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1. Introduction

It is well-known that breakup is a major reaction channel in reactions
induced by weakly-bound nuclei. The analysis of breakup experiments has
provided important structure information on these nuclei, such as spectro-
scopic factors, separation energies, positions and widths of resonances, and
electric responses to the continuum, among others (see, e.g. [1]).

For a two-body projectile, the process can be schematically represented
as a+A→ b+x+A, where a is the projectile nucleus, b and x its constituents,
and A the target. When the final state of the three outgoing fragments is
fully determined, the reaction is said to be exclusive. If, in addition, the
three particles are emitted in their ground state, the corresponding cross
section is referred to as elastic breakup (EBU).
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A qualitatively different scenario occurs when the final state of one or
more particles is not determined (i.e., measured). Using the notation intro-
duced above, this is the case of reactions of the form of A(a, b)X, in which
only one of the two projectile constituents (the fragment b in this case) is
observed. In this case, the reaction is said to be inclusive with respect to
the unobserved particle(s). The angular/energy distribution of these b frag-
ments will contain contributions from all possible final states of the x + A
system, namely:

(i) The elastic breakup process introduced above, i.e., a+A→ b+x+Ags.

(ii) Inelastic breakup (INBU), in which the breakup is accompanied by the
excitation of some of the fragments. This includes target excitations
(a+A→ b+x+A∗) as well as core excitations (a+A→ b∗+x+Ags).

(iii) Particle transfer, leading to bound states of the A + x ≡ B system,
i.e. a+A→ b+B.

(iv) Incomplete fusion (ICF), in which the fragment x is absorbed by the
target, forming a compound nucleus C, which will eventually decay by
particle or gamma-ray emission: a+A→ b+ C.

(v) Complete fusion (CF) followed by evaporation. If b is among the evap-
oration products, it will also contribute to the inclusive b yield.

As an example, we illustrate in Fig. 1 these different breakup modes for
a 11Be+A process, assuming that 11Be breaks into 10Be+n.

Following some authors [2], we will refer generically to the processes
(ii)–(iv) as non-elastic breakup (NEB). Note that the processes (i), (ii) and
(iii) correspond to direct reaction modes, whereas (v) is a purely compound
nucleus mode. Process (iv) can be considered as a hybrid mode comprising
a direct breakup mechanism (the dissociation of the projectile) followed by
the formation of the compound nucleus (i.e., fusion) C = A+ x.

From the theoretical point of view, breakup reactions are difficult to de-
scribe because they involve three or more particles in the final state. In
fact, theoretical models are usually tailored to specific types of breakup.
In the following, we describe some recent advances in reaction theory for
the description of the breakup modes listed above. We focus the discussion
on the direct (or hybrid) modes (i)–(iv). Although the calculation of to-
tal CF cross sections can be performed with the direct reaction formalisms
discussed here, the detailed calculation of these observables (for example,
energy distribution of evaporation products) requires the use of statistical
models, which will not be discussed here.
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Fig. 1. Two-body breakup modes for the 11Be+A reaction.

2. Exclusive breakup

Most of the existing theoretical models are designed to describe exclu-
sive breakup reactions. For two-body projectiles, these models usually as-
sume an effective three-body scattering problem with some effective pair-
wise interactions adjusted to reproduce the properties of the correspond-
ing two-body systems. These reactions have been usually described us-
ing the distorted-wave Born approximation (DWBA) [3] or the continuum-
discretized coupled-channels (CDCC) method [4]. At high energies, semi-
classical methods provide a simpler and popular alternative [5–8]. More
recently, it has been also possible to obtain the exact solution of this prob-
lem by solving the so-called Faddeev equations [9].

2.1. Elastic breakup

Assuming a two-body projectile, the elastic breakup process can be de-
noted as a+A→ b+x+Ags. Theoretical models for elastic breakup assume
a Hamiltonian of the form

H = Hproj + T̂R + UbA(rbA) + UxA(rxA) , (1)

with Hproj = T̂r + Vbx the projectile internal Hamiltonian, T̂r and T̂R are
kinetic energy operators, Vbx the intercluster interaction and UbA and UxA
are the fragment-target optical potentials evaluated at the corresponding
incident energy per nucleon.
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The procedure to solve the scattering problem varies from one method to
another. For instance, in CDCC, the three-body wave function of the system
is expanded in terms of the eigenstates of Hproj, including both bound and
unbound states. To make the expansion finite, the continuum spectrum is
first approximated by a discrete representation in terms of square-integrable
functions (continuum discretization).

The CDCC method was originally proposed by Rawitscher [10] to de-
scribe the effect of breakup in deuteron scattering. The method was re-
fined and applied to other weakly-bound projectiles (such as 6,7Li) by the
Pittsburgh–Kyushu Collaboration [4, 11] and, more recently, it has been ex-
tensively applied to halo nuclei, composed by a core (b) and a weakly bound
valence nucleon (x) (such as 8B and 11Be).

Despite its success, several limitations are apparent in this formulation.
First, the projectile fragments b and x are considered as structureless bodies.
This is a good approximation for deuteron scattering, but not necessarily
for more complex systems, like 11Be (treated as 10Be+n). Second, target
excitations, which may occur simultaneously with projectile breakup, are
also ignored. Third, for some nuclei, the two-body structure model will not
be accurate and may require more sophisticated descriptions. This is the
case of the Borromean systems, genuine three-body systems in which the
binary sub-systems are unbound, for which a three-body structure model
will be required.

In the remainder, we discuss some recent works and developments aimed
at understanding and overcoming several of these limitations.

2.2. Inclusion of fragments collective excitations

Excitations of the projectile constituents (b and x in our case) may take
place concomitant with the projectile breakup. This mechanism is neglected
in the standard formulation of the CDCC method. For example, for the scat-
tering of halo nuclei, collective excitations of the core b may be important.
These core excitations will affect both the structure of the projectile as well
as the reaction dynamics. In the inert core picture, the projectile states will
correspond to pure single-particle or cluster states but, if the core is allowed
to excite, these states will contain, in general, admixtures of core-excited
components. Additionally, the interaction of the core with the target will
produce excitations and de-excitations of the former during the collision,
and this will modify the reaction observables to some extent. These two ef-
fects (structure and dynamic effects) have been recently investigated within
extended versions of the DWBA and CDCC methods [12–15]. To this end,
the following effective three-body Hamiltonian has been used

H = Hproj(r, ξb) + T̂R + UbA(rbA, ξb) + UxA(rxA) . (2)
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Note that the core degrees of freedom (ξb) appear in the projectile Hamil-
tonian (structure effect) as well as in the core-target interaction (dynamic
effect). In the weak coupling limit, the projectile Hamiltonian can be written
more explicitly as

Hproj = T̂r + Vbx(r, ξb) + hcore(ξb) , (3)

where hcore(ξb) is the internal Hamiltonian of the core. The eigenstates of
this Hamiltonian are of the form

Φi,JM (ξ) ≡
∑
α

[ϕα(r)⊗ ΦI(ξb)]JM , (4)

where i is an index labeling the states with angular momentum J,M , ξ ≡
{ξb, r}, α ≡ {`, s, j, I}, with I the core intrinsic spin, ~j = ~̀+ ~s and ~J =
~j+ ~I. The functions ΦI(ξb) and ϕα(r) describe, respectively, the core states
and the valence–core relative motion. For continuum states, a procedure of
continuum discretization is used.

Once the projectile states (4) have been calculated, the three-body wave
function is written as an expansion in terms of these states, as in the standard
CDCC method. Calculations using this extended CDCC method (XCDCC)
were first performed by Summers et al. [14, 16] for 11Be and 17C on 9Be and
11Be+p. These calculations predicted very little core excitation effect in all
the cases analyzed by the authors.

Later on, an extended DWBA (XDWBA) method with core excitation
was proposed in Refs. [12, 13]. Contrary to the XCDCC results of [14, 16], the
application of this XDWBA method to the 11Be+p reaction suggested that
the dynamic core excitation mechanism enhances significantly the breakup
cross sections. The discrepancy between the XCDCC and XDWBA calcu-
lations was found to be due to an inconsistency in the numerical implemen-
tation of the XCDCC formalism presented in Ref. [14], as clarified in [17].

The XDWBA results were ratified by a new implementation of the
XCDCC method developed by De Diego et al. [15]. Moreover, this work
provided calculations for 11Be on 64Zn and 208Pb showing that, for these
heavier targets, the dynamic core excitation mechanism is small but the
effect of core excitation on the projectile structure is still important.

As an example of these XCDCC calculations, we show in Fig. 2 the dif-
ferential breakup cross section, as a function of the n–10Be relative energy,
for the reaction 11Be+p at 63.7 MeV/nucleon. The calculations use the
same structure model and potentials as those employed in Ref. [15]. Con-
tinuum states with angular momentum/parity J = 1/2±, 3/2± and 5/2+

were included using a pseudostate representation, that is, diagonalizing the
projectile Hamiltonian (Hproj) in a basis of square-integrable functions. For
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Fig. 2. (Color on-line) Differential breakup cross sections, with respect to the
n-10Be relative energy, for the breakup of 11Be on protons at 63.7 MeV/nucleon.

that, a transformed harmonic oscillator (THO) basis was employed [18]. To
get a smooth function of the energy, the calculated differential cross sec-
tions were then convoluted with the true scattering states of Hproj. The two
peaks correspond to the 5/2+ and 3/2+ resonances which, in the assumed
structure model, appear at Erel = 1.2 and 3.2 MeV, respectively. The solid
line is the full XCDCC calculation, including the 10Be deformation in the
structure of the projectile as well as dynamic excitations. The dashed line
is the XCDCC calculation omitting the effect of the dynamic core excita-
tion mechanism. It is clearly seen that the inclusion of this mechanism
increases significantly the breakup cross sections, particularly in the region
of the 3/2+ resonance, owing to the dominant 10Be(2+)⊗2s1/2 configuration
of this resonance [12, 13, 18].

In addition to the enhancement of the breakup cross sections, XDWBA
calculations performed for the 11Be+12C reaction evidenced that the inter-
play between the single-particle and dynamic core excitation mechanisms
produces a distinctive effect on the interference pattern of the resonant
breakup angular distributions [19].

Similarly to the case of the projectile constituents, collective excitations
of the target may also take place, and compete with the projectile breakup
mechanism. The explicit inclusion of target excitation was first done by the
Kyushu group in the 1980s [11], and applied to deuteron scattering. The
motivation was to compare the roles of target-excitation process with those of
the deuteron breakup process in elastic and inelastic scattering of deuterons.
In this way, they could study the relative importance and mutual influence of
these two mechanisms. They applied the formalism to the d+58Ni reaction
at Ed = 22 and 80 MeV, including the ground state and the first excited
state of 58Ni(2+), finding that, in this case, the deuteron breakup process is
more important than the target-excitation. Except for a few exceptions [20],
the problem seems to have received little attention since then.
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2.3. Application to (p, pN) reactions

Breakup experiments of the form a(p, pn)b and a(p, 2p)b were used ex-
tensively in the 1970s as a tool to extract spectroscopic information on
proton-hole and neutron-hole states in nuclei, such as separation energies,
spin-parity assignments, and occupation probabilities. In these reactions,
an energetic proton beam (E > 100 MeV) collides with a stable target nu-
cleus, removing one or more nucleons, and leaving a residual nucleus (b),
either in its ground state, or in an excited state. Recently, the technique has
been extended to the study of unstable nuclei, using inverse kinematics, i.e.,
bombarding a hydrogen target with an energetic radioactive beam. This
technique is analogous to the knockout experiments with composite targets
used extensively in the past years [21–24].

Theoretical analyses of the (p, pN) reactions with stable nuclei have
been traditionally performed using the distorted-wave impulse approxima-
tion (DWIA) [25, 26], in which one assumes that the binding potential of the
removed particle can be neglected in comparison with the projectile–target
kinetic energy. At sufficiently high energies (several hundreds of MeV per
nucleon) this approximation is expected to be well-justified but, for not so
high energies (tens of MeV per nucleon), the impulse approximation may be
questionable.

In recent years, there have been some attempts to apply the CDCC
formalism to these reactions [27, 28], treating the process as an inelastic-like
mechanism of the form a + p → (b + N) + p and using an expansion of
the three-body final wave function in terms of b + N states. However, due
to the relatively large angular momentum and energy transfer involved in
the process, this expansion converges very slowly with the size of the model
space. A recently proposed alternative [29] is to expand the three-body
scattering wave function in terms of p+N states. In this case, the reaction
can be viewed as a transfer-like process of the form p + a → b + (p + N),
leading to unbound p+N states, thus receiving the name of transfer to the
continuum method.

In inverse-kinematics experiments, measured observables usually corre-
spond to parallel or longitudinal momentum distributions of the residual
nucleus b. The shapes of these momentum distributions are very sensitive
to the orbital angular momentum of the struck nucleon. Moreover, their
magnitude is proportional to the occupation probability of the orbital from
which this nucleon has been removed (spectroscopic factor). Therefore, the
comparison of the measured distributions with a suitable reaction framework
provide useful spectroscopic information.
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As an example, we show in Fig. 3 the momentum distributions of the 22O
core, resulting from the 23O(p,pn) reaction at 445 MeV/nucleon (quoted from
Ref. [29]), calculated with the transfer to the continuum method, for different
single-particle configurations of the removed nucleon. The dependence on
this configuration is clearly evidenced.
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Fig. 3. (Color online) Transverse (a) and longitudinal (b) momentum distri-
butions for the 22O residual nucleus from the one-neutron removal of 23O at
445 MeV/nucleon. Solid, dashed and dotted lines correspond to the removal from
2s1/2, 1d5/2, and 1p1/2 configurations in 23O, respectively, assuming in all cases
unit spectroscopic factor.

3. Evaluation of inclusive breakup cross sections
Whereas the calculation of EBU can be accurately done within the

CDCC method and other approaches, the calculation of NEB is more diffi-
cult because it involves the sum over all possible states of the x+A system.
In the 1980s, several groups found that the explicit sum over these final
states could be avoided making use of formal techniques based on the com-
pleteness of the x+A final states and the Feshbach projection formalism. For
instance, in the pioneering works by Baur and co-workes [30–32], the sum
was performed making use of unitarity and a surface approximation of the
form factors of the residual nucleus excited states. Later on, Udagawa and
Tamura [33, 34] proposed a prior-form formula, whereas Austern and Vin-
cent [35] gave a formally similar post-form expression. The latter model was
refined by Kasano and Ichimura [36], who found a formal separation between
the EBU and NEB contributions. These results were carefully reviewed by
Ichimura, Austern and Vincent [2] and the model was subsequently referred
to as the IAV formalism. Later on, Austern et al. reformulated this theory
within a more complete three-body model [4]. Although the final expression
differs from one theory to another, it is interesting that in all these works
the non-elastic breakup cross section is calculated as some expectation value
of the imaginary part of the x+A optical potential.
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We consider here the expression obtained by IAV, in which the double
differential cross section for the NEB with respect to the angle and energy
of the b fragments is given by

d2σ

dEbdΩb

∣∣∣∣
NEB

= − 2

~vi
ρb(Eb)

〈
ψ(0)
x (kb)

∣∣∣Wx

∣∣∣ψ(0)
x (kb)

〉
, (5)

where ρb(Eb) = kbµb/((2π)
3~2) is the density of states for the particle b,

Wx is the imaginary part of the optical potential describing x + A elastic
scattering and ψ(0)

x (kb, rx) is a wave function describing the evolution of x
after the projectile dissociation when b scatters with momentum kb and the
target remains in the ground state. This function satisfies the following
inhomogeneous differential equation(

E+
x −Kx − UxA

)
ψ(0)
x (kb, rx) =

(
χ
(−)
b (kb)

∣∣∣Vpost ∣∣∣Ψ3b
〉
, (6)

where the round bracket denotes integration over rb only, Ex = E − Eb,
χ
(−)
b is the distorted-wave describing the scattering of b in the final channel

with respect to the x+A system, and Vpost ≡ Vbx + UbA − Ub (with Ub the
optical potential in the final channel) is the post-form transition operator.
This equation is to be solved with outgoing boundary conditions.

IAV suggest approximating the three-body wave function appearing in
the source term of Eq. (6), Ψ3b, by the CDCC one. Since the CDCC wave
function is also a complicated object by itself, a simpler choice is to use the
DWBA approximation, i.e., ψ3b

x ≈ χ
(+)
a (R)φbx(r), where χ

(+)
a is a distorted

wave describing a+A elastic scattering and φbx is the projectile ground state
wave function.

The IAV model has been recently revisited by several groups [37–39].
The calculations performed so far by these groups make use of the DWBA
approximation for the incoming wave function. In Refs. [38, 39], the theory
was applied to deuteron induced reactions of the form of A(d, p)X, whereas
in Ref. [37] the calculations were extended to 6Li induced reactions of the
form of A(6Li,α)X. In general, the agreement with the data has been found
to be very promising, and several extensions and improvements are under
way.

As an application of the IAV model, we show in Fig. 4 (left panel) the
angular distribution of α particles produced in the 6Li+208Pb breakup reac-
tion. The dashed and dot-dashed lines are the EBU and NEB contributions
computed, respectively, with the CDCC and IAV DWBA models. The solid
line is the sum of both contributions which, except for some slight overes-
timation, reproduces rather well the data from Signorini et al. [40]. In this
case, the NEB is seen to dominate the inclusive breakup cross sections. It is
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worth noting, nevertheless, that the relative importance of EBU and NEB
may largely depend on the system and on the energy. For example, in re-
actions induced by halo nuclei on heavy targets at near-barrier energies the
inclusive breakup cross section is, in general, dominated by the EBU mech-
anism [41, 42]. This is a consequence of the long-range Coulomb couplings
arising from the strong polarizability of the projectile, which favor distant
breakup and suppress the absorption of the unobserved particle (the halo
neutron(s) in this case). As an example, we show in the right panel of
Fig. 4 the angular distribution of 9Li fragments produced in the reaction
11Li+208Pb, measured in Ref. [43]. The solid line is the EBU contribution,
calculated with CDCC. It is seen that, unlike the 6Li case, the EBU mecha-
nism dominates the inclusive breakup cross section, whereas other channels
are expected to play a minor role. For example, the dashed line is the
two-neutron transfer contribution, which is found to contribute only at the
largest angles (adapted from Ref. [42]).
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Fig. 4. Comparison of 6Li+208Pb and 11Li+208Pb breakup cross sections.
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