
Universidade do Minho
Escola de Engenharia
Departamento de Informática

David Luis Moniz Branco

Optimization in code generation
to reduce energy consumption

November 2018

This work is funded by the ERDF through the Programme COMPETE and by the Por-
tuguese Government through FCT - Foundation for Science and Technology, within
projects: FCOMP-01-0124-FEDER-020484, FCOMP-01-0124-FEDER-022701, and grant ref.
BI4-2014 GreenSSCM-38973 UMINHO.

Universidade do Minho
Escola de Engenharia
Departamento de Informática

David Luis Moniz Branco

Optimization in code generation
to reduce energy consumption

Master dissertation
Master Degree in Computer Science

Dissertation supervised by
Pedro Rangel Henriques

November 2018

A C K N O W L E D G E M E N T S

I want to thank to Prof. Pedro Rangel Henriques for his consideration, dedication, teachings
and guidance that came since the first day of the Computer Science Degree.

I am also grateful to Dr. Rui Pereira, Prof. João Saraiva, Prof. Jácome Cunha and other
members of the GreenSSCM project team for their support, passed knowledge and always
pertinent suggestions.

I also want to thank all my colleagues who have always provided assistance and great
moments during the journey. Miro, Carção, Daniel, João, Hugo, Nuno, Marina and the
remaining group that was part of the Infobiz family.

Lastly, I would also like to thank my family for their support over time and for the
opportunity they gave me to carry out this work.

i

A B S T R A C T

In recent years we have witnessed a great technological advance accompanied by an equally
impressive increase in energy consumption, causing problems of both financial and envi-
ronmental order. In order to counteract this tendency, Green Computing emerges with a
number of measures for a more efficient use of computing resources without a great loss of
performance.

This essay is a study of several elements of Information Technology analyzed from the
point of view of energy efficiency. With special emphasis on microprocessors, modern
compiler design, development tools and optimization of code generation, a wide range
of information is gathered on very relevant subjects through perspectives still not very
considered by the community in general.

Also presented are two experimental studies that analyze the optimization of generated
code for a set of benchmark programs in several programming languages with the aim of
apraise the otimization impact on improving their energy consumption efficiency. A soft-
ware measurement framework was also developed that, together with the methodologies
presented in both studies, allows obtaining very precise and pertinent results for analysis.
Finally, a ranking was produced for 18 development tools, considering the execution time
and energy consumption of the executables generated through their compilation profiles.

This study also intends to contribute to an energy efficient technological advancement.
All the work developed here may also serve as motivation so that these and other aspects
of Information Technology may be seen through a greener perspective.

ii

R E S U M O

Nos últimos anos temos assistido a um grande avanço tecnológico acompanhado por um
aumento igualmente impressionante do consumo energético, provocando problemas quer
de ordem financeira quer de ordem ambiental. Com o intuito de contrariar essa tendência,
surge o Green Computing com várias medidas para uma utilização mais eficiente dos re-
cursos computacionais sem grande perda de performance.

Esta dissertação apresenta um estudo relativo a diversos elementos das Tecnologias de
Informação analisados do ponto de vista da eficiência energética. Com especial destaque
para microprocessadores, conceção moderna dos compiladores atuais, ferramentas de de-
senvolvimento e geração de código otimizado, é aqui reunida uma vasta gama de informação
sobre assuntos bastante relevantes segundo perspetivas ainda pouco consideradas pela co-
munidade em geral.

São também apresentados dois estudos experimentais que analisam a otimização do
código gerado para um conjunto de programas benchmarks em várias linguagens de programação
com o objetivo de compreender o impacto das otimizações no sentido de melhorar a
eficiência energética dos programas compilados. Foi também desenvolvida uma framework
de medição por software que em conjunto com as metodologias apresentadas em ambos
os estudos permite a obtenção de resultados bastante precisos e pertinentes de análise. Por
último é elaborado um ranking para 18 ferramentas de desenvolvimento considerando o
tempo de execução e consumo energético dos executáveis gerados através dos seus perfis
de compilação.

Este estudo pretende assim contribuir para um avanço tecnológico energeticamente mais
eficiente. Que todo o trabalho aqui desenvolvido possa também ele servir de motivação
para que estes e outros aspetos das Tecnologias de Informação possam ser vistos através de
uma perspetiva mais ecológica.

iii

C O N T E N T S

1 introduction 1

1.1 Context and Motivation 1

1.2 Objectives 2

1.3 Study Plan 3

1.4 Document Structure 4

2 processor vendors and green computing 6

2.1 Green Computing 6

2.1.1 Advent of Green Computing 6

2.1.2 Meaning and Objectives of Green Computing 9

2.1.3 Roots of Green Computing 10

2.1.4 Importance and Solutions of Green Computing 10

2.2 Microprocessors 13

2.2.1 Different concerns in the development over time 14

2.2.2 Microprocessors as a means for reduction of energy consumption 15

2.3 Manufacturers of Microprocessors 16

2.3.1 Intel 17

2.3.2 AMD 18

2.3.3 IBM 19

3 compiler design and energy reduction 21

3.1 Code Generation 22

3.2 Power reduction and energy saving 25

3.2.1 Power vs. Energy 25

3.2.2 Energetic aspects of programs 26

3.3 Optimization Techniques 28

3.3.1 Just compiling for speed 29

3.3.2 Trading speed for power 29

3.3.3 Instruction scheduling and bit switching 30

3.3.4 Avoiding the dynamic scheduler 31

3.3.5 Domain-specific optimizations 32

3.4 Just-In-Time compilation 32

3.5 Summary 34

4 impact of gcc optimization levels in energy consumption during

program execution 37

4.1 Related Work 38

iv

4.2 Experimental Setup 39

4.2.1 Testing Platform 39

4.2.2 Measurement Software 39

4.2.3 Measured Software 40

4.3 Methodology 42

4.3.1 Optimizations Flags 42

4.3.2 Measurement Process 43

4.4 Discussion of Results 44

4.5 Conclusion 49

5 impact of compilation by integrated development environments

in energy consumption during program execution 51

5.1 Integrated Development Environments 53

5.1.1 Meaning and Main Features 54

5.1.2 Advantages and Disadvantages 56

5.1.3 Differentiation Factors 58

5.1.4 Summary 58

5.2 Compilation Profiles 59

5.3 The Computer Language Benchmarks Game 61

5.4 Experimental Setup 63

5.4.1 Testing Platform 63

5.4.2 Measurement Software 63

5.4.3 Measured Software 63

5.5 Methodology 67

5.5.1 Analyzed Tools 67

5.5.2 Compilation Options 76

5.5.3 Measurement Process 103

5.6 Discussion of Results 108

5.6.1 Programs 109

5.6.2 Programs - Tools 119

5.6.3 Tools - Profiles 126

5.6.4 Profiles - Parameters 131

5.6.5 Parameters 140

5.6.6 Discussion 144

5.7 Summary 146

6 conclusion 150

a support material 163

v

L I S T O F F I G U R E S

Figure 2 Worldwide IT spending on servers, power and cooling and manage-
ment/administration (He, 2008). 11

Figure 3 Industry Changes in Requirements (Davies, 2012). 15

Figure 4 Server power breakdown by components (Ellison, 2009). 16

Figure 5 Energy Consumption, Power, Step Power and Peak Power during a
program execution (Grune et al., 2012). 28

Figure 6 Results of Bzip measurements (C program). 44

Figure 7 Results of Oggenc measurements (C program). 45

Figure 8 Results of Pbrt measurements (C++ program). 45

Figure 9 Results of PGo measurements (Go program). 46

Figure 10 Results of Matmulobjc measurements (Objective-C program). 46

Figure 11 Sphere Engine interface. 72

Figure 12 Geany interface. 73

Figure 13 Traditional C compilation stages. 77

Figure 14 Log message with the compilation parameters from ZinjaI. 80

Figure 15 Log message with the compilation parameters from CodeLite. 81

Figure 16 Project properties manager from NetBeans IDE. 81

Figure 17 Project properties manager from Eclipse CDT. 82

Figure 18 Example of CMakeLists.txt from CLion. 82

Figure 19 Default configuration file from AWS Cloud9. 83

Figure 20 Changing between profiles through Oracle Developer Studio. 83

Figure 21 Changing between profiles through Anjuta DevStudio. 84

Figure 22 Managing profiles through Oracle Developer Studio. 87

Figure 23 Managing profiles through GPS. 87

Figure 24 Results of mandelbrot measurements. 112

Figure 25 Results of fannkuch-redux measurements. 113

Figure 26 Results of reverse-complement measurements. 115

Figure 27 Results of regex-redux measurements. 116

Figure 28 Tools measurements for thread-ring. 120

Figure 29 Tools measurements for n-body. 121

Figure 30 Tools measurements for reverse-complement. 122

Figure 31 Default profiles measurements for binary-trees. 127

Figure 32 Release profiles measurements for mandelbrot. 129

vi

Figure 33 Debug profiles measurements for spectral-norm. 130

Figure 34 Profiles without optimization and debug options for fannkuch-redux.132

Figure 35 Profiles with debug but without optimization options for fannkuch-
redux. 133

Figure 36 Profiles with debug and optimization options for fannkuch-redux.134

Figure 37 Profiles without debug but with optimization options for fannkuch-
redux. 134

Figure 38 Results of binary-trees measurements. 164

Figure 39 Results of chameneos-redux measurements. 164

Figure 40 Results of fannkuch-redux measurements. 165

Figure 41 Results of fasta measurements. 165

Figure 42 Results of k-nucleotide measurements. 166

Figure 43 Results of mandelbrot measurements. 166

Figure 44 Results of meteor measurements. 167

Figure 45 Results of n-body measurements. 167

Figure 46 Results of regex-redux measurements. 168

Figure 47 Results of reverse-complement measurements. 168

Figure 48 Results of spectral-norm measurements. 169

Figure 49 Results of thread-ring measurements. 169

Figure 50 Tools measurements for binary-trees. 172

Figure 51 Tools measurements for chameneos-redux. 172

Figure 52 Tools measurements for fannkuch-redux. 173

Figure 53 Tools measurements for fasta. 173

Figure 54 Tools measurements for k-nucleotide. 174

Figure 55 Tools measurements for mandelbrot. 174

Figure 56 Tools measurements for meteor. 175

Figure 57 Tools measurements for n-body. 175

Figure 58 Tools measurements for regex-redux. 176

Figure 59 Tools measurements for reverse-complement. 176

Figure 60 Tools measurements for spectral-norm. 177

Figure 61 Tools measurements for thread-ring. 177

vii

L I S T O F TA B L E S

Table 1 Some features of the measured programs. 41

Table 2 Execution times of C/C++ programs in seconds by optimization
level. 47

Table 3 Selected C/C++ programs and their energy consumption (CPU and
memory) in Joules by optimization level. 47

Table 4 Execution times of Go programs in seconds by optimization level. 48

Table 5 Selected Go programs and their energy consumption (CPU and mem-
ory) in Joules by optimization level. 48

Table 6 Execution times of Objective-C programs in seconds by optimization
level. 48

Table 7 Selected Objective-C programs and their energy consumption (CPU
and memory) in Joules by optimization level. 49

Table 8 Analyzed IDEs. 70

Table 9 Tools, profiles and parameters analyzed. 85

Table 10 Measured Profiles. 105

Table 11 Measurement results for all programs. 110

Table 12 Tools ranked with 1 decimal point. 123

Table 13 Default profiles ranked with 0 decimal points. 128

Table 14 Profiles ranked with 3 decimal points. 138

Table 15 Optimization levels results. 143

Table 16 Tools ranked with 0 decimal points. 170

Table 17 Tools ranked with 1 decimal point. 170

Table 18 Tools ranked with 2 decimal points. 171

Table 19 Tools ranked with 3 decimal points. 171

Table 20 Profiles ranked with 0 decimal points. 178

Table 21 Profiles ranked with 1 decimal point. 179

Table 22 Profiles ranked with 2 decimal points. 180

Table 23 Profiles ranked with 3 decimal points. 181

viii

A C R O N Y M S

B

BAT Build Automation Tool.

C

CLBG Computer Language Benchmarks Game.

CPU Central Processing Unit.

G

GCC GNU Compiler Collection.

GPU Graphics Processing Unit.

GREENSSCM Green Software Project for Space Control Mission.

H

HTML Hypertext Markup Language.

I

ICT Information and Communication Infrastructure.

IDE Integrated Development Environment.

IT Information Technology.

J

JIT Just-In-Time.

O

OS Operating System.

R

ix

RAM Random Access Memory.

RAPL Running Average Power Limit.

V

VM Virtual Machine.

x

1

I N T R O D U C T I O N

This project was initially funded by a research grant, under the Green Software project
for Space Control Mission (GreenSSCM1) / University of Minho, financed by European
Regional Development Fund (ERDF) through the Programa Operacional Regional do Norte.

1.1 context and motivation

Currently we live in a period in which technology evolves very quickly and the number of
those who use it, causing the associated energy consumption, reaches very high values in
financial and environmental terms (Guelzim and Obaidat, 2013; Zhang and Ansari, 2013).

So there is a strong concern and an increasing need to reduce energy consumption in
all the information and communication infrastructures (ICTs). Together with these factors
emerged Green Computing, also the so-called Green Technology, which aims precisely at
using computing resources more efficiently while maintaining or increasing overall perfor-
mance (Harmon and Auseklis, 2009). This paradigm has already more than three decades
and directly covers the entire ICT infrastructure (Harmon and Auseklis, 2009). Even though
this paradigm exists for some time, it never received proper attention, which is evidently
one of the main reasons for the problems and limitations associated to the environmental
impact of the IT industry (Harmon and Auseklis, 2009). This area is very wide, then the
question arises how can we reduce this consumption. Among the various possibilities, the
chosen approach will be to study the reduction of energy consumption during program
execution. This possibility raises several issues, namely: how can we reduce the energy
consumption without affect the reliability of the application?; how does the energy con-
sumption relates to all other aspects of the generated code?; what is the current stance
of the compilers on this matter?; what compilation techniques can help us contradict this
presented tendency?; what is the actual impact on the compiler’s generated code and the
respective optimizations in terms of energy consumption?; what are the development tools
that offer the best results in this strand? These are few of the major concerns that will be

1 http://visionspace.dnsdynamic.com/GreenSSCM

1

discussed in this Master’s thesis.

Beyond the academic component of this project, there is also a great personal engagement.
It is very motivating to know that I can contribute to the solution to a real problem that
tends to increase (Koomey, 2011). The choice of this topic took in consideration these
aspects of motivation as well as an opportunity to apply the knowledge obtained over five
years, thus enriching the education in theory and practice.

1.2 objectives

The main focus of this thesis is to carry out, in a clear but detailed manner, a study about
the current role of Green Computing in technology, by gathering a great number of related
elements, in terms of hardware and software. It will also explore how do they relate to them-
selves and to other surrounding elements, discovering their impact on energy consumption,
and understanding how the consumption can be optimized. This work will emphasize the
matters concerned with processors, compilers, programming languages and development
tools. A historical, current and future context will also be carried out whenever it is con-
sidered relevant to the intended analysis. Nonetheless, it is also intended to analyze other
important strands for each element beyond the perspective of Green Computing.

In particular, it is expected that at the end of this dissertation the following goals will be
achieved:

• Clear perception about the role, importance and potential of Green Computing in
Information Technologies;

• Investigation of the weight of energy consumption on different types of hardware and
detailed analysis of the role of the most relevant element;

• Investigation of the importance and potential of using software (with the main focus
on compilers) to attain energy efficiency;

• Comprehension of the hardware-software-energy triplet in order to enhance signifi-
cant improvements;

• Study of relevant software development tools (with the major focus on IDEs) and the
performance of the executables they generate by default;

• Definition and application of study methodologies that allow to apply the knowledge
acquired for concrete case studies with relevant elements;

2

• Obtaining results that allow not only to draw relevant conclusions in the scope con-
sidered but also to be used in other areas of analysis.

1.3 study plan

Firstly, this report starts by defining the concept of Green Computing: what is its origin,
its evolution and how relevant it currently became. Furthermore, it presents its goals and
most relevant solutions, picturing what can technology benefit from this paradigm. This
dissertation then discusses hardware manufacturers, more precisely the most renowned
microprocessors manufacturers, giving an overview of the industry’s current position on
Green Computing, from past to the current days. With all these facts it can portray the
potential of the microprocessors in reducing the energy consumption on Information Tech-
nologies.

It is revealed that it is equally important, and essential, to study the design of modern
compilers and how do they relate to those previously mentioned elements. The aim of such
study is to understand concretely how they act and what properties guarantee the code
they generate, what considerations do they have regarding the topic under consideration,
which optimization techniques currently stand out and what effect do they have on the
energetic consumption of the generated code.

Furthermore, the dissertation presents an experimental study to demonstrate the ac-
quired knowledge and understand, for each specific use case, how do these elements behave
and analyze in detail all relevant features for real use case scenarios.

Particularly, the study observes what is the impact of the GCC optimization suites on the
energy consumption of running programs. This subject allows to integrate, in experimental
form, many of the aspects analyzed such as the hardware components, modern compilers
and programming languages. This being presented under the perspective of the energy
consumption and all around related concepts. The study shall select the most well known
and commonly used programming elements to increase the relevance of the obtained re-
sults.

After concluding the previous study, it is also relevant to discover how the analyzed
practices are integrated with the developer process, and what is the impact on the code
they produce. All these questions motivate the conduction of another experimental study
that conciliates the acquired knowledge with the introduction of new elements that are in-
dispensable in the daily routines of a programmer (software development environments,
benchmarks, compilation parameters, among others).

3

Both experimental studies will require very rigorous measurements of energy consump-
tion and related concepts, treatment of results that must be displayed in appealing formats
in order for them to clearly become an asset for the intended analysis, study of relevant
programs and prone to be compared effectively, among many other competences which
need to be integrated into the desired objective. Although all the vital cooperation between
heterogeneous elements and the aggregation of knowledge acquired from multiple areas is
in fact an additional and quite demanding factor of difficulty, it is also a motivating factor
that leads us into moving in that direction.

1.4 document structure

This document contains six chapters.

The two sections that make up the State of the Art explain, in a theoretical way, the vari-
ous issues related to the context and motivation for this dissertation. Section 2.1 highlights
the problems that have led to the foundation of Green Computing, defines and describes
its goals, presents a review of its evolution over time as well as some important landmarks,
and finally reveals the solutions proposed to solve the drawbacks identified. Section 2.2 dis-
cusses the heterogeneous utilization of this technology. The evolution of the requirements
of manufacturers and the consumers demand over the years is reviewed, in which the im-
portance and growing complexity of microprocessors is described, and finally its energetic
impact on a computer system is analyzed. Following, in Section 2.3 some microprocessor
manufacturers are studied within Green Computing perspective. It is analyzed what tools
customers and developers are provided with, and also what is indicated in the instruction
set of some of their latest products regarding energy optimization. Finally, the Chapter
3 examines some interesting features in the design of modern compilers, especially those
that focus on energy efficiency issues. Initially it is verified what properties are currently
considered ideal by the compilers in code generation. Then, the differences between power
and energy are discussed and four energy aspects relevant to hardware and software are
also described. Lastly, while maintaining the focus on achieving energy benefits, several op-
timization techniques are presented in order to obtain greater advantages in the generated
code.

Following the survey of all relevant information, there are two chapters referring to ex-
perimental studies.

4

Chapter 4 examines the impact of GCC optimization levels on energy consumption dur-
ing program execution. After exposing some interesting case studies, the elements that are
specifically part of the study are described and how it will proceed. Finally, the results
obtained and the consequent conclusions are presented and discussed. In turn, Chapter
5 examines the impact on energy consumption of programs compiled using Integrated
Development Environments. After a brief introduction, some observations are made re-
garding this kind of tools, namely what are their main functionalities, what are the main
advantages/disadvantages they offer and the differentiating aspects in relation to the ex-
isting alternatives. Next some more contextualization is made through the presentation of
the project where the benchmarks will be extracted and which type of characteristics the
compilation profiles have. After completing the more theoretical part, the selection and
description of the elements under study starts and the applied experimental methodology
is defined. Finally, we present and discuss the results obtained through an exhaustive anal-
ysis of the various aspects considered.

Lastly, in Chapter 6 a conclusion is devised focusing the main considerations of the
present work.

5

2

P R O C E S S O R V E N D O R S A N D G R E E N C O M P U T I N G

2.1 green computing

Green Computing appeared to address the problems associated to IT industry policies
concerning their sustainability and impact on the environment. In this section will be
explored various topics related to Green Computing, including:

SUBSECTION 1: Some of the problems that led to its arrival are explained in concrete;

SUBSECTION 2: A definition and description of some of its goals is presented;

SUBSECTION 3: A description of a few landmarks and its evolution is reviewed;

SUBSECTION 4: Its importance and what measures and solutions have been proposed are
highlighted.

2.1.1 Advent of Green Computing

The main target of the IT industry since the beginning was the processing power of their
products. Although this objective has been achieved surprisingly well and incredibly fast,
the proper attention was not given to other important factors like cooling, power consump-
tion and space for data centers since they were considered always affordable and accessible
(Harmon and Auseklis, 2009).

As a result of rapid development as well as of the high demands, some facts soon evi-
dence that this approach was problematic and limited, as said in (Harmon and Auseklis,
2009):

INCREASING ENERGY COSTS

It has been estimated, in an article in Computer Weekly journal (Computer Weekly,
2006), that the office equipment during the year 2006 was responsible for 15% of
the power consumed in all United Kingdom. It was also estimated that in 2020 the
consume would be about 30%, with computer equipment responsible for about two-
thirds of this energy consumption (Barnatt, 2012).

6

For Data Center Servers this scenario is even worse because they use 50 times the
energy per square foot as an office does (Roy and Bag, 2009).

The energetic consumption of data centers worldwide doubled from 2000 to 2005 and
these values tend to increase in the future as well has the number of data centers (Roy
and Bag, 2009).

INCREASING COOLING REQUIREMENTS

To prevent overheating of their IT equipment the companies usually resort to air-
conditioning equipment, where the more powerful machines need even more atten-
tion and support. This necessary measure entails more expenses for companies and
every time they think about expanding their equipment they must think too in extra
cooling costs. The energy required to power and cool the United States servers in
2005 was about 1.2% of all electrical energy consumed in the country (Roy and Bag,
2009).
At worldwide level and according to Gartner (an American IT research and advisory
firm) in 2010, about half of the companies listed in Forbes magazines top 2000 had
more expenditure in power consumption of their servers than with hardware (Roy
and Bag, 2009). Nowadays circa 10 per cent of the average IT budget is for energy
costs but could rise to 50 per cent in several years, which is unsupportable for most
companies (Roy and Bag, 2009).

RESTRICTIONS ON ENERGY SUPPLY AND ACCESS

Sometimes in some regions the energy necessary for consumption and cooling of IT
equipment reaches such high amounts that the power supply is not able to provides
or requires it even higher costs. Because of this companies such as Yahoo, Microsoft,
Google established or migrated their large data centers for colder regions of the world
(e.g. in Northern Europe) or near hydroelectric power station (e.g. Columbia River
in the USA) where they have direct access to low-cost energy to mitigate the problem
(Harmon and Auseklis, 2009).

INCREASING EQUIPMENT POWER DENSITY

Usually in IT companies whenever it is necessary to improve the performance of their
servers the option taken is to install new equipment with more processing power and
memory. As a result of the rapid development of IT equipment, it can take up less area
(in some cases more than 70 %) than the previous machines but consume more energy.
As a consequence this increase of processing capacity and energy consumption per
square meter, is considered the main reason of the growing power density of data
centers. This density has increased 10 times more from 91.5 watts per square meter
in 1996 to over 1219 watts per square meter in 2007, a trend that is expect to continue
its upward spiral (Harmon and Auseklis, 2009).

7

RAPID GROWTH OF THE INTERNET

The Internet has a huge diversity and amount of content such as social networks,
newspapers, videos, e-commerce or online gaming and is increasingly easy their ac-
cess at high speeds and in diverse devices.
The great success of the Internet also led to a change in the interaction paradigm
between companies and institutions and their users. As for example banking and
government institutions relegate most of the services and features to their sites and
notify users by electronic means making it almost unnecessary interaction in their ser-
vice counters. Data security reasons require to make backups of existing information.
All these factors are increasing the use of the Internet every year (about 10% per year)
thus causing a large increase in the size of data centers and in memory capacity of
these to meet the growing demand (Harmon and Auseklis, 2009).

GROWING AWARENESS OF IT’S IMPACT ON THE ENVIRONMENT

From the green perspective, computers and their manufacture are not currently very
effective. The normal production of computers makes use of toxic materials such as
mercury, cadmium and lead. According to green experts a computer normally con-
tains between 1.8kg and 3.6kg of lead alone making them along with other electronics,
responsible for two-fifths of all lead in landfills (Roy and Bag, 2009).
Having said that, it is natural that in 2010 only 2 of the 18 manufacturers listed in the
Greenpeace Guide to Greener Electronics have been listed as reasonably green rating,
highlighting the negative Nokia and Sony Ericsson (Barnatt, 2012).
The increasing use of IT equipment caused that in 2007 there were significantly 44

million servers consuming 0.5% of all electricity in the world. The energy consumed
has a direct impact on the environment because it is proportional to the amount of
carbon emissions and only these servers are responsible for the emission of 80 met-
ric megatons of CO2. It was estimated that this value can grow more than 11 per
cent a year to around 340 metric megatons by 2020, values that overcome more than
three times the amount emitted by Czech Republic (112 Mt), more than double the
amount emitted by United Arab Emirates (168 Mt), more than Poland (317 Mt) and
approaches the values of France (361 Mt) and Australia (373 Mt) in 2010 (The World
Bank, 2014; Forrest et al., 2008; Harmon and Auseklis, 2009).

Based on all these issues easily follows that computing is not very environment friendly
and this becomes increasingly evident (and even unsustainable) for companies, organiza-
tions and public opinion. In order to reverse this situation appeared the Green Computing.

8

2.1.2 Meaning and Objectives of Green Computing

Green Computing, also called Green IT or ICT Sustainability, is essentially the study and
practice of efficient and environmentally sustainable use of computers and related resources.
A more comprehensive definition is given by Green Computing Initiative (controller of the
industry standards EFGCD — Eco–Friendly Green Computing Definition) defining Eco-
Friendly Green Computing as the study and practice of the design, development, imple-
mentation, utilization and disposal of IT infrastructure efficiently and effectively with low
or zero impact on the environment while reducing operating costs. Combines a wide vari-
ety of aspects of the whole computing and also has practical effects for other related fields
(e.g. green chemistry). Some of its main objectives are (Roy and Bag, 2009; Jindal and
Gupta, 2012; Harmon and Auseklis, 2009):

• Reduce the use of hazardous materials;

• Use new energy-generation techniques (e.g. sun, wind, water, sugar);

• Maximize energy efficiency during the product’s lifetime;

• Minimizing waste from manufacturing and throughout the supply chain;

• Promote recyclability or biodegradability of defunct products and factory waste;

• Study of advanced materials to be used in our daily life;

• Decrease pollution and the environmental impact.

It is an increasingly concern not only for a government or environmental IT organizations
but also for business and other industries since they noticed that has benefits at financial
level (e.g. cost reduction) and improves the public image of the company (Gingichashvili,
2007).

If the companies, from the financial perspective, can manage any losses using the proper
mechanisms for that purpose (for example bank loans and sale of shares), from the public
image perspective they are increasingly pressured to adopt more environmentally friendly
measures and cannot change that fact without a deeper change in the company policy.

Yearly many entities such as magazines (e.g. Newsweek) or environmental organizations
(e.g. Greenpeace) make rankings of brands that are based merely on aspects of Green
Computing. These rankings are becoming more widespread and sought after by the general
public that is increasingly concerned with this aspect and by the brands which sometimes
use them in marketing campaigns.

9

2.1.3 Roots of Green Computing

Although this concept only become more popular over the past 15 years, its original idea
arouse in the early 90s. More precisely in 1992 the U.S. Environmental Protection Agency
started a voluntary program called the Energy Star, taking advantage of the Environmen-
tal protection Agency (EPA) Green Lights program launched to promote energy-efficient
lighting, in order to promote and recognize energy-efficient electronic equipment such as
climate control equipment, monitors, and other technologies (Harmon and Auseklis, 2009).

Many references to Green Computing were found at USENET posts just after the Energy
Star has begun, leading to believe it may have been here origin of the term (Roy and Bag,
2009).

From this program resulted the large scale adoption of sleep mode by consumer electron-
ics allowing a product reduce the amount of energy consumed when after use it automati-
cally switches to sleep mode (Roy and Bag, 2009; Gingichashvili, 2007). This program was
then adopted by other countries and allowed products minimize the electricity waste.

In 1998 was founded a nonprofit organization called China Energy Conservation Program
(CECP) that was responsible for management, administration, and implementation of the
certification for water-saving, energy-conserving and environmentally friendly products.
The CECP cooperated with manufacturers, motivating them for producing more efficiently,
and convincing customers to a more sustainable choice, participating actively in national
and international projects, supporting improvements in energy efficiency and environmen-
tal protection and assisting social and economic sustainable development (Gingichashvili,
2007).

The Energy Conservation Center in Japan also had an important role in promotion of
energy conservation in the industry, for households and local communities, development
of human resources engaged in energy conservation and implementation of national exam-
inations, training and seminars (AEEC, 2015).

2.1.4 Importance and Solutions of Green Computing

It is important for companies to maintain and analyze all data gathered from transactions
that nowadays are ubiquitous and constant. From click stream data and event logs to
mobile call records, from the flow of a topic at social networks to most watched video in
the week, everything is tracked and has impact both in businesses and in the environment.
The necessity to manage this information makes data warehouses and the sprawling data
centers growing all the time and that raises a lot of limitations and problems related, for
example, with huge amount of power and cooling (was provided in Section 2.1).

10

The first approaches from IT industry to solve this problem were quite direct and super-
ficial. Trivial solutions, like more efficient cooling systems, will only alleviate the problem
and will only add more hardware, quickly becoming an inefficient and unsustainable solu-
tion (Jindal and Gupta, 2012).

The transition to Green Computing implies several optimization strategies and the inte-
gration of new approaches and technologies for the different existing processes in compa-
nies. According to (Jindal and Gupta, 2012; Harmon and Auseklis, 2009) the five core Green
Computing technologies advocated by Green Computing Initiative (GCI) are:

GREEN DATA CENTER

In 2008, according to Gartner,

Traditionally, the power required for non-IT equipment in the data center
(such as that for cooling, fans, pumps, and UPS systems) represented, on
average, about 60% of total energy consumption.

Added the fact that spendings on servers, power and cooling and management/ad-
ministration has increased every year (see Figure 2) and these devices have more than
10 years of operation, a first approach must go through investing in new data centers
which are designed to be energy efficient or improve some existing components.

Figure 2.: Worldwide IT spending on servers, power and cooling and management/admin-
istration (He, 2008).

Another problem in data centers is the increasing equipment power density. One pos-
sible solution begins by a better and efficient heat dissipation strategy like thermal
load management. Some examples of practices of this strategy are the variable cool-
ing delivery, airflow management, and raised-floor data center designs to ensure good
air flow, more efficient air conditioning equipment, ambient air, liquid heat removal

11

systems, heat recovery systems, and smart thermostats (Dietrich et al., 2008; Harmon
and Auseklis, 2009).
There are also some changes in the servers design that can make them more energy ef-
ficient, such as exchange single-core microprocessors for multiple cores (run at slower
clock speeds and lower voltages) and the development of dynamic frequency and
voltage scaling technologies (allows for microprocessors have a better workload man-
agement) (Dietrich et al., 2008).

VIRTUALIZATION

Data center virtualization is one of the most used strategies because it can combine an
improvement in the utilization of existing resources with a reduce of costs and human
intervention. It covers the areas of server hardware and operating systems, storage,
networks, and application infrastructure.
This strategy is used particularly in cases where it is intended to extend the life of
older data centers, although there is no room for expansion. One of the main advan-
tages is that it is possible to use less energy regardless of workload level to which they
are exposed in relation to standalone servers (for example by pooling applications on
fewer servers).
Many operating systems can concurrently run on a same computer by using a hy-
pervisor (a hardware platform virtualization program) that controls the access to the
processor and to the memory, giving the illusion that there is only one operating
system to the user. This approach can reduce the number of servers, which in turn
reduces potential problems associated with them. There is also the concept of storage
virtualization, that is analogous to server virtualization, and allows, for example, a
reduction in the required disk space as well as better management of storage capacity
(Dietrich et al., 2008; Harmon and Auseklis, 2009).

CLOUD COMPUTING

Cloud computing has been a great success in recent years. Forrester Research (inde-
pendent technology and market research company) estimates that in 2011 was spent
$25.5 billion in services (at world level), and as a consequence an annual growth of
22% will reach the $160 billion in 2020. It has several well-known advantages as high
scalability and easy access, but there are also some benefits related to Green Com-
puting that are not too accentuated. Resource virtualization (enabling energy and
resource efficiencies), automation software (maximizing consolidation and utilization
to drive efficiencies), pay-per-use and self-service (encouraging more efficient behav-
ior and life-cycle management) and multitenancy (delivering efficiencies of scale to
benefit many organizations or business units) are just a few examples, as stated in
(Mines, 2011).

12

POWER OPTIMIZATION

Power management software allows a more personalized management of energy
plans per-user/per-machine according to the worldload. It was estimated that it is
possible to reduce the cost of energy of a desktop between 22e and 65e per month, an
amount that is supposed to be even greater for servers. There is currently a significant
market for this type of software that includes renowned brands such as 1E Night-
Watchman, Data Synergy PowerMAN (Software), Faronics Power Save and Verdiem
SURVEYOR. Most products offer Active Directory integration, multiple power plans,
scheduled power plans, anti-insomnia features, undervolting and enterprise power
usage reporting (Harmon and Auseklis, 2009; Grier, 2009; Bemowski, 2010).

GRID COMPUTING

Grid Computing is a group of independent computing resources that are intercon-
nected together with the same objective. Within this distributed system such indepen-
dence is revealed in the heterogeneity and geographical distance in their components,
which through internet connections will manage to work together.
A practical example of this strategy is a technique named of shared computing, which
involves the use of multiple computational resources (usually processing power but
also sometimes other resources) donated temporarily by their owners. These re-
sources are elements that normally are provided when have a low or non-existent
workload (typically overnight or mealtimes) and thus can minimize the waste of en-
ergy which would be inevitable. The great advantage of this technique is that these
components when in large numbers and interconnected by networking can match
or even exceed the processing power of a supercomputer. Thus through the use of
various resources that were idle, can be achieved similar results of an expensive su-
percomputer without the necessity of this and acting in a better way from the point
of view of Green Computing (Strickland, 2008; Foster, 2002).

2.2 microprocessors

Today microprocessors — or commonly, the CPUs or just processors — are practically ev-
erywhere (Ryan H., 2012). They are found in generic items used everyday as electronic
devices or even in products that uses electronics. Microprocessors are used in almost all
the modern vehicles and in their accessories (in some cases may contain approximately
50) , home appliances (e.g. refrigerator, microwaves, washing machine, dishwasher, coffee
machine), electronic devices (e.g. digital camera, GPS equipment, tablet computer, mobile
phone) or even found in various products existing in normal homes (e.g. toys, alarms,
thermal sensors, DVD players).

13

Much has changed in microprocessors since its inception. Since the beginning of its
distribution in commercial versions (early 70s) they were seen by companies as a promising
device able to boost and lead the technological improvement. In fact, the ambition for
better performance as well as advances in computer architecture, IC fabrication processes
and design methodologies made microprocessors rapidly evolve (Betker et al., 1997).

2.2.1 Different concerns in the development over time

During the last 40 years the focus of microprocessors development was adjusting according
to the requirement and necessity of users.

In the early 80s the great requirement of large firms (main customers of microprocessors)
was directed towards them functionality to produce the desired results. They were mainly
used in supercomputers and mainframes, and characteristics such as processing power,
product cost or energy consumption were not considered as main concerns.

In the 90s the development of microprocessors, so that they can extend the market beyond
the big companies, also started to have as a new requirement the product price. With the
increased demand for personal computers, this aspect also happened to be rated by users.
As a result, new users now started assessing the functionality they were buying was worth
the investment they were doing.

The functionality of microprocessors having regard to its processing power and yet the
cost to the market, was only the main focus for the industry at the beginning of the new
century. After 20 years of manufacturing in commercial format, the functionality of the
product was well defined and then came a major concern in making them more efficient.
This has become apparent with the emergence of laptops with computing capabilities and
price comparable to desktop computers.

In recent years, with the growing awareness of energy issues related to IT industry (see
Section 2.1) and with the development of products such as smartphones and tablets, it
became clear that this focus was no longer sufficient and acceptable. The main objective is
no longer to increase their processing power, but while maintaining the functionality of the
product and taking into account the price to the market, reduce its energy consumption.
The latest smartphones for example already have a very high processing power, making
them equivalent or even superior to the desktop computer used at the beginning of this
century. Aspects relating to the autonomy or costs of electricity consumption are nowadays
more relevant than increase further processing power (which also becomes increasingly
difficult).

The evolution of the industry’s requirements over time is described in the Figure 3.

14

Figure 3.: Industry Changes in Requirements (Davies, 2012).

This new behavior is also stressed by Kathryn McKinley, professor of Computer Science
at The University of Texas at Austin, saying (CNS, 2012):

In the past, we optimized only for performance, (...). If you were picking
between two software algorithms, or chips, or devices, you picked the faster
one. You didn't worry about how much power it was drawing from the wall
socket.

This change in the development focus by manufacturers is then not only because of an
increasing awareness of energy issues but also due to a growing search by consumers in
products where these limitations are vital, thus forcing manufacturers to look for better
solutions.

2.2.2 Microprocessors as a means for reduction of energy consumption

Although the basic characteristics that define a microprocessor remain the same from the
beginning, the evolution process led them to have multiple execution engines (cores) and
complex architectures, as well as a number of extra features such as memory controllers,
floating-point units, caches, and media-processing engines.

Being microprocessors the heart and brain of the any usual computer (and also of a
huge number of devices used on a daily basis), these new competences make them increas-
ingly responsible for a growing number of tasks (e.g. communicating with new devices).
Inevitably, watching the increasing of clock frequencies and transistor count in modern
microprocessors also increased the energy dissipation.

All these factors make the microprocessor one of the components with the greatest impact
on energy consumption of a computing system. According to the information from Intel

15

Labs in 2008, (see Figure 4), in servers the processors are even the largest consumers of
energy with values between 45W to 200W per multi-core CPU (depending on the type of
server and workload) (Minas and Ellison, 2009; Ellison, 2009).

Figure 4.: Server power breakdown by components (Ellison, 2009).

Another important aspect of processors in relation to the other components is that gen-
erally are fixed components of a computer over its lifetime. Unlike hard disk storage and
RAM which may be upgraded over time, the processor should be necessarily the most
appropriate for all the remaining years.

Due to its heterogeneous utilization, computational importance, ability to multitasking,
their growing complexity and other factors also aforementioned, microprocessors are ar-
guably the most important component in a computer system. They had a very important
role in world’s development and will continue to affect the life at several levels of their
population. For all those mentioned reasons, the optimization of aspects related with mi-
croprocessors is a crucial way to combat excessive energetic consumption of IT industry.

As aforesaid there are already some efforts in this way. For example, the servers from
Intel in 11 years have gone from a consumption of 800,000 watts (Pentium) to 10,000 watts
(Quadcore Intel Xeon) to process 1.8 teraflops at peak performance. These are impressive
figures for such short period of time, but namely in microprocessors, much more can and
should be done to reduce the environmental impact of computing (Ellison, 2009).

2.3 manufacturers of microprocessors

Since its inception to the present day, the market for microprocessors was always seen with
great interest by companies. Over the years, more than 30 manufacturers have created their
own products promoting a lot of diversity in the solutions, namely in architectures and

16

way of manufacturing the products. This heterogeneity has been very important for the
development of the microprocessor especially in its initial stage. A concrete example of this
diversity was the representation of 11 different architectures at the Microprocessor Forum
1992.

Over the last 40 years the market has been changing significantly. It was found that some
manufacturers have disappeared, new emerged, some merged, others changed target area
or market, and there was also constant changes in the list of most brands market share over
time.

Currently among several existing brands, three of them — Intel, AMD and IBM — are
distinguished by their importance (either for their longevity, target market, importance in
the past or by demonstrating potential).

In the next subsections these companies will be examined in more detail in Green Com-
puting perspective, including its position on this issue, market fields, measures taken al-
ready or intended to mitigate the problem, tools available to its customers and developers
and also an analysis of what is indicated in the instruction set of some of their latest prod-
ucts.

2.3.1 Intel

Intel is a recognized leader and identified as a model by other companies in environmental
sustainability. It is the number 1 in several American rankings and also awarded several
prizes internationally.

Overall they are being able to minimizing the environmental footprint of operations
through measures such as (Economist, 2008):

• air/water/waste programmes such as reducing greenhouse-gas emissions (GHG), wa-
ter conservation and recycling;

• energy consumption reductions such as energy conservation and renewable power
programs;

• dedication to green buildings and IT, and greening operational and supply chain
processes.

The company is very active in this direction and have measures covering the entire cycle
of its products: development, production, use, and ultimate disposal. Intel works with or-
ganizations, customers, and businesses around the world in order to sensitize the industry
to voluntarily implement measures to help shape progressive and practical environmental
and energy policies (Intel Staff, 2013, 2015a).

The company offers quite extensive software developer’s manuals that describe the ar-
chitecture and programming environment of the Intel 64 and IA-32 architectures. Contains

17

very detailed guidelines on software optimization to take advantage of performance char-
acteristics (particularly related to energy consumption) of their processors as well as guides
to work with performance tools to optimize application performance including compilers,
multithreading tools and performance analyzer. They also provide descriptions and sug-
gestions on operating-system support environment, specifically: memory management, de-
bugging, system management mode, interrupt and exception handling, performance moni-
toring, thermal and power management features, protection, multi-processor support, task
management, virtual machine extensions (VMX) instructions, and Intel Virtualization Tech-
nology (Intel Staff, 2015b).

Among the many generic measures that disclose to reduce application’s power consump-
tion can be found for example reduce to a minimum the number of very common calls
(e.g. gettimeofday()), repeated events and system calls in order to reduce unnecessary work
to a minimum, improve data localization, analyze with some detail the I/O application
patterns (e.g. experiencing many cache misses) as well as maximize user time (over system
time) (Belinda, 2015).

The company offers power consumption measurement tools (that are used also by Intel
engineers) to users who search this functionality. Depending on the case and the desired
measurement level, it is possible to choose Frameworks, APIs and another type of tools (10

in total) available for different platforms and programming languages (Belinda, 2015).
Intel also provides useful material for the regular users of its products as guidelines for

good practices to adopt while using computing products in general, as well as tools that
will warn and increase consumer awareness for some misbehavior.

2.3.2 AMD

AMD has published notable values in terms of environmental responsibility and trans-
parency in recent years. The company put into practice measures to reduce environmental
impact in their various business processes, particularly from business operations to the
supply chain. Through public reports published by the company it is possible to attest its
progress in key factors such as reduction of greenhouse gas emissions, use and waste wa-
ter, waste (non-hazardous). Something remarkable is that the company has planned high
and ambitious environmental goals, and they not only has achieved but also exceed them
making it clear that they are taking an active role in conservation efforts (Staff AMD, 2014).

As far as the level of improving power efficiency and increasing performance of their
products the last results and projections are also admirable. With market interests similar
to Intel (more details were provided in previous section) it was reported in 2014, that since
2008 managed a 10-fold energy efficiency improvement in its product line. AMD recently
published the targets to be achieved in the entire line of mobile processors until 2020 and

18

still manage to be higher than those pledged for the last six years. When it was expected that
the company would slow down this growing progress (because previously taken measures
are nowadays increasingly difficult to perform with the same success) they estimate 25

times higher energy efficiency between 2014 and 2020 (Tirias Research, 2014; Papermaster,
2014). According to the company responsible, these goals will be achieved thanks mainly
to three key points (Papermaster, 2014):

• Improvements in intelligent, dynamic power management;

• Heterogeneous-computing and power optimization;

• Future innovations in power-efficient design.

The company provides to customers and users of their products some quite extensive and
detailed documentation as reference manuals about several topics (e.g. compilers, software
optimization, products manuals), developer guides and also some tools and libraries to
help them optimize their software.

2.3.3 IBM

IBM mainly develops software and products for their big target market, companies that
need more specific products such as business software, mainframe or very optimized disk
storage. Remember that IBM works with clients from the most diverse fields, such as
Aerospace and Defense, Automotive, Banking, Healthcare, Financial Markets and Telecom-
munications.

The company has been focused on thematic of Green Computing for over 30, and was
even one of the first companies in the IT industry to reduce their environmental impact. The
first great measure was in 1971 when the company formally establishes the corporate policy
on environmental affairs. Since then has established strong partnerships with governments
and environmental organizations (e.g. WWF, Climate Leaders) as well as investigated how
to dramatically increase the efficiency of their products. One of the biggest investments
made by the company is Project Big Green created in 2008, where IBM invests since then
$1 billion per year to meet the energy consumption problem (Wong, 2010). It was several
times recognized and distinguished by entities throughout the world for their good work
developed, in particular in 2011 was considered the greenest company in the USA by The
Newsweek magazine (Newsweek Staff, 2011).

The measures put into practice in the company cover almost all of their own processes,
such as reducing the consumption of water and electricity, transport of employees in a more
intelligent way and supply chain sustainability management.

Investigating the last line of IBM mainframes (IBM zEnterprise System), it can be de-
tected in their products some of the characteristics that the company considers important

19

for energy efficient and consumption. Specifically analyzing the IBM zEnterprise 196 model
(z196) it is observed that with increased number of available processor cores per server and
capacity, and with reduced floor space intend to reduce the energy consumption when
doing large-scale consolidations of distributed workloads. To be able to make the z196 ex-
tremely energy efficient they resorted to virtualization technologies, advances in micropro-
cessor design, more efficient power conversion and distribution, 45nm silicon technology
and more advanced sensors and cooling (high-voltage dc and water cooled). This product
also has features such as static power savings mode and query max potential power to re-
ducing wattage and power across the entire data center, as well as resource managers that
provides trend reporting and monitoring of energy efficiency for the entire heterogeneous
infrastructure. All these measures make the company considers that this mainframes line
is the most powerful and energy-efficient System z ‘Green IT‘ server ever (IBM Staff, 2015).

IBM provides quite material to raise awareness in people to adopt best environmental
practices when using computer products in general, as manuals with some guidelines, pre-
sentations and lectures of their awareness campaigns in other institutions and conferences
and even detailed explanations of its products to a more optimal use in energetic terms.

20

3

C O M P I L E R D E S I G N A N D E N E R G Y R E D U C T I O N

Following the growing evolution of technology, modern instruction sets are also increas-
ingly complex. Allying the presented trend with the frequent addition of new instructions,
naturally also the manuals of instruction sets become more and more extensive. Note that,
for example, Intel’s instruction set reference manual (version 064) consists of more than
4700 pages divided into four volumes (N. Hasabnis, 2015) (Intel Corporation, 2017). This
fact is even more relevant because the existing approaches to develop architecture specifica-
tions are mainly based on manual modeling of instruction semantics. In addition, modern
compilers support many different architectures (e.g. GCC over 45 in 2017) which reveals
the enormous difficulty that exists to generate code that respects fundamental properties
for its accurate creation, full usage, maintenance and respective post-processing tasks such
as optimizations (GCC team, 2017).

Compiler design is probably the most mature Computer Science object. Although com-
pilation techniques and paradigms have stabilized over the years, the area is so vast, com-
plex and important that space is never closed for further significant improvements. New
features implemented in hardware that need to be harnessed (e.g. dynamic scheduling),
optimizations of old algorithms (e.g. extension of optimal code generation through exhaus-
tive search) or even the resurgence of techniques that regained importance (e.g. recursion
removal) make it also one of the most challenging areas in Information Technology (Grune
et al., 2012).

In a very simplistic way one can define a compiler as a program that receives a text in a
given programming language and returns another text in another programming language,
without changing the meaning of it. They are like an intermediary agent between program-
mers and machines whose function is to mediate a translation process between the two
parts. Due to their fundamental role in this relationship, they are subject to quite demand-
ing requirements in order to ensure that the process is carried out successfully regardless of
the context. Modern compilers must be able to generate always correct code, fully respect
the specification of target languages, be able to handle program size programs and still

21

have an acceptable and suitable build size and time (e.g. linear in the input) (Grune et al.,
2012).

Despite the recent interest almost all over the Information Technologies area at least con-
tain the growth of energy consumption in its products, actually some sectors have been for
some time making considerable efforts in that direction. One of the most outstanding is the
hardware sector, namely hardware architecture, which has been reinforcing this behavior
with the prominence of mobile and portable devices. However, without the proper use of
efficient software, in practice those benefits are virtually eliminated (Pallister et al., 2013).
Therefore, is required a greater effort on the part of the software developers in the accompa-
niment of this tendency more and more in vogue. On the side of the compilers this effort is
already visible since, although energy efficiency is still not considered a property of a good
compiler, it is already considered an optimal property of the generated code.

In this chapter are analyzed some interesting properties of compiler and code generation,
especially with a focus on energy efficiency issues. In the first section are described the
properties nowadays considered optimal in the generated code. In the following is dis-
cussed the topic of power and energy and also are described four energy aspects relevant
to hardware and software. Thereafter, follows an exposition of five comprehensive domain
optimization techniques applied by compilers, but with the primary goal of achieving en-
ergy benefits. In the fourth section we present another compilation approach that tries to
offer some of the best advantages of compiled and interpreted code. Finally, a balance is
taken of what has been discussed and are added some relevant notes.

Most of the content in this chapter was inspired and based on the book Modern Compiler
Design (2nd Edition) by five highly respected authors in the area of compilers: Dick Grune,
Kees van Reeuwijk, Henri E. Bal, Ceriel JH Jacobs and Koen Langendoen (Grune et al., 2012).
That book covers the entire compiler design stack and contains much broader information
on aspects that are not considered in this study. It also has a very complete bibliography, as
well as other auxiliary material, that nicely complements the discussed subjects. Although
the book does not have much detail in the topic intended in this chapter, it has, however,
rather solid descriptions and points of view that we consider interesting to share.

3.1 code generation

Code generation denotes the phase in which the compiler’s code generator transforms an
intermediate representation of source code in another one that can be immediately exe-
cuted by a machine (for example, machine code). The generated code is an object code of
some kind of low-level programming language. In the case of a source program written in

22

a high level programming languages, initially the source is transformed into a lower level
language and then is applied the same process mentioned previously. Within the various
phases of compilation, code generation can be considered the final stage. Although there
is still a possibility for further processing of the code, such as application of optimizations
and other processes with similar impact, such tasks can still be seen as part of the phase
itself (Grune et al., 2012).

At present, in terms of code generation with optimal quality, modern compilers take into
account four properties (Grune et al., 2012):

CORRECTNESS

This is the most important (and at the same time the most defenseless) code gen-
eration property. It is obtained mainly through the use of adequate compilation
techniques, such as, small semantics-preserving transformation. This approach is
preferred to the transformation as a whole from source code to binary object that is
admittedly quite complex, demanding and sometimes even incomprehensible.

The most labor-intensive part of a compiler (and also the most error-prone) is pre-
cisely the study of which transformations (specially of optimization) can be applied
safely, always requiring complex and exhaustive searches in the Abstract Syntax Tree.
Compiler writers use the assistance of test suites to ensure that the transformations
are correct not only at that time but also in the subsequent steps in the compiler
development process.

HIGH SPEED

Improvements in code performance have been synonymous with runtime optimiza-
tion for many years. Being an attribute so requested all over the industry, is naturally
also the main focus of most compiler optimization techniques. For the vast majority
of problems, the hardware and software they have at their disposal have enough re-
sources to get better throughput at the detriment of other factors. Consequently, it is
obviously one of the main requirements.

Two of the most effective techniques to obtain speed optimizations are in the hands of
programmers and therefore outside the domain of compiler design. Choosing a more
efficient algorithm or even writing the program (or parts of it) into assembly language
are undoubtedly techniques that, despite the inherent disadvantages, allow to obtain
quite relevant gains in the program execution speed. For the second situation pre-
sented, it has been estimated that it is possible to obtain incredible gains around of
80% - 94% (Roy and Johnson, 1997).

Among the most important techniques for the compiler designer to produce faster
code, the following stands out:

23

• Traditional optimizations, for instance, code transformations that produce faster
code as well as the necessary analysis for its correct application;

• Partial evaluation, in which program segments are evaluated even during the
compilation phase (constant expressions, etc.);

• Replace code segment jumps by doubling it, allowing not only some improve-
ments but also opening space for new optimizations. Some examples of this
technique are unrolling a loop statement by repeating the loop body and in-
lining function that replaces the function call by the body of the called function.

SMALL SIZE

The code size is no longer a big problem for most users as it used to be years ago.
However, for an interesting (and growing) number of technologies it continues to be
a determining factor — sometimes even the most important and restraining — within
those stated here. Applications (usually mobile) that need to be downloaded as fast
as possible or code for embedded systems such as smart cards, household appliances,
etc., are two examples that demonstrate the importance of code size for very real
day-to-day applications.

Among the several techniques that allow significant reductions in the code size, stand
out:

• Procedural abstraction;

• Assorted code compression techniques;

• Aggressive suppression of unused code;

• Threaded code.

LOW ENERGY CONSUMPTION

The low power consumption is already taken by modern compiler designers as one
of the four most important factors to appraise the quality of the generated code. This
fact becomes extremely relevant to illustrate the global awareness for the problematic
in question and also of the commitment of the software in trying to follow the effort of
the hardware. The factors directly related to the triplet code-hardware-energy, briefly
electrical power management, are two:

• Save energy in order to increase the autonomy and operation time in battery-
powered equipment or respective costs with wall-powered computers;

• Protect the various types of hardware (namely processors) limiting peak heat
dissipation.

This property will be analyzed in much more detail in the remaining sections of this
chapter.

24

Generally speaking, generated code must respect two essential properties: keep intact
the same meaning of the text received originally and still be efficient in terms of resource
management at its disposal.

The correctness plays a more important role compared with the remaining properties.
The order of importance for the remaining three properties can be considered as presented
above, but in practice greatly depends on the context of the problem and the specificity of
the solution.

Correctness is achieved through the secure application of good compilation practices. In
its turn, the remaining properties are achieved mainly through optimization techniques.
Most of the optimization techniques are very inefficient in obtaining improvements simul-
taneously in the three mentioned properties: high speed, small size and low energy con-
sumption. In practice, they may even be incompatible and it may be necessary to consider
a trade-off so that the benefit of one does not over-harm others. Namely, optimizations that
have a major impact on reducing execution time are inefficient for code size, and these in
its turn, usually generate less energy-efficient programs. But despite this global incompat-
ibility, it is possible to obtain in a relatively simple way good optimizations in the energy
consumption when applied techniques oriented to the optimization of the execution time.
Afterwards in practice it may depend on a few more factors (such as the specificity of the
code, language, or programming paradigm), but for most situations the simple fact that a
program spends less time executing means that it spends less energy (Grune et al., 2012)
(Pereira et al., 2017).

3.2 power reduction and energy saving

Although we all have at least a vague idea of what is potency and energy in electrical
terms, it is however necessary to clarify in more detail the difference between both terms
since they are sometimes (mis)used interchangeably. It is also important to mention that
there are several energy aspects related to the execution of programs. Namely, there are
four aspects widely referenced as good indicators for obtaining energy efficiency, increase
battery autonomy and the hardware life cycle: peak power, step power, average power
consumption and total energy cost.

3.2.1 Power vs. Energy

In the book Modern Compiler Design is reported a sidebar that summarizes in a very clear
way how they are both terms related and what are their real implication in electrical terms.
The title is ”Power and energy — Volts, amperes, watts, and joules” and is transcribed
entirely below (Grune et al., 2012):

25

The tension (voltage) on an electric wire is measured in volts, abbreviated V;
it can be thought of as the pressure of the electrons in the wire relative to that
in the ground.

When a voltage difference is applied to an appliance, a current starts to flow,
which is measured in amperes, abbreviated A; it can be thought of as the amount
of electrons per second, and its magnitude is proportional to the voltage differ-
ence.

An electric current flowing over a voltage difference produces power, mea-
sured in watts, abbreviated W; the power is proportional to the product of volt-
age difference and current: W = V × A. The power can be used for purposes
like producing light, running a computer, or running an elevator, but in the end
almost all power is dissipated as heat. The longer the power is produced, the
more energy results; energy is measured in joules, abbreviated J, and we have J
= W × t, where t is the time in seconds during which the power was produced.

If any of the above quantities varies with time, the multiplications must be
replaced by integration over time.

On the one hand energy is a more intuitive notion than power, just as length
is more intuitive than speed; so power is more easily explained as energy per
time unit than vice versa. On the other hand the watt is a more usual unit than
the joule, which is why electricity bills show the energy in kWh, kilowatt-hours,
units of 3600000J (3.6MJ).

The analogy generally used for distinguishing between energy and power is associated
with water towers. The water present in the tower can be considered the energy (can be
stored and can flow), and in turn the water flow to the exterior of the tower is the power
(in particular the speed at which the stored energy flows). For a given amount of energy,
it is said that can be delivered at high/low power depending on the time delay during the
operation and a resource is said to be energy efficient (comparatively with another one) if
uses less energy to provide the same service (Touran, 2017).

Summarizing in a very simple and clear way, we can say that energy is the total amount
of work done, and power is how fast you can do it.

3.2.2 Energetic aspects of programs

Every processor or processor family has its own machine code instruction set. Despite the
complexity of this, in practice there is a generic standard in terms of power consumption
of the machine instructions. Essentially, there are three types that encompass instructions
with virtually the same power consumption (Grune et al., 2012):

26

TYPE 1 Instructions without read / write in memory (Load Reg Rm ,Rn; Add Reg Rm ,Rn;
Mult Reg Rm ,Rn, etc.);

TYPE 2 Instructions with memory reading (Load Mem n, Rm; etc.);

TYPE 3 Instructions with memory writing (Store Reg Rm ,n; etc.);

In comparative terms, it is estimated that type 3 instructions consumed more one third
than type 2, which in turn consumed one third more than type 1. In practice this means that
if, for example a type 1 instruction consumes 400mA on a given machine with a fixed volt-
age of 1.5V, instructions of type 2 and 3 may consume approximately 530mA and 670mA,
respectively. Taking these estimates into account, it is possible to draw a rather interest-
ing conclusion that relates energy consumption and the execution time of a program. As
long as the code of a program contains a balanced combination of statements of these three
classes, the power consumption does not change. Therefore, the energy consumption will
be directly dependent and proportional of the execution time of the program (Havinga,
2000) (Grune et al., 2012).

The maximum power dissipated during program execution is called peak power. It is an
aspect with a lot of interest for the prevention of high chip temperatures, which can lead to
reductions in chip lifetime, bad effect on reliability and power leakage. For extreme cases
where the peak power limit is exceeded, the chip may be damaged or even destroyed. The
term ”peak power” is somewhat misleading because, in theory, it would correspond to the
cost of the most expensive instruction in a program. However, only an instruction-length
peak is short so that it has some sort of influence. Therefore, for there to be some over-
heating, is required a succession of these in a short but significant period of time. Thus,
the time-decaying average of the power use of the instructions over a long enough time
of the damage but short enough for the cooling system to be able to dissipate the heat,
corresponds in practice to ”peak power” (Grune et al., 2012). Some of the most common
practices for lowering the average of this value are the moderate use of high-power in-
structions or even interspersing with lower-power instructions (Henkel and Parameswaran,
2007).

Step power is the power consumption difference between successive instructions. Con-
trolling this aspect is also important due to the stability of power consumption it provides
and also due to the influence it has on inductive noise. Large variations in power consump-
tion can cause damage in devices and lead to reductions in battery span and a decrease in
chip reliability (Henkel and Parameswaran, 2007) (Grune et al., 2012).

Step and peak power turn out to be important design constraints mainly in high-performance
hardware. In the case of high-performance processors, they are even more important than
average power due to the impact it has on the timing and reliability of the system (Yun

27

and Kim, 2001a)(Tang et al., 2001). In Figure 5 is represented a chart with the relationship
between the four mentioned energetic aspects of a program execution.

Figure 5.: Energy Consumption, Power, Step Power and Peak Power during a program
execution (Grune et al., 2012).

In order to achieve a reduction on energy consumption and minimal power dissipation,
several strategies are used, such as: metrics, benchmarks, energy models, etc. Within the
various metrics that relate energy and power, stands out that of activity level at any given
point during program execution. In this approach, peak power is the highest activity level,
step power is the variation in activity levels of successive points of the program and the
total amout of activities in a given program is denoted as the energy consumed (Henkel
and Parameswaran, 2007).

From the point of view of Green Computing, the four energetic aspects presented have
considerable importance within the different domains of action they represent. Whether it
is to increase system durability, detect and prevent energy waste over time or even reduce
the environmental impact from the various components, each strand allows to act and
achieve considerable improvements for the intended purpose. In the particular case of the
software energy efficiency during its runtime, it is verified that, along with the concerned
execution time, the element of greater interest is the power consumption from the executed
instructions.

3.3 optimization techniques

Optimizations are considered by compile writers as a very attractive and effective way
to obtain significant improvements in the generated code. Through only tunings in the
program, and without neglecting its correctness or making any changes in the hardware, it

28

is possible to obtain improvements in several interesting aspects already addressed in this
study (Pan and Eigenmann, 2006a).

Throughout this study, several possibilities have already been mentioned among distinct
areas in order to reduce the energy consumption of hardware and software. The choice of
algorithms and data structures faster and less memory-intensive, and the economical use
of non-CPU resources such as monitors and other peripherals, are two concrete examples
of the diversity and scope that these measures can have. Within the scope of compile
writers, there are also optimization techniques that allow not only generate code with low
power consumption but still get acceptable peak and step power properties. Although
is not the main focus, and depending on the technique and the selected case study, it is
still sometimes possible to obtain significant improvements in other important code aspects
such as size and speed.

In this subsection we describe five optimization methods with special focus on energy
issues: just compiling for speed, trading speed for power, instruction scheduling and bit
switching, avoiding the dynamic scheduler and domain-specific optimizations (Grune et al.,
2012).

3.3.1 Just compiling for speed

One of the simplest and immediate ways for the programmer to obtain gains in code energy
consumption is to use some of the various existing mechanisms to improve the execution
time of the same.

In chapter 4 is presented a study that demonstrates the effectiveness of this technique, in
terms of CPU and memory energy consumption, using only the pre-defined optimization
levels in GCC. It has been demonstrated that it is possible to make significant gains without
any extra effort by the programmer who already uses the compiler to optimize the code in
a generic way.

Experiments with the BURS code generator and also other researches show that the re-
sulting codes generated to optimize the execution time, and to optimize the energy con-
sumption are quite similar. This leads to the conclusion that, in general, code optimized for
execution time is an optimum approximation of code optimized for low energy consump-
tion (Tiwari et al., 1994) (Parikh et al., 2004).

3.3.2 Trading speed for power

There are several real-world applications where a response is returned before it is actually
needed. Automatic processing of images that will only be used later or the generation

29

of reports at the end of the week that will only be visualized in the following week, are
examples of recurring situations.

For cases with similar characteristics to these, a trade-off between processors speed and
power can be exploited which causes, on the one hand, a reduction on the processing
capacity, but, on the other hand, lower power consumption and peak power values are
obtained without impairing the step power. This concept may also be applied only to the
particular program areas that are considered energy critical or otherwise to low processing
zones (Hsu and Kremer, 2003).

Briefly, this approach rest on the fact that most processors allow to change some of its
settings voltage. In this way it is possible to benefit from a curious property which is that the
power consumption is proportional to the square of the voltage, but nevertheless the speed
of the processor only changes linearly with the voltage. Besides increasing the portability,
autonomy and reduce costs with the power consumption of the equipment, lowering the
voltage presents other benefits that make this technique quite interesting. As the voltage
is lower, less heat is produced which provides better cooling of the processor. Allowing
in turn an increase of its lifetime, stability and reliability; reduction of noise caused by
the system; to be packaged in tighter systems; better compatibility with old applications;
reduction of costs and logistics with the cooling of the system, etc. (Saputra et al., 2002)
(Mueller, 2006).

Let us suppose, for the purpose of simple exemplification, that the voltage of a processor
is lowered by 20%. On the one hand, this measure will have the immediate impact of
reducing processing capacity by 20% and consequently the program execution time will
increase by 25% (due to the need to apply a factor of 1.25 to return to the same cycle
performance). But on the other hand, with a cost of 25% of processing time it is possible
to obtain, among other improvements, a reduction of power consumption by 36% and this
trade-off can be very advantageous for applications in which there are no really benefits of
having a response in advance (Grune et al., 2012).

3.3.3 Instruction scheduling and bit switching

Many methods of code generation rely on the structure ”instruction selection, instruction
scheduling, register allocation”. Optimizing the three components simultaneously turns
out to be for most situations an NP-complete problem, being usually only one stage se-
lected as a target. In particular, the phase of instruction scheduling can be replaced or
adjusted according to the purpose of the generated code, namely in terms of low energy
consumption. In cases where this is favorable, such as mobile and embedded devices, a
number of approaches are possible through adaptations of that phase. This approach is
very interesting because it can intervene in situations where other techniques do not have

30

space for such, because it is relatively independent of the several more common limiting
factors such as chosen programming language or hardware (Grune et al., 2012).

Cold scheduling is a collection of techniques that acts precisely in the enunciated manner,
exploring a particularity of electronic circuits: changing a bit to the same value (0 to 0 or 1

to 1) uses less power than switching to the inverse value (0 to 1 or 1 to 0). Combining this
peculiarity with the fact that an instruction finds the bits in the processor precisely as they
were left by the previous instruction, opens then a window of opportunities so that taking
advantage of these factors the bits changing be minimized. This freedom has some limits
because most of the bits are out of the compiler control. Yet in particular for the instruction
scheduling phase the compiler has access to some bits, can inclusive rearrange instructions
as desired and even later in the phase of register assignment can even choose the registers
numbers with few limitations. Within the bits controlled by compiler writer, on average this
collection of techniques reduces the amount of bit changes by about 30% -40% (Kandemir
et al., 2002)(Grune et al., 2012).

On average, this optimization translates into a reduction of step power by 0.24 for straight-
forward code and a reduction of CPU power consumption roughly by 3%. Within this ap-
proach there are other techniques with better results (for example more 30% battery life),
but they need some freedom to balance criteria of generated code. For example, it is possi-
ble to obtain through very aggressive instruction scheduling quite significant reductions in
terms of power consumption and step power but at the expense of speed and peak power
(Yun and Kim, 2001b) (Grune et al., 2012).

3.3.4 Avoiding the dynamic scheduler

With the advancement of technology it is possible to create smaller and smaller transistors
that consume less power and produce less heat. As a consequence, it became possible to
compact a larger number of transistors per area allowing to be developed new function-
alities related to processing capacity, namely its speed. One of these features is dynamic
scheduling being adopted by most processors today.

Commonly, the execution of instructions does not follow a predefined and absolute or-
der but rather according to other factors such as the availability of the source operands.
With dynamic scheduling it is possible for the hardware to determine an order in which
instructions can be executed unlike the statically scheduled machine in which this task is
left to the compiler. This technique has several advantages, such as taking into account the
parallelism (which is sometimes not visible at compile time), and may not require the code
to be recompiled for more efficient execution because the hardware is who deals with most
of the scheduling. However, for cases where the code or parts of it are simple, the compiler

31

is able to set an optimal order of instructions and therefore it is preferable to turn off the
dynamic scheduler in order to save energy (Grune et al., 2012).

It is estimated that about 30% of the energy consumed by the CPU is by the hardware that
implements the dynamic scheduler. With only a small percentage reduction in processing
capacity, it is possible to obtain a reduction in energy consumption of approximately 25%
by deactivating this feature and allowing the compiler to analyze the simpler block codes
(Valluri et al., 2003).

3.3.5 Domain-specific optimizations

Generic components and customizable for specific application domains such as embedded
systems, are being increasingly used in the software development and hardware equip-
ments. These devices are characterized by performing only a specific type of tasks such
as for example Image or Video processing, PDE solving, machine learning problems and
reading/processing of data obtained through a sensor. In most of these cases, there is a cer-
tain code homogeneity being very centred on certain types of algorithms or data structure
(Membarth et al., 2016) (Lengauer, 2004).

The application of domain-specific optimizations techniques for the simplification of sur-
rounding control structure, such as loop unrolling, sparse matrix representations, algebraic
simplifications, multiple processing elements, dedicated logic, specialized memory and in-
terconnection, etc., reveal themselves very interesting in terms of energy and processing
speed.

There are studies that analyzes some optimization techniques related to loops and con-
cludes that it is possible to obtain positive results, but that vary greatly according to the
program and technique applied (Kandemir et al., 2000).

3.4 just-in-time compilation

In the early stages of the programming languages evolution, the compiler was responsible
for producing object code (machine instructions) from a high-level language (compared to
assembly), which would then be linked (by a linker) into an executable. This process can
take many steps before it is optimized as machine code, but the output is always code that
is ready to be executed (and that executes efficiently, as a result). C, C++, Objective-C and
Go are examples of compiled programming languages widely used in IT.

At a later stage, another type of approach came to be popularized by changing the way
the code is run. Compilers started compiling high-level languages to pseudo-code which
would then be interpreted (by an interpreter) to run the program. This led to the removal
of the necessity of object code and executables which has allowed these languages to attain

32

greater portability for many hardware platforms and operating systems. PHP, Python, Perl
and more recently JavaScript are some examples of interpreted programming languages
quite popular nowadays.

Both approaches have advantages and disadvantages when compared to each other. With
the compilation it is possible to obtain a greater proximity between the code and the hard-
ware operations performed by machine code (making it easier for programmers to control
CPU usage and memory in fine detail) and also to run programs in the object language
quickly and without the overhead of interpreting the source language along the way. On
the other side, interpretation has as advantages the fact that interpreters are relatively easy
to write and the possibility of monitor what a program tries to do as it runs (to enforce a
policy, say, for security).

Just-In-Time (JIT) compilers, also known as dynamic translators, are the next-generation
of compilers; compile-time and execution-time are not any more completely separated
phases (as they were in the traditional approaches), they are merged and the compiler
generates code by need, executes it and also monitorize the execution optimizing the pro-
cess on demand. A JIT compiler runs after the program has started and compiles the
code (usually bytecode or some kind of VM instructions) on the fly (on demand, when
it’s needed) into a form that is usually faster, typically the host CPU’s native instruction
set. So instead of interpreting bytecode every time a method is invoked, will compile the
bytecode into the machine code instructions of the running machine, and then invoke this
object code instead. This approach has access to dynamic runtime information whereas a
standard compiler doesn’t and so can make better optimizations like inlining functions that
are used frequently or analyze the flow of control inside a method (or specific sections of
it) and rearrange code paths to improve their efficiency. With this approach it is possible to
obtain the best of both worlds: reduce the CPU’s workload by not compiling everything at
once, obtain an optimized execution for that particular CPU and keep portability running
on any operating system or hardware platform (Wodehouse, 2017) (Grune et al., 2012).

JIT compilers are already part of some notable frameworks such as Java Virtual Machine1,
Common Language Runtime2, Dalvik Virtual Machine3 or Android RunTime4 (in newer
versions), Zend Engine5, crt06 and Node.js7.

Ideally, the efficiency of running object code will overcome the inefficiency of recompiling
the program every time it runs. If the overhead inherent to the compilation process is

1 https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
2 https://docs.microsoft.com/en-us/dotnet/standard/clr
3 https://source.android.com/devices/tech/dalvik/
4 https://source.android.com/devices/tech/dalvik/
5 http://www.zend.com/en/products/zend server#engine
6 https://www.embecosm.com/appnotes/ean9/html/ch05s02.html
7 https://nodejs.org/en/

33

too high, this technique is no longer acceptable. Modern JIT compilers need to be well
tuned and implement advanced techniques in order to achieve their objectives. Select very
carefully and compile only ”hot spots” of the program, preloading on embedded systems of
code extremely optimized for a specific language or even use multiple compilations quality
levels- fast for most code and more sophisticated for critical areas — are some examples of
already adopted techniques (Jung et al., 2011)(Grune et al., 2012).

At the energy level there are also benefits in this promising approach. JIT optimizations
can greatly optimize the code, namely to reduce significantly the instruction counts which
is directly reflected either in a higher energy efficiency or in a decrease of average power
dissipated by a program (Lane and John, 2006).

3.5 summary

Although low energy consumption is not yet considered a priority in the compilation pro-
cess, it is nevertheless already considered as an optimal code generation property along
with correctness (of the translation scheme), high speed (concerning the target program
execution) and small size (in terms of the target code length, or stage memory needs).

In this chapter, some of the techniques most used used in different scopes for code opti-
mization concerning the energy consumption were described. In a generic way they can be
ordered by energy efficiency as follows:

1. Making the execution of the program faster has direct effects on the energy consump-
tion of the program;

2. Lowering the CPU voltage reduces the speed of the program linearly but also the
power consumed quadratically;

3. Reduce the amount of bit switching through tuning the instruction scheduling and
use low-energy instructions (cold scheduling) as well as avoid access to memory when
possible.

4. Specific domain-dependent methods appear as a good alternative especially for spe-
cific hardware applications such as embedded systems.

In addition to the optimization techniques for code generation, there are other more
comprehensive approaches that also explore the achievement of significant energy gains.
Just-In-Time compilation is one of such initiative that tries to take advantage of compiling
and interpreting. By compiling the code in the instant before it is executed, it can boost
various advantages such as speed, increased portability, energy efficiency, among others.

34

Over the years, compilers have made considerable efforts to keep pace with the impres-
sive evolution of hardware. Transistors increasingly reduced in size and present in larger
numbers per component, parallel execution units, multiple cache levels, etc. has forced
the development of increasingly sophisticated optimization techniques by compilers, under
penalty of becoming old-fashioned.

The constant increase in hardware complexity has been curiously one of the biggest
factors in ineffectiveness of compiler optimizations. As it is more and more difficult for
compilers to predict the actual effect of an optimization, hardware started to be built with
the self ability to optimize the code. Various techniques implemented in hardware, such as
dynamic scheduling, reflect optimizations traditionally performed by compilers. Ironically,
these more sophisticated implementations make it even harder to keep up with the race on
the part of the compilers. Complex hardware architectures also require better compiler op-
timizations because otherwise it is not possible to fully enjoy the features offered achieving
significant increase in energy consumption.

With the increased pressure on the use of parallel processing capabilities it is also neces-
sary to improve the programming languages. The most used are based on the sequential
execution model of a single instruction stream and this disparity with modern processors,
among other reasons, makes generating efficient code for each type of processor far from
a trivial task. Since this is clearly not one of the concerns of compilers, it remains for the
programmer the efficient use of parallelism through mechanisms such as multiple parallel
instruction streams (Grune et al., 2012).

In addition to what has been observed throughout this chapter, there are also other ap-
proaches that apply more intensively green strategies in order to produce energy conserva-
tive executables.

Green Compilers are a good example of such tools, proving to be especially important
in more demanding situations such as embedded and large scale systems. Among the
various techniques they use, the following stands out: cache skipping, use of register
operands, instruction clustering, instruction re-ordering and memory addressing, use of
energy cost database, loop optimization, dynamic power management, resource hiberna-
tion, cloud aware task mapping and eliminate recursion (Fakhar et al., 2012) (Fakhar et al.,
2011) (Chanda et al., 2017).

Currently there are already on the market several options that follow this methodology
of code generation. In particular, Green Hill compiler8 and ENCC9 apply some of the
techniques described for programs developed in C++. However there is still some scarcity
in terms of quantity of products, variety of paradigms that consider and how they are
made available (mainly of free or open source options). Due to these factors and the dis-

8 https://www.ghs.com/products/compiler.html
9 https://ls12-www.cs.tu-dortmund.de/daes/forschung/energy-aware-c-compiler/download.html

35

advantages inherent in this kind of tools (notably in the trade-off between performance
and energy consumption), unfortunately they are still not widely used by the community.
Nevertheless, with the increasing awareness and dissemination of Green Computing topics,
it is possible to predict that this situation may change in the near future. As soon more
diversified and sophisticated products emerge, certainly will also increase the adoption of
this type of technology by the developers.

36

4

I M PA C T O F G C C O P T I M I Z AT I O N L E V E L S I N E N E R G Y
C O N S U M P T I O N D U R I N G P R O G R A M E X E C U T I O N

In this chapter, we address the impact that running optimized compiled code has in the
CPU energy consumption. In particular, the study is focused on programs compiled by
GCC with optimization suits for a target machine based on an Intel CPU. Although the
CPU is the most important computational resource of this study it was also examined the
impact in memory and GPU in order to perform a more complete analysis.

The chosen programming languages are C and C++ according to the general decision
taken in the context of GreenSSCM. In addition, they are also nowadays two of the pro-
gramming languages more used (TIOBE Index).

For C/C++ compiler was chosen GCC1(v.5.3.0) because it is a robust option, well docu-
mented, the most widely used and this allows different code optimization levels.

Taking into consideration that GCC is an integrated distribution of compilers for sev-
eral major programming languages (GCC team, 2016c), two more programming languages
have been added to this study. In this way we could analyze in more detail the behavior
of GCC and its optimization procedures to get a deeper knowledge about the impact of
optimizations on energy consumption for a larger and more diverse set of programming
environments. After a preliminary analysis, we decided to consider Objective-C and Go
because they are also widely used today (TIOBE Index) and still subject of improvements
in the most recent GCC versions (unlike Java, for example, for which there is not any
relevant update since version 4.5 of April 2010 (GCC team, 2016b) (GCC team, 2016a)). Al-
though Apple has decided to completely replace the use of GCC by LLVM2 and Clang3 in
their systems to compile Objective-C programs, actually Objective-C was not “forgotten” by
GCC and, albeit some stagnation in support and improvement, it makes sense to study the
impact of GCC compilation on Objective-C runtime performance (Dilger, 2016).

1 https://gcc.gnu.org/
2 http://llvm.org/
3 http://clang.llvm.org

37

After choosing the source languages to compile with GCC, the last fundamental deci-
sion to complete the experiment setup is concerned with the choice of the target machine.
The assembly code that will be generated, and the optimization effects/impacts that can
be reached, depend, of course, on the machine selected. Accounting for that Intel is the
manufacturer with the largest market share in recent years (57% in 2012, 65% in 2013), and
is currently present in over 80 percent of the computers sold worldwide, it is imperative to
use an Intel microprocessor for more relevant results (more information in 2.3) (ITCandor,
2012)(ITCandor, 2013) (King, 2015).

The elements gathered for this study, as well as all the results obtained, are also presented
in the project website4.

This chapter is organized as follows. In Section 4.1 it is referred a similar study in our
context for embedded systems. In Section 4.2 the main elements are described to carry out
this experimental study. In Section 4.3, the GCC optimizations are specified and explained
the measurement process. In Section 4.4 are shown and analyzed the results obtained.
Lastly, in Section 4.5 a conclusion is devised focusing the main considerations of the present
study.

4.1 related work

Despite the fact that energy consumption subject is only a research topic in recent years
(largely due to the massive widespread of quite advanced wireless and mobile devices),
already at the beginning of this century appeared some projects considering compilers pre-
cisely as a way to combat it. In 2001 the standard optimization levels -O1 to -O4 were
evaluated to understand the effect of a few individual optimization of DEC Alpha’s cc
compiler on power and energy consumption of the processor. The authors concluded that
when the optimizations decrement the number of instructions to be executed, also the en-
ergy consumption is reduced (Valluri and John, 2001). In the same year, another study
was conducted to explore the effect of the compilers for existing processor architectures
addressing the same problem. They concluded that the compiler optimizations has enough
potential to achieve some reduction in energy consumption, but it would be necessary to
expose more innovating micro-architectural features to the compilers, in order to obtain
substantial gains in energy saving (Chakrapani et al., 2001).

There are also some studies in which algorithms are designed to select combinations of
compiler optimization flags that, for a given input program, generate a machine code with
a better performance at runtime (without taking into account the energy issues or flags that

4 www.di.uminho.pt/˜gepl/OCGREC/projects/project1.html

38

have emerged in more recent versions of GCC) (Pan and Eigenmann, 2006b)(Patyk et al.,
2009)(Pallister et al., 2013). If there is indeed a relationship between the optimizations ap-
plied by the GCC and the energy consumption of programs, such algorithms (or variants
thereof) may be very useful. This investigation will be left for future work.

Considerations for energy efficiency are especially relevant at the level of embedded
platforms. In (Pallister et al., 2013) they use GCC, 10 benchmarks and 5 different embed-
ded platforms to analyze the energy consumption of a large number of compile options.
Through hardware power measurements and some case studies explore various hypothe-
ses and conclude, among other things, the execution time and energy consumption are
correlated in most general cases.

Until this day there is very little work that explores widely the impact that the various
compilation options provided by compilers (including GCC) has on the energy consump-
tion of the software that use them (Pallister et al., 2013).

4.2 experimental setup

The three main elements to carry out this experimental study are: a platform for taking
measurements (a laptop); the software that makes measurements; and also the software
packages that will be measured.

4.2.1 Testing Platform

The study was accomplished on a laptop Asus N56JN-DM127H, running under Linux. The
hardware/software resources most relevant characteristics for the required analysis are:
Arch Linux 64-bit (Linux Kernel 4.4.5-1); Intel® Core i7-4710HQ up to 3.5 GHz, Haswell
Family; 8 GB DDR3L 1600MHz; and NVIDIA® GeForce® GT 840M, 2GB DDR3 VRAM.

4.2.2 Measurement Software

The energy measurement necessary to make the comparative study was performed using
Running Average Power Limit5(RAPL) interface. RAPL allows, among other features to
read the Machine-Specific Registers containing information about the energy consumed by
the CPU, RAM and GPU during a given period of time (Intel Corporation, 2015)(Hähnel
et al., 2012).

5 https://01.org/blogs/tlcounts/2014/running-average-power-limit-—rapl

39

Performance Application Programming Interface6(PAPI) and the Perf7 were also consid-
ered as alternatives to RAPL to take the desired measures. However after analyzing pros
and cons of each one, these options were discarded. On one hand PAPI is an event-driven
tool what makes its use inadequate in our context. On the other hand, Perf only allows to
obtain information about the CPU and we were interested in investigating the other possi-
ble sources of consumption, the memory and the GPU.

RAPL was used through an extension8 developed by the team in which context this study
was undertaken; that tool (RAPL extension) simply reads that register. This extension keeps
all other features previously present, such as setting the number of the CPU cores that will
be measured, and adds the ability to measure the consumption of a certain operation and
also the time spent for its completion. For this study the operation above referred is the
compilation and/or the execution of a program, being only necessary to inform the path
to the respective makefile or the executable. This extension can also be used in other areas
of study, because it allows to measure the compilation of a program in any language that
contains their dependencies expressed in a makefile or even any other executable. The
distinct features that this tool provides are managed through a mechanism of flags passed
as arguments when the tool is invoked.

4.2.3 Measured Software

In the experiment described in this chapter we have analyzed 12 programs that differ in
some aspects such as: programming language, main objective, code complexity, external
dependencies and also compile and execution time. Despite these differences, were all
chosen according to the following criteria:

• Open source code, allowing to analyze in more detail the complexity and how the
objectives are achieved;

• Running under Linux environment;

• Coded in one of the programming languages chosen in the context of GreenSSCM
project, C or C++, Objective-C or Go;

• Not interactive, this is independent of user interaction during execution, thus avoiding
waiting for input that would have interference in the measured values and also allows
automate this part of the process;

6 http://icl.cs.utk.edu/papi/
7 https://perf.wiki.kernel.org/index.php/Main Page
8 https://github.com/deater/uarch-configure/tree/master/rapl-read

40

• No graphical interface;

• Total execution time less than 60s, to prevent possible overflows.

Although the many particularities of the chosen programs, there are some characteristics
common to all of them that can be used in order to be possible to perform a comparative
study, without knowing in detail the code of each studied programs.

In Table 1 we characterize the selected programs regarding some of their features. The
parameters considered are: (PL)programming language; the (IF)input and (OF)output files;
(CC)code complexity (low, medium or high); and the (ED)amount of External Dependen-
cies (none, few, several or lot). Average compile and execution times(ACT, AET) are also
included just to figure out a quantitative description of their size/complexity.

Program PL IF OF CC ED ACT
(s)

AET
(s)

MMC C None None Low None 0.17 26.16

Grades

C
(Flex
and

Yacc)

Txt Html Low Few 0.23 32.84

Bzip C Wav Bz2 Medium None 1.47 23.41

Bzip2 C Wav Bz2 Medium Several 1.97 23.38

Oggenc C Wav Ogg High None 3.83 22.91

Pbrt C++ Pbrt Exr High Lot 43.08 19.42

Matmul Go None None Low None 0.13 15.05

PGo Go None None Low None 0.15 13.06

Sudoku Go Txt None Medium None 0.24 24.43

Matmulobjc Obj-C None None Low None 0.19 3.88

Miscellany Obj-C None None Medium None 0.40 9.47

Sorting Obj-C None None Medium Few 0.26 35.62

Table 1.: Some features of the measured programs.

A brief description of each one of the subject programs follows:

MMC: Multiplication of matrices with size 1024x1024 using 6 different methods.

GRADES: Generates the final grades of the students in a course from their marks.

41

BZIP AND BZIP2: File compression tools (replacing the input file).

OGGENC: Perform file format conversion (creating a new file).

PBRT: Executes the rendering of images using ray tracing.

MATMUL: Multiplication of two matrices with size 2000x2000.

PGO: Modular random level generator (roguelike type).

SUDOKU: Solves 20 extremely hard Sudokus repeated 1024 times;

MATMULOBJC: Multiplication of matrices with size 800x800 using 6 different methods.

MISCELLANY: Collection (more than 1000 lines) of practical exercises.

SORTING: Applies 6 of the best known sorting algorithm to an array of 8000 positions.

4.3 methodology

After defining the software and hardware environment for the study, and the set of pro-
grams to test, in this section we will describe the main decisions taken in what concerns
the parameterization of GCC in order to configure it for fair comparisons. We also define
the strategies followed to get the measures and to obtain significant statistical results.

4.3.1 Optimizations Flags

The GCC compiler has hundreds of flags related to the optimization of the generated code
specific to a given machine. Due to the specificity of each of the flags and the fact that
sometimes they are mutually exclusive, this study will only focus on the several optimiza-
tion levels specified by the compiler switch -O. There are 7 different levels of optimization
and each contains a number of individual flags that are enabled or disabled (depending
of the level). Below are described the referred levels with some more detail (GCC team,
2014)(Saddler, 2016).

-O0: Default level (disables all optimization flags). Reduce compilation time and make
debugging produce the expected results.

-O1: Basic optimization level (enables up to 39 flags). Reduce code size and execution time
without taking much compilation time.

-O2: Recommended optimization level (enables up to 73 flags). Enables all existing in
-O1 and the remaining that do not include a space-speed trade-off, increasing both
compilation time and the performance of the generated code.

42

-OS: Reduced code size (enables up to 65 flags). Enables all -O2 options that do not
increase the size of the generated code. Useful for target machines with limited disk
storage space and/or CPUs with small cache sizes (with dramatic improvement of
performance).

-O3: Highest level of optimization (enables up to 82 flags). Enables all existing in -O2

and further some very heavy in both time compile and memory usage terms. It is
not guaranteed that the code generated is better in terms of performance than the
previous set.

-OFAST: Disregard strict standards compliance optimization (enables up to 85 flags). En-
ables all -O3 options and more 3 that are not valid for all standard-compliant pro-
grams.

-OG: Optimize debugging experience (enables up to 74 flags). Offer a good debugging
experience enabling all optimizations that do not interfere with debugging and rea-
sonable level of optimization while maintaining fast compilation.

After a preliminary test phase, we decided not taking into consideration the level -Og for
this study because this level performs optimizations which do not contribute to an energy
reduction compared to the other 6 discussed.

4.3.2 Measurement Process

After having selected the programs to be studied and defined the set of optimizations to be
compared, it was mandatory to setup the measurement process to apply to all programs in
order to cover all the desired cases. This process can be described by the following steps:

1. Choose a program and its Makefile;

2. Choose the desired optimization level;

3. Execute 100 times the measuring tool for the program and the chosen optimization
level;

4. Process the output generated by each invocation of the measuring tool:

a) Get the energy consumption and time values;

b) Ignore the 10 highest and lowest values;

c) Compute the average of the remaining 80 values;

d) Generate a table and plot with the results in an HTML page.

5. Repeat step 2, 3 and 4 for all 6 levels of optimization;

43

6. Repeat step 1 to 5 for all 12 programs.

All measurements relating to a program were performed uninterruptedly while avoiding
fluctuations related to the testing platform (e.g. pre-loading of data, memory heating, etc.).
During the measurement process all executions of the intended programs were forced to
run on just one core of the CPU, through the tool flag -n, to ignore efficiency issues related
to the parallelization that some programs may allow. The processing of the output (referred
in item 4 above) was done using essentially PERL9(for parsing the results of each operation)
and GNUPlot10(to generate plots of each program).

4.4 discussion of results

To illustrate the results obtained, five examples of charts are displayed: three running
C/C++ (Figure 6, Figure 7 and Figure 8), one running Go (Figure 9) and one more example
running Objective-C (Figure 10).

The remaining charts, as well as the HTML pages, can be found in the online repository11

and website12 of this project.

Figure 6.: Results of Bzip measurements (C program).

9 https://www.perl.org/
10 http://www.gnuplot.info/
11 https://github.com/david-branco/gcc-optimization-energy-article-extended
12 www.di.uminho.pt/˜gepl/OCGREC/projects/project1.html

44

Figure 7.: Results of Oggenc measurements (C program).

Figure 8.: Results of Pbrt measurements (C++ program).

45

Figure 9.: Results of PGo measurements (Go program).

Figure 10.: Results of Matmulobjc measurements (Objective-C program).

In all analyzed charts it was found that, due to the classes of the programs selected, the
energy consumed by the GPU is reduced. It is clear that energy and time consumptions are
undoubtedly lower when selected an optimization level different from the default, and that
the optimization is greater for more complex source codes (in the case of Pbrt there was a

46

reduction of almost 76%). For low complexity programs it was confirmed that none of these
levels is much higher or lower than the remaining, with only a minimal difference (in the
extreme case may not even exist) among some of them because of individual optimizations
that each enables/disables.

PPPPPPPPPPP
Program

Level
-O0 -O1 -O2 -O3 -Ofast -Os

MMC 34.361 24.552 24.402 23.649 24.265 25.740

Grades 40.038 32.378 31.239 31.226 31.060 31.091

Bzip 36.755 20.408 20.396 20.361 20.399 22.115

Bzip2 36.755 20.493 20.366 20.477 20.427 21.773

Oggenc 46.068 19.958 17.648 17.256 16.359 20.177

Pbrt 47.008 12.614 12.761 12.413 12.175 19.547

Table 2.: Execution times of C/C++ programs in seconds by optimization level.

PPPPPPPPPPP
Program

Level
-O0 -O1 -O2 -O3 -Ofast -Os

MMC 354.934 237.568 239.599 240.192 238.445 227.809

Grades 352.228 257.912 246.786 248.958 245.701 249.664

Bzip 406.914 214.438 216.539 215.882 213.496 234.162

Bzip2 402.516 212.324 212.327 215.639 213.947 229.156

Oggenc 523.992 216.264 195.844 190.472 180.038 213.51

Pbrt 556.222 141.461 142.815 136.84 134.378 209.164

Table 3.: Selected C/C++ programs and their energy consumption (CPU and memory) in
Joules by optimization level.

Considering all selected programs and optimization levels which are not the default,
analyzing the execution time (Tables 2, 4 and 6), memory and CPU energy consumption
(Tables 3, 5 and 7), and ignoring minimal differences of values between levels, it appears
that in most cases the -Ofast level is the most efficient unlike -O1 and -Os options. It
is also perceptible that, although there is no much difference between the -O2 and -O3

levels, -O3 is slightly more efficient especially when the program complexity increases.
Although regarding the results presented, -Os was not one of the best levels in the analyzed

47

parameters, it is know that -Os has potential for significant improvement in some particular
cases, for example where their optimizations are capable to fit the code in the cache.

PPPPPPPPPPP
Program

Level
-O0 -O1 -O2 -O3 -Ofast -Os

Matmul 22.247 21.396 8.420 8.429 8.434 21.347

PGo 35.803 11.117 5.066 4.961 4.853 16.567

Sudoku 36.586 24.557 14.951 13.156 13.162 26.169

Table 4.: Execution times of Go programs in seconds by optimization level.

PPPPPPPPPPP
Program

Level
-O0 -O1 -O2 -O3 -Ofast -Os

Matmul 290.775 246.092 105.301 105.514 105.541 231.753

PGo 791.741 237.263 112.529 108.662 106.343 362.635

Sudoku 414.359 265.79 164.581 145.177 146.065 286.753

Table 5.: Selected Go programs and their energy consumption (CPU and memory) in Joules
by optimization level.

PPPPPPPPPPP
Program

Level
-O0 -O1 -O2 -O3 -Ofast -Os

Matmulobjc 10.354 3.885 3.882 2.511 2.513 4.085

Miscellany 22.442 13.681 9.038 10.447 10.448 13.665

Sorting 37.623 35.692 35.663 35.787 35.748 36.031

Table 6.: Execution times of Objective-C programs in seconds by optimization level.

One of the main objectives of this work was to determine if programs optimized at com-
pilation time also have an optimized energy consumption during execution. Although the
data obtained clearly demonstrate a great optimization of energy consumption, when se-
lected optimization levels which are not the default, however it is also noticeable that the
execution time of programs previously optimized also decreases dramatically (generally for
shorter times was obtained lower consumption).

48

PPPPPPPPPPP
Program

Level
-O0 -O1 -O2 -O3 -Ofast -Os

Matmulobjc 121.262 47.532 47.053 30.714 30.867 48.664

Miscellany 248.844 129.711 95.549 107.859 107.713 129.914

Sorting 456.098 435.695 435.908 439.173 433.084 438.992

Table 7.: Selected Objective-C programs and their energy consumption (CPU and memory)
in Joules by optimization level.

Thus, it is not possible to conclude with certainty GCC’s strategies on the matter. We saw
that in all cases energy consumption is directly related to execution time. In fact analyzing
all graphs, that depict the data collected along the experiment, we can say that the timeline
follows the trend of the columns with the consumption of each component by optimization
flag.

4.5 conclusion

In this chapter we described an experimental test aimed at studying the impact of GCC op-
timization on the energy consumed by the compiled C, C++, Go and Objective-C programs
at runtime. We concluded that energy decreases as faster is the code and so we can affirm
that GCC optimizations techniques have a positive impact in favor of green computing con-
cerns. To software developers, this conclusion means that they do not need an extra effort
if they decide to have their code more efficient concerning both execution time and energy
consumption.

The framework developed to perform the necessary measurements is also an important
result of this work. It was developed in a rather generic and comprehensive manner, allow-
ing the analysis of several operations and programming languages, in order to be possible
its usage in other GreenSSCM projects. Also, the overall output produced by the measure-
ments performed in this study is important because it can be used as a good workbench
for other green oriented research.

The obtained results are in line with what was the initial intuition of GreenSSCM team
members and also the conclusions already reported in (Pallister et al., 2013) for embedded
systems. After finishing this experimental work, we were aware that the time-energy rela-
tionship was already described and explained in the Technical Report (Choi et al., 2013),

49

corroborating our experimental findings.

However a lot of work remains to be done to understand the strategies followed in those
optimization algorithms in order to understand if there is still room for more reduction.
The study of the optimizations impact on programs that use parallelism, the analysis of
more programming languages that GCC can handle or investigate programs that run on
GPU are some of the possible research directions aiming at directly complement the work
here reported.

Concluded the study and taking into account the results obtained, namely the fact that
there are some improvements in energy consumption produced by compiler optimizations
(albeit indirectly), some other working hypotheses rise up to proceed within this scope. A
first one is to study the application of the algorithms referred in Section 4.1 in order to
obtain specific sets of flags that can further reduce energy consumption. Another one is to
look for special types of machine instructions that can be chosen by the compiler during
the code generation/optimization phase regarding the energy consumption. This is, we
intend to analyze the information provided by the current machines’ Instruction Sets to
verify if the energy consumption cost is provided (explicitly available) to be considered by
the compiler’s optimization algorithms.

50

5

I M PA C T O F C O M P I L AT I O N B Y I N T E G R AT E D D E V E L O P M E N T
E N V I R O N M E N T S I N E N E R G Y C O N S U M P T I O N D U R I N G P R O G R A M
E X E C U T I O N

Since its inception programming tools have proved to be essential tools for any type of pro-
grammer. Be it a student who is taking his first steps in the field or a very experienced and
multifaceted developer, all resort to mechanisms that make programming work more effec-
tive. They are used every day for the most diverse tasks, whether they are to create, edit,
debug, maintain and/or perform any programming or development-specific task. They are
available in the most diverse formats, from a simple source code editor and a compiler or
interpreter, to a work environment with graphical interface and quite advanced features.

Within the various existing formats, Integrated Development Environments (IDEs) are
clearly the most successful tools. They are able to provide in a single workspace a set of
very advantageous features that allow the developer to increase his productivity. Among
the most common features are: sophisticated source code editors, graphical user interface,
build automation tools, debuggers, version control systems, hierarchy diagrams, etc. Due
to the inherent advantages of its functionalities, this type of development tools has gained
a lot of acceptance over the last 30 years by the community which has led to the creation of
thousands of solutions.

An interesting feature of IDEs are the compilation profiles that allow automatically get
an executable according to a set of predefined parameters. Given this particularity and the
research done in the context of the present masters’ work, the opportunity arises to apply
the knowledge acquired to such an important family of tools.

In this chapter, an experimental study is carried out, which intends to investigate from an
energy perspective the performance of executables generated by the IDEs. They will be an-
alyzed mainly from the perspective of their execution time, CPU and memory RAM energy
consumption (individually and together) and the ratio between both factors (Energy/Time).
This subject allows to continue to explore in more detail the role of the compiler and its
compilation parameters in the considered strands. There is also room for other subjects of

51

analysis, namely how to compare the tools according to these results, what kind of options
they provide to users, what is the performance of the hardware and its components, among
many others.

Initially, it was necessary to investigate in detail some of the most relevant aspects of the
IDEs and how they could be used according to the intended purpose. In particular, what
types of compilation profiles exist, how they differ or how their content is extracted. It
was also necessary to study the market of this type of tools and to investigate the most
important options and formats plus new trends that might be of interest for analysis.

Next it was necessary to define in concrete which elements would be part of the remain-
ing study. Taking advantage of the knowledge acquired previously, some principles and
methodologies were applied as well as the reuse of some parts which stood out positively
and which still remained relevant. The choice of the compiler was once again GCC (7.2.0)
which, in addition to all the previously mentioned aspects, is compatible with the type of
tools to be analyzed.

After observing that the programming languages supported by GCC have a similar ten-
dency for all analyzed cases, in this chapter we have chosen to select only one option as a
study target. In this way it is possible to analyze in more detail some peculiarities of the
language and of the compiler itself. The selected language was C that in addition to the
reasons presented previously, displayed excellent results in the previous study and has a
strong integration with both the selected compiler and the type of tools intended.

After selecting these two elements, it was essential to study in depth the parameters used
in the compilation process. In a first phase analyze the compiler and the categorization
that it provides and later fit the options present in the compilation profiles obtained for the
language in question.

Within the reused elements of the previous study, stand out the target machine and the
measurement framework.

The target machine has not undergone any changes to its hardware, which possesses a
modern microprocessor from Intel (the leading manufacturer of the market). However, an
update was made on most of the software it owned, namely the Linux kernel and Operating
System.

One of the versatilities of the measurement framework conceived in the previous study
is that it had been developed quite generically allowing it to be used in other areas of anal-
ysis as well. Demonstrating precisely this, the tool is again used to carry out the necessary
measurements. Among the advantages listed it presents very relevant virtues taking into

52

account the hardware used and fits perfectly into the intended analysis.

One of the points of analysis which was more detailed than the previous study was the
set of benchmarks used. A set that would be more challenging for the hardware used was
intended, one that would have more diversified scopes and backgrounds and still relevant
for the community in general. The choice fell on the Computer Language Benchmarks
Game1 project (CLBG) which in addition to these factors has many other interesting fea-
tures for the desired analysis.

The elements gathered for this study, as well as all the results obtained, are also presented
in the project website2.

This chapter is organized as follows. Initially in Section 5.1 some relevant aspects about
this type of tools are analyzed. Then, Section 5.2 introduces the most interesting aspects of
the types of options that the tools provide. In Section 5.3 is presented an interesting project
(CLBG) that has software solutions for various programming challenges in the most diverse
languages. In Section 5.4 three of the main elements of the study are described: testing
platform, the measurement software and the measured software. In Section 5.5 the studied
tools are presented and is performed the description of their compilation profiles and pa-
rameters. Still within the same section, the approach adopted in the measurement process
is explained. Afterwards, the results obtained in the experimental study are presented and
discussed in Section 5.6. Finally, the Section 5.7 addresses some of the considerations of the
presented study.

5.1 integrated development environments

Following the technological advance of the last 50 years, the developers work methodology
was also progressing in order to maximize their productivity and take better advantage of
the new capacities that were provided. Gone are the days when a developer needed to
write the code in a text editor, save it, exit the editor, run the compiler, annotate the error
messages in an auxiliary pad, and finally re-inspect the code. Some methods and practices
were developed in order to streamline the whole process and one of the early highlights was
the creation of a software suite called Integrated Development Environment (Patrizio, 2013).

The first time an integrated editor and compiler emerged was with the release of Turbo
Pascal3 in 1983, after Borland Ltd purchasing a Pascal compiler. In addition to other ad-

1 https://benchmarksgame-team.pages.debian.net/benchmarksgame/
2 www.di.uminho.pt/˜gepl/OCGREC/projects/project2.html
3 http://turbopascal.org/

53

vantages such as ability to run in memory, developers could from there have the error
messages in the text editor itself and with a click go to their precise location in the source
code. Thanks to the advancement in graphical computer aspects and following the ideas
launched by Turbo Pascal, in 1991 appears which is considered by many the first true IDE,
the Microsoft’s Visual Basic4. Built in one of the most popular languages of the 80, it
quickly gained notoriety due to the great increase of productivity since it allowed to think
about programming in graphical terms and not just in the textual context (Veracode, 2018)
(Patrizio, 2013).

Nowadays they are already deeply rooted in software development and the number of
existing options are quite outstanding. From various price ranges, communities from which
they emerge or even different technologies and target audience, all have different capabili-
ties that make them so sought after by developers and software companies.

In this section are presented some concepts about this method of software development
so in vogue these days. Some advantages and disadvantages of using IDEs are identified
and which differentiating factors exist between them. In the sequel a study is presented
that deepens some of the information presented here as well as explored new aspects such
as what types of executables they produce.

5.1.1 Meaning and Main Features

An Integrated Development Environment is a software application that in a single work
environment provides development tools in an integrated way to increase programmer pro-
ductivity. They are designed to agglomerate all the basic tools inherent to the different
stages of software development, as well as some over-the-top functionality, providing a pro-
gramming environment to streamline developing. Among the tools often available, stand
out for their importance and usefulness (Veracode, 2018):

SOURCE CODE EDITOR

It is a text editor specifically designed for the writing/editing of computer programs
source code. They are, therefore, a fundamental tool for programmers and distinguish
themselves from text editors because it has the ability to simplify and improve the
writing/editing of source code.

COMPILER

Essential tool that intervene as mediators between programmers and machines in the
developing code process (more information in Chapter 3). Some IDEs even allow to

4 https://docs.microsoft.com/en-us/dotnet/visual-basic/

54

select which manufacturer or version you want to use as well as choosing different
compile/interpretation profiles and parameters.

DEBUGGER

This tool is widely used by programmers to search for development errors and to
test application programs. In addition to a minimalist graphical interface simulating
the multiple steps of a program execution, some IDEs still provide several operations
modes (e.g. full or partial) to limit the impact of the resulting code slower speed.

BUILD AUTOMATION TOOLS

Build Automation Tools (BATs) allow to automate simple and repetitive but essential
tasks for the development of software such us compiling, packaging and testing. Inte-
grated in IDEs they allow with a click to build the entire project in a very comfortable,
fast, consistent and secure way, reducing the space for errors and other complications
inherent to the execution of the several steps. Another great advantage is the simpli-
fied management of the target environment and dependencies on third party software,
being possible to validate and define in particular which requirements are necessary
for the project (inclusively specify the version) and even to install them.

These functionalities are so important that sometimes IDEs do not develop them,
choosing instead to integrate, trust and delegate the task to external tools such as
GNU Make5, Maven6, Ant7 and Gradle8. Typically, predefined sets of configurations
are provided and it is possible through commands and file manipulation using a
scripting language to define the intended process. The use of these tools is seen as
a good practice in software development and a step in moving toward a continuous
delivery model and a better relationship between Development and IT Operations.

EXTRA FEATURES

Despite the more generic tools that most IDEs have, there are also some extra features
that, depending on the cases, are also very relevant, such as: intelligent code comple-
tion and expansion of abbreviations; bracket and code highlighter; automatic import
of libraries; code linting and error diagnostics; useful information on sidebars such
us hierarchy diagram, project browser and multiple output windows; attractive user
interface with menus, buttons and text boxes; etc.

5 https://www.gnu.org/software/make/
6 https://maven.apache.org/
7 http://ant.apache.org/
8 https://gradle.org/

55

Most IDEs also support the integration of third-party software with quite important
functionalities such as: version control libraries (e.g. GitHub9, Apache Subversion10),
plugins, full stack management, etc.

Typically the IDE is designed as a standalone tool that provides a graphical interface that
allows the programmer to interact and automate the development in a very agile way and
from a single Workspace. In spite of the different purpose, great diversity of parametriza-
tion and each IDE have a proper notion of environment, they are built so that the diverse
tools work together to present a seamless development set for the developer.

Eclipse11, Visual Studio12, IntelliJ13, Android Studio14, XCode15, among others, are some
cases that have most of the presented features. In Subsection 5.5.1 are some examples of
IDEs as well as some details about how they work.

5.1.2 Advantages and Disadvantages

The overall goal and main benefit of an IDE is to improve developer productivity. Its utiliza-
tion by developers, rather than the existing alternatives, has many interesting advantages
such as (Veracode, 2018):

FASTER AND BETTER PROJECT SETUP

Without integrated support, the whole process of initializing and configuring a project
can be quite painful. With this method it is possible to get some basic configurations
from scratch and manage some functionalities through a single application without
having to walk between different tools and workspaces. When well chosen, it will
require a minimal effort to the programmer in the setup phase and this becomes even
more relevant when it is still at a beginner level because it takes away the burden of
learning in detail a series of technologies simultaneously and allows it to focus only
on the essentials.

FASTER AND BETTER DEVELOPMENT TASKS

Most of the IDEs features are presented so that the development process became
more agile and uniform. Display of diagrams and other types of efficient resources
management, real-time feedback of code errors through automatic parse and syntax
checking as the code is being edited, automatic creation of pseudo-code (e.g. cycles
structure) or code which may be inferred (e.g. gets and sets in Java), providing visual

9 https://github.com/
10 https://subversion.apache.org/
11 https://www.eclipse.org/
12 https://www.visualstudio.com/
13 https://www.jetbrains.com/idea/
14 https://developer.android.com/studio/index.html
15 https://developer.apple.com/xcode/

56

and keyboard shortcuts that reduce the required steps and clicks to obtain results, are
some of the factors that make it possible to program more and with less effort using
IDEs.

FASTER AND BETTER PROJECT MANAGEMENT AND COLLABORATION

Because of the IDEs inherent integration, programmers are forced to think of the
project more globally in terms of the entire development life cycle rather than a series
of discrete tasks. They also encourage and simplify the use of code comments for
the programmer and provide some automation of documentation as well automatic
generation of reports and other visual resources. It also benefits the joint work of
programmers in a single work tool.

ENFORCE PROJECT OR COMPANY STANDARDS

The use of the same development environment interface by a group of developers
standardizes the development process and allows to smooth and accelerate the entry
of a new team member. Standards can be further enforced if the IDE allows the
inclusion of custom templates and sharing them between members/teams working
on the same project.

CONTINUAL LEARNING

The use of IDEs is also a great way for a developer to keep informed about the latest
area practices, features and trends. Instead of being comfortably attached to them
favorite tool chain and text editor for a long time, they are compelled to stay current
and experiment new concepts and tools to take more advantage of them and increase
their productivity.

Naturally, some drawbacks are also pointed out in the use of this developing model.
There are IDEs for each degree of user knowledge and an inadequate choice will cause the
programmer, for example, to get lost in the middle of excess information and features that
he does not yet want or perceive. Also the need to learn the various aspects inherent to an
IDE requires an initial investment of time and patience until the greater efficiency in the
developing is achieved. It is also true that an IDE is a strong weapon but will not fix bad
code, practices, design or performance and that in the hands of someone with less solid
programming bases facilitates the creation of heinous code but still runs. So it’s up to the
programmer to have some knowledge of what he’s doing and make right decisions to make
good use of what’s being provided to him.

Each IDE has its own niche strengths and weaknesses that differentiate them and make
them more or less interesting according to some factors such as target public or project
purpose. However, from the various aspects presented above and comparing with the
existing alternatives, we conclude that with the adjusted choice of an IDE the disadvantages
pointed out are easily overcome in the medium term and the gains are immense. Although

57

IDEs are not required to program, we believe that they have very useful tools to support
any project and are very beneficial to increasing developer productivity.

5.1.3 Differentiation Factors

Although at first glance most of the IDEs seem quite generic and similar to each other
because of the many common aspects they possess, in practice they all turn out to be
different in some important criteria due to the options taken during their design. How to
maximize user productivity, improve target audience’s usage experience, make the product
more financially profitable, the user’s experience level expected, among others.

IDEs are available from Open Source communities, vendors and software companies;
different pricing and licensing (e.g. totally free, free depending on the type usage, paid
for a total license amount); different target audiences (e.g. beginners, advanced, students,
professionals); supported operating systems (Windows, Linux, macOS, etc., or even several
simultaneously); system model (e.g. standalone, part of a suite of compatible applications,
plugin, Cloud Service); different target machines and purpose (mobile, embedded system,
databases, web, etc.); supported programming languages (e.g. specific for just one language,
one paradigm or even multiple-languages); features that provide (e.g. profiler, static code
analysis, GUI builder); whether or not to include plugins and extensions (free or marketed);
etc.

Although not all of them have the same relevance, they nevertheless end up being the
main reason for adopting or rejecting the product by programmers and interfering with
other relevant factors such as the type of user or company that will use them, the machine
and target application, time and cost of use, among others.

5.1.4 Summary

Tracking the IDEs evolution, also the source code editors has evolved substantially making
the line that separates them more and more tenuous. Sublime Text16, Atom17 and Visual
Studio Code18 are some examples of very sophisticated choices in terms of customization
and integration of plugins and ultimately few are the aspects that differentiate them from
true IDEs. They are therefore also great options for any developer who prefers a more
personalized environment with the added cost of a greater effort in the setup of the whole
system in order to enjoy more options than the just normal source code editing.

16 https://www.sublimetext.com/
17 https://atom.io/
18 https://code.visualstudio.com/

58

More and more models beyond the usual standalone application are gaining interest
from developers, such as Software-as-a-Service (SaaS) and namely Cloud IDEs. This ser-
vice allows to use the web browser as a client and to access a good range of cloud-based
applications and services. Although there is still some distrust from developers in the adhe-
sion to this model, in fact owns quite interesting advantages such as: requires virtually no
download or installation, compatible with a greater number of devices, access to software
development tools from anywhere in the world and easy collaboration between people in
different locations. Once this model has the integration of more tools and taking into ac-
count the great potential that presents, as well as the advantages enumerated and the great
adhesion to services in the Cloud by the companies, this may well be the model in vogue
in the next decade for the software development industry (Veracode, 2018).

IDEs clearly make the software development process much more simplified by providing
useful tools for all tastes and needs. With just one workspace it is possible to edit, compile
and debug code in such a clear and natural way that sometimes developers do not even
realize that exist different phases. Choosing an IDE that fits properly the programmer
and project is very important because it increases the comfort and productivity even more
significantly.

5.2 compilation profiles

One of the most interesting aspects of IDEs is that they allow to create and select differ-
ent environment profiles. This feature allows the user to automate and streamline part of
the development process, providing a set of predefined configurations for different types
of projects, builds, users, application to develop, among others. Profiles are so present in
IDEs that sometimes users do not even realize that they are using them when they get an
output from an application in a more detailed way or when they build the entire project by
selecting only one shortcut. The type, quantity and level of sophistication of the provided
options vary greatly from IDE to IDE. However, its benefits are quite considerable and in-
dispensable for any user, regardless of their type of use or level of knowledge.

One of the compilation strategies practiced by IDEs is precisely a feature with these char-
acteristics, namely compilation profiles. The IDE suggests to the user one or more ways to
compile his programs without having to perform a great interaction (in most cases just one
click) or need to define any compilation steps or parameters. The recommendations may
vary in quantity and complexity, being generally presented in the form of optimized pro-
files for different development phases such as Debug or Release. It is rather curious to note
that although several profiles with the same name and purpose are found for different IDEs,

59

the optimizations they recommend are mostly different, proving to be very interesting to
analyze what each IDE intends with each optimization flag and its real energy impact in
the executable generated.

Although all the studied IDEs share this compilation strategy, they vary in the way the
profiles are presented as well as in their quantity and sophistication. Considering only
the compilation profiles objectives (mainly the presence or absence of optimizations), it is
possible to classify the analyzed IDEs in three groups:

NOT OPTIMIZED PROFILES

Set of IDEs that only provide the user with a default profile and without care regard-
ing the optimization of the resulting code. The user can also compile the program
comfortably but only in the simplest and inefficient way if they choose the provided
default parameters. These IDEs are generally very simple and lightweight, usually
used by those who are taking the first steps in the area and looking only for some
work tool that automates the minimum necessary.

OWN PROFILES

More sophisticated IDEs that develop their own profiles with optimized compile pa-
rameters. They present two or more that they consider relevant for a given develop-
ment phase or the purpose of the target application. Being Debug and Release the
most common profiles, it is also possible to find others with more specific goals such
as reducing the size of the resulting code or the level of debug information in the vari-
ous stages of development. This group of IDEs also stand out because they offer easy
exchange between profiles and also options with enough information for the user to
create their own compilation profiles.

BUILD AUTOMATION TOOLS PROFILES

In convergence with the two previous groups, there are IDEs that although they
choose not to design custom optimization profiles for their tools, yet provide similar
functionality through the strong integration of BATs. These tools are quite powerful
and allow through a scripting language to execute and validate quite a set of tasks,
reducing the space to possible problems. The automation of compilation is one of the
most solid strands they present, demonstrated through the extensive list of features
they provide.

IDEs from this group choose to delegate to external tools part of the definition of the
compilation process, namely the choice of the optimization parameters of the compi-
lation profiles. This option allows them to inherit all the advantages that the initial
tools offer as well as increase the portability of the projects. However, because the

60

use of these tools can be done externally or even integrated by other IDEs, this option
reveals itself, although quite efficient, less personalized and more generic because the
code generated will be precisely the same for all who use them.

Naturally, they all allow the user to manually change the build parameters. Nonetheless,
it is very interesting to analyze the way of thinking of each IDE, what decisions they make,
what standard options they provide and how optimized they are.

5.3 the computer language benchmarks game

Naturally, each programmer has his own level of knowledge and programming style allow-
ing the existence of multiple software solutions for the same programming challenge. This
diversity of solutions, which is already significant itself, easily expands according to the
challenge complexity level or if different technologies are used (for instance different pro-
gramming languages or paradigms). Consequently, the need arises to analyze the multiple
solutions and compare them taking into account several factors relevant in this matter, such
as execution speed, amount of resources used, level of abstraction, energy consumption,
solution size or parallelization capability.

The Computer Language Benchmarks Game19 (CLBG) is precisely a software project that
compares implemented software solutions in most popular programming languages. The
project contains a set of very simple but diversified algorithmic problems that work as chal-
lenges for their community. This follows as a game in which any user can consult or submit
a solution in the technologies of his choice (e.g. select the language, operating system or
even the compiler/interpreter) and see it evaluated and compared with the remaining ones.
After a validation process, all submitted programs are measured on the same target ma-
chine and using the same measurement process. The CLBG also provides a framework that
allows for the user to validate and test the submitted solutions according to some criteria,
and also the possibility to measure and compare them in terms of CPU time, elapsed time,
memory used and the gzip20 size of the source code. They also provide a website with all
the information previously mentioned as well as rankings, graphs and other comparative
illustrations for all problems and languages involved along with other useful notes from
the developer team (Gouy, 2018b).

The project content as well as its objectives have been transformed and developed over
the more than 15 years of existence. Initially the main objective was only to compare all the
major scripting languages, but progressively it was growing and today it already includes

19 https://benchmarksgame-team.pages.debian.net/benchmarksgame/
20 https://www.gnu.org/software/gzip/

61

languages of several paradigms (e.g. functional, imperative, object-oriented), types of ex-
ecution (e.g. compiled, interpreted, virtual machine - and including several versions and
manufacturers), multiple operating systems, etc. Nowadays the analysis performed focuses
mainly on three aspects related to the solutions developed: which are the fastest, which
are the most succinct and which are the most efficient. Each time a new version of a lan-
guage or other technology is used, all programs affected are remeasured and those that do
not pass the validation tests are removed. Currently, the project encompasses 10 active chal-
lenges (and more 5 that are obsolete/removed) and more than 1100 valid solutions covering
more than 20 different operating systems. Each challenge has solutions in between 19 and
33 different programming languages in a total of over 40 (Thiel, 2018)(Gouy, 2012)(Gouy,
2018a)(Gouy, 2018b).

This project has gained some interest from the scientific community especially since 2009.
Although the creators did not have that intention, since the project presents such simple
and diverse problems, such heterogeneous software solutions and analysis of relevant fac-
tors, it has proven to be an excellent source for a considerable amount of scientific studies
(Williams et al., 2010; Wrigstad et al., 2010; Shirako et al., 2009; Karmani et al., 2009; Brun-
thaler, 2010; Gerakios et al., 2010; Pestov et al., 2010; Homescu and Şuhan, 2012; St-Amour
et al., 2012; Li et al., 2013; Sarimbekov et al., 2013).

From our point of view, the project proves to be a very challenging and didactic game for
any programmer and at the same time an excellent source of benchmark software for other
types of analysis. Despite the divergence of objectives between the CLBG and the study
intended here, we consider however that its content may be useful for our investigation. As
already mentioned, CLBG focuses on the comparison of runtime performance of software
solutions implemented in multiple languages and operating systems. Although they do
not take into account energy issues, we believe that our results may add further value and
complement very well this limitation, an approach already adopted in other studies (Pereira
et al., 2017; Lima et al., 2016; Couto et al., 2017; Oliveira et al., 2017). We also consider that
although we are confined to only the C language, the GCC compiler and a Unix system, the
solutions contained in the project remain quite relevant to the intended analysis. Opting
to choose multiple IDEs and restricting some of the other variables, allows us to obtain
more secure data about them and to keep the focus on their analysis and their compilation
profiles.

62

5.4 experimental setup

5.4.1 Testing Platform

The study was accomplished on a laptop Asus N56JN-DM127H, running under Linux. The
hardware/software resources most relevant characteristics for the required analysis are:
Ubuntu 16.04.4 LTS 64-bit (Linux Kernel 4.13.0-36); Intel® Core i7-4710HQ up to 3.5 GHz,
Haswell Family; 8 GB DDR3L 1600MHz; and NVIDIA® GeForce® GT 840M, 2GB DDR3

VRAM.

5.4.2 Measurement Software

In order to obtain the desired criteria for the experimental analysis, the framework devel-
oped for the study presented in Chapter 4 was used again. Briefly, this is a C program that
uses the RAPL interface to read information about energy consumption of components
from machine registers. The tool also allows a greater set of functionalities that aid the
mentioned process and potentiate other types of approaches according to the needs of the
user.

In the case of this particular study, the tool allows to measure by software with a high
degree of certainty the energy consumption of CPU and memory during the execution of
a given program. Obtaining this type of information and its processing is undoubtedly
fundamental to complement our analysis in order to have concrete experimental data that
we can address. The versatility of the tool is also an important factor as it allows exploring
different methodologies to be applied in this study. In fact, the wide range of options
reduces possible restrictions in the methodology design and allows the tool to adapt to it
and not the other way around.

5.4.3 Measured Software

After investigation of several possibilities of target programs for this study, we decided to
use the CLBG project to obtain benchmarks for the accomplishment of the desired measure-
ments and analysis.

The programs contained in that project prove to be an excellent set of options that per-
fectly fit the needs and objectives of this study. Firstly, because they respect essential re-
quirements for our project such as the software be open-source, have no graphical interface,
runtimes of less than 1 minute and work properly on Linux and with GCC. Moreover, they
have other very interesting and challenging properties such as being from different au-

63

thors, background areas and application fields making them quite diverse from each other;
they are highly optimized solutions making them even more challenging both at the level
of resources used and in terms of their compilation/execution process; have few external
dependencies and do not need access to any type of network, allowing to reduce the exter-
nal noise and the complexity inherent to the installation/measurement process (as well as
making it easier to focus on them); they have runtimes that allow us to perform a greater
number of consecutive measurements and avoid possible overflows during the measure-
ments; among other factors.

12 programs contained in the CLBG were selected. Below, a brief description, according
to the project authors, will be presented as well as the version used in this study and which
inputs were considered.

FASTA

Generate and write random DNA sequences by copying from a given sequence and
by weighted random selection from 2 alphabets.
Version selected: 2; Input used: 25000000.

N-BODY

Double-precision N-body simulation. Model the orbits of Jovian planets, using the
same simple symplectic-integrator.
Version selected: 4; Input used: 50000000.

FANNKUCH-REDUX

Indexed-access to tiny integer-sequence, as defined in ”Performing Lisp Analysis of
the FANNKUCH Benchmark”21. For a given n that tends to infinity, it is conjectured
that the count approaches at most n*log(n).
Version selected: 5; Input used: 12.

SPECTRAL-NORM

Eigenvalue using the power method. Based on the statement in point 3 of the set of
challenges published in 2002 by SIAM News called ”Hundred-Dollar, Hundred-Digit
Challenge Problems”2223.
Version selected: 5; Input used: 5500

MANDELBROT

Generate Mandelbrot set portable bitmap file. Based on the mathematical problem
called Mandelbrot Set24, which in general terms is a particular set of complex numbers

21 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.5124

22 http://mathworld.wolfram.com/Hundred-DollarHundred-DigitChallengeProblems.html
23 http://www.siam.org/siamnews/01-02/challenge.pdf
24 http://mathworld.wolfram.com/MandelbrotSet.html

64

which has a highly convoluted fractal boundary when plotted.
Version selected: 6; Input used: 16000.

REGEX-REDUX

Match DNA 8-mers and substitute magic patterns. In this particular case, through the
use of the same simple regex patterns and actions to manipulate FASTA format data.
Version selected: 4; Input used: fasta file input25000000.txt.

K-NUCLEOTIDE

Hashtable update and k-nucleotide strings. Requires mapping of DNA letters and
the use of hash functions (built-in or library) that concatenates those codes is an
acceptable optimization.
Version selected: 1; Input used: fasta file input25000000.txt.

REVERSE-COMPLEMENT

Read DNA sequences and write their reverse-complement from the sequence of bases
of each strand.
Version selected: 6; Input used: input5000000.txt.

BINARY-TREES

Allocate and deallocate a large amount of perfect binary trees, using a simplified
adaptation of the method of Hans Boehm’s GCBench25.
Version selected: 3; Input used: 21.

CHAMENEOS-REDUX

A peer-to-peer cooperation paradigm adapted from what is stated in ”Chameneos, a
Concurrency Game for Java, Ada and Others”26.
Version selected: 5; Input used: 60000000.

METEOR

Algorithmic search of solutions for the Meteor Puzzle (10x5).
Version selected: 1; Input used: 2098.

THREAD-RING

Simplistic adaptation of the process described in ”Performance Measurements of
Threads in Java and Processes in Erlang”27 and ”A Benchmark Test for BCPL Style
Coroutines”28, where messages are passed between N threads/processes that are
spawned connected as a ring structure.
Version selected: 3; Input used: 5000000.

25 http://hboehm.info/gc/gc bench/
26 http://cedric.cnam.fr/PUBLIS/RC474.pdf
27 http://archive.is/1droG#selection-129.1-129.204

28 http://www.cl.cam.ac.uk/ mr10/Cobench.html

65

The CLBG project provides in its online platform much more information about the pro-
grams presented as for example some more background on what inspired their challenges,
more detailed explanation about the behavior of the intended algorithm (including rec-
ommendations and restrictions of implementation), practical examples of some supported
approaches, suggestion of inputs and respective outputs generated (namely which will be
considered valid for participation in the project game) and previous results of measure-
ments submitted for different platforms and languages.

With the exception of pidigits, all the programs that are considered active for the CLBG
are used. This exception is due to technical difficulties because unfortunately only one C
version of the program is available and it was not possible for us to get it working correctly.
The three programs considered obsolete by the CLBG (chameneos-redux, meteor, thread-ring)
are also included in our study, as they are still perfectly valid and have value for our analy-
sis.

The vast majority of the challenges, besides covering a wide range of programming lan-
guages, also have several solutions implemented for each specific language. Since C is not
an exception, there are several versions that can be considered for our study. We chose to
use the version better positioned in the performance ranking provided by the CLBG for
each problem because we consider that the higher sophistication they present could bring
more relevance to the results obtained.

Regarding the inputs selected, preference was given to the values recommended by the
CLBG itself to test the programs performance. However, the order of magnitude was
changed for some cases in order to reduce the size of the output generated or to increase
the execution time to values greater than only a few seconds. With these improvements
on the one hand it has become feasible to perform the large number of measurements we
wanted without generating terabytes of disk information and on the other hand make the
execution time of the programs more homogeneous and to make more salient the possible
effects caused by the parameters considered. For all analyzed cases the input is fixed for all
executions of a given program and only has one of two formats: a natural number or a .txt
file generated from the fasta program.

It was not necessary for us to make substantial changes in the source code of the pro-
grams analyzed.

All the programs were prepared to receive as an argument a variable element that defines,
among other aspects, the dimension of execution. Taking into account the option of using
a fixed input for each program, a hard coded variable was introduced in all programs with

66

their respective input value. This decision also makes it easier to automate the measurement
process.

For the mandelbrot and spectral-norm programs it was still necessary to apply an extra
change. It was found that the source code collected did not compile with the -O0 suite due
to conflicts with the inline declaration of some functions. This limitation was overcome
with the inclusion of the static keyword in the respective functions, being a procedure that
is already established in the binary-trees program (which also served as inspiration). This
approach does not present any limitation to the functioning of the program itself since the
mentioned functions are at no time invoked externally (GCC team, 2018a).

Neither of the changes made alters the result of the program or any other aspect of the
original operation of its algorithms. Therefore, in its essential, all the analyzes and mea-
surements made can be seen as if the programs had entirely in their original version for a
certain fixed input.

Analyzing the CLBG ranking that includes all versions submitted for the most diverse
languages and programming platforms, the versions considered in this study are quite
optimized being highlighted in the respective tops of each challenge. They are mainly in
the first two positions in terms of runtime performance and are equally well positioned in
the other factors considered by that project. This fact further emphasizes the value of the
solutions used as well as making the choice of the CLBG even more relevant as the source
of benchmarks for our study.

5.5 methodology

5.5.1 Analyzed Tools

Integrated Development Environments

Taking into account the previously established study parameters (in particular the machine
used and the intended analysis) as well as other external factors such as the great diversity
of IDEs in the current market, some selection criteria were defined for the candidate study
tools in order to obtain more relevant results. A given IDE is considered a candidate to be
analyzed by our study if it complies fully with the following requirements:

• Running under Linux environment;

• Support the C language and GCC compiler;

• Have a stable and release version;

67

• Capable of accomplishing the tasks under study without resorting to plugins installa-
tion;

• No cost of usage or at least have a trial version;

• Specification of the parameters used during the compilation process.

For the study, 41 IDEs supporting C/C++ language were preliminarily collected as pos-
sible candidates. This collection was formed based on several research, including several
online listings and blog posts regarding interesting criteria such as good quality and great
user acceptance. Due to the fact that they did not meet at least one of the criteria required
for the study, 26 options were discarded:

• Tools that only have alpha version in Linux or because they are discontinued: Blood-
shed Dev-C++29, Philasmicos Entwickler Studio30 and Squad: Collaborative IDE31;

• Dedicated to C++ or not support C/C++ without plugins: Ultimate++32, IBM Rational
Software Architect33, MonoDevelop34, OrionHub35;

• Only compatible with Windows, MAC, iOS or Android: C-Free36, SkyIDE37, Open
Watcom38, Microsoft Visual Studio39, Bricx Command Center40, MinGW41, LccWin32

42,
Pelles C43, Xcode44, AppCode45, C++Builder46;

• Does not provide free access: Digital Mars IDDE47, LabWindows/CVI48, SlickEdit49,
Understand50;

29 http://www.bloodshed.net/devcpp.html
30 https://www.philasmicos.com/index.php
31 https://squadedit.com/tour
32 https://www.ultimatepp.org/
33 https://www.ibm.com/developerworks/downloads/r/architect/index.html
34 https://www.monodevelop.com/
35 https://orionhub.org/
36 http://www.programarts.com/cfree en/
37 http://www.skyide.com/
38 http://www.openwatcom.org/
39 https://www.visualstudio.com/
40 http://bricxcc.sourceforge.net/
41 http://www.mingw.org/
42 https://lcc-win32.en.uptodown.com/windows
43 http://www.smorgasbordet.com/pellesc/
44 https://developer.apple.com/xcode/
45 https://www.jetbrains.com/objc/
46 https://www.embarcadero.com/products/cbuilder
47 https://digitalmars.com/features.html
48 http://ni.com/cvi
49 https://www.slickedit.com/
50 https://scitools.com/

68

• Does not mention or disclose how the compilation process is performed: Repl.it51,
CodePad52, JDoodle53, CodeChef54.

Some of the mentioned tools fail even several of the required criteria, but for simplifica-
tion purposes they are only associated with one of the requirements listed above. It was
observed some balance in the amount of candidates removed per requirement, with the ex-
ception of support in Linux that contributes to the discard of about half of the candidates.

A common aspect in the candidates who were dispensed due to the last criterion pre-
sented is the fact that they are all Cloud IDEs. It has been found that this kind of tool
usually even indicate to the user some informative elements such as which version of GCC
is made available or data related to the submitted program (such as runtime and mem-
ory consumed). However, they omit other relevant information such as what compilation
parameters are used to generate the requested executable.

There was an effort on our part to get more information from the tools in question, but
it was not possible to get any clarification on the subject matter (in some cases not even an
answer). We were only informed by some that in the future they will provide several com-
pilation profiles, but we were not told which parameters they use at the moment (which is
one of the most relevant information for our study). In general, the majority of Cloud IDEs
focus mainly on Web programming, providing more information and directing the more
advanced features for this type of technologies. At the moment there is still some lack of
consideration in aspects that we consider relevant in the scope of our study.

Table 8 presents the 15 IDEs that were found in our research and considered valid for
analysis in this study: CLion55, NetBeans56, Code::Blocks57, CodeLite58, Eclipse CDT59,
KDevelop60, Geany61, Anjuta DevStudio62, Qt Creator63, DialogBlocks64, ZinjaI65, GPS66,

51 https://repl.it/
52 http://codepad.org/
53 https://www.jdoodle.com/
54 https://www.codechef.com/
55 https://www.jetbrains.com/clion/specials/clion/clion.html
56 https://netbeans.org/
57 http://www.codeblocks.org/
58 https://codelite.org/
59 https://www.eclipse.org/cdt/
60 https://www.kdevelop.org/
61 https://www.geany.org/
62 http://anjuta.org/
63 https://www.qt.io/
64 http://www.anthemion.co.uk/dialogblocks/
65 http://zinjai.sourceforge.net/
66 https://www.adacore.com/gnatpro/toolsuite/gps

69

IDE Name Studied Version Usage Model License Type Target Audience
Code::Blocks 17.12-1 Standalone Free License Beginner

Geany 1.33 Standalone Free License Beginner

DialogBlocks
5.15.3 (Unicode)

Built Dec 13 2017

Standalone
Free for

unregistered and
registered account

Beginner

ZinjaI 20180221 Standalone Free License Beginner
Anjuta DevStudio 3.18.2 Standalone Free License Intermediate

GPS 20170515-63 Standalone Free License Intermediate

CLion
2018.1 Build

#CL-181.4203.54

Standalone Free Trial Advanced

NetBeans IDE
8.2 Build

201609270201

Standalone Free License Advanced

CodeLite 12.0.0 Standalone Free License Advanced
Eclipse CDT 9.4.3.201802261533 Standalone Free License Advanced

KDevelop 5.2.1 Standalone Free License Advanced

Qt Creator
4.6.0 Based on

Qt 5.10.1
Standalone

Free open source
version and trial

commercial version
Advanced

Oracle
Developer Studio

12.6 Standalone
Free after

account registration
Advanced

Sphere Engine 20180319.r445 Cloud Free Trial Intermediate

AWS Cloud9 Not specified Cloud
Free with

limited resources
Advanced

Table 8.: Analyzed IDEs.

Oracle Developer Studio67, Sphere Engine68 and AWS Cloud9
69. They were all installed in

the machine previously described and were tested the most recent versions available until
the 29th of March. We consider that it is a very interesting set for the intended analysis,
highlighting its considerable scope and diversification in aspects such as its sophistication,
usage type, business model, target audience and number of languages natively supported,
among others. Interestingly, all tools are cross-platform.

Another differentiating factor observed among the selected elements is the diversity and
quantity of languages and technologies that they support. On the one hand there are IDEs
that stand out because they are quite generic and comprehensive in relation to that aspect
(e.g. NetBeans, KDevelop) and on the other there are more restricted tools being even

67 https://www.oracle.com/tools/developerstudio/index.html
68 https://sphere-engine.com/
69 https://aws.amazon.com/pt/cloud9/

70

sometimes quite specific versions for a particular programming family or language (e.g.
CLion or Eclipse CDT for C/C++).

We believe that this fact may have some relevance in the user’s interaction with the tool
and in the amount and quality of features it provides. Naturally, it is expected that the
more specific the tool is, the more suitable and optimized it will be to work with a particu-
lar language. However, we consider that this differentiating factor will not have an impact
within the objectives intended for our study because they are independent aspects. This
observation can be analyzed in more detail in the final part of this study after concrete
results were obtained.

In order to obtain the desired data from IDEs, the license type turn out to be indifferent
for our analysis. None of them restricts the access of that kind of data, whether the license
type is totally free, trial with limited time/resources, free for academic staff or open source
version. Nonetheless, it is an aspect that has some inherent limitations to the tools (which
differ greatly depending on the case and version itself) and which may be relevant to other
areas of analysis, which has led us to choose to disclose the information regarding each one.

AWS Cloud9 and Sphere Engine differentiate themselves from the rest by having the
Cloud IDE model as their utilization format, unlike the remaining 13 that are Standalone
applications. In Figure 11 it is possible to observe an example of the common interface
of a Cloud IDE (with the compilation options displayed). The Sphere Engine is also used
or integrated in other similar online platforms (e.g. Ideone70, Amplify71, RecruitCoders72),
allowing the results and analyzes obtained to this case may be extended to the other related
tools.

70 https://ideone.com/
71 https://www.amplify.com/
72 https://recruitcoders.com/

71

Figure 11.: Sphere Engine interface.

CLion, NetBeans, Eclipse CDT and Qt Creator are four of the most popular tools in the
developers community for the languages and compiler concerned. They stand out by pro-
viding very important automation mechanisms for more demanding applications, ease of
integration of plugins/build automation tools and for being a great help for large projects
with multiple dependencies.

Although NetBeans is a very generic tool, it has a very interesting feature that is not
considered by many tools. This IDE allows to add or remove specific packs for certain
languages allowing the user to have a tailor-made IDE for their needs at the moment. Thus,
the user do not need to work with the full version of the IDE if he just needs a particular
paradigm, nor install a new IDE for every technology that they are interested in. This fea-
ture was even considered for this study where it was only installed the specific version for
C/C++.

Geany, ZinjaI, DialogBlocks and Code::Blocks differ from the other Standalone applica-
tions for having as target audience mainly beginning users, in particular programming
students. They provide a more simplified interface, with basic but quick and efficient mech-
anisms and without the need for large computational resources or external dependencies to
operate (see Figure 12). The absence of advanced shortcuts and sophisticated features such
as version control libraries or full stack management allow the user to focus more easily on

72

their purpose for the moment and to interact more lightly with the incidences of the code.
Code::Blocks also allows in a very consistent way to integrate and expand the tool for other
type of users and projects.

Figure 12.: Geany interface.

While we recognize the high sophistication degree that various source code editors cur-
rently have, we have decided not to include any for our analyze. It would be necessary
to integrate plugins or libraries to perform the tasks required for this study and, as with
IDEs, it is our intention to only analyze the standard versions provided to users without
any kind of customization that may vary according to their preference. However, the study
developed here as well as the results obtained can be easily related to those coming from
more sophisticated source code editors, especially those that have the ability to integrate
plugins with the same standard features.

Build Automation Tools

Applying the same criteria previously defined for the IDEs selections, were also analyzed
8 tools that are or have features of BATs. In particular, which have the ability to provide
automatic generation of the necessary steps for the compilation of C/C++ projects. Despite
there is a very popular set of tools with these characteristics, in fact it turns out that they are
also conceptually quite generic since they are intended by nature to cover a wide range of

73

target applications. Although they support the languages and compilers that are intended
for our study, most do not provide the user with predefined compilation parameters, re-
quiring to fill in a skeleton provided with a representation of the desired values or to create
construction environments from scratch.

For this reason, 5 of the candidates initially considered were discarded: Apache Maven73,
Gradle74, Apache Ant75, SCons76 and Premake77. Naturally there are plugins and libraries
that fill the gap presented (e.g. NuGet78), but as noted earlier the integration of these vari-
ants falls outside the context of our study.

Despite the limiting factors mentioned, it was possible to find in our research 3 tools that
meet the required requirements and fit the intended objectives:

CMAKE

Powerful tool designed to build, test and package software. It provides the user with
a wide range of predefined configurations that deeply embrace the many existing
features as well as ease in customizing them. The user assembles in a single context-
sensitive file the desired settings (CMakeLists.txt) and then generates all necessary
steps for the project management such as importing components or generating output
suitable for different operating systems, compilers or IDEs. Compared to the other
tools presented below, this option stands out as being more generic, having a less
user-friendly syntax and also for being more appropriate for projects with greater
complexity and external dependencies. Eclipse, CLion, NetBeans, Sublime Text and
TextMate are just a few examples of the many IDEs and Source Code Editors that
integrate at least part of CMake’s functionality into their products (CMake Reference
Documentatiom).

QMAKE

Tool that allows with just a few lines of information to manage all the software build
process in a very simplified way. It was designed and proves to be more appropri-
ate for project management in Qt because it can automatically include build rules for
MOC (the meta-object compiler) which provides signals and slots, or UIC (the UI com-
piler) which creates header files from .ui designer files and RCC (the resource com-
piler) which compiles resources. However, it has capabilities to intervene in projects
external to the parent tool due to its great flexibility and high compatibility with other
build systems such as Microsoft Visual Studio and Xcode (qmake Manual).

73 https://maven.apache.org
74 https://gradle.org/
75 http://ant.apache.org/
76 http://scons.org/
77 https://premake.github.io/
78 https://www.nuget.org/

74

QBS

Qt Build Suite was originally designed from a list of suggested improvements pre-
sented in a blog post to be a Qmake replacement. It naturally has many similari-
ties with the tool that inspired it (in particular the propensity for projects in Qt) but
is currently already in a phase with some maturity and ideological independence.
Optimized declarative syntax (QML subset), increased extensibility, fast incremental
builds thanks to the project view as a whole and even greater ease in integrating ex-
ternal tools and transforming file types are some of the advantages that make Qbs, in
some aspects, an optimized version of qmake (Qbs Manual).

For our analysis we used the versions 3.11.0 of CMake79, 3.0 of qmake80 and 1.4.5 of Qbs81.
These tools have the ability to generate makefiles in a very simplified and configurable way
that will later allow to build the entire project according to the user purpose. This feature
is not present in all 8 analyzed tools and proves to be very pertinent since in addition to
the obvious advantages to the user in terms of portability and dependency management, it
allows to verify which parameters and standard instructions are passed to the compiler in
order to create the desired executable.

Another interesting feature that they have in common is the great versatility of use allow-
ing to work with these tools in multiple ways, with special emphasis through command
line or integration into IDEs.

Through command line it is possible to check in detail the depth of options that these
tools provide. However, only a small part of this set will be considered in this study, namely
the support of compilation profiles that allows the user to automatically obtain compilation
parameters, simply indicating through a textual (e.g. Debug, Release) or numeric (e.g.
compiler version) representation the desired settings.

The integration of some functionalities of these tools into IDEs is another very relevant
aspect because it allows to obtain the best of both worlds: obtain a familiar visual interface
to the user and, at the same time, quite sophisticated features and independent of the envi-
ronment used. The user can thus choose to import a file with the desired settings (created
for example in another IDE or through command line) or yet to manage them through the
menus and windows in the IDE itself.

Although the IDEs usually also have their own system for managing these aspects, it
is however verified that some cases opt for a strong integration of very mature BATs and
only create a graphical interface compatible, fully delegating to them the implementation
of these functionalities. In some cases they even choose to integrate a vast set of tools, such

79 https://cmake.org/
80 http://doc.qt.io/qt-5/qmake-manual.html
81 https://wiki.qt.io/Qbs

75

as Qt Creator that integrates the 3 tools mentioned.

In total, among the 49 tools found 18 were considered valid according to the requirements
and objectives of our study. In the following sections will be analyzed how the process of
compiling a C program is carried out and what options exist in order to configure it, which
compilation profiles each tool provides to the user, which represents in particular each of
the parameters that compose them and what conclusions can be drawn from the collected
information.

5.5.2 Compilation Options

GCC Overview

From an overall perspective, the compilation of a C program is a process consisting of four
distinct phases: preprocessing, compilation, assembly, and linking (always in that order).

Briefly, initially is performed the preprocessing of the source code received as parameter.
Then, is executed the actual compilation phase of one or multiple files in respectively one
or more assembler input files (which are later transformed into object files). After the linker
combines all the object files then the desired executable file is finally produced (Von Hagen,
2011) (Erlandsson, 2018). The whole process is also concisely illustrated in diagram 13.

Traditionally, C compilers orchestrate all this process by invoking other programs that
handle each phase separately.

76

Figure 13.: Traditional C compilation stages.

GCC is a driver program that works precisely as presented. This tool in particular also
allows some flexibility in relation to the compilation phases, allowing to control all or some
part of the process by passing options as arguments when invoking the program. Some
examples of this fact are the possibility to change the usual process flow, to execute or not
a certain phase (e.g. the option -c indicates that the linker should not be executed), define
the type of output generated, tweak for a different architecture and to optimize the code
quality.

The configuration parameters passed to the compiler as an argument can have different
formats, such as: single-letter (e.g. -L, -f), multi-letters (e.g. -dv, -fmove-loop-invariants),
letters and numbers (e.g. -g3), deriving from the same suffix indicating the class of the
same (e.g. -Wextra, -O2), have positive and negative version (for a -ffoo flag if it exists
its negation will be in the form -fno-foo) or even have a restricted set of possible defined
values (e.g. Wsuggest-attribute=[pure|const|noreturn|format|malloc], -fmax-errors=n). In
addition to the predefined options, the program also accepts as argument other parameters

77

such as file names and directories. With a few exceptions and since the user pick options
of different types, the order in which they are specified is not important for the final result
(GCC team, 2018b).

It is also important to note that despite the great versatility of programming languages
covered by GCC, in practice it is found that the vast majority of the options that are pro-
vided can be applied to the C language. The effective applicability of the flags in question
already depends on several aspects such as target machine, operating system, source code,
etc.

Briefly and according to the tool manual, the GCC parameters can be categorized as
follows (GCC team, 2018b):

• Overall Options
Controlling the kind of output: assembler files, preprocessed source, object files or
executable.
Examples: -c, -S, -E, -o.

• C Language Options
Controlling the variant of C language compiled.
Examples: -ansi, -std=standard, -fgnu89-inline.

• C++ Language Options
Options controlling C++ Dialect.
Examples: -fabi-version=n, -fno-access-control, -fcheck-new.

• Objective-C and Objective-C++ Language Options
Variations on Objective-C and Objective-C++.
Examples: -fconstant-string-class=class-name, -fgnu-runtime.

• Diagnostic Message Formatting Options
Options to control diagnostic messages formatting.
Examples: -fmessage-length=n. -fno-show-column.

• Warning Options
Options to request or suppress warnings.
Examples: -pedantic-errors, -Wall, -fsyntax-only.

• Debugging Options
Options to produce debuggable code.
Examples: -g, -fno-merge-debug-strings, -ggdb.

78

• Optimize Options
Options which control code optimization.
Examples: -falign-functions[=n], -fmerge-constants, -O3, -Ofast.

• Instrumentation Options
Enabling profiling and extra runtime error checking.
Examples: -p, -fbounds-check, -finstrument-functions.

• Preprocessor Options
Controlling header files and macro definitions and also getting dependency informa-
tion for Make.
Examples: -traditional, -dD, -pthread, -MMD.

• Assembler Options
Passing options to the assembler.
Examples: -Wa,option, -Xassembler option.

• Linker Options
Specifying libraries for linking.
Examples: -s, -static, -nodefaultlibs.

• Directory Options
Options for directory search (e.g. header files, libraries and executable files).
Examples: -Idir, -no-canonical-prefixes, –sysroot=dir.

• Code Generation Options
Specifying conventions for function calls, data layout and register usage.
Examples: -fcall-saved-reg, -fno-jump-tables, -fverbose-asm.

• Developer Options
Printing GCC configuration info, statistics, and debugging dumps.
Examples: -fdump-tree-all, dletters, -fprofile-report.

• Submodel Options
Target-specific options (such as processor variant).
Examples: -march=name, -mapcs-frame, -mmcu=mcu.

Compilation Profiles

All the 18 examined tools (15 IDEs and 3 BATs) grant the user the possibility of automating
the compiling process from their C projects using GCC through predefined compilation
profiles.

79

The concrete way in which the profile values are described depends greatly on the tool
in particular, being the most common through a log message in a program window (e.g.
Figure 14 and 15), an interactive menu in the Build Section of the project’s own settings
(e.g. Figure 16 and 17) or by consulting the Makefile molded by the tool for the concerned
project. In the particular case of the Sphere Engine that information is not provided together
with the tool, but we were able to obtain it by email after a request. The change between
profiles is usually performed in one of two ways: either by implied modification of a value
in a configuration file (e.g. Figure 18 and 19) or through a visual shortcut in the tool main
window (e.g. Figure 16 and 17).

Figure 14.: Log message with the compilation parameters from ZinjaI.

80

Figure 15.: Log message with the compilation parameters from CodeLite.

Figure 16.: Project properties manager from NetBeans IDE.

81

Figure 17.: Project properties manager from Eclipse CDT.

Figure 18.: Example of CMakeLists.txt from CLion.

82

Figure 19.: Default configuration file from AWS Cloud9.

Figure 20.: Changing between profiles through Oracle Developer Studio.

83

Figure 21.: Changing between profiles through Anjuta DevStudio.

There are 51 compilation profiles available in the total of the analyzed tools, of which 48

are non-empty and 29 are different from one another. Table 9 describes the profiles and
respective parameters, being the first profile of each tool precisely which is used as default.

84

Tool ID Tool Name Profile Name Profile Parameters

1 CMake

Debug -g
Release -O3 -DNDEBUG

RelwithDebInfo -O2 -g -DNDEBUG
MinSizeRel -Os -DNDEBUG

2 qmake
Debug -pipe -g -Wall -W -fPIC
Profile -pipe -O2 -g -Wall -W -fPIC
Release -pipe -O2 -Wall -W -fPIC

3 Qbs
Debug

-g -O0 -Wall
-Wextra -pipe

-fvisibility=default -fPIC

Release
-O2 -Wall

-Wextra -pipe -fvisibility=default
-fPIC -DNDEBUG

4 NetBeans IDE
Debug -g -MMD -MP -MF
Release -O2 -MMD -MP -MF

5 Code::Blocks Default (none)
6 CLion Integrates CMake

7 CodeLite
Debug -g -O0 -Wall
Release -O2 -Wall -DNDEBUG

8 Eclipse CDT
Debug -O0 -g3 -Wall -fmessage-length=0

Release -O3 -Wall -fmessage-length=0

9 KDevelop Integrates CMake
10 Geany Default -Wall

11

Anjuta
DevStudio

Default (none)
Debug -g -O0

Profile -g -pg
Optimized -O2

12 Qt Creator Integrates CMake, qmake and Qbs

13 DialogBlocks
Debug

-O0 -ggdb -Wall
-Wno-write-strings

Release
-O2 -Wall

-Wno-write-strings

14 ZinjaI
Debug

-fshow-column
-fno-diagnostics-show-caret

-g2 -Wall -O0

Release
-fshow-column

-fno-diagnostics-show-caret
-Wall -O2

15 GPS

Default (none)
SomeOpt -O
FullOpt -O2

FullAutoInli -O3

16

Oracle
Developer Studio

Debug -g -MMD -MP -MF
Release -O2 -MMD -MP -MF

17 Sphere Engine Default -O2 -lm -fomit-frame-pointer

18 AWS Cloud9

Debug -ggdb3 -std=c99

Default -std=c99

Table 9.: Tools, profiles and parameters analyzed.

85

Each examined tool gives a maximum of 4 different profiles per project, being the most
usual case the presence of 2. The strong versatility of Qt Creator allows it to accumulate up
to 9 distinct profiles in different projects through the integration of the 3 selected BATs.

There is clearly a tendency in the goal choices provided by the tools in question. From a
global point of view, the three major categories in terms of the options main purpose are:
profiles with no parameters, profiles that aim to provide the generated code with debug-
ging/profiling information (that may or may not contain warnings and some optimizations)
and profiles focused mainly on optimizations (which may vary in degree and purpose and
even contain debug information). Another aspect that is quite clear is the tools choice in
providing as a default profile one that has debugging characteristics and absence of opti-
mization parameters.

In the collection obtained it is verified that for 11 profiles there is at least one other that is
constituted by the same parameters. This repetition is due to several factors, in particular
because the set is very wide (thus making repetitions more and more propitious), some
profiles are fairly minimalist (providing only 1 parameter or even being empty), due to the
integration of BATs into IDEs (inheriting also the same predefined configurations) and also
because the design of some tools are strongly based on others (similarly replicating their
base settings).

CLion, KDevelop, and Qt Creator are three of the many IDEs that delegate the manage-
ment of build profiles to external tools. They create CMake-based C/C++ projects with the
respective CMakeLists.txt template along all the necessary settings for a simple and func-
tional application. As regards the QT Creator, this fact is even more significant because it
has the ability to integrate an even larger set of tools (including qmake and Qbs).

For different reasons but with similar results, it is also possible to notice that both Net-
Beans and Oracle Developer Studio provide the user with exactly the same profiles and
their compilation parameters. In this particular case it is due to the Oracle Developer Stu-
dio design being strongly based on NetBeans and therefore replicates most of its behaviors
and configurations (Oracle team, 2018).

Some IDEs also provide the user with the ability to create their own profiles. Generally
through iterative menus, drop-down lists and as well with the help of informative notes, the
user can easily manage a set of options related with the profiles such as the name, warnings
detail, architecture, standard C dialect, multithreading, optimization level, among others.
In the Figures 22 and 23 are well demonstrated the mentioned options in two of the ana-
lyzed tools.

86

Figure 22.: Managing profiles through Oracle Developer Studio.

Figure 23.: Managing profiles through GPS.

From what could be observed in our research, it is possible that for other versions and
types of IDEs, Operating Systems and machine architectures there are some differences

87

between the values indicated in table 9 and the values presented in such cases. For example,
Anjuta DevStudio also has another profile called MinGW32 which was not considered for
our study (because it is specific to Windows — among other reasons). It is also known
that some tools (e.g. qmake) contains in their profiles the -m32 flag for compatibility issues
and to generate code for 32-bit environment. Therefore, it is important to mention that the
data set we obtained is quite broad, but still specific for the parameters of this study and
respective machine used.

Profiles Parameters

Despite of the great diversity of options provided by GCC for C language, in practice it is
clear that the analyzed tools only use options from a smaller set of categories. In fact, they
only use options from 9 categories and do not mix more than 4 per profile. It is also verified
some particular incidence on options focused on producing debug information, warnings
management and code optimization.

Following will be made a brief contextualization of what each category consists of,
along with a description of all the parameters obtained (GCC team, 2018b) (Saddler, 2018)
(Von Hagen, 2011). All information given below are updated according to the version of
GCC used in this study (7.2.0).

PREPROCESSOR OPTIONS

Options that control the C preprocessor that are executed in the first phase of the
process, immediately prior to the actual compilation. In this stage continued lines
and stripping comments are joined, lines of code beginning with # character are inter-
preted as preprocessor commands, among other tasks with preliminary nature. GCC
allows the process to terminate immediately after this phase (generating the respective
output) by using the -E option argument.

• -MMD -MP -MF
Set of options related with preprocessing the output to a format adapted to make-
files. Instead of the usual result, the preprocessor generates one make rule suit-
able for describing the dependencies of the main source file. With the command
that includes the three mentioned options, the dependency management of the
source files with the makefile becomes more automated and allows it to react
more properly. For example, with this mechanism it becomes possible that if a
header file is changed all source files that include it are recompiled.

• -Dname
The -D option allows to set the name parameter as a macro with a value of 1.
NDEBUG is a macro that when set allows to turn off asserts as mandated by the

88

C standard library (assert ()). In turn, active asserts allow diagnostic information
to be written to the standard error file.

C DIALECT OPTIONS

Control parameters related to which C dialect (or derived languages) the compiler
should accept.

• -std=c99
Option that allows to configure which language standard to be chosen by the
compiler from more than 30 possible. If they were compatible, it can even be
chosen several base standards (and the GNU dialects of those standards). Pro-
grams that do not respect the specified parameters (and possibly some strict-
conforming) are considered invalid and rejected by the compiler. If no value is
specified, the dialect considered is the gnu11.

In 1999 the new edition of the ISO C standard was published (commonly known
as C99), improving some aspects of the language and introducing some new
features such as inline functions, flexible array members, designated initializers,
several new data types (e.g. long long int), etc.

DIAGNOSTIC MESSAGE FORMATTING OPTIONS

Options that allow to format the appearance of the diagnostic messages according
to the output device’s aspect (for example its height, width, etc.). By default there
is no care taken by the GCC in this regard, leaving to the user the customization of
aspects such as how often source location information should be registered or how
many characters should appear per line.

• -fmessage-length=n
Option that allows to format the error messages according with the maximum
n characters per line. By default, the value is 0 and no line-wrapping is done,
being made each error message available per line.

• -fno-diagnostics-show-caret
Each diagnostic message produced includes, besides the original source line, also
a caret 'ˆ' indicating the respective column. With this flag is possible to suppress
this piece of information. When used in conjunction with the previously dis-
played flag, the source line is truncated to its n characters.

• -fshow-column
Flag that is defined by default and controls whether or not GCC prints the col-
umn number of a diagnostic message.

WARNING OPTIONS

Compiler warnings are diagnostic messages that describe detected anomalies in which

89

present some risk to result in an error. After some assumptions, the compilation pro-
cess proceeds and the special situation detected is reported to the user through a
message (not with the reason that produced it, but rather with the low level anomaly
detected by the compiler). Although these messages are disabled by default and some-
times can be very inconvenient and difficult for the user to discover the message cause,
they should not be ignored at all but treated with due care in order to increase the
confidence of the code produced. Options in this category allows to control the num-
ber and types of warnings produced by GCC, or, in other words, how picky should
the compiler be.

• -Wall
Activates all the warnings regarding to constructions types that may raise doubts
(including in conjunction with macros) or approaches that should be avoided, be-
ing at the same time easy to correct in order to prevent the warnings in question.
In total, there are 50 options that can be activated/deactivated depending of the
source code and dialect used.

• -W, -Wextra
Option that activates some extra warning flags that are not included in the -Wall
option and that has the same purpose: to help ensure the underlying code is
secure. Do not confuse with the -w flag that inhibits all warning messages. The
nomenclature used in the most recent compiler versions is -Wextra and this op-
tion should be preferably used since it is more descriptive (although the old one
is still supported). Depending on the type of source code, dialect used and if it
is applied in conjunction with other parameters, this option enables/disables up
to 15 flags and provides 6 new warning messages (mainly for C++).

• -Wno-write-strings
Suppresses warnings regarding attempts to copy or write to string constants that
may appear dangerous or sloppy. Option selected by default by the compiler
and its negation (-Wwrite-strings) is not included either -Wall or -Wextra.

DEBUGGING OPTIONS

Options to produce debuggable code.

Due to the multiple transformations applied to the source code throughout the compi-
lation process, some machine instructions cannot effectively be mapped onto a specific
source statement. In particular, due to the various optimizations when compiling,
sometimes the program behavior becomes different from what would be expected
when looking only at the source code. Among the many possible surprises it can be
verified that, for example, some initially declared variables have been removed, some

90

instructions are not executed (due to constant results), changes in the control flow (e.g.
giving the impression that the program is running in the opposite direction), etc.

In order to facilitate the work during the development phase, GCC provides options
that allow the generated code to have useful information for a better analysis of the
same and even to emit extra information to being used by a debugger tool. If no level
of optimization is selected beyond the default, it is recommended to use the -Og for a
better debugging experience option.

• -g
Option that allows the addition of debugging information to the generated code
in the operating system’s native format (e.g. stabs, XCOFF, DWARF or COFF).
This extra information can also be used by GDB82 (The GNU Project Debugger).
This option has several levels of information, being by default equivalent to level
2. It is generally observed that the greater the selected level, the greater the size
of the executable produced.

Unlike most C compilers, GCC allows to use this option with some optimization
suits (e.g. -O/-O1 or -Og) making the process of debugging in optimized code
more simplified.

• -glevel
Possibility of producing debugging information, being its type and quantity de-
fined according to the specified level.

� -g0
Predefined option chosen by GCC in which no type of debug information is
produced.

� -g1
It produces minimal information such as descriptions of functions and exter-
nal variables, including details on local variables and line numbers. Usually
used for situations where it is not planned to debug the code, but still want
to safeguard the need of making backtraces in some parts of the program.

� -g2
Default debug information (equivalent to -g). Tells to the compiler to store
symbol table information in the executable relative to symbols of the source
code such as their names, type info, files and line numbers where they came
from, among others.

� -g3
Maximal debug level that includes extra information such as all the macro

82 https://www.gnu.org/software/gdb/

91

definitions present in the source code. When used in some debuggers, it is
also possible to get macro expansions.

• -ggdb
Option that provides debugging information in the most expressive format avail-
able for specific use on GDB tool (including GDB extensions if at all possible).

• ggdblevel
Analogous to glevel.

PROGRAM INSTRUMENTATION OPTIONS

Profiling is one of the most important aspect of software programming and raises
some of the biggest challenges in large-scale projects. It allows to collect profiling
statistics for code coverage analysis, obtain performance gains (e.g. identifying hot-
spots, dead code and bottlenecks) and even bugs detection (e.g. invalid pointer deref-
erences or out-of-bounds array accesses).

GCC supports a range of options that add to the code several types of run-time instru-
mentation that allows tracing or function-level instrumentation for debug or program
analysis purposes.

• -pg
Gprof83 is a tool used to profile software, namely to analyze the execution time
of functions. This option allows to generate inside the code extra suitable infor-
mation to be used by gprof program. For best results, is recommended using it
in both phases of compilation and linking.

OPTIMIZATION OPTIONS

Options that allow to control various types of optimizations related to the perfor-
mance of the compilation process and the subsequent generated code, such as run-
time, compile time, code size, memory usage, amount and type of debug/profile
information, among others.

By default, the compiler’s goal is primarily to reduce the cost of the process and
produce the expected debugging results (-O0). However, there are flags (either in-
dividually or in sets) that allow to change the compiler main purpose to something
more sophisticated. At the expense of compilation time and according to the knowl-
edge that the compiler has about the program, transformations are applied to generic
and not optimized code making it into something tailor-made to the program and
system.

As the level of optimization increases, the compiler will attempt to produce better
performing code. However, that level should always be seen as an indicator to which

83 https://sourceware.org/binutils/docs/gprof/

92

heuristics within the compiler’s optimization engine will try to achieve for an average
system and never as an absolute guarantee of the best code. Besides that, it is also up
to the user to control the trade-off that exists between the various aspects inherent to
the software itself such as significant reductions in execution time may cause the code
to lose debugging information or increase its size, among other variables.

• -fomit-frame-pointer
Machine-independent flag that omits the frame pointer in register for functions
that do not need it or for targets that do not always use it in standard calling
sequence. It allows some functions to obtain an extra register available and also
guarantees reductions in terms of code size and the execution path by removing
the instructions needed for the management of frame pointers (save, set up and
restore). This option is included in all optimization levels other than default.

• Optimization Levels
GCC provides optimization suites that allow the user to control various aspects
of the compilation process and resulting code. The seven sets that the tool
presents by default are: O0, O1, O2, O3, Os, Og, and -Ofast. If several of these
options are indicated as compilation parameters, only the last one will be consid-
ered effective.

� -O0
Level automatically selected by the compiler, where optimizations are ex-
plicitly disabled for the executable produced. It focuses mainly on reduc-
ing the compilation time and returning the expected debugging information.
Option not recommended (except for debugging purposes) because it only
operates dead code elimination and other fairly basic transformations.

� -O, -O1
Most basic optimization level that can activate up to 43 flags.

With the cost of increasing the compilation time and its consumed memory
(mainly for large function), the compiler attempts to produce code that runs
faster and has a smaller size. A fairly balanced baseline level that performs
a good job on the generated code without major resource detriment during
the compilation, while still providing the possibility of debugging.

� -O2
Optimization level where are applied practically all optimizations that do
not involve a space-speed trade-off. The compiler attempts to improve code
performance without neglecting too much its size and the required compile
time.

93

It is, therefore, an optimization level superior than -01, where can be acti-
vated all the flags which are contained in it and even more 47 new ones
(counting a total of 90). In general terms it turns out to be a level of opti-
mization quite effective for most situations, unless of some special need of
the code or machine.

� -O3
With the possibility of applying up to 102 optimization flags (12 new plus the
remaining ones contained in -O2), this option manifests itself as the highest
level of optimization possible which does not disregard strict standards com-
pliance. The compiler tries to get improvements by using some heuristics
and intensive transformations such as loop unrolling, function inlining (even
if they are not declared inline), avoid false dependencies in scheduled code,
among others, but which continue to be valid for all standard-compliant pro-
grams. However, all the sophistication it presents has a great cost in terms
of compile time, memory usage, increasing the difficulty of debugging the
code (it becomes even practically impossible) and sometimes also the size of
the code generated.

� -Os
Level designed to optimize for code size. It encompasses all the optimiza-
tions present in -O2 that do not affect the generated code size, counting a
total of 82 possible flags. This option is widely considered in applications
and machines with large limitations of disk storage and/or CPUs with small
cache sizes.

OVERALL OPTIONS

Options that allow to control the type of output generated by the GCC: an executable,
object files, assembler files, or preprocessed source. It gives the user greater process
control, making possible for example to execute each phase independently, re-use the
previous output or start the process from any stage. The suffix from the name of
any input file received by GCC determines which type of compilation phase will be
performed.

• -pipe
This option tells the compiler to preferentially use pipes for communication dur-
ing the build phases instead of the predefined temporary files. Although it has
no impact on the generated code, it makes the compilation process faster and
cleaner. However, it naturally causes an increase in the memory required and for
more limited systems its use may even be impracticable.

94

OPTIONS FOR CODE GENERATION CONVENTIONS

Machine-independent options that allow controlling various aspects related to the
interface conventions used in code generation.

• -fPIC
Generate position-independent code (PIC) suitable for dynamic linking, which
means that code can be loaded at any particular virtual memory address at run-
time. In practice it means that the compiler adds an extra level of indirection for
accessing static/global variables and functions, being especially useful to avoid
any imposed limit on the size of the global offset table.

For some architectures such as AArch64, m68k, PowerPC and SPARC, among
others, its use has a lot of impact and sometimes even becomes a mandatory
requirement. For the remaining supported target machines (as the one in this
study) it remains a useful option due to position-dependent memory references
can’t be shared by different processes and thus are copied.

• -fvisibility=default
Option that allows to change the ELF image symbol visibility, being able to have
implications in the improvement of the linking and load times of shared object
libraries, prevent symbol clashes, produce more optimized code and provide
near-perfect API export.

It is possible to select between default, internal, hidden and protected, being the first
one as the name itself indicates the option predefined and which deals to make
every symbol public.

OPTIONS FOR LINKING

Linking is the designation of the last step of the compilation process in which, briefly,
proceed to the agglomeration of several object files into a single executable binary.
With options of this category it is possible to use GCC to configure that process as
well as to indicate all the files that are intended to be part of the final result. This
phase is not performed if any of the -E, -c or -S parameters were previously used.

• -llib
Option that instructs the linker to look in a standard list of directories for the
library named lib when linking. Most libraries are a collection of precompiled
object files that usually provide program with system functions. It is also possible
to add other search directories by including the -L flag. Through searching for
files with this name (which are usually files with .a or .o extension), the linker
tries to match symbols that have been referenced but which are still undefined
at the moment.

95

� -lm
Library present in the C standard library which implements basic but essen-
tial mathematical functions like sqrt, sin, cos, log, etc.

Also some of the programs add an extra parameter to the compilation process in addition
to those applied by the analyzed tools. Being mostly related to aspects of linking libraries,
in total there are seven programs under study that require an auxiliary option so that it is
possible to compile them.

• -pthread
Option that adds the macros definition needed to use the POSIX threads library which
allows, for example, a program to control multiple different flows of work that overlap
in time. Thread-ring and chameneos-redux are the programs that use this feature
during their executions.

• -lm
N-body and spectral-norm require the inclusion of the header math.h84, which is
where precisely the most mathematical functions are declared.

• -lapr-1
The Apache Portable Runtime (APR) contains a set of APIs that map to the underlying
operating system and provide interface to platform-specific implementations. The
binary-trees program requires its inclusion, in particular the header that provides
APR memory allocation85.

• -lgmp
Library that has a wide set of functions that allow to deal with arbitrary precision
arithmetic, operating on signed integers, rational numbers, and floating-point num-
bers. Pidigits needs GMP86 library so that it may be able to, for example, use integers
that can grow dynamically to the required precision and dynamically allocate mem-
ory for accommodating extra bits of precision as and when needed.

• -lpcre
The Perl-compatible regular expression (PCRE87) is a library that allows to handle
with the regular expression pattern matching using the same syntax and semantics
as Perl 5. Regex-redux makes use of this functionality by including the header file
pcre.h.

84 http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/math.h.html
85 https://apr.apache.org/docs/apr/1.6/apr pools 8h.html
86 https://gmplib.org/
87 https://www.pcre.org/

96

Parameters Analysis

Taking into account the categorization indicated by GCC as well as the options contained in
the gathered profiles, it is possible to briefly and less rigorously group both aspects into four
main groups according to their applicability: control of the compilation process, manage-
ment of diagnostic messages, availability of debug/profile information and optimization of
generated code. Below is presented the referred parameters categorization, together with
their total occurrences.

1. Compilation management options
Configuration of preferences involving the compilation process, definition of macros
and dialects, management of dependencies.

• -MMD -MP -MF (4)

• -std=c99 (1)

• -DNDEBUG (15)

• -pipe (10)

• -fPIC (10)

• -fvisibility=default (4)

• -lm (1)

2. Diagnostic messages options
Management of aspects related to indications given to the user about anomalies de-
tected during the compilation process.

• -fmessage-length=0 (2)

• -fno-diagnostics-show-caret (2)

• -fshow-column (2)

• -W, -Wextra (10)

• -Wall (19)

• -Wno-write-strings (2)

3. Debug and Profile options
Specifications to produce debuggable code and collecting profiling statistics.

• -g, -g2 (21)

• -g3 (1)

• -ggdb (1)

• -ggdb3 (1)

97

• -pg (1)

4. Optimization options
Parameters to enable/disable code optimizations.

• -fomit-frame-pointer (1)

• -O0 (7)

• -O (1)

• -O2 (18)

• -O3 (6)

• -Os (4)

In total, 144 parameters (28 distinct) are used in the profiles obtained in this study.
It is important to note that some flags may have influence on several of the aspects pre-

viously presented and can even change of category depending on the value that they have.
For those cases where it is found that changing the flag value allows obtaining a different
effect, then their inclusion in another category will prove to be more appropriate. For ex-
ample, the -fvisibility option was included in the first category because its value is default
and not one of the remaining possible (internal, hidden, protected) otherwise it could be con-
sidered a flag with an optimization effect.

Of the 51 compile profiles obtained, 34 have more than 1 parameter and mostly they
embrace different aspects and categories. In fact, considering only the distinct profiles, this
factor becomes even more significant covering 76% of the cases (22 out of 29). Consequently,
in addition to the individual meaning of each option and its respective effect on the com-
pilation process, it is also interesting to think in each compilation profile as a whole taking
into account the purpose of the flags that compose it. With that perspective in mind, all the
profiles obtained were considered and categorized into 9 different groups:

1. Empty (3)
Profiles without any kind of parameter.

• Anjuta DevStudio - Default

• Code::Blocks - Default

• GPS - Default

2. Warning/Dialected oriented (2)
Profiles with only diagnostic message flags.

• Geany - Default: ”-Wall”

98

• AWS Cloud9 - Default: ”-std=c99”

3. Debugging/Profiling without warnings (8)
Adding debugging/profiling information without considering diagnostic messages.

• Anjuta DevStudio - Debug: ”-g -O0”

• Anjuta DevStudio - Profile: ”-g -pg”

• CMake - Debug: ”-g”

• CLion - Debug: ”-g”

• KDevelop - Debug: ”-g”

• QTCmake - Debug: ”-g”

• NetBeans IDE - Debug: ”-g”

• Oracle Developer Studio - Debug: ”-g”

4. Debugging with warnings (9)
Profiles that provide with both diagnostic messages and debugging/profiling infor-
mation.

• Eclipse CDT - Debug: ”-O0 -g3 -Wall -fmessage-length=0”

• CodeLite - Debug: ”-g -O0 -Wall”

• Qmake - Debug: ”-pipe -g -Wall -W -fPIC”

• QTQmake - Debug: ”-pipe -g -Wall -W -fPIC”

• ZinjaI - Debug: ”-fshow-column -fno-diagnostics-show-caret -g2 -Wall -O0”

• Qbs - Debug: ”-g -O0 -Wall -Wextra -pipe -fvisibility=default -fPIC”

• QTQbs - Debug: ”-g -O0 -Wall -Wextra -pipe -fvisibility=default -fPIC”

• DialogBlocks - Debug: ”-O0 -ggdb -Wall -Wno-write-strings”

• AWS Cloud9 - Debug: ”-ggdb3 -std=c99”

5. Low Level Optimization (1)
Optimization with the most basic level.

• GPS - SomeOpt: ”-O”

6. Optimization with debug information (6)
Profiles with code optimization and also debugging information (in two cases also
with warnings).

• CMake - RelwithDebInfo: ”-O2 -g -DNDEBUG”

• CLion - RelwithDebInfo: ”-O2 -g -DNDEBUG”

99

• KDevelop - RelwithDebInfo: ”-O2 -g -DNDEBUG”

• QTCmake - RelwithDebInfo: ”-O2 -g -DNDEBUG”

• Qmake - Profile: ”-pipe -O2 -g -Wall -W -fPIC”

• QTQmake - Profile: ”-pipe -O2 -g -Wall -W -fPIC”

7. Optimization Recommended Level (12)
Optimization with the most recommended level in generic terms.

• CodeLite - Release: ”-O2 -Wall -DNDEBUG”

• Anjuta DevStudio - Optimized: ”-O2”

• DialogBlocks - Release: ”-O2 -Wall -Wno-write-strings”

• Qmake - Release: ”-pipe -O2 -Wall -W -fPIC”

• QTQmake - Release: ”-pipe -O2 -Wall -W -fPIC”

• GPS - FullOpt: ”-O2”

• Qbs - Release: ”-O2 -Wall -Wextra -pipe -fvisibility=default -fPIC -DNDEBUG”

• QTQbs - Release: ”-O2 -Wall -Wextra -pipe -fvisibility=default -fPIC -DNDEBUG”

• NetBeans IDE - Release: ”-O2”

• Oracle Developer Studio - Release: ”-O2”

• Sphere Engine - Default: ”-O2 -lm -fomit-frame-pointer”

• ZinjaI - Release: ”-fshow-column -fno-diagnostics-show-caret -Wall -O2”

8. High Level Optimization (6)
Profiles with the highest optimization level (without breaking strict standards compli-
ance).

• CMake - Release: ”-O3 -DNDEBUG”

• CLion - Release: ”-O3 -DNDEBUG”

• KDevelop - Release: ”-O3 -DNDEBUG”

• QTCmake - Release: ”-O3 -DNDEBUG”

• Eclipse CDT - Release: ”-O3 -Wall -fmessage-length=0”

• GPS - FullAutoInline: ”-O3”

9. Code Size Optimization (4)
Optimizations that emphasize the production of executable with reduced size.

• CMake - MinSizeRel: ”-Os -DNDEBUG”

• CLion - MinSizeRel: ”-Os -DNDEBUG”

100

• KDevelop - MinSizeRel: ”-Os -DNDEBUG”

• QTCmake - MinSizeRel: ”-Os -DNDEBUG”

As expected, the main focus from the gathered profiles it rests mainly in two aspects:
debugging and optimization. Considering the 51 profiles, 23 use debugging and 30 opti-
mization options, 6 select parameters from both categories and only 5 choose not to include
any of those types. Excluding Code::Blocks (which only provides an empty profile), in fact
only Geany, GPS and Sphere Engine do not use any debugging option in their profiles and
only 2 tools do not use any optimization parameter: Geany and Cloud9.

Naturally, debugging options are mostly associated with the absence of code optimiza-
tion levels, since as previously mentioned greatly increases their effectiveness.

Most of the profiles opted for the default debug information level (2), with the exception
of 2 cases that opted for the maximum level (profiles from Eclipse and AWS Cloud9). There
is, however, some balance between the number of profiles with debugging/profiling infor-
mation that opt-in or not for also issuing diagnostic messages.

In fact, roughly half of the tools do not consider relevant the use of warnings, completely
ignoring parameters of that category and the respective inherent benefits. Given their im-
portance, the option of not including any parameters in at least in the profiles related with
initial states of software development (e.g. default, debug) reveals some strangeness. Al-
though sometimes the returned messages are not very clear, we consider however that they
contain information relevant to the user and should not be purely discarded.

Qbs and qmake prove to be the 2 most complete tools at this level using in all profiles 2

parameters that can activate up to 65 diagnostic messages. This also extends to Qt Creator
if the user choose to work with one of the mentioned tools.

For profiles that have suites that operate source code optimizations, most include the one
that is considered most effective in generic terms. 18 profiles have selected -02, 6 choose to
use -O3 trying to get even more improvements in the generated code (despite the inherent
disadvantages), 4 provide the possibility to optimize for code size and only 1 from GPS
chooses the one that is the most basic level and balanced in terms of trade-off compilation-
execution (-O1).

In addition to the -Os level, no profile chooses to use any of the other specific optimization
levels: -Og and -Ofast.

-Og has the ability to provide a superior debugging experience along with a fast com-
pilation and a reasonable level of runtime performance. It presents a better development
experience than the -O0 level and turns out to be a great choice for the standard edit-

101

compile-debug cycle. This option should be more considered, especially in profiles that do
not opt for any of the optimization suits beyond the default (GCC team, 2018b).

-Ofast allows a higher level of optimization than the one obtained with the suit -O3, but
disregards strict standards compliance. Although its use is not recommended for most
cases, it can however, for more specific ones, allow considerable gains in interesting aspects
(such as the program execution time) and therefore not should be a totally discarded option
(GCC team, 2018b).

No tool chooses to go any further than optimization suites and for example add/remove
some individual flag. Although the Sphere Engine does indeed refer to an extra optimiza-
tion flag, it is already included in the -O1 suite and -O2 respectively (level that is also
considered in the respective profile).

Interestingly, three tools indicate as the default profile an empty list of parameters, letting
the process unfold completely according to the compiler’s default options. Geany decides
for a bit more in its unique profile, opting to add one flag related to the listing of warnings
to the user.

Also curious is the option taken by Cloud9 that, unlike the other tools, chooses to change
the dialect of C to be used by the compiler. By default, GCC uses the gnu11 which is a
superset of C11 that is the current standard for C programming language released in 2011.
However, Cloud9 by default prefers to tell the compiler to use the C99, which is a version
prior than the current standard and could lead to problems such as code compatibility.
Regardless of the reasons associated with this decision, we consider that the choice of the
ideal dialect should always depend on the specificity of the project and the user’s own
preferences, as well as that there should always be some care when choosing a choice other
than the community standard.

It is possible to notice that Sphere Engine tells GCC to link the math library (with -lm)
for any program. It is an unsophisticated approach since this should only be necessary if it
were found that the code in question really needs that library. It is true that due to referring
to a static library it will only be included in the final code if in fact it is really necessary,
because if there is no undefined symbol during the linking process they will be ignored.
However, linking unused libraries presents other drawbacks such as increasing the static
linking time (because symbol resolution time in more libraries) and there is an increase in
the size of files generated during the process (for example the ELF file).

We also verified the existence of some parameters in the presented profiles that did not
need to be explicitly declared, because in the context in which they are inserted they are
already part of the set of options that the compiler takes. The most frequently repeated case
is the -O0, but there are also others previously mentioned such as -Wno-write-strings or

102

-fshow-column. Another type of redundancy observed is the specification of the parameter
value that is equally irrelevant to the compiler because it is precisely its default value (e.g.
-g2, -fvisibility=default).

5.5.3 Measurement Process

After completing all the research work, and keeping in mind the objectives intended for
the study, it is now mandatory to orchestrate a methodology that includes in a functional
and efficient way all the elements gathered during the previously described stages: testing
platform with Linux system and Intel processor, framework that uses C language and RAPL
to software measurement, 12 C benchmarks compiled with GCC and using parameters
obtained from 51 compilation profiles (with a total of 144 parameters) present in 18 tools.
In addition to connecting elements, it is also important to use that methodology to verify
which aspects are relevant or not to analyze and also if the generation and processing of
results is in accordance with the intended analysis, not becoming for example a cluster of
intractable values or a process too expensive.

Selection and Filtering of Compilation Profiles

Due to incompatibility reasons between the programs to be measured and the options
present in compilation profiles, the -std=c99 parameter was discarded from the following
analysis. As previously mentioned, this option allows to configure which language dialect
to be chosen by the compiler. However, in practice it is verified that not all programs are
compatible with that parameter since they were written considering another dialect such as
gnu11 (which is the current standard GCC dialect). This aspect becomes very relevant be-
cause it does not allow the successful compilation of some of the present benchmarks, thus
making it impossible to execute them and the remaining analyzes intended. Therefore, the
-std=c99 parameter was taken from both the AWS Cloud9 profiles for the purposes of the
intended measurements.

Due to irrelevance reasons, the parameters segment -MMD -MP -MF present in the Oracle
Developer Studio and NetBeans IDE tools profiles was also disregarded from the performed
measurements. These options have as main purpose the preprocessing of output to a for-
mat adapted to makefiles, aiding the management of dependencies in a phase prior to the
actual compilation itself. Since its role is limited to this type of tasks and has no influence
on the generated code, it is therefore irrelevant to its execution and consequently to the
desired measurements.

103

In order to make the measurement process more effective and reduce the redundancy of
results, a filtering was performed on the compilation profiles. As previously mentioned,
there are some repetitions among the 51 profiles obtained in terms of their content as a
whole. Naturally, this leads to identical compilations and executables for such cases, which
consequently causes redundancy in the measurements performed. In addition to the 22 re-
peated profiles already mentioned before, were also disregarded another 3 new cases that,
due to the removal of parameters performed in the previous paragraphs, they also become
equal to others already existing.

Having said all this, a group of 26 compilation profiles was considered for the purpose
of measuring the energy consumption and the time of execution of the collected programs,
which results are identical for the remaining 25 elements that make up the total set of
profiles obtained. Table 10 describes how the profiles are grouped in terms of the stated
selection and filtering aspects.

104

Identifier Tool - Profile Name Profile Parameters

1

Anjuta DevStudio - Default

(none)
Code::Blocks - Default

GPS - Default
AWS Cloud9 - Default

2 Geany - Default -Wall
3 Anjuta DevStudio - Debug -g -O0

4 Anjuta DevStudio - Profile -g -pg
5 AWS Cloud9 - Debug -ggdb3

6

CMake - Debug

-g

CLion - Debug
KDevelop - Debug
QT - CmakeDebug

NetBeans IDE - Debug
Oracle Developer Studio - Debug

7 Eclipse CDT - Debug -O0 -g3 -Wall -fmessage-length=0

8 CodeLite - Debug -g -O0 -Wall

9

Qmake - Debug
-pipe -g -Wall -W -fPIC

QT - QmakeDebug

10 ZinjaI - Debug
-fshow-column -fno-diagnostics-show-caret

-g2 -Wall -O0

11

Qbs - Debug -g -O0 -Wall -Wextra -pipe
-fvisibility=default -fPICQT - QbsDebug

12 DialogBlocks - Debug -O0 -ggdb -Wall -Wno-write-strings
13 GPS - SomeOpt -O

14

CMake - RelwithDebInfo

-O2 -g -DNDEBUG
CLion - RelwithDebInfo

KDevelop - RelwithDebInfo
QT - CmakeRelwithDebInfo

15

Qmake - Profile
-pipe -O2 -g -Wall -W -fPIC

QT - QmakeProfile
16 CodeLite - Release -O2 -Wall -DNDEBUG
17 DialogBlocks - Release -O2 -Wall -Wno-write-strings

18

Qmake - Release
-pipe -O2 -Wall -W -fPIC

QT - QmakeRelease

19

Anjuta DevStudio - Optimized

-O2

GPS - FullOpt
NetBeans IDE - Release

Oracle Developer Studio - Release

20

Qbs - Release -O2 -Wall -Wextra -pipe
-fvisibility=default -fPIC -DNDEBUGQT - QbsRelease

21 Sphere Engine - Default -O2 -lm -fomit-frame-pointer

22 ZinjaI - Release
-fshow-column -fno-diagnostics-show-caret

-Wall -O2

23

CMake - Release

-O3 -DNDEBUG
CLion - Release

KDevelop - Release
QT - CmakeRelease

24 Eclipse CDT - Release -O3 -Wall -fmessage-length=0

25 GPS - FullAutoInline -O3

26

CMake - MinSizeRel

-Os -DNDEBUG
CLion - MinSizeRel

KDevelop - MinSizeRel
QT - CmakeMinSizeRel

Table 10.: Measured Profiles.

105

Benchmarking and Output Processing

Briefly, the methodology that encompasses the process of programs measurement and out-
put handling can be described through the following steps:

1. Compile the measurement framework;

2. Execute of the warm-up program;

3. Select the desired program;

4. Select the compilation profile to apply;

5. Adjust the respective makefile according to the options taken in 3 and 4;

6. Compile the program as stipulated in the makefile;

7. Execute 50 times the measuring tool for the obtained executable;

8. Processing of the output generated by the measuring tool:

a) Obtain the execution time and energy consumption values for each analyzed
case;

b) Ignore the 10 highest and lowest values;

c) Calculate the average for the remaining 30 values;

d) Generate a table and plot with the results in an HTML page.

9. Repeat steps 4 to 8 for the remaining profiles;

10. Repeat steps 3 to 9 for the remaining programs.

Considering the type of programs to be analyzed, as well as the results obtained in the
previous study and in some preliminary tests), we chose to discard the values measured
for the GPU (since they are approximately 0 for all cases) and perform the measurements
in only one CPU core.

In addition to the mentioned steps, some preventive measures have been taken in order to
reduce disturbances related to the study machine and remaining elements (e.g. pre-loading
of data, memory heating, network or other programs interference, etc.) and to ensuring the
conformity of the process and its results. The methodology presented was repeated more
than a dozen times in the target machine as a superuser. The measurement process for
a given program was always performed uninterrupted for all its profiles and never in an
isolated way, but rather in sessions that lasted between 8h to 36h. Before and during all ses-
sions the machine was always in a state of similar operability, without any human iteration,

106

any connected peripherals, any other relevant program running concurrently and without
access to any network. Also in order to promote the operation similarity, the measurement
framework was executed in a generic program (during approximately 10 minutes) at the
beginning of each session, functioning as a validation and warm-up step for the whole pro-
cess and its components.

In conjunction with the design of the measurement process, a bash script was also cre-
ated which allows through its invocation to automate all the steps of referred measurement
process. In concrete, there is a file called read.sh that has the main algorithm who performs
tasks such as some preliminary checks, directories management, selection of elements to
analyze, change of makefiles options, programs compilation according to the parameters
defined, compilation and invocation of the measurement framework and finally the pro-
cessing of the respective output. There is also an auxiliary file called sources.sh where all
the elements to be analyzed, whether programs or compilation profiles, are declared in the
form of variables of arrays and associative arrays.

This tool also manages the creation of a directory tree that provides not only a better
process organization but also increases its automation capacity, allowing, for example, that
all programs contained in a directory can be analyzed automatically or that the generated
output is forwarded to a place more appropriate for its treatment. It should be noted that
the script still allows other ways of operating depending on the arguments passed at its
invocation, but that were not considered for this methodology in particular.

The output processing (referred in item 8 above) was performed entirely through a Perl
script. In general terms, its behavior consists of in a first stage parsing and storing in some
data structures all the relevant information of the programs and their values obtained. Then
in sorting each of the arrays of the respective 3 factors intended for analysis (execution time
and energy consumptions of CPU and memory), remove the 10 highest and lowest values
(in order to discard possible errors and measurements with disturbances) and calculate the
mean of the resulting 30 values for each factor. After organize all the necessary information,
with the assistance of 2 Perl libraries (Chart::Gnuplot and HTML::Table), the relevant data
is illustrated through charts, tables, HTML pages and rankings.

Due to the great versatility of the developed measurement framework, there would in-
deed be the possibility of adopting other more efficient workflow for this particular study.
We opted for the solution described in the presented methodology that passes through the
successive invocation of the tool after the external compilation of the program under anal-
ysis in order to increase the independence between measurements, to facilitate the output

107

processing stage and to reduce the burden of the framework (delegating management tasks
to the bash script that invoking it).

5.6 discussion of results

In this section, the final results are exposed and discussed using the already mentioned
methodology. The analysis focus mainly on the execution time, CPU and memory RAM
energy consumption (individually and together) and the ratio between both of these factors
(energy consumption/time). It is also intended that, based on all the addressed perspec-
tives, the analysis relates to all the elements covered, more specifically, from the point of
view of the studied programs, programs-tools, tools-profiles, profiles-parameters and of the
individual compilation parameters obtained. Objectively, the approach will follow a path
where initially it will focus on a more general and global perspective in terms of the values
obtained in the performed measurements, and throughout the section, will gradually adjust
to the elements with which they interact and the specifics that motivate them.

To make the analysis cleaner and more efficient, the previously collected information was
treated and presented in several relevant types. These results are produced based on differ-
ent types of scopes (e.g. execution time and energy consumption) and analyzed elements
(e.g. programs, tools, profiles and parameters). That information already takes into account
all logistic specifications and obstacles (for example using different profile categories or an-
alyze different decimal place values).

Regardless of the target element represented, for all instances the data obtained regarding
the four measured strands are presented.

The charts and HTML pages generated are very similar to those used in the previous
study (Chapter 4). In the case of charts, the energy consumption of the CPU and RAM
are represented by two vertical columns (the sum of both of them being equivalent to the
total energy consumption measured). In turn, the execution time is represented by a line
usually positioned near the top of the columns. In the case of HTML pages it is possible to
consult the data obtained for each element in two different ways: graphically (chart) and
numerically (table). In both cases the base information is the same, it only differs how the
data are exposed.

In the rankings, beside to the four aspects measured, the various elements are also clas-
sified in relation to the ratio between energy consumed and execution time. Each element
has in addition to its overall classification for a particular measure, the sum of the various
classifications that it obtained individually for the various cases. For example, if a tool is
the best for the 12 programs for a given strand, then in this instance it will have the rank

108

1 and also the respective sum (12). Naturally this value proves to be redundant when the
elements are analyzed for a specific program. However, it proves to be very useful for more
global cases because it allows, for example, to verify the real difference between elements
with similar positions. For each classification were created four versions that differ in the
number of decimal places considered (0, 1, 2 or 3). The different versions allow to analyze
with a greater or lesser rigor certain aspect, proving to be especially useful in the analysis
of large sets with several benchmarks.

Throughout the analysis will be added more information that we consider pertinent
about how certain values were obtained or what they represent in particular. In total, more
than 1000 charts, tables and HTML pages were elaborated and also more than 100 rankings
referring to information gathered. Not all are disclose in this subsection, but only a small
part of that set for the purposes of exemplification and assistance of relevant aspects in the
intended analysis. However, all the processed information is available in the repository of
this study88 and in the project website89. There the data are organized in several directories
according to the processing performed and with the elements analyzed. It is also possible
to consult some additional examples in Chapter A.

5.6.1 Programs

Resorting to project CLBG, 12 programs were selected for this study. These gather a set
of interesting aspects for analysis since they fulfill all the necessary prerequisites. Within
the several characteristics they include, the programs stand out for being highly optimized
solutions based upon simple, but very challenging, problems and also because they are asso-
ciated to different background areas and program fields. After being used with benchmarks
in the presented experimental methodology, it is now possible to observe how the charac-
teristics of each program behave when analyzed from the different intended points of view.
The herein presented data cannot be directly compared to the data divulged by CLBG since
distinct measures, inputs, hardware, OS, among others, are being used. However, with due
reservations, these results may be interpreted as complementary information.

The analysis is carried out simultaneously using the processed data from a visual and
numerical perspective (especially through the charts represented in the Figures 38-49 and
the directory 1.1 from the repository). Conclusions regarding the results for each program
are better perceived through the numerical analysis perspective, while tendencies and be-
haviors observed along the various profiles are more explicit using a graphical perspective.

88 https://github.com/david-branco/programmingtoolsenergyconsumption
89 www.di.uminho.pt/˜gepl/OCGREC

109

In any of these cases, the information refers to the execution of all the compilation profiles
for each program using the methodology presented within the intended strands. Part of
this information is also summarized in Table 11, namely the minimum, maximum, percent-
age difference and average values obtained for each program.

Program Time (s) Energy (J) CPU (J) Memory (J) Energy/Time (J/s)

binary-trees
3.355-7.214

53.5 %
(5.186)

40.843-78.631

48.1 %
(58.844)

37.606-72.630

48.2 %
(54.286)

3.231-6.029

46.4 %
(4.558)

10.860-12.264

11.4 %
(11.576)

chameneos-redux
7.706-9.112

15.4 %
(8.358)

154.74-184.101

15.9 %
(166.098)

149.475-178.231

16.1 %
(160.478)

5.172-6.156

16.0 %
(5.620)

18.724-21.397

12.5 %
(19.888)

fannkuch-redux
21.918-58.501

62.5 %
(40.537)

232.244-658.129

64.7 %
(443.155)

217.685-619.299

64.8 %
(416.238)

14.553-38.874

62.6 %
(26.917)

10.273-11.293

9.0 %
(10.768)

fasta
6.101-10.848

43.8 %
(8.439)

17.86-66.781

73.3 %
(41.991)

13.612-59.476

77.1 %
(36.190)

4.248-7.305

41.8 %
(5.801)

2.892-6.184

53.2 %
(4.622)

k-nucleotide
7.113-22.755

68.7 %
(14.434)

81.043-245.822

67.0 %
(159.531)

75.857-230.399

67.1 %
(149.443)

5.186-15.641

66.8 %
(10.087)

10.744-11.730

8.4 %
(11.241)

mandelbrot
4.624-26.755

82.7 %
(15.639)

42.022-320.07

86.9 %
(184.416)

38.910-302.269

87.1 %
(173.991)

3.111-17.806

82.5 %
(10.425)

9.086-11.967

24.1 %
(11.525)

meteor
0.046-0.089

48.3 %
(0.068)

0.425-0.934

54.5 %
(0.683)

0.393-0.874

55.0 %
(0.637)

0.032-0.060

46.7 %
(0.046)

9.239-10.678

13.5 %
(9.967)

n-body
3.473-25.390

86.3 %
(14.308)

40.966-307.182

86.7 %
(172.280)

38.658-290.323

86.7 %
(162.779)

2.307-16.859

86.3 %
(9.501)

11.781-12.455

5.4 %
(12.103)

regex-redux
13.781-14.485

4.9 %
(13.872)

138.577-147.229

5.9 %
(140.309)

127.337-135.470

6.0 %
(129.019)

11.223-11.759

4.6 %
(11.290)

10.041-10.201

1.6 %
(10.114)

reverse-complement
9.941-12.537

20.7 %
(11.826)

15.994-24.825

35.6 %
(20.479)

8.366-15.736

46.8 %
(11.812)

7.628-9.180

16.9 %
(8.667)

1.423-2.224

36.0 %
(1.729)

spectral-norm
2.438-7.156

65.9 %
(4.734)

21.504-86.862

75.2 %
(52.589)

19.884-82.113

75.8 %
(49.444)

1.620-4.752

65.9 %
(3.144)

8.817-12.149

27.4 %
(10.392)

thread-ring
9.307-9.786

4.9 %
(9.555)

89.245-93.161

4.2 %
(91.362)

81.511-84.919

4.0 %
(83.328)

7.525-8.520

11.7 %
(8.034)

9.361-9.677

3.3 %
(9.562)

Table 11.: Measurement results for all programs.

Starting the analysis by examining Table 11, the high diversity of results between the
programs can easily be observed as well as many of the factors that differentiate them.

110

Considering the execution time, it turns out that meteor and fannkuch-redux (see Figure 25)
stand out clearly from the other programs because they have respectively the smaller and
higher obtained values. As for the remaining cases, it is observed that they have values at
relatively close intervals, namely: minimum values between 2.4-13.8 seconds, maximums
in the intervals of 7.1-14.5 or 22.8-26.8 seconds and in average their execution time range
between 4.7 and 15.6 seconds. The maximum values pertaining to execution time are within
the expected because, as previously mentioned, the inputs given to the programs were
adjusted (when possible) in order to provide close values for their worst case while still
being considered relevant to this analysis.

The improvements that each program present for their best cases come from their own
characteristics, and the capabilities of the GCC optimization suites to interact with them.
This factor is linked to the difference in percentage value between the minimums and max-
imums for each program, where thread-ring and regex-redux clearly stand out negatively
and mandelbrot (see Figure 24) and n-body do so positively (82.7% and 86.3%). Regard-
ing the remaining, their values place between intervals of 15.4%-20.7% (chameneos-redux
and reverse-complement), 43.8%-53.5% (fasta, meteor, binary-trees) and 62.5%-68.7% (fannkuch-
redux, spectral-norm and k-nucleotide).

By analyzing the joint energy consumption of the two considered components it was
noted that, also for this subject, the meteor and fannkuch-redux stand out as the instances
showing respectively the lowest and highest values. Not considering those two programs,
the remaining minimum values interval is situated between 16.0-154.7J and the maximum
values interval between 24.8-230.0J. The average consumption locates between 20.5-184.4J.
Although no previous considerations were made for the programs inputs regarding their
final energy consumption, there was an overall significant improvement for worst and best
results, averaging 111.5J considering all programs and 91.2J upon removing the two most
extreme cases. This context also illustrates high diversity on how much the programs
worst and best results percentually vary, placing mostly within four distinct intervals: from
4%-6% (regex-redux and thread-ring), 16% (chameneos-redux), between 36%-54% (binary-trees,
meteor and reverse-complement) and from 64%-88% (fannkuch-redux, fasta, k-nucleotide, mandel-
brot, n-body and spectral-norm). As well as observed for execution time, the four cases that
stand out in this matter are again the pairs thread-ring - regex-redux (4.2% and 5.9%) and
mandelbrot - n-body (86.7% and 86.9%).

Unsurprisingly, meteor and fannkuch-redux are also noticeable due to the same reasons for
the individual consumption of the processor. Still, the results for the remaining programs
cover a broad spectrum of values, specifically between 15.7-302.3J, 8.4-149.5J and 11.8-174J
respective to maximum, minimum and mean values. A large discrepancy is also observed

111

Figure 24.: Results of mandelbrot measurements.

between the extreme absolute values for each program, namely an average of 105.2J consid-
ering all programs or 86.0J after excluding the two most extreme results.

Comparing the energy consumption for this component with the previously considered
total, it can be stated that it constitutes about 90% of the total consumption. Upon choosing
a value which is closer in most programs (which means excluding the highest and lowest
result), it is observed an even more substantial value, nearing 93% of the total. However, for
the particular case of reverse-complement such tendency was not obtained since the relative
consumption for this component was found near 58% (32% below average).

The proximity tendency between processor and total energy consumption is maintained
in terms of the percentual difference between maximum and minimum values obtained for
each program. By grouping the programs through intervals of proximate values, the result-
ing subsets prevail the same as before and inclusively most show fairly similar values: 4-6%
(regex-redux and thread-ring), 16% (chameneos-redux), 46-55% (binary-trees, meteor and reverse-
complement) and between 64-88% (fannkuch-redux, fasta, k-nucleotide, mandelbrot, n-body and
spectral-norm).

112

Figure 25.: Results of fannkuch-redux measurements.

Concerning the memory energy consumption, the results are complementary to the ones
obtained for the processor, as expected. The same programs obtained the maximum and
minimum results, and for the remaining programs are situated within the intervals 1.6-11.2J,
4.8-17.8J and 3.1-10.4J for minimum, maximum and mean values, respectively. In terms of
energy consumption percentage for this component, reverse-complement (see Figure 26) is
noted to, once again, be an outlier by gathering 42% of the total consumption, a value 35%
above the average 7% found for the remaining programs ranging between 3-14%.

While the percentual differences between maximum and minimum results for the vari-
ous programs present less proximity in terms of their intervals, they may still be equally
clustered to four distinct subsets: 5% (regex-redux), between 11-17% (chameneos-redux, reverse-
complement, spectral-norm), between 41-47% (binary-trees, fasta and meteor) and between 62-
87% (fannkuch-redux, k-nucleotide, mandelbrot, n-body and spectral-norm). Although less promi-
nent than observed regarding the processor, the percentual differences between memory
and total energy consumption show some similarities in terms of values and behavior.

113

The energy consumption to execution time ratio overall suggests that the differences
between best and worst cases for each program are not very significant in absolute terms.
Reverse-complement and chameneos-redux stand out not only as providing the highest and
lowest values, but also for being clear outliers, along with fasta, in several of the considered
aspects. This information is distinctly perceptible upon analyzing the clustered values for
each program, namely: minimum values between 1.4-2.9J/s for reverse-complement and fasta,
18.7J/s for chameneos-redux and between 8.8-11.8J/s for the remaining programs; maximum
values of 2.2J/s for reverse-complement, 6.2J/s for fasta, 21.4J/s for chameneos-redux and the
remaining between 9.7-12.5J/s; mean values between 1.7-4.6J/s for reverse-complement and
fasta, 21.4J/s for chameneos-redux and between 9.7-12.5J/s for the remaining programs.

In terms of the percentual difference it is noted that some value fluctuation occurs among
the various programs, yet mainly within a low and proximate range. Regex-redux, thread-ring
and n-body display values below 5.5%, k-nucleotide, fannkuch-redux, binary-trees, chameneos-
redux and meteor between 8.4-13.5%, mandelbrot, spectral-norm and reverse-complement be-
tween 24-36% and fasta 53.2%. This data allows the conclusion that energy consumption
to execution time ratio shows the least percentual difference between the extreme cases for
each program. Overall, the programs reached a maximum difference of 13.5% and averaged
8.1% (two programs even improved below 3.4%). Yet, four programs improved over 24%
between worst and best result, and fasta actually doubled that value.

The analyzed data show there generally exists some diversity in program behavior along
the several approached profiles and subjects. Globally, some difference can be found be-
tween the lowest and highest results for the several variables, indicating some oscillating
behavior of the programs along the various profiles. The proportion of possible improve-
ments is settled by the percentual difference between such cases and varies significantly
between programs.

Through analysis of the graphical representation for each program it is also possible to
confirm the mentioned tendencies. Some diversity indeed exists in the displayed behavior
of the programs along the various profiles and subjects.

Thread-ring and regex-redux (see Figure 27) differentiate from the rest since they show
very similar results regardless of the chosen profile. Such behavior precisely reflects the
small percentual difference observed for execution time and energy consumption in both
cases. The remaining programs exhibit a far more dynamic behavior throughout their pro-
files, remarking the existence of different types of fluctuations for the represented lines and
columns instead of a single practically continuous behavior. In particular, the significant
reduction between worst and best cases in terms of execution time and energy consumption
for most programs is notorious, and visually it is verified that there are, indeed, consider-

114

Figure 26.: Results of reverse-complement measurements.

able differences between the several profiles. Although a homogeneous behavior between
these 10 programs cannot be observed, there are similar patterns and characteristics be-
tween them, which in practice reflect the previously considered clusters.

Another conclusion made clear through graphical representation analysis is the high en-
ergy consumption of the CPU in relation to memory. In fact, it is plainly demonstrated by
the different proportions of the columns that the CPU energy consumption is responsible
for over 90% of the considered global consumption. In addition, it is observed that the
memory energy consumption generally presents very reduced values, even for the worst
cases. Reverse-complement is the only exception regarding these considerations since the
columns display average differences of only 15.4%, and inclusively the presence of profiles
in which the memory exceeds the CPU regarding energy consumption.

Conjointly examining some of the considered strands, not only allows to observe how the
programs generally behave, but also which characteristics and tendencies occur simultane-
ously. A relevant indicator in such matter constitutes in identifying in which way evolve the
percentual differences between maximum and minimum results for the distinct elements.

115

Figure 27.: Results of regex-redux measurements.

An overall correlation of tendencies is observed between execution time and total energy
consumption along the various profiles. Such aspect is demonstrated through the proxim-
ity of percentual gains between the aforementioned measures (6.3% in average) and also
due to half the programs displaying improvements lower than 2% for both measures, and
only spectral-norm (9.3%), reverse-complement (14.9%) and fasta (29.5%) show values higher
than 7%. Graphically the same conclusion may be achieved in virtue of the practically con-
stant accompaniment between the execution time tendency line and energy consumption
columns along the represented profiles. Although in some cases this behavior is not ob-
served, such as in some reverse-complement profiles, the amount of those instances is minor
considering the total amount of studied cases.

Stepping to further detail, the percentual difference between the two measures show
that highest gains, although reduced, were obtained in terms of energy consumption than
in terms of execution time. This occurs for 9 out of the 12 considered programs, and
binary-trees, k-nucleotide and thread-ring were the only cases in which the opposite behavior
was observed (with very low values). For all considered programs there was an average

116

improvement of 46.5% of execution time and 51.5% of energy consumption, resulting in a
5% difference between both measures.

After globally analyzing the data concerning execution time and energy consumption
of the studied programs, it is concluded: there are significant improvements between best
and worst results clearly demonstrating that profiles and compilation parameters are very
influential in both subjects; there exists an evident equivalence between tendencies and val-
ues present throughout the various profiles demonstrating a narrow connection between
both elements as well as the options that lead to the presented behavior changes; overall,
higher percentual improvements (although possibly residual) of energy consumption over
execution time were obtained per program, for the same compilation profiles.

Analyzing the energy consumption of the processor and memory (globally and locally),
some interesting behaviors may be distinguished.

Such as previously observed, for most programs the CPU is responsible for the highest
portion of the total energy consumption. In fact, comparing both total and processor energy
consumption a significant proximity between maximum and minimum obtained values is
found for each program, as well as for the percentual improvement between both cases.
Also, there’s an average difference of 1.5% between total and processor percentual energy
consumption values, and for 8 of the programs the difference is found below 0.3%. An-
other observation is that, even though subtly, the difference favours the processor energy
consumption for 11 of the considered programs. This information allows the conclusion
that, overall, slightly more significant improvements are obtained for the processor compar-
atively to global energy consumption.

The close proximity of the presented behavior also allows to extend some of the conclu-
sions stated in the previous paragraph. One such example, even though less noticeable, is
the presence of a correlation between processor energy consumption and execution time.
These behaviors are also clearly illustrated in the presented charts.

While generally the memory energy consumption is significantly reduced in relation to
global energy consumption, a correlation of the displayed behaviors may also be found
between these measures. In fact, for most cases the tendencies of both measures run pro-
portionally. However, it may also be confirmed that this relation is not as narrow and de-
pendent as the one verified for the processor and, inclusively, there exists a higher amount
of exceptions and fluctuations within the obtained values.

These facts are demonstrated, for example, through the analysis of the percentual differ-
ence between extreme cases for the three distinct energy consumption strands that were
considered. The average improvement obtained for the memory was 45.7%, 52.9% for the
processor and 51.5% for the global energy consumption of all programs. Hence, it may be

117

stated that the three strands are proximate, but less accentuated for the memory energy
consumption.

This data also highlights the similarity between the execution time (46.7%) in relation
to the memory energy consumption. This observation meets the proximity previously ob-
served between these two strands, namely between the subsets of programs that display
values in proximate intervals.

Particularly evidencing the values of the four programs in which the differences show the
highest fluctuation between these measures, an average 44.7%, 63.7%, 42.8% and 59.7% are
obtained for execution time, processor, memory and total energy consumption, respectively.
The same behavior can be observed in the chart that represents the results for the program
with the highest memory energy consumption (reverse-complement, Figure 26).

All results and indicators permit the conclusion that, usually, the program execution
time is directly related to its energy consumption (and vice-versa), and specially with the
memory energy consumption. This reasoning is indeed coherent, and matches the general
knowledge that memory is a relevant factor that influences the execution time of a program.
Given the large speed difference between processors and memory, it may be assessed that
memory related operations are precisely the performance critical point for some workloads.
In this sense, and even though it may appear not to be a significant factor considering
the whole system, memory energy consumption can influence the execution time of the
program and consequently influence the global energy consumption. These results also
suggest that improvements are generally more difficult to obtain for memory energy con-
sumption than for processor and global energy consumption.

The results for the ratio between energy consumption and execution time mainly illus-
trate that the differences, either for each program or between programs, are not very signifi-
cant. The mean difference between the extreme cases for the various programs is 1.6J/s, and
they mostly show values fairly close to the mean case (10.3J). Another conclusion is that,
substantially, significant improvements between best and worst results are not met. The
detailed analysis of this variable proves relevant in situations in which a trade-off between
energy consumption and execution time is intended. The selection of parameters that allow
to reduce/increase this variable provides the developer with the ability to produce more
balanced and efficient code for specific program cases. Namely, for situations in which one
of the ratio elements is not a very limiting factor in the system, or yet for instances that re-
quire optimized energy consumption while maintaining an acceptable execution time (and
vice-versa).

118

The discussed results reflect also the type of programs that were chosen for this study.
Besides the proficiency of the compiler optimization, the large results variations observed
for the different cases express the vast complexity and efficiency of the implemented solu-
tions. Although energy consumption is not considered for the CLBG project, the several
observed correlations suggest that the implemented optimization extend to this factor.

The different percentages of energy consumption between processor and memory also
contemplate some of the characteristics of the presented problems and solutions. The for-
mulation, purpose and background of each problem influence, for instance, which type
of algorithms or hardware operations are applied. In case the solution requires costly op-
erations such as writing large amounts of data to memory, or CPU intensive algorithms,
naturally the generated results will be considerably influenced by these approaches.

5.6.2 Programs - Tools

From the performed research, it was obtained a result of 18 tools (15 Integrated Develop-
ment Environments and 3 Build Automation Tools) that were considered suitable for this
study. As it was already mentioned before, some of these tools provide options that may
appear partially or completely in others as well. Even though the final calculated values
are not distinct for these particular cases, they will as well be presented for all the analyzed
tools.

In order to be comparable, for each tool an arithmetic average was calculated between the
obtained values for each program and the total number of profiles that they provide. This
information is used afterwards to elaborate rankings (Tables 16-19) (repository directories
2.3 and 2.4) and charts (Figures 50-61) (repository directories 2.2 and 2.3) that are crucial
to deepen the research for this subsection. The analyzed aspects of each program are the
same as previously stated. Exceptionally, for all rankings, multiple versions were created
depending on the decimal places contemplated. This made possible to analyze the tools
using different perspectives and, according to the objectives, make the evaluation more or
less strict.

Even though the generated charts intend to contemplate a different analysis perspective,
it is anyway concluded that the same previously noted characteristics are observed for each
program. This occurs due to the considered data being small sets of individually obtained
values.

Generally, it is verified that thread-ring (Figure 28) and regex-redux have a similar behav-
ior and it is practically constant in all situations. In contrast, for the other programs it
is observable some fluctuation in multiple considered situations and tools and, as a gen-

119

Figure 28.: Tools measurements for thread-ring.

eral rule, a similar behavior but with different proportions. In the chameneos-redux case,
these variations are much less significant comparing with the remaining cases. Programs
like mandelbrot and n-body (Figure 29) are exactly the opposite as they are responsible for
the major differences between the best and worst-case scenarios. Fannkuch-redux and k-
nucleotide charts show the best proportional growth considering all the aspects examined
for the multiple tools. In fasta case it is possible to see the biggest variation between the
execution time and memory energy consumption improvements upon comparing with the
other two analyzed fields. At last, reverse-complement (Figure 30) stands out as the program
with the biggest memory energy consumption, and it is observable, as well, in a constant
execution time line.

Analyzing the charts in a tool viewpoint, it is easily contemplated that there are very dis-
tinct results between them. The ranking position and order of all the tools can be observed
in Tables 16-19. Excluding some small nuances and position changes, it is verified that the
global ranking plainly expresses the tools behavior for each individual program. This is
made even clearer upon the based perspective being less rigorous.

120

Figure 29.: Tools measurements for n-body.

It is worth remembering that some tools do not have self compilation profiles and opt
to integrate other tools options. Besides the Qt Creator case, CLion and KDevelop apply the
same options as CMake and the Oracle Developer Studio are heavily based on NetBeans IDE.
For these examples, it is naturally concluded that the final results are exactly the same for
both charts and rankings positions.

Based on a less strict point of view of the global ranking (e.g. Table 12), it is verified
that, in the majority of the situations, the tools occupy similar ranking positions for the
different calculated aspects and without any simple significant jumps. In this aspect the
biggest exception is ZinjaI and for the remaining cases the most frequent changes occur on
0, 1 or 2 positions. This allows to understand that the tools provided options are indeed
very generic, and that there does not exist a tool that is more suitable for a specific goal or
program.

Examining the same ranking, it can be realized that Sphere Engine and GPS are the most
efficient tools for the considered objective. On the other hand, AWS Cloud9, Code::Blocks
and Geany stand out negatively. From both observations, curiously it turns out that the two

121

Figure 30.: Tools measurements for reverse-complement.

analyzed Cloud IDEs do not only show very distinct results, but are also displayed within
the ranking top opposite positions.

Relative to BATs, and considering the global and individual rankings, it is verified that
CMake and qmake are found, for most cases, in high and consecutive positions. General rule
is that CMake provides better results than qmake, but there are exceptions in which the op-
posite happens (e.g. spectral-norm, fasta, regex-redux and chameneos-redux). The less efficient
element is Qbs but the results are still within the average. BATs reveal themselves as good
options within the studied subject. Qt Creator, because it integrates three described tools,
is associated with an intermediate value between them. Although this is a good result, it
can be better depending that the user opts only for a single integration, excluding Qbs. It
should also be noted that the Qt Creator chart, for the already mentioned reasons, can be
used to compare simultaneously all the studied BATs.

Considering the other IDEs and excluding the ones that only integrate external options,
in general, it can be concluded that they all produce very similar results. Eclipse CDT and

122

Tool Name Execution Time (s) Total Energy (J) CPU Energy (J) Memory Energy (J) Energy/Time (J/s)

CMake 3 (41.2) 3 (101.2) 3 (96.2) 3 (39.8) 3 (46.8)

qmake 8 (45.3) 4 (105.7) 4 (99.3) 6 (42.3) 4 (47.0)

Qbs 11 (50.5) 9 (124.5) 9 (119.5) 11 (49.5) 7 (50.0)

NetBeans IDE 10 (49.5) 11 (127.0) 9 (119.5) 10 (47.5) 7 (50.0)

Code::Blocks 15 (65.0) 15 (179.0) 14 (174.0) 15 (60.0) 11 (59.0)

CLion 3 (41.2) 3 (101.2) 3 (96.2) 3 (39.8) 3 (46.8)

CodeLite 6 (44.0) 7 (118.0) 7 (114.0) 7 (42.5) 8 (50.5)

Eclipse CDT 5 (43.5) 6 (112.5) 6 (108.0) 5 (42.0) 6 (49.0)

KDevelop 3 (41.2) 3 (101.2) 3 (96.2) 3 (39.8) 3 (46.8)

Geany 14 (63.0) 13 (170.0) 12 (165.0) 14 (59.0) 12 (62.0)

Anjuta DevStudio 12 (57.2) 12 (150.5) 11 (143.0) 12 (54.5) 9 (52.0)

Qt Creator 7 (44.7) 5 (107.9) 5 (102.4) 8 (42.8) 5 (47.6)

DialogBlocks 9 (46.0) 10 (125.5) 10 (120.0) 9 (44.5) 9 (52.0)

ZinjaI 4 (42.0) 8 (121.5) 8 (116.5) 4 (40.5) 10 (58.0)

GPS 2 (38.0) 2 (96.2) 2 (91.5) 2 (35.8) 2 (46.5)

Oracle
Developer Studio

10 (49.5) 11 (127.0) 9 (119.5) 10 (47.5) 7 (50.0)

Sphere Engine 1 (33.0) 1 (81.0) 1 (79.0) 1 (34.0) 1 (44.0)

AWS Cloud9 13 (61.0) 14 (178.5) 13 (173.0) 13 (55.5) 13 (63.5)

Table 12.: Tools ranked with 1 decimal point.

Anjuta DevStudio can be highlighted for the positive and negative side, respectively. It is
possible to conclude then that, besides situations in which a specific IDE is necessary, the
choice can be made without any significant performance penalty.

Analyzing the multiple tables and the positions each tool occupies, some of the previ-
ous conclusions are again observed. There exists high proximity between positions for a
given tool considering the variables of execution time - total energy consumption, total en-
ergy consumption - CPU energy consumption and between execution time - RAM energy
consumption. The same observations can be made through the each tool chart.

The presented information allows to deduce that some tools reached very close results
between them. Given the high similarity of their final results, they display individual po-
sitions only for being different programs. A relevant and less rigorous analysis was then
useful, as it contributed to grouping small sets of options with similar results. Consider-
ing this, and with the help of the chart and ranking information, the following lists were
obtained respectively for the execution time variable and the energy consumption variable:

Time Ranking:

1. Sphere Engine;

2. GPS;

3. CMake, CLion, KDevelop;

123

4. qmake, Qt Creator;

5. Eclipse CDT, ZinjaI, CodeLite;

6. Qbs, DialogBlocks, NetBeans IDE, Oracle Developer Studio;

7. Anjuta DevStudio;

8. Code::Blocks, Geany, AWS Cloud9.

Energy Ranking:

1. Sphere Engine;

2. GPS;

3. CMake, CLion, KDevelop, qmake;

4. Qt Creator;

5. Eclipse CDT;

6. Qbs, DialogBlocks, NetBeans IDE, Oracle Developer Studio, ZinjaI, CodeLite;

7. Anjuta DevStudio;

8. Code::Blocks, Geany, AWS Cloud9.

Based on this list it is clear to observe some of the already mentioned aspects. Some tools
stand out on top of each list, and it is also verified that the middle positions are occupied
by the tools with average, and very similar, results. The resemblances between the lists are
very noticeable, and both cases display short variations of the positions.

Expanding the method previously applied, it is possible to integrate in a single ranking
both variables of execution time and total energy consumption. Using the same elements
as used in the lists above, the following classification is obtained:

Time and Energy Ranking:

1. Sphere Engine;

2. GPS;

3. CMake, CLion, KDevelop, qmake;

4. Qt Creator;

5. Qbs, Eclipse CDT, ZinjaI, CodeLite, DialogBlocks, NetBeans IDE, Oracle Developer
Studio;

6. Anjuta DevStudio;

7. Code::Blocks, Geany, AWS Cloud9.

124

It should be noted that this analysis is restricted to the calculated elements of the last
section methodology. There are some other discarded considerations regarding central tool
aspects, such as its target audience, amount of features and sophistication, usage complex-
ity, generated code size, among others.

Beyond voicing the capabilities of each tool, this information shows specifically which
objective each tool aims for. Within the multiple particularities and characteristics included
in them, they provide the user with different amounts and types of compilation profiles. As
already mentioned, in most cases the tool has two profiles: one with a simplified behavior
(usually with warnings and debug options) and a more sophisticated one (containing opti-
mization suites). However, it can be noted that there are tools which intents may cause side
effects that are not necessarily related to the resulting value of the tool. For instance, some
tools contain a greater number of sophisticated profiles that produce more efficient results,
and ultimately that turns out to be the differentiating factor on the analysis. This situation
will be approached within the following subsections.

Grossly analyzing the intention of each studied tool profile, the related charts and rank-
ings confirm the observed result. Namely, it is perceived that the tools with the most
optimization load occupy the best positions, while on the other hand, the ones that discard
optimization options rank within the worst places. Considering only the most highlighted
example, it is precisely verified that there are optimizations in the only profile that Sphere
Engine contains and in 3/4 of all GPS profiles. On the contrary, AWS Cloud9, Code::Blocks
and Geany present more basic profiles and Anjuta DevStudio provides optimization on a sin-
gle profile within a total of 4. Concerning BATs, CMake and qmake contain 2 out of 3 profiles
with optimization while Qbs follows the usual case, in which only half of the profiles have
optimization.

Given the objective of analyzing the tool values effectively, rankings were elaborated
exclusively for tools that follow the same and most usual behavior. For this purpose, seven
tools were selected containing only two compilation profiles with opposite behaviors: one
more simplified and another more advanced regarding the impact on the generated code.
The following results follow the same methodology as used before:

Time Ranking:

1. Eclipse CDT, CodeLite, ZinjaI;

2. DialogBlocks;

3. NetBeans IDE, Oracle Developer Studio;

4. Qbs.

Energy Ranking:

125

1. Eclipse CDT;

2. CodeLite, Qbs;

3. DialogBlocks;

4. ZinjaI;

5. NetBeans IDE, Oracle Developer Studio.

Time and Energy Ranking:

1. Eclipse CDT;

2. CodeLite;

3. DialogBlocks, ZinjaI;

4. Qbs;

5. NetBeans IDE, Oracle Developer Studio.

This data allows the conclusion that it is possible to obtain a classification for the multiple
tools based on the similar capabilities they offer to the user. However, it is also observed
that there is a small difference between the obtained values for each one. Even though the
rankings were created using less strict criteria, in practice, the difference between consec-
utive ranking positions can be only about some units of Joule or seconds. Although it is
plausible to consider the rankings, the selection of different options does not result in a
high performance impact regarding user experience.

5.6.3 Tools - Profiles

In total, the tools considered for this study provide 51 compilation profiles to the user.
Each option is characterized for having a very specific purpose which is defined by several
aspects, namely its name and its parameters. The variety of profiles provided by each tool
varies in regards of diversity and sophistication of options intended to be used during the
software development process. Some profiles intend to improve the user experience during
compilation through the use of warnings, others intend to turn the code more efficient in
terms of its size or performance, or yet to enable the debugging and profiling features for
the code.

Through this study it can be verified that energy consumption is not yet considered a
primary factor for the tools while designing the compilation profiles. Yet, it is relevant to
examine which is the impact that the analyzed profiles cause and in which way the tools
are differentiated considering the intended profiles.

126

For each tool charts (repository directory 2.3) were generated to represent the results
obtained for the compilation profiles of each of the analyzed programs. Further illustrations
(repository directory 2.4) were also elaborated along with rankings (repository directory 1.4)
referring to profile categories that are discussed throughout the present subsection. Based
upon these elements, it is possible to draw more specific conclusions from the analysis of
the measured data. The information presented in the previous subsections maintains valid,
as well as complementary towards a global analysis.

The processed data reveals the overall existence of some diversity in the values obtained
for each program, for each tool, and for each profile. However, as previously observed,
the concrete quantification of such variation is highly dependent on context, objective and
characteristics of the mentioned subjects.

Figure 31.: Default profiles measurements for binary-trees.

Considering the presented elements, one of the first topics that may be approached is
related to the default profile provided by the tools. This option does not correspond to the
profiles named Default, but to the ones that are activated while the user does not alter any
specification within the tool. As for the tools present in this study, they correspond to the
profile indicated in the first position upon their description (Table 8). Since Qt Creator pro-
vides many options that depend on the various tools that may be used, the default profile
of the most appropriate option (qmake) was selected. The results for the 18 corresponding
compilation profiles are illustrated in the charts presented in repository directory 1.5 and
also classified according to the rankings presented in directory 2.5 considering the various

127

intended subjects. Figure 31 shows a demonstrative example of the behavior of the majority
of the charts obtained.

Tool Name Execution Time (s) Total Energy (J) CPU Energy (J) Memory Energy (J) Energy/Time (J/s)

CMake 3 (22.2) 3 (42.5) 3 (43.5) 3 (20.2) 3 (19.0)

qmake 4 (23.0) 4 (43.0) 4 (44.0) 4 (20.7) 3 (19.0)

Qbs 9 (26.5) 7 (51.0) 7 (52.0) 10 (23.5) 5 (19.5)

NetBeans IDE 8 (26.0) 10 (54.0) 9 (55.0) 9 (23.0) 6 (20.0)

Code::Blocks 12 (34.0) 12 (79.0) 11 (81.0) 13 (32.0) 10 (23.0)

CLion 3 (22.2) 3 (42.5) 3 (43.5) 3 (20.2) 3 (19.0)

CodeLite 6 (24.5) 7 (51.0) 8 (53.5) 8 (22.5) 7 (20.5)

Eclipse CDT 6 (24.5) 6 (48.0) 6 (49.5) 5 (21.0) 5 (19.5)

KDevelop 3 (22.2) 3 (42.5) 3 (43.5) 3 (20.2) 3 (19.0)

Geany 13 (35.0) 13 (80.0) 13 (84.0) 12 (31.0) 10 (23.0)

Anjuta DevStudio 10 (30.5) 11 (65.0) 10 (67.5) 11 (27.5) 8 (20.8)

Qt Creator 5 (23.4) 5 (44.6) 5 (45.6) 6 (21.1) 4 (19.1)

DialogBlocks 7 (25.5) 8 (52.0) 9 (55.0) 9 (23.0) 5 (19.5)

ZinjaI 6 (24.5) 9 (53.0) 8 (53.5) 7 (22.0) 5 (19.5)

GPS 2 (21.5) 2 (40.2) 2 (41.0) 2 (18.8) 2 (18.8)

Oracle
Developer Studio

8 (26.0) 10 (54.0) 9 (55.0) 9 (23.0) 6 (20.0)

Sphere Engine 1 (19.0) 1 (29.0) 1 (31.0) 1 (15.0) 1 (18.0)

AWS Cloud9 11 (33.0) 14 (80.5) 12 (82.5) 12 (31.0) 9 (22.5)

Table 13.: Default profiles ranked with 0 decimal points.

Taking into account the mentioned illustrations (e.g. Figure 31) and rankings (e.g. Table
13) it stands out that, in exception of one profile, all cases show very similar results re-
gardless of the program. Considering the less rigorous global ranking in particular, it may
be noted that in fact only small differences exist between those options. Such proximity is
mostly due to the generality of the tools providing a very simple and generic profile as their
first option. The intent of easing the initial stage of software development usually leads to
being provided options that manifest low impact towards the behavior of the program
(which may even be empty profiles) or that assist the compilation (e.g. warnings) and the
compiled code analysis (e.g. debug and profile). The inclusion of optimization and other
more sophisticated options is not a priority for tools at this stage, and inclusively, some
applied changes may complicate or prevent some stages of the process (e.g. debugging).

The reason Sphere Engine acts as an exception in relation to the other profiles is precisely
because an optimization suite exists in its default profile. This option allows the tool to
obtain large energy consumption and execution time benefits for the programs. This ap-
proach is not used for any other studied case mainly because the tool only provides a single
compilation profile that focuses on other aspects adequate to a product at a more advanced
stage.

128

Hence it is concluded that for Sphere Engine it is the best option considering the defined
scenario and priorities. If the user intends to select one of the remaining tools, there are
no special considerations required since all present very similar results. For more extreme
cases in which such requirement is needed, the presented ranking suggests using a BAT (or
an IDE that integrates it) and discarding options such as Code::Blocks or Geany.

Figure 32.: Release profiles measurements for mandelbrot.

The profile names of the analyzed tools tend to suggest their characteristics and intended
objectives. The 51 approached profiles exhibit a total of 10 distinct names, with high occur-
rence of the options Debug and Release (15 and 14 respectively). The charts contained in
repository directory 2.4 present the results grouped according to the different definitions
that each program possesses (Table 8). Using the same criteria, rankings in directory 2.2
were created for the two most recurring options.

There are 6 profiles that are found exclusively for a specific tool, hence, for those cases
the charts only show a single option. From that information it is not possible to establish
any connection, and as such, no consideration is made regarding the profiles SomeOpt, Rel-
withDebInfo, Optimized, FullOpt, MinSizeRel and FullAutoInline.

For the majority of programs some discrepancy is noted between the obtained values for
the tools that provide the profiles Default and Profile. In both cases this is explained by the
fact that the tools may or may not opt to include optimization in these elements. Since it

129

is a highly influential factor in the studied measures, naturally the two approaches lead to
very different results.

For the case of the Release profiles (e.g. Figure 32) two types of behavior are observed.
On one hand, for most programs the tools show practically constant and very similar values
regarding the considered subjects. On the other hand, it is noted that the tools Eclipse CDT
and CMake (and derived) are able to produce more efficient results than the remaining, for
a considerable amount of programs. This occurs for 5 cases, and through graphical analysis
it is verified that particularly n-body and mandelbrot show very significant differences (39.7%
and 29.9% respectively). Both highlighted behaviors are also due to the use of optimization
suites, specifically because of the different levels chosen by the tools. While it is indifferent
for most observed cases, there are some situations in which tools that use the level 3 obtain
better results than the ones that use other level.

Regarding Debug profiles (e.g. Figure 33), the tools generally display similar results
considering the various analyzed subjects. Taking into account the program that, for this
situation, displays the most fluctuating behavior (chameneos-redux), it is noted that the dif-
ferences of values show low significance. This way it can be verified that, usually, the tools
provide profiles that are equivalent in regards of the considered subjects upon providing
Debug options to the user.

Figure 33.: Debug profiles measurements for spectral-norm.

130

5.6.4 Profiles - Parameters

On the Figures 38-49 (and repository directories 1.1 and 1.2) and Tables 20-23 (and repos-
itory directories 2.1 and 2.2) the obtained results for the 26 compilation profiles are pre-
sented. Additional material (repository directories 1.6) related to the same information but
grouped by smaller categories, was also generated and will be analyzed along the subsec-
tion.

Some aspects related to the compilation profiles were previously examined either in tool
or program viewpoint. In this subsection, the objective is mainly to analyze the results
related to profiles and its parameter types: in what ways they differ and how much impact
they really have on the considered aspects.

Regardless of different nomenclatures and without going into too much detail about the
content of each profile, it is possible to conclude, based on the applied methodology, that
there are very similar profiles in terms of calculated information. For example, using some
of the charts in which the program behaves dynamically along the multiple profiles, it is
easily verified that generally there are 3 to 6 levels of very close values. This clearly shows
that it is possible to group profiles in categories with similar characteristics (in addition to
the nomenclature). This approach allows both to understand in particular which impact
they have on the calculated values for the subject, and to simplify the analysis through
result redundancy reduction.

Following the analysis performed in the previous subsection, four distinct categories
are easily highlighted that differentiate all profiles considering two of the most relevant
aspects: (a) profiles without optimization and debug options, (b) profiles with debug but
without optimization options, (c) profiles with debug and optimization options; and (d)
profiles without debug but with optimization options. Using charts contained in repository
directory 1.6 (e.g. Figures 34, 35, 36, 37) and presently disregarding the type and depth of
the options contained in the corresponding profiles, three common properties immediately
stand out:

1. The obtained values for the profiles of category (a) and (c) are generally very similar
considering the studied aspects.

2. There is only a residual difference for the (b) category profiles. In particular, based
on the presented charts, it is observed that the execution time line and energy con-
sumption columns have an almost constant behavior for the first eight cases and only
a single fluctuation on four result profiles.

131

Figure 34.: Profiles without optimization and debug options for fannkuch-redux.

3. In general, a large variation on the obtained result between profiles with optimization
can be observed. However, there exists no absolute definition on how it happens since
each of those cases present some differences on their behavior and tendencies. Some-
times the columns indicate the format in an ascending escalator shape (k-nucleotide,
spectral-norm) and in other programs the first and last profile present themselves as
less efficient that the rest (fasta, n-body). Besides that, it can even be noted that the
profiles 23 to 25 show lower (fannkuch-redux) or equivalent (thread-ring, regex-redux)
results than the remaining cases.

In exception of cases in which the rigor is appropriate, the referred properties allow to
conclude that the profiles of the (a) and (c) categories can be considered similar within the
mentioned aspects. In these cases, it is indifferent to the user which is the best option if the
only considerations are exclusively related to execution time or energy consumption of the
programs.

Regarding the options contained on the (b) category, it is also observed that there are no
significant differences. In fact, there are some profiles that allow to obtain slightly more
efficient results for very specific cases. However, the improvements, for the majority of the
target audience and programs, have no major impact or relevance. So, generally, it is possi-
ble to admit the profiles within this category are very similar.

For the (d) category options, it is not possible to elaborate such comprehensive conclu-
sions. Given the large results variation, it would be necessary to further analyze which

132

Figure 35.: Profiles with debug but without optimization options for fannkuch-redux.

parameters are used in each compilation profile. The obtained data renders impossible to
find an example that is better or worst that the rest, considering all programs. So, bearing
this consideration, it is plausible to conclude that the optimization application efficiency
vastly depends on the program type and its respective source code.

During the study some comparisons were made between the category options based on
the determined parameters. In detail, multiple instances of the clear difference between
options with and without optimization (respectively category (d) with (a) and (b)) were ob-
served. However, a more detailed analysis is required in order to understand how profiles
with only debug (b) or optimization (d) differentiate from the hybrid ones that contain both
characteristics (c)). These are called RelwithDebInfo and are known precisely for containing
a moderate level of optimization along with management options of debug information.

Comparing the produced results for the (b) and (c) categories, it is obvious that there is a
large difference between both situations. It is again visible that options with optimization
are more effective, in all aspects, than the others that include other category options.

The options of (c) category show very similar values between themselves and some (d)
category profile cases. It is generally observed that there exists large proximity in the
produced results between the profiles with IDs from 14 to 15 and from 16 to 22. Closely
analyzing which common element types cause this behavior, it is possible to conclude that
most of them use a -O2 optimization suite, and the profiles from both categories that contain

133

Figure 36.: Profiles with debug and optimization options for fannkuch-redux.

Figure 37.: Profiles without debug but with optimization options for fannkuch-redux.

this specific parameter allow to understand that the obtained values for all programs are
completely equivalent.

Based on the examined behaviors, even given the impact the debug/profile options have
on the resulting code (e.g. code size increasing), there is almost no influence considering

134

the measured aspects. Either using the comparison between profiles with non optimized
categories or between profiles with the same optimization level, it is possible to verify that
for all profiles there is little to none substantial impact regarding execution time and en-
ergy consumption. So, it is concluded that a user can perfectly opt for profiles with these
characteristics without any kind of apprehension due to significant performance loss. If a
project is in an initial state, RelwithDebInfo profiles are a good alternative considering the
other usually chosen options.

In Section 5.5, some compilation profile sets were defined with the help of GCC and its
categorization. From the performed research resulted nine categories that differentiate the
profiles according to the purpose of the flags that compose them. It is convenient to reuse
this study result and verify how the mentioned category options distinguish themselves
based on the new aspects. During the current analysis, this approach allow to focus on
more specific sets related to the compilation parameters. On charts contained in repository
directory 2.6 are displayed some information regarding the results for all the programs
using the considered categories. The categories and respective profiles that compose them
are listed as follows:

1. Empty
Profile ID: 1;

2. Warning/Dialect Oriented
Profile ID: 2;

3. Debugging/Profiling without Warnings
Profiles IDs: 3, 4, 6;

4. Debugging with Warnings
Profiles IDs: 5, 7, 8, 9, 10, 11, 12;

5. Low Level Optimization
Profile ID: 13;

6. Optimization with Debug Information
Profiles IDs: 14, 15;

7. Optimization Recommended Level
Profiles IDs: 16, 17, 18, 19, 20, 21, 22;

8. High Level Optimization
Profiles IDs: 23, 24, 25;

9. Code Size Optimization
Profile ID: 26;

135

Interpreting the results for each program, it is visible for the majority of the situations that
no substantial differences are found in any categories. This conclusion is mostly because of
two major causes.

On one hand, several used flags have little to no influence on the generated executable file.
More specifically, it is verified that these options have very relevant tasks related to compi-
lation process management (e.g. preference configuration, macros definition, dependency
management), detection and transmission of anomalies (e.g. throw and management of
warnings) and auxiliary information to code development (e.g. produce debuggable code,
collecting profiling statistics). It is then possible to conclude that these options contain char-
acteristics that assist the programmer during the development of software, and do not add
up extra information on the generated code or, even if they do, the impact is residual. The
presence of most of these options is indifferent to the produced executable, so the lack of
impact on the final results may be considered normal.

On the other hand, the individual flags used don’t have any influential effect on code
based on the measured aspects. Due to high precision provided by the measurement
framework, it possible to verify that in most cases the obtained differences are basically
one-thousandth of a Joule or second. These values are sometimes so reduced that there
is some difficulty to understand if it is related to the applied flag or just another system
performance configuration. In most cases only in situations in which an optimization suite
is applied (which may have at most between 43 and 102 flags) it is possible to witness some
significant variation.

In addition, there are some selected options that are repeated throughout several tools.
Almost half of the mentioned categories only contain one compilation profile, rendering
impossible to perform any type of comparison.

Simultaneously considering all the profiles, it is naturally observed the same character-
istics that were noticed before. They clearly allow to verify the proportion differences
and possible nuances between multiple situations. Based on the presented profiles anal-
ysis made via charts (Figures 38-49), it is confirmed that, for most cases, the conclusions
are precisely the same as before when approaching the program and tool viewpoint subject.

The more dynamic the program behavior is during the multiple profiles, the easier it is
to prove the conclusions. Regarding the two programs with the most static behavior, it is
difficult to make any absolute conclusion.

Using thread-ring it is impossible to conclude anything considering the used profiles.
The produced results present random behaviors and, in some situations, even opposite
response comparing with the rest of the programs. For several aspects, it is possible to
notice that there are non optimized profiles containing more efficient results comparing

136

with optimized profiles, and some anomalies on proportions between factors based on the
already observed ones.

After all, and in a very subtle way, in regex-redux case it is possible to observe some behav-
iors that are equally found on the rest of the programs. Such as small decreases in execution
time and energy consumption upon comparing profiles with and without optimization, per-
centage differences between the most extreme examples on each aspect following the same
pattern as the more dynamic programs, among others.

For the correlations that present a considerable order of magnitude, it is not relevant to
indicate examples or any particular case since those are evident and recurrent occurrences.
However, it proves interesting to identify some examples in which the execution time and
memory energy consumption are correlated since these cases occur less frequently. Partic-
ularly between the profiles 11 and 12 for k-nucleotide and chameneos-redux it can be noted
that both measures decrease even though the global energy consumption increases, or yet
the opposite behavior shown between profiles 8 and 9 of fasta, and between 10 and 11 of
chameneos-redux. Also, for the first 11 profiles of spectral-norm and mandelbrot both execution
time and memory energy consumption values are practically stable.

Considering the complete set of profiles, no cases were found to be the most/least effi-
cient regarding all of the contemplated programs. As previously mentioned, the generated
binary depends on several factors beyond the options selected by the user. For instance, the
characteristics of the source code are fundamental on defining which options, and to what
extent, will effectively be applied by the compiler. Although some parameters might be
part of the compilation profiles, in case the compiler considers that they are not adequate
to the type of program being built, they may not be applied. Furthermore, the compiler
assumes this and other decisions based on a series of heuristics towards an average system,
and as such, there are no guarantees that better code will effectively be produced.

Nonetheless there are profile sets that provide more/less efficient results for the consid-
ered measures on most cases. Rankings in repository directory 2.2 classify all profiles for
each analyzed program and the presented in Tables 20-23 (repository directory 2.1) consider
the whole set of programs.

Examining particularly the ranking presented in Table 14 it is distinguished that, such as
for the tools, there are no significant leaps in classification considering the various aspects.
It can be also noted high similarity among the positions obtained by pairs in which a strong
connection exists: total energy consumption - processor energy consumption and execution
time - memory energy consumption. At last, it has been perceived that the most/least

137

Profile ID Execution Time (s) Total Energy (J) CPU Energy (J) Memory Energy (J) Energy/Time (J/s)

1 20 (200) 23 (243) 21 (249) 19 (193) 19 (187)

2 21 (201) 20 (232) 18 (231) 18 (191) 18 (181)

3 25 (217) 22 (240) 20 (239) 22 (210) 13 (156)

4 17 (190) 18 (230) 18 (231) 16 (185) 15 (170)

5 15 (177) 20 (232) 18 (231) 14 (177) 22 (199)

6 24 (207) 25 (252) 22 (250) 21 (199) 21 (189)

7 23 (204) 21 (237) 19 (238) 20 (198) 17 (179)

8 18 (192) 17 (222) 17 (227) 17 (190) 15 (170)

9 18 (192) 16 (220) 15 (220) 18 (191) 11 (154)

10 16 (179) 15 (218) 14 (217) 15 (184) 16 (172)

11 22 (202) 19 (231) 16 (225) 21 (199) 13 (156)

12 19 (198) 24 (248) 22 (250) 21 (199) 20 (188)

13 12 (107) 13 (130) 12 (131) 11 (104) 10 (153)

14 8 (91) 5 (82) 4 (79) 8 (84) 1 (102)

15 7 (84) 8 (106) 7 (101) 7 (82) 8 (143)

16 3 (55) 6 (92) 6 (92) 3 (56) 9 (150)

17 5 (74) 4 (81) 4 (79) 5 (73) 5 (126)

18 13 (112) 11 (113) 10 (113) 12 (105) 4 (125)

19 10 (100) 7 (93) 5 (88) 10 (98) 3 (112)

20 11 (105) 12 (124) 11 (121) 12 (105) 12 (155)

21 9 (95) 10 (110) 9 (110) 9 (96) 6 (137)

22 6 (78) 9 (109) 8 (108) 6 (76) 11 (154)

23 2 (47) 1 (48) 1 (51) 2 (50) 3 (112)

24 4 (71) 3 (60) 3 (69) 4 (62) 2 (111)

25 1 (33) 2 (55) 2 (61) 1 (33) 7 (139)

26 14 (147) 14 (167) 13 (166) 13 (143) 14 (168)

Table 14.: Profiles ranked with 3 decimal points.

efficient option regarding total energy consumption and execution time does not always
correspond to the best/worst option in terms of the ratio between these two components.

Comparing the gathered profiles, it is distinguished that 23, 24 and 25 are the ones that
present the most efficient results for the considered aspects in most cases. This characteristic
becomes more evident the more rigorous the analyzed results are. On the other hand, the
first 12 profiles are the ones that display the least efficient results in all the considered set.
Even though for some subjects there are results that score slightly better among themselves
within this group, upon comparing them with the generality of the profiles they remain the
worst. Profiles 14 and 26 fit as the average case considering all the examined options. For
all programs, these profiles show good balance for the several aspects, inclusively obtaining
results closer to the best rather than the worst analyzed cases. The remaining 9 profiles (IDs
ranging between 14-22) also stand out as favourable, occupying the best ranking positions

138

immediately after the first considered group. While these elements do produce small dif-
ferences in their results, they still occupy positions 4 to 12 of the ranking for the various
subjects.

The several represented rankings contain position sequences with very close results for
the considered measures. As these differences are grossly very reduced, it would be suitable
to elaborate a ranking that would better illustrate the grouping of such equivalent values.
By following the same approach used for the tool options, and through the ranking and
significant charts, the following classifications for execution time, energy consumption, and
both, are obtained:

Time Ranking:

1. 23, 25;

2. 24;

3. 16;

4. 22;

5. 17, 15;

6. 18, 19, 20, 14;

7. 21;

8. 13;

9. 26;

10. 5, 10, 6, 12, 9, 1, 8, 4, 7, 11, 3, 2;

Energy Ranking:

1. 23, 25, 24;

2. 16, 17, 14, 19;

3. 22, 15, 21, 18, 20;

4. 13;

5. 26;

6. 9, 11;

7. 7, 3, 8, 4, 10, 12, 1, 2, 6, 5;

Time and Energy Ranking:

1. 23, 24, 25;

2. 16;

139

3. 17, 14, 22, 19, 15;

4. 18, 20, 21;

5. 13;

6. 26;

7. 9, 8, 10, 11, 7, 3;

8. 1, 4, 5, 12, 2, 6;

The presented abstractions allow to validate the observations mentioned along this sub-
section. Particularly, examining the classification that gathers the results for execution time
and energy consumption, an excellent summary on how the considered profiles differen-
tiate among themselves is obtained. This abstraction could inclusively have been more
concise if some of the aspects had been examined with less rigour, and small nuances of
the studied programs had been ignored.

5.6.5 Parameters

To conclude the discussion of the results gathered in this experimental study, it remains to
analyze the desired points through the perspective of the compilation parameters. In par-
ticular, to verify which impact the flags (individually and together) have on the execution
time and energy consumption of the programs, and also observe how they differ from each
other. Some of these points have already been referenced throughout this study, but nev-
ertheless, always in a more global perspective. The analysis will mainly rely on the same
graphic and numerical material that was used in the previous subsection (Figures 38-49,
Tables 20-23).

Most tools provide profiles that are composed of more than one compilation parameter.
It is noted that only in 4 of the 26 compilation profiles this situation does not happen, and in
only 1 case it is not a suite of flags. Therefore, the results obtained rarely concern individual
options and only allow comparisons between sets. However, some of these parameters have
a negligible impact on the measured points, which may lead to a reduction in the number
of relevant options present per profile.

It is also noted that there is little diversity in the options provided. Only 26 different
options are counted from a total of 144 parameters collected from the analyzed profiles. It
is also observed that, excluding equivalent flags, optimization suits and options that were
disregarded for the measurements made, there are only 15 parameters left, and the greater
part is dedicated solely to the compilation stage.

This data allows us to conclude that the options provided are generally quite similar and
focus mainly on the interaction with the user during the compilation process. Regarding

140

transformations in the generated code, the tools almost always opt for optimization suites
(without adding any extra optimization flag) or including debug information.

In the set of parameters provided by the tools it is verified that not all of them perform
transformations in the generated code. In particular, there are options that have the function
of handling aspects related to messages that inform the user of possible anomalies detected
during the compilation process. Also known as diagnostic messages options, it is verified
that within the options gathered in this study there are seven parameters with these char-
acteristics: -fmessage-length=0, -fno-diagnostics-show-caret, -fshow-column, -W, -Wextra, -Wall,
and -Wno-write-strings. Through the analysis of the obtained results it emerges that these
type of options do not have any influence on the measured aspects. It should be noted that
in the presented methodology the compilation process is not measured and therefore any
possible impact in it is not accounted for in the obtained results.

In this way and although they do not contribute to a greater efficiency in the generated
executables, it is concluded that they are in fact a good choice by the tools due to the recog-
nized importance of the category in question.

For the -pipe parameter, a behavior with the same characteristics is also verified. Being
an option that tries to change the preference in the communication between build phases,
it is noted that it also does not have any effect in the code generated.

Among the analyzed parameters there are also three options that do not produce any
differentiating effect for the various cases considered. The first option is fvisibility=default
which is observed to be declared explicitly as a parameter, but is already implicitly used
by the compiler. The -lm option explicitly requires the linking of a library that will not be
included if it is not required or otherwise will be requested in the same way for all analyzed
cases (through the parameters required by the program itself). Finally, it is verified that the
-fomit-frame-pointer option is explicitly declared but is used simultaneously with the suite
-O2 of which it is already part.

In this way it can be concluded for all the presented options that it is not possible to
analyze their respective effect in the considered aspects. Although there is the possibility
of producing modifications in the resulting program, it is verified that they will occur in-
distinguishably for all analyzed cases. It is also concluded from the presented reasons that
the use of these options by the tools is redundant and therefore dispensable.

The conclusions are quite similar when considering parameters that alter the production
of debuggable code or collect profiling statistics. Both types of options have in fact influ-
ence on the generated executable, such as making it have a larger size or the executed code

141

is spread over more pages. However, it is verified that they do not change the control flow
of the code and therefore do not have any type of effect in the execution time or energy
consumption of the program. It is also noted that this result extends to the various types
of options used in this category regardless of their depth level, format variations or exten-
sion chosen. The great similarity in the results obtained for the several cases indicated also
serves as proof of the mentioned facts. In this way it is concluded that the flags -g, -g2, -g3,
-ggdb, -ggdb3, -DNDEBUG and -pg have no interference in the measured aspects.

Regarding the -fPIC option, diverse results are obtained depending on the type of pro-
gram being considered. Although this parameter is not used in any case in an isolated way,
it is observed that it is contained in five profiles (IDs 9, 11, 15, 18 and 20) which allows it to
be compared with other similar cases. By analyzing the results obtained for the profiles in
question throughout the various programs, it is found that they have different behavior in
relation to the intended strands.

Compared with other equivalent profiles, they are sometimes found to be more efficient
(e.g. fannkuch-redux, fasta, meteor), less efficient (e.g. binary-trees, n-body, k-nucleotide) or even
equivalent (e.g. spectral-norm). However, although it is very subtle, it is observed that in
most cases there is indeed some effect on the aspects measured. This data leads to the
conclusion that the generation of position-independent code suitable for dynamic linking
may in some cases in particular allow a greater efficiency in execution time and energy
consumption. Nonetheless, the opposite behavior is also observed and therefore the use of
this parameter must be done with some care in cases where such rigor is necessary.

The optimization levels clearly have the most efficient results for the elements analyzed.
In addition to the default level (-O0), a further four sets (-O1, -O2, -O3, -Os) are used for
different purposes. The flags they provide are either partially or fully contained in the re-
maining sets and can therefore be seen as extensions to each other. Depending on the suite
and program considered, in total up to 43-102 individual flags can be enabled to control
various aspects of the compilation process and resulting code. Finally, it is up to the com-
piler to decide based on assumptions and heuristics which options will actually be applied
in code generation. The optimization attempt by the compiler has no guarantee that it will
actually improve the resulting code, nor that the application of a given transformation will
not detract from another aspect that might be relevant to another objective. In particular,
we can even observe the application of the same set of optimizations for different levels of
optimization.

Regarding the results obtained for the four relevant suites, it is concluded that in fact
there is no option that is better or worse for all cases. It is noted that the classification of

142

the various options is highly dependent on the program concerned, and is sometimes very
similar or even equivalent. Although not always very significant, it is verified that the level
O3 presents more efficient results for the great majority of the cases.

On the other hand, it is verified that the level Os is generally the one that has the least
efficient results. This is mainly due to the nature of the suite itself and the objectives it
seeks. In the particular case of regex-redux it is even observed that it has worse results in
the analyzed strands than the default suite.

The remaining two levels have a very close behavior between them. Although the O2
suite has more than double the options present in O1, it can be seen for the programs
analyzed that only in the case of fasta there is a great difference between both. These results
confirm that although the O1 level is the most basic element of the cases considered, it is
nevertheless quite competent in the considered aspects. Even so, there is a general rule that
there is a slight rise in the O2 level relatively to O1.

In order to be able to compare and quantify concretely the optimization levels used by
the tools under study, five profiles representing the respective categories (IDs 1, 13, 19, 25
and 26) were selected. Table 15 shows the respective mean values obtained for the different
strands considering all programs analyzed. It is also indicated the percent difference com-
pared to the default level (-O0).

Optimization Level Time (s) Energy (J) CPU (J) Memory (J) Energy/Time (J/s)

O0 16.862 181.611 169.872 11.739 10.582

O1

8.689

48.5%
85.511

52.9%
79.195

53.4%
6.316

46.2%
10.212

3.5%

O2

8.415

50.1%
82.182

54.7%
76.063

55.2%
6.119

47.9%
10.032

5.2%

O3

7.644

54.7%
74.058

59.2%
68.485

59.7%
5.573

52.5%
9.872

6.7%

Os
9.408

44.2%
93.879

48.3%
87.061

48.7%
6.818

41.9%
10.315

2.5%

Table 15.: Optimization levels results.

Analyzing the presented results, the same trends mentioned above are also observed.
Clearly the aspect that stands out most is the large difference in values between the default
level of optimization and the rest. Regardless of the level applied, mean gains between 40%-
60% are obtained for the four measured elements. This significant difference shows once
again that code optimization when compiling is a very efficient way to get improvements
in the generated code without any extra effort by the programmer.

143

It is also noted that the level Os, although it has advantages in other areas, it does not al-
low such significant improvements compared to the other options (about 10% less than O3).
The proximity between the O2 and O1 suites is also marked by the minimum percentage
difference between the two (1.6%-1.8%) and is verifiable as well the slight ascendant of the
superior level to the various strands.

The O3 optimization suite made it possible to achieve improvements above 50% for the
four components considered, and for the total energy consumption and processor it is even
close to 60%. They are indeed quite impressive results proving the excellent performance
of the compiler in this matter.

5.6.6 Discussion

The methodology described above involved, among other aspects, 12 programs, 18 devel-
opment tools and 26 compilation profiles. The respective execution time, CPU and memory
RAM energy consumption (individually and together) and the ratio between both factors
(energy/time) were measured for each case. The results obtained from different perspec-
tives that encompass the set of analyzed elements were presented and discussed.

From the point of view of the programs, it was verified through the numerical and graph-
ical analysis that they have different characteristics with respect to the analyzed strands. In
general, it was found that 2 programs (thread-ring and regex-redux) exhibit a very regular
behaviour with small changes when compiled with different options, while the remaining
ones show big behaviour changes throughout the various profiles. For these 10 programs
was observed a great difference between the best and worst cases, mainly in fasta and n-body.
Meteor and fannkuch-redux present respectively the smallest and largest results in terms of
execution time, total energy consumption and processor energy consumption. In the case
of memory energy consumption it was found that, with the exception of reverse-complement,
the results obtained were generally more closely related.

From the data obtained it was also possible to testify some previous conclusions. In
particular, it was verified the great impact of the CPU on energy consumption, being re-
sponsible for about 90% of the total value measured. It was also observed the great impact
of the GCC optimizations flags in the programs the execution time and energy consump-
tion (maximum improvements in the order of 86%). It was also concluded that, overall, the
strands with the best and worst percentage improvements achieved are the processor (53%)
and memory energy consumption (46%), respectively.

From the analysis made, it was possible to observe some correlations between the execu-
tion time and the different types of energy consumptions measured. In particular, it was
concluded that, for the majority of the programs and profiles considered, there is a strong

144

link between the execution time and total energy consumption obtained. More specifically,
it is verified that the memory energy consumption has quite influence in the program exe-
cution time (being largely responsible for the more abrupt changes). It was also concluded
that, as a general rule, the ratio between energy consumed and execution time does not
differ greatly from case to case.

From the perspective of the tools, it was observed that the majority of them give the
user two compilation profiles with very clear and distinct objectives (debug and release).
Through the data obtained for each studied profile, efficiency rankings were elaborated
according to the execution time and energy consumptions for the respective tools. It was
concluded that Sphere Engine and GPS are the best classified tools and on the other hand
that AWS Cloud9, Code::Blocks and Geany stand out negatively. With regard to the BATs
(CMake, qmake and Qbs) it is observed that in general are well classified in the various
efficiency rankings and therefore prove to be an excellent option for the users.

Through the analysis between all the tools with similar profiles in terms of quantity and
objectives, it was observed however that the differences obtained in the mentioned strands
are not very relevant for most cases.

The tools were also classified considering only the results obtained for the profile that
they provide to the user by default. It was concluded that except for the Sphere Engine, all
tools have relatively close results in terms of execution time and energy consumption.

The analysis of the profiles was initially made using categories in which they were
grouped according to objectives and similar characteristics. It is concluded that, except for
categories with optimization suites, there are no significant differences between the values
obtained for the analyzed profiles. It was also verified that the majority of the parameters
are used for the configuration of the compilation process, management of diagnostic mes-
sages or to produce information of debugging and profiling. It was also proved that those
parameters do not have a significant impact on the execution time and energy consumption
of the programs.

In the case of profiles that include optimizations, it was again confirmed the great influ-
ence they have in the execution time and energy consumption. The analysis by categories
also allowed to observe that profiles that include optimizations of a moderate level together
with options related to debugging, are in fact good choices for the developer.

Analyzing for each program the set of profiles as a whole, it was also found that for
the majority of cases there are no substantive differences between non-optimized profiles.
Through the same analysis, the previously observed correlations for the elements and
strands under study were also confirmed.

145

Following the previous approaches and assumptions, rankings were also developed for
the analyzed profiles. It was found that there are no profiles that are the best or worst for
all programs. However, it has been found that for the majority of cases the most efficient
sets are: profiles 23 to 25; then between 14 and 22; then the profiles 14 and 26; and finally
the first 12 options.

Finally, we analyzed the results from the point of view of the compilation parameters,
concluding that the majority have little to no impact on the way the program is executed.
It was found that there is a large set of options that have other objectives relevant to the
compilation process (e.g. management, warnings, debug). However, they do not change
the control flow of the code and therefore no impact on the execution time and energy
consumption of the program.

Lastly, the four levels of optimization were compared taking into account the measured
strands. It was concluded that for most programs the O3 level produces more efficient
results, with a mean gain of 56% for all aspects by comparison to the default level. Then,
the levels O2 (51.6%) and O1 (49.8%) appear with very similar values. Finally, but still with
very interesting values, appears the level Os (45.3%). This data allows us to conclude again
that optimizations are a very fast and effective way for programmers to improve the energy
efficiency of their programs.

5.7 summary

In this chapter, an experimental thematic study was presented that had as one of the main
objectives to investigate from an energy perspective the performance of the programs gen-
erated by IDEs.

The study begins with the analysis of some of the main features of Integrated Develop-
ment Environments. A broad research was carried out to ascertain for example the origin of
these tools, their advantages and disadvantages with regard to the existing alternatives or
their differentiating factors. It has been proven that in fact IDEs are essential programming
tools to increase the productivity of any type of developer. Whatever the format, features
and functionalities they present, they are clearly a key development model today.

Subsequently a research was carried out in the market of this type of tools and selected
those that respected some criteria that we consider pertinent. In the course of this process it
was found that because they have similar characteristics considering compilation strategy, it
would also be interesting to analyze tools with Build Automation Tools features. In total, 18

tools were selected that passed the filtering process of a set of 49 explored options. During

146

this process it was also possible to perform a comparative study between the selected tools
and to verify for example some particularities and similar/divergent aspects between the
various options.

After gathering the necessary tools, a study was carried out to find out the type of strat-
egy used by the IDEs to generate code automatically. It was concluded that they mainly
use compilation profiles that allow the user to compile programs according to a set of pre-
defined parameters. It was verified that they use three different ways of obtaining this
mechanism (not optimized, own profiles and BATs profiles) and also the main characteris-
tics of each one were analyzed.

Next, the compilation profiles of the tools under study were collected, resulting in 51 el-
ements (29 distinct). Through this set, it was concretely ascertained the intended objectives
of the tools for each option provided. It was also possible to survey some data that allowed
to establish some comparisons and considerations between the various tools.

In order to perform a more detailed analysis of the parameters present in the compila-
tion profiles, it was necessary to review and deepen some topics related to the compiler
and programming language used. In particular, the various steps of the GCC compilation
process for C programs have been described and what kind of options are allowed during
the same. Finally, 16 categories of parameters considered by GCC were presented together
with the detailing of demonstrative examples for each one.

After gathering the desired compilation profiles and analyzing the stance of GCC relative
to the compilation parameters, it was then possible to examine the options contained in the
profiles obtained. It was verified that in total, 144 parameters (28 distinct) are used and
that they are inserted in nine different categories according to GCC. For each of these ele-
ments a description and contextualization was then performed according to the respective
categories to which they belong. With this data it was possible to verify in detail the respec-
tive effect that each one of the options intends to perform during the compilation. Taking
into account some data collected, it was found that it was possible to group the options
obtained in a more summarized way into four sets according to their function: control of
the compilation process, management of diagnostic messages, provision of debug/profile
information and optimization of the generated code.

Following the same approach, the compilation profiles were analyzed according to the
characteristics of their parameters. It was concluded that it is possible to group them into
nine distinct categories and that the vast majority use debugging and optimization options.
This new data made it possible to perform some more comparisons between the various

147

tools from the perspective of the profiles and their compilation parameters.

After researching the elements relevant for the experimental study, it was necessary to
investigate the elements that allowed the respective analysis. It was verified that the target
machine and the measurement framework used in the previous experimental study contin-
ued to be perfectly suited to the objectives intended here. In this way it was decided to
reuse them.

It was also necessary to investigate which benchmarks allowed to achieve the desired
results. Very strict search criteria were defined in order to find solutions not only suitable
for study but also with considerable relevance for the community. In particular, it was in-
tended that they were sophisticated enough to be challenging for both the hardware and the
compiler and even if they were based on problems with different scopes and backgrounds
in order to promote the diversity of the resources used. The choice fell on the Computer
Language Benchmarks Game and were selected the 12 submissions in C best positioned in
the project performance ranking.

The applied experimental methodology was also inspired by the study presented in the
previous chapter. After selecting the desired elements and filtering the cases with redun-
dant behavior, the process of measurement of execution time and energy consumptions for
all the programs, profiles and intended tools was performed. The obtained results were
then processed and presented in more appealing and relevant formats for analysis: charts,
tables, HTML pages, and rankings.

Based on this data, the results were presented and discussed through different perspec-
tives regarding the elements considered. In addition to the efficiency of the measured
aspects, other aspects relevant to the developers in general were also analyzed.

It was observed that the analyzed programs have different behaviors in relation to the
measured aspects. In particular, it was found that there is a very strong connection between
execution time-total energy consumption, between total energy consumption-processor and
also between execution time-memory energy consumption.

Regarding the efficiency level of the tools it has been noted that there are significantly dif-
ferent results among the respective profile sets. It has been verified that the majority opts
by providing 2 compilation profiles with very distinct characteristics (Debug and Release)
and there does not exist significant difference between these tools concerning the obtained
results. It has been yet noted that the Build Automation Tools present fairly interesting re-
sults and prove to be an excellent option for users. The results also allowed the elaboration
of a ranking for the tools concerning the given aspects.

148

Regarding the obtained results for the compilation profiles it was verified that the re-
sults are very similar, inclusively for all profiles that do not include optimization suites.
Individually comparing each profile it was possible to establish a ranking according to the
examined strands, and state which options are the most/least efficient.

Ultimately the results obtained for each individual parameter were analyzed. It was
concluded that the vast majority of options did not influence significantly the considered
aspects. As for optimization levels it has been noted that all display very significant im-
provements (40%-60%) for the measured subjects. This information corroborate the conclu-
sion that optimizations are, indeed, a fast, simple and effective way to obtain improvements
for the energy consumption of the generated code.

This study was carried out successfully and allowed to obtain and deepen a vast set of
information. It was possible to inspect the most successful types of programming tools,
namely the different existing varieties and which strategies they use to automatically gen-
erate code. It was yet viable to enrich the previously started research concerning compilers,
and with particular focus on GCC. It was possible to analyze and describe a large group
of compilation parameters and classify them according to their purposes, as well as use
a diversified and optimized set of benchmarks. A methodology that encompassed such
diverse elements was successfully designed and enabled the desired results to be achieved
viably and efficiently. Through a pertinent processing of the results, it was possible to ob-
tain more easily the intended answers for this study and still to establish some interesting
observations regarding aspects directly related to the developer.

149

6

C O N C L U S I O N

In this work have been examined some problems and limitations that arose in the IT indus-
try (as a result of rapid development as well as of the high demands) such as increasing
energy consumption and the negative impact on the environment. These problems reveal
the need for a change in the production paradigm throughout the IT industry, in order to
reverse this negative trend. In this context, was presented the Green Computing concept
which means the study and practice of efficient and environmentally sustainable use of
computers and related resources. Use new energy-generation techniques, reduce the use
of hazardous materials and decrease pollution and the environmental impact were some of
the objectives of the paradigm described along the report. After a historical review of a few
landmarks and their evolution, was explained the importance of Green Computing both
today and in the future. Some of the good practices and technical approaches currently
in use were presented; for example Cloud Computing, Power Optimization, Virtualization
and Grid Computing were analyzed.

Afterwards, microprocessors were analyzed from the perspective of Green Computing.
More specifically, was exemplified their heterogeneous utilization nowadays, the impact
on the energy consumption of a computer system and the increasing technological impor-
tance of microprocessors. From that research it became clear that optimization during code
generation is a crucial way to combat excessive energy consumption. It was possible to
conclude from the analysis of the evolution that manufacturers and consumers of products
with microprocessors require increasingly more energy efficient solutions.

Taking into consideration the importance of microprocessors and their impact on energy
consumption in a computer system, the modern compiler design was analyzed with the
goal to understand which techniques already used have potential to improve the energy
efficiency of the generated code. This search made possible to conclude that although the
low energy consumption are still not a priority on the compilation process, it is already
considered as one of the four optimal properties of the produced code. In the set of all
optimization techniques applied with energy consumption impact, there are some evident

150

ones in efficiency order: making the execution of the program faster, lowering the CPU
voltage, reduce the amount of bit switching and specific domain-dependent methods. Just-
In-Time compilation is also other approach that bring some advantages on the generated
code allowing a significant improvement on the overall energy consumption.

After the theoretic investigation, two experimental studies were done with the objective
of applying in some examples some of the acquired knowledge and check, in practice, what
is the real impact.

The covered topics of the first study are according with multiple aspects of the study
on modern compilers like for example the existing correlation between the execution time
and program energy consumption. Specifically, it focuses on analyzing and comparing
the impact of the multiple levels of GCC optimization on the C, C++, Go and Objective-C
programs consumption. The results were obtained via a measuring tool developed by the
team of this project, that allows, among many other functionalities, to perform analysis of
Machine-Specific Registers containing information about the energy consumed by the CPU,
RAM and GPU during a given period of time. After all the necessary elements (testing
platform, measurement software and measured software) are defined and gathered, a study
methodology was planned with the goal to include all the mentioned aspects around the
final objective and, in the end, a presentation and final results discussion happened.

With this experimental study, it was possible to conclude that the GCC optimization
have a great impact on the energy consumption using the already mentioned programming
languages. We found too that for the majority of the cases -Ofast level is the most efficient
unlike -O1 and -Os options. It was verified too that a correlation between execution time
and program energy consumption globally exist considering the hardware elements and
programming languages. All this information indicate clearly that if a software developer
wants, without effort, to reduce its software consumption, he only needs to apply on the
sophisticated optimization levels that the compiler offers to achieve it. Besides the obtained
results, this study was very important because it made possible not only to create a new
measuring framework but to gain experience in a lot of important aspects that allowed to
get into more and deeper analysis details.

The results of this study were also presented at the 2015 IEEE 13th International Scientific
Conference on Informatics1. We were invited to carry out an extension to the initial work to
be published in Journal Acta electrotechnica et Informatica No. 1, Vol. 16, 20162.

The second experimental study aimed to analyze a specific tool type that was essential
to developers in their daily basis and verify what was the real energy impact on the pro-

1 https://ieeexplore.ieee.org/document/7377807

2 http://www.aei.tuke.sk/papers/2016/1/2016-1.htm#BRANCO

151

duced code. Study IDEs and some BATs was the way to go, mainly understanding what are
the differences between the compilation profiles provided to users based on the energy effi-
ciency. It was also possible to deepen the research already begun on the compilers and their
compilation parameters. At the same time, the CLBG (a project that gathers and compares
software challenge solutions in multiple programming languages) properties were studied
and the their use as a benchmark source for the main objective were confirmed.

After completing the research phase, it was possible to gather all the new necessary
elements, to define the methodology to be applied and to process the obtained results to a
more adequate format to the main analysis.

Through the discussion of the results it was possible to again verify that there is a cor-
relation between execution time and energy consumption of the programs. In particular,
it is verified that the execution time is strongly related to the energy consumption of the
memory, although it is observed that the processor is responsible for most of the expense.

Regarding the tools analyzed, it was verified that there is a great similarity between the
options they have. Usually they choose to provide the user with two profiles: one with ap-
propriate options for an early software development phase (e.g., warnings, debug/profile
options) and a more suitable one for the product release phase (e.g. sophisticated opti-
mizations). However, with the exception of options with different levels of optimization,
the results obtained are quite similar. Generally, it has been found that BATs offer more
efficient options for the analyzed aspects.
Regarding the compilation parameters, it was verified that the majority has no impact on
the execution time and the program’s energy consumption. Most of the options do not
change the flow control of the code, aiming at other types of tasks such as: configuration
of the compilation process, management of diagnostic messages or to produce debugging
and profiling information. This behavior leads to the conclusion that, except in situations
where such a requirement exists, the programmer can choose without much concern the
use of several individual compile flags without loss relevant to the energy consumption
of his code. Regarding the optimization levels used by the tools under study, it is veri-
fied that levels 3 and 2 are generally the ones that obtain greater reductions in the energy
consumption of the programs (on average 57 %).

It was also possible to elaborate some rankings of the studied tools taking into account
several characteristics of both the tools themselves and the executables they produce. For
the profiles and compilation parameters a similar analysis was carried out and the results
obtained were also equivalent. This study proved to be very opportune as it enabled us to
solidify acquired knowledge, to deepen a topic that is very relevant to any developer, and
to obtain results with very interesting indicators.

152

The various studies have also enabled us to gather a huge set of information that can also
be used as a good workbench for other green oriented research.

153

B I B L I O G R A P H Y

AEEC. The Energy Conservation Center, Japan, 2015. URL http://www.asiaeec-col.eccj.

or.jp/contents01.html.

Christopher Barnatt. ExplainingComputers - Green Computing, 2012. URL http://

explainingcomputers.com/green.html.

L. Belinda. Measuring application power consumption on the Linux operat-
ing system, 2015. URL https://software.intel.com/en-us/blogs/2013/06/18/

measuring-application-power-consumption-on-linux-operating-system.

Karen Bemowski. Windows ITPro - Power Management Software for
Windows Workstations, 2010. URL http://windowsitpro.com/windows/

buyers-guide-power-management-software-windows-workstations.

Michael R Betker, John S Fernando, and Shaun P Whalen. The History of the Microproces-
sor. Bell Labs Technical Journal, pages 29–56, 1997. ISSN 10897089. doi: 10.1002/bltj.2082.

Stefan Brunthaler. Inline caching meets quickening. In Theo D’Hondt, editor, ECOOP 2010
– Object-Oriented Programming, pages 429–451, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg. ISBN 978-3-642-14107-2.

L N Chakrapani, P Korkmaz, V J Mooney III, K V Palem, K Puttaswamy, and W F Wong.
The Emerging Power Crisis in Embedded Processors: What Can a Poor Compiler Do?
Proceedings of the 2001 International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, pages 176–180, 2001. doi: 10.1145/502217.502246. URL http://doi.

acm.org/10.1145/502217.502246.

Premangshu Chanda, Subrata Chanda, Pallab Kanti Mukherjee, Shalabh Agarwal, and
Asoke Nath. Scope and issues in green compiler. International Research Journal of Com-
puter Science(IRJCS) : ISSN: 2393-9842, 3:86–93, 01 2017.

Jee Whan Choi, D. Bedard, R. Fowler, and R. Vuduc. A roofline model of energy. In Parallel
Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on, pages 661–672,
May 2013. doi: 10.1109/IPDPS.2013.77.

CMake Reference Documentatiom. Cmake reference documentation, 2018. URL https:

//cmake.org/cmake/help/v3.11/.

154

http://www.asiaeec-col.eccj.or.jp/contents01.html
http://www.asiaeec-col.eccj.or.jp/contents01.html
http://explainingcomputers.com/green.html
http://explainingcomputers.com/green.html
https://software.intel.com/en-us/blogs/2013/06/18/measuring-application-power-consumption-on-linux-operating-system
https://software.intel.com/en-us/blogs/2013/06/18/measuring-application-power-consumption-on-linux-operating-system
http://windowsitpro.com/windows/buyers-guide-power-management-software-windows-workstations
http://windowsitpro.com/windows/buyers-guide-power-management-software-windows-workstations
http://doi.acm.org/10.1145/502217.502246
http://doi.acm.org/10.1145/502217.502246
https://cmake.org/cmake/help/v3.11/
https://cmake.org/cmake/help/v3.11/

CNS. Computer Science Department The University of Texas at Austin - Toward Lowering
the Power Consumption of Microprocessors, 2012. URL https://www.cs.utexas.edu/

news-events/news/2012/toward-lowering-power-consumption-microprocessors.

Computer Weekly. Do you run a green machine?, 2006. URL http://www.computerweekly.

com/feature/Do-you-run-a-green-machine.

Marco Couto, Rui Pereira, Francisco Ribeiro, Rui Rua, and João Saraiva. Towards a green
ranking for programming languages. In Proceedings of the 21st Brazilian Symposium on
Programming Languages, page 7. ACM, 2017.

Jem Davies. Partnerships, Standards and the ARM GPU Perspective. In Compute Power with
Energy Efficiency, page 45, 2012.

Jay Dietrich, Roger Schmidt, Mike Hogan, and Gerry Allen. The green data center. Techni-
cal Report May, IBM, 2008.

Daniel Eran Dilger, 2016. URL http://appleinsider.com/articles/14/06/04/

apples-top-secret-swift-language-grew-from-work-to-sustain-objective-c-which-it-now-aims-to-replace.

The Economist. Pursuing sustainability, 2008. URL http://www.economist.com/debate/

sponsor/136.

Brad Ellison. The Problem of Power Consumption in Servers. Energy Efficiency for Informa-
tion Technology, pages 1–17, 2009.

Calle Erlandsson. The four stages of compiling a c programming, 2018. URL https://www.

calleerlandsson.com/the-four-stages-of-compiling-a-c-program/.

Faiza Fakhar, Owais Malik, et al. Distributed green compiler. In Proceedings of the 2011
Fourth IEEE International Conference on Utility and Cloud Computing, pages 421–426. IEEE
Computer Society, 2011.

Faiza Fakhar, Barkha Javed, Raihan ur Rasool, Owais Malik, and Khurram Zulfiqar. Soft-
ware level green computing for large scale systems. Journal of Cloud Computing: Advances,
Systems and Applications, 1(1):4, May 2012. ISSN 2192-113X. doi: 10.1186/2192-113X-1-4.
URL https://doi.org/10.1186/2192-113X-1-4.

William Forrest, James M Kaplan, and Noah Kindler. Data centers: How to cut carbon
emissions and costs. McKinsey on business technology, 14(6), 2008.

Ian Foster. What is the grid? A three point checklist, 2002.

GCC team. Using the GNU Compiler Collection (GCC): Optimize Options, 2014. URL
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html.

155

https://www.cs.utexas.edu/news-events/news/2012/toward-lowering-power-consumption-microprocessors
https://www.cs.utexas.edu/news-events/news/2012/toward-lowering-power-consumption-microprocessors
http://www.computerweekly.com/feature/Do-you-run-a-green-machine
http://www.computerweekly.com/feature/Do-you-run-a-green-machine
http://appleinsider.com/articles/14/06/04/apples-top-secret-swift-language-grew-from-work-to-sustain-objective-c-which-it-now-aims-to-replace
http://appleinsider.com/articles/14/06/04/apples-top-secret-swift-language-grew-from-work-to-sustain-objective-c-which-it-now-aims-to-replace
http://www.economist.com/debate/sponsor/136
http://www.economist.com/debate/sponsor/136
https://www.calleerlandsson.com/the-four-stages-of-compiling-a-c-program/
https://www.calleerlandsson.com/the-four-stages-of-compiling-a-c-program/
https://doi.org/10.1186/2192-113X-1-4
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

GCC team. GCC 4.5 Release Series, 2016a. URL https://gcc.gnu.org/gcc-4.5/.

GCC team. Java and GNU, 2016b. URL https://gcc.gnu.org/java/.

GCC team. Programming Languages Supported by GCC, 2016c. URL https://gcc.gnu.

org/onlinedocs/gcc/G_002b_002b-and-GCC.html.

GCC team. Status of Supported Architectures from Maintainers’ Point of View, 2017. URL
https://gcc.gnu.org/backends.html.

GCC team. Using the gnu compiler collection (gcc): Inline, 2018a. URL https://gcc.gnu.

org/onlinedocs/gcc-7.3.0/gcc/Inline.html.

GCC team. Using the gnu compiler collection (gcc): Invoking gcc, 2018b. URL https:

//gcc.gnu.org/onlinedocs/gcc/Invoking-GCC.html#Invoking-GCC.

Prodromos Gerakios, Nikolaos Papaspyrou, and Konstantinos Sagonas. Race-free and
memory-safe multithreading: design and implementation in cyclone. In Proceedings of
the 5th ACM SIGPLAN workshop on Types in language design and implementation, pages 15–
26. ACM, 2010.

Sarah Gingichashvili. The Future of Things - Green Computing, 2007. URL http:

//thefutureofthings.com/3083-green-computing/.

Isaac Gouy. Computer language benchmarks game wiki, 2012. URL http://wiki.c2.com/

?ComputerLanguageBenchmarksGame.

Isaac Gouy. Alioth: The computer language benchmarks game: Project home, 2018a. URL
https://alioth.debian.org/projects/benchmarksgame/.

Isaac Gouy. The computer language benchmarks game, 2018b. URL https://

benchmarksgame.alioth.debian.org/.

Sam Grier. IT Managers Inbox - PC Power Management Solutions, 2009. URL http://

itmanagersinbox.com/1399/pc-power-management-solutions.

Dick Grune, Kees van Reeuwijk, Henri E. Bal, Ceriel J.H. Jacobs, and Koen Langendoen.
Modern Compiler Design. Springer Publishing Company, Incorporated, 2nd edition, 2012.
ISBN 1461446988, 9781461446989.

Tarik Guelzim and Mohammad S Obaidat. Handbook of Green Information and Communication
Systems, chapter Chapter 8, pages 209–227. Academic Press, 2013.

Marcus Hähnel, Björn Döbel, Marcus Völp, and Hermann Härtig. Measuring energy con-
sumption for short code paths using RAPL. ACM SIGMETRICS Performance Evaluation
Review, 40, 2012.

156

https://gcc.gnu.org/gcc-4.5/
https://gcc.gnu.org/java/
https://gcc.gnu.org/onlinedocs/gcc/G_002b_002b-and-GCC.html
https://gcc.gnu.org/onlinedocs/gcc/G_002b_002b-and-GCC.html
https://gcc.gnu.org/backends.html
https://gcc.gnu.org/onlinedocs/gcc-7.3.0/gcc/Inline.html
https://gcc.gnu.org/onlinedocs/gcc-7.3.0/gcc/Inline.html
https://gcc.gnu.org/onlinedocs/gcc/Invoking-GCC.html#Invoking-GCC
https://gcc.gnu.org/onlinedocs/gcc/Invoking-GCC.html#Invoking-GCC
http://thefutureofthings.com/3083-green-computing/
http://thefutureofthings.com/3083-green-computing/
http://wiki.c2.com/?ComputerLanguageBenchmarksGame
http://wiki.c2.com/?ComputerLanguageBenchmarksGame
https://alioth.debian.org/projects/benchmarksgame/
https://benchmarksgame.alioth.debian.org/
https://benchmarksgame.alioth.debian.org/
http://itmanagersinbox.com/1399/pc-power-management-solutions
http://itmanagersinbox.com/1399/pc-power-management-solutions

R R Harmon and N Auseklis. Sustainable IT services: Assessing the impact of green com-
puting practices. In Management of Engineering Technology, 2009. PICMET 2009. Portland
International Conference on, pages 1707–1717, 2009. doi: 10.1109/PICMET.2009.5261969.

Paul Johannes Mattheus Havinga. Design techniques for energy efficient and low-power
systems. Mobile multimedia systems, pages 2.1—-2.52, 2000.

Jackson He. Datacenter Power Management: Power Consumption Trend, 2008. URL
https://communities.intel.com/community/itpeernetwork/datastack/blog/2008/

02/20/datacenter-power-management-power-consumption-trend.

J. Henkel and S. Parameswaran. Designing Embedded Processors: A Low Power Perspec-
tive. Springer Publishing Company, Incorporated, 1st edition, 2007. ISBN 1402058683,
9781402058684.

Andrei Homescu and Alex Şuhan. Happyjit: a tracing jit compiler for php. ACM SIGPLAN
Notices, 47(2):25–36, 2012.

Chung-Hsing Hsu and Ulrich Kremer. The design, implementation, and evaluation of a
compiler algorithm for cpu energy reduction. In ACM SIGPLAN Notices, volume 38,
pages 38–48. ACM, 5 2003.

IBM Staff. Green IT – Energy Efficiency, 2015. URL http://www-03.ibm.com/systems/z/

advantages/energy/.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual, 325462-053

edition, September 2015.

Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual, 325462-
064us edition, October 2017.

Intel Staff. 2013 Corporate Responsibility Report. Technical report, Intel, 2013. URL http:

//csrreportbuilder.intel.com/PDFFiles/CSR_2013_Full-Report.pdf.

Intel Staff. Intel Sustainability Initiatives and Policies, 2015a. URL
http://www.intel.com/content/www/us/en/corporate-responsibility/

sustainability-initiatives-and-policies.html.

Intel Staff. Intel 64 and IA-32 Architectures Software Developer Manu-
als, 2015b. URL http://www.intel.com/content/www/us/en/processors/

architectures-software-developer-manuals.html.

ITCandor. Microprocessors – Intel Leads, 2012. URL http://www.itcandor.com/

microprocessor-q312/.

157

https://communities.intel.com/community/itpeernetwork/datastack/blog/2008/02/20/datacenter-power-management-power-consumption-trend
https://communities.intel.com/community/itpeernetwork/datastack/blog/2008/02/20/datacenter-power-management-power-consumption-trend
http://www-03.ibm.com/systems/z/advantages/energy/
http://www-03.ibm.com/systems/z/advantages/energy/
http://csrreportbuilder.intel.com/PDFFiles/CSR_2013_Full-Report.pdf
http://csrreportbuilder.intel.com/PDFFiles/CSR_2013_Full-Report.pdf
http://www.intel.com/content/www/us/en/corporate-responsibility/sustainability-initiatives-and-policies.html
http://www.intel.com/content/www/us/en/corporate-responsibility/sustainability-initiatives-and-policies.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.itcandor.com/microprocessor-q312/
http://www.itcandor.com/microprocessor-q312/

ITCandor. Microprocessor Market Down, 2013. URL http://www.itcandor.com/

chip-q213/.

Gaurav Jindal and Manisha Gupta. Green Computing “Future of Computers”. International
Journal of Emerging Research in Management & Technology, pages 14–18, 2012.

Dong-Heon Jung, Soo-Mook Moon, and Sung-Hwan Bae. Evaluation of a java ahead-of-
time compiler for embedded systems. The Computer Journal, 55(2):232–252, 2011.

Mahmut Kandemir, Narayanan Vijaykrishnan, Mary Jane Irwin, and Wu Ye. Influence
of compiler optimizations on system power. In Proceedings of the 37th Annual Design
Automation Conference, pages 304–307. ACM, 2000.

Mahmut Kandemir, N Vijaykrishnan, and Mary Jane Irwin. Compiler optimizations for low
power systems. In Power aware computing, pages 191–210. Springer, 2002.

Rajesh K Karmani, Amin Shali, and Gul Agha. Actor frameworks for the jvm platform:
a comparative analysis. In Proceedings of the 7th International Conference on Principles and
Practice of Programming in Java, pages 11–20. ACM, 2009.

Ian King. Intel Forecast Shows Rising Server Demand, PC Share Gains,
2015. URL http://www.bloomberg.com/news/articles/2015-07-15/

intel-forecast-shows-server-demands-makes-up-for-pc-market-woes.

Jonathan Koomey. Growth in data center electricity use 2005 to 2010. Analytical Press, 2011.

W Parmer Lane and Lizy K John. Impact of Virtual Execution Environments on Processor
Energy Consumption and Hardware Adaptation. Computing Systems, pages 100–110, 2006.
doi: 10.1145/1134760.1134775.

C. Lengauer. Domain-Specific Program Generation: International Seminar, Dagstuhl Castle, Ger-
many, March 23-28, 2003, Revised Papers. Lecture Notes in Computer Science. Springer,
2004. ISBN 9783540221197. URL https://books.google.es/books?id=dZokVMDMKl8C.

Wing Hang Li, David R White, and Jeremy Singer. Jvm-hosted languages: they talk the talk,
but do they walk the walk? In Proceedings of the 2013 International Conference on Principles
and Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools,
pages 101–112. ACM, 2013.

Luı́s Gabriel Lima, Francisco Soares-Neto, Paulo Lieuthier, Fernando Castor, Gilberto Melfe,
and João Paulo Fernandes. Haskell in green land: Analyzing the energy behavior of a
purely functional language. In Software Analysis, Evolution, and Reengineering (SANER),
2016 IEEE 23rd International Conference on, volume 1, pages 517–528. IEEE, 2016.

158

http://www.itcandor.com/chip-q213/
http://www.itcandor.com/chip-q213/
http://www.bloomberg.com/news/articles/2015-07-15/intel-forecast-shows-server-demands-makes-up-for-pc-market-woes
http://www.bloomberg.com/news/articles/2015-07-15/intel-forecast-shows-server-demands-makes-up-for-pc-market-woes
https://books.google.es/books?id=dZokVMDMKl8C

R. Membarth, O. Reiche, F. Hannig, J. Teich, M. Körner, and W. Eckert. Hipacc: A domain-
specific language and compiler for image processing. IEEE Transactions on Parallel and
Distributed Systems, 27(1):210–224, Jan 2016. ISSN 1045-9219. doi: 10.1109/TPDS.2015.
2394802.

Lauri Minas and Brad Ellison. Energy efficiency for information technology: How to reduce power
consumption in servers and data centers. Intel Press, 2009. ISBN 1-934053-20-1.

Christopher Mines. GreenBiz - 4 Reasons Why Cloud Computing is Also
a Green Solution, 2011. URL http://www.greenbiz.com/blog/2011/07/27/

4-reasons-why-cloud-computing-also-green-solution.

Scott Mueller. Upgrading and Repairing PCs (17th Edition). Que Corp., Indianapolis, IN, USA,
2006. ISBN 0789734044.

R. Sekar N. Hasabnis, R. Qiao. Checking correctness of code generator architecture specifi-
cations. In IEEE/ACM International Symposium on Code Generation and Optimization (CGO)
2015, pages 167–178, Feb 2015. doi: 10.1109/CGO.2015.7054197.

Newsweek Staff. Newsweek Green Rankings 2011: Full Methodology, 2011. URL http:

//www.newsweek.com/newsweek-green-rankings-2011-full-methodology-68315.

Wellington Oliveira, Renato Oliveira, and Fernando Castor. A study on the energy consump-
tion of android app development approaches. In Mining Software Repositories (MSR), 2017
IEEE/ACM 14th International Conference on, pages 42–52. IEEE, 2017.

Oracle team. Oracle developer studio ide - oracle® developer studio 12.5: Overview, 2018.
URL https://docs.oracle.com/cd/E60778_01/html/E60744/gkofj.html.

James Pallister, Simon J Hollis, and Jeremy Bennett. Identifying compiler options to min-
imize energy consumption for embedded platforms. The Computer Journal, 58(1):95–109,
2013.

Zhelong Pan and R. Eigenmann. Fast and effective orchestration of compiler optimizations
for automatic performance tuning. In International Symposium on Code Generation and
Optimization (CGO’06), pages 12 pp.–, March 2006a. doi: 10.1109/CGO.2006.38.

Zhelong Pan and Rudolf Eigenmann. Fast and effective orchestration of compiler opti-
mizations for automatic performance tuning. In Proceedings of the International Symposium
on Code Generation and Optimization, CGO ’06, pages 319–332, Washington, DC, USA,
2006b. IEEE Computer Society. ISBN 0-7695-2499-0. doi: 10.1109/CGO.2006.38. URL
http://dx.doi.org/10.1109/CGO.2006.38.

159

http://www.greenbiz.com/blog/2011/07/27/4-reasons-why-cloud-computing-also-green-solution
http://www.greenbiz.com/blog/2011/07/27/4-reasons-why-cloud-computing-also-green-solution
http://www.newsweek.com/newsweek-green-rankings-2011-full-methodology-68315
http://www.newsweek.com/newsweek-green-rankings-2011-full-methodology-68315
https://docs.oracle.com/cd/E60778_01/html/E60744/gkofj.html
http://dx.doi.org/10.1109/CGO.2006.38

Mark Papermaster. The Future of Energy Efficient Information Technology. Technical re-
port, AMD, 2014.

Amisha Parikh, Soontae Kim, M Kandemir, Narayanan Vijaykrishnan, and Mary Jane Irwin.
Instruction scheduling for low power. Journal of VLSI signal processing systems for signal,
image and video technology, 37(1):129–149, 2004.

Andy Patrizio. The history of visual development en-
vironments, 2013. URL https://www.mendix.com/blog/

the-history-of-visual-development-environments-imagine-theres-no-ides-its-difficult-if-you-try/.

Tomasz Patyk, Harri Hannula, Pertti Kellomaki, and Jarmo Takala. Energy consump-
tion reduction by automatic selection of compiler options. 2009 International Sym-
posium on Signals, Circuits and Systems, pages 1–4, 2009. doi: 10.1109/ISSCS.2009.
5206106. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=

5206106{&}contentType=Conference+Publications.

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo Fernandes,
and João Saraiva. Energy efficiency across programming languages: How do energy, time,
and memory relate? In Proceedings of the 10th ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2017, pages 256–267, New York, NY, USA, 2017. ACM.
ISBN 978-1-4503-5525-4. doi: 10.1145/3136014.3136031. URL http://doi.acm.org/10.

1145/3136014.3136031.

Sviatoslav Pestov, Daniel Ehrenberg, and Joe Groff. Factor: A dynamic stack-based pro-
gramming language. In Acm Sigplan Notices, volume 45, pages 43–58. ACM, 12 2010.

Qbs Manual. Qbs manual, 2018. URL http://doc.qt.io/qbs/index.html.

qmake Manual. qmake manual, 2018. URL http://doc.qt.io/qt-5/qmake-manual.html.

Kaushik Roy and Mark C Johnson. Software design for low power. In Low power design in
deep submicron electronics, pages 433–460. Springer, 1997.

Sanghita Roy and Manigrib Bag. Green Computing-New Horizon of Energy Efficiency
and E-Waste Minimization–World Perspective vis-à-vis Indian Scenario. CSI, India, pages
64–69, 2009. URL http://ww.w.csi-sigegov.org/emerging_pdf/8_64-69.pdf.

Ryan H. Intel, AMD & ARM Processors, 2012. URL https://kb.wisc.edu/page.php?id=

4927#benchmarks.

Joshua Saddler. GCC optimization - Gentoo Wiki, 2016. URL https://wiki.gentoo.org/

wiki/GCC_optimization.

160

https://www.mendix.com/blog/the-history-of-visual-development-environments-imagine-theres-no-ides-its-difficult-if-you-try/
https://www.mendix.com/blog/the-history-of-visual-development-environments-imagine-theres-no-ides-its-difficult-if-you-try/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5206106{&}contentType=Conference+Publications
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5206106{&}contentType=Conference+Publications
http://doi.acm.org/10.1145/3136014.3136031
http://doi.acm.org/10.1145/3136014.3136031
http://doc.qt.io/qbs/index.html
http://doc.qt.io/qt-5/qmake-manual.html
http://ww.w.csi-sigegov.org/emerging_pdf/8_64-69.pdf
https://kb.wisc.edu/page.php?id=4927#benchmarks
https://kb.wisc.edu/page.php?id=4927#benchmarks
https://wiki.gentoo.org/wiki/GCC_optimization
https://wiki.gentoo.org/wiki/GCC_optimization

Joshua Saddler. Gcc optimization - gentoo wiki, 2018. URL https://wiki.gentoo.org/

wiki/GCC_optimization.

Hendra Saputra, Mahmut Kandemir, Narayanan Vijaykrishnan, Mary Jane Irwin, Jie S Hu,
Chung-Hsing Hsu, and Ulrich Kremer. Energy-conscious compilation based on voltage
scaling. In ACM SIGPLAN Notices, volume 37, pages 2–11. ACM, 7 2002.

Aibek Sarimbekov, Andrej Podzimek, Lubomir Bulej, Yudi Zheng, Nathan Ricci, and Walter
Binder. Characteristics of dynamic jvm languages. In Proceedings of the 7th ACM workshop
on Virtual machines and intermediate languages, pages 11–20. ACM, 2013.

Jun Shirako, David M Peixotto, Vivek Sarkar, and William N Scherer. Phaser accumulators:
A new reduction construct for dynamic parallelism. In Parallel & Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on, pages 1–12. IEEE, 2009.

Vincent St-Amour, Sam Tobin-Hochstadt, and Matthias Felleisen. Optimization coaching:
optimizers learn to communicate with programmers. In ACM SIGPLAN Notices, vol-
ume 47, pages 163–178. ACM, 10 2012.

Staff AMD. 2013/2014 Corporate Responsibility Report. Technical report, AMD, 2014. URL
http://www.amd.com/Documents/AMD-2013-2014-CR-Report.pdf.

Jonathan Strickland. How Shared Computing Works - HowStuffWorks, 2008. URL http:

//computer.howstuffworks.com/shared-computing.htm.

Zhenyu Tang, N. Chang, Shen Lin, Weize Xie, S. Nakagawa, and Lei He. Instruction predic-
tion for step power reduction. In Proceedings of the IEEE 2001. 2nd International Symposium
on Quality Electronic Design, pages 211–216, 2001. doi: 10.1109/ISQED.2001.915229.

The World Bank. CO2 emissions (kt), 2014. URL http://data.worldbank.org/indicator/

EN.ATM.CO2E.KT/countries?order=wbapi_data_value_2010+wbapi_data_value+

wbapi_data_value-first&sort=desc.

Sebastian Thiel. A git mirror of the benchmarksgame cvs repository, 2018. URL https:

//github.com/Byron/benchmarksgame-cvs-mirror.

TIOBE Index. Tiobe index, 2018. URL https://www.tiobe.com/tiobe-index/.

Tirias Research. AMD Targets Accelerating Energy-Efficiency Gains. Technical report, Tirias
Research, 2014. URL http://www.amd.com/Documents/Tirias-Research-Whitepaper.

pdf.

Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power analysis of embedded software:
a first step towards software power minimization. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2(4):437–445, 1994.

161

https://wiki.gentoo.org/wiki/GCC_optimization
https://wiki.gentoo.org/wiki/GCC_optimization
http://www.amd.com/Documents/AMD-2013-2014-CR-Report.pdf
http://computer.howstuffworks.com/shared-computing.htm
http://computer.howstuffworks.com/shared-computing.htm
http://data.worldbank.org/indicator/EN.ATM.CO2E.KT/countries?order=wbapi_data_value_2010+wbapi_data_value+wbapi_data_value-first&sort=desc
http://data.worldbank.org/indicator/EN.ATM.CO2E.KT/countries?order=wbapi_data_value_2010+wbapi_data_value+wbapi_data_value-first&sort=desc
http://data.worldbank.org/indicator/EN.ATM.CO2E.KT/countries?order=wbapi_data_value_2010+wbapi_data_value+wbapi_data_value-first&sort=desc
https://github.com/Byron/benchmarksgame-cvs-mirror
https://github.com/Byron/benchmarksgame-cvs-mirror
https://www.tiobe.com/tiobe-index/
http://www.amd.com/Documents/Tirias-Research-Whitepaper.pdf
http://www.amd.com/Documents/Tirias-Research-Whitepaper.pdf

Nick Touran. What is nuclear? / power basics – the difference between power and energy,
2017. URL https://whatisnuclear.com/physics/power_basics.html.

Madhavi Valluri and Lizy John. Is compiling for performance== compiling for
power. Interaction between compilers and computer architectures, page 101, 2001. URL
http://books.google.com/books?hl=en{&}amp;lr={&}amp;id=pE4guNvx8u4C{&}amp;

oi=fnd{&}amp;pg=PA101{&}amp;dq=Is+Compiling+for+Performance+==+Compiling+

for+Power?{&}amp;ots=Gf3qnsc59G{&}amp;sig=tW07EpiJySGmojXzJ4HsjotGPWQ.

Madhavi Valluri, Lizy John, and Heather Hanson. Exploiting compiler-generated schedules
for energy savings in high-performance processors. In Proceedings of the 2003 international
symposium on Low power electronics and design, pages 414–419. ACM, 2003.

Veracode. Integrated development environment ides — veracode, 2018. URL https://www.

veracode.com/security/integrated-development-environments.

William Von Hagen. The definitive guide to GCC. Apress, 2011.

Kevin Williams, Jason McCandless, and David Gregg. Dynamic interpretation for dynamic
scripting languages. In Proceedings of the 8th annual IEEE/ACM international symposium on
Code generation and optimization, pages 278–287. ACM, 2010.

Carey Wodehouse. Compiled, interpreted languages, and jit compilers
explained, 2017. URL https://www.upwork.com/hiring/development/

the-basics-of-compiled-languages-interpreted-languages-and-just-in-time-compilers/.

Michael Wong. Let’s Build a Smarter Planet. In IBM Green Computing, page 32, 2010.

Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund, and Jan Vitek.
Integrating typed and untyped code in a scripting language. In ACM Sigplan Notices,
volume 45, pages 377–388. ACM, 1 2010.

Han-Saem Yun and Jihong Kim. Power-aware modulo scheduling for high-performance
vliw processors. In Low Power Electronics and Design, International Symposium on, 2001.,
pages 40–45, 2001a. doi: 10.1109/LPE.2001.945369.

Han-Saem Yun and Jihong Kim. Power-aware modulo scheduling for high-performance
vliw processors. In Low Power Electronics and Design, International Symposium on, 2001.,
pages 40–45. IEEE, 2001b.

Yan Zhang and Nirwan Ansari. Handbook of Green Information and Communication Systems,
chapter Chapter 12, pages 331–352. Academic Press, 2013.

162

https://whatisnuclear.com/physics/power_basics.html
http://books.google.com/books?hl=en{&}amp;lr={&}amp;id=pE4guNvx8u4C{&}amp;oi=fnd{&}amp;pg=PA101{&}amp;dq=Is+Compiling+for+Performance+==+Compiling+for+Power?{&}amp;ots=Gf3qnsc59G{&}amp;sig=tW07EpiJySGmojXzJ4HsjotGPWQ
http://books.google.com/books?hl=en{&}amp;lr={&}amp;id=pE4guNvx8u4C{&}amp;oi=fnd{&}amp;pg=PA101{&}amp;dq=Is+Compiling+for+Performance+==+Compiling+for+Power?{&}amp;ots=Gf3qnsc59G{&}amp;sig=tW07EpiJySGmojXzJ4HsjotGPWQ
http://books.google.com/books?hl=en{&}amp;lr={&}amp;id=pE4guNvx8u4C{&}amp;oi=fnd{&}amp;pg=PA101{&}amp;dq=Is+Compiling+for+Performance+==+Compiling+for+Power?{&}amp;ots=Gf3qnsc59G{&}amp;sig=tW07EpiJySGmojXzJ4HsjotGPWQ
https://www.veracode.com/security/integrated-development-environments
https://www.veracode.com/security/integrated-development-environments
https://www.upwork.com/hiring/development/the-basics-of-compiled-languages-interpreted-languages-and-just-in-time-compilers/
https://www.upwork.com/hiring/development/the-basics-of-compiled-languages-interpreted-languages-and-just-in-time-compilers/

A
S U P P O RT M AT E R I A L

From the information processed regarding the various elements analyzed throughout the
study presented in Section 5.6, resulted a large volume of data (more than 100 rankings
and also more than 1000 charts, tables and HTML pages). This fact made it impossible to
expose all the data obtained in the discussion presented or even in this document. It is,
therefore, intended that this appendix act as an auxiliary tool in the analysis carried out,
containing some of the remaining data considered more relevant for the mentioned study.
The set with all the processed information can be consulted in the repository of this study1

and in the project website2.

In this appendix, a total of 24 charts and 8 rankings are presented referring to the values
obtained by the 26 profiles measured for the 12 programs (Figures 38-49 and Tables 16-19)
and 18 tools (Figures 50-61 and Tables 20-23) analyzed. In either case, the data portrays
information regarding the 4 measured strands: execution time and energy consumption of
the processor and memory (individually and together). In the particular case of the rank-
ings, the ratio between the total energy consumed and the execution time is also indicated.
In the Section 5.6 it is explained in more detail how all these values were obtained, what is
the intended objective with its analysis and which conclusions can be drawn.

1 https://github.com/david-branco/programmingtoolsenergyconsumption
2 www.di.uminho.pt/˜gepl/OCGREC

163

Figure 38.: Results of binary-trees measurements.

Figure 39.: Results of chameneos-redux measurements.

164

Figure 40.: Results of fannkuch-redux measurements.

Figure 41.: Results of fasta measurements.

165

Figure 42.: Results of k-nucleotide measurements.

Figure 43.: Results of mandelbrot measurements.

166

Figure 44.: Results of meteor measurements.

Figure 45.: Results of n-body measurements.

167

Figure 46.: Results of regex-redux measurements.

Figure 47.: Results of reverse-complement measurements.

168

Figure 48.: Results of spectral-norm measurements.

Figure 49.: Results of thread-ring measurements.

169

Tool Name Execution Time (s) Total Energy (J) CPU Energy (J) Memory Energy (J) Energy/Time (J/s)

CMake 3 (23.2) 3 (43.5) 3 (44.5) 3 (21.2) 3 (19.0)

qmake 4 (24.0) 4 (44.0) 4 (45.0) 4 (21.7) 3 (19.0)

Qbs 9 (27.5) 7 (52.0) 7 (53.0) 10 (24.5) 5 (19.5)

NetBeans IDE 8 (27.0) 10 (55.0) 9 (56.0) 9 (24.0) 6 (20.0)

Code::Blocks 12 (35.0) 12 (80.0) 11 (82.0) 13 (33.0) 10 (23.0)

CLion 3 (23.2) 3 (43.5) 3 (44.5) 3 (21.2) 3 (19.0)

CodeLite 6 (25.5) 7 (52.0) 8 (54.5) 8 (23.5) 7 (20.5)

Eclipse CDT 6 (25.5) 6 (49.0) 6 (50.5) 5 (22.0) 5 (19.5)

KDevelop 3 (23.2) 3 (43.5) 3 (44.5) 3 (21.2) 3 (19.0)

Geany 13 (36.0) 13 (81.0) 13 (85.0) 12 (32.0) 10 (23.0)

Anjuta DevStudio 10 (31.5) 11 (66.0) 10 (68.5) 11 (28.5) 8 (20.8)

Qt Creator 5 (24.4) 5 (45.6) 5 (46.6) 6 (22.1) 4 (19.1)

DialogBlocks 7 (26.5) 8 (53.0) 9 (56.0) 9 (24.0) 5 (19.5)

ZinjaI 6 (25.5) 9 (54.0) 8 (54.5) 7 (23.0) 5 (19.5)

GPS 2 (22.5) 2 (41.2) 2 (42.0) 2 (19.8) 2 (18.8)

Oracle
Developer Studio

8 (27.0) 10 (55.0) 9 (56.0) 9 (24.0) 6 (20.0)

Sphere Engine 1 (20.0) 1 (30.0) 1 (32.0) 1 (16.0) 1 (18.0)

AWS Cloud9 11 (34.0) 14 (81.5) 12 (83.5) 12 (32.0) 9 (22.5)

Table 16.: Tools ranked with 0 decimal points.

Tool Name Execution Time (s) Total Energy (J) CPU Energy (J) Memory Energy (J) Energy/Time (J/s)

CMake 3 (42.2) 3 (101.2) 3 (96.2) 3 (40.8) 3 (46.8)

qmake 8 (46.3) 4 (105.7) 4 (99.3) 6 (43.3) 4 (47.0)

Qbs 11 (51.5) 9 (124.5) 9 (119.5) 11 (50.5) 7 (50.0)

NetBeans IDE 10 (50.5) 11 (127.0) 9 (119.5) 10 (48.5) 7 (50.0)

Code::Blocks 15 (66.0) 15 (179.0) 14 (174.0) 15 (61.0) 11 (59.0)

CLion 3 (42.2) 3 (101.2) 3 (96.2) 3 (40.8) 3 (46.8)

CodeLite 6 (45.0) 7 (118.0) 7 (114.0) 7 (43.5) 8 (50.5)

Eclipse CDT 5 (44.5) 6 (112.5) 6 (108.0) 5 (43.0) 6 (49.0)

KDevelop 3 (42.2) 3 (101.2) 3 (96.2) 3 (40.8) 3 (46.8)

Geany 14 (64.0) 13 (170.0) 12 (165.0) 14 (60.0) 12 (62.0)

Anjuta DevStudio 12 (58.2) 12 (150.5) 11 (143.0) 12 (55.5) 9 (52.0)

Qt Creator 7 (45.7) 5 (107.9) 5 (102.4) 8 (43.8) 5 (47.6)

DialogBlocks 9 (47.0) 10 (125.5) 10 (120.0) 9 (45.5) 9 (52.0)

ZinjaI 4 (43.0) 8 (121.5) 8 (116.5) 4 (41.5) 10 (58.0)

GPS 2 (39.0) 2 (96.2) 2 (91.5) 2 (36.8) 2 (46.5)

Oracle
Developer Studio

10 (50.5) 11 (127.0) 9 (119.5) 10 (48.5) 7 (50.0)

Sphere Engine 1 (34.0) 1 (81.0) 1 (79.0) 1 (35.0) 1 (44.0)

AWS Cloud9 13 (62.0) 14 (178.5) 13 (173.0) 13 (56.5) 13 (63.5)

Table 17.: Tools ranked with 1 decimal point.

170

Tool Name Execution Time (s) Total Energy (J) CPU Energy (J) Memory Energy (J) Energy/Time (J/s)

CMake 4 (87.2) 3 (128.8) 3 (127.5) 4 (81.2) 2 (109.8)

qmake 6 (92.7) 4 (136.7) 4 (133.7) 7 (87.0) 3 (112.3)

Qbs 10 (109.5) 11 (164.0) 11 (160.5) 11 (103.0) 7 (119.0)

NetBeans IDE 9 (108.0) 10 (162.0) 10 (158.0) 10 (99.5) 6 (116.0)

Code::Blocks 14 (137.0) 15 (226.0) 15 (231.0) 14 (120.0) 12 (143.0)

CLion 4 (87.2) 3 (128.8) 3 (127.5) 4 (81.2) 2 (109.8)

CodeLite 5 (88.0) 7 (148.5) 7 (151.0) 3 (80.0) 9 (122.0)

Eclipse CDT 8 (96.0) 6 (139.5) 6 (144.0) 6 (86.0) 5 (113.5)

KDevelop 4 (87.2) 3 (128.8) 3 (127.5) 4 (81.2) 2 (109.8)

Geany 13 (133.0) 13 (216.0) 13 (214.0) 15 (121.0) 11 (139.0)

Anjuta DevStudio 11 (123.0) 12 (188.8) 12 (189.0) 12 (111.8) 8 (121.8)

Qt Creator 7 (94.0) 5 (139.2) 5 (136.9) 8 (88.0) 4 (112.7)

DialogBlocks 7 (94.0) 9 (156.0) 9 (156.0) 9 (89.0) 9 (122.0)

ZinjaI 3 (87.0) 8 (153.0) 8 (152.5) 5 (83.0) 10 (126.5)

GPS 2 (76.5) 2 (121.8) 2 (123.2) 2 (71.2) 5 (113.5)

Oracle
Developer Studio

9 (108.0) 10 (162.0) 10 (158.0) 10 (99.5) 6 (116.0)

Sphere Engine 1 (71.0) 1 (103.0) 1 (106.0) 1 (67.0) 1 (107.0)

AWS Cloud9 12 (127.0) 14 (223.5) 14 (224.5) 13 (114.0) 13 (148.0)

Table 18.: Tools ranked with 2 decimal points.

Tool Name Execution Time (s) Total Energy (J) CPU Energy (J) Memory Energy (J) Energy/Time (J/s)

CMake 3 (123.0) 3 (137.2) 3 (136.5) 3 (119.0) 3 (142.8)

qmake 6 (129.3) 4 (146.3) 4 (144.7) 5 (126.0) 2 (140.7)

Qbs 10 (153.5) 11 (177.5) 11 (173.0) 10 (152.0) 8 (155.5)

NetBeans IDE 10 (153.5) 10 (172.5) 10 (169.0) 9 (148.5) 7 (150.5)

Code::Blocks 13 (200.0) 15 (243.0) 15 (249.0) 14 (193.0) 14 (187.0)

CLion 3 (123.0) 3 (137.2) 3 (136.5) 3 (119.0) 3 (142.8)

CodeLite 4 (123.5) 7 (157.0) 7 (159.5) 4 (123.0) 11 (160.0)

Eclipse CDT 9 (137.5) 5 (148.5) 6 (153.5) 7 (130.0) 5 (145.0)

KDevelop 3 (123.0) 3 (137.2) 3 (136.5) 3 (119.0) 3 (142.8)

Geany 14 (201.0) 13 (232.0) 13 (231.0) 13 (191.0) 13 (181.0)

Anjuta DevStudio 11 (176.8) 12 (201.5) 12 (201.8) 11 (171.5) 9 (156.2)

Qt Creator 7 (131.9) 6 (149.2) 5 (147.3) 6 (128.7) 4 (144.9)

DialogBlocks 8 (136.0) 9 (164.5) 9 (164.5) 8 (136.0) 10 (157.0)

ZinjaI 5 (128.5) 8 (163.5) 8 (162.5) 7 (130.0) 12 (163.0)

GPS 2 (110.0) 2 (130.2) 2 (132.2) 2 (107.0) 6 (147.8)

Oracle
Developer Studio

10 (153.5) 10 (172.5) 10 (169.0) 9 (148.5) 7 (150.5)

Sphere Engine 1 (95.0) 1 (110.0) 1 (110.0) 1 (96.0) 1 (137.0)

AWS Cloud9 12 (188.5) 14 (237.5) 14 (240.0) 12 (185.0) 15 (193.0)

Table 19.: Tools ranked with 3 decimal points.

171

Figure 50.: Tools measurements for binary-trees.

Figure 51.: Tools measurements for chameneos-redux.

172

Figure 52.: Tools measurements for fannkuch-redux.

Figure 53.: Tools measurements for fasta.

173

Figure 54.: Tools measurements for k-nucleotide.

Figure 55.: Tools measurements for mandelbrot.

174

Figure 56.: Tools measurements for meteor.

Figure 57.: Tools measurements for n-body.

175

Figure 58.: Tools measurements for regex-redux.

Figure 59.: Tools measurements for reverse-complement.

176

Figure 60.: Tools measurements for spectral-norm.

Figure 61.: Tools measurements for thread-ring.

177

Profile ID Execution Time (s) Total Energy (J) CPU Energy (J) Memory Energy (J) Energy/Time (J/s)

1 12 (35) 15 (80) 17 (82) 9 (33) 8 (23)

2 13 (36) 16 (81) 20 (85) 8 (32) 8 (23)

3 13 (36) 13 (78) 16 (81) 9 (33) 7 (22)

4 13 (36) 14 (79) 18 (83) 8 (32) 6 (21)

5 10 (33) 17 (83) 20 (85) 7 (31) 7 (22)

6 12 (35) 17 (83) 19 (84) 8 (32) 8 (23)

7 13 (36) 13 (78) 16 (81) 8 (32) 7 (22)

8 12 (35) 13 (78) 15 (80) 8 (32) 7 (22)

9 12 (35) 11 (70) 12 (72) 9 (33) 6 (21)

10 11 (34) 14 (79) 14 (79) 7 (31) 7 (22)

11 13 (36) 12 (72) 13 (75) 9 (33) 7 (22)

12 12 (35) 15 (80) 18 (83) 8 (32) 6 (21)

13 8 (22) 9 (37) 10 (36) 5 (18) 3 (18)

14 6 (19) 3 (25) 4 (26) 4 (16) 1 (16)

15 5 (18) 7 (30) 8 (31) 4 (16) 3 (18)

16 3 (16) 4 (26) 6 (29) 3 (15) 4 (19)

17 5 (18) 4 (26) 6 (29) 4 (16) 3 (18)

18 6 (19) 8 (32) 9 (32) 4 (16) 3 (18)

19 6 (19) 5 (27) 5 (28) 4 (16) 2 (17)

20 6 (19) 8 (32) 8 (31) 4 (16) 2 (17)

21 7 (20) 7 (30) 9 (32) 4 (16) 3 (18)

22 4 (17) 6 (29) 7 (30) 3 (15) 2 (17)

23 1 (14) 1 (20) 1 (19) 2 (13) 2 (17)

24 2 (15) 1 (20) 2 (20) 1 (12) 2 (17)

25 1 (14) 2 (21) 3 (22) 1 (12) 2 (17)

26 9 (25) 10 (46) 11 (49) 6 (24) 5 (20)

Table 20.: Profiles ranked with 0 decimal points.

178

Profile ID Execution Time (s) Total Energy (J) CPU Energy (J) Memory Energy (J) Energy/Time (J/s)

1 15 (66) 20 (179) 22 (174) 15 (61) 17 (59)

2 13 (64) 17 (170) 18 (165) 14 (60) 19 (62)

3 17 (68) 18 (177) 19 (169) 19 (66) 13 (53)

4 14 (65) 18 (177) 19 (169) 16 (62) 15 (57)

5 10 (58) 19 (178) 21 (172) 12 (52) 20 (68)

6 16 (67) 21 (185) 23 (179) 18 (64) 18 (61)

7 12 (63) 18 (177) 20 (170) 16 (62) 18 (61)

8 13 (64) 16 (168) 17 (162) 16 (62) 14 (56)

9 16 (67) 14 (158) 14 (152) 17 (63) 12 (52)

10 11 (59) 15 (165) 15 (158) 13 (56) 20 (68)

11 18 (69) 16 (168) 16 (160) 19 (66) 13 (53)

12 13 (64) 21 (185) 23 (179) 17 (63) 16 (58)

13 7 (37) 12 (92) 12 (87) 10 (36) 6 (43)

14 6 (34) 4 (63) 4 (56) 7 (32) 1 (35)

15 6 (34) 8 (76) 8 (69) 7 (32) 10 (47)

16 3 (26) 6 (68) 7 (66) 4 (25) 8 (45)

17 5 (30) 5 (66) 6 (61) 6 (28) 9 (46)

18 8 (38) 11 (83) 10 (77) 9 (35) 5 (42)

19 6 (34) 7 (69) 5 (60) 8 (33) 4 (39)

20 6 (34) 10 (81) 11 (79) 9 (35) 10 (47)

21 6 (34) 10 (81) 11 (79) 9 (35) 7 (44)

22 4 (27) 9 (78) 9 (75) 5 (27) 11 (48)

23 2 (21) 1 (38) 1 (37) 2 (22) 3 (38)

24 3 (26) 3 (48) 3 (46) 3 (24) 2 (37)

25 1 (19) 2 (45) 2 (45) 1 (17) 8 (45)

26 9 (47) 13 (119) 13 (113) 11 (45) 13 (53)

Table 21.: Profiles ranked with 1 decimal point.

179

Profile ID Execution Time (s) Total Energy (J) CPU Energy (J) Memory Energy (J) Energy/Time (J/s)

1 19 (137) 23 (226) 22 (231) 18 (120) 18 (143)

2 16 (133) 18 (216) 16 (214) 19 (121) 16 (139)

3 22 (149) 22 (224) 21 (224) 25 (139) 11 (123)

4 16 (133) 19 (218) 19 (219) 16 (118) 14 (132)

5 14 (117) 20 (221) 18 (218) 14 (108) 19 (153)

6 20 (143) 25 (237) 23 (234) 22 (129) 18 (143)

7 16 (133) 21 (222) 20 (223) 20 (122) 17 (140)

8 16 (133) 16 (211) 17 (215) 17 (119) 13 (130)

9 17 (134) 14 (204) 14 (202) 21 (124) 10 (119)

10 15 (118) 15 (205) 14 (202) 15 (112) 15 (137)

11 21 (147) 17 (213) 15 (207) 24 (135) 11 (123)

12 18 (135) 24 (235) 24 (237) 23 (130) 18 (143)

13 9 (71) 12 (123) 12 (123) 10 (70) 8 (115)

14 8 (67) 4 (77) 4 (73) 8 (63) 1 (81)

15 7 (62) 7 (98) 8 (93) 7 (61) 9 (116)

16 3 (43) 5 (86) 7 (87) 3 (41) 7 (114)

17 4 (53) 4 (77) 5 (75) 4 (48) 4 (101)

18 12 (82) 10 (108) 10 (106) 12 (76) 5 (102)

19 11 (73) 6 (87) 6 (82) 10 (70) 3 (89)

20 10 (72) 11 (115) 11 (114) 11 (71) 8 (115)

21 9 (71) 9 (103) 10 (106) 9 (67) 6 (107)

22 5 (56) 8 (101) 9 (103) 6 (54) 9 (116)

23 2 (36) 1 (45) 1 (48) 2 (38) 2 (87)

24 6 (59) 3 (57) 3 (65) 5 (50) 2 (87)

25 1 (25) 2 (51) 2 (57) 1 (25) 6 (107)

26 13 (103) 13 (156) 13 (155) 13 (95) 12 (128)

Table 22.: Profiles ranked with 2 decimal points.

180

Profile ID Execution Time (s) Total Energy (J) CPU Energy (J) Memory Energy (J) Energy/Time (J/s)

1 20 (200) 23 (243) 21 (249) 19 (193) 19 (187)

2 21 (201) 20 (232) 18 (231) 18 (191) 18 (181)

3 25 (217) 22 (240) 20 (239) 22 (210) 13 (156)

4 17 (190) 18 (230) 18 (231) 16 (185) 15 (170)

5 15 (177) 20 (232) 18 (231) 14 (177) 22 (199)

6 24 (207) 25 (252) 22 (250) 21 (199) 21 (189)

7 23 (204) 21 (237) 19 (238) 20 (198) 17 (179)

8 18 (192) 17 (222) 17 (227) 17 (190) 15 (170)

9 18 (192) 16 (220) 15 (220) 18 (191) 11 (154)

10 16 (179) 15 (218) 14 (217) 15 (184) 16 (172)

11 22 (202) 19 (231) 16 (225) 21 (199) 13 (156)

12 19 (198) 24 (248) 22 (250) 21 (199) 20 (188)

13 12 (107) 13 (130) 12 (131) 11 (104) 10 (153)

14 8 (91) 5 (82) 4 (79) 8 (84) 1 (102)

15 7 (84) 8 (106) 7 (101) 7 (82) 8 (143)

16 3 (55) 6 (92) 6 (92) 3 (56) 9 (150)

17 5 (74) 4 (81) 4 (79) 5 (73) 5 (126)

18 13 (112) 11 (113) 10 (113) 12 (105) 4 (125)

19 10 (100) 7 (93) 5 (88) 10 (98) 3 (112)

20 11 (105) 12 (124) 11 (121) 12 (105) 12 (155)

21 9 (95) 10 (110) 9 (110) 9 (96) 6 (137)

22 6 (78) 9 (109) 8 (108) 6 (76) 11 (154)

23 2 (47) 1 (48) 1 (51) 2 (50) 3 (112)

24 4 (71) 3 (60) 3 (69) 4 (62) 2 (111)

25 1 (33) 2 (55) 2 (61) 1 (33) 7 (139)

26 14 (147) 14 (167) 13 (166) 13 (143) 14 (168)

Table 23.: Profiles ranked with 3 decimal points.

181

	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives
	1.3 Study Plan
	1.4 Document Structure

	2 Processor Vendors and Green Computing
	2.1 Green Computing
	2.1.1 Advent of Green Computing
	2.1.2 Meaning and Objectives of Green Computing
	2.1.3 Roots of Green Computing
	2.1.4 Importance and Solutions of Green Computing

	2.2 Microprocessors
	2.2.1 Different concerns in the development over time
	2.2.2 Microprocessors as a means for reduction of energy consumption

	2.3 Manufacturers of Microprocessors
	2.3.1 Intel
	2.3.2 AMD
	2.3.3 IBM

	3 Compiler Design and Energy Reduction
	3.1 Code Generation
	3.2 Power reduction and energy saving
	3.2.1 Power vs. Energy
	3.2.2 Energetic aspects of programs

	3.3 Optimization Techniques
	3.3.1 Just compiling for speed
	3.3.2 Trading speed for power
	3.3.3 Instruction scheduling and bit switching
	3.3.4 Avoiding the dynamic scheduler
	3.3.5 Domain-specific optimizations

	3.4 Just-In-Time compilation
	3.5 Summary

	4 Impact of GCC optimization levels in energy consumption during program execution
	4.1 Related Work
	4.2 Experimental Setup
	4.2.1 Testing Platform
	4.2.2 Measurement Software
	4.2.3 Measured Software

	4.3 Methodology
	4.3.1 Optimizations Flags
	4.3.2 Measurement Process

	4.4 Discussion of Results
	4.5 Conclusion

	5 Impact of compilation by Integrated Development Environments in energy consumption during program execution
	5.1 Integrated Development Environments
	5.1.1 Meaning and Main Features
	5.1.2 Advantages and Disadvantages
	5.1.3 Differentiation Factors
	5.1.4 Summary

	5.2 Compilation Profiles
	5.3 The Computer Language Benchmarks Game
	5.4 Experimental Setup
	5.4.1 Testing Platform
	5.4.2 Measurement Software
	5.4.3 Measured Software

	5.5 Methodology
	5.5.1 Analyzed Tools
	5.5.2 Compilation Options
	5.5.3 Measurement Process

	5.6 Discussion of Results
	5.6.1 Programs
	5.6.2 Programs - Tools
	5.6.3 Tools - Profiles
	5.6.4 Profiles - Parameters
	5.6.5 Parameters
	5.6.6 Discussion

	5.7 Summary

	6 Conclusion
	A Support material

