
IDF-Autoware: Integrated Development
Framework for ROS-Based Self-Driving Systems
Using MATLAB/Simulink
Shota Tokunaga
Graduate School of Engineering Science, Osaka University, Osaka, Japan

Yuki Horita
Hitachi, Ltd., Yokohama, Japan

Yasuhiro Oda
Hitachi Automotive Systems, Ltd., Hitachinaka, Japan

Takuya Azumi
Graduate School of Science and Engineering, Saitama University, Saitama, Japan

Abstract
This paper proposes an integrated development framework that enables co-simulation and operation
of a Robot Operating System (ROS)-based self-driving system using MATLAB/Simulink (IDF-
Autoware). The management of self-driving systems is becoming more complex as the development
of self-driving technology progresses. One approach to the development of self-driving systems is
the use of ROS; however, the system used in the automotive industry is typically designed using
MATLAB/Simulink, which can simulate and evaluate the models used for self-driving. These models
are incompatible with ROS-based systems. To allow the two to be used in tandem, it is necessary to
rewrite the C++ code and incorporate them into the ROS-based system, which makes development
inefficient. Therefore, the proposed framework allows models created using MATLAB/Simulink to
be used in a ROS-based self-driving system, thereby improving development efficiency. Furthermore,
our evaluations of the proposed framework demonstrated its practical potential.

2012 ACM Subject Classification Information systems → Open source software

Keywords and phrases self-driving systems, framework, robot operating system (ROS), MAT-
LAB/Simulink

Digital Object Identifier 10.4230/OASIcs.ASD.2019.3

Funding This work was partially supported by Mr. Tohru Kikawada and JST PRESTO, Japan
(grant No. JPMJPR1751).
Yasuhiro Oda: Presently with Hitachi Industry & Control Solutions, Ltd.

1 Introduction

Self-driving systems continuously increase in complexity along with the increasing number
of required functionalities. One approach to the development of complicated systems is the
use of Robot Operating System (ROS) [5] [12] [13]. ROS characteristics, such as abstracting
hardware and improving code reusability, make the development of such systems more
efficient. A ROS-based self-driving system is Autoware [1]. Autoware is open-source software
for autonomous vehicles and can be used in embedded systems, such as NVIDIA DRIVE
PX2 [10] and Kalray MPPA-256 [11].

© Shota Tokunaga, Yuki Horita, Yasuhiro Oda, and Takuya Azumi;
licensed under Creative Commons License CC-BY

Workshop on Autonomous Systems Design (ASD 2019).
Editors: Selma Saidi, Rolf Ernst, and Dirk Ziegenbein; Article No. 3; pp. 3:1–3:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/190382645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/OASIcs.ASD.2019.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2 IDF-Autoware

MATLAB

template

scripts

Simulink

template

models

RedesignMATLAB/Simulink
Generated templates

MATLAB

node

Simulink

node

Designed nodes

Launch MATLAB/

Simulink nodes

Runtime Manager

for IDF-Autoware
Launch visualization tools

Generate templates

Start MATLAB/Simulink

rqt_graph_autoware

Autoware applications

Localization Detection

Prediction Planning

Decision

Actuation

ROS node ROS node

ROS node ROS node

ROS node

ROS node

Launch

ROS nodes

Node information

Visualization tools

Communication

among nodes

.yaml

files

Map

data

Database

: New flow by IDF-Autoware

2.2

2.1

2.1

Operation of

an autonomous

vehicle

Figure 1 System model of IDF-Autoware.

However, in the automotive industry, the design of self-driving subsystems, such as
detection, planning, and control have often used MATLAB®/Simulink® [3]. The models
designed using MATLAB/Simulink can not be directly linked to Autoware in the currently
adopted development framework. To integrate such models into Autoware, it is necessary
to generate and incorporate the associated C++ code. Although MATLAB/Simulink has
a C++ code generation functionality, code corresponding to Autoware (i.e., ROS) can not
be generated, thereby deteriorating development efficiency. Moreover, it is possible that a
model ported to Autoware will not perform as designed because the MATLAB/Simulink
environment differs from that of Autoware. To address these limitations, we propose
a framework called IDF-Autoware [2] (Figure. 1) that manages models designed using
MATLAB/Simulink as nodes that represent individual processes in ROS. This enables data
exchange between Autoware and MATLAB/Simulink, thereby allowing the models to be
used without incorporation into Autoware.

To the best of our knowledge, this is the first work that co-simulation and operation of a
real vehicle using MATLAB/Simulink for self-driving systems. The main contributions of
this study are as follows:

We confirmed the practicality of the method by comparing the data transfer time and
processing capacity of ROS and MATLAB/Simulink (Section 3.1), as well as that the
nodes designed using MATLAB/Simulink could be applied to the co-simulation and
operation of an autonomous vehicle;

We improved the design efficiency in MATLAB/Simulink based on IDF-Autoware gener-
ating MATLAB template scripts and Simulink template models (Section 3.2), which help
a developer design nodes for Autoware using MATLAB/Simulink;

We improved usability by extending Runtime Manager, which is a graphical user interface
(GUI) tool for Autoware, to enable operations for MATLAB/Simulink (Section 3.3),
as well as making available the other functionalities provided by IDF-Autoware (e.g.,
template generation).

S. Tokunaga, Y. Horita, Y. Oda, and T. Azumi 3:3

(a) (c)

(b)

Figure 2 Screenshot of co-simulation using IDF-Autoware: (a)RViz displaying Autoware status,
(b) the rqt_graph_autoware, and (c) the Runtime Manager for IDF-Autoware.

2 Design and Implementation

The functionalities provided by IDF-Autoware facilitate the integrated development of
Autoware and MATLAB/Simulink. The key functionalities are as follows (Figure. 1):

They generate MATLAB template scripts and Simulink template models, and provide
visualization tools to aid template generation (Section 2.1);
They enable MATLAB/Simulink to operate on Runtime Manager, to display node
information, and to make use of the other provided functionalities (Section 2.2)

In this section, we discuss the design and implementation of each of these functionalities,
and use cases of the proposed framework are shown.

2.1 Template Generation

When MATLAB/Simulink is used to design nodes for Autoware, the nodes must contain
essential information, such as a node name, the topics to publish/subscribe, and the message
type of each topic. This information can be obtained by analyzing the source code of
Autoware and executing ROS commands. However, the need for such analyses places a
burden on developers, especially on those who are unfamiliar with ROS. Therefore, we
provided functionalities that allow the generation of MATLAB template scripts and Simulink
template models that include this necessary information, as the templates help developers
design nodes in MATLAB/Simulink. Additionally, we made two visualization tools to aid
the template generation. One is the rqt_graph_autoware plugin (Figure. 2 (b)). In addition
to the functionalities of rqt_graph [7], rqt_graph_autoware can render node dependency,
such as sensing, perception, decision, and planning, for Autoware applications. The other
tool displays a list of the running nodes and provides information on any node selected from
the list.

ASD 2019

3:4 IDF-Autoware

As noted, before the template of a desired node is generated, it is necessary to obtain
node information; therefore, a .yaml file containing information pertaining to all Autoware
nodes was created. Based on this information, templates are created using functions pro-
vided by Robotics System Toolbox™ [4], which provides the interface between ROS and
MATLAB/Simulink. Developers can create nodes for Autoware in MATLAB/Simulink using
the generated template.

To implement the rqt_graph_autoware plugin, we created .dot files that render node
dependency graphs for each Autoware’s application. Moreover, to create the GUI for
rqt_graph_autoware, we added buttons to rqt_graph using Qt designer, which is a Qt tool
for designing a GUI. The buttons were configured to open each .dot file, and clicking on
these buttons cause a graph to be drawn. This allows developers visualization of the nodes
included in each Autoware’s application.

To display node information, we used a rosnode command-line tool [6] that includes
commands that fetch node information, including rosnode list and rosnode info node_name.
The rosnode list command displays a list of running nodes, whereas rosnode info node_name
displays information about the topics to be published/subscribed by the node. Displaying
the results of these commands in Runtime Manager renders the node information easily
comprehensible. Section 2.2 describes the method for displaying these results in Runtime
Manager.

2.2 Runtime Manager for IDF-Autoware
Autoware and MATLAB/Simulink are operated with different GUI tools; thus, this is
troublesome for users who want to use the two simultaneously. Therefore, we added GUIs
to the Autoware’s GUI tool (i.e., Runtime Manager) to allow use of MATLAB/Simulink
and the functionalities provided in IDF-Autoware (Figure. 2 (c)). These GUIs enabled the
following functionalities:

Starting MATLAB, Simulink, and rqt_graph_autoware;
Executing MATLAB scripts and Simulink models;
Generating MATLAB template scripts and Simulink template models;
Displaying node information.

This unification of operation method simplifies the MATLAB/Simulink operation and the
utilization of the provided functionalities.

Runtime Manager was designed using the wxPython toolkit [9]. Therefore, we designed
the GUIs for the added functionalities using wxGlade [8], and outputted its designs as
wxPython. The GUIs involve buttons and panels that execute each functionality.

We next modified the Runtime Manager execution code to configure them for GUI func-
tionalities. The execution code imports modules, including the code generated by wxGlade,
and loads the .yaml files. In the execution code, loading .yaml files initiates functions that
align simple operations to specified buttons. Therefore, by creating a yaml file for MAT-
LAB/Simulink, we configured the initiation of MATLAB, Simulink, and rqt_graph_autoware
to each button.

To allow the execution of MATLAB scripts and Simulink models from Runtime Manager,
we created multiple GUIs with the following configurations:

A button to open a dialog for file selection;
A panel displaying the absolute path of the selected file; and
A button to execute the file displayed on the panel.

This execution button was designed to run if the selected file was a MATLAB/Simulink file
(i.e., a .m or .slx file).

S. Tokunaga, Y. Horita, Y. Oda, and T. Azumi 3:5

Table 1 Evaluation environment.

CPU

Model number Intel Core i7-6700K
Cores 4

Threads 8
Frequency 4.00 GHz

Memory 32 GB
ROS Indigo

MATLAB/Simulink R2016b
OS Ubuntu 14.04.5 LTS

ROS
MATLAB/

Simulink

ROS

ROS

Data

Data

Data

DataNode1

Node2

Node3

: node : topic : publish/subscribe

Figure 3 Measurement of transfer time.

To generate MATLAB template scripts and Simulink template models, we designed the
following GUIs: a panel to input the node name and buttons to run the execution code that
generates the template of the input node.

For the node information display, we designed two panels, with the first displaying the
output of the executing rosnode list. When a node is selected from the list, the second panel
displays the output of rosnode info the_selected_node_name, which eliminates the need to
enter the rosnode command.

2.3 Use Case
IDF-Autoware allows co-simulation of Autoware and MATLAB/Simulink. The demonstration
video can be viewed at the following hyperlink: https://youtu.be/X4d9VbXnPeg (Figure.
2). In this video, one of the nodes necessary for planning is executed by MATLAB/Simulink.
This simulation facilitates an operational check of MATLAB/Simulink nodes. Moreover, it
can also be used for experiments using an autonomous vehicle. The demonstration video
showing operating of the autonomous vehicle using IDF-Autoware can be seen at the following
hyperlink: https://youtu.be/wusCU2VPGGQ.

3 Evaluations

The main goal of this study was to improve development efficiency. To demonstrate this
improvement, the practicality of IDF-Autoware, efficiency, and usability were evaluated. To
evaluate the practicality, we compared the communication times among nodes within ROS
and between ROS and MATLAB/Simulink. Additionally, we performed a co-simulation and
operation of an autonomous vehicle to show the practicality of the proposed framework. We
investigated the design efficiency by measuring the generated MATLAB/Simulink template.
To evaluate the usability, we compared the development environments with Autoware,
Robotics System Toolbox, and IDF-Autoware. These evaluations demonstrated that IDF-
Autoware improved the development efficiency. Table 1 summarizes the software and hardware
environments used in the experiments.

ASD 2019

https://youtu.be/X4d9VbXnPeg
https://youtu.be/wusCU2VPGGQ

3:6 IDF-Autoware

0
5

1
0

1
5

Data size [bytes]

E
xe

c
u
ti
o

n
 t

im
e

 [
m

s
]

0
5

1
0

1
5

0
5

1
0

1
5

ROS

MATLAB

100 1K 10K 100K 1M

Figure 4 The average transfer time according to the size of the message data.

3.1 Practicality

IDF-Autoware enabled the communication of nodes designed using MATLAB/Simulink with
Autoware nodes to improve the development efficiency. However, it was necessary to consider
the effect of using Autoware with only ROS and together with MATLAB/Simulink together.
Therefore, to evaluate practicality, ROS and MATLAB/Simulink were compared as follows:

1. According to the relationship between the transfer time and the data size when a message
is sent via ROS and via MATLAB/Simulink, respectively; and

2. According to the processing capacity when the same type of method was used.

As shown in Figure. 3, the transfer time was defined as the elapsed time when Node 1
published the message to Node 3, which subscribed the message via Node 2. The processing
capacity was compared with the processing time over 1,000 iterations and using the same
machine (Node 1 published the message at 10 Hz).

We measured the ROS and MATLAB/Simulink transfer time when the message data
size on each topic was set to 100, 1 K, 10 K, 100 K, and 1 M bytes. Figure. 4 shows the
transfer times via ROS and MATLAB/Simulink plotted against each data size. Both the
ROS and MATLAB/Simulink transfer times increased along with data size, although the
data transfer by MATLAB/Simulink had an overhead exceeding that of ROS. However, the
MATLAB/Simulink transfer time did not exceed the Autoware maximum of 32 Hz.

S. Tokunaga, Y. Horita, Y. Oda, and T. Azumi 3:7

1
e
−

0
2

1
e
−

0
1

1
e
+

0
0

1
e
+

0
1

1
e
+

0
2

Matrix size [order]

E
xe

c
u
ti
o

n
 t

im
e

 [
m

s
]

1
e
−

0
2

1
e
−

0
1

1
e
+

0
0

1
e
+

0
1

1
e
+

0
2

1
e
−

0
2

1
e
−

0
1

1
e
+

0
0

1
e
+

0
1

1
e
+

0
2

1
e
−

0
2

1
e
−

0
1

1
e
+

0
0

1
e
+

0
1

1
e
+

0
2

ROS code

a MATLAB script written in the same way as ROS code

a script using MATLAB matrix function

50 100 150 200

Figure 5 The average processing time according to each matrix size.

Table 2 Task reduction using MATLAB template scripts.

MATLAB template scripts
Generated lines (1) + α(2) + β((3) + 2(4))
(1): Defining node
(2): Defining publisher
(3): Defining subscriber
(4): Defining callback function
α: The number of publishers
β: The number of subscribers

To evaluate the processing capacity, we measured the processing times of ROS and
MATLAB/Simulink when multiplying square matrices on the order of 50, 100, 150, and 200,
which served as easy points of reference to enable comparison of ROS with MATLAB/Simulink
rather than as a requirement for self-driving. The evaluation measured the time required to
process the time complexity at each matrix size and assessed the performance of the functions
provided by MATLAB/Simulink. Therefore, the MATLAB/Simulink processing time was
measured using two MATLAB scripts: one written in the same way as the ROS code, and
the other using MATLAB matrix functions. Figure. 5 shows the processing times at each
matrix size. When using the MATLAB script written in the same way as the ROS code, the
processing times of ROS and MATLAB/Simulink were approximately the same. By contrast,
when the MATLAB script used matrix functions, its processing time was significantly shorter
than that of the other two methods, because processing was executed on multiple cores with
multiple threads, even when this was unspecified. Comparison of the processing times with
the transfer times revealed that the script using matrix functions was again significantly
faster, thereby confirming that application of the functions provided by MATLAB/Simulink
code enabled the handling of processes with large time complexity (e.g., image processing),
even when accounting for the transfer time. Therefore, as shown the videos in Section 2.3,
the practicality of IDF-Autoware is demonstrated.

ASD 2019

3:8 IDF-Autoware

Table 3 Task reduction using Simulink template models.

Simulink template models
Simulink blocks α((1) + (2) + (3)) + β((4) + (5) + (6))

Settings (i) + (α + β)((ii) + (iii) + (iv) + 2(v))
(1): Placing Publisher (i): Defining model name
(2): Placing Message (ii): setting message name
(3): Placing Bus Assignment (iii): setting topic name
(4): Placing Subscriber (iv): Configuring topic source
(5): Placing Bus Selector (v): Connecting blocks
(6): Placing Terminal α: The number of publishers

β: The number of subscribers

Table 4 Functionalities available with Autoware, Robotics System Toolbox, and IDF-Autoware.

Autoware [1] Robotics System Toolbox [4] IDF-Autoware [2]

Operating Autoware X X

Operating MATLAB/Simulink X X

Communicating between X X

Autoware and MATLAB/Simulink
Drawing node dependency X X

Generating MATLAB/Simulink templates X

Displaying node information X

3.2 Efficiency

To improve the design efficiency, a functionality to generate both MATLAB template scripts
and Simulink template models was provided. These templates help developers design nodes
for Autoware in MATLAB/Simulink.

Table 2 shows the amount of the template generated by a MATLAB template script.
The MATLAB template script defines the essential information, as mentioned in Section
2.1, and creates callback functions utilized when a topic is subscribed. For example, the
lane_stop node required for planning has one publisher and five subscribers. One line is
generated to define a node, a subscriber, and a publisher, and two lines are generated to
define the callback function. Therefore, in total, 17 lines are generated for the MATLAB
template script for the lane_stop node.

When creating a Simulink model, it is necessary to place and configure the Simulink
blocks, to define the model name, and to connect the blocks. Table 3 summarizes the number
of Simulink blocks placed and the settings created by a Simulink template model. The
Simulink template model defines the model name and places the essential Simulink blocks,
thereby creating a model for Autoware. Additionally, the Simulink blocks are configured and
connected together. For example, when the Simulink template model of lane_stop node is
generated, 18 Simulink blocks are placed and 31 settings are configured in total.

If the functionality allowing MATLAB/Simulink templates to be generated is not provided,
the developer must examine the node information and define it in a MATLAB script or
a Simulink model. By contrast, when the templates are used, this becomes unnecessary;
therefore, this improves design efficiency.

S. Tokunaga, Y. Horita, Y. Oda, and T. Azumi 3:9

3.3 Usability
IDF-Autoware enables the operation of MATLAB/Simulink in Autoware and provides
functionalities to improve the usability. Here, we compared the available functionalities
between Autoware, Robotics System Toolbox, and IDF-Autoware, as summarized in Table 4.

Autoware cannot operate MATLAB/Simulink, and Robotics System Toolbox cannot oper-
ate Autoware. IDF-Autoware provides functionalities required to operate MATLAB/Simulink
in Runtime Manager for IDF-Autoware, such as starting MATLAB/Simulink or executing
MATLAB scripts and Simulink models. Therefore, IDF-Autoware can operate both systems.
Communication between Autoware and MATLAB/Simulink is possible in Robotics System
Toolbox and IDF-Autoware. Moreover, IDF-Autoware provides a drawing to visualize node
dependency using the rqt_graph_autoware plugin created by extending rqt_graph available
in Autoware. In addition to these features, IDF-Autoware can generate MATLAB/Simulink
templates and display node information. Because this increases the number of available
functionalities, the usability is also enhanced, which in turn improves development efficiency.

4 Conclusion

In this paper, we described the development of an integrated development framework for
Autoware with MATLAB/Simulink (IDF-Autoware) that enabled communication between
Autoware and MATLAB/Simulink. We evaluated the data transfer time and processing
capacity of MATLAB/Simulink, and confirmed the practicality of the method by using both
co-simulations and experiments using an autonomous vehicle. IDF-Autoware facilitated the
generation of MATLAB/Simulink templates that can help developers create models using
MATLAB/Simulink for Autoware, thereby improving the design efficiency. Furthermore, the
functionalities added to IDF-Autoware allow Runtime Manager to operate MATLAB/Simulink
and various functionalities, further improving usability. Our findings confirmed that IDF-
Autoware improved the development efficiency.

References
1 Autoware/github.com. URL: http://github.com/CPFL/Autoware.
2 IDF-Autoware/github.com. URL: https://github.com/T-Shota/IDF-Autoware.
3 MATLAB/Simulink. URL: http:///www.mathworks.com.
4 Robotics System Toolbox. URL: https://mathworks.com/products/robotics.html.
5 ROS.org. URL: http://www.ros.org.
6 ROS.org/rosnode. URL: http://wiki.ros.org/rosnode.
7 ROS.org/rqt_graph. URL: http://wiki.ros.org/rqt_graph.
8 wxglade.sourceforge.net. URL: http://wxglade.sourceforge.net.
9 wxpython.org. URL: http://wxpython.org.

10 S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa, A. Monrroy,
T. Ando, Y. Fujii, and T. Azumi. Autoware on Board: Enabling Autonomous Vehicles with
Embedded Systems. In Proc. of ICCPS, 2018.

11 Y. Maruyama, S. Kato, and T. Azumi. Exploring Scalable Data Allocation and Parallel
Computing on NoC-Based Embedded Many Cores. In Proc. of ICCD, 2017.

12 M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, E. Berger, R Wheeler, and
A. Ng. ROS: an open-source Robot Operating System. In Proc. of ICRA, Open-Source
Software Workshop, 2009.

13 Y. Saito, T. Azumi, S. Kato, and N. Nishio. Priority and Synchronization Support for ROS.
In Proc. of CPSNA, 2016.

ASD 2019

http://github.com/CPFL/Autoware
https://github.com/T-Shota/IDF-Autoware
http:///www.mathworks.com
https://mathworks.com/products/robotics.html
http://www.ros.org
http://wiki.ros.org/rosnode
http://wiki.ros.org/rqt_graph
http://wxglade.sourceforge.net
http://wxpython.org

	Introduction
	Design and Implementation
	Template Generation
	Runtime Manager for IDF-Autoware
	Use Case

	Evaluations
	Practicality
	Efficiency
	Usability

	Conclusion

