
Looking for Simple Common Schemes to Design
Recognizer P Systems with Active Membranes

That Solve Numerical Decision Problems

Carmen Graciani-Dı́az and Agust́ın Riscos-Núñez

Dpto. Ciencias de la Computación e Inteligencia Artificial
{cgdiaz, ariscosn}@us.es

Abstract. Earlier solutions to decision problems by means of P systems
used many counter objects to control the synchronization of different
stages in a computation (usually as many counters as the stage must
last in the worst case). In this paper we propose a way to replace those
counters with some spacial objects for each stage. Furthermore, following
the ideas presented in [1], in order to have a common scheme to attack
numerical problems, all instances of a problem with the same size are
solved by the same P system (which depends on the size) given an input
which describes the corresponding instance of the problem. We illustrate
these ideas with a cellular solution to the Subset-Sum problem.

1 Preliminaries

Since the introduction of P systems [3] a great amount of contributions in that
field has been reported. In particular, many papers are devoted to solving deci-
sion or numerical NP–complete problems in polynomial time. In order to deal
with such kind of problems, an exponential size workspace is generated (in the
number of objects and the number of membranes). In this paper we deal with
decision problems in the framework of P systems.

We recall that a decision problem, X, is a pair (IX , θX) such that IX is a
language over a finite alphabet whose elements are called instances and θX is
a boolean function over IX . For an instance u of the problem X, if θX(u) = 1
(resp. θX(u) = 0) the answer of the problem for that instance is Yes (resp. No).

In the general definition, P systems are non-deterministic. Therefore they
do not seem to be a suitable tool to solve a decision problem. For that reason
a condition that restricts, in a certain way, the non-determinism is demanded.
More specifically, we will work with confluent systems (all computations with
the same initial configuration produce the same answer).

When working with P systems with external output, the user can ignore the
inner processes and take only into account the objects that the system expels to
the environment. To know when a computation halts, it is demanded that some
halting indicator is sent to the environment exactly in the last step.

These restrictions make more difficult the design of such systems. Earlier
approaches in this area used counter objects to control the synchronization of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/190375344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

different stages in a computation. This kind of solutions need, therefore, extra
objects and steps that are not necessary to obtain an answer but to control the
procedure of obtaining it.

In this paper we want to show how this control can be obtained with only a
few objects.

Furthermore, earlier solutions to NP-complete problems in polynomial time
used to design one P system that solves one instance of the problem; therefore
the system could not be used to solve any other instance of the problem, even if
it was of the same size (see [8,2]). The introduction of P systems with input [6]
gave rise to the design of families of systems, each of them able to solve all the
instances of the problem of a given size.

Another goal of this paper is to present a solution of Subset-Sum problem
with schemes of rules more uniform that depend only in the cardinality of the set.

The present work is a continuation of [4] and [1]. For this reason we have
chosen the same problem and P system model: Subset-Sum problem and recog-
nizer P systems with active membranes, respectively. The solution to Subset-Sum
problem will illustrate also how the given schemes can be adapted for the new
approach.

1.1 P Systems with Active Membranes

For a detailed description of a P system, Π = (Γ , H, µΠ , M1, . . . , Mp, R), with
active membranes, we refer the reader to [2] and [7]. In what follows we briefly
describe the rules of the model that will be used in next sections.

(a) [l a → v]αl (evolution rules), where a ∈ Γ , v ∈ Γ ∗, α ∈ {+,−, 0}, l ∈ H.
Substitutes an object a by a multiset of objects v in a membrane with label
l and charge α.

(b) [l a]αl → b [l]βl (communication rules), where a, b ∈ Γ , α, β ∈ {+,−, 0}
and l ∈ H. Sends out (to its father) an object a from a membrane with label
l and charge α transformed into the object b. In addition, the charge of the
membrane changes to β.

(c) a [l]αl → [l b]βl (communication rules), where a, b ∈ Γ , α, β ∈ {+,−, 0}
and l ∈ H. An object a enters in a membrane with label l and charge α
(from its father) transformed into the object b. In addition, the charge of
the membrane changes to β.

(d) [l a]αl → [l b]βl [l c]γl (division rules), where a, b, c ∈ Γ , α, β, γ ∈ {+,−, 0}
and l ∈ H. An object a divides a membrane with label l and charge α into
two membranes with the same label and charges β and γ. In each of the new
membranes the object a changes into objects b and c, respectively. This rule
can only be applied to elementary membranes and never to the skin.

Rules of type (a) are applied as usual in the framework of P systems, that is,
in a maximally parallel way. However, only one rule among the remaining types
(b)–(d) can be applied to a membrane. The application of the rules is supposed
to occur simultaneously (if division must take place in a membrane consider that
the objects present in that membrane evolve previously). For a precise definition
we refer the reader to [2] and [7].

1.2 P Systems with Input

A variant of P systems arises when considering the possibility of admitting ex-
ternal information before a computation starts.

A P system of degree p with input is a tuple (Π, Σ, iΠ) where:

– Π is a P system of degree p.
– Σ is an input alphabet strictly contained in the work alphabet, Γ .
– All the initial multisets are over the alphabet Γ − Σ.
– iΠ is a label that distinguishes the input membrane.

In a P system of degree p, with initial multisets M1, . . . , Mp, given a multiset
of objects m over the input alphabet, the initial configuration with input m is
the tuple (µΠ , M1, . . . , MiΠ ∪ m, . . . , Mp). Let us denote by IΠ the set of all
the possible input multisets.

1.3 P Systems with External Output

In this variant the environment collects the output of the computations, instead
of an inner membrane.

There will be some special objects called halting indicators. A P system
with external output is valid if no computation sends any halting indicator
to the environment except in the last step. And that must only occurs if the
computation is a halting one.

1.4 Language Recognizer P Systems

A language recognizer P system is a P system with input and external output
such that the working alphabet contains two halting indicators yes and no. A
language recognizer P system is valid and all its computations halt. If the object
is yes (resp. no) we say that the computation is an accepting (resp. rejecting)
one.

We say that {Πn}n∈N is a family of language recognizer P systems that
solves, in polynomial time, a decision problem (IX , θX) if it verifies the following
properties:

– All the P systems in the family are language recognizers.
– There exists a deterministic Turing machine that constructs each member

of the family, Πn, from n in polynomial time.
– There exists a polynomial encoding for the set of instances, IX , into the fam-

ily of P systems, Π (that is, a pair of polynomial time computable functions
(cod, s) where cod: IX → ⋃

n∈N
IΠn

and s: IX → N verifying cod(u) ∈ IΠs(u)

for all u ∈ IX) such that:

• A polynomial function, p, exists so that for each u ∈ IX all the com-
putations of the system Πs(u) with input cod(u) halt at most in p(|u|)
steps.

• For each u ∈ IX , if there exists an accepting computation in the system
Πs(u) with input cod(u), then θX(u) = 1. It is said then that the family
is sound.

• For each u ∈ IX , if θX(u) = 1, then every computation in the system
Πs(u) with input cod(u) is an accepting one. It is said then that the
family is complete.

The resolution of an instance u ∈ IX by a family of P systems Π consist of two
stages: during the first one (usually called pre-computation stage) we calculate
s(u), cod(u) and Πs(u); during the second stage the P system Πs(u) with input
cod(u) carries out its computation.

2 A Solution to the Subset-Sum Problem

We illustrate the previous discussion with a solution to Subset-Sum problem
that can be stated as follows:

Given a finite set A = {a1, . . . , an}, a weight function ω: A → N such that
ω(ai) = ωi for i = 1, . . . , n, and a constant k ∈ N, determine whether
or not there exists a subset D ⊆ A such that ω(D) = k.

The proposed solution is based on the one given at [4], and is divided into
several stages:

– Generation stage: Elementary membrane divisions are carried out until ob-
taining a membrane associated with each subset of A.

– Calculating stage: In each membrane the weight of the associated subset is
calculated. This stage will take place in parallel with the previous one.

– Checking stage: In each membrane it is verified if the weight of the associated
subset is equal to the constant k. This stage begins in each membrane after
the previous ones are over.

– Output stage: When the previous stage has been completed in all mem-
branes, the system sends the corresponding answer to the environment and
the computation halts.

For each n ∈ N (the cardinality of set A = {a1, . . . , an}) a P system with
active membranes, input and external output is defined as follows: (Πn, Σn, iΠn

)
where Πn = (Γn, H, µΠ , Ms, Me,n, Mr, Rn), P system of degree.

– Working alphabet: Γn = {xi | 0 ≤ i ≤ n} ∪ {#, yes, no, no, q, q0, q1, q2,
q3, c, g, g, d , f0, f, f+, b, b, x0, b0, b0, z, z0, z+, z, h0, h1, h1, p, t}.

– Set of labels: H = {s, e, r}.
– Membrane structure: µΠ = [s [e]e [r]r]s.
– Initial multisets: Ms = no, Me,n = g f0 dn z0 and Mr = h1.
– Set of rules: Rn that consists of the following rules:

(a) [e f0]0e → [e q]−e [e f]+e [e z0 → z]0e [e z+ → z0]0e
[e f+]0e → [e f0]0e [e f]+e [e z0 →]+e [e z+]+e → z [e]+e
[e f → f+]+e [e d]+e → # [e]0e [e z → z+]+e

The goal of these rules is the generation of one membrane for each subset of
A. When an object f0 is present in a neutrally charged membrane we pick
a new element from A for its associated subset (summing its weight to the
previous ones) and then divide the membrane. In the membranes where q
appears no further objects will be added, and the charge of the membrane
changes in order to activate the checking stage. The multiplicity of object d
controls the number of divisions that must take place. The object z evolves
in order to remain only in the last generated membrane, collaborating to
control the beginning of the output stage.

(b) [e xi → xi−1]+e 1 ≤ i ≤ n
[e x0 → x0]0e [e x0 → b0]0e [e x0 →]+e
In the beginning, objects xi, 1 ≤ i ≤ n, are introduced encoding the weights
of the corresponding elements of A. When the generation stage ends, the
multiplicity of object b0 will encode the weight of the subset associated with
the membrane.

(c) [e q → q0]−e [e b0 → b0]−e [e b → b]−e
These rules mark the beginning of the checking stage in a membrane. Now,
the multiplicity of object b0 encode the weight of the corresponding subset
of A and the multiplicity of object b encode the value of the constant k.
[e g]−e → g [e]−e
Object g will be used to mark the beginning of the output stage.

(d) [e b0]−e → # [e]+e [e b]+e → # [e]−e
We compare the number of occurrences of objects b0 and b sending them
out alternatively.
[e q0 → q1]−e [e q1 → q0]+e [e q1 → q2 c]−e
[e c]−e → # [e]+e [e q2 → q3]+e
Objects qi and c control if both objects have been actually sent out or not
(if there is an excess or lack of any of them).
[e q3]+e → yes [e]0e [e q3]−e → # [e]0e [e q0]+e → # [e]0e
These rules deal with the different checking results.

(e) [s z → z z]0s z [r]0r → [r z]0r [r z → p]0r
Object z controls the beginning of a process in membrane r that will trigger
the output stage. When z appears in membrane s 2n objects g are present
in it.
[s z]0s → # [s]+s [s g → g]+s g [e]0e → [e g]+e
When a membrane ends its checking stage it admits one object g.

(f) g [r]+r → [r g]−r [r h1 → h0]+r [r h0 → h1]−r
[r p]−r → p [r]0r [r g]0r → g [r]−r p [r]−r → [r p]+r
[r h0]+r → t [r]+r [r h1 → h1]+r
We will use membrane r to detect when all objects g have been admitted in
a membrane e. That will mean that the checking stage has finished in all
membranes and then, the output stage is triggered.

(g) [s t]+s → # [s]−s [s yes]−s → yes [s]0s
[s no → no]−s [s no]−s → no [s]0s
The presence of object t in membrane s activates the answering process. If
there is any object yes then it must be sent out. Otherwise, an object no
goes out.

(h) Also, some cleaning can be done during the process.
[e xi →]−e 1 ≤ i ≤ n [e z →]−e [e d →]−e
[e b →]0e [e b0 →]0e

– Input alphabet: Σn = {b} ∪ {xi | 1 ≤ i ≤ n}.
– Input membrane: iΠ = e.

So we have defined a family of P systems {Πn}n∈N. Each of the members of
the family, Πn, solves all the instances of the Subset-Sum problem for a finite
set A with cardinality n. Each instance will be determined by the values of the
weight function, ωi for i = 1, . . . , n, and the value of the constant k. The set
of possible input multisets is IΠn

= {bk xω1
1 . . . xωn

n | k, ω1, . . . , ωn ∈ N}. As we
can see, all the members of the family can be constructed by a Turing machine
in polynomial time from n.

Let us consider IX = {(n, (ω1, . . . , ωn), k) | n, ω1, . . . , ωn, k ∈ N} (all the
instances of the Subset-Sum problem). The pair of functions (cod, s) defined by
cod(n, (ω1, . . . , ωn), k) = bk xω1

1 . . . xωn
n and s(n, (ω1, . . . , ωn), k) = n is a

polynomial encoding of IX into {Πn}n∈N.
The following data gives us an idea of Πn complexity:

– Size of the working alphabet: n + 31 ∈ O(n).
– Number of membranes: 3 ∈ O(1).
– |Ms| + |Me,n| + |Mr| = n + 5 ∈ O(n).
– Input size: k + ω(A)
– Number of rules: 2n + 48
– Number of computation steps needed in the worst case: 3n + 2 min(k, ω(A))

+ 19

In what follows we will prove that the systems of the family are recognizer
P systems that solve the Subset-Sum problem in linear time; that is, that the
family is sound, complete, and polynomially bounded.

3 Formal Verification

Proposition 1. Consider k, n ∈ N and a weight function ω:A → N such that
ω(ai) = ωi for i = 1, . . . , n. For any l ∈ N and i, 1 ≤ i ≤ n, if l is the weight of
a subset D ⊆ {a1, . . . , ai−1}, then from a membrane of the following form [e bk

g f+ dn−i bl
0 xωi

0 · · · xωn
n−i]0e we obtain the set of membranes

{[e bk q0 bl′
0]−e | where l′ is the weight of D ∪ D’ for ∅ �= D’ ⊆ {ai, . . . , an}}

They will be called relevant membranes.
The last membrane of this set will be generated after 3(n−i+1) steps. During

the process 2n−i+1 − 1 objects g will appear in membrane s.
Moreover, we also obtain the following set of membranes:

{[e bk g f+ bl′
0]+e | l′ = ω(D ∪ D’) for D’ ⊆ {ai, . . . , an}}

These membranes will be called irrelevant and the last one will be generated after
3(n − i + 1) steps.

If an abject z+ is present in the considered membrane, then it will only re-
main, as an object z, in the last generated irrelevant membrane.

Proof: By decreasing induction on i, starting from i = n.
Figure 1 shows the evolution of a membrane [e bk g f+ bl

0 xωn
0]0e where l

is the weight of D ⊆ {a1, . . . , an−1}. The branching represents new generated
membranes obtained by division.

Fig. 1. Case i = n

In node (1) we can see that the relevant membrane [e bk q0 bl+ωn
0]−e (where

l + ωn = ω(D ∪ {an})) is obtained after 3 = 3(n − n + 1) steps. Besides, in the
last step 1 = 2n−n+1 − 1 object g has been sent to membrane s.

In (2) the irrelevant membrane [e bk g f+ bl+ωn
0]+e (where l+ωn is the weight

of D ∪ {an}) is obtained after 3 = 3(n − n + 1) steps.
In (3) we have obtained the irrelevant membrane [e bk g f+ bl

0]+e , after 2
steps (l is the weight of D = D ∪ ∅).

Moreover, Figure 1 shows (underlined) the evolution of an object z+ when
it is present in the initial membrane and we can see that it only remains, as an
object z, in the last obtained irrelevant membrane.

Thus, the proposition holds for i = n.
Induction step: i + 1 → i
The evolution of [e bk g f+ dn−i bl

0 xωi
0 · · · xωn

n−i]0e where l is the weight of a
subset D ⊆ {a1, . . . , ai−1} is shown in Figure 2.

In (1) the relevant membrane [e bk q0 bl+ωi
0]−e is obtained. In it l + ωi is the

weight of D ∪ {ai}. In the last step one object g appears in membrane s.
In (2), a membrane [e bk g f+ dn−(i+1) bl+ωi

0 x
ωi+1
0 · · · xωn

n−(i+1)]0e , in which l

is the weight of D ∪ {ai} ⊆ {a1, . . . , ai}, is obtained.
By induction hypothesis, from this membrane we obtain the set of membranes

{[e bk q0 bl′
0]−e | l′ = ω((D ∪ {ai}) ∪ D’) for ∅ �= D’ ⊆ {ai+1, . . . , an}}. The

last member of this set will be generated after 3(n− i) + 3 = 3(n− i + 1) steps.
During this process 2n−i − 1 objects g will appear in membrane s.

In addition, the set of irrelevant membranes {[e bk g f+ bl′
0]+e | l′ is the weight

of (D ∪ {ai}) ∪ D’ for D’ ⊆ {ai+1, . . . , an}} is obtained. The last member of
this set will be generated after 3(n − i) + 3 = 3(n − i + 1) steps.

In (3), a membrane [e bk g f+ dn−(i+1) bl
0 x

ωi+1
0 · · · xωn

n−(i+1)]0e in which l is
the weight of D is obtained.

By induction hypothesis, from this membrane the set of relevant membranes
{[e bk q0 bl′

0]−e | l′ = ω(D ∪ D’) for ∅ �= D’ ⊆ {ai+1, . . . , an}} is generated. The

Fig. 2. Induction step i + 1 → i

last member of this set will be generated after 3(n − i) + 2 = 3(n − i + 1) − 1
steps and during the process 2n−i−1 objects g will appear in membrane s. From
(3), it is also generated the set of irrelevant membranes {[e bk g f+ bl′

0]+e | l′ is
the weight of D ∪ D’ for D’ ⊆ {ai+1, . . . , an}}. The last member of this set will
be generated after 3(n − i) + 3 = 3(n − i + 1) steps.

Thus, from a membrane [e bk g f+ dn−i bl
0 xωi

0 · · · xωn
n−i]0e we will obtain the

set of relevant membranes {[e bk q0 bl′
0]−e | l′ is the weight of D ∪ D’ for a subset

∅ �= D’ ⊆ {ai, . . . , an}} (the last member after 3(n − i + 1) steps). During the
process 2(2n−i − 1) + 1 = 2n−i+1 − 1 objects g appear in membrane s.

Besides, we obtain the set of irrelevant membranes {[e bk g f+ bl′
0]+e | l′ is

the weight of D ∪ D’ for D’ ⊆ {ai, . . . , an}} (the last member after 3(n− i + 1)
steps).

Finally, if an object z+ is present in the initial membrane (underlined in
Figure 2) it only appears in (2), then by induction hypothesis it will only remain,
as an object z, in the last generated irrelevant membrane. �

Theorem 2. Given k, n ∈ N and a weight function ω:A → N, ω(ai) = ωi for
i = 1, . . . , n from a membrane of the form [e bk g f0 dn xω1

1 · · · xωn
n z0]0e the set

of relevant membranes {[e bk q0 bl
0]−e | l = ω(D) for D ⊆ A} is obtained (last

one after 3n + 2 steps). During the process 2n objects g appear in membrane s.
The set of irrelevant membranes {[e bk g f+ bl

0]+e | l = ω(D) for D ⊆ A} is
also obtained (the last of them after 3n + 2 steps). The object z0 will evolve to
an object z that will only remain in the last generated irrelevant membrane.

Proof:
Figure 3 shows the evolution of [e bk g f0 dn xω1

1 · · · xωn
n z0]0e .

In (1) the relevant membrane [e bk q0]−e is obtained and during the process
an object g appears in membrane s.

Fig. 3. Evolution scheme

In (2) we have [e bk g f+ dn−1 xω1
0 · · · xωn

n−1]0e , case i = 1 and l = 0 of
proposition 1, and from it we will obtain the set {[e bk q0 bl

0]−e | l = ω(D) for
∅ �= D ⊆ A} of relevant membranes (the last one after 3(n− 1 + 1) + 2 = 3n + 2
steps) and 2n−1+1 − 1 = 2n − 1 objects g in membrane s.

Moreover, from (2) (by Proposition 1) we will also obtain the set of irrelevant
membranes {[e bk g f+ bl

0]+e | l = ω(D) for D ⊆ A} (the last one after 3(n− 1+
1) + 2 = 3n + 2 steps.

Finally, as an object z+ appears in (2), from the evolution of z0 (again by
Proposition 1) it will only remain as an object z in the last generated irrelevant
membrane. �

Let us see now, given 0 ≤ m ≤ min(k, l), the evolution of a relevant membrane
of the form: [e q0 bk−m bl−m

0]−e

(a) Case: m = k, m = l
[e q0]−e ⇒ [e q1]−e ⇒ [e q2 c]−e ⇒ # [e q2]+e ⇒ [e q3]+e ⇒ yes [e]0e

(b) Case: m < k, m = l
[e q0 bk−m]−e ⇒ [e q1 bk−m]−e ⇒ [e q2 c bk−m]−e ⇒ # [e q2 bk−m]+e ⇒
[e q3 bk−(m+1)]−e ⇒ # [e bk−(m+1)]0e (objects b will be consumed in the
following step).

(c) Case: m = k, m < l

[e q0 bl−m
0]−e ⇒ # [e q1 b

l−(m+1)
0]+e ⇒ [e q0 b

l−(m+1)
0]+e ⇒

[e b
l−(m+1)
0]0e (objects b0 will be consumed in the following step).

(d) Case: m < k, m < l

[e q0 bk−m bl−m
0]−e ⇒ # [e q1 bk−m b

l−(m+1)
0]+e ⇒

[e q0 bk−(m+1) b
l−(m+1)
0]−e (that will continue evolving as shown)

Beginning with m = 0, pairs of objects b0 and b are sent out (case (d)) until
both of them are finished (case (a)) or a lack of any of them is detected (cases
(b) and (c)).

At the end, the membrane will be neutrally charged and ready to admit one
object g, after that it will remain inactive.

The only irrelevant membrane that continues evolving is the one with an
object z+ that will be sent out (so this object will appear in membrane s after
the last object g has also appeared).

Object z in membrane s will activate the evolution of membrane r:
z [r h1]0r ⇒ z z [r h1]0r ⇒ [r h1 z]+r (also an object z is sent out membrane

s changing its charge to positive) ⇒ [r h1 p]+r (in membrane s each object g
evolves to an object g).

In membrane r begins now a process to detect if there is any object g in
membrane s (remember that 2n relevant membranes are at the checking stage
and that when they finish they will admit one object g). Figure 4 shows a scheme
of the process.

When this process finishes an object t has appeared in membrane s and two
cases can take place: there is an object yes in membrane s or there is not.

(a) [s t yes no]+s ⇒ [s yes no]−s ⇒ yes [s no]0s
(b) [s t no]+s ⇒ [s no]−s ⇒ [s no]−s ⇒ no [s]0s

in the skin?

h0 p g

h1 p

h1 g

r

+

r

−

r r

−

r

+

r

+

0

h0 p p

Is there any
symbol g

h1

t

yes

p

p

no

Fig. 4. Checking the existence of objects g in the skin

4 Conclusions

In this paper we have presented a family of recognizer P systems solving the
Subset-Sum problem. Given a “size”, n, member Πn of the family solves all the
instances of the SubsetSum problem for a finite set A with cardinal n. Each
instance is determined by the value of k and the values of the weight function,
ωi for i = 1, . . . , n.

This solution is more uniform than the one presented in [4], as the con-
struction of the family only depends on n, the cardinality of A, and not on the
parameter k.

On the other hand, we remark that the rules that control the generation,
checking, and output stages depend neither on n nor on k. Only the number
of rules that handle objects xi (corresponding to the different elements of A) is
determined by n.

Another interesting point is that the number of computation steps, in the
cases where ω(A) < k, is smaller than in the solution given in [4].

This solution has also been adapted to other numerical NP-complete pro-
blems as the Knapsack or the Partition problems. Moreover, different approaches

and skeleton designs to solve those problems have been studied. For example, in
order to obtain 2n membranes (each of them representing a subset of A) there
is another solution that only generates those membranes (in the solution given
in this paper, another 2n irrelevant membranes are also generated).

Those results allow us to be optimistic about describing a “language” for the
design of P systems to solve relevant numerical problems and, why not, other
kinds of problems.

Another issue related to the present paper is the computer simulation of P
systems. An implementation in silico (in CLIPS) for P systems with active mem-
branes has been developed by the Research Group on Natural Computing from
the University of Seville [5]. This simulation has helped us to debug some errors
in the formal design and verification of P systems, and a feedback process also
exists, as running simulations of already verified P systems can detect possible
bugs in the implementation.

The CLIPS code of the simulator, some instructions of use and some examples
(including the problem presented in this paper) are available on the Web at
http://www.gcn.us.es.

References

1. M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and A. Ricos-Nún̈ez. Towards a pro-
gramming language in cellular computing. Electronic Notes in Theoretical Comm-
puter Science, 123(1):93–110, 2005.

2. Gh. Păun. Membrane Computing: An Introduction. Springer-Verlag, Berlin, 2002.
3. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,

61(1):108–143, 2000. and Turku Center for Computer Science-TUCS Report No 208.
4. M. J. Pérez-Jiménez and A. Riscos-Nún̈ez. Solving the subset-sum problem by

p systems with active membranes. New Generation Computing, Springer–Verlag,
Tokyo, to appear.

5. M. J. Pérez-Jiménez and F. J. Romero-Campero. A CLIPS simulator for recognizer p
systems with active membranes. In Gh. Păun, A. Riscos-Nún̈ez, A. Romero-Jiménez,
and F. Sancho-Caparrini, editors, Proceedings of the Second Brainstorming Week on
Membrane Computing, RGNC Report (01/04), pages 387–413, 2004.

6. M. J. Pérez-Jiménez, Á. Romero-Jiménez, and F. Sancho-Caparrini. Complex-
ity classes in models of cellular computing with membranes. Natural Computing,
2(3):265–285, September 2003.

7. A. Riscos-Nún̈ez. Programación celular: resolución eficiente de problemas numéricos
NP-completos. PhD thesis, University of Seville, 2004.

8. C. Zandron. A Model for Molecular Computing: Membrane Systems. PhD thesis,
Universit degli Studi di Milano, 2001.

http://www.gcn.us.es

	Preliminaries
	P Systems with Active Membranes
	P Systems with Input
	P Systems with External Output
	Language Recognizer P Systems

	A Solution to the Subset-Sum Problem
	Formal Verification
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

