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Abstract

The purpose of the present work is to give a general idea about the existing results and open problems
concerning the study of complexity classes within the membrane computing framework. To this aim,
membrane systems (seen as computing devices) are briefly introduced, providing the basic definition and
summarizing the key ideas, trying to cover the various approaches that are under investigation in this area
– of course, special attention is paid to the study of complexity classes. The paper concludes with some
final remarks that hint the reasons why this field (as well as other unconventional models of computation)
is attracting the attention of a growing community.
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1 Introduction

Natural Computing is an attempt to infer from Nature ideas and/or intuitions that

might yield new paradigms in Computation Theory (or, more generally speaking, in

Information Processing). The earlier examples of this field are Genetic Algorithms

and Neural Networks, and later on also DNA Computing and Membrane Computing

appeared.

Membrane Computing arises as a new model of computation, inspired by the way

that cells are structured into vesicles, and abstracting the chemical reactions taking

place inside them. Since 1998, when the seminal paper [13] was first circulated

through the Internet, the area has experienced a huge development, giving rise

to an extensive literature and drawing the attention of mathematicians, computer

scientists, and biologists, among others.
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At the moment there are multiple approaches that are being subject to investiga-

tion, studying e.g. the universality (computational power) of membrane computing

models, their efficiency (from a computational complexity point of view), or their

potential usefulness for modeling biological phenomena.

Interested readers are referred to the monograph [14] for a complete “handbook”

on the area. Another basic reference is the P systems web page (visit [21]), where

a comprehensive and up-to-date bibliography can be found, as well as information

about related conferences and events, etc.

2 Membrane Computing Preliminaries

Membrane Computing field was originated in the paper [13], where Gheorghe Păun

presents a computational device called super-cell system (from now on referred to as

membrane system or P system), consisting basically of a hierarchical arrangement

of regions or membranes (called a membrane structure) within which are located

multisets of objects that evolve according to some rules that are applied in a maximal

parallel way. More precisely, let us recall the generic syntax of the model:

Definition 2.1 A P system of degree p ≥ 1 is a tuple

Π = (Γ, μ, w1, . . . , wp, R, i0),

where:

• Γ is a finite alphabet (known as working alphabet).

• μ is a membrane structure, composed by p membranes labelled in a one-to-one

manner using the natural numbers from 1 to p (in some cases, one can include

explicitly an alphabet of labels).

• wl (for every 1 ≤ l ≤ p) is a finite multiset over Γ, eventually empty, associated

with membrane l.

• R is a finite set of rules associated with the membranes of the system. The

existing types of rules will be discussed below.

• i0 is a natural number between 1 and p which indicates the label of a distinguished

membrane in the system (that will be called output membrane).

Note 1 Recall that a multiset of objects is a set where the elements are allowed to

be repeated. Every string over an alphabet determines, in a natural way, a multiset

and, reciprocally, every multiset can be represented by a string. For the sake of

simplicity, multisets are usually represented as strings over the working alphabet of

the system, Γ.

P systems have a very flexible initial definition, and therefore it has been pos-

sible to investigate up to now a huge number of different models. There are two

key syntactical features where the adjustments are usually performed, yielding the

corresponding classes of P systems: membranes and rules.
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Fig. 1. A “picture” of a membrane system

Membranes may have associated with them not only labels, but also electrical

charges, which affect their behavior (e.g. P systems with active membranes, ad-

dressed in Section 3). On the other hand, objects in Γ may play the role of labels,

if we allow them to attach or de-attach to/from membranes (see e.g. [4]). There

are many other possibilities, like for instance considering several degrees of per-

meability for each membrane, indicating whether objects are allowed to cross it

or not. Interested readers are referred to [14] for a detailed overview on most of

the existing models.

Rules are doubtless one of the basic ingredients characterizing a model. In the

original paper rules were of a rewriting nature, that is, a multiset u occurring in

a region is replaced by a multiset v, including target indicators for the objects

in v indicating whether such objects remain in the same region or they move

to an adjacent one. One can also restrict to purely communication rules (sym-

port/antiport model, see e.g. [12]), and still the obtained model is very interesting

and powerful.

Finally, let us mention that in the first model it was possible to dissolve a

membrane after the application of some rules. Later on models allowing the

addition of new membranes (by dividing existing ones or creating membranes

from objects) have also been investigated.

In order to describe the semantics of the model, we make use of the concept

of configuration of a P system, which can be informally defined simply as an in-

stantaneous description of the system, expressing the current membrane structure

including labels, charges, or any other ingredients associated with them, and the

contents of the regions of the system.

We assume the existence of a global clock, in such a way that the application of

the rules takes from a configuration to the next one, performing a transition step. A

sequence of such steps, starting from the initial configuration of the system (initial

membrane structure and initial contents) is called a computation of the P system.



Rules are applied in a maximal parallel way, that is, rules are applied in parallel

(moreover, a rule can be applied more than once provided that there are enough

objects available) and it is forbidden that a multiset of objects remains inactive

during a step if it can trigger a rule. In case that there are several combinations of

rules that can be applied, then the system chooses nondetermistically. In addition,

priorities among rules were considered in the original definition, imposing that a rule

cannot be applied if there is another rule of a higher priority that is also applicable.

Nowadays, most of the models do not include priorities, but there are cases where

the parallelism is bounded, either at the level of membranes or for the whole system

(see e.g. [3], [5] or [9]).

It is important to recall that, apart from stating the syntax and semantics of a

P system model, it is also necessary to fix how the evolution of the system will be

interpreted. In general, there exist four approaches:

• P systems can be seen as generative devices, if we have a fixed initial configuration

and we collect the outputs of all the nondeterministic computations.

• The evolution of a P system can be seen as a computing process (i.e. the system

“computes” a function), if we consider that a certain number, n, is encoded

somehow in the initial configuration, and we take the cardinality of the output

multiset as the result of the computation.

• P systems can be seen as decision devices, provided that we have some special

objects yes and no such that we can check their presence in the output in order

to decide whether the given input was accepted by the P system or not.

• One of the most promising ways to use P systems is for simulating purposes, in

the sense that we do not consider the standard input → computation → output

scheme, but we focus instead on the evolution process itself.

One of the earlier topics addressed in the literature is the quest for universality,

mainly from a formal language theory point of view. That is, in order to show

the “power” of the models, the most used reference was initially the Chomsky

hierarchy of languages, and also proofs within the framework of automata theory

(keep in mind that P systems are a machine-oriented computing model). Later on

also simulations of recursive functions by means of P systems have been performed

[16]. An interesting result in this line was obtained by O.H. Ibarra in [8], where an

infinite hierarchy (on the computational power) is obtained.

Concerning the simulating approach, we can say that it is the closer one to

Biology, as in a biological system where the concept of starting a computation

and wait for a halting configuration does not make sense, one can try instead to

investigate the behavior of the system. Some work has been done already in this

line (see e.g. [2,11]), which is actually attracting an increasing attention from the

membrane computing community.



3 Complexity Theory in Membrane Computing

We shall focus here in the approach considering membrane systems as devices able to

solve decision problems, paying special attention to the resources needed to perform

these solutions.

Formally, we deal with P systems that are able to receive an input, encoding the

instance of the problem that is to be solved, and they produce a boolean output (of

type Yes/No). Moreover, we impose a number of restrictions in the definition of a

“membrane solution”, requiring for instance that the designed systems are confluent,

in the sense that despite the nondeterminism of the system, all computations yield

the same answer. All these considerations lead to the definition of recognizer P

systems (see e.g. [15] or [18]).

Definition 3.1 A recognizer P system is a P system with input membrane and

external output such that:

• Y es,No ∈ Γ (working alphabet).

• all the computations halt.

• for every computation, one symbol Y es or one symbol No (but not both) is sent

out (and in the last step of the computation).

Before going on, it is worth mentioning that in the literature there is a distinction

between the solutions where a specific P system is given for each instance of the

problem (semi-uniform solutions) and those designs where one system is able to

deal with several instances of the problem (uniform solutions). Some examples of

the earlier semi-uniform designs can be found in [10,20], and a complete discussion

about the different complexity classes obtained in both approaches can be found

in [15]. We recall here the definition of the uniform computational complexity

framework:

Definition 3.2 Let R be a class of recognizer P systems. A decision problem

X = (IX , θX) is solvable in polynomial time by a family FX = (Π(n))n∈N+ , of R,

(we denote this by X ∈ PMCR), if

• FX is polynomially uniform by Turing machines, i.e. there exists a determinis-

tic Turing machine such that, given n ∈ N, constructs the system Π(n) in a

polynomial time.

• There exists a pair (cod, s) of polynomial time computable functions

cod : IX →
⋃

n∈N+

IΠ(n) and s : IX → N
+ such that for every u ∈ IX we have

cod(u) ∈ IΠ(s(u)), and

(i) FX is polynomially bounded with regard to (X, cod, s); that is, there exists a

polynomial function, p, such that for each u ∈ IX every computation of the

system Π(s(u)) with input cod(u) is halting and, moreover, it performs at most

p(|u|) steps.



(ii) FX is sound, with regard to (X, cod, s); that is, for each u ∈ IX it is verified

that if there exists a computation of the system Π(s(u)) with input cod(u) that

is accepting, then θX(u) = 1.

(iii) FX is complete, with regard to (X, cod, s); that is, for each u ∈ IX it is verified

that if θX(u) = 1, then every computation of the system Π(s(u)) with input

cod(u) is accepting.
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Fig. 2. For uniform families of P systems the diagram commutes

The intrinsic maximal parallelism of P systems can be exploited to produce a

speed-up for solutions to NP–complete problems. In order to achieve this, the

model needs several ingredients, among them the ability to generate an exponential

workspace in polynomial time. One of the models that fulfills these requirements is

the so-called active membranes model, which works with membranes having elec-

trical charges associated with them, and allows membrane division rules. More

precisely,

Definition 3.3 A P system with active membranes is a tuple

Π = (Γ,H, μ,w1, . . . , wp, R),

where:

• Γ is a finite alphabet (the working alphabet).

• H is a finite set of labels.

• μ is a membrane structure of degree p, with labels from H. Membranes have

electrical charges, that can be either neutral (0), positive (+) or negative (−).

• w1, . . . , wp are multisets over Γ, which express the initial contents of membranes

from μ.

• R is a finite set of developmental rules of the following types:

(a) [a → v]αl , where a ∈ Γ, v ∈ Γ∗, α ∈ {0,+,−} (object evolution rules). It is an

internal rule, that does not affect the outside of membrane l, nor its polarity.

Its execution produces the substitution of an object a by a multiset v, inside a

membrane labelled by l and with electrical charge α.



(b) [a]αl → b[ ]βl , where a, b ∈ Γ, α, β ∈ {0,+,−} (send-out communication rules).

An element a can get out of a membrane labelled by l and with electrical

charge α, possibly transformed in a new object b and, simultaneously, modify

the polarity of this membrane (from α to β), but keeping the same label.

(c) a[ ]αl → [b]βl , where a, b ∈ Γ, α, β ∈ {0,+,−} (send-in communication rules).

Analogous to the previous one, but moving the object in region l, instead of

getting it out.

(d) [a]αl → b, where a, b ∈ Γ, α ∈ {0,+,−}, l �= skin (dissolution rules). Its

execution produces the transformation of an object a inside a membrane labelled

by l and with electrical charge α into a new object b. Also, simultaneously, the

membrane is dissolved.

(e) [a]αl → [b]βl [c]γl , where a, b, c ∈ Γ, α, β, γ ∈ {0,+,−}, l �= skin (2-division rules

for elementary membranes). An object a inside a membrane labelled by l and

with electrical charge α can cause the membrane to divide into two new ones,

with the same label but, eventually, with different electrical charges, in such

a way that the object a is transformed independently in each membrane into

new objects b and c (apart from these objects, the contents of the resulting

membranes are identical).

Rules are applied according to the following principles (informal semantics of P

systems with active membranes):

• The rules are used as usual in the framework of membrane computing; that is, in

a maximal parallel way, with the restrictions indicated below.

• The rules associated with a label are used for all membranes with this label. At

one step, different rules can be applied to different membranes with the same

label, but one membrane can only be the subject of at most one rule of types

(b)-(e).

• If a membrane is dissolved, its content (multiset and interior membranes) be-

comes part of the immediately external membrane (more precisely, of the closest

predecessor which is not dissolved).

• All elements which are not specified in any of the operations to apply remain

unchanged.

• A division rule can be applied to a membrane and, at the same time, some

evolution rules can be applied to some objects inside that membrane. In this case,

we can suppose that “first” the evolution rules are used, changing the objects,

and “after that” the division takes place, introducing copies of the results of the

evolutions in the two newly generated membranes (but keeping in mind that all

these processes take place in the same step of computation).

• The skin membrane can never divide nor be dissolved, although, as the rest of

membranes, it can be electrically charged.

We denote by AM the class of recognizer P systems with active membranes

using only binary division for elementary membranes. One can then consider the

class of problems solvable (uniformly) in polynomial time by P systems with active



membranes, PMCAM (see e.g. [18]). This class is closed under polynomial-time

reduction and under complement, so one deduces 3 the following inclusion

Theorem 3.4 NP ∪ co− NP ⊆ PMCAM.

However, this model proved to be too powerful when Petr Sośık found a

polynomial-time semi-uniform solution for a PSPACE–complete problem in [19].

There is a series of papers investigating which are the features that are actually

responsible for the efficiency (in time) of the model, trying to bring light on the

boundaries between classical complexity classes such as P, NP and PSPACE.

Which are the “ingredients” that play a relevant role in the power of the model,

concerning the efficiency of problem solving?

We can mention here for instance one of the open problems in this direction,

known as the P-conjecture: the complexity class associated with P systems with ac-

tive membranes without electrical charges is exactly P. A partial affirmative answer

to this conjecture was found in [6], where it is proved that the class of problems solv-

able by polarizationless P systems with active membranes without dissolution rules

and with division rules for non-elementary membranes is exactly P. Nevertheless,

also a partial negative answer was found in [1], where it is shown (by constructing

a uniform solution to QSAT) that the complexity class associated with polariza-

tionless P systems with active membranes with dissolution rules and with division

rules for non-elementary membranes contains PSPACE.

Thus, it turns out that dissolution rules play a key role in determining the power

to solve problems of the class of polarizationless P systems with division rules for

non-elementary membranes. It remains open to investigate the case when only

2-division rules for elementary membranes are allowed, or one can also redefine

different division rules for non-elementary membranes, but we will not get into

details here. A good summary of the results obtained up to now in this line can be

found at [7].

4 Final Remarks

We have given here a very brief overview on complexity theory in membrane com-

puting models. It is important to mention that it is often hard to carry out formal

studies within this unconventional machine-oriented model. Indeed, there does not

exist up to now any standard procedure to address, given a design of a family of P

systems and a problem, the formal verification proving that this family solves the

problem, in the sense of Definition 3.2. The main difficulty usually comes from the

fact that there may exist many possible computation paths, and many objects and

membranes evolving in a maximally parallel way.

Besides, another interesting remark is that working with multisets leads to unary

encoding, and one has to keep in mind this when we speak about linear or polynomial

time (number of parallel steps) on the “size” of the input.

3 The reader is referred again to [18] for details.



We believe that the current investigations on the borderline of tractability in

membrane computing can bring light on the P versus NP conjecture. Actually,

Pérez–Jiménez et al. [17] have characterized the P �= NP relation by means of

unsolvability results in polynomial time for NP–complete problems by families of

recognizer membrane systems using only basic rules. This research might be useful

also when looking for implementations (either biological or via computer simula-

tions), as it points out which are the more interesting features to be captured in the

simulated model.
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[14] Păun, Gh. “Membrane Computing. An introduction”. Springer-Verlag, Berlin, 2002.
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