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Abstract

In this article, a stochastic version of a SIR nonautonomous model previously introduced
in [11] is considered. The noise considered is a fractional Brownian motion which satisfies
the property of long range memory, which roughly implies that the decay of stochastic
dependence with respect to the past is only subexponentially slow, what makes this kind
of noise a realistic choice for problems with long memory in the applied sciences. The
stochastic model containing a standard Brownian motion has been studied in [5].

In this paper we analyse the existence and uniqueness of solutions to our stochastic
model as well as their positiveness.

Keywords: SIR model, epidemiology, fractional Brownian motion.

1 Introduction

The analysis of several biological models containing nonautonomous or stochastic perturbations
has been intensively investigated over the last years (see, for instance, [6], [7], [8] and the refer-
ences therein). In the nondeterministic case, most used strategies consist in considering stochastic
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or random perturbations. These approaches require different techniques and also provide differ-
ent kind of results. Also, several types of noise can be considered in the models and each of them
allows to highlight some properties which are inherent in the real phenomena.

In this paper we will consider a stochastic perturbation of the following deterministic SIR
model: 

Ṡ(t, ω) = q − aS(t) + bI(t)− γ S(t)I(t)
N(t)

,

İ(t, ω) = −(a+ b+ c)I(t) + γ S(t)I(t)
N(t)

,

Ṙ(t, ω) = cI(t)− aR(t),

(1.1)

where q, a, b, c, γ are nonnegative constants (see [4] for more details about the model and the
previously mentioned constants). In [11] the authors analyse a nonautonomous version of (1.1)
(see also [10]), in fact they consider the case in which the per capita infection rate varies in time.
This can be modeled by introducing a forcing term which can be either time dependent (see [11])
or random.

In [5], the authors consider a case in which the forcing term is nondeterministic and can
be modeled in two different ways: first, one of the parameters is a random coefficient and they
study the problem in the framework of Random Dynamical Systems, and second, they consider a
stochastic perturbation of system (1.1) by using a standard Wiener process or Brownian motion.

However, in the current paper we will consider a different stochastic perturbation. Instead
of a standard Brownian motion we will use a fractional Brownian motion (fBm) BH with Hurst
parameters H ∈ (1/2, 1). In probability theory, an fBm is a centered Gaussian process with a
special covariance function determined by the Hurst parameter H ∈ (0, 1). For H = 1/2, B1/2 is
the standard Brownian motion where its generalised temporal derivative is the white noise. For
H 6= 1/2, BH is not a semi-martingale and, as a consequence, classical techniques of Stochastic
Analysis are not applicable. Moreover, it is not a Markov process. In particular, an fBm with a
Hurst parameter H ∈ (1/2, 1) possesses a property of long range memory, which roughly implies
that the decay of stochastic dependence with respect to the past is only subexponentially slow,
what makes this kind of noise a realistic choice for problems with long memory in the applied
sciences, and this is why this kind of noise is being used now very often.

In this paper, we will assume that one of the parameters in (1.1) is affected by some pertur-
bation driven by an fBm BH . For simplicity and clarity, we only assume that one parameters is
affected by the noise, although all of them could experience the same effect. In this way, we will
change parameter a by a − σḂH (see below for more details about fBm), consequently, we will
consider 

Ṡ(t, ω) = q − aS(t) + bI(t)− γ S(t)I(t)
N(t)

+ σS(t)ḂH
t ,

İ(t, ω) = −(a+ b+ c)I(t) + γ S(t)I(t)
N(t)

+ σI(t)ḂH
t ,

Ṙ(t, ω) = cI(t)− aR(t) + σR(t)ḂH
t .

(1.2)

First we will analyse the existence and uniqueness of solutions to the this model. Next, we
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will prove that the biological relevant solutions are always in the positive octant, in other words,
that any solution starting in the positive octant will remain there forever. Due to the nature of
the stochastic perturbation, the axial equilibrium (q/a, 0, 0) is not longer an equilibrium for the
stochastic system, so it does not make sense to analyse its stability properties.

The structure of this paper is as follows. In Section 2 we recall some preliminary results about
fractional Brownian motions and other auxiliary results which will be necessary for our study.
Section 3 is devoted to the analysis of the existence and uniqueness of solutions to our stochastic
SIR model, while the positiveness of those solutions is proved in Section 4. Some conclusions
and open research directions will be included in Section 5.

2 Preliminaries

In this section we recall some notations and necessary concepts for our objectives (see [3]). Let
us start by considering two given values T1 < T2. Let Cβ([T1, T2],R3) be the Banach space of
Hölder continuous functions with exponent 0 < β < 1 with values in R3, and norm

‖u‖β,ρ,T1,T2 = ‖u‖∞,ρ,T1,T2 + |||u|||β,ρ,T1,T2
,

where ρ ≥ 0 and

‖u‖∞,ρ,T1,T2 = sup
s∈[T1,T2]

e−ρ(s−T1)‖u(s)‖

|||u|||β,ρ,T1,T2
= sup

T1≤s<t≤T2

e−ρ(t−T1)‖u(t)− u(s)‖
(t− s)β

.

For ρ > 0 and ρ = 0 the corresponding norms are equivalent. We will suppress the index ρ
in these notations if ρ = 0, and we will suppress T1, T2 when T1 = 0 and T2 = 1.

In order to define integrals with Hölder–continuous integrators, we next define Weyl fractional
derivatives of functions on separable Hilbert spaces (see [14]).

Definition 2.1. Let V1 and V2 be separable Hilbert spaces and let 0 < α < 1. The Weyl
fractional derivatives of general measurable functions Z : [s, t]→ V1 and ω : [s, t]→ V2, of order
α and 1− α respectively, are defined for s < r < t by

Dα
s+Z[r] =

1

Γ(1− α)

(
Z(r)

(r − s)α
+ α

∫ r

s

Z(r)− Z(q)

(r − q)1+α
dq

)
∈ V1,

D1−α
t− ωt−[r] =

(−1)α

Γ(α)

(
ω(r)− ω(t−)

(t− r)1−α + (1− α)

∫ t

r

ω(r)− ω(q)

(q − r)2−α dq

)
∈ V2,

where
ωt−(r) = ω(r)− ω(t−),

and ω(t−) is the left side limit of ω at t.
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The next result shows that Weyl fractional derivatives are well–posed for Hölder–continuous
functions with suitable Hölder exponents. The proof follows easily and therefore we omit it.

Lemma 2.1. Suppose that Z ∈ Cβ([T1, T2];V1) and ω ∈ Cβ′
([T1, T2];V2), T1 ≤ s < t ≤ T2 and

that 0 < α < β and α + β′ > 1. Then Dα
s+Z and D1−α

t− ωt− are well defined.

Let us assume for a while that V1 = V2 = R. Following Zähle [15] we can define the fractional
integral given by ∫ t

s

Zdω = (−1)α
∫ t

s

Dα
s+Z[r]D1−α

t− ωt−[r]dr.

We collect some properties of these integrals, for the proof see [9] and [15].

Lemma 2.2. Let Z, Z1, Z2 ∈ Cβ([T1, T2]; R), ω, ω1, ω2 ∈ Cβ′
([T1, T2]; R) such that β′ > 1 − β.

Then there exists a constant Cβ,β′ such that for T1 ≤ s < t ≤ T2∣∣∣∣ ∫ t

s

Zdω

∣∣∣∣ ≤ Cβ,β′(1 + (t− s)β)(t− s)β′‖Z‖β,T1,T2 |||ω|||β′,T1,T2
.

In addition, ∫ t

s

(Z1 + Z2)dω =

∫ t

s

Z1dω +

∫ t

s

Z2dω∫ t

s

Zd(ω1 + ω2) =

∫ t

s

Zdω1 +

∫ t

s

Zdω2.

The integral is additive: for τ ∈ [s, t]∫ t

s

Zdω =

∫ τ

s

Zdω +

∫ t

τ

Zdω.

Let (ωn)n∈N be a sequence converging in Cβ′
([T1, T2]; R) to ω. Then we have

lim
n→∞

∥∥∥∥∫ ·
T1

Zdωn −
∫ ·
T1

Zdω

∥∥∥∥
β,T1,T2

= 0.

We now extend the definition of a fractional integral in R to a fractional integral in the
separable Hilbert space R3, following the construction carried out recently in [9] in a general
separable Hilbert–space. To do that, consider the separable Hilbert space L2(R3) of Hilbert–
Schmidt operators from R3 into R3. Let Z ∈ Cβ([T1, T2];L2(R3)) and ω ∈ Cβ′

([T1, T2]; R3) with
β′ > 1− β. We define the R3-valued integral for T1 ≤ s < t ≤ T2 as∫ t

s

Zdω := (−1)α
3∑
j=1

( 3∑
i=1

∫ t

s

Dα
s+〈ej, Z(·)ei〉[r]D1−α

t− 〈ei, ω(·)〉t−[r]dr

)
ej, (2.1)
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with {e1, e2, e3} is the basis of the space R3.

for 1− β′ < α < β, whose norm fulfills∥∥∥∥∫ t

s

Zdω

∥∥∥∥ ≤ ∫ t

s

‖Dα
s+Z[r]‖L2(`2)‖D1−α

t− ωt−[r]‖dr.

Note that in (2.1) the integrals under the sums are one-dimensional fractional integrals. In
particular, in [9] the following result was proved:

Theorem 2.3. Suppose that Z ∈ Cβ([T1, T2];L2(R3)) and ω ∈ Cβ′
([T1, T2]; R3) where β+β′ > 1.

Then there exists α ∈ (0, 1) such that 1 − β′ < α < β and the integral (2.1) is well defined.
Moreover, all properties of Lemma 2.2 hold if we replace the R–norm by the R3–norm.

We now consider estimates of the integral with respect to the Hölder norms depending on ρ.

Lemma 2.4. Under the assumptions of Theorem 2.3, for β′ > β there exists a constant c
depending on T1, T2, β, β

′ such that for T1 ≤ s < t ≤ T2

e−ρt
∥∥∥∥∫ t

s

Zdω

∥∥∥∥ ≤ ck(ρ)‖Z‖β,ρ,s,t |||ω|||β′,s,t (t− s)β, (2.2)

such that limρ→∞ k(ρ) = 0. Moreover, for any τ ∈ R∫ t

s

Z(r)dω(r) =

∫ t−τ

s−τ
Z(r + τ)dθτω(r). (2.3)

Proof. We only sketch the proof, for more details see [9].
First of all, it is not difficult to see that

‖D1−α
t− ωt−[r]‖ ≤ c |||ω|||β′,s,t (t− r)α+β′−1. (2.4)

Furthermore, since Z ∈ Cβ([T1, T2];L2(R3)),

e−ρt‖Dα
s+Z[r]‖L2(`2) ≤ ce−ρ(t−r)

(
e−ρr
‖Z(r)‖L2(`2)

(r − s)α
+

∫ r

s

e−ρr
‖Z(r)− Z(q)‖L2(`2)

(r − q)1+α
dq

)
≤ ce−ρ(t−r)‖Z‖β,ρ,s,t((r − s)−α + (r − s)β−α)

≤ ce−ρ(t−r)(1 + (r − s)β)‖Z‖β,ρ,s,t(r − s)−α.

Therefore,

e−ρt
∥∥∥∥∫ t

s

Zdω

∥∥∥∥ ≤ c |||ω|||β′,s,t ‖Z‖β,ρ,s,t
∫ t

s

e−ρ(t−r)(t− r)α+β′−1(r − s)−αdr

≤ c |||ω|||β′,s,t ‖Z‖β,ρ,s,t(t− s)
β

∫ t

s

e−ρ(t−r)(t− r)α+β′−β−1(r − s)−αdr

≤ ck(ρ) |||ω|||β′,s,t ‖Z‖β,ρ,s,t(t− s)
β,
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where

k(ρ) = sup
s<t∈[0,T ]

∫ t

s

e−ρ(t−r)(t− r)α+β′−β−1(r − s)−αdr

is such that limρ→∞ k(ρ) = 0. The previous property can be stated in general as follows: given
T > 0, if a, b > −1 are such that a+ b+ 1 > 0, then

k(ρ) := sup
s<t∈[0,T ]

∫ t

s

e−ρ(t−r)(r − s)a(t− r)bdr, (2.5)

is such that limρ→∞ k(ρ) = 0, see [9].

From now on k(ρ) will denote a function with the above behavior no matter the exact values
of the corresponding parameters a, b > −1 provided that a+ b+ 1 > 0.Moreover, note that the
above constraints imply that β′ > 1/2.

As a particular case of Hölder–continuous integrator we are going to consider a fractional
Brownian motion (fBm) with values in R3 with Hurst–parameterH > 1/2. Consider a probability
space (Ω,F ,P). Let (BH

i )i∈Z be an iid-sequence of fBm with the same Hurst–parameter H > 1/2
over this probability space, that is, each BH

i is a centered Gauß-process on R with covariance

R(s, t) =
1

2
(|s|2H + |t|2H − |t− s|2H) for s, t ∈ R.

Let Q be a linear operator on R3 such that Qei = σ2
i ei, σ = (σi)i=1,2,3. Hence Q is a non–negative

and symmetric operator of trace class. A continuous R3-valued fBm BH with covariance operator
Q and Hurst parameter H is defined by

BH(t) =
3∑
i=1

(σiB
H
i (t))ei (2.6)

having covariance

RQ(s, t) =
1

2
Q(|s|2H + |t|2H − |t− s|2H) for s, t ∈ R.

In fact, since the process BH is a Gauß–process

E
∥∥BH(t)−BH(s)

∥∥2
=
∑
i∈Z

σ2
i E(BH

i (t)−BH
i (s))2 =

∑
i∈Z

σ2
i |t− s|2H = ‖σ‖2|t− s|2H ,

E
∥∥BH(t)−BH(s)

∥∥2n ≤ cn|t− s|2Hn.

Therefore, applying Kunita [12] Theorem 1.4.1, BH(t) has a continuous version and also a
Hölder–continuous version with exponent less than H, see Bauer [2] Chapter 39. Note that
BH(0) = 0 almost surely.
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Let C0(R; R3) be the space of continuous functions on R with values in R3 which are zero at
zero, equipped with the compact open topology. Then let (C0(R; R3),B(C0(R; R3)),PH) be the
canonical space for fBm, i.e. BH(ω)(t) = ω(t), where PH denotes the measure of the fBm with
Hurst–parameter H. On C0(R; R3) we can introduce the Wiener shift θ given by the measurable
flow

θ : (R× C0(R,R3),B(R)⊗ B(C0(R,R3)))→ (C0(R,R3),B(C0(R,R3)))

such that
θ(t, ω)(·) =: θtω(·) = ω(·+ t)− ω(t). (2.7)

By Mishura [13] we have that θt leaves PH invariant. In addition t→ θtω is continuous.

Furthermore, thanks to Bauer [2] Chapter 39, we can also conclude that the set Cβ′

0 (R; R3) of
continuous functions which have a finite β′–Hölder-seminorm on any compact interval and which
are zero at zero has PH-measure one for β′ < H, is θ-invariant.

3 Existence and uniqueness

In order to prove the result on the existence and uniqueness of solutions to our model, we
will first observe that we can rewrite it in an abstract form as the following SIR epidemic model

du(t) = [Au(t) + F (u(t))]dt+ σ0(t)u(t)dBH(t) (3.1)

where A is an operator (matrix) which generates a uniformly continuous semigroup SA(t) := e−tA,
and A is given by

A =

 −a b 0
0 −(a+ b+ c) 0
0 c −a

 ,

and the other terms are given by

F (u) =


q − γu1u2

u1 + u2 + u3

γu1u2

u1 + u2 + u3

0

 , σ0(t) = σ.

We emphasize that the relevant domain for our analysis is the positive octant R3
+ = {(x1, x2, x3) ∈

R3 : xi ≥ 0, i = 1, 2, 3}, and in this region the function F is globally Lipschitz. Consequently,
we will proceed with a general Lipschitz function F with Lipschitz constant LF , instead of our
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particular case, and in this way we will be covering other interesting examples in our more
abstract formulation. Also we will consider a more general time variable coefficient σ0(·) (but
bounded, say, by a constant σ) instead of the constant σ in our problem.

Lemma 3.1. The uniformly continuous semigroup SA(·) is exponentially stable, that is,

‖ SA ‖ ≤ e−at, for t ≥ 0. (3.2)

In addition, for 0 ≤ s < t

‖ SA(t)− SA(s) ‖ ≤ ‖ A ‖ (t− s)e−as, (3.3)

‖ SA(t− s)− id ‖ ≤ ‖ A ‖ (t− s). (3.4)

The proof of the first property is a direct consequence of the energy inequality, while the two
last estimates follow easily by the mean value theorem.

It is also straightforward to see that the matrix A is diagonalizable and there exist two
matrices P and D such that

A = PDP−1

with

D =

 −a 0 0
0 −a 0
0 0 −(a+ b+ c)


and

P =

 1 0 b
b+c

0 0 1
0 1 c

b+c


Then, SA(t) = etA = PetDP−1 and it is easy to check again that

‖ SA ‖ ≤‖ PetDP−1 ‖≤ e−at

As straightforward consequences, we also obtain that for 0 < s < t,

‖ SA(t− .) ‖β,0,T= sup
0≤r1<r2≤T

‖ SA(t− r2)− SA(t− r1) ‖
(r2 − r1)β

≤‖ A ‖ t1−β (3.5)

and

‖ SA(t− .) − SA(s− .) ‖β,0,T

= sup
0≤r1<r2≤T

‖ (SA(t− s)− id)(SA(s− r2)− SA(s− r1)) ‖
(r2 − r1)β

≤ ‖ A ‖2 (t− s)s1−β.
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Theorem 3.2. Equation (3.1) has a unique solution u ∈ Cβ([0, T ]); R3).

Proof. We will show that the operator

Xu0,ω(u)[t] = SA(t)u0 +
∫ t

0
SA(t− r)F (u(r))dr +

∫ t
0
SA(t− r)σ0(r)u(r)dω(r),

where t ∈ [0, T ], possesses a unique fixed point in Cβ([0, T ]; R3) by applying the Banach fixed
point theorem. To this end, first of all we show that there exists a closed centered ball with
respect to the norm ‖.‖β,ρ,0,T which is mapped by Xu0,ω into itself. For the first term, in virtue
of (3) we obtain

‖SA(.)u0‖β,ρ,0,T ≤ (1 + ‖A‖T 1−β)‖u0‖.

For the Lebesgue integral of Xu0,ω we obtain

‖
∫ .

0

SA(.− r)F (u(r))dr‖β,ρ,0,T ≤ sup
t∈[0,T ]

e−ρt‖
∫ t

0

SA(t− r)F (u(r))dr‖

+ sup
0≤s<t≤T

e−ρt
‖
∫ t
s
SA(t− r)F (u(r))dr‖

(t− s)β

+ sup
0≤s<t≤T

e−ρt
‖
∫ s

0
(SA(t− r)− SA(t− r))F (u(r))dr‖

(t− s)β

For the first term, we have

sup
t∈[0,T ]

e−ρt‖
∫ t

0

SA(t− r)F (u(r))dr‖ ≤ sup
t∈[0,T ]

∫ t

0

e−ρ(t−r)dr‖F (u(.))‖∞,ρ,0,T

≤ 1

ρ
‖F (u(.))‖∞,ρ,0,T .

For the second,

sup
0≤s<t≤T

e−ρt
‖
∫ t
s
SA(t− r)F (u(r))dr‖

(t− s)β
≤ sup

0≤s<t≤T

∫ t
s
e−ρ(t−r)dr

(t− s)β
‖F (u(.))‖∞,ρ,0,T

≤
( 1

ρ1−β
1− e−ρ(t−s)

ρβ(t− s)β
)
‖F (u(.))‖∞,ρ,0,T

≤
( 1

ρ1−β sup
x>0

1− e−x

xβ

)
‖F (u(.))‖∞,ρ,0,T

≤
(
cβ

1

ρ1−β

)
‖F (u(.))‖∞,ρ,0,T .
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And for the third,

sup
0≤s<t≤T

e−ρt
‖
∫ s

0
(SA(t− r)− SA(t− r))F (u(r))dr‖

(t− s)β

= sup
0≤s<t≤T

e−ρt
‖
∫ s

0
((SA(t− s)− Id)SA(t− r))F (u(r))dr‖

(t− s)β

≤ sup
0≤s<t≤T

e−ρt‖
∫ s

0

(SA(t− r))F (u(r))dr‖‖A‖(t− s)(1−β)

≤ sup
0≤s<t≤T

‖
∫ s

0

e−ρ(t−r)dr‖‖F (u(r))‖‖A‖(t− s)1−β)

≤ 1

ρ
‖F (u(r))‖‖A‖T 1−β.

Then,

‖
∫ .

0

SA(.− r)F (u(r))dr‖β,ρ,0,T ≤
(1

ρ
+ cβ

1

ρ1−β +
1

ρ
T 1−β‖A‖

)
‖F (u(.))‖∞,ρ,0,T

≤ K(ρ)‖F (u(.))‖∞,ρ,0,T

but

‖F (u(.))‖∞,ρ,0,T ≤ sup
0≤t≤T

e−ρt‖F (u0)‖+ e−ρt‖F (u(t))− F (u0)‖

≤ ‖F (u0)‖+ LFT
β‖u‖β,ρ,0,T

hence

‖
∫ .

0

SA(.− r)F (u(r))dr‖β,ρ,0,T ≤ K̂(ρ)(1 + ‖u‖β,ρ,0,T ) (3.6)

On the other hand,

‖
∫ .

0

SA(.− r)σ0(r)u(r)dr‖β,ρ,0,T ≤ σk(ρ)
∣∣∣∣∣∣BH

∣∣∣∣∣∣
β′,0,T

≤ (1 + ‖u(r)‖β,ρ,0,T ), (3.7)

In conclusion, we have obtained

‖Xu0,ω(u)‖β,ρ,0,T ≤ (1 + ‖A‖T 1−β)‖u0‖+K(ρ)(1 + |||ω|||β′,0,T )(1 + ‖u‖β,ρ,0,T )

where limρ→∞K(ρ) = 0. Note that K(ρ) may also depend on the parameters related to F, ‖A‖
and T . Taking a sufficiently large ρ such that K(ρ)(1 + |||ω|||β′,0,T ) ≤ 1

2
, the ball

B = B(0, R(u0, ρ)) = u ∈ Cβ([0, T ]; R3) : ‖u‖β,ρ,0,T ≤ R

with
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R = R(u0, ρ) = 2(1 + ‖A‖T 1−β)‖u0‖+ 1,

is mapped into itself since

‖Xu0,ω(u)‖β,ρ,0,T ≤ (1 + ‖A‖T 1−β)‖u0‖+ 1
2
(1 +R) = R.

We now derive the contraction condition for the operator Xu0,ω(u) with respect to the norm
‖.‖β,ρ,0,T where the ρ̄ may differ from the ρ considered above. However, since all these norms are
equivalent for different ρ ≥ 0, the set B remains a complete space with respect to any ‖.‖β,ρ,0,T .

Similar to above, for the Lebesgue integral we obtain the estimate

‖F (u1(.))− F (u2(.))‖β,ρ̄,0,T ≤ k(ρ̄)LF‖u1 − u2‖β,ρ̄,0,T .

Regarding the stochastic integral, we have

‖σ0(.)u1(.)− σ0(.)u2(.)‖β,ρ̄,0,T ≤ σ‖u1(.)− u2(.)‖β,ρ̄,0,T .

Then,

‖Xu0,ω(u1)−Xu0,ω(u2)‖β,ρ̄,0,T ≤ K(ρ̄)(1 + |||ω|||β′,0,T )(1 + ‖u1‖∞,0,T + ‖u2‖∞,0,T )‖u1 − u2‖∞,ρ̄,0,T ,

where again, limρ̄→∞K(ρ̄) = 0. It suffices then to choose ρ̄ sufficiently large so that

‖Xu0,ω(u1)−Xu0,ω(u2)‖β,ρ̄,0,T ≤ 1
2
‖u1 − u2‖β,ρ̄,0,T ,

which implies the contraction property of the map Xu0,ω. Hence, (3.1) has a unique solution
u ∈ Cβ([0, T ]; R3).

4 Positiveness of the solution

Now we will prove that solutions starting in positive initial data remain positive in the future.
This is crucial to justify the well-posedness of the problem. To this end, we will perform a change
of variable, namely Theorem 2.1 in [1] (see also [15]).

Let us denote by Y 1
t =

∫ t
0
σ0(s)dBH

s and h(t) = G(Y 1
t ) with G(x) = exp(−x)

h(t) = exp(−
∫ t

0

σ0(s)dBH
s )

= exp(−Y (t))

= G(Y 1
t )

= G(0) +

∫ t

0

dG

dx
(Y 1

t )σ0(s)dBH
s

= 1−
∫ t

0

σ0(s)h(s)dBH
s

A = 1− h1(t),

11



and consider u(·), solution of our problem

u(t) = u0 +

∫ t

0

(
Au(s) + F (u(s))

)
ds+

∫ t

0

σ0(s)u(s)dBH
s

= u0 + u1(t) + u2(t).

Then, by denoting Z(t) = h(t)u(t), we deduce

Z(t) = h(t)u(t)

= (1− h1(t))(u0 + u1(t) + u2(t))

= u0 + u1(t) + u2(t)− u0h1(t)− h1(t)u1(t)− h1(t)u2(t)

Now we apply again Theorem 2.1 in [1] by using G(x, y) = xy so that ∂G
∂y

= x and ∂G
∂x

= y

h1(t)u1(t) = G(h1(t), u1(t))

= G(0) +

∫ t

0

∂G

∂y
(h1(s), u1(s))

(
Au(s) + F (u(s))

)
ds

+

∫ t

0

∂G

∂x
(h1(s), u1(s))σ0(s)h(s)dBH

s

=

∫ t

0

h1(s)
(
Au(s) + F (u(s))

)
ds+

∫ t

0

u1(s)σ0(s)h(s)dBH
s

h2(t)u2(t) =

∫ t

0

h1(s)σ0(s)u(s)ds+

∫ t

0

u2(s)σ0(s)h(s)dBH
s

12



Z(t) = u0 + u1(t) + u2(t)− u0h1(t)−
∫ t

0

h1(s)
(
Au(s) + F (u(s))

)
ds

−
∫ t

0

u1(s)σ0(s)h(s)dBH
s −

∫ t

0

h1(s)σ0(s)u(s)dBH
s −

∫ t

0

u2(s)σ0(s)h(s)dBH
s

= u0 + u1(t) + u2(t)− u0h1(t)−
∫ t

0

h1(s)
(
Au(s) + F (u(s))

)
ds

−
∫ t

0

h1(s)σ0(s)u(s)dBH
s −

∫ t

0

(u1(s) + u2(s))σ0(s)h(s)dBH
s

= u0 +

∫ t

0

(
Au(s) + F (u(s))

)
ds+

∫ t

0

σ0(s)u(s)dBH
s − u0h1(t)

−
∫ t

0

h1(s)
(
Au(s) + F (u(s))

)
ds

−
∫ t

0

h1(s)σ0(s)u(s)dBH
s −

∫ t

0

(u1(s) + u2(s))σ0(s)h(s)dBH
s

= u0 +

∫ t

0

(1− h1(s))
(
Au(s) + F (u(s))

)
ds+

∫ t

0

(1− h1(s))σ0(s)u(s)dBH
s

−u0h1(t)−
∫ t

0

(u1(s) + u2(s))σ0(s)h(s)dBH
s

= u0 +

∫ t

0

h(s)
(
Au(s) + F (u(s))

)
ds+

∫ t

0

h(s)σ0(s)u(s)dBH
s

−
∫ t

0

u0σ0(s)h(s)dBH
s −

∫ t

0

(u1(s) + u2(s))σ0(s)h(s)dBH
s

= u0 +

∫ t

0

h(s)
(
Au(s) + F (u(s))

)
ds+

∫ t

0

h(s)σ0(s)u(s)dBH
s

−
∫ t

0

(u0 + u1(s) + u2(s))σ0(s)h(s)dBH
s

= u0 +

∫ t

0

h(s)
(
Au(s) + F (u(s))

)
ds+

∫ t

0

h(s)σ0(s)u(s)dBH
s

−
∫ t

0

u(s)σ0(s)h(s)dBH
s

= u0 +

∫ t

0

(
Au(s) + F (u(s))

)
h(s)ds

= h(0)u0 +

∫ t

0

(
Au(s)h(s) + h(s)F (u(s))

)
ds

= Z0 +

∫ t

0

(
AZ(s) + h(s)F (h−1(s)Z(s))

)
ds,

13



and, therefore, Z is solution to the following differential system:

Z ′ = AZ + h(t)F (h−1(t)Z), (4.1)

with the initial value Z(0) = Z0. And due to the expression that A and F have, it is straightfor-
ward to check that if Z0 ∈ R3

+, the corresponding solution starting in Z0 at time t = 0 remains
always inside R3

+

5 Conclusions

We have analyzed a SIR model which is very much used in Epidemiology, but perturbed by some
noise modeled by a fractional Brownian motion with Hurst parameter H > 1/2. We have proved
the well-posedness of the problem by proving existence and uniqueness of solutions as well as
the positiveness of solutions which, due to the nature of the problem, are the only meaningful
solutions. The analysis carried out in the paper can be considered as the preliminar one in order
to have a more complete study of the model. In a next paper, we plan to analyze the asymptotic
behavior of the model, including the existence of random attractor and its internal structure. As
far as we know, there are not works on this direction and we plan to analyze it shortly.
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