methods to study the pretreatment effi­

ciency are cumbersome and cannot unambiguously predict their impact on bioconversion 
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yield. In contrast, our results suggest that FTCM-depletion assay, which is rapid and af­

fordable, provides an unarnbiguous approach for direct assessment of surface-exposed 

cellulose, which correlates very weIl with the enzymatic hydrolysis of all biomass-pre­

treatment combinations studied here. Regarding the total composition analysis 

(NREUTP-510-42618), a decrease in totallignin content and an increased cellulose con­

tent (i.e. alkali and alkali-extrusion pretreatrnent) generally lead to increased hydrolysis 

efficiency. But the correlation did not apply to aIl biomass-pretreatment combinations, 

and would be less reliable when optimizing or predicting pretreatment efficiency. 

Thus far, several studies have addressed the possible association of lignin content, 

crystallinity, degree ofpolymerization, porosity, enzyme adsorption and cellulose acces­

sibility to enzyme with bioethanol production yield. In some of the se studies, cellulose 

accessibility to cellulase has been shown to be an important factor for achieving a high 

scarification yield. 13,19,39 However, these studies neither look for both non-crystalline cel­

lulose and hemicelluloses, nor introduced a possible correlation between cellulose acces­

sibility and sugar yield as a prediction indicator for pretreatment selection. In this study, 

by using multiple CBM probes we can monitor surface exposure of various polysaccha­

rides, not only crystalline cellulose, which might reflect on enzymatic efficiency ofmulti­

enzyme commercial cellulases and on a LCB with higher hernicellulose content. Even 

though Accellerase® DUET contains hemicellulases activities, FTCM-depletion assay 

did not show any strong correlation between surface hemicelluloses and hydrolysis yield. 

However, binding ofFTCM probes allowed to directly monitor hernicellulose removal at 

surface, in support of the expected impact of pretreatrnents used here. 

6.5 Conclusion 

Adaptation ofFTCM method to a FTCM-depletion assay allowed analyzing sur­

face exposure of polysaccharides of various LCB sarnples. The results suggest that sur­

face cellulose (total and non-crystalline) were strongly correlated with production ofre­

ducing sugars by hydrolysis, in a much better way than with totallignin and/or total cel-
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lulose content (using NRELrrP-5l0-426l8 method) ofLCB. The clear and robust corre­

lations that were observed here, between the polysaccharides accessibility by FTCM 

probes and enzymatic hydrolysis of the biomasses, can be evolved into a powerful pre­

diction tool for the simple, rapid and efficient determination of optimal biomass and pre­

treatment strategies for bioenergy production (one hundred sarnples can be analyzed in 

less than 2 hours with FTCM-depletion assay). 

List of abbreviations 

LCB: Lignocellulosic biomass; R: Raw lignocellulosic biomass; W: Liquid hot water pre­

treatment; N: Alkali pretreatment; E: Alkali-extrusion pretreatment; AR: Raw alfalfa 

stover; CoR: Raw corn crop residues; CaR: Raw cattail stems; FR: Raw flax shives; AW: 

Alfalfa stover pretreated by liquid hot water; AN: Alfalfa stover pretreated by alkali; AE: 

Alfalfa stover pretreated by alkali-extrusion; CoW: Corn crop residues pretreated by liq­

uid hot water; CoN: Corn crop residues pretreated by alkali; CoE: Corn crop residues 

pretreated by alkali-extrusion; CaW: Cattail stems pretreated by liquid hot water; CaN: 

Cattail stems pretreated by alkali; CaE: Cattail stems pretreated by alkali-extrusion; FW: 

Flax shives pretreated by liquid hot water; FN: Flax shives pretreated by alkali; FE: Flax 

shives pretreated by alkali-extrusion; AGE: Affinity gel electrophoresis; BSA: Bovine se­

rum albumin; CBM: Carbohydrate-binding module; CBM3a: Farnily 3a carbohydrate­

binding module; CBM17: Family 17 carbohydrate-binding module; CBM15: Farnily 15 

carbohydrate-binding module; CBM27: Family 27 carbohydrate-binding module; CMC: 

Carboxymethyl cellulose; eGFP: Enhanced green fluorescent protein; mOrange2 : Mono­

meric orange2; mCherry: Monomeric cherry; CFP: Cyan fluorescent protein; GC3a: 

Green fluorescent protein linked to a family 3a carbohydrate-binding module; CC17: 

mCherry fluorescent protein linked to a family 17 carbohydrate-binding module; OC15: 

mOrange2 fluorescent protein linked to a farnily 15 carbohydrate-binding module; CC27: 

Cyan fluorescent protein linked to a family 27 carbohydrate-binding module; NREL: Na­

tional Renewable Energy Laboratory; DNS: 3,5-dinitrosalicylic acid; ITC: Isothermal ti­

tration calorimetry; SDS-PAGE: Sodium dodecyl sulfate-polyacrylamide gel electropho-
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resis; SSDA: Solid state depletion assay; FTCM: Fluorescent protein-tagged carbohy­

drate-binding module method; RAC: Regenerated amorphous cellulose; pNPG: 4-nitro­

phenyl-p-D-glucopyranoside; ABX: Arabino-xylan. 
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6.7 Additional Files 

Additional fIle 6.1 Specifie aetivities of AeeeUerase® Duet enzyme 

Endoglucanase (CMC) 

~-Glucosidase (pNPG) 

Xylanase (ABX) 

Specifie aetivities (U/g) 

2400-3000 

>400 

>3600 
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Additional file 6.2 Information related to the construction of recombinant FTCM-depletion assay probes 

Probes CBM CBMgene 

(abbreviations) family accession Protein FoldlPDB_ID Organism Target References 
number 

Endo-~-1 ,4-glu- Lehtio et 
canase 1 

~-Sandwich / Clostridium 
al.,2003 ;74 

eGFP-CBM3a (CelI; Crystalline Yaniv et al., 
(GC3a) 

3a CPOO0568 
Cthe_0040) 

4B9F Thermocellum 
cellulose 2013 .75 

(M) ATCC27405 
, 

(CeI9I) CBM31 Tormo et al., 
CBM3a/CipA 199676 

Notenboom 

mC-CBM17 
Endo-~-l , 4-glu- ~-Sandwich / Clostridium 

Non-crystal-
et al.,2001 ;77 

17 U37056 canase EngF lJ83 Cellulovorans Boraston et 
(CC17) 

(CelSA) (M) ATCC484 
line cellulose 

al. ,2000 and 
200378,79 

mOrange2-CBM15 Xylanase F 
~-Sandwich / 

Cellvibrio Szab6 et al., 
(OC15) 

15 Z48928 
(XynIOC) 

IGNY 
japonicas 

Xylan 
2001 80 

(M) 

~-Sandwich / 
Boraston et 

eCFP-CBM27 ~ -mannanase Thermotoga al., 2003 ;81 
27 Yl7980 IOF4 Mannan 

(CC27) (ManS) 
(M) 

Maritima MSB8 Parker et al. , 
2001 82 

eGFP: enhanced green fluorescent protein; mC: mono-cherry; mOrange2: Mono-orange2 and eCFP: enhanced cyan fluorescent 
protein; M: Metal binding 
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A 1:1). B 1:1). CC 17 

75 

50 
50 

37 
37 

1:1). OCIS D 1:1). CC27 

Additional fIle 6.3 SDS-PAGE analysis ofthe probes after purification 

A) GC3a, B) CCI7, C) OCl5 and D) CC27 probes. The expected 
molecular weight of the GC3a, CCI7, OCl5 and CC27 fusion pro­
teins are 46.26, 50.56, 44.68 and 48.06 kDa, respectively. A 12% 
polyacrylamide gel was used for SDS-PAGE analysis. WeIl M: Pre­
cision plus prote in standards (5 f-lg); WeIl GC3a, CCI7, OCl5 and 
CC27: Purified probes (10 f-lg). 
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b d 

A n 

Co.trot CMC Xylan GalaclomlDD.D Control CMC Xyl.. Galadomll.naD 

d 

c 

CODlrol CMC Xyba Galadom.anan 

Additional me 6.4 Affmity gel electrophoresis (AGE) of the probes 

A) CC17, B) OC15 and C) CC27 probes. Panel a: control (no pol­
ysaccharide); Panel b: CMC; Panel c: xylan; Panel d: galactoman­
nan. In each panel the first weB contained BSA as a negative control 
(10 Ilg) and the second well was loaded with an appropriate probe 
(10 Ilg). All soluble polysaccharides were used at final concentra­
tion of 0.5% (w/v) and a 12% polyacrylamide gel was used for af­
finit Y analysis. 
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Additional flle 6.5 Adsorption parameters and affmities of the binding of probes 

to various substrates 

Interaction with A vicel, regenerated amorphous cellulose (RAC) 
and various hexaoses was determined by SSDA and ITC in 20 Tris-
HCI pH 7.5 containing 20 mM NaCI and 5 mM CaCh. 

Probes Ligand Ka x 105 (M-l) n 

Avicel 91.41 a (± 2.5) 0.76b (± 0.9) 

Cellohexaose 
GC3a 

Xylohexaose 

Mannohexaose 

RAC 23.67a (± 3.9) 6.88b (± 0.7) 

Cellohexaose 3.34 (± 0.8) l.1 C (± 0.1) 
CC17 

Xylohexaose 

Mannohexaose 

Cellohexaose 0.02 (± 0.01) 0.9c (± 0.3) 

OC15 Xylohexaose 0.82 (± 0.1) 1.0c (± 0.1) 

Mannohexaose 

Cellohexaose 

CC27 Xylohexaose 

Mannohexaose 6.93 (± 0.5) l.1 c (± 0.3) 

a: Values were determined by SSDA 
b: Density ofbinding sites per gram of substrate (jlmol/g); 
c: Number of ligand binding sites on the protein 
-: No binding detected 
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Additional fIle 6.6 Standard curves for the conversion of fluorescence intensities 

Înto I1g of probes 

A) GC3a, B) CCI7, C) OCl5 and D) CC27 probes. 
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Additional me 6.7 Total composition analysis (NRELITP-510-42618) of untreated 

(raw) and pretreated LCB 

A) alfalfa stover, B) corn crop residues, C) cattail stems and D) flax 

shives. 
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Additional fIle 6.8 Tracking surface accessibility of polysaccharides in untreated 

(raw) and pretreated LeB using FTCM-depletion assay 

A) alfalfa stover, B) corn crop residues, C) cattail stems and D) flax 
shives. 
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Additional fIle 6.9 Correlation between carbohydrate conversion after 96 h and 

total composition analysis of untreated (raw) and pretreated 

LCB 

A) alfalfa stover, B) corn crop residues, C) cattail stems and D) flax 
shives. 
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Chapter 7 - Conclusions 

Monitoring the impact ofmechanical, chemical and enzymatic modifications ofbi­

opolymers found in LCB is a complex endeavor. The currently available methods for 

chemical composition analysis ofbiopolymers, such as total chemical composition anal­

ysis (using NRELlTP-51 0-42618), are limited to analysis of bulk composition and give 

no information on biopolymers specifically found at the surface of fibers . On the other 

hand, XPS, while being highly ~ensitive for surface polymers, cannot unambiguously 

monitor changes in surface polysaccharides since cellulose and hemicellulose share simi­

lar C 1 s carbon functionalities (leading to identical XPS signatures). These standard meth­

ods are poorly adapted to important problematics associated with biofuels and pulp and 

paper industries. To address those issues, in this Ph.D. work, we developed a novel LCB 

detection approach that is sensitive, specific, reproducible, rapid (hundreds of samples 

analyzed in less than 4 hours), high throughput, cost-effective and that requires minimal 

specialized equipment. This approach, named FTCM, involves solely the utilization of 

four two-domain probes, each of them harnesses the specific polysaccharide recognition 

power of CBM and the high sensitivity of GFP' s (or any of its variants) fluorescence 

emission. FTCM is believed to be robust and insensitive to a number of artefacts, consid­

ering that for an impurity to contribute to FTCM signal, a perfect match of spectrosopice 

features between a given impurity and any of the probes designed here is required. 

Throughout this Ph.D. study, the capabilities ofFTCM were explored, with appro­

priate modifications when needed. We showed that it can specifically track mechanical, 

chemical and enzymatic-induced variations of polysaccharides on the surface of differ­

ent wood fibers in a rapid and high throughput format. The first objective established the 

potential of a fluorescent-tagged fusion protein OC15 for monitoring xylan at the surface 

of paper samples. The results demonstrated that OC 15 probe enables the specific tracking 

of chemical and enzymatic-induced variations of xylan on the surface of kraft pulps. In 

addition, the study also demonstrated that such probes could form the basis of a rapid, 
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easy to use, unambiguous and affordable diagnostic approach, helping optimizing treat­

ment strategy and reducing the cost of processes, which rely on controlled xylan removal. 

The second objective investigated the potential ofFTCM for bolstering our under­

standing of hemicelluloses hydrolysis and factors that have impact on such hydro lysis. 

The results demonstrated that the optimum hydrolysis parameters for both xylanase and 

mannanase enzymes, for all the studied pulps, were 0.1 U of enzyme/paper disc at 50DC 

for a treatrnent duration of Ih. FT CM identified the major factor limiting hydrolysis effi­

ciency as enzyme inactivation (by any mechanism). By directly detecting polymers re­

maining after various enzymatic treatrnents, using CBM probes revealed additive and/or 

synergistic interactions between Celluclast 1.5L, xylanase and mannanase enzymes. The 

ability of FTCM to directly map layers of cellulose and hemicelluloses fractions as they 

were attacked by enzymes provided support for an embedded population of mannan, pro­

tected by xylan, probably associated to cellulose-hemicellulose complexes. 

The third objective examined the potential ofFTCM specifically for pulp and paper 

industries. We demonstrated a strong correlation between the FTCM probes binding and 

the paper strength properties (i.e. fiber mean length, tear index, tensile index and internaI 

bond strength). This study enables the rapid determination of these properties and allow 

one to predict, in a high throughput yet low volume, the optimal conditions with which to 

treat a given biomass. 

The fourth objective exploited the FTCM approach to predict the most appropriate 

wood biomass for selected industrial applications. This study demonstrated that treatrnent 

with enzymes from Trichoderma is appropriate for generating crystalline cellulose at fiber 

surface. Applications such as nanocellulose or composites requiring chemical resistance 

would benefit from this enzymatic treatrnent. The milder enzyme mixture from Aspergil­

lus allowed for removal ofnon-crystalline (amorphous) cellulose while preserving hemi­

celluloses at fiber surface, which makes this treatrnent appropriate for new paper products 

where surface chemical responsiveness is required. 
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The fifth objective of this study demonstrated the use and adaptation of FTCM to 

study the potential correlation between surface-exposed polysaccharides and enzymatic 

hydrolysis of LCB. FTCM was originally optimized for pulp and paper investigations. 

Rence, we adapted this approach to a FTCM-depletion assay for LCB suspension analysis 

and monitored the impact ofthree different pretreatments on alfalfa stover, corn crop res­

idues, cattail stems and flax shives. The results suggest that surface cellulose (total and 

non-crystalline) were strongly correlated with production of reducing sugars by hydroly­

sis, in a much better way than with total lignin and/or total cellulose content (using 

NRELlTP-510-42618 method) of LCB. The clear and robust correlations that were ob­

served here, between the polysaccharides accessibility by FTCM probes and enzymatic 

hydrolysis ofthe biomasses, can be evolved into a powerful prediction tool for the simple, 

rapid and efficient determination of optimal biomass and pretreatment strategies for bio­

energy production. 

Throughout these studies, FT CM proved to be instrumental for our understanding 

ofLCB processing, and exhibited both process optimizing and outcome predicting poten­

tial. Once adapted to to industrial constraints, we believe that FTCM could perform vari­

ous functions, such as 1) help fine-tuning the conditions surrounding the mechanical and 

enzymatic removal of polysaccharides; 2) allow for decreasing costs associated with LCB 

processes; 3) expanding our understanding of biofuels and papermaking productions; 4) 

correlating surface polysaccharides with performances of the relevant lignocellulosic 

products; and 5) allow for improving the productivity oflarge-scale operations. This Ph.D. 

study testifies to the incredible versatility of CBMs as spearhead of innovations, which 

can successfully tackle biotechnological challenges. We anticipate that such advances 

would support engineers for increasing yields and mitigate production costs associated 

with LCB based industries. 
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Specifie traeking of xylan using 
fluoreseent-tagged earbohydrate-binding 
module 15 as moleeular probe 
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Abstract 

Background: Xylan has been identilied as a physical barrier which hmits cellulose accessibility by covering the oute. 
surface of libers and Interfibril lar space. Therefore, tracking xylan is a prerequisite for understanding and optimizing 
lignocellulosic biomass processes. 

Results: ln this study, we developed a novel xylan tracking approach uslng a two-domain probe ca lied OC15 which 
consists of a fusion of Cellvibrio japoniCUl carbohydrate-binding domain 15 with the fluorescent protein mOrange2 
The new probe specifically binds to xylan with an affinity similar to that of CBM 15. The sensitivity of the OC 15-xylan 
detection approach was compared to that of standard methods such as X-ray photoelectron speCtroscopy (XP5) and 
chem.cal composition analysis (NREL/TP-51 G-42618). Ali three approaches were used to analyze the variations of xylan 
content of kraft pulp libers. XPS, which allows for surface analysis of libers, did not c1early .ndicate changes in xylan 
content. Chemical composition analysls responded to the changes in xylan content, but dld not give any specific 
information related to the libers surface. lnterestingly, on ly the OC15 probe enabled the highly sensitive detection of 
xylan variations at the surface of kraft pulp libers. At variance with the other methods, the OC15 probe can be used in 
a high throughput format 

Conclusions: We developed a rapid and high throughput approach for the detection of changes 111 xylan expo­
sure at the surface of paper fibers. The introduction of this method into the lignocellulosic biomass-based industries 
should revolutionize the understanding and optimization of most wood biomass processes. 

Keywords: Carbohydrate-bind.ng module, Fluorescent protein, Kraft pulp, X-ray photoelectron spectroscopy, Xylan, 
Xylanase 

Background 
Lignocellulosic biomass is a major source of sugars for 
the production of biofuel (l , 2]; however, its produc­
tion has always been hindered by several economical 
and technieal obstacles (3, 4J. One of these obstacles is 
the complex structure of the lignocellulosie substrate. As 
a consequence, the enzymatic hydrolysis of lignocellu­
losie components to fermentable sugars is consldered as 
one of the major rate-limiting and costly steps (3, 5- 8J. 
One way to better understand and control hydrolysis of 
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lignocellulosic bioma.s is to monitor the complex poly­
mers composition of 6bers at every stage of processing. 

Lignocellulosie biomass is a complex structure consist­
ing of celluluse (p-I,4-linked glucose polymer), hemi­
cellulose (polysaccharide of varying compositions), 
and lignin (9J. Cellulose is the most abundant polysac­
charide in nalure and constitutes about 35- 50 'li'> of the 
totallignoceUulosic biomass (IOJ. HemiceUuloses, which 
represent about 20- 30 'li'> of the total biomass, are the 
second most common polysaccharides (10, Il J. Unlike 
cellulose, hemiceUuloses are heterogeneous polymers of 
pentoses (xylose, arabinose), hexoses (mannose, glucose, 
galactose) , andlor uronie acids (glucuronic acid, galac­
turonic acid) (9, 12J. Hemicellulose in softwood (from 
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gymnosperms) contains mostly glucomannans whereas 
in hardwood (from angiosperms) mostly consists of xylan 
(13J. The hemicelluloses distribution on the surface of 
wood libers/cellulose fibrils is of utmost importance for 
the complex structure of Iignocellulosic biomass. since 
hemicelluloses have been proposed to act as a physical 
barrier which increases the slifl'ness of the cellulose fiber 
network by coating the rigid cellulose crystaJlites and 
forming links between the fibrils (3. 14J. 

Among hemicelluloses. xylans are lhe most abundant 
and complex hemicelluloses comprising a backbone of 
~- 1.4-linked xylopyranosyl residues (10. Il . 13J. Xylan 
has been shown to limit the accessibility of cellulase 
enzymes to cellulose (15- 20]. As a consequence. bio­
mass bioconversion requires the presence of accessory 
enzymes such as xylanase. which allows for controlling 
the significant etfect of residual xylan on cellulose acces­
sibility during bioconversion [4J. The cost associated to 
enzyme ulllizalion is an important aspect of bioenergy 
production. (15. 21 - 23J. Enzymes cost can be minimized 
by lighter control of process parameters (such as dosage 
and incubation time). To this end. one nceds to track Iig­
nocellulosic polymers. including xylan. at various stages 
of processing. 

l'ulp and paper production is another lignocellulosic 
biomass-based industry which has to deal with the com­
plexilies described above. In addition. this industry faces 
immense pressure from lhe society and/or governments 
to move toward green chemistry. Biocatalysts are recog­
nized as a key element of green chemistry and are being 
progressively inlroduced in a number of processes with 
extremely positive consequences for the environment 
(24. 25J. An increasing number of enzymatic strategies 
are used by paper makers. including the application of 
xylanase enzymes in the pre-bleaching or bio-bleaching 
of kraft pulp. The presence of xylan. and its redeposition 
on the surface of cellulose fiber during lhe kraft pulp­
ing of hardwood. inhibits the bleaching process. Xyla­
nase enzymes have been found lo be most effective for 
Iimiting this problem and are now in use al several mills 
worldwide for bio-bleaching (13. 15. 24- 26J. Further. 
xylan is also known to contribute to fiber strenglh and ils 
removal is known to influence pulp fiber properties (15. 
27. 28J. Xylan is believed to contribute to physical prop­
erties of the paper by enhancing the inter-fiber bonding 
(27J. Here again. the close monitoring of xylan would 
help optimize the enzymatic treatment. better control 
of paper properties. and minimize ils cost. 

ln order to make these Iignocellulosic biomass-based 
processes highly productive and cost-effective while 
improving quality of end-products. one should correlate 
the process parameters (such as enzyme loading. temper­
ature. or treatment time) to the substrale availability in a 

Page2of13 

given biomass sam pie. or to a given percenl removal tar­
get (i.e .• x % decrease in xylan at the surface of cellulose 
fibers) . Unfortunately. current methods for tracking xylan 
are not compatible wilh industrial conslrainls. To date. 
tools such as X-ray photoelectron spectroscopy (XPS or 
ESCA) (29. JOJ. atomic force microscopy (AFM) (31 J. 
scanning electron microscopy (SEM) (JOJ. time-of-Oight 
secondary ion mass spectrometry (ToF- SlMS) (JOJ. gas 
chromatography (GC) (32J. Fourier Iransform infrared 
spectroscopy (FTIR) (33J. and chemical methods (34. 3SJ 
have been used to study the surface and bulk chemistry 
of wood fibers . However. use of these methods for ligno­
cellulosic biomass analysis is laborious. requires special­
ized equipment. tedious sample preparation. and long 
.nalysis time (typically hours for each sample) [36. 37J. 
As a result. it is highly challenging to tightly modulate the 
amount of xylanase used for complete or selective xylan 
rernoval for process optintization. 

Over the past decade. other techniques have been 
developed for the direct and rapid detecLlon of Iignocel­
lulosie biomass polymers. The use of chemical dyes to 
stain Ilgnocellulosic biopolymers was one of the iniLlal 
approaches for the detection of cellulose within various 
materials. Unfortunately. these dyes are rarely specifie 
to cellulose [38J. In rccent years. seve rai in situ detec­
tion techniques have been developed. not only for cel­
lulose but also for other cell wall contponents. including 
hemicellulose and peclic polysaccharides deteclion (39]_ 
Among these techniques. monoclonal antibodies (mAbs) 
have been used suceessfully for developmental studies of 
vegetal materials. However. antibodies targeLlng complex 
polysaccharides. made of crystaUine and insoluble struc­
tures. are difficult to generate (38. 4OJ. L.ike antibodit'S. 
carbohydrale-binding modules (CBMs) are highly spe­
cifie toward their substrate polysaccharides. They have 
been shown to discriminate cryslalline cellulose from 
amorphous cellulose [38. 4OJ. 

CBMs are the non-catalytic polysaccharide-recog­
nizing module of enzymes such as glyeoside hydrolases 
(41-43J. CBMs l'laya central role in the optimizalion of 
the catalytic activity of plant cell wall hydrolases by thelr 
specifie binding to plant polysaccharides. These CBMs 
are grouped into 71 difl'erent families. based on ami no 
acid sequence homology. in the Carbohydrate Active 
enZymes (CAZy) database (hllp://www.cazy_orgl) (4I J. 
CBMs arc furlher dassified into lhrcc types A. B. and 
C. on the basis of three-dimensional structure and func­
tional similarity. Type A CBMs recognize the surface of 
erystalline cellulose. type B and type C CBMs are identi­
lied as CBMs that reeognize internai glycan chain (endo­
type) and terminal (exo-type) glycans . respectively (43. 
44J. Among type B CBMs. the family 15 CBM (CBMI5) 
includes the non-catalytic xylan-reeognizing module of 
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a xylana e (Xyn HlC from Cel/"ibrio japolliclIs) which has 
been demonstrated to bind xylan, including subslituted 
xylan and xylooligosaccharides (45). The high specificity 
of CBMs toward lignocellulosic polymers makes them 
more interesting as probes compared to mAbs {38, 40, 
41 1. CBMs have been used for several applications related 
to biomedicine, environment, molecular biology, micro­
arrays, paper, textile, food, and biofuel industries {4l l. 
Considering the importance of xylan deteclion for indus­
trial processing of lignocellulosic biomass, we propose to 
use nature's own rècognition molecules (CBMs) as thé 
spearhead of an efficient xylan detection method. 

Fluorescence is a very sensitive and specifie spectros­
copy where absorption and emission wavelengths deter­
mine what molecules contribute to the detected signais 
{43, 46]. Further, plate rcaders allow increasing measure­
ment throughput, a valuable criterion in the development 
of any novel assay. Hence, deteclion of CBM probes that 
would emit nuorescence would be advantageous. Fluo­
rescence deteclion can be achieved directly or indirectly 
depending on the methods used {38]. The indirect meth­
ods involve the use of a secondary or tertiary reagent 
such as anti-His-lgG coupled to a nuorophore to detect 
the His-tag of a CBM, which m.y also allow amplification 
of signal intensilies. This method provides Great nexibil­
ity in CBM use but has a potential disadvantage related 
to multi-step incubalions which decrease analysis speed 
and are less compatible with a high throughput strat­
egy {38]. On the other hand, in direct methods, coupled 
CBMs would require a straightforward, single-step incu­
bation, atrording the possibility of rapid, high throughput 
protocols. ln the tirst direct method reported. a CBM 
was chemically coupled with a nuorophore (such as 
FITCI Alexa Fluor) {38]. Unfortunately these molecules 
react non-specifically with various moieties at the sur­
face of CBMs, deleteriously impacling specificity, affinity, 
and detection reproducibility. Another direct detection 
method uses CBMs as fusion with a nuorescence protein 
such as the green nuorescent protein (or any of its vari­
ants) {381. This method aIIows maintenance of the origi­
nal CBM behavior, avoiding the limitations described for 
the first direct method discussed. Hence, CBMs cou pied 
with nuorescence protein have becn used for mapping 
the chemistry and structure of various carbohydrate­
containing substrates (Iignocellulosic biomass) {47, 48J. 
More recently, two ditrcrent recombinant nuorescent 
CBM probes have been used for quantitative study of the 
change of accessibilities of amorphous cellulose and crys­
talline cellulose regions during the enzymatic hydrolysis 
of Avicel{43]. 

ln this study, we demonstrate the potential of a nuo­
rescent-tagged fusion protein mOrange2-CBMl5 probe 
(hereafter named OCI5) for monitoring xylan at the 
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surface of paper samples. To evaluate the potenlial of our 
novel method, we decided to use two ditferent grades of 
kraft pulps (unbleached and bleached), and we analyzed 
xylanase-treated pulp in order to study the sensitivity 
of the developed method. Our results suggest that such 
probes can form the basis of a rapid, easy to use, unam­
biguous and atrordable diagnostic approach, helping 
optirnizing trcatment strategy, and reducing the cost of 
processes which rely on controlled "ylan removal. 

Results .nd dlKusslon 
OC15 expression and purification 
A two-domain recombinant probe named OC15 was 
designed for specifie tracldng of variations of xylan on 
the surface of lignocellulosic material (Fig. 1). Cel/vi­
brio japonicl/s CBM 15 composed the xylan recognition 
domain (C-terminal) while monomeric nuorescent pro­
tein Orange2 constituted the probe detection domain 
(N-terminal). OCl5 was expressed in E. coli BL21-
Gold(OE3)pLysS cells which contained the pET! Ja­
mOrange2-CBMl5 plasmid (Fig. la, b). The expected 
molecular weight of OC15 is 44.68 kOa. Following 
affinity and size exclusion chromatography steps, the 
probe purity was verified using SOS-PAGE (Addition al 
file 1). Inte.rest ingly, the gel analysis of OC15 revealed 
two bands: one intense band, corresponding to OC 15 
expected size (44.68 kOa), and another, less intense 
band (less than 1 % on the basis of staining intensity) of 
a smaller size. A similar result has been observed for the 
purified mCherry-CBM 17 probe designed by Gao et al. 
{43]. These authors showed thatthe smaller band was the 
result of an incomplete denaturation of the probe under 
standard SOS-PAGE conditions. We investigated this 
possibility and found that increasing the SOS concentra­
lion in the gel, sample, and running butfers decreased the 
intensity of the srnaller band (data not shown). Therefore, 
we concluded that, like the probes of Gao et al. , the OC15 
probe is incompletely denatured under standard SOS­
PAGE conditions. 

Determination of OC15 ligand specificlty using affinity gel 
electrophoresls (AGE) 
Affinity gel electrophoresis (AGE) was used to qualita­
tively evaluate the specificity of the OC15 probe toward 
soluble polysaccharides {49]. Interaction between the 
studied protein and the gel-embedded polysaccharide is 
revealed by a reduced mobility compared to the mobil­
ity of the protein in absence of saccharide. BSA, which 
has no affinity toward carbohydrates, was used as nega­
tive control {49]. Figure 2 shows that OCl5 interacts 
only with beechwood xylan (Fig. 2b). Similarly to BSA, 
no binding was detected between OCl5 and carboxym­
ethyl cellulose (Fig. 2c) or galactomannan (Fig. 2d). These 
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results confirm that the well-known specifie binding to 
xylan ofCBM 15 is unaltered by its fusion with mOrange2 
in the OCI5 probe. However. the affinity of the recog­
nition module of the OCI5 must still be determined in 
order to ascertain its abiUty to sensitively detect xylan on 
the surface of paper. 

Determination of OC1 S ligand affinlty using Isothermal 
tltration calorlmetry (1Te) 
The aflinity of OC 15 toward hexaoses was also investi­
gated by ITC (Table 1; Additional file 2). Analysis of the 
binding isotherms showed that the recognition mod­
ule of the OCI5 probe bound to both cellohexaose and 
xylohexaose. albeit with different aflinities. but not to 
mannohexaose (Table 1). As expected. OCI5 inter.cted 
16 times more strongly with xylohexaose (34 x 10' M- I ) 

than with cellohexaose (2.1 x 103 M- I
) . These aflin­

ity values are similar to those previously reported for 
CBM 15 and confirm that the binding site of the recogni ­
tion module of the OCI5 probe is unaltered by the fusion 
with mOrange2 145). However •• small J.7-fold increase 

is observed in the aflinity constant of OCI5 toward 
xylohexaose compared to CBM15 145). We attributed this 
increase to difference in experimental conditions in our 
study compared to those used previously. For instance. 
the sodium and calcium salt added to the binding buffer 
in our study may account for the observed difference. 
Such ions have also been observed in the crystallographic 
structure of CBMI5 14S). a1though no biologieal rele­
vance to their presence was given. We hypothesize that 
su ch a metallie ion may be important for the aflinity and 
speeificity of OCIS toward xylohexaose. We also found 
that OCIS bound weakly to ceUohexaose but not to CMC 
(Fig. 2c). This result was unexpected. since the concentra­
tion of gel-embedded cellulose was 2.9 times higher than 
the Kd for cellohexaose (Table 1). This suggests that the 
bulkier carboXYl11ethyl substitutions found in CMC may 
interfere with the affinlty of the binding module of OCl5 
for cellulose. On the other hand. the presence of xylose 
moieties and/or xylan in a ecllohexaose sample of high 
but imperfect purity (90 'l6) wou Id also explain such an 
apparent contradiction. 
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Tablel Atrinlty of the OC15 probe for various hoaoses 
as detennlned by ITC 

Uglnd K,.10'(M-') K.(M) 

Xyloh.JOlose 34 ± 02 2938.10 ' ±08 

Mannohe"""", NB" 

Cel!ohe""",e 2.1 ± 0 3 4795 x 10 ' ± OI 

• Num~ 01 ligand binding sites 

b No bînding dettctfd 

Compa,lng XPS, NRELlTP-S I 0-42618, and OCI 5 
methodologles for the detectlon of xylan 

n' 

0.922 ± 01 

1 ;' 0.7 

l'ulps composed of a mixture of softwood and hardwood 
from an Eastern Canadian paper mill were used as Iig­
nocellulosic biomass for the formation of handsheets 
utilized in this study. Handsheets prepared from two 
grades of kraft pull'. UBKI' and BKI'. wcre investigatcd to 
determine differences in biopolymers content and thei, 
exposure at liber surfaces. Kraft pulping and bleaching 
processes degrade and/or dissolve lignin. The removal 
of Iignin through pulping increased access to xylan. ln 
addition. removed xylan may redeposit onto the surface 
of cellulose fibers during pulping (26. 5O- 53J. The stand­
ard methods usually used for the detection of xylan are 
NRELlTI'-5\O-42618 and XI'S (35. 54-56J. These Iwo 

approaches will be used and compared 10 our OCl5 
probe method. 

The chemical composition of UBKI' and BKI' was 
delermined by NRELlTP-510-42618 (AddilionaI file 3) 
[35J. As expected. the pull' bleaching process decreased 
lignin by 2.3-fold wilhout affecling the other biopoly­
mers. Unforlunately. duc 10 the nature of this technique. 
NRELlTI'-5\O-42618 can only provide an overall bulk 
estimation of biopolymers content. It cannot delecl sm ail 
biopolymers changes nor measure variations of biopoly­
mers exposition on the surface of fibers . 

ln conlrast XPS has becn extensively used for surface 
analysis of simple Iignocellulosic biomasses to detect 
changes in surface coverage by cellulose. lignin. and 
extractives (54- 56J. Elementary identification and bond­
ing state discrimination are advantages associated to XPS 
analysis (37J. The C Is band associated with lignocellu­
losie biomass which is monitored by XPS carries the most 
relevant information on surface polymers. C ls spec­
trum has been suggested to result from the contribulion 
of four different carbon functionalities: CI (C- C. C- H. 
C=C), C2 (C- O or C- O-C). C3 (C=O or O-C-O). and 
C4 (O-C=O). which accounl for the chemical heteroge­
ncity of paper fibers (54J. In cellulose. each glucose mon­
omer harbors five C2 carbon aloms and one C3 carbon. 
Hemicelluloses are heterogeneous in their composition. 
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Ils monomers typically comprise fewer than live C2 car­
bon atoms, less than one C4 carbon atom and one C3 
carbon atom. In contrast, lignin is more complex, having 
ail four Iypes of carbons with a grealer contribution from 
Cl and C2 atoms 157- 591. ln a typical liber XPS analysis, 
Cl componenl mainly arises from lignin and extractives, 
while C2 signal is primarily associated to cellulose and 
hemicelluloses. C3 componenl is not easUy assigned 10 a 
given polymer, as it is related 10 either carbonyl groups of 
lignin and extractives, or to carbon atoms bonded 10 two 
oxygen atoms in tellulose and hemiccllulose 157-601. Cl 
to C4 peaks were inferred from the deconvolution of the 
C Is band for UBKP and BKP (Additional file 4). lhese 
deconvolutions were calculated using spectra as shown in 
Additional files 5 and 6. The ble.ching process led 10 a 
2.2-fold decrease in CI functionality at the surface of the 
paper. This ditference may be atlributed to the removal 
of lignin from the surface as a normal consequence of 
ble.ching. The decrease in lignin assad.ted to CI func­
tionality is in line wilh Ihe corresponding decrease in 
lignln measured by NRELlTP-510-42618 (Additional 
file 3). Inlerestingly, the bleaching process increased the 
C2 functionality by 1.l -fold, suggesting that cellulose 
and/or hemicellulose are slightly more exposed on the 
surface of BKP. The exposure of cellulose and hemicellu­
loses also increased C3 carbon detection by 1.2-fold . Due 
to the low concentration of carboxylic groups on the sur­
face of kraft pulp, the C4 carbon functionality was minor 
and rather similar for either pulps. Like NREL/TP-510-
42618, XPS analysis revealed the impact of the bleaching 
process on lignin. Morcover, XPS analyses suggested that 
lignin loss resulted in the increased exposure of cellulose 
and hemicellulose on the surface of BKP. Unfortunately, 
the C Is speclra cannot dislinguish cellulose from hemi­
cellulose since both biopolymers possess similar carbon 
types. Moreover, XPS is nol always reproducible due to 
the problems resulting from X-ray conlamination and 
samples degradation 154, 611. 

Using OCIS, we attempted to monitor the ditference 
in xylan on the surface of UBKP and BKP pa pers resull­
ing From the bleaching process. Complex lignocellulosic 
biomass fluoresces naturally when excited at the same 
wavelength as Ihal for fluorescenl protein mOrange2 
i.e., 549 .lm (data not shown). This auto-fluorescence is 
mainly allributed to the lignin biopolymer found in kraft 
paper 1621. 1hus, in order to minimize paper aulo-Ouo­
rescence, we added a milk blocking step thal also acted as 
a non-specific binding deterrenl. Figure 3 describes the 
quantificalion ofOC15 bound to the surface ofUBKP and 
BKP papers. The bleached paper bound twice the amounl 
ofOC I5 compared to the unbleached one, indicating that 
xylan exposure on the surface of krafl paper has Increased 
after bleaching. This increase is fully compatible with the 
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2.3-fold decrease in lignin observed by chemical analy­
sis, which was shielding xylan from surface detection 
beCore bleaching. This result conlirms the loss of Ugnin 
that wc measured using NREL/TP-510-42618 and XPS, 
demonstrating that our approach can efficientJy detect 
the impact of the bleaching process on xylan. Therefore, 
inlroducing this xylan tracking approach as a quality con­
trol measurement would assuredly bols ter the etfective­
ness of the lignocellulosic biomass process for selective as 
weil as complete xylan removal. 

Monitoring xyl.n hydrolysls using NREL/TP-510-42618, 

XPS, .nd the OC15 probe 
1he etfectiveness of xylan removal by xylanase hydroly­
sis ofUBKP wus investigated using NREL/TP-S\O-42618, 
XPS, and the OCI5 probe. Chemica! composition of 
untrealed and xylanase-Irealed UBKP was analyzed 
(Additional file 7). As expected, xylanase treatmenl of 
pulp decreased xylose content by J.7-fold withoul a/fecl­
ing lignin. The extraclive contenl increased from 0.1 10 

3.2 after xylanase treatment. This unexpected result is a 
consequence of the NREL lipids extraction methodol­
ogy which consists into weighting the pulp before and 
after acetone solubilization of liplds 1631. Since the added 
xylanase accounts for 24.3 % of the pulp Initial weight, ilS 
acetone remova! From the pulp induces an apparent but 
false increase in lipids extractives. 

We then studied the surface of untreated and xylanase­
treated UBKP papers using XPS (deconvolution results 
described in Additiona! file 8). Overall, xylanase treat­
ment of UBKP induced rather small yarlations in the 
carbon functionalities (Cl to C4). As such, the curve fit­
ting component ascribed to CI atoms slightly decreased 
(I.l -foldl , indicating thal the lignin biopolymer was mar­
ginally atfected by xyIose removal. Surprisingly, the C2 
functionality associated to cellulose and hemicellulose 
was nol altered by xylan hydrolysis. This resull may be 
attributed to the exposure of cellulose on the fibers sur­
face as a consequence of xylan removal by hydrolysis. 
The exposure of cellulose also increased C3 carbon func­
tionality by J.2-fold. The C4 carbon signal was minor and 
rather similar for either pulps. This study reveals that the 
impact of xylan digestion 1 which was c1eariy detecled by 
NREL/TP-510-42618 (Additional lile 7» cannot be moni­
tored unat1lbiguously or directly by XPS. 

The impact of xylanase on xylan at the surface of 
UBKP paper dises was investigated using OC15 probe. 
A decrease in xylan was c1early indicated by the 7.7-
fold decrease in OC15 binding after xylanase trealment 
(Fig. 4). The use of OC15 probe coniirmed the loss of 
xylan suggested by chemical analysis (NRELlTP-SIO-
42618) with the distinction thal OCIS specifically probes 
fiber surface. We also studied the binding of OCI5 to 
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xylanase-treated U8KP paper dises as a function of time 
and enzyme dosages (0.4 vs 0.1 U). The xylanase diges­
tions were performed on paper dises glued in 96-wells 
microtiter plates over an 18 h incubation period at room 
temperalure. Figure 5 reveals that after 1 h a significant 
remova! of surface xylan was detected. Xylan was reduced 
8.2-fold by 0.1 xylanase unils and 17-fold when 0.4 units 
were used. The complete removal of xylan was detected 
after 18 h of incubation (0.4 unit dosage). OCl5 binding 
responded proportionaUy to enzyme load and aUowed 
monitoring xylanase treatment kineties. This high 
throughput melhod enables the sereening for optima! 
xylanase hydrolysis conditions, necessary for removal of 
xylan from kraft paper. We predict that OCI5 usefulness 
is not limited to kraft paper analysis, but should inc1ude 
optimization of any biomass process for whlch surface 
xylan is determinan!. 

Conclusion 
Monitoring the impact of meehanical, chemical, and 
enzymatic modifications of biopolymers found in 

lignocellulosic biomasses is a complex endeavor. The cur­
rently available methods for chemieal composition analy­
sis of biopolymers in pulp, sueh as NREL/TP-510-42618, 
are able to only quantify bulk xylan but give no informa­
tion on biopolymers surface exposition. On the other 
hand, XPS, wh Ile being hlghly sensitive, cannot unambig­
uously monitor changes in surface xylan since cellulose 
and hemicellulose share similar C 1 s carbon funetion­
alities. 1hese standard methods are poorly adapted to 
important problematies associated with biofuels and 
pulp and paper industries. To address those issues, we 
developed a novel xylan detection approach that is sen­
sitive, specifie, reproducible, rapid (hundreds of samples 
analyzed in less than 4 h), high throughput, cost-effec­
tive, and that requires minimal spedalized equipment. 
This approach involves solely the utilization of a Iwo­
domain probe, OCI5, which harnesses the specifie xylan 
recognition power of CBMl5 and the high sensitivity of 
mOrange2 fluorescence emission. 

Our results demonstrate that OC 15 enables the specifie 
tracking of chemical and enzymatie-induced variations of 
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7 5 Wlth 20 mM NaCI and 5 mM CaCl,) ",as used to m.nimize paper auto· nuorescence and the non sptcific blndlng of the OC t 5 pro,,", The fluor~ 
CtfPCt values W(>le convet'ted 10 OC 1 5 ÛJ9/mm1) u~lng a standard CUlve (AddittOnal file 9) The IOsel above each hlstogram columns repre-senlS the J 
fluorescence imenslty acqUlred by area scannlng of the surface of ea<h paper dise 

xylan on the surface of kraft pulps. In addition, we dem­
onstrated here that our approach can be readily adapted 
to a high throughput format (t~sts were performed in 
multiwell plates and analyzed with a plate reader). We 
believe that this tracking approach could perform vari­
ous functions, such as (1) line-tuning the conditions 
surrounding the mechanical and enzymatic removal of 
xylan; (2) decreasing costs associated with Iignocellulosic 
biomass processes; (3) expanding our understanding of 
biofuels and papermaking productions; (4) correlating 
surface xylan with performances of the relevant Iignocel­
lulosic products; and (S) improving the productivity of 
large-scale operations. This study testilies to the incred­
ible versatility of CBMs as spearheads of innovations 
which can successfuUy tackle biotechnological challenges. 

Methods 
Chemicals and strains 
Unless otherwise noted, aU chemicals were reagent grade 
and purchased fTOm Sigma-Aldrich or Fisher Scientific. 

Escherichia coli XLlO cells (Agilent Technologies) were 
used for all DNA manipulations while E. coli BL2I ­
Gold(DE3)pLysS competent ceUs (Agilent Technologies) 
were used for recombinant protein expression. Tricho­
derma viride xylanase from glycoside hydrolase (GH) 
family Il (cat no. 9SS9S; Sigma-Aldrich) was used for the 
digestion of Ugnocellulosic biomasses. Xylanase activity 
was 16.57 U/g. 

Construction of pET11a-mOrange2-CBM 15 expression 
vector 
The CBM 15 gene (xylan binding domain) was doned 
into the C-terminal end of the mOrange2 gene (detec­
tion domain) in a pETIla vector. Briefly, Cellvibrio 
japollicus CBMlS (GenBank Accession Z48928) was 
synthetized by GenScript and provided as part of the 
pUC57-CBMIS vector. In order to insert the BsrGl 
and Ball/Hl restriction sites (underlined) at ca ch end of 
CBMlS, we amplilied the gene using forward (S'-TGTA 
CAAGGGTGTCGCTGCCAGC-3') and reverse primers 
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FIt.5 Traclong xyla.,ase hydrolysIS of VSKP using OCI 5 p,obe. Pape' dIS" were ,ncubaled w,.h "Y'anase (0.4 V/paper dise and 0.1 V/paper d,sc) 
for up to 18 h (pH 6) at,oom temperalu,. unde, eont,nuous agnation (1 50 rpm) Unt,eated VSKP and xylanase-treated VSKP paper drscs wer. 
,ncubated Wlth OC 1 5 probe (0 061J91~L) for 1 ha' room tempe,alu,. under agi,allon nvee percen, (w/V) mi 'k (20 mM Tris- Hel pH 75 wIlh 20 mM 
NaCi and 5 mM CaCll ) was usee! to minrmize pape!" auto-fluorescence and non-specifie blndtllg of (he OC15 ptobe The fluoœsctnct values were 
eorwetled toOCl5 (IJ9Imm'l u\109 astanda,d cu",," (Addltional file 9) 

(5'·GGATCCTTAATTGGCTGAATAGGCTTCC·3'). 
lhe resulting l'CR producl was lhen purified using 
Qiagen MinElule l'CR purificalion kil. In addition. the 
mOrange2 gene was excised from the pmOrange2 vec· 
Lor (Clontech) using a Dralll and BamHI double diges· 
tion and inserled inlO lhe corresponding sites of pETlla 
vector. Finally, the double BsrGl and BamHI digestion of 
CBMI5 was purified and inserted into lhe correspond. 
ing sile oC the pETlla·mOrange2 vector. resulHng into 
the pETlla· mOrange2·CBMI5 expression vector. At 
each slep. the conslructs were sequenœd to aseertain the 
integrity and fidelity oC the products ONA sequence. 

Expression and purification of OCI 5 probe 
Escher/chia coli BL21 -Gold(OE3)pLysS cells (Agilent 
Technologies) bearing the OCI5 expression plasmid 
were grown at 37 'C and 200 rpm in Luria-Berlani broth 
contalning 100 l'glmL of ampicillin. Induction of recom­
binanl prolein expression was performed by the addilion 
of 500 l'M IpTG (Thermo Fisher Scientific) lo mid-log­
phase cells (O.O'600nm of 0.6- 0.8) and subsequent incu­
bation for 18 h al 25 'c. Cells were then harvesled and 
kept at - 80 'c. Thawed cell pellets were resuspended 
in 50 mM sodium phosphate pH 8 contaloing 300 mM 

NaCI. 2 mM imidazole. 1 mM pMSF. and then Iysed by 
sonieation using six cycles of 60 s (Branson Ultrason­
ies Corporation) at 200 W. Clarification oC Iysate was 
achieved by centrifuging al 1O.000g for 30 min al 4 'c. 
The protein of interest was purified by affinity chroma­
tography over a HisPrep FF 16/10 column (GE Heallh­
care liCe Sciences) equilibraled in 50 mM sodium 
phosphate bulfer pH 8.0 containlng 300 mM NaCI and 
10 mM imidazole. ACter washing with ten column vol ­
umes of butTer. the desired protein was eluled using a 
gradient of imidazole 00- 250 mM) in 50 mM sodium 
phosphale pH 8.0 butTer containing 300 mM NaCI. A 
final purification step was performed using a Superdex 
200 HR 16/50 column (GE Healthcare Life Sciences) 
in 50 mM Tris- HCI pH 7.5 butTer contaioing 300 mM 
NaCI to insure its homogenous purity. The purified 
probe was then dialyzed in a 20 Trls- HCI pH 7.5 bulfer 
containing 20 mM NaCi and 5 mM CaClz at 4 'C and 
concenlraled uslng a 10K Macrosep Advance centrifugai 
device (Pail Corporation). Concentrated protein solu­
tions were slored at - 80 'C using flash Creezing. Protein 
purity (expecled mass 44.68 kDa) was verified br SOS­
PAGE. The amount oC protein was quantified by the 
Bradford method [64). 

272 



Khatrltt 01. Biottchnol Biofu,/, (1016) 9:74 

Affinlty g~1 eiectrophoresis (AGE) 
AGE was used for qualitative assessment of OCI5 (10 Ilg) 
specificity toward selected ligands. The experiment was 
performed as described elsewhere 149. 65). by adding 0.5 % 
(w/v) ofbeechwood xylan (Sigma-Aldrich). carboxymethyl 
cellulose (CMC) (Sigma-Aldrich). and galactomannan 
(Megazyme) to a native. 12 % polyacrylamide gel. Bovine 
serum albumin (BSA) (10 Ilglwell) was used as negalive 
control since it has no affinity toward carbohydrates 149). 

Isothermal titratlon calorlmetry (lTe) 

ITC was employed to measure the affinity of the OCIS 
probe toward selected hexaoses (Megazyme). Cellohexa­
ose. xylohexaose. and mannohexaose were reconstituted 
in a 20-mM Tris- HCI pH 7.5 buffer which contalned 
20 mM NaCI and 5 mM CaCI2. The purified OCI5 probe 
was also dlalyzed Into that same buffer. Ali experiments 
were performed with a Nano ITC microcalorimeter (TA 
Instruments) operated at 25 ·C with a slirring rate set of 
250 rpm. Pre-equilibrated solutions of probe (200 IlM) 
and hexaoses (5 mM) were used for each assay. The con­
trol experiments were based on titrations of hexaoses 
into the buffer and buffer into the OCI5 probe. Each 
experiment consisted of 25 injeclions of 2 III hexaose 
into the probe solution. with an interval of 130 s between 
injections. Ail experiments were performed in trlplicates. 
Data were analyzed and fitted using the NanoAnalyze 
software v2.3.6 (TA Instruments). 

Pulp charact~rlzatlon 
The kraft pulps used for this study were provided by an 
Eastern Canadian pulp and paper company. The kraft 
pulping was performed using a mixture of softwood and 
hardwood. Two different grades of pulps. unbleached 
kraft pulp (UBKP) and bleached kraft pulp (BKP). were 
used. The cellulose. hemicellulose. and Iignin contents of 
these pulps were analyzed according to NREl/TP-5l0-
42618 protocol 135). The hydrolyzed monosaccharidt. .. 
contents of the pulps (10 III injection) were determined 
by Ion chromatography (ICS-5000. Dionex) and detec­
tlon was performed using an electrochemical detection 
ceU (comblned pH-Agi Agel reference electrode). Each 
experiment was conducted at 40 ·C wlth 1 ml/mln iso­
eratic e1utlon of NaOH (1 mM) on a Dionex CarboPac 
SAlO (250 x 4 mm) column cou pied with a Dionex Car­
boPac PA 100 (50 x 4 mm) guard column. Data analysis 
was performed using Dionex Chromeleon 7 software. 

HandshHts preparation 
UBKP and BKP were used as lignocellulosic substrates 
for the preparation of handsheets and paper dises. Hand­
sheets (basis weight of 60 ± 2 g/m2) were prepared from 
pulp according to TAPPI standard method T 205 sp-02. 
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Prior to testing. the handsheets were conditioned for 
24 h at room temperature and SO % of relative hum id­
ity according to TAPPI method T 402 sp-03 1661. These 
handsheets were then used for the preparation of the 
paper punches. The paper punches are detined as paper 
discs having diameter of 3 mm. 

Xylanas~ dig~stion of unbleach~ kraft pulp 
Xylanase digestion of UBKP was do ne according to Li 
et al. 166). Briefly. the presoaked. disintegrated pulp at 
2 % consistency was incubated 1 h at pH 6 and room 
temperature under continuous agitation (ISO rpm). with 
or without xylanase (500 U/g of pulp). The reaclions 
were stopped by a 15-min incubation on ice. The pulp 
was then used for chemieal composition analysis (NREll 
TP-5 10-4261 8) and handsheets formalion . 

X-ray photoelectron spectroscopy (XPS) 
lhe 300 Watts monochromatic AI K-a radiation source 
originating from an AXIS-ULTRA apparatus (KRATOS 
ANAlYTICAl) was used to study xyIan. The analyser 
was set in the constant pass energy mode. the lens set to 
the hybrid configuration (both magnetlc and electrostatie 
lenses). and the electrostatic lens aperture in the slot posi­
tion. This configuration provided the highest sensitivity for 
scanning 700 x 300 Ilm area. Three dilferent spots were 
analyzed ta obtain an average. The pressure of the system 
was set at 10- 8 Torr. Elemental analysis of the surface area 
was performed by recarding survey spectra at 160 eV \Vith 
energy Increment of 1 eV per channel. High resolution spee­
Ira \Vere recorded at 20 eV with energy Increment of 0.05 eV. 
This setup gave an overaJl instrumental resolution of 0.6 eV 
as measured on Ag3d,n- Analyses of the peak decamposi­
tions were performed using the CasaXPS software. 

Xytan tracklng on the surfac~ of papen using th~ OC15 
pro~ 

AlI fluorescence readings were acquired at room tempera­
ture with a Synergy Mx microplate reader (BioTek) using 
the area scanning feature (3 x 3) with the top detection 
height set at 4.5 mm and the filters bandwidth at 9 mm. 
The excitation and emission wavelengths were set at 549 
and 568 nm for the OCl5 probe. Each experiment was 
donc in triplicates. Two dilferent grades of kraft pulps. 
unbleached (UBKP) and bleached (BKP). were investi­
gated regarding thcir xylan content. The following method 
is a modilied high throughput version of the methodol­
ogy described by Knox I38J. Hence. it was performed into 
96-weU black microtiter plates (Corning). where each weil 
contained a 3 mm diameter paper dise obtained from 60 gI 
m2 handsheet. The dises were glued to the botlom of each 
weil and tirst incubated for 1 h at room temperature with 
agitation in 3 % (w/v) milk (20 mM Tris- Ha. pH 7.5 with 
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20 mM NaCI. and 5 mM CaCI:z) to minimize paper auto­
fluorescence and the non-specifie binding of the OCl5 
probe. Milk excess was then removed with 3 x 5 washing 
steps using the assay butTer. At this stage, the fluorescence 
intensity of the paper discs was measured and referred as to 
blank fluorescence. The specific binding of the OCl5 probe 
to the surface of the paper dises was initiated by adding 
0.5 fig/ill of the OCl5 probe in assay butfer to each weU. 
After a J h incubation at room temperature under agita­
tion. the excess and/or non-specifically bound probe were 
removed by 3 ' x 5 min washes with baffer that also con­
tained 0.05 % (v/v) of Tween 20. The residual fluorescence 
inlensity associated wilh the specifie detection of xylan was 
then recorded. Quantification of the bound OCl5 probe 
was aehieved by subtracting the va.lue of the mean blank 
fluorescence from the mcan resldual fluorescence obtained 
for each weU. These fluorescence values were then con­
verted into flg/mm2 using the appropriate standard curves 
(Additional file 9) and the surface area of paper dises. 
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OCl5 probe Wllh ")I1ohexao<e Top panel Typlcal rrc eKpe<'11le01 carned 
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Introduction 

New insights into the enzymatic hydrolysis of 
lignocellulosic polymers by using fluorescent 
tagged carbohydrate-binding modulest 

Vinay Khatri."b Fatma Meddeb-Mouelhiab and Marc Beauregard e · ab 

The development of a blo-based economy requires the utitization of lignoceltulosk biomass in a cost­

effective way The economic viablhty of tignoceUulosic biomass-based industries 1$ hindered by our 

imperfect understanding of blomass structure and suboptimal industrial processes To achleve such 
goals requires direct and rapid monitoring of lignocellutosic polymers as they are physicaUy. chemicaUy. 

and/or enzyrnatically treated ln thlS study. the recently reported fluorescent protein tagged 
carbohydrate binding modules method (FTCMI was used to specifically track mechanlCal chemical and 
enzymatic-induced variations of hemiceltuloses al the surface of different wood fibers. Our results 

showed that susceptibility to hydrolysis ln kraft pulp was higher for xylan. while mannan was more 
vulnerable ln mechanical pulps. Furthermore. FTCM raprdly and efficiently detected enzymatic 
inactivation and the apparent complementarity (additive and/or synergisti<: effectl between ceUulase and 
other enzymes (xylanase and mannanase), signiticanUy bolstering cellulose and hemicelluloses 

hydrolysis Subsequent addItion of xytanase and mannanase enzymes dlrectly proved that xylan was 

acting as a physicat shield which was covering mannan in bteached kraft pulp. This study suggests lhat 

mannan was closely associated with cellulose or was deepty embedded in the cell wall organization of 
such fibers. FTCM provided direct support for previous models on fiber structure that were based on 

t,me-consuming and comphcated approaches ~. e. chromatography. spectroscopy and mi<:roscopyl 
FTCM aUowed for the monitoring of layers of polymers as they were exposed after treatments. providing 
key information regarding hydrolysls optimization and the specifie susceptibility of kytan and mannan to 

blomass treatments. We believe that by applying this simple and rapid method on site. biomass industries 
could substanliaUy improve cost-effectiveness of production of biofuels and other hgnocellulosic 
biomass-based producls. 

Lignocellulosic biomass is the most abundant, renewable and 
sustainable feedstock allowing our ever-increasing energy 
dem.nd to he satiated while fossil fuels progressively disap­
pcar. H ln addition, the grcenhouse gas mitigalion and near 
carbon neutrality afforded by the conversion of biomass to bio 
energy (biofuel) and chemicals are imponant adv.ntages over 
conventional fossil fltels.·~-· The development of a bio-bascd 
eeonomy, however promising, is faced with challenges related 
10 the cost-effective utili7.ation of the lignocellu losic biomass. 
Improving biomass processes would increase cost effeetivcness 

and competitiveness for large scale applications."''' ·'' The main 
obstacle for biofuel and chemieals production is associated 
with the inherent recalcitrant nature of lignocellulosic 
biomass.'·11 ,. Due 10 the slructural complexity of lignocellu­
losie biomass, the bioconversion of biom.ss to biofuel is 
a multiple stage process.'" The enzymatic hydrolysis of the 
lignocellulosic component ta femlentable sugars is a crucial 
step in this bioconversion. It is l'Onsidered as one of the major 
rate limiting and costly step. ,.." 

The complex recalcitrance nalure of biomass is partly 
attributed to hemicelluloses. They constitute about 20- 30% of 
the total biomass, and are the second most common poly­
saccharides ...... in nature, after cellulose. Unlike cellulose, 
hemicelluloses a re heterogeneous polymers of pentoses (><ylose, 
a rabinose), hexoses (man nose, glucose, g'd lactose) and/or 
uronic acids (glucuronic acid, galacturonic acid)." ·" Hemi· 
celluloses in hardwood (from angiospcrms) mostly consist of 
><ylan , whereas softwood (from gymnosperms) typically contains 
glueomannans." The hemicelluloses have frequently bcen 
recognized 10 act as a physical barrier, tI,at cover the outer 
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surface of cellulose libers and interfibrillar space. limiting the 
accessibility of cellulase enzymes tu cellu lose." ~· The 
hemicellulose·dcgrading aelivities in most comlllercially avail­
able ccllulase enzymes are too low to achlcve sufficient hydro­
Iysls of the hemicelluloses: ..... ' Therefore. addition of enzyme 
e><tracts or additives with higher level of hemicellulases are 
important for eliminating the slgnificant hlndering effect of 
residual hemicelluloses (mostly xylan and mannan) on the 
enzymatlc hydrolysis of cellulose." ...... '· ..... , ln order to increase 
the efficiency of wood liber utilization. it is important to utilize 
ail wood liber constiluenLS (including hemicelluloses and 
ligoin) in an eeonomically feasiblc way (providing other valu· 
able wood·derivcd materials besidc biofu.l). Howcver. this 
requires a better understanding of the ultrastructure of Ihe cell 
wall and its organization. which are not yet fully understood.'" 
Different chromatography. spectroscopy and microscopy tech · 
niques have been used 10 sludy lignin-carbohydrate 
complexes." polymers interactions" and plant cell wall 
dcconstruction.'" For instance. an FT·IR study of softwood tlber 
(kraft pulp) dedicated to investigate the interactions between 
wood polymers revealed that glucomannan was closely associ· 
ated to cellulose while there existed no mechanical interactions 
betwccn xylan and cellulose." Current models suggcst that 
hemicelluloses play a major role in biomass recaleitrance and 
art closely associated with boch lignin and cellulose. forming 
lignin-hemicellulose complexes and cellulose- hemieellulose 
complexes:" These techniques revealed important information 
on hemieellulose·s location and their influence on the recalci· 
trance nature of libers. and enhanced our understanding of the 
structural arrangement of libers. Thcy are howcvcr invasive. 
lime·consuming. complex and are depcndent on spccialized 
equipment and expertise. 

The Inherent recalcitranee nature of plants direcLly or indi· 
rectly impacts enzyme acccssibility,·us ..... ,u inactivation," inhi­
bition40.·u ...... 'J] and, as a consequence, cost or use.-. 1e.J7 The 
recent improvement in enzymes stabilization, activity, cost­
effectiveness .. ·........ and dcvelopment of ncw promising 
pretreatmcnt conditions"'" improved production yields. 
However. the high dose requirements of these enzymes often 
jeopardize commercial viability."~2."""'" Therefore. investi· 
gating biomass reealcitrance of typieal wood biomass 
substrates. and correlating process parameters su rh as enzyme 
dosage. temperature. incubation time. inactivation and inhibi· 
tion. with polymers hydrolysis efficiency is important. Wc 
anticipale thal sueh advances would support engincers for 
inereasing yields and mitigate production costs associated with 
lignocellulosie biomass bascd industries. 

One of the major difflculties in studying bioma s recalei­
trance and pracess parameters is the lack of rapid. high 
throughput and reliable tools" for monitoring and/or tracking 
hemicelluloses at the surface of wood fibers. Over the past 
decade. several techniques have been developed for direct and 
rapid detection of biomass polymers."" Among these teeh· 
niques. carbohydrate-binding modules (CBMS) are more 
powerful and advantageous as detectinn probes compared to 

others (su ch as chemical dyes. monoclonal antibodies etc.) due 
to their high specilleity towards lignocellulosic polymers.' · " 

480 1 Su:.u.nab/e Energy fuels 2018 2 479-491 

Vtew Artk:h OnIine 

Paper 

CBMs are the non-catalytie polysaccharide-recognizing modules 
of glyeoside hydrolases enzymes."''' Until now. CBMs have 
becn implcmented for various fundamental rescareh on plant 
ccII chcmistry and their structure.n ." cellulose aecessibility and 
surface morphology." ·,. ... as weil as for several industrial 
applications.7 ..... '..-&J 

Considering the importance of lignoccllulosic biomass 
tracking. we have recently established a novel. rapid. high· 
throughput. ea,)'·to-use. unambiguous and affordable 
approaeh to track lignoccllulosic polymers at the surface of 
meehanically. ehemically and enzymatically trcated pulps.· ..... 
This approach is bascd on the use of four highly specifie probes 
made offluorescent·taggcd earbohydrate binding modules. The 

. CBM part of these genetieally modifled probes recognizes and 
binds to biopolymers [i.e. mannan. xylan. crystalline and 
amorphous cellulose) while the fluorescent protein pan makes 
il possible to quiekly deteel and measure binding of probes to 
their intended targets. This approach. called lIuoresceI1l tagged 
CBM method (Y1'CM). proved tu be instrumental for our 
understanding of lignoccllulosic biomass proccssing. and 
exhibited bolh process optimizing and outcom. predicting 
potential.a1.&l 

Here wc investigated the potential of f"rcM for bolstering 
our understanding ofhemicelluloses hydrolysis and factors that 
have an impact on such hydrolysis. To this end. we used two 
fluorescent-taggcd fusion proteins of Y1'CM: mOrange2-CBM lS 
(OC1S) and eCFP-CBM27 (CC27). The family lS CBM (CBM1S) is 
a xylan recognizing module ofaxylnnase (XynlOC) from Cell· 
.ibrio japonicus'" and family 27 CBM (CBM27) conslsts of the 
mannan recognizing module of mannanase (ManS) from 
Thermotoga maritima." 80th CBM lS and CBM27 are classified 
as type B CBMs and have been demonstrated to bind specilieally 
10 xylooligosaeeharides and mannooligosaecharides. respcc· 
tively ... ·•• Mono-orangez (mOrangez) and cyan fluorescent 
prolein (CF!') were u.ed as lIuorescent proteins (deteetor 
molecules). and ean be quantitatively measured with ''el}' high 
sensiLivity and specitlcity. due to their indepcndent fluorescent 
signais (cach probe has iLS specific pair of emission and 
absorption maxima). For this study. we used four different pulp 
samples (unbleachcd mechanieal pulp. bleached mechanical 
pulp. unbleached kraft pulp and bleached kraft pulp) to inves­
tigate and track variations in hemicelluloses after various 
treaLments. Our results showed that tlCM can monitor the 
impact of mechanieal and chemical trealment on the surface 
distribution of hemicelluloses. and helped understand and 
optimize enzymatic·induced hydrolysis of ligooccllulosic poly· 
mers. We anticipate that t"I'CM can be developcd into a moni· 
toring tool for oplimizaLion oftre.tments .nd process strategies 
leading to a cost effective hydrolysis of hemicelluloses. 

Experimental 
Materials and methods 

Chemicals and mkrobial strains. Unless otherwise noted. ail 
chemïcals were reagent grade and purehased from Sigma· 
Aldrich and/or Fisher Sci.ntifie. Escherichia coli xuo cells 
(Agilent Technologies) wcrc uscd for ail DNA manipulations 
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while E. coli BL21·Gold(DE3)pLysS compelenl cells (Agilenl 
TechnoIOj,'Ïes) were used for recombinant proteins expression. 
Triclloderma viride xylanasc (enda-I,4·f}-xylanase) from glycosidc 
hydrolase (GH) family II (E'XYTRI; Mcgazyme), Cel/vibrio 
japonicus mannanase (enda-l,4,p-mannanase) from glycoside 
hydrolase (GH) family 26 (E'BMACj; Megazyme) and Tricha­
derma reesei Celluclast 1.5L (C2730; Sigma'Aldrich) wcre used 
for Ihe hydrolysis of lignocellulosic biomass. carboxymethyl 
cellulose sodium salt (C5678; Sigma), xylan from beechwood 
(X4252; Signla) and galactomannan (P-GALML; Mcgazymc) wcr. 
used for affinity gel elL-ctrophoresis (AGE) and for enzymatic 
assays using the 3,5-dinitrosalicylic acid (DNS) method . 

Construction, production and purification of CBM 
IttOmbinant probes. Probes were produced and purificd from . 
recombinanl E. coli BL21-Gold(DE3)pl.ysS eells as deseribed by 
Khalri Ct al. (2016)" and Hébert-ouellct ct al. (2017)" (noIe thal 
ln this study, probe eGFP-CBM3a was nomed GC3a; probe 
mOrange2·CBM15 was named OCl, and probe eCFP-CBM27 
was named CC27, for the sake of simplicity). Following 
affinity and sizc exclusion chromatography sleps, the probes 
puri lies were verlfied using SD5-PAGE (additional files 1 and 8). 
The amount of protein was quantified using Ihe Bradford 
method." Concentratcd protein solutions wcre stored al - 80 oC 
following flash free-ling. 

Alfinl ty gel eiectrophoresis (AGE). AGE was used as deseribed 
by Khatri ct al. (2016r for qualitative assessment of the CC27 
(10 ~,g) speciflcity toward selectcd ligands. 

IsoChermal titration calorimetry (ITe). ITC was employed as 
deseribed by Khatrl et al. (2016)" to measure Ihe affinlty of the 
CC27 probe towards seleetcd hexaoses (xylohexaose (C>-XHF..; 
Mcgazyme), mannohexaosc (C>-MHE; Mcgazyme), cellohexaose 
(o-CHE; Megazyme)). Ali experiments were perfo,med ln lrip­
licales. Data were analyzcd and fitted using the NanoAnalyze 
software v2.3.6 (TA Instruments). 

Pulp characterization. The meehanical and kraft pulps used 
for this study wcre provided by an Eastern canadian pulp and 
paper company. Both mechanical and kraft pulping wcre per­
formed using a mixture of softwood (80-85%) and hardwood 
(20- \5%). Four dlfferent grades of pulps: unbleaehed mechan· 
ical pulp (UBMP), blcaehcd meehaniea! pulp (BMP), 
unbleaehed kraft pulp (UBKP) and bleaehed kraft pulp (BKP), 
were used. The cellulose, hemicellulose, and lignin contents of 
these pulps wcre analyzed ln triplieates using NRELfI'P·5Io-
42618 protocol" as deseribed in Khatri el al. (2016)." 

" andsherts preparation. UBMP, BMP, UBKP and BKP were 
used as lignocelluloslc substrates for the preparation of hand­
sheets and paper dises. Handsheets (basis weight of 60 ± 2 g 
m- 2

) wcre prepared from pulps according to the Tappi standard 
method T 205 sp-02 as described in Khatri Cl al. (20\6)." Thes. 
handsheets were then used for the preparation of the paper 
punehes. These punches wcre defined as paper dises having 
a diameler of 3 mm. 

Enzymatic digestion of paper dises. The enzymalic diges· 
tions of paper dises wcre performed in triplieates using 7)-i· 
choderma viride xylanase, Cell.ibrio japonicus mannanase and 
Trichodcrma rcesei Cellucl,sl 1.5L enzyme(s). Cellud'Sl 1.5L is 
a mixture of fungal hydrolytie enzymes containing mostly two 
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cellobiohydrolases, IWO endoglueanases and various aecessory 
enzymes su eh as hemicellulases."·- We used the 3,S·dini· 
trosalicylic acid (ONS) method" to monitor the aeeessory 
enzymes aelivilies (sueh as xylanase and mannanase) in the 
Celludasi 1.5L (additional file 12). Xylanase and mannanase 
treatment concentrations ranged from 0.1 to 0.4 U per paper 
dises. Celluclasl 1.5L enzyme was used al 0.\ U per paper dises. 
Cocktail CX was prepared by mixing Celiudasi 1.5L (0.1 U per 
paper dise) with Trichoderma .iride xylanase (0.1 U per paper 
dise). Cocktail CM was prepared by mixing Gelludasl 1.5L(0.1 U 
per paper dise) with CeiMbrio japonicus mannanase (0.\ U per 
paper dise) and cocktail CXM was preparcd by mixing Celluclast 
1.5L (0.1 U per paper dise) with 7'richoderma .iride xylanase (0.1 
U per paper dise) and Ctllvibriojaponicus mannanase (0.1 U per 
paper dise). Units used here were as specified by respective 
enzyme suppllers. AIl cxperiments were perfomled with paper 
dises placed/glued at the bottom of 96-well black microliter 
plate (Corning). Ali reaellons were performed al roo'" lemper· 
ature or 50 oC, in sodium phosphate buffer (100 mM), pH 7.0 
supplelllented with 0.5 mg mL ' BSA under continuo us agita· 
tion (ISO rpm) in order to reduce enzyme adsorplion. Unless 
otherwise noted, after each enzymatic digestion, the reactions 
were removed and paper dises were washed (3 x 5 minutes) 
with buffer (20 mM Tris-HCI, pH 7.5 wilh 20 mM NaCI and 
5 mM CaCI,) and laler washed (3 x 5 minutes) with 0.05% (v/v) 
lWeen 20. This buffcr was shown to remOYc moS! proteins from 
paper dises in a previous report." Following lWeen 20 washing, 
paper dises wcre washed again with buffer (without lWeen) 
before analyzing Ihe variai ions in biopolymers levels, or diges· 
tcd again with refreshing enzymes solution every hour to reaeh 
maximum possible hydrolysis when specified. 

Lignocellulosic polymers traeking on the surface of paper 
dises using the OCIS, CC27 and GC3a probes. The n'CM 
tracking assay was performed as deseribed by Khatri el al. 
(2016)." Ali fluorescence readings were acquired at room 
temperature with a Synergy Mx mlcroplate reader (BioTek). 
These nuorescence values wcre then convertcd into ~g mm ' 
using the appropriate standard curves (additional files 6, 7 and 
9) and the surface area of the paper dises. 

Results and discussion 
Detemlination of the CC27 probe specificity 1L.lng alfinity gel 
electrophoresis (AGE) 

ln this studywe have used three FTCM probes (GC3a, OCl5 and 
CC27). GC3a and OC\5 were prcviously eharacterized and 
shawn to be specifie to their Intcndcd target. ...... Afflnity gel 
eleetrophoresis (AGE) was used to qualitatively evaluate the 
specificity of the CC27 probe (mannan sp<.-cifie) towards soluble 
polysaccharides." ln AGE, inleractions betwecn the studicd 
protein and the gel-embedded polysaccharide ar~ typlcally 
revealed by a redueed mobilily compa,ed 10 the mobility of lhe 
protcin in absence of saeeharide. Fig. 1 shows thal CC27 
interacts only with galactomannan (Fig. lB). Similar 10 BSA, no 
binding was detected between CC27 and beechwood xylan 
(Fig. le) or carboxymethyl cellulose (CMC) (Fig. ID). These 
results eonfiml thal the wcll·known speciUe binding of CBM27 
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Fig. 1 Affinity gel electrophoresis (AGE) of the CC27 probe. (Panel A) control (no polysaccharide). (panel B) galactomannan. (panel C) xytan. 
(panel D) CMC. In each panel the ftrst weU contained BSA (10 fig) and the second weU was loaded with the CC27 probe (10 f'9). AU soluble 
polysaccharides were used at ftnal concentration of 0.5" (wlv) and a 12" polyacrylamide gel was used for affinity analysis. 

to mannan is unaltered by its fusion with CFP in the CC27 
probe. BSA, which has no affinily towards carbohydrates , was 
used as negative controL" 

Detennination of eC27 probe affillity using isothennal 
titration calorimell)' (rrc) 

The affinity of the recognition module of Ce27 was invcstigated 
to quantify its sensitivity for a representative derivative of 
mannan. 1'0 this end, the affinity of eC27 toward various hex· 
aoses was investigated by ITC (Table 1 and additional file 2). 
Analysis of the binding isotherms showed that the recognition 
module of CC27 probe bound tightly 10 mannohexaose (K. = 
692.6 x 10' M'), but not to cellohexaose or xylohexaose (Table 
1). The affinity value is similar to the one previously reported for 
CBM27 (K. (X10· M- ') = 136.5 :l 17.68) conHrming that the 
binding site of the recognition module of the eC27 probe is 
unaltered by its fusion \Vith CFP.L ' 

Trncking hemicelluloses at the surface of wood biomass 

Pulps composed of a mixture of softwood (80-85%) and hard· 
wood (20-15%) from an Eastern Canadian papcr mill were uscd 
as lignocellulosic biomass samples. Four ditferent types of 
pulps were used in this study, allowing for the comparison of 

Table 1 Affinity of the CC27 probe for various hexaoses as determined 

by rTC' 

l.ignnd K. x 10' (M ' ) K. (M) 

Xylohexaose NU 
Mannohcxaosc 692.6 ± 0.5 4.41 3 )C 10 " :1: 0.2 1.1 ± 0.3 
CcUohcxaosc NB 

• n: number of ligand binding sites. NB: no binding detccted. 
binding nOi detected. 
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mcchanically and chcmieally trcated wood biomass: 
unbleachOO mechanical pulp (UBMP), bleachOO mechanieal 
pulp (BMP), unbleached kraft pulp (UBKP) and bleaehOO kraft 
pulp (BKP). These pulps wcrc first invcstigated to determine 
ditferences in lhe hemicclluloscs polymer content and their 
exposure at liber surface. 

Comparison of CC27 with OC15 binding to pulps (Fig. 2) 
revealcd th.t m.nnan exposure is 2.J·fold higher than xylan 
exposure in bolh mechanical pulps (UBMP and BMP). Only 
minute ditferences were observed between exposures of both 
hcmicclluloses studied here in kraft pulps: mannan exposure 
\VOs I.lJ-fold higher than xylan exposure in UBKP and only 1.08-
fold high.r in BKP (Fig. 2). The dominance of mannan for ail 
pulps is compatible with the higb softwood content of the four 
ditfercnl pulps studied hcre." Our results olso indicate that 
mannan was the dominant hemicellulose al the surface of 
mechanica) pulps in al,'Teement with an earlier study on lignin­
hel11icellulose complexes.'" Even though the pulp \VOs primarily 
composcd of softwood libers, kraft processing led ta the expo­
sure of similar amounts of xylan and mannan on the surface of 
both kraft pulps (Fig. 2, UBKP and BKP). NOle that the trends 
observed in FTCM signais , which responds to surface polymers, 
wcre in accordance with the bulk measurements of simple 
sugars by chemical composition analysis (NRELffP·51O-42618) 
of these pulps (additional file J). 

Bleaching of mechanica) pulp resulled in no sil,'Ilificant 
ditference between Ihe exposune of xylan and mannan (Fig. 2). 
Thesc results can be attributed to the pulping metbodology 
involvOO. Mecha.nlcal pulping is a high yield proccss which tends 
tu retain most wood constituenL< when producing UBMP and 
during the transformation of UBMl' to BMP." FTCM indicatcs 
that the distribution of hemicclluloscs at the surface of 
mechanically treated fibers \Vere comparable to fiher bulk 
composition (revcalcd by NREl/rp.Sl0-42618) (additional file 3). 
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Fig. 2 Tracklng hemiceUuloses on the surface 0' UBMP. BMP. UBKP 
and BKP papers using OC15 and CC27 probes. UBMP. BMP. UBKP and 
BKP paper discs were incubated with the OC15 probe (0 511g IlL ' ) ('or 
xytan detectlon) and the CC27 probe (0 5 ~g IlL 1) ('or mannan 
detecuon) for 1 h al room lemperature under agitation. Three percent 
lw/v) milk (20 mM Trls-HCL pH 7.5 with 20 mM NaCland 5 mM CaCI,) 
was used to mlnimlze the auto- fluorescence of paper dises and the 
non -specIfie blndlng of the OC15 and CG7 probes The lluorescence 
values were convened to OC15 IIlg mm-') and CC27 I~g mm .) by 
using the standard curves laddltlonal flle 6 and n Orange color 
represents the OC15 probe detection and cyan color represents the 
CC27 probe detection Error bars represent the standard devlatlon 

The goal of kraft pulping process is to degrade and/or 
dissolve lignin with minimum dissolution or degradation of 
hemicclluloses." UBKP was characterized by the smallest 
exposure of hemicelluloses, a possible consequence of th e 
d issolution or degradation of lignin- hemicelluloses 
complexes" during kraft pulping. Blcaching of kraft pulp 
completely changed hemicelluloses exposure. As shown in 
Fig. 2, BKP binds 3.6-fold the amount of OC15 and 3.S·fold the 
amount oC CC27 in comparison to UBKP, indicating that the 
sunace cxposure of xylan and mannan has incrcascd aftcr the 
bleaching proœss. Kraft pulping did n01 remove ail lignin 
(Iignin still represents 4.3% aceording tu chemical composition 
analysis, additional file 3) in UBKP. Bleaehing rcvealcd addi· 
tional hemieelluloscs at the sunace of BKP, resulting from thc 
removal of this residual lignin . These "deep' hemicelluloses 
wou Id bccome accessible after the Cull removal of IIgnin. 
Another explanation for this higher exposure or detcetion of 
hemicelluloses would involve mannan and xylan redeposition 
onto the sunace of cellulose libers during kraft processes.·1 

., 

The strength of FTCM lies in its ability to detcet changes in 
hemicelluloses exposure at the surface of Abers. While the 
trends observed were in general compatible with overall 
composition analysis (additional file 3), the amplitude of 
changes at the sunace could not be predieted by chemical 
analysis. For instance, mannan dropped by 71% when 
comparing both mcchanical pulps (UBMP and BMP) with UBKP 
(Fig. 2). Chemical analysis dctected a mere dcercase of 30-34% in 

. ' 1 P 

Su.talnable Energy & Fuels 

mannal' for the same comparison. In kraft pulps, the impact of 
bleaching on hemicelluloses exposure (an increase of 67%) 
(Fig. 2) could not be predictcd by chemicaJ composition analysis 
(showing an increase of only 13-15%, additional fi le 3). We also 
confirmed that the Ouorescent proteins (.Ione, without CBM) did 
not bind to the biom.ss sunace (data not shown), and wc Cound 
no diffcrence in binding signaIs, regardless of using the OCl5 
and CC27 probes together or separately (additional file 4 and 5) . 
This indicates that the probes did not intenere with one another, 
as cxpccted from thc diffcrem targets to which they are specific. 
We also confirmed that there was no unspecific interactions 
between Iignin and probes (data not shown). 

Wc also investigated physical parameters such as roughness 
and porosity of paper discs made fTom pulps and their impact 
on probe binding. For the four pulps and ail probes used in this 
study, wc found that porosity had no obvious impact on probe 
binding (cven when porosity was varied over a 40·fold range, sec 
additiona l fi les 10 and ll t). Probes are much smaller than 
pores or crevices that may be oC various sues or numbers in 
pulps with different porosities. Roughness was Cound to vary by 
about 10"'. when wc compared papers made from pulp in our 
experiments. 'ncreased roughness did result into moderate 
increase of probe binding, but wc did not obscrve any change in 
comparative binding of probes due to roughness (i.e. relative 
binding of a probe vs. binding of other probes is unchanged by 
roughness, sec additional files 10 and 11 t). 

'n~stigatioo of ...,action parameters by FTCM 

Fig. 3 and 4 show probe binding to various pulps using 
incrcasing concentrations of cnzymes. Our results revealcd that 
the maximal impact of xylanase and mannanase enzymes on 
pulps wcre detœtcd at the minimal loading used here (0.1 U of 
cnzyme/paper disc). A1llhc pulps (UBMP, BMP, UBKP and BKP) 
showed no s ignificant loss in the exposure of xylan . nd mannan 
as we incre.sed the concentration from 0.1 U to 0.4 U per paper 
disc. This suggcsts that a 0.1 U per paper disc concentration of 
both xylan.se and mannanase was sufficient Cor the maximal 
digestion of avail.ble/exposed xylan and mannan. The impact 
of temperature was 81so studicd. Ali the pulps showed maximal 
hydrolysis or decrease in the exposure of xylan and mannan at 
50 · C. This suggests that both xylanase and mannanase 
enzymes were comparatively more active at 50 oC than at room 
temperature. At room temperature, an overnight treatment 
showcd relatively higher decrement in the exposure of hemi· 
celluloses than a treatment duration of one hour. In contrast l at 
50 C, both 1 h and ovemight treatments led to a maximal and 
similor decrement for both xylanase and mannanase enzymes 
treatments. FTCM unambiguously rcveals that using 0.1 U of 
enzyme/paper disc for 1 h at 50 ' C was suffi cie nt for maximal 
reduction in available/exposed xylan and mannan. Production 
of reducing sugars by enzymatic hydrolysis was also monitored 
using the ONS method. Conditions chosen for this control 
cxperiment wcre the ones that Icad to maximal r.moval of xylan 
(Fig. 3D). Using sa me biomass and same trcatments, we found 
that reducing sugar production correlated with the decrease in 
xylan as detceted by the probes (sec additional file 13t). 
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FIg. 3 T,acklng xytan fo, optlmlling hyd'otyslS conditions fo, xytanase t,eatment. using the OC15 probe (Al UBMP. !B) BMP. (C) UBKP and (D) 
BKP paper discs were incubated with xytanase (0 t 0.2 and 0.4 U pe' paper disc) at four different opted conditions (1 h; RT (Ill. overnight; RT tll. 
1 h; 50 ' C (c )and overnight. 50 C ([;)) under continuou. agitation (150 rpm) Fotlowlng thi •. untreated and treated paper discs were incubated 
with the OC15 probe (O.5"g "l - 1) for 1 h at room temperature under agitation to detect xylan exposure Three percent (w/v} mtlk (20 mM TfI' ­
HCl pH 7.5 with 20 mM NaCland 5 mM CaCl, ) wa. used to mlnlmlle the auto-fluorescence of paper dlscs and the non-.pecihc binding of the 
OC15 probe Orange color represents the OC15 probe detection Error bars represent the standard devliltion 

111C ><ylanase enzyme appeared to hydrolYle ><ylnn more cffi· 
ciently in BKP than ail the other pulps (Fig. 3). Xylanase-treated 
BKP paper dises showed a maximum decrement of 82% in the 
exposure of ><ylan. This may be aseribed to the most efficient 
removal oflignin ln BKP compared to 011 other pulps sludled here, 
as descrilx.od earlier (Fig. 2 and additional file 3). In contrast, the 
mannanase enzyme was more efficient on both mechanical pu)ps 
(UBMP and BMP) (Fig. 4) duc to the very high exposure of mannan 
in mechanical pulps as described earlier (.'g. 2 and additional Ii)e 
3). 80th UBMP and BMP paper dises showed a maximum dec .... 
ment of atleaSI 55% in the eXIx>sure of mannon after mann.nase 
hydrolysis under our assay conditions. Although hemicelluloses 
were detcetable by our probes, the .. "'cre nO! completely hydro­
Iyled or reachable by the enzyme used. This suggt'sts a possible 
hindrance or inactivation of enzymes during our assay. 

Mannanase hydrolysis showed thal the relative amounts of 
mannan removed from mechanical pulps are higher than the 
percentage removed from the kraft pulps (Fig. 4). This suggests 
a higher digestibility of lignin·associoled mannan (lignin­
hemieelluloses complexes) in mechanical pulp. The hydrolysis 
of mannan polymers in kraft pulps mighl bc hindercd by 
significant exposure of ><ylan (mostly associated 10 cellulose-

484 Sus,.,n.tbIe Ene<gy fuel, 2018 Z. 419-491 

hcmicelluloscs complexes), in .grcemenl with an earlier study 
on Iignin- hemieellulose complexes:" 

ln contrast, ><ylanase hydrolysis showed that ><ylan was more 
susceptible to hydrolysis in kraft pulps eompared to mannan. In 
kraft pulps, bleaehing inereased the exposure of ><ylan and 
eventually inereased hydrolysis of ><ylan by a few percentage 
points. This suggt'sts that after removal of Iignin and the so­
called lignin- hemicelluloses complexes via kraft pulping, 
><ylan is more vulnerable or exposed at the surface of kraft pulps 
libers than mannan. The ><ylanase hydrolysis in meehanieal 
pulps seems to be hindered by the abundanee of mannan, 
whieh is the main hemicellulose associaled with lignin and/or 
Iignin-hemicelluloses complexes, as shown by the low.r 
binding ofOClS to ><ylan in both meehanical pulps (Fig. 2). This 
sludy revealed Ihat FTCM, a rapid and high Ihroughpul 
approach, can imp .. ove our knowledge and understanding of 
biomass hydrolysis as weil as the economic feasibility of 
lignocellulosie biomass based industries. 

Addressing possible impact of enzyme inactivation 

Above results suggested thm neither of these enzymes were able 
10 completely eliminate ail the available hemieelluloses al the 
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Fig. 4 Tracklng mannan for optim izing hydrolySi' condit ion. for mannana.e treatment. u. ing the CC27 probe (A) UBMP. (B) BMP. (C) UBKP and 
(0 ) BKP paper disc, were incubated with mannana,e (0 .1. 0.2 and 0.4 U per paper disc) at four di"erent opted condition. Il h; RT • . overnight. 
RT 01). 1 h: 50 ' C lei and overnight. 50 C 1&)) under contlnUOU' agitation 1150 rpm). FolloWlng thi •. untreated and treated paper dlSC5 were 
incubated with the CC27 probe 10.5 fig ~L - 1) for 1 h at room temperature under agitation to deteet mannan expo, ure. Three percent lw/v) milk 
120 mM Tris- HCI. pH 7.5 with 20 mM NaCI and 5 mM CaCI, ) was used to minimize the auto· fluorescence of paper dl sc, and the non· specifie 
bindlng of the CC27 probe Cyan color repre, ents the CC27 probe deteetlon Error bar. represent the standard deviation 

surface of libers under our conditions. This mil,'tlt be cxplained, 
in pan, by the inactivation of enzymes by reaction products, 
plant derived inhibilOrs, adsorption to lîbers or denaturntion of 
the enzymes over time." Recent studies have suggested that 
enzyme inhibition by their own end products and other 
components, generated during the bioconversion process, can 
be a key faclOr which impedes the hydrolysis processes ... ·······" 
Ta further investigate 3 potential inactivation st'enario, we 
chose BKP paper dises and treated them using optimum 
hydrolysis conditions (0.1 U of enzyme/paper dise, 50 Cl. Mter 
a one·hour treatment, the enzymatic reactions were removed 
and the surfaces of the paper dises were traeked with the OC15 
and CCZ7 probes, individually, for residual hemicclluloses. The 
trncking of .ylan and mannan showed an 80% and 30% 
decrement, respectively (Fig. 5) (simil.r to the resullS described 
in Fig. 3D and 40). Prolonging enzymatk reactions longer than 
one hour (and/or ovemight) at 50 oC did nOl promole any 
funher drop in the exposure of hemicelluloses. Therefore, we 
washed paper dises 10 removc the inactivatcd enzyme whkh 
might be inhibiting hydrolysis. To this end , the DKP paper 
dises, which were already incubated with enzymes for an hour, 
wcre washed with buffer and Tween (0.05%) before .dding 
.nother load of freshly prcparcd enzymes. After refreshing 
enzymes (.ylanase or mannanase) solution, the reactions wcre 

1 ~ 

kept again under optimum hydrolysis conditions (0.1 U of 
enzyme/paper dise, 50 ' C) for another hour. Later, the tmcking 
of .ylan and mannan showed an addition.1 decrement of 2.3% 
and 5.3%, respectively, in the exposure of hemicelluloses 
(Fig. 5). Likcwise, the enzym.tk reactions ,vere washcd again 
before adding fresh enzymes for an addition al on~hour reae· 
tion period and then measured by probes, for up to 24 hours. 
The resullS exhibited a graduai decremenl in the binding of 
OCl5 and CC27 probes. Aher 24 hours, the maximum decr~ 
ment in the exposurc of .ylan was 92% and 50% in the exposure 
of mannan. The maximal impact was reached after 12 hours (in 
the case of .ylanase hydrolysis) and 5 hours (in the case of 
mannanase hydrolysis), rcgardless of washing paper dises and 
adding freshly prepared enzymes (Fig. 5). This suggests that the 
.yl.nase and mannanase enzymes might have reached their 
maximum possible hydrolysis aelivity, or that such activity h.d 
no more detectable impact on the hemicelluloses. Nevenheless, 
~-rcM indicates that there was an inactivation (and/or inhibi· 
tion) whkh was somewhat overcome by washing followed by 
a fresh load of enzyme (.ylan.se or mannanase). FTCM reveals 
that despite an apparent interruption of net hydrolysis, there 
remains a large amounl of mannan al the surface of BKP tlbers. 
Sueh information cannot be provided by chromatographk 
analysis of hydrolysis products. Chemical analysis, whkh 
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Fig. S Tracklng lAI xylan and IBI mannan to address the Impact of 
xytanase and mannanase inactrvatton on BKP paper dises USlng the 
OC15 and CC27 probes. lAI Paper dises were incubaled with xylanase 
10.1 U per paper disel at 50 ' C under onlinuous agilalion (150 rpml with 
refreshlng enzyme solution every hour up to 24 haurs. FoUawmg thls. 
untreated and xylanase treated BKP paper dlScs were incubated with 
the OC15 probe 10.5 ~g ~L - '1 fOf 1 h at room temperature under 
agitation. IBI Paper dises were incubated with mannanase 10.1 U per 
paper disel at 50 · C under continuous agitation 1150 rpml with 
refreshlng enzyme solution every hour up to 24 hours. Fotlowing this, 
untreated and mannanase trealed BKP paper discs were incubaled 
wilh the CC27 probe (0 5 ,'g "L '1 fOf 1 h at rcom temperature under 
agitation For fluorescence measurements. three percent (w/v) milk (In 
a buffer made of 20 mM Tris-HCl pH 7.5 with 20 mM NaCl and 5 mM 
CaCI2) was used to minimlze the auto-fluorescence of paper dises and 
non-specifie binding of the probes. Orange CotOf • and cyan color ~ 
represent the OCI.5 and CC27 probes detection. respectively. Error 
bars represent the standard deviattons 

depends on total hemicellulose content would not be as sensi­
livc as ITeM for detceling changes in hemicellulose hydrolysis 
at surface and for optimizing enzymatic processes. Note that 
measurements of reducing SUb'3rs production by enzymes were 
performcd allowing to conflrm that smaller quantities of sugars 
were released upon renewing enzymes, but thal maximal 
production of sugars was genernted in the fir."t hour with the 
flrst exposure to enzyme (additional files 14 and 15t). 

Invcstigating the impact of cellulose on Ihe hydrolysis of 
hemicelluloses 

Despile finding out the optimum hydrolysis conditions and 
aehieving additional removnl of hemieclluloses by spiking 
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enzymes, both xylanase and mannanase enzymes were unable 
tu completely eliminate/hydrolyze ail the available hemi­
celluloses thal could be deteeted by ITeM. To aehieve addi· 
tional hydrolysis of hemieclluloses and simultancously improve 
our understanding of fiber deconstruetion, wc explored the 
potential impact of eellulase treatments on hemicelluloses 
availability. The use of enzyme cocktai ls eompriscd of cellulase 
and so-called aceessOl)' enzymes (xylanase and/or mannanase) 
has been previously studied and found to en hance the cellu lose 
hydrolysis.""'~""'-··"" Here wc reexamincd the apparenl 
complementarity between enzymes using ITeM. To this end, 
BKP paper dises were hydrolyzed with commercial cellulase 
enzyme (Celluclast l.5L) under conditions whieh were optimal 
for hemicelluloses hydrolysis (o. tU per paper dise, 50 · C) for an 
hour. Celluclast J.5L possesses some contaminant activity of 
both xylanase and mannanase (additional file 12). Aher hydre­
Iysis, an eGFP-CBM3a (named GC3. here) probe was used to 
trnck the exposure of erystalline cellulose (as described by 
Hébert-oueUet et al. 2017)." Results in Fig. M suggest that 
Celluclasl l.SL lrealmenl rcdueed exposure of crystalüne 
cellulose by 63%. Then, supplementation ofCelluciast 1.5L with 
a xylanase aceessory enzyme (cocktai l ex) and a mannanase 
aceessery enzyme (cocktail CM) was investigated. Addition of 
hemieellulases Icd to an addilional rcduetion of exposed 
cellulose, suggesling that they helped the hydrolysis of cellulose 
by the Celluclast l.5L enzyme (Fig. M). Finally, the supple­
menta!ion of Celluclasll.5L with both xylanase and mannanase 
enzymes (cocktail CXM) drnstically decreased the cellulose 
exposure (down by 88%, sce Fig. 6A). These results confirm that 
10 aehieve highest cellulose hydrolysis at surface of BKP libers, 
il is vital te supplement ecllulase with aceessory enzymes su ch 
as xylanase and mannanase. These results also suggest that not 
only one type but both types of hemicelluJoses (xylan and 
mannan) restriet cellulose aceessibility or cellulase action. 

We then investigated a potential reciprocal additive and/or 
_yne'1,'h"tÎc al'lion by supplementing xylanase and man na nase 
enzymes with CellucJast J.SL and monitoring hemicelluloses 
rel110vaJ after treatment. Using the same BKP paper dises trealcd 
as explained abave, wc found that the xylanase enzyme Icd to 81 % 
decremenl in the exposure of xylan (Fig. 6B), whieh is compatible 
,vith the result shown in Fig. 3D. BKP paper dises wcre also 
treatrd with cocktail CX, cocktail CM and cocktail CXM and ail 
led to the nearly complete elimination of xylan at the surface of 
BKP I1bers. Likcwise, BKP paper dises hydrolylCd with the man­
nanase enzyme showed 30% deerement in mannan exposure 
(Fig. 6c). Subsequently, cocktail CX, cocktail CM and cocl..-tail 
CXM promotcd further hydrolysis of BKP paper, leading to the 
ncar complete elimination of mannan from the surface of Bt(J> 
flbers. These results sugge_"t that cellulose is an important barrier 
limiting aceess to hcmicelluloses in IIKP. 

The presence of both hemicellulases (xylan.se and man­
nanase) were required wilh Celluclasl 1.5L for maximal hydre­
Iysis of erystalline cellulose. In contrast, either one of the 
hemiecllulases or both were required with Celluelast l.SL for 
maximal hydrolysis of xylan and marman. This suggests that 
xylan and mannan were providing protection 10 cellulose, bUl 
that a portion of cellulose remains proleetcd by other fiber 
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Fig. 6 Impact of Celluclastl 5L x}'lanase. mannanase and their cocktails hydrolysis of BKP on the exposure of (Al crystal~ne cellulose. (B) x}'lan 
and (C) mannan poIymers (A) Paper dises were incubated with Celluclast l5L (0.1 U pe' pape' dise). cocklail Cx. cocktail CM and cocktail CXM at 
50 · C for 1 h under continuous agitallon (150 rpm) Following this. unt,eated and treated BKP pape' dises were Incubated Wlth the GC3a probe 
(0.51Ig IlL - 1) for 1 h at 'QOm temperature under agitation. lB) Paper dises were Incubated with xylanase 10.1 U pe' paper dise). cocktail Cx. cocktail 
CM and cocktail CXM at 50 C for 1 h under continuous agitation 1150 ,pm). Following this. unt,eated and t,eated BKP pape' dises were incubated 
with the OC15 probe 10.511g "L ' ) for 1 h at rQOm temperatu,e under agitation ICI Paper dises we,e Incubated with mannanase 10 1 U per pape' 
dise). cocktail Cx. cocktail CM and cocktail CXM at 50 C for 1 h under conllnuous agitation 1150 rpml. Following this. untreated and treated BKP 
paper dises were Incubated with the CC27 probe 10.5 "g "L - 1) for 1 h at room temperature under agitation Green • . orange iIIl and cyan l1li 
color were used for GC3a. OC15 and CC27 probes detection. respectively Error bars represent the standard deviatlOns. 

eomponenLs, or that a portion of exposed cellulose remains 
stable despite enzymatic attack. Su ch resu lts are compatible 
with the existence of deeply embedded hemicelluloses, pan of 

a carbohydrate-hemicelluJose complexes, shielding the cellu· 
lose libers. Note that in 8KP,the hemitelluloses associated with 
lignin are expected to be mostly absent. These results suggest 

that FTCM ean also be used to design enzyme cocktails prepa­
rations for specifie applications. Exposure of libers to enzymes 
had a drastic impact on ail polysaceharides at surface. The 
question of "what is Icft" at surface aftcr such important 

dcerease in probe binding is legitimate but not necessarily 
relevant. Note that wh en preparing paper dises )lrior LO FTCM 

reading, the dises wcr. WBshed, and any loosen marerial WBS 
removed. Hydrolysis of high surrace fragments such as micro­
fibrils and their removal prior to ITCM may explain the 
important decrease in probe binding obseNed here. 

Exploring th<: impact of xylan polymcrs on the hydrolysis of 
mannan 

The previous section has revenled the proximity of cellulose and 

"dcep' hemicelluloses. Here wc focused on the impact of xylan 

l , 

on the hydrolysis of mannan in order to address structural 
relationships and their potential impact on hydrolysis yield. To 
this end, 8KP paper dises wcre hydrolyzed with mannanase 
enzyme as a control reacûon. Results showed a decrement of at 

least 30% in the exposure of mannan for ail the enzyme 
concentrations used (Fig. 7A, solid cyan color bars). The results 
wcre as expcctcd and fully compatible with Fig. 40. 

ln another reaction, BKP paper discs wcre digested with the 
xylanase enzyme. tn order to reach the maximum xyl.n hydro­
Iysis, the reaction WBS performed as described a bove (section 
Addressing possible impact of enzyme inactivation) with 
refreshing enzyme solution every hour up to 12 hours. By 

refreshing enzyme solution, this treacment I.d to a stronger 
rcduction in xylan exposure (an additional 10-13%) as dctectcd 
\Yith the OC15 probe (Fig. 78, solid orange color bars). The 

results were as expected and fully compatible with Fig. SA. The 
sa me xylanase hydrolyzed paper discs wcrc then inspectcd 
using the CC27 probe to lrack mannan exposure. The results 
revealed that mannan exposur. at the surface of xylanas. 

hydrolyzed BKP paper dises incrcascd by 20% when pulp WBS 
treated with a 0.4 xylanase U per paper dise (Fig. 78, cyan eolor 
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bars with upward dingonal stripes). Xylanas. hydrolysis For 1 h 

or oyernighl, wilhoui rcfrcshing enzyme solution (as describcd 

above in section Investigation oF reaction parameters by FTCM), 
lead to no significant mannan exposur. at the sunace oF ><yIn· 

nase hydrolyzed BKI' paper dises (data not shown). 
ln another reaetion, the xylanase hydrolyzed BK!' papcr dises 

were later washed and exposed to the hydrolysis with man· 
nanase enzyme. In this case, mannan exposure decreased by 
55% (in case of 0.1 mannanase U pcr papcr dise) which is an 

additional deerement oF 25% compared to wh en ><ylanase wos 
not used as a pretreatment (Fig. 7e, cyan color bars with 

cheekcr board). This study showed thal ><ylan hydrolysis 
exposed more detcctable mannan on the surFace of BKP wood 
libers, leading to higher enzymatic hydrolysis of mannan. This 
suggcsts that ><ylan was wrapping or covcring mannan in the so­
called cellulose-hemiccllulose complexes. The mannan detce­
ted here seems to be deeply embedded in the BKP wood Abers. 

plant cell wall organization directly a ffects the nature of 

biomass recalcitrance ... ·" ThereFore, il is importanl to under­
stand the organizution of hemicelluloses and FTCM offers 

a unique means of add ressing this issue. So far, various studies 

488 Susla1mble tne<gy fuels 2018 2. 479-491 

looking for the arrangement oF the different wood polyme", in 
delignified samples have rcvcaled thal mantlan is closely asso­

ciated with cellulose and ><ylan is more associated with 
condenscd Iignin in the secondaI)' cell wall of the softwood 

fibces ... · .. This t'l'CM study provides direct cvidence in suppon 
of this suggested mode!. Using FTCM probes, WC detcctcd Iwo 
different mannan populations in the wood libers. The lirS! 
mannan population was associated with Iignin- hemicellulose 
complexes aS scon in mcchanical pulps. This population waS 

dominant at the outer surface of wood libers. In contrast, 
during kraft pulping, Iignin and lignin- hemicellulose 

complexes get dissolved and/oe dcgraded, which exposes dccpcr 
hemicelluloses. The second mannan population was found 
deeper in liber, probably associatcd to the earlier proposed 
cellulose- hemicellulose complexes in kraft pulps. Overall the 
resulls suggesl lhal ><ylan waS acting as a physical shield which 
waS covering or wrapping the mannan polymers in BK!' libers. 

This also indicates that the second population of mannan is 

hidden beneath the sunace of xylan polyOl."', closcly associ· 
aled to cellulose or deeply embedded in lhe ccII W'~II organiza' 

tion in BKI' flbcrs. f"l'CM analysis fully suppons the concept of 
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a complex network of hemicelluloses around the cellulose libers 
as reported by Vamai ct al. (ZOII)" but in addition, FTCM 
highlightcd the presencc of deeply embcddcd hcmicelluloscs. 
Working with bleaehed softwood dissolv;ng pulp, Gübitz rt al. 
(1998)" proposed that hemicelluloses hydrolysis is monger 
when cellulase enzymes are used with hemicellulases and 
proposed two dilTerent fractions of hemicelluloses: one associ­
ated with lignin and another one with cellulose. The FTCM 
results are compatible with the findings of Gübitz el al. (1998)" 

which suggested two dilTerenl mannan populations. This sludy 
also provides a rationale for the findings of Kansoh el al. 
(2004)" and Clarke et al. (2000)'"which indicated that the use of 
the mannanase enzyme is not very efficienl if xylan is still 
present in kraft pulps. 

Overall, FTCM has becn shown to help under>"tanding cell 
wall ultrastructure and ils organization by studying the pres· 
enee of hemicelluloses in various parts of fibers, as lignin is 
progressively removed by kraft pulping and bleaching 
proccsses. A1though most FTCM investigations reported here 
were compatible with chemical analysis (dependent on overalV 
bulk composition analy is; NREL/T1'-5Io-42618), Ihey revealed 
thal changes in surface hemicelluloses after various treatments 
are much more importantlhan indieatcd by chemical analysis. 
Moniloring surface modifications is mueh more informolive on 

biomass recalcitrance than performing analysis of fiber bulk 
composition. 

Conclusion 

n'CM showed th3t it can specifically track mechanical, ch em­
ical and enzymatic-induced variations of hemicelluloses on Ihe 
surface of dilTerent wood "bers in a rapid and high throughpul 
fonnal. Optimum hydrolysis parameters for both xylanase and 
mannanase enzymes, for ail lhe studied pulps, wcre 0.1 U of 
enzyme/paper dise al 50 C for a trealmenl duration of 1 h. 
FTCM identified the major factor limiting hydrolysis efficiency 
as enzyme inactivation (by any mcchanism). By direetly detect­
ing polymers remaining after various enzymatic Ireatments, 
using CBM probes revealed additive and/or synergistic inlerac­
tions between Celluclast 1.5L, xylanase and mannanase 
enzymes. nIe ability of FTCM to directly mnp layers of cellulose 
and hemicelluloses fractions as they were attaeked by enzymes 
provided support for an embedded population of mannan, 
protcclcd by xylan, probably associatcd to cellulosc--hemi­
cellulose c.omplexes." Wc believe Ihalthis method can enhance 
our understanding of lignocellulosic polymers response LO 

various trcatmcnts, therefore bolstering development of cost­
elTcetive proccsscs for production of biofuels and other Iigno­
celJulosic biomass-based producLS. 
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Family 15 carbohydrate binding module 
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Green fluorescenl protein 
Glyeosidc hydrolase 
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Wood ftber 1$ a source of raw matenals for estabhshed wood based Industries and (or the nascent 

blotuel secter Efficient processmg or wood ftber polymers such as cellulose and hemlcellulose requires 

close mOnitoring wilh methods 5uch as FTIR. XPS or chemlcal anatysis Such methods are lime· 

consumlng and reQwe the avallabihty 01 speoalized equlpment and expertise Recently, the carbohydrate 
recognttlon domalns of glycohydrotases known as carbohydrate blndlng modules, were used for studymg 
the development and the biochemlstry of piant cell walls ln this study, we engineered a series 01 color · 
coded fluorescent carbohydrate bindlng modules wlth speclflClties for four major carbohydrate fiber 
poIymers ThiS approach allowed lor qUlCk, hlgh -throughput anolysis of hber surface carbohydrates signa ­
tures and 15 hereln used tOf mOnitoring and prechctmg the impact of vartous lreatments on the strenglh 

properties of paper produced (rom such processed hbers We beheve that the Slmptlcity of this environ · 

ment -I"endly approach could change the way industry optimlZes wood fibers processing and 
deconstruction 

Introduction 

Wood fiber is a major source of row, renewable material for 
both the paper and biofucl industries. Howe""r, iLS eomplcx 
organization involves a network of tightly ordered cellulose 
chains inlertwined with other biopolymers, making it recalei­
tront LO modifications,' Accord i ngly, Iignoœllulosie biomass 
conversion into paper and/or its deconstruction for biofuel 
production are costly, energ)' avid processes. H Key advanccs 
in biochcmistry have the potential to change this situation. 
One promislng wny of deallng with plant biomass recalcilroncc 
involves the manipulation of plant gene. that are associated 
witll ccII wall architccturc, leading to easicr aeeess to cell­
ulose.' ln wood-degrading fu ng; , such recalcitronce i. dealt 
with by an "rray of enzymes, which are sometimes associated 
in cellulosomes." Su ch org-dnised enzymatic machinery is 
highly informative when considering ho," we can make biofuel 
from wood matcrials morc efficiently,7 

· o,;purtt'mmt dt Clllmlt-BIO<"hlm;1' tI PlryslqUt', Unll'trlltl du QtJIINc il TroIS 
RMirn, Tro;s -RJ"itrt's, Qul~c, G9A SIIJ. Canada. 
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Currcnlly, our ability to trock the effect of any industrial 
processing, including enzymatic processi ng, is limited as 
most methods are not suitable for quantifying changes in 
individual lignocellulosic biopolymers. Such melhods 
include the following: compositional an.lysis (FTIR, XPS 
and NREL), surface imaging (SEM, TEM and AFM), index of 
crystallinity (XRD and NMR) and mcasurcments of thc 
degree of polymerizatlon. They are low-throughput, time· 
consuming and require access to specialized equipmenl and 
expertise,- . 0 Among these mcthods, XPS can be used to 
monitor lignin and the combination of celluloses (crystalline 
and amorphous) and hemicellulose al the surface of fibers 
but without any distinction bctween thesc polymers. Also, it 
is sensitive 10 X-ray contamination and sam pie degradalion 
which may prevent XI'S annlysis reproductibility." ·1l 
Currently, there is no available method whlch ropidly pro­
vides specilie information on each major c1ass of polymers 
at the surface of fibers. Unfortunatcly, thls greatly impairs 
moniloring fiber surface composition, which essentially 
limits technologieal developments and governs the econ­
omie viability of several Iignocellulosic biomasses processcs 
(biofucls production) and/or of its end produets (papers 
manufacturing). The development of a diagnostic approach, 
whieh would afford rapid, easy and, if possible, on-site 
monitoring of fiber structure and composition, would 
changE" tht" way biomass industries achieve optimization of 
lheir proeesses . '1'0 this end, carbohydrate-binding modules 
(CBMs) have tremendous pOlenlia!. CBMs are derined a. 
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small, non-catalytie proteins (whieh arc often attaehed to 
glycoside hydrolases via" Iinker) whose funeLion is 10 aet as 
substrate-recognltion devkes thereby enhancing the cat.lyrie 
effieiency of these enzymes_Il" . They have been sueecssfully 
employed for the chameteriz'lion of fiber surfaces com­
poscd of simple and eomplex carbohydrotes." 17 Specifie 
advances wcre achieved using CBMs as fusion wiLh a nuo­
rescence protein such as the green nuorescent protein (or 
any of its variants)." CBMs coupled witb nuorcscence 
protein have bcen used Cor mapping the chcmistry and struc­
ture of varÎoll s carbohydrate·containing substrates (ligner 

ccllulosk biomass). ".'V Gao el al., using nuoresccnt CBM3 
and CBMI7, successfully quantified the change of.ccessibil­
ities to erystalline and amorphous celluloses during enzy­
matie hydrolysis.'o Rccently, using nuoreseent CBMIS, wc 
developed a ropid assay that specifically lrack surface vari­
ations of xylan which enable a better understanding and 
Cacilitate the optimizatlon oC the Iignoeellulosie biomasses 
processes.1 1 

ln Ihi, study, we exploiled the .pecificiry of CBMs CBM3, 
CBMI5, CBMI7 and CBM27 and eonstrueLed Cour nuoreseent 
CBM probes (Fig. Sl t ), each ofwhleh tracks a panicular ligno­
cellulosic carbohydrate polymer, i.t . crystalline cellulose, 
amorphous cellulose, xylan and mannan, respectively. MWng 
the probes with wood liber and mensuring nuorescenee (after 
removing CBMs that are not specilically bound) allows for 
quick monitoring of the distribution of lhe targcted polymers 
on Lhe fiber, as depieted in Fig. 1. Here wc demonstrole thal 
these probes can monitor proecssing impact, and help line­
tune wood liber relining and deconstruel ion. Applying Ihis 
approaeh in an industrial setting will lead 10 improving the 
cost efficicney and energy efficiency of liber treatments. 

Vi.w Artide Onfine 

Green Chemistry 

Results and discussion 

Wood pulping is a well-known treatment thal promotes 
exposure of carbohydrale polymers su ch as cellulose and 
hemieellulose." li Depending on the treatmenl, changes in 
polymers are cxpeeted. For example, the Iignin CO\'Cring kraft 
pulp libers Is subsLantially lowcr than for high yield kraft pulp 
(HYK) fiber. '\)'pically, total chemical analyses (NREI.JTP-SIO-
42618) are u ed 10 dercrmine lhe ehcmical composition of 
pulps." As cxpecled, Ihese analyses rcvcaled lhal HYK has a 
higher lignin conlenl (1.4-fo ld) than kraft pulp (Table 52t ). 
Unfortunatcly, lhis approaeh can only provide an overall bulk 
estimaI ion of polymers content. Il cannot delecl nor Ihan 
measure "MiaLions of polymers specilically located al the 
surface of libers. Another elassical method for liber analysis is 
X-I"dy photoelectrnn speclroscopy (XPS). XPS analysis consislS 
in acquiring and deconvoluLing the C ts band of high-resolu­
tion spertra in order to expose the CI LO C4 peaks (Fig. 53 and 
Table S3t). 11,e Cl componenl of Lhe C t. band mainly arises 
rrom lignin and extractives, white C2 is primarily associated to 

cellulose and hemieelluloses. The C3 eomponenl is not easily 
assigned to a given polymer, as il is relaLed 10 either carbonyl 
groups of Iignin and/or eXlractives, or to carbon aloms bonded 
to IWO oxygcn atoms in cellulose and hemicellulose.'· " 
Consequently, XPS has been used extensively for surface ana­
Iysis of simple Iignoœllulosic biomasses for deteetion of 
changes in surface covera!.", by cellulose, Iignin, and extroe­
lives"" · '" When comparing HYK paper 10 kraft paper, we 
found a 1.4-fold inetease in CI spectral component intensity at 
HYK surface ('rable S3t). Again, this result suggests that HYK 
has a higher lignin conlent. The C2 functionality in HYK 
paper is I.I -fold lowcr than for kraft paper, suggesting that 

Fig. 1 Schemalic representatk>n of probe binding to wood fiber The left ,ide of the fiber deplcts a partially lignin-free fiber where amorphous cell­
ulose domlNtes (red strings). On the right side, the straight green bars represent crystalline ceUulose. Hemicelluloses such as xylan (orange) and 
mannan (cyan) are shown as polymers that help keep the fiber together. The grey cylinders represent the Ugnin coating. The probes designed ln thls 
study were shown to attach speciHcally to their respectrve target pot ymer. as indkated in this hgure by the matching colOt of their fluorescent 

module The affinity of lhe four probes toward thelr specifled targel pot ymer was confirmed 1 ... Table SI and Fig S2tl. 
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cellulose and/or hemicellulose arc slightly less present on its 
surface. The values uf the Col and C4 fun etionalities were rela· 
tively low and similar for cither paper. XPS analysis did reveal 
the impact of the diffcrent pulping processcs on ù,e exposurc 
of major polymer classes. Unfortunately, the C 1 s spectra 
cannot distinguish cellulose (be il amorphous or c!)'Stallinc) 
from hcmicellulose sincc these polymcrs (or polymer fonns) 
possess similar carbon types. 

Using CBM'probes, \\'(' endeavorcd to avoid such limitations 
associated with chemical and XPS analyses. We attempted to 
monitor the difference in Ihe exposure of carbohydrale poly­
mers on the surface of fibers from the same pulps as deseribed 
abave (HYl< and kraft ). The binding of CBM probes to liber 
dises made of IWO pull' grades is shown in Fig. 2. The cali· 
brated nuorcscence signais indicatc that the most abundant 
carbohydrate polymer al the surface of the liber dises ",as elys­
talline cellulose, follolYed by amorphous cellulose, and then by 
hemicelluloses. This distribution of individusl liber polymcrs 
is compalible ",ilh the measured chemical compositions of 
these pulps (Thble S2t ). The acce" (Jf CBM-prtlbes 10 surface 
carbohydrates appears to be hindercd in high-yield kraft pulp 
(HYK). This pull' contains 1.4 fold the amount of liber-<:ooting 
lignin found in the other kraft pull' (Table S2t). Clearly, Ihe 
probes allo\\' to quickly distinguish betW('en two pulping 
grades. In addition, the analysis of liber surface with CBM 
probes indicates that mannan, and not xylan, is the prima!)' 
hemicellulose carbohydrates det<'Ctcd in kraft pull', conlirm­
ing thal bolh liber discs wcre manufaclured principally from 
sofuvood. These results suggest that introducing this tracking 
approach as a quality control mcasurcment would bolstcr the 
effectiveness of the lignocellulosic biomass processes. 

Mechanieal relining is essential for modifying the charac­
teristics of wood libers.""" One important consequence of 
relining is Ù,e external librillation of the wood liber S2 layer 

0,06 

ïO,05 
E 
~0,04 

1l 0,03 
e 
:0,02 
c :. 
~ 0,01 

° Kraft HYK 

Fiber dise origin 

Fig. 2 CBM bind'ng to the surface of unreftned kraft and high yield 
kraft (HYK) liber dises, The probes attached to crystalhne and amor· 
phous celluloses are show" in green and cherry. white hemkeUutoses 
xylan and mannan probes Ire shown in orlnge and cyln. respec.tivety. 
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which promotes the formation of hydrogen bonds betW('Cn 
libers. On Ihe moleclliar level, relining translates into the 
partial conversion of crystalline into amorphous cellulose 
(made of hydmtcd eellulo c fibrils), a phcnomcnon kno",n as 
amorphogenesis. '2 •. 1.1 ln addition to being the prima!)' source 
of hydrogcn bonds strcngthcning the fiber matrices in paper, 
amorphous cellulose is also more sensitivc to enzymatic hydro­
Iysis into fermentable sugnrs!·"·ll.'" Monitoring amorphous 
cellulose formalion during rcfining would hcJp delect the 
minimal amount of mechaniea) energ)' requircd tO promote 
efficient amorphogenesis which is crilical for bo/h ,vood based 
biofuel and papennaking industries. Optimizing energ)' input 
would also reduce possi hle mechanical sh .. r and help main­
tain fiber integrity. 

Fig. 3 shows the evolution of the carbohydmtes surface sig­
nature~ as a function of increasing refining inlensities as 
revealed by the CIlM probes. This experimenl revealed that the 
amorphous cellulose tO c!)'Stalline eellulo c mtio (AC/CC) is 
maximal at 2000 PFI revolulions, suggesling that amorphogen­
esis wOllld be optimal lIsing the corresponding mechanie,,1 
cncrg)' (Fig. JA). Intcrcstingly, the mannan to crystalline cell­
ulose mlio (Man/CC) .150 peaked at 2000 (Fig. JIl) meaning 
thal exposure of lhe cellulose-shealhing m"man layer is 
maxim.1 at such rcfining intensity. ln contrast, the xylan to 
cryslalline cellulose ralio (XyIlCC) initially increased but then 
remaincd constant aftcr reaching 1500 revolutions. Ovemll, the 
application of mcchanical encrg)' to wood fibers IQW('red the 
surface detection of ail carbohydrates. This result is consistent 
with the 100vcring of probe a<'CCssibiiity that results from the 
production of a tighter fiber nctwork in the papcr dises after 
refining.19•J I .J" 

A eritical issue in the wood biomass industl)' is the cost of 
process optimizalion. The ability to nol only mpidly mon il or, 
but also predict the impact of a lrealment on a small scale 
,vould be of ll'reat benefit to the indu,"!!)'. In this context, wc 
measurcd the physical properlies of paper hand sheets after 
various refining intensities in order lo establish correlations 

betw""n the carbohydmte to cI)"talline cellulose mtios 
(revealed by lhe probe) and the paper strcngLh properLies. 
Fig. 4 r<.'VCals that the optimal values of a number of important 
paper strength properties (sueh as internai bond strcngth and 
tear and tensile indices) ,vere effectively correlated with 
optimal AC/CC mtio at 2000 revolur;ons. Note that ail these 
pammeters are a fllnction of fiber mean length, sin"" shorter 
and deformed libers lo,,".r lhe paper"s strength properties.3S

•
J6 

How"ver, taking only liber length into account would have 
been misleading since this parameter peaked .t 1500 revolu­
lions. Wc show herc thal the carbohydmle surface signalures 
closely currelated with Ihe paper strenll1h properties. 
Consequently, we believe that the correlations between the 
dcvcloped probe surface signatures and paper strength pro­
perties can be evolved into a p<l\verful prediction tool for the 
quick and efficient determinarion of optimal refining 
conditions. 

Enzymes have bcen lIsed for many years tu improve paper­
making as \\'('11 as for the decon struetion proccsses of ligno-
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cellulosic biomasses in order to redut-e energy consumption 
and increase productivity.l7 19 One such enzyme, mannanasc, 
was found lO he parliculnrly effeclive when used on kraft pulp 
and in relieving mannan inhibition of cellulases:tO 

Il 

unfortunatcly, mannanase usage is frcqucntly rcstrictcd to 

2606 ) G" ... Ct""" 20!7, 19 2603 2611 

('ertain biomasses and conditions, and this nlixed sucœs~ ha~ 
limited its usage on the industrial scale. As a result, efficient 
prediclion of lhe impacts of mannanase aClivity on biomass 
properlies is imperative. Therefore, we developed a small .ca)e 
papcr dises digestion assay and applied our SM technology 
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Fig. 5 Impact of mannanase hydrolysis (250-50000 U 9 1 substrate) 
on th<! bindlng of m.nnan (cyan) .nd cryst.lIine cellulose (green) probes 
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10 deleCt the optimal condilion required for mannanase lO 
promote lhe efficienl uncovering of cryslalline cellulose and 
thereby imprO\le the reactiveness of fibers towards mechanical 
refining wilhout negalively alTecling paper propenies. Fig. 5 
shows the impact of mannnnase hydrolysis on the removal of 
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mannan and on lhe exposure of crystalline ccllulose at the 
surfaL'e of unrefined kraft rober discs. The negalive percenta!,,,, 
values indicate that mannan removal was commensurate with 
enzyme concentralion (12 .9% for 250 U g • substrate up lO 
41.3% for 50000 U g- ' sub'1rate). This result shows that our 
cxperimental conditions wcre adequate for hydrolyzing 
mannon in a complex lignocellulosic biomass. Oplimal crystal­
li ne cellulose exposure ","s delected using 250 U g- ' substrat< 
of mannanase. 111e probes signais indicated that increasing 
mannanase concentrations bcyond 250 U g • did not Icad tO 
additiunal deleetion of cellulose on the fiber su rface. 

Subscquently wc invcstigated the impact of mannanase pre· 
lrealment on the libers response 10 mechanical refining and 
the consequent paper propenies. 1'0 identify possible corre-· 
lations bel\veen probe binding to surface polymers and paper 
propenies, larger pulp samples wcre treated with mannanase, 
then by mechanical refinining and then eonvened into hand­
shcets for funhcr analysis. f'g. 6A shows the changes in 
polymer deteclion measured on unrefined fiber dises (0 revolu­
tion) and on refined fibers. Ali samples were pre-treated wilh 
mannanase. WithoUl rcfining, mannan and crystalline cell­
ulose deteetion was similar lO results previously recorded on 
smaller samples (Fig. 5). Before any mechanicol energy "'". 
applied (0 revolution) cellulose (both crystallinc and amor­
phous) and xylan delection ","s increased by mannanase treat­
ment. Applying meehanieal refining on enzyme treated pulp 
samples resultcd in incrcased binding of probes, suggesting 
that refining generated increased fibrillalion, as observed 
earlier for a similor treatment sequenl-e (refining applied onto 
cnzyme-treatcd pulp. sec ref. 34). The impact of rcfining on 
mannanase trealed pulp lend to a complete reversai in 
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natures on the surface of paper dises and on (B) the variations of the strength properties of the resuttlng paper sheets. Variattons of mannan, x)'lan. 
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mannan exposure (-15% without refining, +3.5% after 1500 
revolutions, +10% after 3000 revolutions). It appears thal refin· 
ing exposed new mannan polymers (-ompensating for surface 
mannan that wns hydrolysed bcfore refining. Crystalline ccII· 
ulose detection wns not stimulaled by moderate refining inten' 
sicy (1500 revolutions) bue after 3000 revolutions on a PFl 
refiner, exposurc of crystalline cellulose wns increased by 26%. 
Amorphous cellulose '"tead lly increased wilh refining intensil)', 
in agreement \Yith the well·lmown impact of refining on nmor· 
phagenesis, while xylan deceetion did not correlate with refin· 
ing intensicy. Xylan wns severely redueed al moderate refining 
(from 27% down to 3% variation vs. conerol), and then made 
available again for deteelion afler 3000 revolutions. 

Fig. 6B reveals [he impact of mannanase hydrolysis and 
mcehanical refining of kraft pulp on the strength properties of 
lhe paper sheelS from which paper dises were sam pied and 
exposed to probes (Fig. 6A). Overall these results indicate that 
exposure of hcmicelluloses and cellulose (erystallinc or amor· 
phous) correlaled with important paper strength propenies 
(maximal exposure and besl propenies were observed after 
treatment with 3000 revolutions on the PFI). Specifie corre· 
lat ions were observed for each probe. Mannan deteetion wns 
correlated with tear index and interna i bond, showing negoli"e 
variations after mannan hydrolysis but positivc values after 
refining of mananase trealed fibers. Amorphous cellulose vari· 
ntions 'vcre correlated with tenslle and internai bond in its 
response to refining. for xylan and crystalline cellulose, detce· 
tion wns maximal after 3000 revolulions where optimal paper 
properties were observed too. But it did not correlate \Vith 
paper properties trends observcd at 0 or 1500 revolutions. The 
fiber length peaked al 1500 revolulions where Sub-oplimal 
paper propenies ",ere observed. These results artest to the 
close relalionship lhal exislS bet",een the earbohydrates signa· 
lures (especia lly mannan and amorphous cellulose) on lhe 
surface of ,vood fibers on the one hand, and the propenies of 
paper derivcd from su ch fibers on lhe olher hand. We suggest 
that lhese correlations fonll the basis of a novel approach for 
predicting the impact of mechanical and enzymatie pracesses 
in wood biomass industries. 

Experimental 
Materials and mcthods 

Reagents and pulps. Unless otherwise nOled , ail reagent. 
were supplied by Sigma·Aldrich. Softwood (resinous) paper 
ShCClS were uscd here to quantify the variations of Ihe carbo­
hydrates'rec'Oj,mition probes on their surface. These paper 
sheets were derived from IWo different kraft pulps, albeit 
HY1(P Uack pinel and KP (Black spruce). Cellvibrio japonicus 
mannanase (ondo' I ,4' f}-man nanase) purchased from 
Megazyme ,vas utilized to digest pulp and paper dises. 

Pulps eharaeterizalion. Quantification of the pulps cellulose, 
hemicellulose, lignin as weil as monosaccharides c-ontents 
were determined using NREUfp·510·42618 melhodologies!l.lS 

2608 1 &""" Ct",» 2017. 19 2603· 2611 

V ... Ank.teOnlln. 

Green Chemistry 

Determination of the surface cxposcd pol)""erS of the pa pers 
WJS achieved using X-ray photuelectron spectroscopy.II .21.,.. '0 

Pulps refining and paper sheets formation . A PFI laboratory 
refiner wns used 10 reproduce the industrial refining process." 
Refining of pulps (rrom 0 lu 3000 revalutions) wns performed 
aecording to the standard Tappi method 1'248 sp-OO. 
Aflerwnrd, paper sheets of 60 ± 2 g m-2 in densicy wcre pre· 
pared as per the Tappi 1'205 sp-02 methodology. 

Enzymatie digestions of pulps and paper di..,s. The enzy­
matie digestions of pulp and paper dises were performed in 
duplicates using C.llvibrio japonicu., mannanase enzyme. Ali 
reaNions wcre performed over a 1 h period at room tempera· 
IUre with agitation in 0.1 M phosphate buffer pH 7 sup­
plemented with 0.5 mg ml- ' BSA. Mannanase concentrations 
ranged from 250 to 50000 U g 1 substratc for paper dises 
(3 mm) digestions whi le pull' lrials were done al 250 U g- I 
substrnte. 

Fiber qualicy analysis and paper physical propertics determi· 
nation. The impacl of the mechanical and mannanase creat· 
menlS of pulps on fiber propertie, WdS delermined usi ng a 
HiRes LDA02·090 Fibre Qualicy Analyzer (Optest Equipment 
Ine.). Paper sheets physical slrength propenies su ch as tear, 
burst, lensile and internai bond strength were detenllined 
aecording to Tappi standard mcthods 1'414 om'98, T403 omo 
02, T494 0111-01 and T569 pm·oo, respectively. 

Construecion of the recombinant probe expression ,)"'1erns. 
Ali carbohydmte·recognitioll probes gencs were inserted into 
pETll a expression vertors. COM 3a (Clostridium thermocellum 
CipA, NZYTech), CBMI5 (Cellvibriojapollicas, Z48928), CBMI 7 
(C/oslridium ceIlU/01JOro'IS, U37056) and CBM27 (11rermotoga 
mari/ima, NC 000853) genes ",ere synthetized by GenScripl. 
The nuurescent protein genes (eGf'P, mOrange2, mCherry and 
cCFP) ",ere cloned into the Drolll and BomHI sites while Ihe 
CBM genes were introduced into the Bsrt:il and 8amHI sites. 
Ali encoding gencs ",ere sequcnced to ascenain the integricy 
and fidelit)' of the probes. The resu lting pro~s eGFP-COM3a, 
mOrange2-CBMI5, mCherry-GRMl7 and cCFP-CBM27 
(fig. SI t) were used to detect cl)">"talline cellu lose, xylan, amor· 
phous cellulose and mannan, respectivcly. 

Expression and purification of !'a'Umbinant probes. E. cali 
BL2I(OEl) Gold pLysS cells (Aj,';lenrrechnologies) bearing the 
selected pETlla expression plasmids were grown at 37 "C in 
Luria- Bertani broth. Induction of recombinant protein 
expression wns performed by the addition of 0.5 M IPTG 
(ThermoFisher Scicntifie) 10 mid·log·phase cells (0.0 . ..., "'" of 
0.6- 0.8) and their subsequent incubation for 18 hours al 
25 oC. Cclls were afterwnrd harvested and kept al - 80 "C. 
Thawed ccII pelielS were resuspended in 50 mM sod ium phos­
phate pH 8 containing 300 mM NaCI, 2 mM imidazole, 1 mM 
PMSF and then Iysed using six (ycles (60 s) of sonleation 
(Brnnson Ultrasonics Corporation) at 200 W. Clarification of 
the Iysate ,vas achieved by centrifugation al tO ooog for 
30 minutes at 4 ' . The prolein of intcresl ,vas then purified 
by amnity chromalography over a HisPrep FF 16/10 column 
(GE Healthcare Life Sciences) equilibmted in 50 mM sodium 
phosphate pH 8.0 buffer conLaining 300 mM NaCI and JO mM 
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imidazole. Following washes with ten column volumes of 
buffer, the desired pmtein was eluted lIsing a grndient (ten 
column volumes) of imidazole (10 to 100 mM) in 50 mM 
sodium phosphale pH 8.0 buffer eontaining 300 mM NaC!. 
A final purifiention step was performed using a Superdex 200 
HR 16/50 eolumn (GE Healtheare Life Sciences) and 50 mM 
Tris-HCI pH 7.5 buffer containing 300 mM NoCI to in ure 
pu ri ty. The purified probes were then dialyzed aga inst a 
20 Tris-HCI pH 7.5 buffer containing 20 mM NaCI and 5 mM 
CaCI, at 4 oC and eoneentrnted using a 10k Maerosep Advance 
centrifugai device (Pail Corporation). Concentmted protein 
solutions wcre stored at -80 oC after nash freezing. Protein 
purity was verified by SOS-PAGE. The amount of protein WdS 

quantified by .the Brndford melhod. 
Quantification of the variations of the earbohydrates signa­

tures on lhe surface of liber dises. Ali nuoresœnœ readin!.", 
were acquired al room lemperature on a Synergy Mx micro­
plaIe reader using the 3 • J area scanning feature with the top 
deteclion height set at 4.5 mm and the filter band\Vidth at 
9 nm. The excitation and el1li~sion wt.1Velenbrths were set al 488 

and 510 nm for cGFP-CBMJa, 587 and 610 nm for mChen)" 
CBM17, 549 and 568 nm for mOmnge2-CBMl5 and 434 and 
477 nm for eCFP-CBM27. Fluorescence measurement.s we re 
recorded after eaeh step of the assay. Eaeh experiment was 
done in lriplicates. Prepamlion of lhe microplate was carried 
Out by gluing 3 mm diameter paper dises on the bottom of 
96-wclls, black mieroplate (Costar, Coming Life Sciences) 
using a tmn.parent nail polish. The carbohydmtes quantifi­
cation assay started by incubating the paper dises 1 h, at room 
temperature with agitation in a 20 mM Tris·HCI pH 7.5 buffer 
eontoining 20 mM NaCl, 5 mM CaCI2 and 3% milk (binding 
buffer). Unbound milk con.tituents were remO\'Cd by \Vashing 
three times wilh the 20 mM Tris-HCI pH 7.5 buffer containing 
20 mM NaCl, 5 mM CaCI2 (,vashing buffer). Afterward , the 
blocked paper dises were ineubated \Vith agitation for 1 h, at 
room tempemture into lhe binding buffer containing 
0.5 ~g ~I - I of lhe appropriale probe. Non-specifieally bound 
probe was removed with thre. buffer washes (washing buffet) 
followcd by thrce 0.05% 1\""en 20 washes. Treatment of tlle 
resulting data involved subtmction of rhe mea n blocked nua­
rescenee values from the mean residu.1 ones. Then these cor­

reclcd meo.1l residual fluorescence values wcrc convertcd i nlo 
~g and ~g g- I of cellulose using the appropriate standard 
ClIrveS and ,,,,,ight of cellulose in eaeh fiber dises. 

Determination of the probes affinity for Aviecl and fi ber 
d ises. Solid .1ate depletion assays" were used to measure th e 
affinity of ail probes using heterogeneou. substmtes .ueh as 
Whatman, HYKP and KP fiber discs, and substmte Avicel 
PH105 (e!)'Stalline œllulose) for eGFP·CBM3a probe. 
Determination of the affinity of eGFP-CBM3a regarding Avicel 
wa. performed under lhe following procedure. The assay 
.1.arled with a 1 h incubation at room temperature of 10 mg of 
the pres03kcd Avicel with inereasing conecntrations of 
eGFP-CBM3a in a 20 mM Tris-Hel pH 7.5 buffer containing 
20 mM NaCl, 5 mM CaCI2 and 3"', milk. Following e'Juill­
brntion, the solld phase was sepamted from the liquid phase 
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by centrifugalion at 20 000g for 5 min. Fluorescence measufC­
menls of the supemar...nt (t'Onraining free protein (Pr...,)) were 
acquircd using a l>yoergy Mx microplate reader (Bio-n,k) with the 
end point feaLUre acti\'C and the filters bandwidlh set at 9 mm. 
The excitation and emissinn wavelenglhs for eGFP-CBMJa wcre 
set at 488 and 510 nm, respccti""ly. Protein concentrations ,\'Cre 
detennined using lhe appropriale standard cu iveS. Ali binding 
isolherms wcre calculated using the Originl_.b software and 
fitted to a one binding site equation foIl0\Y5: 

II')" .. nd l = Nn K.IP ... I! (1 ... K. IP"",1l 

where (K.) represent binding affinity and (Nu) represent the 
capacityofCBM probe t rable Slt). 

The delerminalion of the probes affinity for fibers dises was 
aehieved using the acquisition settin!,,,, as described in the pre­
vious paragrnph for the quanrification . Fluorescence measure­
ments wcre again reeorded afler eaeh step of tlle assay. Orieny, 
the glued fiber dises were ineubated for 1 h at room tempera­
ture with agitation in the binding buffer. Unbound milk con­
stituents wcre remO\'Cd by washing three times \Vilh lhe 
washing buffer. Afterward, the blocked paper dises ,,,,,re ineu­
bated 1 h at room tempera.ture with binding buffer which eon­
tained inereasing eoneentrotions of the appropriate probe. 
Non·specifically bound probe was then removed with three 
,vashing sleps. Trealment of the resulling data involved sub­
tmelion of the mean blocked nuorescence values from lhe 
mean residual ones. These corrected mean residual nuo­
reseenee values wcre con""rled into ~g and ~g g 1 of substmte 
using the appropriate standard eurves and weight of cellulose 
in each paper disco Ali binding isotherms fitted to a one 
binding si te equation. 

Conclusions 

Wc developed a simple yct powcrful approaeh that allo ... s for 
lhe surface ehamclerization of liber surfaces. The CBM probes 
were suct-es,fully employed to chamcterize the impacts of 
pulping, mcehanieal and enzymatie modifications on the 
carbohydmles distribution on lignocellulosie biomass sur­
faces. Correlations \Vith paper strength propertie. would 
enable the mpid determination of these properlies and allO\v 
one LO prediet in a high lhroughput yet low volume lhe 
optimal conditions with \Yhieh to treat a gi""n biomass. Sueh 
probes providc a new and nO\'C1 approaeh for monitoring 
process development and seale-up of processes lhat affect fiber 
properties - in cither lhe manufacture of paper or the deeon­
struetion of cellulose inro sugars for biofurl production. 
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Appendix D 

Biotechnology for Biofuels 

RESEARCH Open Access 

Predicting the most appropriate wood 
biomass for selected industrial applications: 
comparison of wood, pulping, and enzymatic 
treatments using tluorescent-tagged 
carbohydrate-binding modules 
Pierre-Louis Bombeck l, Vinay Khatri2.Jt, Fa tma Meddeb-Mouelhi2.J1 , Daniel Montplaisir4, Aurore Richel l 

and Marc Beauregard]Y. 

Abstr .. ct 

Background: LignoceliuloslC biomass will progressively become the main source of carbon for a number of prod­
ucts as the Earth's oil reservoirs disappear. Technology for converSion of wood fiber into biOptoducts (wood biorefin­
ing) continues to flourish, and access to reliable methods for monitoring modification of such fibers is becoming an 
important Issue. Recently, we developed a simple. rapid approach for detectlng four different types of polymer on the 
surface of wood fibers. Named fluorescent-tagged carbohydrate-binding module (FTCM), this method is based on the 
fluorescence signal from carbohydrate-binding modules-based probes designed to recognize speCifie polymers such 
as crystalline cellulose. amorphous cellulose. xylan, and mannan. 

Results: Here we used FTCM to characterize pulps made from softwood and hardwood that were prepared using 
Kraft or chemical- thermo-mechanlcal pulping. Companson of chemical analysis (NREL protocol) and FTCM revealed 
that FTCM results were consistent with chemical analysis of the hemicellulose composition of both hardwood and 
softwood samples. Kraft pulping increased the difference between softwood and hardwood surface mannans. and 
increased xylan exposure This suggests that Kraft pulping leads to exposure of xylan alter removal of both lignin 
and mannan. Impact of enzyme cocktails from rrichodermo reese, (Celluclast l.5L) and from Aspergillus sp. (Carezyme 
l000L) was investigated by analysis of hydrolyzed sugars and by FTCM. 80th enzymes preparations released cel­
loblose and glucose from pulps. with the cocktail from rflchodermo being the most efficient Enzymanc treatments 
were not as effective at converting chemkal-thermomechanical pulps to simple sugars. regardless of wood type. 
FTCM revealed that amorphous cellulose was the primary target of either enzyme preparation. which r sulted in a 
higher proportion of crystalline cel lulose on the surface after enzymatic treatment. FTCM confirmed that enzymes 
from Aspergillus had little impact on exposed hemicelluloses. but that enzymes from the more aggressive rrichodermo 
cockta il reduced hemicelluloses at the surface. 

Conclusions: Overall, this study indlcates that treatment with enzymes from rflchodermo IS appropriate for gen­
erating crystalline cellulose at fiber surface. Applications such as nanocellulose or composites requiring chemical 
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reslstance wou Id benefit from thls enzymatic treatment. The milder enzyme mixture from Aspergillus allowed for 
removal of amorphous cellulose while preserving hemicelluloses at fiber surface. which makes this treatment appro­
pnate for new paper produns where surface chemical responsiveness is reqUired. 

Keywords: FTCM. Carbohydrate-binding module. Fluorescent protein. LCB (lignocellulosic biomass). Cellulose. 
Hemicellulose. Enzymes 

h ckground 
Global production of biofuels and bioproducls is 
increasing sleadily because such producls are greener 
alternatives 10 fossil fuels and their derivalives 11- 31. 
Concomitantly, numerous new producls and tech­
nologies based on the conversion of biomass have been 
developed over the last dccade 14-9J_ Securing sufficient 
biomass as raw mate rials is a prerequisite to moving 
From a petro-chemicalto a bio-chemical economy. Using 
feedstocks to support first-generalion biofue1 and bio­
products has shown its limils and produces certain unde­
sirable socio-economic and environmental outcomes 110, 
lI J. The use of lignocellulosic biomass (LCB, including 
dedicated IignocelluJosic crops, agricultural and forestry 
residues and municipal and industri.1 wastes) to produce 
second-generation biofuel and bioproducts wou Id avoid 
the negative impacts associated with first-generation 
feedstocks use 112. 13J. 

Although LCB is a promising. abundant and renewable 
resource, it is difficult to treat due to its complex struc­
ture consisting of cellulose librils wrapped in a network 
of lignin and hemicelluJoses. This network. collectively 
referred to as the lignin-carbohydrate complex. is highly 
recalcitrant and difficult to modify 18. 14- 18J. Conse­
quently. several steps of pretreatments are needed to iso­
late each of the components before they can he used in 
value-added applications. 

For the production of biofuels based on carbohy­
drates From LCB. such as bioethanol. the principal goal 
is the complete hydrolysis of polysaccharide components 
(mainly cellulose) of the raw material into monomers for 
subsequent fermentalion [1 8- 22J. Utilization of ail other 
lignocellulosic components is not as weil developed but 
is the focus of intensive research efforts 18, 9, 23. 24). 
This "integrated biorefinery" concept involves a succes­
sion of steps for transforming the entire lignoce1lulosic 
biomass into biofucls and bioproducts. This concl'pt has 
been demonstrated using a variety of physical. chemical 
and biological treatments [25- 27J in a range of configu­
rations 128- 31 J. Total utilization of LCB will permit com­
mercial exploitation of the entire lignocellulosic biomass 
in a wide spectrum of bioproducts and bioenergy 15, 32. 
33J. In this context. new bioproducts (e.g. biomaterials. 
biocomposites. biomembranes and biofilms) from previ­
ously unused components of LCS are receiving growing 

interest because they are also biodegradable. produced 
From a renewable carbon source and can have a wide 
variety of applications 15. 7. 34-36J. Unlike bioethanol. 
specilic bioproducts based on lignocellulosic libers do 
not require complete separation or deconstruction of the 
raw lignocellulosic polymers. Removal of some specilic 
componenls or alteration of structural features of lib­
ers le.ding to modulation of their physical and chemical 
properties is often sufficient 15. 7. 32. 37- 39J. 

A largely used green process for the removal or altera­
tion of specific structural features of the biomass i. the 
enzymatic hydrolysis or biocatalysis. Enzymes have been 
uscd for improving paperm.king proce.ses (for liber 
cutting action. peeling. delamination, weakening effect. 
bleaching. relining) 14O- 42J and al 50 for the deconstruc­
tion of lignocellulosic biopolymers 17. 43- 51]. Actually, 
cellulases From Trichoderma reesei are subject to many 
studies and have been used to efficiently hydrolyze cellu­
lose for decades 140. 52J. Enzymes have high selectivity 
and turnover frequency. permitting processes with high 
selectivity and increased productivity on a variety of sub­
strates [53J. For example. enzymatic hydrolysis avoids or 
drastically decre.scs the production of dcgradation prod­
ucts that are generated by classical acid hydrolysis (e.g. 
5-hydroxymethylfurfural, 2-furfural) [54. 55J. Many types 
of enzyme can catalyzc LCB hydrolysis: en do- and exo­
glucanase. ceHobiase. xylanase, mannanase and many 
others. Synergy between several enzymes in a mixture 
of their lignoce1lulosic substrates has also becn demon­
strated. but are not yet completely known 152, 56-58J. 
ln addition to this. enzymes are costly, and accordingly. 
real-lime dosage control is an important parameter in 
most industrial processes 157. 59-63J. 

The effectiveness and impact of enzymatic processes on 
a substrate can he quanti lied using physical and chemi­
cal methods. Among them. the most COllllllonly used 
are: compositional analysis of the substrate after treat­
ment (u.ing FTiR. XPS) or of the hydrolysates (hydrolysi. 
products content. using GC or HPLC), surface imaging 
(using SEM. TEM and AFM). index of cryst. ll inity (using 
XRD and NMR) and mass balance calculations 164-66J. 
However. current methods of analysis cannot directly 
monitor enzymalic aclion. It is not possible to determine 
the precise order in which components of the substrate 
werc hydrolyzed as the enzymes penetrate the materials 
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and what components are left exposed on fibers after 
treatment. While direct chemical characterization of the 
surface is possible with XPS, it remains that this method 
is expensive and does not distinguish between different 
polysaccharides beau se the)' harbor similar functional 
groups (67). 

The ability to directl)' monitor changes to the surface 
of LCB fibers during enzymatic treatment is essential 
for controlling and optimizing processcs according to 
the final bioproducts targeted. To this end, a rapid and 
low-cost method to directly monitor the deconstruc­
tion of heterogeneous LCB during enzl'malic hydrolysis 
has been developed [67, 68). Called tluorescent-tagged 
carbohydratc-binding module method, or FTCM, this 
method is based on the use of four specifie ready-to-use 
probes made of tluorescent-tagged recombinant car­
bohydrate-binding modules (named fL-CBM or probes 
throughout the text). ln these probes, the recombinant 
CBM part binds to a specifie component of the sub­
strate surface. The fluorescence of the probe permits 
rapid quantification of the probes bound to the surface. 
The tluorescence can be measured by using an ordinary 
fluorescence plate reader. This new approach allows for 
specifie surface changes to be tracked and for changes to 
biopolymers, in this case mannan, xylan, crystalline and 
amorphous cellulose, to be monitored. FTCM can detect 
these polymers at the surface of the substrate before and 
after any given treatment, be it mechanical, chemical or 
enzymatic [67, 68J. 

ln this study, we use FTCM to charactcrizc how the 
surfaces of a variety of lignocellulosic biomass are modi­
fied by two different commercial enzyme cocktails. The 
substrates incJude Iwo chemical-thermo-mechanical 
pulps, referred to as CTM pulps, and two Kraft wood 
pulps. This investigation provides information on which 
combination of enzyme treatment and biomass substrate 
is best suited for industrial applications in which various 
levels of fiber deconstruction and precise control of liber 
surface composition are desirable, such as the production 
of nanocellulose, fiber-reinforce composites, or paper. 

Methods 
Llgnocelluloslc blomass 
Four wood pulps were selected to evaluate the e.ffect of 
woody biomass composition and pretreatment on the 
experiment. Hardwood mil< Kraft pulp (here referenced 
as HK) was kindly prnvided by Burgo Ardennes S.A. (Vir­
ton, Belgium). Softwood from spruce chemical-thermo­
mechanical pulp (referenced as SM) and hardwood from 
poplar chemicai-thermo-mechani.1 pulp (referenced 
as HM) were kindly provided by SAPPI Lanaken N.V. 
(Lanaken, Belgium). Softwood mix Kraft pulp (referenced 
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as SK) was kindly provided by Kruger Wayagamac Inc. 
(Trois-Rivières, Canada). Ali pulps used in thi. study were 
unbleached. The chemical composition of the of the pulps 
was determined according to the NREL-TP-510-42618 
standard method [69J. The length, width, line percentage 
and zero span breaking length of wood pulp fibers were 
analyzed with a fiber quality analyzer (FQA) (LDA02-090 
HiRes, OpTest Equipment Inc, Hawkesbury Canada) fol ­
lowing the TAPPI TI71 om-12 and 1'231 standard methods. 

Enzyme solutions 
Two different commercial enzyme mixtures were used 
in this study, CelluClast 1.5L (Cat No IC2730) and 
Carezyme lOOOL (Cat No #C2605), which were pur­
chased from Sigma-Aldrich. CelluCiast 1.5L (named HT" 
in this study) is a mixture of fungal hydrolytic enzymes 
from T. ,.eesei and principally consists of two cello­
biohydrolases and two endoglucanases, as weil as small 
amounts of other cellulases and also various accessory 
enzymes which function as hemicellulases [40, 57, 70J. 
Carezyme lOOOL (named "AH in thi. study) consists of 
a mixture of several hydrolytic enzymes mixture from 
Aspergillus sp. 

Both enzyme mixtures are widely employed for hydrol­
ysis and deconstruction of Iignocellulosic biomass. Both 
enzymes mixtures contain cellulase (CMCase), xylanase, 
and mannanase enzymes, whose activities were tested 
using carboxymethyl cellulose, xylan from birch wood, 
and galactomannan as substrates, respectively. The activ­
ities of cellulase, mannanase, and xylanase were assayed 
quantitatively using the 3,5-dinitrosalicylic acid (DNS) 
method which measures the reducing sugars generated 
by enzymatic hydrolysis from their absorption at 540 nm) 
as described by Miller [64J. Protein content was quanti­
fied using the assay developed by Bradford [7Ij. 

Enzymatlc treatments of pulp 
Three samples of each pulp were prepared in suspension 
for three different treatments: one without enzyme addi­
tion (control sample. called "Std"), a second to which Cel­
luClast 1.5L was added (ca lied "TH), and third to which 
Carezyme lOOOL was added (called "K). Prior to enzyme 
addition, each sample was disintegrated in citrate buffer 
(having a concentralion of 0.05 M and pH 4.8) at 1.2% 
consistency (24 grams of pulp on an oyen dry maUer 
basis in 2 L of buffer) with a standard pulp disintegrator 
and tran..ferred into a 4-L Erlenmeyer flask. Suspensions 
were pre-heated until 50 ·C using a controlled-environ­
ment incuba tor-shaker (New Brunswick Scientific Inc.). 
Enzyme solutions were then added to a final loading of 
1275 mg of enzyme per gram of oyen dry pulp. Hydrol­
l'sis was carried out in the incubator at 50 ·C for 4 h 
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under continuous orbital agitation (150 rpm). Enzymatic 
hydrolysis was stopped by incubating the pulp on ice for 
15 min. Each sample was fll tered and filtrate was boUed in 
a 95 ·C water bath for 10 min and kept frozen at - 20 ·C 
until sugars analysis. Filtration of untreated and enzymes 
teeated pulps produced paper sheets. of 60 ± 2 g m- 2 

in basis weight. as per the TAPPI T205 sp-02 standard 
methodology. The pH was measured before and after 
enzymatic treatment. 

Optimization of hydrolysis conditions. such as dura­
tion and enzymes loading. was done on a small scale at 
high throughput using % -wells microti ter plates with 
3 mm diameter paper dises. After enzymatic digestion of 
the discs. FTCM test was applied to detect the opUmal 
condiUon required for enzymes to promote the efficient 
degradation in cellulose and hemicellulose. 

Handsheet and paper dise preparation 
Four different pulps were used for the preparation of 
handsheets and paper discs. Handsheets of 60 ± 2 g m- 2 

basis weight were prepared as pee the TAPPI T205 sp-02 
standard. 3-mm paper dises were punched from hand­
sheet [67J. 

Construction of recombinant probe ~xpresslon systems 
Ali carbohydrate-recognition probe genes were 
inserted into pET lia expression vectors. CBM 372 3a 
(Clostridill/n lllel"/llocellll/ll CipA. NZYTech). CBM15 
(Cellvibrio japonicns. Z48928). CBM17 (Closlridill/II cel­
IlIlol'oral1s. U37056). and CBM27 (11/ermolaga moritima. 
NP _229032) genes were synthetized by GenScript. The 
fl uorescent protein genes (eGFP. mOrange2. mCherry. 
and eCFP) were c10ned into the DraIll and Ba/llHI sites 
while the CBM genes were introduced into the B.rG l 
and BamHI sites. Ali encoding genes were sequenced 
to ascertain the integrity and fidelity of the probes. The 
resulting probes GC3a. OCl5. CC I7. and CC27 [67. 68J 
were used to detect crystalline cell ulose. xylan. amor­
phous cellulose. and mannan. respectively. 

expression and purificat ion of probes 
Ali probes were produced in E. coli BL21(DE3) Gold 
pLysS cells and puri lied as described by Hébert-Ouellet 
et al. [68J. 

Quantificat ion of the carbohydrates on th~ surfac~ of fiber 
paper discs uslng FTCM 
Tracking of the variation of carbohydrate on the surface 
of paper discs using the four ditferent probes was done 
as described by Khatri et al. and Hébert-Ouellet et al. [67. 
68J. Note that Iignin fluorescence was subtracted from 
total fl uorescence and that affinity of ail probes used here 
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for their respective substrates was previously character· 
ized. as detailed in [67. 68J. 

Sugar analysls 
ACter enzymatic hydrolysis. a liltered hydrolysate was 
analyzed for cellobiose. glucose. xylose. and mannose 
concentrations using a HPAEC· PAD (Dionex ICS· 
5000+ ) and a GC-FlD (Agilent Technologies 789OB) fol · 
lowing methods from the work of Vanderghem et al. [72. 
73J. Results were processed using Chromeleon .,. and 
OpenLAB CDS ChemStation software. 

Scannlng electron microscope ISEM) Images 
Scanning e1ectron microscope (SEM) images were used 
to analyze surface morphology and to characterize the 
etfect of the pulping process on paper libers. Samples of 
dried handsheets having a basls weight of 60 g ± 2 g m- 2 

were coated with gold in a Quorum SC-7620 spuller· 
coater. Images were produced of several ditferent loca­
Uons on the surface of SM and SK pulp samples with a 
scanning electron microscope (JEOL. ISM-55(0). 

Statlstk .1 analysls 
Minitab 17€> and Microsoft Excel 20100 software were 
used for statistical analysis of data. 

Results and dlKusslon 
Enzyme characterizatlon 
Two commercial enzyme mixtures produced by T. rusei 
and by Aspergillus sp. were used for this study. Under our 
specific assay conditions. both commercial preparations 
contained ceHulase (CM Case). xylanase. and moderate 
mannanase activities. Enzyme mixture T was character· 
ized by higher cell ulase and xylanase activities. although 
its low mannanase activity was rough ly equal to mixture 
A (Additional lile 1). 

Pulp fiber characterizatlon 
Pulp liber characteristics prior to treatments are pre· 
sented in Table 1. which show how the pulp grades 
used in this ex periment ditfered from one another. As 
expected. softwood libers were longer and wider than 

Table 1 Pulp fibers propertles before enzymatk trut· 
menti 

Fiben ch. rocterlstk. (_fOlIe •• Iues) HM SM HK SK 

l ength (mm) 071 t 31 076 B5 

Fine, (~.2 mml ('lo) IS 31 1325 1364 301 

Wtdlh~lm) J26 17 4 177 160 

HM h.<dwood crM ""Ip. SM..,(_ CTM ""Ip. HKha<dwood Kraft pulp. and 
SI( IOftwood Kn.ft pulp 
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hardwood libers 1171. AU of the grades contained simi­
lar quantities of line libers except for the softwood Kraft 
pulp. These fine libers could impair hydrolysis yield on 
full fibers because finer fibers have a greater susceptibility 
for hydrolysis, so hydrolysis yield is altered by the quan­
tiry of fine fiber in a sample during our 4-h hydrolysis 
1741. Hardwood pulp was only slightly atfected by Kraft 
pulping, while for softwood pulp, the Kraft treatment 
had an obvious impact on Icngth and fines, but none on 
width. SEM images showed that softwood Kraft pulp has 
lower fibrillation and greater homogeneity than softwood 
CTM (Fig. 1) as observed earlier 175, 761 and which is 
fully compatible with a decreased content in fines . 

Mechanically treated pulps contained more Iignin 
than the Kraft pulp (Fig. 2). The Kraft process dissolve 
Iignin from wood raw material to Iiberate fibers , while by 
contrast mechanical separation of wood fibers does not 
involvc the extraction of Iignin 1761. Lignin protects the 
other components of the biomass against degradation, 
so the absence of lignin in Kraft pulp permits enzymatic 
hydrolysis to oecur more etfectively In l. As expected, 
softwood hemiceUuloses were g1ucomannan-rich, while 
hardwood hemicelluloscs were xylose-rich 117, 78, 791. 
HK and SK pulps yield the greatest quantity of glucose, 
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Fig. 2 Ugnln and calbohydrate mooomer contenl of pulps HM 
h.lldwood CTM pulp, SM softwood CTM pulp. HKh.lrdwood Kraft 
pulp. and 5K softwood Klaft pulp 

making them the most promising of the samples as a 
potential biofuel substrate. 

Hydrolysate analysls 
Hydrolysate sugar content of the control sampi es (i.e. 
without enzyme addition) was negligible (data not 
shown). This dcmonstrates tha! hydrolysis did not occur 

Fig.l SEM micrographs obta'ned from (SM) untr.ated soI1wood (TM pulp (a b). and from (SKl untr.ated softwood K,aft pulp (e dl at IWO IeveIs 
of resofullOn 
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in the absence of enzymes. Figure 3 shows cellobiose, glu­
cose, xylose, and mannose concentration of hydrolysate 
solutions recovered after treating pulps with T and A 
enzyme cocktails. 

Figure 3 presents the amount. of selected mono- and 
disaccharides whieh were Iiberated by enzymatie hydrol­
ysis of pulp libers. The quantity of sugar detected in 
the hydrolysate was better related to pulp grade than to 
the enzyme cocktail used. Kraft pulps released more of 
each sugar, indieating they are more susceptible to enzy­
matie hydrolysis in the relevant conditions. This can be 
explained by the difference in Iignin content, slnce the 
presence of Iignin protects polysaccharides from enzy­
matie hydrolysis [60, 80- 84]. As discussed earlier and 
in the Iiterature, pretreatments whieh remove Iignin and 
hemieellulose expose a greater proportion of the cellu­
lose in the substrate and increase pore volume and sur­
face area, whieh resullS in increased hydrolysis rate [85]. 
The high glucose content of the Kraft pulps presented in 
Fig. 2 suggests that these pulps are composed primarily of 
cellulose, an inference that is consistent with the compo­
sition of the hydrolysate produced from their enzymatie 
hydrolysis. Hydrolysate sugar content also demonstrated 
that enzyme "A" was less effective than "T" under same 
hydrolysis conditions. More xylose was released from 
hardwood pulp in the presence of T enzyme cocktail, 
which again corresponds with the abundance of xylose 
monomers in the substrate, as shown in Fig. 2. The cel­
lobiose yield from hydrolysis of 5K was greater than that 
from hydrolysis of HK, although HK hydrolysis produced 
more glucose when catalyzed by T treatment. Finally, 
hydrolysate composition suggest. that the mannanase 
activity of both enzyme cocktails is low. 5uch results 
may indieate that mannans are not as accessible as other 
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polymers, or that mannanase activity is too low (coosist­
ent with activity measurements for both enzyme prepa­
ratioos; sec Additional file 1). The sugar content of the 
hydrolysates Is a good indicator of enzyme activity with 
respect to specilic carbohydrates, but does not provide 
any information on the surface chemistry of the lreated 
liber. 

EtfKt of .nzymatic trNtment on pulp fit».rs 
Biofuel production From LCB depends on polymer acces­
sibility du ring enzymatie treatment, but many other 
applications require specilic surface functionality Iinked 
to distribution of polymers left after treatment at the 
surface of libers. One way to obtain information about 
the outcome of an enzymatic treatment on LCB is by 
investigating properties of ilS libers and of paper formed 
using these libers. Enzyme hydrolysi. used here only 
affected the length of Kraft pulp grade. Treatment of 
hardwood Kraft pulp with T enzymes decreased length 
by 20%. Enzymes, A and T, decreased soft wood Kraft 
liber length by 15 and 25%, respectively (Additional lile 2: 
Figure 51). These results suggest a liber cutting action, 
ascribed to endoglucanase activity in enzyme cocktails 
[57, 70]. White Kraft pulp liber length decreased as a 
consequence of lrcatment, lines increased (Additional 
lile 2: Figure 52). This phenomenon has been suggested 
as a consequence of the combination of cutting, peeling, 
delaminating, and weakening effects on the surface of 
the libers by enzymatie hydrolysis [40-42]. Although the 
enzymatic hydrolysis reduced the length of some libers, 
it did not affect the average width of any samples, regard­
less of pulping or enzymes used (Additional lile 2: Figure 
S3). Concerning zero span breaking length, a measure of 
the average strength of individual libers (Additional lile 2: 

_ IColiol 

_ ,Glui 

- ,Xyl) 

_ 'Man) 

Troll'" pulps 

Fig.:l Concenlratlorls of selected carbohydrat('\ ln hydrolyscllf" (t'Covt'fed afte-r hydrolyst'i of pulp_ T and A refe-f to mIxtures of enzyl"llf's u~ for 
hydrolysr' 
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Figure 54). treatment had no elfect on mechanical CTM 
pulps but bath enzymes degraded chemical Kraft pulp 
strength. The higher lignin content of the mechanical 
pulps may explain why their mechanical strength was not 
alfected by the treatment. Analysis of these paper proper­
lies corroborates previous studies of simple sugars release 
by hydrolysis of paper pulp and contirms that Kraft pulps 
are more susceptible ta enzymatic treatments [47. SO. 86. 
87J. For applicalions where strength properlics are very 
important. such combination pulp-enzymatic treatments 
(Kraft pulps trealed with cellulase mixtures) would be 
deleterious. 

Detection of pulp liber polymers uslng FTCM analysls 
before and after enzymatlc treatmenu 
Fluorescent-tagged carbohydrate-binding module 
method probes provide a rapid and cast-effective melhod 
ta map the surface of LCB samples in terms of compo­
sition. Running 96 experiments requires a simple plate 
reader. is currently performed in less than 3 h. and would 
cost a few dollars \Vhen scaled up. Here this analysis was 
performed using the four probes in order to characterize 
pulp libers prior to enzymatic lrealments (Figs. 4 and 5). 
A probe (GC3a) which indicates the presence of crystal­
Une cellulose regions (referred to here as CC) indicated 
greall" CC exposure on hardwood surfaces than on sofl­
wood. CC made up a greater proportion of CTM pulps 
surface than of Krafl pulps surface. despile the higher 
lignin conlent of CTM pulps. This result is counlerinlui­
tive. since lignin is thought lo act as protective barrier 
around cellulose. but the higher proportion of tibrlls and 
tines in CTM pulps may explain the result since fine fib­
ers tend lo have grealer specific area and. lherefore. olfer 
the mosl accessible polymers for the probes [681. Fibrlls 
and fines are partially removed by Krafl pulping. which 
may explain such resullS. 

Figure 4 also shows the ITCM performed using the 
amorphous cellulose (referred ta as AC) specifie probe 
(named CCl7). Mechanical pulps had the strongest AC­
binding signal. also in accordanee with the explanation of 
its hlgher content in high specifie surface areas such as 
fibrils . Although three of the four pulps exposed much 
less AC than CC. the opposite was observed for SK pulp. 
where twice as much AC was detected compared to Cc. 
Clearly. the distribution of AC did not parallel CC distri­
bution on the surface of untreated fibers . The total cellu­
lose (CC and AC) detected at the surface was the lowesl 
for SK pulp. where the fibrillations are a1most nonexlst­
ent as was observed in fig . 1. This leads to a decrease 
in high surface area fibrlls or fiber fragments. which are 
primary targets for CBMs binding to fiber polymers. 
Despite containing more cellulose than CTM pulps. the 
Kraft pulps returned a weaker binding signal for both CC 
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and AC. Even if the abundance of glucose in the Kraft 
pulp hydrolysates is consistent with higher cellulose con­
tent (figs. 2 and 3). FTCM shows that CTM pulp fiber 
surface has a greater number of exposed binding sites for 
cellulose-specific probes. despite containing less cellulose 
than Kraft pulps overall. One has to consider that the slze 
of probes used here. with diameters of few nanometers. is 
closer ta waler than ta most fibrous material. Any probe 
used hcre has access to ail interstices dctcctable by elec­
tronic microscopy. 

0C15 probe. which was u.ed to signal the presence 
of xylan. returned a more intense signal from untreated 
hardwood pulps than for softwood (Fig. 5). which is 
consistent with the previously reported tendency of 
hardwoods to have a greater xylan content than soft­
woods [17. 781. and with the monosaccharide content of 
the samples already shown in fig. 2. This phenomenon 
resembles the one observed for CC (Fig. 4). with higher 
signal for hardwood pulps than for softwood. 

The signal produced by the mannan-specific probe 
(CC27) docs not follow the trend described by the probes 
that have already been described in this section. Man­
nans were detected in greater abundance on the surfaces 
of the CTM pulps and were nearly absent from the Kraft 
pulps. Mechanical pulping of softwoods has becn known 
to partially dissolve mannans (88J. but the dear!h of man­
nan on the probe-accessible surface of Kraft pulps sug­
gests that some element of the Kraft process removes 
mannans even more extensively [891. whlle by contrast 
the mechanical treatment leaves them available for probe 
binding. The disparity in mannan detected on SK and HK 
corresponds to the relative abundance of mannose con­
tained in the samples as deterrnined in fig . 2. Compari­
son of lhe four pulps' signais suggests that mannans are 

305 



Bombeck el al. B/oltchnolBioluel, (2017) 10:293 

o ... 

MO-CIMIS 
0.115 

• .a'QMn 

i o ... 
} 

t Dm 

1 Dm 

O.DI 

--,.,... 
FIg. 5 caM bondlng 10 the ",riMe 01 untreated pulps The quantlty 
of probe attached to )()'lan and mannan are shown ln orang(S and 
cyan. r .. pectrvely 

strongly associated with lignin. These observations con­
flfm other studies on the lignin- carbohydrate comple. 
organization and changes according to the pulping pro­
œss (17. 90- 93). 

The impact of enzymatic treatments on the amount of 
each pol ymer present on the surface of paper discs was 
characterized using FTCM. ln Fig. 6. the signal inten­
sity From each probe is presented in terms of its change 
relative to the intensity of the corresponding probe on 
untreated (Std) pulps shown in Figs. 4 and 5. Generally. 
enzymatic lreatments resulted in a decrease in the num­
ber of bound probes. allhough there were some excep­
tions. This decrease can be a consequence of the preferred 
degradation of high specifie surface component. such 
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as lines. Iilaments and fibrils by enzymes as discussed 
above. The overall diminution of probe signal intensity 
may also indicate that the enzymatic treatment results in 
an increase in the proportion of substances on the sub­
strate surface which are atfected neither by the enzymes 
nor by the probes (e.g. lignin). AC detection invariably 
decreased aCter enzymatic treatments. which supports 
the hypothesis that this cornponent was degraded pref­
erentially by cellulases in both enzymatic cocktails during 
short-time hydrolysis suggested by severa! studies (17. 
56. 94. 95). ln our assay. changes in AC probe binding did 
not directly correlate to the yield of hydrolysis products 
of cellulose (cellobiose and glucose. Fig. 3). Generation 
of simple sugars such as glucose or cellobiose is a conse­
quence not only of AC but of CC hydrolysis. and the pro­
portions of AC and CC hydrolysis Illay vary for ditferent 
pulps and enzyme cocktails. 

A general inspection of Fig. 6 reveals that differences in 
signal intensity From probes bound to the substrate were 
due to a combination of the disparity in pulp properties 
and the charaeter of the enzyme cocktails used for their 
treatment (which both have ceUulase. xylanase. and man­
nanase activity). The results of Fig. 6 show that removal 
of surface hemiceUuloses appeared to be more substan­
liai with T enzymes treatment. This corroborates chro­
matographic analyses showing higher liberation of "yi ose 
and mannose after T enzyme teeatment and may be 
attributed to a superior ceUulase and xylanase acLivities 
in T enzyme preparation. Also. it can be seen that CTM 
softwood pulp (SM) responded differently to enzymatic 
treatments compared to HM. After enzymatic treatment. 
more CC was detected on the surface of the SM sub­
strate. but less on the surface of the HM substrate. The 

HM_' HM_A SM_' SM_A HIU 

Tr .... dpvlpt 
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concurrent increase in CC and deerease in AC indieate 
that the glucose and cellobiose recovered from the hydro­
Iysate (shown in Fig. 3) are principally the produets of AC 
hydrolysis, as opposed to CC hydrolysis. CC hydrolysis 
cannot be ruled out, however, since FTCM deteets CC 
probe-binding sites lert after treatment. Hydrolysis of 
first polymers on the surface (including CC) ean lead to 
e"posure of previously buried Cc. 

When treated by A enzymes, the inerease in CC at the 
surface of SM pulp was not as significant as after treat­
ment with T enzymes. AC was decreased with similar 
ellicaey, but other polymers were removed with difTer­
ent intensity. The signal from xylan-binding probes was 
found to be unafTeeted atthe fiber surface after treatment 
with A enzymes, while that from mannan-binding probes 
deereased by 15%. As shown in Fig. 3, no xylose was 
detected in the hydrolysate from treatment with enzymes 
A, while the hydrolysate produced by T enzymes cocktail 
eontained some xylose. The absence of xylose in A hydro­
Iysate is consistent with the hypothesis that xylan was not 
consumed in this treatment, as shown in FTCM results, 
a1though xylanase aetivity was measured in this enzyme 
cocktail. 

Despite major difTerenees in fiber properties and pulp­
ing conditions, the proportion of HK-binding sites is 
modified in a similar way to SM when HK pulp was 
exposed to enzymatie hydrolysis. More CC was exposed 
at the surface of HK after T enzyme treatment, despite 
results on fiber length (Additional lile 2) and simple sugar 
analysis (Fig. 3) that suggest extensive cellulose hydroly­
sis. Although more CC was e"posed on the surface of SM 
after treatment with T enzymes, this was not accompa­
nied either by fiber length reduetion or by substantlal 
hydrolysate sugar yields, which suggests that enzyme 
treatment was less severe with SM than with HK. The 
change in CC exposure was Iimited to 46% for H K (Iess 
CC was left on the surface of HK after T enzyme than on 
SM). Regarding HK pulp, Fig. 6 shows that both AC and 
xylan decreased on the surface of HK paper dises after 
either enzymatic treatment, but mannan variations were 
not significant. These resuhs were suggested bl' chroma­
tographie analyses but were confirmed by FTCM, which 
also reveals that CC exposure increased after T treat­
ment, information that cannot be obtained by any other 
method discussed here. 

Enzymatic hydrolysis of SK and HK Kraft pulps occurred 
in an approximately similar pattern, although both 
enzymes A and T lead to a smaller change in CC on the 
fiber surface of SK pulp than on HK pulp. AC decreased 
after both trealments by about 30'16. Hydrolysis with cock­
tail T leads to a 33% decrease in xylan binding in FCTM 
but treatment with A enzyme left xylan unehanged. This 
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observation is compatible with the detection of free xylose 
in the hydrolysate. Mannans were consumed to a greater 
extent in the softwood pulp. Changes in mannan surface 
coverage observed by FTCM for SK with T enzymes (a 
decrease of 40%) were not indicated by hydrolysate anal­
ysis, although a decrease in surface polymers does not 
necessarily lead to simple sugar release if the enzymes 
involved are also of endo- type. ln this case, a drop in rela­
tive abundance of mannan at the liber surface cannot he 
reveaJed by a chromatographie analysis of simple sugars 
but is easily detected using FTCM. 

Surface polymer distribution after enzymatlc treatments 
Here the quantity of each probe bound to surface is 
expressed as a percent of the total numher of probes 
detected, removing from our assessment any general 
change in surfacc binding or availabilily for binding 
(such as the decrease in binding due to loss of high sur­
facc fragments in Kraft pulps or change in sheet den­
sily as hypothesized earlier (68)). There might be some 
cross-reactivity among substrates and CBM15 (i.e. OC15 
binding mainly to xylan, but having some allinity toward 
cellulose). We found that the affinity of each probe for its 
main target surpassed affinity for a similar target by ten­
fold or more (67, 68). 

The proportions of polymers on the surface of pulps 
prior to enzymatic treatment are shown in Fig. 7. As 
expected, given the nature of Kraft pulping, the propor­
tion of AC and CC on the surfacc of Kraft pulps is higher 
than in CTM pulps, and although the number of cellu­
lose-binding probes detected on the Kraft pulps surface 
is less than what was detected on mechanical pulps, a 
greater proportion of the probes detected on the Krafl 
pulps were cellulose binding. Also, softwood exposed 
proportionally more mannan and hardwood more xylan, 
although the difTerence between hardwood and softwood 
was less pronounced for the mechanical pulps. Such dis­
tribution of hemicelluloses on the surface is compatible 
with bulk composition of libers, and also compatible with 
the generally accepted understanding of softwood and 
hardwood hemiccllulose composition (17, 78). In gen­
eral, CC exposure deteetion was greater than that of AC 
regardless of wood or pulping, except for SK pulp, where 
amorphous regions' exposure was twicc the exposure of 
CC (the same trend was observed in Fig. 4). 

Treatment with enzyme cocktail T consistently left 
a larger proportion of CC on substrate surfaces, al the 
expense of AC at the fiber surface. An exception was for 
SK pulp, where relative amount of AC probe remained 
stable regardless of enzymatic treatment. SK pulp had 
the most balanced proportions of probe binding, and this 
equilibrium between various fractions was barely atfected 
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by hydl'Olysis with T enzyme cocktail. Because analysis of 
hydrolysates (fig. 3) revealed a significant release of sim­
ple sugars for SK pulp treated with T enzyme. ail of the 
components must have been degraded equally during 
hydrolysis. Conversely. the relatively small yield of hydro­
Iysate sugars from SK pulp after A enzyme treatment. 
correlated with nearly same balanced proportion of 
probe binding. meaos that SK pulp was not significanùy 
degraded after A enzyme hydrolysis. 

Inspection of proportions. and not individual probe 
binding. allows reconciliation of apparent contradictions 
between the increase in CC in the SM pulp. shown in 
Fig. 6. and the low release of sugar afler T enzyme treat· 
ment (fig. 3). because the proportion of CC for SM is 
lower than in HK and HM pulps. 

Treatment with enzyme cocktail T results in decreased 
hemicellulose binding (in proportion to lotal binding) for 
ail pulps. while treatment with enzyme cocktail A results 
in probe signal proportions thal are in between the con­
trol and enzyme T treated substrates. Enzyme A also left 

larger proportions ofhemieelluloses on the surface ofrob­
ers at the expense of AC or Cc. 

The results presented here can be useful in predicting 
whelher an enzymatie treatment of a given biomass is 
weil suited for a given application of wood biomass. For 
biofuel production. for example. the hydrolysate anal y­
sis suggests that best conditions would involve using 
the most aggressive enzyme (T) with the most exposed 
libers (Kraft pulp). Absolute change in probe binding 
observed by FTCM confirmed the reduction of cellulose 
at the surface of fibers . FTCM analysis can also be use­
fuI for biofuel production. because it can provide pre­
cious information about lhe deconstruction of complex 
substrates and can monitor the progressive removaJ of 
polymers. which permits the optimization of enzymatic 
treatments. For example. trealment with T enzymes left 
a higher number of CC-binding sites on ail pulps tested 
here. FTCM would be instrumental in determining the 
oper.ting conditions which allow for total digeslion of 
CC with minimal costs. 
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Fluorescent-tagged carbohydrate-binding mod-
ule method could also provide information for partial 
hydrolysis of fibers for specifie applications. Unlike other 
methods, such as hydrolysat. analysis, chemical analysis, 
or XPS, FTCM can characterize the surface after treat­
ment. This information can be used to select biomass 
stock and treatment that will yield the surface properties 
or composition needed for a given application. 

Enzyme T was the most effective for increasing the 
crystalline cellulose surface proportion and decreasing 
amorphous cellulose and hemicelluloses. A high produc­
tion of CC was observed for CTM pulps but Krafl hard­
wood harbored the highesl proportion of CC at surface 
afler Ireatment. Trealmenl of H K with T enzymes would 
be more appropria le for production of purified cellu­
lose products, su ch as nanocellulose. Treatment with 
enzyme T would promote generaling fiber surfaces that 
are mechanicaUy stronger, more chemicaUy resislanl , and 
less sensitive to humidity. These characteristics suggest 
applications like reinforcement in composite materials 
(in industries like transport, furniture or construction). 

Enzyme A is more selective than T. Its use resulled in 
a significanl reduction nf the proportion of AC on sub­
strale surfaces whUe leaving mannan and xylan pro­
portions relatively untouched. This enzyme mixture 
also hydrolyzed CTM more efficiently than Kraft pulp. 
Enzyme A allowed the relatively reaclive xylan and man­
nan polymers 10 be preserved, yielding a producl which 
could be uscd to develop specialty paper products or 
insulation malerials. The enzymatic treatment of Kraft 
softwood pulp appears more relevanl for applications 
where an equilibrated distribution of amorphous cellu­
lose and hemiceUuloses is preferred. This includes paper 
products with controUed physical properties, although 
the slrenglh of these paper products may be decreased by 
either enzyme. 

Conclusions 
Fluorescenl-tagged carbohydrate-binding module 
method can be used as a rapid, affordable, and direct 
method ta evaluate the surface composition of lignocel­
lulosic substrates, thereby permilting processes to be 
understood in terms of compositional changes on the 
substrate surface which could not otherwise have been 
observed. Comparable methods for fiber analysis such 
as compositional analysis of the substrate after treat­
ment (using FTIR, XPS) or ofthe hydrolysates (hydrolysis 
products content, using GC or HPLC), surface imaging 
(using SEM, TEM, and AFM), index of crystallinity (using 
XRD and NMR) and mass balance calculations [64-66} 
cannot directly monitor processlng by enzymatic action. 
The FTCM analysis presented here directly provided 
valuable information about the quantification of exposed 
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amorphous and crystalline cellulose, xylan, and man­
nan, which cou Id then be used to determine the effects 
of pulping and enzymatic hydrolysis on the surface com­
position of substrates. The variation of these components 
at surface before and after lrealment can guide stralegies 
for preparation of wood fiber derived producls. 
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