
Computing Partial Recursive Functions
by Virus Machines

Álvaro Romero-Jiménez(B), Luis Valencia-Cabrera,
Agust́ın Riscos-Núñez, and Mario J. Pérez-Jiménez

Research Group on Natural Computing,
Department of Computer Science and Artificial Intelligence,

Universidad de Sevilla, Avda. Reina Mercedes S/n, 41012 Seville, Spain
{romero.alvaro,lvalencia,ariscosn,marper}@us.es

Abstract. Virus Machines are a computational paradigm inspired by
the manner in which viruses replicate and transmit from one host cell to
another. This paradigm provides non-deterministic sequential devices.
Non-restricted Virus Machines are unbounded Virus Machines, in the
sense that no restriction on the number of hosts, the number of instruc-
tions and the number of viruses contained in any host along any com-
putation is placed on them. The computational completeness of these
machines has been obtained by simulating register machines. In this
paper, Virus Machines as function computing devices are considered.
Then, the universality of non-restricted virus machines is proved by show-
ing that they can compute all partial recursive functions.

1 Introduction

A new computational paradigm inspired by the replications and transmissions 
of viruses was introduced in [1]. The computational devices in this paradigm are 
called Virus Machines and they consist of several processing units, called hosts, 
connected to each other by transmission channels. A host can be viewed as a 
group of cells (being part of a colony, organism, system, organ or tissue). Each 
cell in the group will contain at most one virus, but we will not take into account 
the number of cells in the group, we will only focus on the number of viruses 
that are present in some of the cells of that group (not every cell in the group 
does necessarily hold a virus). Only one type of viruses is considered. Channels 
allow viruses to be transmitted from one host to another or to the environment 
of the system. Each channel has a natural number (the weight of the channel) 
associated with it, indicating the number of copies of the virus that will be 
generated and transmitted from an original one (i.e., one virus may replicate, 
generating a number of copies to be transmitted to the target host group of 
cells). Each transmission channel is closed by default and it can be opened by 
a control instruction unit. Specifically, there is an instruction-channel control 
network that allows opening a channel by means of an activated instruction. In 
that moment, the opened channel allows a virus (only one virus) to replicate

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/190375426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and transmit through it. Instructions are activated individually according to a
protocol given by an instruction transfer network, so that only one instruction
is enabled in each computation step. That is, an instruction activation signal is
transferred to the network to activate instructions in sequence.

In this work, Virus Machines as computing function devices are introduced.
For this purpose, we deal with Virus Machines having input hosts, allowing us
to introduce some additional numbers of viruses (encoding the information) in
certain distinguished hosts as an input to the Virus Machine. The universality
of non-restricted Virus Machines (Virus Machines where there is no restriction
on the number of hosts, the number of instructions and the number of viruses
contained in any host along any computation) working in the computing mode
is proved by showing that they can compute all partial recursive functions.

This paper is structured as follows. First, some preliminaries are briefly intro-
duced in order to make the work self-contained. Then, in Sect. 3, we formally
define the computing model of virus machines. Section 4 is devoted to discuss the
power of non-restricted Virus Machines, and their computational completeness
(via computing partial recursive functions) is stated. Finally, in Sect. 5 the main
conclusions of this work are summarized and some suggestions for possible lines
of future research are outlined.

2 Preliminaries

In this section some basic concepts needed throughout this paper are introduced,
thus making it self-contained.

2.1 Sets and Functions

In this paper Z denotes the set of integer numbers, Z>0 the set of positive
integers, and N = Z≥0 the set of non-negative integers or natural numbers.

A function from a set A to a set B is a subset of A × B such that every
element of A is related through f with at most one element of B. The domain of
f , dom(f), is the subset of A consisting of all the elements for which f is defined.
If dom(f) = A we say that the function is total, and denote it by f : A → B.
Otherwise, we say that the function is partial, and denote it by f : A → B.

2.2 Graphs

An undirected graph G is a pair (V,E), where V is a finite set and E is a subset
of

{{x, y} | x ∈ V, y ∈ V, x �= y
}
. The set V is called the vertex set of G, and

its elements are called vertices. The set E is called the edge set of G, and its
elements are called edges. If e = {x, y} ∈ E is an edge of G, then we say that edge
e is incident on vertices x and y. In an undirected graph, the degree of a vertex x
is the number of edges incident on it. A bipartite graph G is an undirected graph
(V,E) in which V can be partitioned into two sets V1, V2 such that {u, v} ∈ E



implies either u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1; that is, all edges are
arranged between the two sets V1 and V2 (see [3] for details).

A directed graph G is a pair (V,E), where V is a finite set and E is a subset
of V × V . The set V is called the vertex set of G, and its elements are called
vertices. The set E is called the arc set of G, and its elements are called arcs.
In a directed graph, the out-degree of a vertex is the number of arcs leaving it,
and the in-degree of a vertex is the number of arcs entering it.

3 Virus Machines

In what follows we formally define the syntax of the Virus Machines (see [1] for
more details).

Definition 1. A Virus Machine Π of degree (p, q), with p ≥ 1, q ≥ 1, is a tuple
(Γ,H, I,DH ,DI , GC , n1, . . . , np, istart, hout), where:

– Γ = {v} is the singleton alphabet;
– H = {h1, . . . , hp} and I = {i1, . . . , iq} are ordered sets such that v /∈ H ∪ I

and H ∩ I = ∅;
– DH = (H ∪{hout}, EH , wH) is a weighted directed graph, verifying that EH ⊆

H × (H ∪{hout}), (h, h) /∈ EH for each h ∈ H, out-degree(hout) = 0, and wH

is a mapping from EH to Z>0;
– DI = (I, EI , wI) is a weighted directed graph, where EI ⊆ I × I, wI is a

mapping from EI to Z>0 and, for each vertex ij ∈ I, the out-degree of ij is
less than or equal to 2;

– GC = (VC , EC) is an undirected bipartite graph, where VC = I ∪ EH , being
{I, EH} the partition associated with it (i.e., all edges go between the two sets
I and EH). In addition, for each vertex ij ∈ I, the degree of ij in GC is less
than or equal to 1;

– nj ∈ N (1 ≤ j ≤ p) and istart ∈ I;
– hout /∈ I ∪ {v} and hout is denoted by h0 in the case that hout /∈ H.

A Virus Machine Π = (Γ,H, I,DH ,DI , GC , n1, . . . , np, istart, hout) of degree
(p, q) can be viewed as an ordered set of p hosts labelled with h1, . . . , hp (where
each host hj , 1 ≤ j ≤ p, initially contains exactly nj viruses –copies of the sym-
bol v–), and an ordered set of q control instruction units labelled with i1, . . . , iq.
Symbol hout represents the output region of the system (we use the term region
to refer to host hout in the case that hout ∈ H and to refer to the environment in
the case that hout = h0). Arcs (hs, hs′) from DH represent transmission channels
through which viruses can travel from host hs to hs′ .

Each channel is closed by default, and so it remains until it is opened by
a control instruction (which is attached to the channel by means of an edge in
graph GC) when that instruction is activated. Furthermore, each channel (hs, hs′)
is assigned with a positive integer weight, denoted by ws,s′ , which indicates the
number of viruses that will be transmitted/replicated to the receiving host of
the channel.



Arcs (ij , ij′) from DI represent instruction transfer paths, and they have
a weight, denoted by wj,j′ , associated with it. Finally, the undirected bipar-
tite graph GC represents the instruction-channel network by which an edge
{ij , (hs, hs′)} indicates a control relationship between instruction ij and channel
(hs, hs′): when instruction ij is activated, the channel (hs, hs′) is opened.

A configuration Ct of a Virus Machine at an instant t is described by a tuple
(a1,t, . . . , ap,t, ut, et), where a1,t, . . . , ap,t and et are non-negative integers and
ut ∈ I ∪ {#}, with # /∈ {v} ∪ H ∪ {h0} ∪ I. The meaning is the following: at
instant t the host hs of the system contains exactly as,t viruses, the output region
hout contains exactly et viruses and, if ut ∈ I, then the control instruction unit ut

will be activated at step t + 1. Otherwise, if ut = #, then no further instruction
will be activated. The initial configuration of the system is the configuration
C0 = (n1, . . . , np, istart, 0).

A configuration Ct = (a1,t, . . . , ap,t, ut, et) is a halting configuration if and
only if ut is the object #. A non-halting configuration Ct = (a1,t, . . . , ap,t, ut, et)
yields configuration Ct+1 = (a1,t+1, . . . , ap,t+1, ut+1, et+1) in one transition step,
denoted by Ct ⇒Π Ct+1, if we can pass from Ct to Ct+1 as follows:

1. First, given that Ct is a non-halting configuration, we have ut ∈ I. So the
control instruction unit ut is activated.

2. Let us assume that instruction ut is attached to channel (hs, hs′). Then this
channel will be opened and:
– If as,t ≥ 1, then a virus (only one virus) is consumed from host hs and

ws,s′ copies of v are produced in host hs′ (if s′ �= out) or in the output
region hout.

– If as,t = 0, then there is no transmission of viruses.
3. Let us assume that instruction ut is not attached to any channel (hs, hs′).

Then there is no transmission of viruses.
4. Object ut+1 ∈ I ∪ {#} is obtained as follows:

– Let us suppose that out-degree(ut) = 2, that is, there are two different
instructions ut′ and ut′′ such that (ut, ut′) ∈ EI and (ut, ut′′) ∈ EI .

• If instruction ut is attached to a channel (hs, hs′) and as,t ≥ 1 then
ut+1 is the instruction corresponding to the highest weight path.

• If instruction ut is attached to a channel (hs, hs′) and as,t = 0 then
ut+1 is the instruction corresponding to the lowest weight path.

• If both weights are equal or if instruction ut is not attached to a
channel, then the next instruction ut+1 is either ut′ or ut′′ , selected in
a non-deterministic way.

– If out-degree(ut) = 1 then the system behaves deterministically and ut+1

is the instruction that verifies (ut, ut+1) ∈ EI .
– If out-degree(ut) = 0 then ut+1 is object # and configuration Ct+1 is a

halting configuration.

A computation of a Virus Machine Π is a (finite or infinite) sequence of
configurations such that: (a) the first element is the initial configuration C0 of
the system; (b) for each n ≥ 1, the n-th element of the sequence is obtained
from the previous element in one transition step; and (c) if the sequence is finite



(called halting computation) then the last element is a halting configuration.
All the computations start from the initial configuration and proceed as stated
above; only halting computations give a result, which is encoded in the contents
of the output region for the halting configuration.

Definition 2. A Virus Machine Π with input of degree (p, q, r), p ≥ 1, q ≥ 1,
r ≥ 1, is a tuple (Γ,H,Hr, I,DH ,DI , GC , n1, . . . , np, istart, hout), where:

– (Γ,H, I,DH ,DI , GC , n1, . . . , np, istart, hout) represents a Virus Machine of
degree (p, q).

– Hr = {hj1 , . . . , hjr
} ⊆ H is the ordered set of r input hosts and hout /∈ Hr.

The initial configuration of Π with input (α1, . . . , αr) is the configuration
(m1, . . . ,mp, istart, 0), where mj = nj + αj , if j ∈ {j1, . . . , jr}, and mj = nj

otherwise. Therefore, in a Virus Machine with input we have an initial configu-
ration associated with each (α1, . . . , αr) ∈ N

r. A computation of a Virus Machine
Π with input (α1, . . . , αr), denoted by Π + (α1, . . . , αr), starts with the initial
configuration (m1, . . . ,mp, istart, 0) and proceeds as stated above.

In this paper we work with Virus Machines working in the computing mode.
That is, the result of a computation of a Virus Machine Π with input (α1, . . . , αr)
is the total number n of viruses sent to the output region during the computation.
We say that number n is computed by the Virus Machine Π + (α1, . . . , αr). We
denote by N

(
Π + (α1, . . . , αr)

)
the set of all natural numbers computed by

Π + (α1, . . . , αr).
Throughout this paper, due to technical reasons, we consider hout ∈ H, that

is, the output region of a Virus Machine will be a host.

3.1 Virus Machines as Function Computing Devices

Virus Machines can work in several modes. In this section we introduce a partic-
ular kind of virus machines working in the computing mode providing function
computing devices.

Definition 3. Let f : Nk → N be a partial function. We say that f is computable
by a Virus Machine Π with k input hosts working in the computing mode if the
following holds: for each (x1, . . . , xk) ∈ N

k,

– If (x1, . . . , xk) ∈ dom(f) and f(x1, . . . , xk) = z, then every computation Π +
(x1, . . . , xk) is a halting computation with output z.

– If (x1, . . . , xk) /∈ dom(f), then every computation Π + (x1, . . . , xk) is a non-
halting computation.

The concept of computation of a subset of Nk is introduced below, via func-
tion computing Virus Machines.



Definition 4. Let A ⊆ N
k be a set of k-tuples of natural numbers. We say that

A is computed by a Virus Machine Π with k input hosts working in the comput-
ing mode if Π computes the partial characteristic function C∗

A of A, defined as
follows:

C∗
A(x1, . . . , xk) =

{
1, if (x1, . . . , xk) ∈ A

undefined, otherwise

4 The Universality of Non-restricted Virus Machines

A non-restricted Virus Machine is a Virus Machine such that there is no restric-
tion on the number of hosts, the number of instructions and the number of
viruses contained in any host along any computation.

For each p, q, n ≥ 1, we denote by NV M(p, q, n) the family of all subsets
of N computed by Virus Machines with at most p hosts, q instructions, and
all hosts having at most n viruses at any instant of each computation. If one
of the numbers p, q, n is not bounded, then it is replaced with ∗. In particular,
NV M(∗, ∗, ∗) denotes the family of all subsets of natural numbers computed by
non-restricted Virus Machines.

4.1 Computing Partial Recursive Functions by Virus Machines

In this section, the computational completeness of non-restricted Virus Machines
working in the computing mode is established. Specifically, we prove that they
can compute all partial recursive functions. Indeed, we will design non-restricted
Virus Machines that:

1. Compute the basic or initial functions: constant zero function, successor func-
tion and projection functions.

2. Compute the composition of functions, from Virus Machines computing the
functions to be composed.

3. Compute the primitive recursion of functions, from Virus Machines comput-
ing the functions that participate in the recursion.

4. Compute the unbounded minimization of functions, from a Virus Machine
computing the function to be minimized.

4.2 Modules

In order to ease the design of the Virus Machines computing any partial recur-
sive function, the construction of such Virus Machines will be made in a mod-
ular manner. A module can be seen as a Virus Machine without output host,
with the initial instruction marked as the in instruction and with at least one
instruction marked as an out instruction. The out instructions must have out-
degree less than two, so that they can still be connected to another instruction.
This way, a module m1 can be plugged in before another module m2 or Virus
Machine instruction i by simply connecting the out instructions of m1 with the
in instruction of m2 or with the instruction i.



The layout of a module must be carefully design to avoid conflicts with other
modules and to allow the module to be executed any number of times. To achieve
the first condition, we will consider that all the hosts (with the only exception of
those belonging to the parameters of the module) and instructions of a module
are individualized for that module, being distinct from the ones of any other
module or Virus Machine. The second condition is met if we ensure that, after
the execution of the module, all its hosts except its parameters contain the same
number of viruses as before the execution.

In this paper we consider two types of modules: action modules and predicate
modules. For the action modules we require all of its out instructions to be
connected to the in instruction of the following module, or to the following
instruction of the Virus Machine. For the predicate modules we consider its out
instructions to be divided in two subsets: the out instructions representing a yes
answer and the out instructions representing a no answer of the predicate. For
each of these subsets, all of its instructions have to be connected to the same
module in instruction or Virus Machine instruction.

The library of modules used in this paper consists of the following modules
(we name the action modules as verbs and the predicate modules as questions):

– EMPTY(h): action module that sets to zero the number of viruses in host h.
To implement this module we only need to introduce an internal host h′,
initially with zero viruses, and associate with the channel from h to h′ an
action that transfers all the viruses from h. Note that host h′ may end with a
nonzero number of viruses, but this does not prevent the module to be reused,
because h′ plays a passive role.

h

0
h

outsend
1

in

2
– ADD(h1, h2): action module that adds to host h2 the number of viruses in host

h1, without modifying the number of viruses in h1.
This module is implemented as follows:

h1

0
h h2

2

sendback

out

send

1

replicate
1

in

2

2



This way, the module starts by transferring one by one all the viruses from
h1 to h, duplicating them along the way. Then it sends, again and again, one
virus from h to h2 and another one from h to h1, until there are no more
viruses left. It is clear then that when the module ends, the host h1 retains
its initial number of viruses, the host h is empty (thus allowing the module to
be reused), and the host h2 has a number of viruses equal to the sum of the
initial number of viruses in h1 and h2.

– COPY(h1, h2): action module that sets the number of viruses in h2 the same
as in h1, without modifying the number of viruses in h1.
This module is implemented by the following concatenation of modules:

in → EMPTY(h2) → ADD(h1, h2) → out

That is, we first get rid of all the viruses from h2, and then add the viruses
from h1, so h2 ends with the same number of viruses as h1. Also observe that
the module ADD(h1, h2) does not modify the number of viruses in h1, what
will be important later.

– SET(h, n): action module that sets to n the number of viruses in host h. This
module is implemented simply by introducing an internal host h′ with initial
number of viruses n and using the module COPY(h′, h).

– AREEQUAL?(h1, h2): predicate module that checks if the number of viruses in
hosts h1 and h2 coincides.
This module is implemented as follows, where h′

1, h′
2 and h are new internal

hosts:
0
h

0

h1

0

h2

in COPY(h1, h1) COPY(h2, h2) send1 send2

2

2

no

1

finalcheck

1

no

2
yes

1

We first copy the contents of h1 and h2 into the internal hosts h′
1 and h′

2,
so that they do not get modified. Then, in turns, we send one virus from h′

1

to h and then another one from h′
2 to h. If the latter can not be done, this

is because the contents of h1 were greater than the contents of h2 and the
answer is no. If the former can not be done, we must try once more to send a
virus from h′

2 to h to determine if the contents were or not equal.
Notice that the contents of h′

1, h′
2 and h get modified, but this does not prevent

the module to be reused, because the first two get initialized by the first two
COPY modules and the latter plays a passive role.

– ISZERO?(h): predicate module that checks if the number of viruses in host h
is zero.



This module is simply implemented by introducing an empty internal host h′

and using the module AREEQUAL?(h, h′).

Finally, notice that we can consider any Virus Machine Π as an action module
without parameters, where the initial instruction is the in instruction and any
instruction with out-degree zero is an out instruction. The only problem is that
Π would be a module of one use, because it is not guaranteed that the contents
of its hosts are the same before and after execution. If we wanted to reuse it, we
would need to set Π to its initial state, by means of the following module:

– RESTART(Π): action module that sets the number of viruses of each host hi

of Π to its initial contents ni.
This module is implemented by the following concatenation of modules:

in → SET(h1, n1) → · · · → SET(hp, np) → out

where h1, . . . , hp are the hosts of Π and n1, . . . , np are their initial contents.

4.3 Basic or Initial Functions

We begin by describing function computing Virus Machines that allow us to
compute the basic functions.

– The constant zero function, O : N → N, defined by O(x) = 0, for every x ∈ N,
can be computed by the following virus machine ΠO with input working in
the computing mode:

• The hosts are HO = {h, hzero}, each of them initially empty.
• The input host is h and the output host is hzero.
• The initial and only instruction is halt.
• Each of the three graphs DHO , DIO and GCO determining the functioning

of the machine has an empty set of edges.
This way, for any input the Virus Machine ΠO halts in the very first step, and
the output host hzero remains empty. So the output of this machine is always
zero.

– The successor function, S : N → N, defined by S(x) = x + 1, for every x ∈ N,
can be computed by the following virus machine ΠS with input working in
the computing mode:

• The hosts are HS = {h, hone}, together with the internal hosts of the
module ADD(h, hone).

• The initial contents are zero for the host h and one for the host hone,
together with the initial contents of the internal hosts of the module ADD(h,
hone).

• The input host is h and the output host is hone.
• The instructions are IS = {halt}, together with the instructions of the

module ADD(h, hone).
• The initial instruction is the in instruction of the module ADD(h, hone).



• The functioning of the Virus Machine is given by the following sequence,
which determines the graphs DHS , DIS and GCS :

ADD(h, hone) → halt

This way, for any input the Virus Machine ΠS adds it from h to hone and
halts. Since host hone contained one virus, the output of this machine is equal
to the input plus one, as required.

– The projection functions, Πm
i : Nm → N, with m ≥ 1 and 1 ≤ i ≤ m, defined

by Πm
i (x1, . . . , xm) = xi, for every (x1, . . . , xm) ∈ N

m, can be computed by
the following Virus Machine ΠΠm

i
with input working in the computing mode:

• The hosts are HΠm
i

= {h1, . . . , hm, hout}, together with the internal hosts
of the module COPY(hi, hout).

• The initial contents are zero for the hosts h1, . . . , hm, hout, together with
the initial contents of the internal hosts of the module COPY(hi, hout).

• The input hosts are h1, . . . , hm and the output host is hout.
• The instructions are IΠm

i
= {halt}, together with the instructions of the

module COPY(hi, hout).
• The initial instruction is the in instruction of the module COPY(hi, hout).
• The functioning of the Virus Machine is given by the following sequence,

which determines the graphs DHΠm
i

, DIΠm
i

and GCΠm
i

:

COPY(hi, hout) → halt

This way, for any input the Virus Machine ΠΠm
i

copies the i-th component
from hi to hout and halts, so the output of the machine is that component.

4.4 Composition of Functions

We show now how the composition of functions can be simulated by Virus
Machines with input working in the computing mode.

Definition 5. Let f : Nm → N and g1 : Nn → N, . . . , gm : Nn → N. Then, the
composition of f with g1 to gm, denoted C(f ; g1, . . . , gm), is a partial function
from N

n to N defined as follows:

C(f ; g1, . . . , gm)(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

for each (x1, . . . , xn) ∈ N
n.

Let Πf ,Πg1 , . . . , Πgm
be Virus Machines with input, computing the functions

f, g1, . . . , gm, respectively. Let us assume that for each x ∈ {f, g1, . . . , gm} the
elements of the Virus Machine Πx are the following:

– The hosts are Hx = {hx
1 , . . . , h

x
px

}.
– The initial contents of the hosts are nx

1 , . . . , nx
px

.
– The input hosts are hf

1 , . . . , hf
m and hx

1 , . . . , h
x
n for x ∈ {g1, . . . , gm}.

– The output host is hx
out.



– The instructions are Ix = {ix1 , . . . , ixqx
}.

– The initial instruction is ixstart.
– The functioning of the Virus Machine is determined by the directed graphs

DHx
, DIx

and the bipartite graph GCx
.

Then, the composition of f with g1, . . . , gm can be computed by the following
Virus Machine ΠC(f ;g1,...,gm) with input:

– The hosts are H = {h1, . . . , hn} ∪ Hf ∪ Hg1 ∪ · · · ∪ Hgm
, together with the

internal hosts of the modules.
– The initial contents of the hosts are

(0, . . . , 0, nf
1 , . . . , nf

pf
, ng1

1 , . . . , ng1
pg1

, . . . , ngm

1 , . . . , ngm
pgm

)

together with the initial contents of the internal hosts of the modules.
– The input hosts are {h1, . . . , hn}.
– The output host is hf

out.
– The instructions are If ∪ Ig1 ∪ · · · ∪ Igm

∪ {halt}, together with the individ-
ualized instructions of the modules.

– The initial instruction is the in instruction of the first module.
– The functioning of the Virus Machine is given by the following sequence of

concatenated modules, which determines the graphs DH ,DI and GC :
1. First we simulate the introduction of the input into the input hosts of

Πg1 . Recall that the module ADD(h1, h2) does not change the content of
host h1.

ADD(h1, h
g1
1 ) → · · · → ADD(hn, hg1

n ) →
2. We do the same for the machines Πg2 , . . . , Πgm

.

→ ADD(h1, h
g2
1 ) → · · · → ADD(hn, hg2

n ) →
...

→ ADD(h1, h
gm

1 ) → · · · → ADD(hn, hgm
n ) →

3. Now we can simulate the functions g1, . . . , gm over the received input.

→ Πg1 → . . . → Πgm
→

4. Finally, we introduce the outputs of the previous simulations as input for
Πf , simulate f and finish the execution.

→ ADD(hg1
out, h

f
1 ) → · · · → ADD(hgm

out, h
f
m) → Πf → halt

4.5 Primitive Recursion of Functions

We show now how the primitive recursion of functions can be simulated by Virus
Machines with input working in the computing mode.



Definition 6. Let f : Nm → N and g : Nm+2 → N. Then, the function obtained
by primitive recursion from f and g, denoted Rec(f ; g), is a partial function
from N

m+1 to N defined as follows:

Rec(f ; g)(x1, . . . , xm, xm+1) =

{
f(x1, . . . , xm), if xm+1 = 0
g(x1, . . . , xm, xm+1, y), otherwise

where y = Rec(f ; g)(x1, . . . , xm, xm+1 − 1)

for each (x1, . . . , xm, xm+1) ∈ N
m+1.

Let Πf and Πg be Virus Machines with input, computing the functions f
and g, respectively. Let us suppose that for each function x ∈ {f, g} the elements
of the virus machine Πx are the following:

– The hosts are Hx = {hx
1 , . . . , h

x
px

}.
– The initial contents of the hosts are (nx

1 , . . . , nx
px

).
– The input hosts are hf

1 , . . . , hf
m and hg

1, . . . , h
g
m+2.

– The output host is hx
out.

– The instructions are Ix = {ix1 , . . . , ixqx
}.

– The initial instruction is ixstart.
– The functioning of the Virus Machine is determined by the directed graphs

DHx
, DIx

and the bipartite graph GCx
.

Then, the function Rec(f ; g) can be computed by the following Virus Machine
with input ΠRec(f ;g):

– The hosts are H = {h1, . . . , hm+1, h
′, hone, hout, h

′
out}∪Hf ∪Hg, together with

the internal hosts of the modules.
– The initial contents of the hosts are 0, . . . , 0, 0, 1, 0, 0, nf

1 , . . . , nf
pf

, ng
1, . . . , n

g
pg

,
together with the initial contents of the internal hosts of the modules.

– The input hosts are {h1, . . . , hm+1}.
– The output host is hout.
– The instructions are If ∪Ig ∪{halt}, together with the individualized instruc-

tions of the modules.
– The initial instruction is the in instruction of the first module.
– The functioning of the Virus Machine is given by the following sequence of

concatenated modules, which determines the graphs DH ,DI and GC :
1. Observe that to compute the function Rec(f ; g) we have to repeatedly

compute the function g as many times as indicated by the (m + 1)-th
argument, except for the first time in which the function f has to be
computed instead.

2. First we simulate the introduction of the input for the function f into the
input hosts of Πf .

ADD(h1, h
f
1 ) → · · · → ADD(hm, hf

m) →



3. We now simulate the function f over its input and copy the result to hout

and h′
out. This is because if we are done, then the result has to be in hout,

but if we are not done, we must pass this result as the last argument to
g. However, hout is required to have out-degree zero, so we take the result
from h′

out instead.

→ Πf → COPY(hf
out, hout) → COPY(hf

out, h
′
out) →

4. We check if we are done, in which case stop the execution.

→AREEQUAL?(hm+1, h
′)

yes→ halt

↓ no

5. If we are not done, one computation of g has to be simulated. For that, the
(m+1)-th argument of g is updated by adding 1 to it and the appropriate
input is introduced into the input hosts of Πg. The input for the last
argument is the result of the previous computation, that we will ensure
is always within host h′

out.

no→ ADD(hone, h
′) → ADD(h1, h

g
1) → · · · → ADD(hm, hg

m) →
ADD(h′, hg

m+1) → ADD(h′
out, h

g
m+2) →

6. We simulate the function g and copy the result to both hosts hout and
h′
out. Before continuing to step 4, the machine Πg has to be restarted to

its initial state, so that it can be used to simulate again the function g, if
necessary.

→ Πg → COPY(hg
out, hout) → COPY(hg

out, h
′
out) →

RESTART(Πg) → back to step 4

4.6 Unbounded Minimization of Functions

We show now how the unbounded minimization of functions can be simulated
by Virus Machines with input working in the computing mode.

Definition 7. Let f : Nm+1 → N. Then, the function obtained by unbounded
minimization from f , denoted Min(f), is a partial function from N

m to N defined
as follows:

Min(f)(x1, . . . , xm) =

{
yx1,...,xm

, if it exists
undefined, otherwise

where

yx1,...,xm
= min{y ∈ N | ∀z < y

(
f is defined over (x1, . . . , xm, z)

) ∧
f(x1, . . . , xm, y) = 0}

for each (x1, . . . , xm) ∈ N
m.



Let Πf be a Virus Machine with input, computing the function f . Let us
suppose that the elements of the Virus Machine Πf are the following:

– The hosts are Hf = {hf
1 , . . . , hf

pf
}.

– The initial contents of the hosts are nf
1 , . . . , nf

pf
.

– The input hosts are hf
1 , . . . , hf

m+1.
– The output host is hf

out.
– The instructions are If = {if1 , . . . , ifqf

}.
– The initial instruction is ifstart.
– The functioning of the Virus Machine is determined by the directed graphs

DHf
, DIf

and the bipartite graph GCf
.

Then, the function Min(f) can be computed by the following Virus Machine
with input ΠMin(f):

– The hosts are H = {h1, . . . , hm, hm+1, hone, hout} ∪ Hf , together with the
internal hosts of the modules.

– The initial contents of the hosts are 0, . . . , 0, 0, 1, 0, nf
1 , . . . , nf

pf
, together with

the initial contents of the internal hosts of the modules.
– The input hosts are {h1, . . . , hm}.
– The output host is hout.
– The instructions are If ∪{halt}, together with the individualized instructions

of the modules.
– The initial instruction is the in instruction of the first module.
– The functioning of the Virus Machine is given by the following sequence of

concatenated modules, which determines the graphs DH ,DI and GC :
1. Observe that to compute the function Min(f) we have to repeatedly

compute the function f until we obtain a zero result.
2. First we simulate the introduction of the input for the function f into the

input hosts of Πf .

ADD(h1, h
f
1 ) → · · · → ADD(hm+1, h

f
m+1) →

3. We now simulate the function f over its input and check if the result is
or not zero.

→ Πf →ISZERO?(hf
out)

yes→
↓ no

4. In the case that the result obtained is zero, we copy the last argument to
the output host and stop the execution.

yes→ COPY(hm+1, hout) → halt

5. Otherwise, we add one to the last argument, restart the machine Πf so
that it can be used again to simulate f , and go back to step 2.

no→ ADD(hone, hm+1) → RESTART(Πf ) → back to step 2



4.7 Main Result

Taking into account that the class of partial recursive functions coincides with
the least class that contains the basic functions and is closed under composition,
primitive recursion and unbounded minimization (see [2]), it is guaranteed that
it is possible to construct virus machines that compute any partial recursive
function. Then, we have the following result.

Theorem 1. The family NV M(∗, ∗, ∗) equals to the family of all the recursively
enumerable sets of natural numbers.

5 Conclusions and Future Work

Virus Machines are a bio-inspired computational paradigm based on the trans-
missions and replications of viruses [1]. The computational completeness of Virus
Machines having no restriction on the number of hosts, the number of instruc-
tions and the number of viruses contained in any host along any computation
has been established by simulating register machines. However, when an upper
bound on the number of viruses present in any host during a computation is set,
the computational power of these systems decreases; in fact, a characterization
of semi-linear sets of numbers is obtained [1].

The semantics of the model makes it easy to construct specific Virus Machines
by assembling small components that carry out a part of the task to be solved.
It is then convenient to develop a library of modules solving common problems
such as comparisons or arithmetic operations between contents of hosts.

In this paper, Virus Machines able to compute partial functions on natural
numbers are introduced. The universality of non-restricted Virus Machines is
then proved by showing that they can compute all partial recursive functions.

In [5] Virus Machines working in the generating mode are considered, and it
is shown how they can generate any diophantine set, providing, via the MRDP
theorem, another proof of the universality of this model of computation. What
is interesting is that the structure of the design of these systems has served
as inspiration to defined a parallel variant of Virus Machines having several
independent instruction transfer networks. It could be interesting to explore
other means of introducing parallelism, such as considering more than one type
of viruses or allowing more than one virus to be transmitted when a channel is
opened.

To study the computational efficiency of this model of computation, for exam-
ple to analyze if the parallel variants of Virus Machines represent an improvement
over the sequential one, a computational complexity theory is required. This way,
the resources needed to solve (hard) problems can be rigorously measured.

Acknowledgments. This work was supported by Project TIN2012-37434 of the Min-
isterio de Economı́a y Competitividad of Spain, cofinanced by FEDER funds.



References

1. Chen, X., Valencia-Cabrera, L., Pérez-Jiménez, M.J., Wang, B., Zeng, X.: Comput-
ing with viruses. Int. J. Bioinspired Comput. (2015, submitted)

2. Cohen, D.E.: Computability and Logic. Ellis Horwood, Chichester (1987)
3. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: An Introduction to Algorithms. The

MIT Press, Cambridge, Massachussets (1994)
4. Dimmock, N.J., Easton, A.J., Leppard, K.: Introduction to Modern Virology. Black-

well Publishing, Malden (USA) (2007)
5. Romero-Jiménez, Á., Valencia-Cabrera, L., Pérez-Jiménez, M.J.: Sequential and

parallel generation of diophantine sets by virus machines. J. Comput. Theor.
Nanosci. (2015, submitted)

6. Rozenberg, G., Bäck, T., Kok, J.N.: Handbook of Natural Computing, 1st edn.
Springer, Heidelberg (2012)


	Computing Partial Recursive Functions by Virus Machines
	1 Introduction
	2 Preliminaries
	2.1 Sets and Functions
	2.2 Graphs

	3 Virus Machines
	3.1 Virus Machines as Function Computing Devices

	4 The Universality of Non-restricted Virus Machines
	4.1 Computing Partial Recursive Functions by Virus Machines
	4.2 Modules
	4.3 Basic or Initial Functions
	4.4 Composition of Functions
	4.5 Primitive Recursion of Functions
	4.6 Unbounded Minimization of Functions
	4.7 Main Result

	5 Conclusions and Future Work
	References


