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Abstract. We construct labeling homomorphisms on the cubical homology
of higher-dimensional automata and show that they are natural with respect

to cubical dimaps and compatible with the tensor product of HDAs. We also

indicate two possible applications of labeled homology in concurrency theory.

1. Introduction

1.1. Higher-dimensional automata. Higher-dimensional automata provide a
powerful model for concurrent systems. A higher-dimensional automaton (HDA)
over a monoid M is a precubical set (i.e., a cubical set without degeneracies) with
initial and final states and with 1-cubes labeled by elements of M such that oppo-
site edges of 2-cubes have the same label. The vertices of an HDA represent the
states of a concurrent system, the labeled edges model the actions of the system,
and a cube of dimension ≥ 2 indicates that the actions starting at its origin are
independent in the sense that they may be executed in any order, or even simul-
taneously, without any observable difference. The concept of higher-dimensional
automaton goes back to Pratt [Pra91]. The notion defined here is essentially the
one introduced by van Glabbeek (see [vG06]).

Let us consider the example of Peterson’s algorithm [Pet81] to indicate in more
detail how HDAs can be used to model concurrent systems. Peterson’s algorithm
is a protocol designed to give two processes fair and mutually exclusive access to
a shared resource. The algorithm is based on three shared variables, namely the
boolean variables b0 and b1 and the turn variable t, whose possible values are the
process IDs—let us assume that these are 0 and 1. Process i has four local states
and moves from one to the next by executing the following actions: It first sets
variable bi to 1 in order to indicate that it intends to enter the “critical section”
and access the shared resource. Then it gives priority to the other process by
setting the turn variable t to 1− i. After this, it waits until the other process does
not intend to enter the critical section or it is its own turn to do so. When this
“guard condition” is satisfied, the process enters the critical section and accesses
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Figure 1. HDA for Peterson’s algorithm with colored homology
generators. Parallel arrows are supposed to have the same label.

the shared resource. This action has no effect on the shared variables b0, b1, and t.
After having used the shared resource, process i leaves the critical section and sets
variable bi to 0 again. The procedure is now repeated arbitrarily often or forever.

An HDA model of the reachable part of the system given by Peterson’s algorithm
is depicted in Figure 1. The vertices of the HDA correspond to the reachable global
states of the system, which are quintuples whose components are local states of the
processes and values of the variables. The HDA has two states, marked with a small
incoming arrow and a double circle in Figure 1, that are at the same time initial
and final states. In the upper initial and final state, t = 0; in the lower one, t = 1.
The boolean variables b0 and b1 are 0 in both of these states, and each process is
in its initial local state. The directed edges starting in a given vertex represent the
actions of the processes that are enabled in the corresponding global state. These
actions are indicated in the transition labels, indexed by the respective process IDs.
The monoid of labels is the free monoid generated by the transition labels. The
squares are introduced in order to indicate independence of actions: two actions
are independent in a state where both are enabled if they can be executed one after
the other in either order and the two sequential executions of the actions lead to
the same state. In general, an HDA may also contain higher-dimensional cubes
in order to indicate the independence of more than two actions. A more formal
description of the construction of HDA models for shared-variable systems can be
found in [Kah18].

1.2. Labeled homology. As demonstrated in the literature, concepts and meth-
ods from algebraic topology may be employed profitably in concurrency theory (see
e.g. [FRG06, FGH+16]). The purpose of this paper is to introduce labeled homology
of HDAs and to establish results about it that enable one to use the information
contained in the homology of HDAs in the analysis of concurrent systems.

We focus on HDAs over the free monoid on an alphabet Σ. Given such an HDA
A, we consider its cubical homology and the exterior algebra Λ(Σ) and show that
the labeling function of A induces labeling homomorphisms

`A = `nA : Hn(A)→ Λ(Σ) (n ≥ 0).
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The labeled homology of an HDA is its homology together with the sequence of
labeling homomorphisms.

Let us describe the labeled homology of the HDAAmodeling the system given by
Peterson’s algorithm. The integral homology of A is given by H0(A) ∼= Z, H1(A) ∼=
Z5, and H≥2(A) = 0. The labeling homomorphism in degree 0 is the obvious
monomorphism H0(A) → Λ(Σ), and so the only actually interesting dimension is
1. If, as in A, the edge labels of an HDA are indecomposable, the label of a 1-di-
mensional homology class is simply the linear combination of labels corresponding
to the linear combination of edges in a representing cycle of the class. Hence the
labels of the two generators α0 and α1 of H1(A) depicted in green in Figure 1 are
given by

`A(αi) = bi:=i1 + t:=i(1− i) + criti + bi:=i0.

The classes α0 and α1 represent the two processes, executing alone. A third genera-
tor of H1(A), depicted in red in Figure 1, has label `A(α0)+`A(α1) and corresponds
to an execution where the two processes alternately access the shared resource. Fi-
nally, H1(A) has two generators with zero label, which are represented by the thick
multicolored cycles in Figure 1 and reflect the synchronization (coordination) of the
processes enforced by the guard condition that must be satisfied before a process
enters the critical section: The existence of, say, the left of these homology classes
is due the fact that process 1 is blocked in the upper right state of the inner hole
of A. If process 1 was allowed to enter the critical section in this state, the class
would disappear—and the system would lose the important property of starvation
freedom as it would become possible that process 0 requests access to the critical
section without ever obtaining it.

The example of Peterson’s algorithm shows that the homology of an HDA has
meaning from a computer science point of view. The labeling homomorphisms help
to interpret the information contained in the homology of HDAs. We introduce
labeled homology in Section 4. The earlier sections contain preparatory material
on precubical sets and HDAs (Section 2) and cubical chains and homology (Section
3).

1.3. Tensor-product HDAs. An important property of labeled homology is that
it is compatible with the tensor product of HDAs, which models the interleaving
parallel composition of independent concurrent systems. If two completely indepen-
dent and disjoint concurrent systems are combined into one, then an HDA model of
this interleaving parallel composition of the systems is given by the tensor product
of the HDA models of the two systems (see [Kah18]). In Section 5 we establish
a cross product formula for the computation of the labeling homomorphisms of a
tensor-product HDA from those of its factors.

A concurrent system will, of course, normally not be the interleaving of other
systems. It is, however, frequently the case that a concurrent system contains
subsystems that are independent from each other. Labeled homology and, in par-
ticular, our result on the labeled homology of tensor-product HDAs can be used to
aid the analysis of the independence structure of concurrent systems. This will be
discussed in Section 8.1.

1.4. Cubical dimaps. In Section 7 we show that labeled homology is natural with
respect not only to morphisms of HDAs but also to cubical dimaps. Roughly speak-
ing, a cubical dimap from an HDA to another one is a label-preserving continuous
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Figure 2. Small HDA model for Peterson’s algorithm

map between the geometric realizations that also is a directed map—or dimap—
in the sense that it respects the directed topology of the geometric realization.
Cubical dimaps permit one to compare HDAs that model concurrent systems at
different abstraction levels and do not admit ordinary morphisms between them.
For instance, although the HDA in Figure 1 and the homotopy equivalent smaller
one depicted in Figure 2 both model the system given by Peterson’s algorithm (cf.
[Kah16, 7.2]), there do not exist any morphisms from one to the other. The two
HDAs may, however, be related by a cubical dimap. Cubical dimaps are the subject
of Section 6.

The naturality of labeled homology implies that it is invariant under cubical
dimaps that are homotopy equivalences. Therefore labeled homology can be con-
sidered a directed homotopy invariant of HDAs. Since it does not only depend on
the directed topology of the underlying precubical sets, it is, however, not a concept
of directed homology as those considered, for instance, in [DGGL16, Fah04, Gau05,
GJ92, Gra09, Kah14a, Kri14].

As a possible application of labeled homology, based on its naturality, we discuss
in Section 8.2 a necessary condition for an HDA to implement a specification that
is given by another HDA.

2. Precubical sets and HDAs

This section presents some fundamental concepts and facts about precubical sets
and higher-dimensional automata. The material is mostly taken from [Kah14b].

2.1. Precubical sets. A precubical set is a graded set P = (Pn)n≥0 with boundary
or face operators dki : Pn → Pn−1 (n > 0, k = 0, 1, i = 1, . . . , n) satisfying the
relations dki ◦dlj = dlj−1 ◦dki (k, l = 0, 1, i < j). If x ∈ Pn, we say that x is of degree
or dimension n and write deg(x) = n. The elements of degree n are called the
n-cubes of P . The elements of degree 0 are also called the vertices of P , and the
1-cubes are also called the edges of P . Given an n-cube x, we say that the vertex
d01 · · · d01
n times

x is its initial vertex and that d11 · · · d11x is its final vertex. We say that a

face dki x of a cube x is a front (back) face of x if k = 0 (k = 1). A morphism of
precubical sets is a morphism of graded sets that is compatible with the boundary
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operators. A precubical subset of a precubical set P is a graded subset of P that is
stable under the boundary operators.

2.2. Intervals. Let k and l be two integers such that k ≤ l. The precubi-
cal interval Jk, lK is the precubical set defined by Jk, lK0 = {k, . . . , l}, Jk, lK1 =
{[k, k + 1], . . . , [l − 1, l]}, d01[j − 1, j] = j − 1, d11[j − 1, j] = j, and Jk, lK≥2 = ∅.

2.3. Tensor product. The category of precubical sets is a monoidal category.
Given two precubical sets P and Q, the tensor product P ⊗Q is defined by

(P ⊗Q)n =
∐

p+q=n

Pp ×Qq

and

dki (x, y) =

{
(dki x, y), 1 ≤ i ≤ deg(x),
(x, dki−deg(x)y), deg(x) + 1 ≤ i ≤ deg(x) + deg(y).

The n-fold tensor product of a precubical set P is denoted by P⊗n. Here we use
the convention P⊗0 = J0, 0K = {0}.

2.4. Precubical cubes. The precubical n-cube is the n-fold tensor product
J0, 1K⊗n. The only element of degree n in J0, 1K⊗n will be denoted by ιn. We
thus have ι0 = 0 and ιn = ([0, 1], . . . , [0, 1]

n times

) for n > 0. Given an element x of

degree n of a precubical set P , there exists a unique morphism of precubical sets
J0, 1K⊗n → P that sends ιn to x. This morphism will be denoted by x].

2.5. Paths. A path of length k in a precubical set P is a morphism of precubical
sets ω : J0, kK → P . If ω(0) = ω(k), we say that ω is a loop. The set of paths
in P is denoted by P I. The concatenation ω · ν of two paths ω : J0, kK → P and
ν : J0, lK → P with ω(k) = ν(0) is defined in the obvious way. Note that for any
path ω ∈ P I of length k ≥ 1, there exists a unique sequence (x1, . . . , xk) of elements
of P1 such that d01xj+1 = d11xj for all 1 ≤ j < k and ω = x1] · · · · · xk].

2.6. Geometric realization. The geometric realization of a precubical set P is
the quotient space

|P | =

∐
n≥0

Pn × [0, 1]n

 / ∼

where the sets Pn are given the discrete topology and the equivalence relation is
given by

(dki x, u) ∼ (x, δki (u)), x ∈ Pn+1, u ∈ [0, 1]n, i ∈ {1, . . . , n+ 1}, k ∈ {0, 1}.
Here the continuous maps δki : [0, 1]n → [0, 1]n+1 are defined by

δki (u1, . . . , un) = (u1, . . . , ui−1, k, ui, . . . , un).

The geometric realization of a morphism of precubical sets f : P → Q is the con-
tinuous map |f | : |P | → |Q| given by |f |([x, u]) = [f(x), u].

The geometric realization of a precubical set P is a CW complex. The n-skeleton
of |P | is the geometric realization of the precubical subset P≤n of P defined by
(P≤n)m = Pm (m ≤ n) and (P≤n)m = ∅ (m > n). As a CW complex, the geometric
realization of a precubical set is a compactly generated Hausdorff space. All spaces
in this paper are compactly generated Hausdorff spaces, and constructions such as
products are performed in the category of these spaces.
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The geometric realization is a comonoidal functor with respect to the natural
continuous map ψP,Q : |P ⊗Q| → |P | × |Q| given by

ψP,Q([(x, y), (u1, . . . , udeg(x)+deg(y))])

= ([x, (u1, . . . , udeg(x))], [y, (udeg(x)+1, . . . udeg(x)+deg(y)]).

Since we are working in the category of compactly generated Hausdorff spaces, the
map ψP,Q is a homeomorphism, even a cellular isomorphism, and we may use it to
identify the spaces |P ⊗Q| and |P | × |Q|.

The geometric realization of the precubical interval Jk, lK will be identified with
the closed interval [k, l] by means of the homeomorphism |Jk, lK| → [k, l] given by
[j, ()] 7→ j and [[j − 1, j], t] 7→ j − 1 + t.

2.7. Singular precubical sets. The singular precubical set of a space X is the
precubical set SX where the n-cubes are the continuous maps σ : [0, 1]n → X and
the boundary operators are given by dki σ = σ ◦ δki . The singular precubical set is
functorial in the obvious way, and the functor S is right adjoint to the geometric
realization.

2.8. Higher-dimensional automata. Let M be a monoid. A higher-dimensional
automaton over M (abbreviated M -HDA or simply HDA) is a tuple

A = (PA, IA, FA, λA)

where PA is a precubical set, IA ⊆ (PA)0 is a set of initial states, FA ⊆ (PA)0 is a set
of final or accepting states, and λ : (PA)1 →M is a map, called the labeling function,
such that λA(d0ix) = λA(d1ix) for all x ∈ (PA)2 and i ∈ {1, 2} (cf. [vG06, Kah14b]).
We shall abuse notation and write A instead of PA. A morphism from an M -HDA
B to an M -HDA A is a morphism of precubical sets f : B → A such that f(IB) ⊆
IA, f(FB) ⊆ FA, and λA(f(x)) = λB(x) for all x ∈ B1. An M -HDA B is a
subautomaton of an M -HDA A if B is a precubical subset of A, IB ⊆ IA, FB ⊆ FA,
and λB(x) = λA(x) for all x ∈ B1.

2.9. Extended labeling function. The extended labeling function of an M -HDA
A is the map λA : AI → M defined as follows: If ω = x1] · · · · · xk] for a sequence
(x1, . . . , xk) of elements of A1 such that d01xj+1 = d11xj (1 ≤ j < k), then we set

λA(ω) = λA(x1) · · · · · λA(xk);

if ω is a path of length 0, then we set λA(ω) = 1.

3. The cubical chain complex of a precubical set

Throughout this article we work over a fixed principal ideal domain R. In order
to simplify the presentation, we will usually suppress the ring R from the notation.
All graded modules are Z-graded, and we adopt the usual convention V i = V−i.

In this section we define the cubical chain complex and the cubical homology and
cohomology of a precubical set and relate cubical chains to singular and cellular
chains.
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3.1. Cubical (co)chains and (co)homology. Let P be a precubical set. The
cubical chain complex of P is the nonnegative chain complex C∗(P ) where Cn(P ) is
the free module generated by Pn and the boundary operator d : Cn(P )→ Cn−1(P )
is given by

dx =

n∑
i=1

(−1)i(d0ix− d1ix), x ∈ Pn.

It is clear that the cubical chain complex is functorial. The cubical homology of P ,
denoted by H∗(P ), is the homology of C∗(P ).

Given a module G, we view it as a chain complex concentrated in degree 0 and
define the cubical cochain complex of P with coefficients in G, C∗(P ;G), to be the
Hom complex Hom(C∗(P ), G). The cubical cohomology of P with coefficients in G
is the graded module H∗(P ;G) = H(C∗(P ;G)).

We will not need to consider cubical chains and homology with coefficients in a
module.

Remark 3.1.1. An interesting elementary fact about H∗(P ) is that for every loop
ω = x1] · · ·xk] ∈ P I such that char(R) - k, the homology class of the cycle zω =∑k
i=1 xi is nonzero. Indeed, if ν ∈ C1(P ;R) is the cochain where ν(x) = 1 for all

x ∈ P1, then ν(zω) =
∑k
i=1 ν(xi) = k · 1 6= 0. By definition of the cubical boundary

operator, ν is a cocycle, and therefore zω is not a boundary.

3.2. Cubical singular chains. Let us briefly relate the cubical chain complex of
a precubical set to the singular chain complex of its geometric realization. The
normalized cubical singular chain complex of a space X is the quotient chain com-
plex S∗(X) = C∗(SX)/D∗(SX) where D∗(SX) denotes the subcomplex of C∗(SX)
generated by the degenerate singular cubes [HW67, Mas80]. This chain complex
is naturally chain homotopy equivalent to the the usual simplicial singular chain
complex of X [HW67, Theorem 8.4.7]. The following theorem can, for instance, be
established by adapting the proof of [Hat01, Theorem 2.27], which is an analogous
result for ∆-complexes.

Theorem 3.2.1. Let P be a precubical set. A natural chain homotopy equivalence
sing : C∗(P )→ S∗(|P |) is given by

sing(x) = |x]|+D∗(S|P |), x ∈ P.
3.3. Cellular chains. Recall that the cellular chain complex of a CW complex X
with skeleta Xn, CCW∗ (X), is defined using (cubical or simplicial) singular homology
as follows (see e.g. [Mas80, V.7]). For n ≥ 0, one sets

CCWn (X) = Hn(Xn, Xn−1),

where, by convention, X−1 = ∅. The boundary operator d : CCWn (X) → CCWn−1(X)
is the composite

Hn(Xn, Xn−1)
∂∗−→ Hn−1(Xn−1) −→ Hn−1(Xn−1, Xn−2)

where ∂∗ is the connecting homomorphism in the long exact homology sequence
of the pair (Xn, Xn−1) and the second map is the one occurring in the long exact
sequence of the pair (Xn−1, Xn−2).

Theorem 3.3.1. A natural chain isomorphism cell : C∗(P ) → CCW∗ (|P |) is given
by

cell(x) = [|x]|], x ∈ Pn
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or, more precisely, by cell(x) = [(|x]|+Dn(S|P≤n|)) + Sn(|P<n|)].

Proof. For each n ≥ 0, the quotient chain complex C∗(P≤n)/C∗(P<n) is concen-
trated in degree n, and we have a natural isomorphism

Cn(P )→ (C∗(P≤n)/C∗(P<n))n → Hn(P≤n, P<n).

The map cell : Cn(P ) → CCWn (|P |) is the composite of this isomorphism with the
natural map

sing∗ : Hn(P≤n, P<n)→ Hn(|P≤n|, |P<n|),
which is an isomorphism by Theorem 3.2.1. Consider the following commutative
diagram of modules:

Cn(P )
d //

∼=
��

Cn−1(P )

∼=
��

Hn(P≤n, P<n)
∂∗ //

sing∗∼=
��

Hn−1(P<n) //

∼=sing∗
��

Hn−1(P<n, P<n−1)

∼=sing∗
��

Hn(|P≤n|, |P<n|)
∂∗

// Hn−1(|P<n|) // Hn−1(|P<n|, |P<n−1|)

Since the bottom row is the boundary operator d : CCWn (|P |) → CCWn−1(|P |), the

map cell : C∗(P )→ CCW∗ (|P |) is a natural isomorphism of chain complexes. �

4. Labeled homology of an HDA

We use the labeling function of an HDA over a free monoid to define its label-
ing cochains. The compatibility between the labeling function and the boundary
operators—the fact that opposite edges of a 2-cube have the same label—permits us
to show that these cochains are cocycles and induce a labeling in cubical homology.

4.1. Labels of parallel edges. The following lemma establishes that parallel
edges in subdivided cubes of HDAs (i.e., images of tensor products of precubical
intervals under morphisms of precubical sets) have the same label:

Lemma 4.1.1. Let A be an M -HDA, let χ : J0, l1K⊗ · · · ⊗ J0, lnK → A be a mor-
phism of precubical sets, and let 1 ≤ s ≤ n and 0 ≤ js < ls be integers. Then for
all tuples (j1, . . . , js−1, js+1, . . . , jn) with ji ∈ {0, . . . , li},
λA(χ(j1, . . . , js−1, [js, js + 1], js+1, . . . , jn)) = λA(χ(0, . . . , 0, [js, js + 1], 0, . . . , 0)).

Proof. Order the tuples (j1, . . . , js−1, js+1, . . . , jn) lexicographically, and suppose
inductively that the statement holds for all predecessors of a given such tuple that
has at least one nonzero component. Let t 6= s be an index such that jt 6= 0, and
consider the tuple (j′1, . . . , j

′
s−1, j

′
s+1, . . . , j

′
n) where

j′i =

{
ji, i 6= t,
jt − 1, i = t.

This is a predecessor of the given tuple (j1, . . . , js−1, js+1, . . . , jn). Consider the
2-cube b ∈ J0, l1K⊗ · · · ⊗ J0, lnK defined by

bi =

 [js, js + 1] , i = s,
[jt − 1, jt] , i = t,
ji, i 6= s, t.
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Set

q =

{
1, s > t,
2, s < t.

Then

λA(χ(j1, . . . , js−1, [js, js + 1], js+1, . . . , jn))

= λA(χ(d1qb))

= λA(d1qχ(b))

= λA(d0qχ(b))

= λA(χ(d0qb))

= λA(χ(j′1, . . . , j
′
s−1, [js, js + 1], j′s+1, . . . , j

′
n))

= λA(χ(0, . . . , 0, [js, js + 1], 0, . . . , 0)). �

4.2. The edge eki x. Let x be an element of degree n > 0 of a precubical set P ,
and let k ∈ {0, 1} and i ∈ {1, . . . , n}. We define the element eki x ∈ P1 by

eki x =

{
x, n = 1,

d1−k1 · · · d1−ki−1 d
1−k
i+1 · · · d1−kn x, n > 1.

The notation, introduced in [Kah16], reflects the fact that the edge eki x is associated
with the face dki x: The element e0ix is an edge of x leading from the final vertex
of the face d0ix to the final vertex of x, i.e., we have d01e

0
ix = d11 · · · d11d0ix and

d11e
0
ix = d11 · · · d11x. Similarly, e1ix is an edge of x leading from the initial vertex

of x to the initial vertex of the face d1ix, i.e., we have d01e
1
ix = d01 · · · d01x and

d11e
1
ix = d01 · · · d01d1ix.

4.3. Free monoid. Let Σ be an alphabet (i.e., a set). The free monoid on Σ is
denoted by Σ∗. The length of a string m ∈ Σ∗, i.e., the unique integer n such
that m ∈ Σn, will be denoted by |m|. Given a string m of length n ≥ 1, we
will write m1, . . . ,mn to denote the uniquely determined elements of Σ such that
m = m1 · · ·mn.

4.4. Labeling cochain. Let Σ be an alphabet, and let A be a Σ∗-HDA. Consider
the exterior algebra on the free module generated by Σ, Λ(Σ), and let n ≥ 0 be an
integer. The nth labeling cochain

lnA : C∗(A)→ Λ(Σ)

is the homomorphism of degree −n defined on basis elements x ∈ An by

lnA(x) =


1, n = 0,

|λA(e01x)|∑
j1=1

· · ·
|λA(e0nx)|∑
jn=1

λA(e01x)j1 ∧ · · · ∧ λA(e0nx)jn , n > 0.

Note that for an edge x ∈ A1 with λA(x) = m, l1A(x) =
|m|∑
j=1

mj . Thus l1A(x) is the

image of λA(x) under the canonical monoid homomorphism from Σ∗ to the free
module on Σ.

We show that the labeling cochain lnA is a cocycle. We need three lemmas.

Lemma 4.4.1. For any element x ∈ A of degree n ≥ 1, l1A(e0ix) = l1A(e1ix).
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Proof. If n = 1, then e0ix = e1ix = x. Suppose that n ≥ 2. Then e0ix =
x](1, . . . , 1, [0, 1]

i

, 1, . . . , 1) and e1ix = x](0, . . . , 0, [0, 1]
i

, 0, . . . , 0). Hence, by Lemma

4.1.1, λA(e0ix) = λA(e1ix). Thus l1A(e0ix) = l1A(e1ix). �

Lemma 4.4.2. For any element x ∈ A of degree n ≥ 1,

lnA(x) = l1A(e01x) ∧ · · · ∧ l1A(e0nx) = l1A(e11x) ∧ · · · ∧ l1A(e1nx).

Proof. We have

l1A(e0ix) =

|λA(e0ix)|∑
ji=1

λA(e0ix)ji

and

lnA(x) =

|λA(e01x)|∑
j1=1

· · ·
|λA(e0nx)|∑
jn=1

λA(e01x)j1 ∧ · · · ∧ λA(e0nx)jn

=

|λA(e01x)|∑
j1=1

λA(e01x)j1

 ∧ · · · ∧
|λA(e0nx)|∑

jn=1

λA(e0nx)jn


= l1A(e01x) ∧ · · · ∧ l1A(e0nx).

By Lemma 4.4.1, also lnA(x) = l1A(e11x) ∧ · · · ∧ l1A(e1nx). �

Lemma 4.4.3. For all n ≥ 0, x ∈ An+1, and i ∈ {1, . . . , n+ 1},

lnA(d0ix) = lnA(d1ix).

Proof. If n = 0, then lnA(d0ix) = 1 = lnA(d1ix). If n = 1, then λA(d0ix) = λA(d1ix)
and therefore l1A(d0ix) = l1A(d1ix). Suppose that n ≥ 2. We have

e1−kj dki x = dk1 · · · dkj−1dkj+1 · · · dkndki x =

{
e1−kj x, i > j,

e1−kj+1x, i ≤ j.

Hence, by Lemma 4.4.2 and Lemma 4.4.1,

lnA(d0ix) = l1A(e11d
0
ix) ∧ · · · ∧ l1A(e1nd

0
ix)

= l1A(e11x) ∧ · · · ∧ l1A(e1i−1x) ∧ l1A(e1i+1x) ∧ · · · ∧ l1A(e1n+1x)

= l1A(e01x) ∧ · · · ∧ l1A(e0i−1x) ∧ l1A(e0i+1x) ∧ · · · ∧ l1A(e0n+1x)

= l1A(e01d
1
ix) ∧ · · · ∧ l1A(e0nd

1
ix)

= lnA(d1ix). �

Proposition 4.4.4. For each n ≥ 0, lnA is a cocycle.

Proof. Let x ∈ An+1. By Lemma 4.4.3,

lnA(dx) =

n+1∑
i=1

(−1)i(lnA(d0ix)− lnA(d1ix)) = 0. �
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b b
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a2a1

b b b

(b)

Figure 3. Two very simple HDAs

4.5. Labeled homology. Let Σ be an alphabet, and let A be a Σ∗-HDA. Since
the labeling cochain lnA is a cocycle, we may define the nth labeling homomorphism

`nA : Hn(A)→ Λ(Σ)

by
`nA([z]) = lnA(z).

We will be able to drop the superscript n and write `A instead of `nA. The la-
beled homology of A is the homology of A together with the sequence of labeling
homomorphisms.

Examples 4.5.1. (i) Consider the alphabet Σ = {a, b} and the 1-dimensional
Σ∗-HDA A made up of the boundary of a square in the way depicted in Figure
3(a). For each edge x, we have l1A(x) = λA(x). Therefore `A(α) = 0 for all
α ∈ H1(A). This reflects the fact that every 1-cycle would be a boundary if the
square was not missing in A. A hole in an HDA that is due to a set of missing
cubes is related to what is called a forbidden region in [FGH+16]. The label of the
homology class corresponding to such a hole is always zero.

(ii) Since Λ(Σ) is a free module, the label of any torsion element in the homology
of a Σ∗-HDA is 0.

(iii) A 1-dimensional Σ∗-HDA A is called a directed circle if it has n distinct
vertices v0, . . . , vn−1 (n ≥ 1) and n edges x0, . . . , xn−1 such that for all i and k,

dk1xi = vi+k (where vn = v0). The chain z =
∑n−1
i=0 xi is a cycle, and if λA(xi) =

ai1 · · · airi with ai1, . . . , airi ∈ Σ, then

`A([z]) =

n−1∑
i=0

ri∑
j=1

aij .

(iv) Consider the alphabet Σ = {a1, a2, b} and the Σ∗-HDA A obtained from
the one depicted in Figure 3(b) by identifying the horizontal rows and the left and
right vertical edges. Then A is a torus and its Z2-homology is generated by two
1-dimensional classes with labels a1 + a2 and b and by a 2-dimensional class with
label a1 ∧ b+ a2 ∧ b.

If a1 = a2, we may identify the horizontal rows of the HDA in Figure 3(b) not
only to obtain a torus but also in a way that yields the Klein bottle. In either case,
the Z2-homology of the resulting HDA is generated by two 1-dimensional classes
with labels 0 and b and by a 2-dimensional class with label 0.

5. Tensor-product HDAs

The tensor product of HDAs models the interleaving parallel composition of
concurrent systems (see [Kah18]). In this section we show that the labeling cochains
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and the labeling homomorphisms of a tensor-product HDA are determined by those
of its factors.

5.1. Tensor product of HDAs. The tensor product of two M -HDAs A and B is
the M -HDA A ⊗ B where PA⊗B = PA ⊗ PB, IA⊗B = IA × IB, FA⊗B = FA × FB,
and λA⊗B is the composite

(A1 × B0)q (A0 × B1)→ A1 q B1
(λA,λB)−−−−−→M.

With respect to this tensor product, the category of M -HDAs is a monoidal cate-
gory.

5.2. The maps ζ and γ and the cross products. Given (co)chain complexes
C and D, let κ denote the natural homomorphism of graded modules

H(C)⊗H(D)→ H(C ⊗D), [x]⊗ [y] 7→ [x⊗ y].

Let P and Q be precubical sets. The homology cross product

× : H∗(P )⊗H∗(Q)→ H∗(P ⊗Q)

is defined to be the composite ζ∗ ◦ κ where ζ is the natural isomorphism of chain
complexes

C∗(P )⊗ C∗(Q)→ C∗(P ⊗Q)

given by

x⊗ y 7→ (x, y), x ∈ P, y ∈ Q.
Let A and B be modules, and consider the cochain complexes C∗(P ;A) =

Hom(C∗(P ), A) and C∗(Q;B) = Hom(C∗(Q), B). The cohomology cross product

× : H∗(P ;A)⊗H∗(Q;B)→ H∗(P ⊗Q;A⊗B)

is defined to be the composite H(Hom(ζ−1, A⊗B) ◦ γ) ◦ κ where γ is the natural
chain map

Hom(C∗(P ), A)⊗Hom(C∗(Q), B)→ Hom(C∗(P )⊗ C∗(Q), A⊗B)

given by

γ(f ⊗ g)(x⊗ y) = (−1)deg(g)deg(x)f(x)⊗ g(y).

The homology cross product for precubical sets coincides with the usual homol-
ogy cross product for spaces in the sense that it is isomorphic, as one easily checks,
to the composite

H∗(|P |)⊗H∗(|Q|)
κ−→ H(S∗(|P |)⊗ S∗(|Q|))

EZ∗−−−→ H∗(|P | × |Q|)

where EZ is the Eilenberg-Zilber map

S∗(|P |)⊗ S∗(|Q|)→ S∗(|P | × |Q|),

which for singular cubes f : [0, 1]p → |P | and g : [0, 1]q → |Q| is given by

(f +Dp(S|P |))⊗ (g +Dq(S|Q|)) 7→ f × g +Dp+q(S(|P | × |Q|))

(see [Mas80, VI.3], [HW67, 8.7.5]). The cohomology cross products for precubical
sets and spaces are related in a similar fashion.
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5.3. Labeled homology of tensor-product HDAs. Let Σ be an alphabet, and
let A and B be two Σ∗-HDAs.

Lemma 5.3.1. Consider elements x ∈ Ap and y ∈ Bq. Then

lp+qA⊗B(x, y) = lpA(x) ∧ lqB(y).

Proof. We may suppose that p+ q > 0. We have

e0i (x, y) =


(e0ix, d

1
1 · · · d11
q times

y), i ≤ p,

(d11 · · · d11
p times

x, e0i−py) i > p.

Hence

λA⊗B(e0i (x, y)) =

{
λA(e0ix), i ≤ p,
λB(e0i−py) i > p.

Therefore

l1A⊗B(e0i (x, y)) =

{
l1A(e0ix), i ≤ p,
l1B(e0i−py) i > p.

By Lemma 4.4.2, it follows that

lp+qA⊗B(x, y) = l1A⊗B(e01(x, y)) ∧ · · · ∧ l1A⊗B(e0p+q(x, y))

= l1A(e01x) ∧ · · · ∧ l1A(e0px) ∧ l1B(e01y) ∧ · · · ∧ l1B(e0qy)

= lpA(x) ∧ lqB(y). �

Using the multiplication of Λ(Σ) and the maps ζ and γ defined in Section 5.2,
we are now able to express the labeling cochains of A⊗ B in terms of the labeling
cochains of A and B:

Proposition 5.3.2. For each n ≥ 0, lnA⊗B =
∑

i+j=n

(−1)ij ∧ ◦γ(liA ⊗ ljB) ◦ ζ−1.

Proof. Let n ≥ 0. Consider elements x ∈ Ap and y ∈ Bq where p + q = n. By
Lemma 5.3.1,

(−1)pq ∧ ◦γ(lpA ⊗ lqB) ◦ ζ−1(x, y) = (−1)pq ∧ ◦γ(lpA ⊗ lqB)(x⊗ y)

= (−1)pq ∧ ((−1)p(−q)lpA(x)⊗ lqB(y))

= lpA(x) ∧ lqB(y)

= lnA⊗B(x, y).

For p′ 6= p and q′ 6= q with p′ + q′ = n,

(−1)p
′q′ ∧ ◦γ(lp

′

A ⊗ lq
′

B ) ◦ ζ−1(x, y) = ± lp
′

A(x) ∧ lq
′

B (y) = 0.

Hence lnA⊗B(x, y) =
∑

i+j=n

(−1)ij ∧ ◦γ(liA ⊗ ljB) ◦ ζ−1(x, y). �

Let us write ∧∗ to denote the map

H∗(A⊗ B,Λ(Σ)⊗ Λ(Σ))→ H∗(A⊗ B,Λ(Σ))

induced by the multiplication of Λ(Σ).

Theorem 5.3.3. For all n ≥ 0, [lnA⊗B] = ∧∗(
∑

i+j=n

(−1)ij [liA]× [ljB]).
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Proof. This follows immediately from Proposition 5.3.2 because

∧∗([liA]× [ljB]) = [∧ ◦ γ(liA ⊗ ljB) ◦ ζ−1]. �

We shall show next that the label of the cross product of two homology classes is
the exterior product of their labels. This implies that the labeling homomorphisms
of A ⊗ B are entirely determined by those of A and B. Indeed, by the Künneth
theorem, there exists a graded torsion module U ⊆ H∗(A⊗ B) such that

H∗(A⊗ B) = U ⊕ im H∗(A)⊗H∗(B)
×−→ H∗(A⊗ B),

and, as we have noted in Example 4.5.1(ii), torsion elements have zero label.

Theorem 5.3.4. For all homology classes α ∈ Hp(A) and β ∈ Hq(B),

`A⊗B(α× β) = `A(α) ∧ `B(β).

Proof. Let a ∈ Cp(A) and b ∈ Cq(B) be cycles such that α = [a] and β = [b]. By
Proposition 5.3.2, we have

`A⊗B(α× β) = `A⊗B([a]× [b])

= `A⊗B([ζ(a⊗ b)])

= lp+qA⊗B(ζ(a⊗ b))

=
∑

i+j=p+q

(−1)ij ∧ ◦γ(liA ⊗ ljB) ◦ ζ−1(ζ(a⊗ b))

=
∑

i+j=p+q

(−1)ij(−1)p(−j)liA(a) ∧ ljB(b)

= (−1)pq(−1)pqlpA(a) ∧ lqB(b)

= lpA(a) ∧ lqB(b)

= `A(α) ∧ `B(β). �

Example 5.3.5. A directed torus is a Σ∗-HDA of the form A ⊗ B where A and
B are directed circles. Let x0, . . . , xn−1 and y0, . . . , ym−1 be the edges of A and
B, respectively, and consider the cycles x =

∑
i xi and y =

∑
j yj . Then the

chain z =
∑
i,j(xi, yj) is a cycle in C∗(A ⊗ B) and [z] = [x] × [y]. Suppose that

λA(xi) = ai1 · · · airi and λB(yj) = bj1 · · · bjsj with all aip, bjq ∈ Σ. Then

`A⊗B([z]) = `A([x]) ∧ `B([y]) =
∑
i,p,j,q

aip ∧ bjq.

6. Cubical dimaps

The purpose of this section is to introduce cubical dimaps. Informally, a cubical
dimap between two HDAs is a continuous map between their geometric realizations
that sends cubes in an order-preserving way to subdivided cubes and that preserves
labels of paths. Cubical dimaps are more flexible than morphisms of HDAs and
permit one to relate HDAs that model concurrent systems at different refinement
levels.
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6.1. Permutation maps. Given n precubical sets P1, . . . , Pn and a permutation
σ ∈ Sn, we denote by tσ the permutation map

|P1 ⊗ · · · ⊗ Pn| = |P1| × · · · × |Pn| → |Pσ(1) ⊗ · · · ⊗ Pσ(n)| = |Pσ(1)| × · · · × |Pσ(n)|

given by

(a1, . . . , an) 7→ (aσ(1), . . . , aσ(n)).

We remark that for permutations σ, τ ∈ Sn, tσ◦τ = tτ ◦ tσ. If n = 2 and σ is the
transposition (1 2), we write t instead of tσ.

6.2. Cubical dimaps of precubical sets. An elementary cubical dimap (directed
map) from a precubical set Q to a precubical set P is a continuous map f : |Q| → |P |
such that the following two conditions hold:

(1) For every vertex v ∈ Q0, there exists a (necessarily unique) vertex w ∈ P0

such that f([v, ()]) = [w, ()].
(2) For every element x ∈ Qn (n > 0), there exist integers l1, . . . , ln ≥ 1, a

morphism of precubical sets χ : J0, l1K⊗ · · · ⊗ J0, lnK → P , a permutation
σ ∈ Sn, and increasing homeomorphisms φi : |J0, 1K| = [0, 1]→ |J0, liK| =
[0, li] (i ∈ {1, . . . , n}) such that f ◦ |x]| = |χ| ◦ (φ1 × · · · × φn) ◦ tσ.

A cubical dimap of precubical sets is a finite composite of elementary cubical
dimaps.

Examples 6.2.1. (i) The geometric realization of a morphism of precubical sets is
an elementary cubical dimap.

(ii) An important class of cubical dimaps is given by subdivisions in the sense
of [Kah14b]: A subdivision of a precubical set Q consists of a precubical set P and
a homeomorphism |Q| → |P | that is an elementary cubical dimap such that the
permutation in condition (2) of the definition is always the identity.

(iii) For precubical sets P1, . . . , Pn and a permutation σ ∈ Sn, the permutation
map tσ : |P1 ⊗ · · · ⊗Pn| → |Pσ(1) ⊗ · · · ⊗Pσ(n)| is an elementary cubical dimap. As
we do not need this fact in this paper, we omit the details.

Remarks 6.2.2. (i) Condition (2) in the definition of elementary cubical dimaps
guarantees that cubical dimaps are directed maps in the sense that they respect
the directed topology of geometric realizations of precubical sets. A prominent
framework for directed topology is Grandis’ category of d-spaces [Gra09]. A cubical
dimap can be seen as a d-map, i.e., a morphism of d-spaces.

(ii) Cubical dimaps are closely related to weak morphisms as studied in [Kah14a,
Kah14b, Kah16]. Although the two concepts are formally incomparable, a weak
morphism will normally be a cubical dimap. Permutation maps are cubical dimaps
but not in general weak morphisms.

(iii) By construction, a cubical dimap is a cellular map.

We next show that the objects in condition (2) of the definition of elementary
cubical dimaps are unique.

Lemma 6.2.3. [Kah14b, 2.3.3] Consider integers n, k1, . . . , kn, l1, . . . , ln ≥ 1,
morphisms of precubical sets ξ : J0, k1K⊗ · · · ⊗ J0, knK→ P and
ζ : J0, l1K⊗ · · · ⊗ J0, lnK → P , and a homeomorphism α : |J0, k1K⊗ · · · ⊗ J0, knK| →
|J0, l1K⊗ · · · ⊗ J0, lnK| such that |ζ| ◦ α = |ξ|. Then ki = li for all i ∈ {1, . . . , n},
α = id, and ξ = ζ.
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Proposition 6.2.4. Let f : |Q| → |P | be an elementary cubical dimap of precubi-
cal sets, and let x ∈ Qn (n ≥ 1) be an element. Then there exist unique integers
l1, . . . , ln ≥ 1, a unique morphism of precubical sets χ : J0, l1K⊗ · · · ⊗ J0, lnK →
P , a unique permutation σ ∈ Sn, and unique increasing homeomorphisms
φi : |J0, 1K| = [0, 1] → |J0, liK| = [0, li] (i ∈ {1, . . . , n}) such that f ◦ |x]| =
|χ| ◦ (φ1 × · · · × φn) ◦ tσ.

Proof. The existence of l1, . . . , ln, χ, σ, and φ1, . . . , φn is guaranteed by the
definition of elementary cubical dimaps. Suppose that the integers l′1, . . . , l

′
n,

the morphism of precubical sets χ′ : J0, l′1K ⊗ · · · ⊗ J0, l′nK → P , the per-
mutation σ′ ∈ Sn, and the increasing homeomorphisms φ′i : |J0, 1K| → |J0, l′iK|
(i ∈ {1, . . . , n}) satisfy f ◦ |x]| = |χ′| ◦ (φ′1 × · · · × φ′n) ◦ tσ′ . Consider the
homeomorphisms φ = (φ1 × · · · × φn) ◦ tσ, ψ = (φ′1 × · · · × φ′n) ◦ tσ′ , and
α = ψ ◦ φ−1 : |J0, l1K⊗ · · · ⊗ J0, lnK| → |J0, l′1K⊗ · · · ⊗ J0, l′nK|. Then |χ′| ◦ α =
|χ′| ◦ ψ ◦ φ−1 = f ◦ |x]| ◦ φ−1 = |χ| ◦ φ ◦ φ−1 = |χ|. By Lemma 6.2.3, it fol-
lows that l′i = li for all i ∈ {1, . . . , n}, ψ = φ, and χ′ = χ. We show that σ′ = σ.
This then also implies that φ′1 × · · · × φ′n = φ1 × · · · × φn and hence that φ′i = φi
for all i. Consider i ∈ {1, . . . , n}, and set

xj =

{
0, j 6= σ(i),
1
2 , j = σ(i).

We have

(φ1 × · · · × φn) ◦ tσ(x1, . . . , xn) = (φ1(xσ(1)), . . . , φi(xσ(i)), . . . , φn(xσ(n)))

= (0, . . . , 0, φi(
1
2 ), 0, . . . , 0).

On the other hand,

(φ′1 × · · · × φ′n) ◦ tσ′(x1, . . . , xn) = (φ′1(xσ′(1)), . . . , φ
′
n(xσ′(n))).

Hence

φ′j(xσ′(j)) =

{
0, j 6= i,
φi(

1
2 ), j = i.

Since φi and the φ′j are increasing homeomorphisms, this implies that

xσ′(j) 6= 0⇔ j = i.

Thus σ′(i) = σ(i). �

6.3. Notation. Given precubical sets P and Q and an elementary cubical dimap
f : |Q| → |P |, Proposition 6.2.4 permits us to fix the following notation for the
objects in condition (2) of the definition of elementary cubical dimaps: We write
Rx = J0, l1K⊗· · ·⊗ J0, lnK, φxi = φi, σx = σ, and x[ = χ. Note that here we silently
omit any reference to f .

6.4. Vertex map. It is clear that condition (1) in the definition of elementary
cubical dimaps holds for arbitrary cubical dimaps as well. Therefore a cubical
dimap f : |Q| → |P | induces a vertex map f0 : Q0 → P0, which sends a vertex
v ∈ Q0 to the unique vertex w ∈ P0 such that f([v, ()]) = [w, ()].
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6.5. Paths. Let f : |Q| → |P | be a cubical dimap, and let ω : J0, kK→ Q be a path.

Proposition 6.5.1. There exist a unique integer l, a unique path ν : J0, lK → P ,
and a unique increasing homeomorphism φ : |J0, kK| = [0, k] → |J0, lK| = [0, l] such
that |ν| ◦ φ = f ◦ |ω|.

Proof. If k = 0, we may and must set l = 0, φ = id, and ν = f0(ω(0))].
Suppose that k > 0. Write ω = x1] · · ·xk]. To show existence, suppose first that

f is elementary. For each i, let Rxi = J0, liK and write φi = φxi1. Since σxi = id,
we have f ◦ |xi]| = |xi[| ◦ φi. In order to define ν, we will concatenate the paths
xi[. This is possible because for 1 ≤ i < k, xi[(li) = x(i+1)[(0). Indeed,

[xi[(li), ()] = |xi[|([li, ()]) = |xi[| ◦ φi([1, ()]) = f ◦ |xi]|([1, ()]) = f([xi](1), ()])

= f([x(i+1)](0), ()]) = f ◦ |x(i+1)]|([0, ()]) = |x(i+1)[| ◦ φi+1([0, ()])

= |x(i+1)[|([0, ()]) = [x(i+1)[(0), ()].

Set l = l1+ · · ·+ lk and ν = x1[ · · ·xk[, and consider the increasing homeomorphism
φ : [0, k]→ [0, l] given by

φ(t) = l1 + · · ·+ li−1 + φi(t− i+ 1), t ∈ [i− 1, i], i ∈ {1, . . . , k}.
For i ∈ {1, . . . , k} and t ∈ [i− 1, i], we have

|ν| ◦ φ(t) = |ν|(l1 + · · ·+ li−1 + φi(t− i+ 1))

= |xi[| ◦ φi(t− i+ 1)

= f ◦ |xi]|(t− i+ 1)

= f ◦ |ω|(t).

Hence |ν| ◦ φ = f ◦ |ω|, and existence is shown for elementary cubical dimaps.
This implies that l, ν, and φ exist if f is an arbitrary cubical dimap. Consider an
integer l′, a path ν′ : J0, l′K → P , and an increasing homeomorphism ψ : |J0, kK| =
[0, k] → |J0, l′K| = [0, l′] such that |ν′| ◦ ψ = f ◦ |ω|. Consider the homeomorphism
α = ψ ◦ φ−1 : |J0, lK| → |J0, l′K|. Then |ν′| ◦ α = |ν′| ◦ ψ ◦ φ−1 = f ◦ |ω| ◦ φ−1 =
|ν| ◦ φ ◦ φ−1 = |ν|. By Lemma 6.2.3, it follows that l′ = l, ψ = φ, and ν′ = ν. �

The path ν of Proposition 6.5.1 will be denoted by f I(ω). We remark that if
k = 0, f I(ω) is the path in P of length 0 given by f I(ω)(0) = f0(ω(0)). Note also
that if f is the geometric realization of a morphism of precubical sets h : Q → P ,
then f I(ω) = h ◦ ω. Note finally that if g : |P | → |K| is a second cubical dimap,
then (g ◦ f)I(ω) = gI ◦ f I(ω).

6.6. Cubical dimaps of HDAs. An elementary cubical dimap from an M -HDA
B to an M -HDA A is an elementary cubical dimap of precubical sets f : |B| → |A|
such that f0(IB) ⊆ IA, f0(FB) ⊆ FA, and λA ◦ f I = λB. A cubical dimap of
M -HDAs is a finite composite of elementary cubical dimaps. It is clear that the
conditions f0(IB) ⊆ IA, f0(FB) ⊆ FA, and λA ◦ f I = λB hold for arbitrary cubical
dimaps and not only for elementary ones.

7. Naturality

It is not difficult to see that labeled homology is natural with respect to mor-
phisms of HDAs. Here we establish that it also is natural with respect to cubical
dimaps.
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7.1. The chain map induced by a cellular map. Given precubical sets P and
Q and a cellular map f : |Q| → |P |, let f∗ : C∗(Q) → C∗(P ) be the unique chain
map making the following diagram commute:

C∗(Q)
f∗ //

∼=cell

��

C∗(P )

∼= cell

��

CCW∗ (|Q|)
f∗

// CCW∗ (|P |)

Note that if f is the geometric realization of a morphism of precubical sets g : Q→
P , then f∗ = g∗ : C∗(Q)→ C∗(P ). In Section 7.4 we give an explicit description of
f∗ for elementary cubical dimaps.

7.2. Naturality of ζ. Recall from Section 5.2 that given precubical sets P and Q,
ζ is the isomorphism of chain complexes

C∗(P )⊗ C∗(Q)→ C∗(P ⊗Q)

given by

x⊗ y 7→ (x, y), x ∈ P, y ∈ Q.

Lemma 7.2.1. The isomorphism ζ is natural with respect to cellular maps, i.e.,
for precubical sets P , P ′, Q, and Q′, cellular maps f : |P | → |P ′| and g : |Q| → |Q′|,
and the cellular map f × g : |P ⊗ Q| = |P | × |Q| → |P ′ ⊗ Q′| = |P ′| × |Q′|, the
following diagram of chain complexes is commutative:

C∗(P )⊗ C∗(Q)
ζ
//

f∗⊗g∗
��

C∗(P ⊗Q)

(f×g)∗
��

C∗(P
′)⊗ C∗(Q′)

ζ
// C∗(P

′ ⊗Q′)

Proof. Given precubical sets P and Q, let µ denote the unique chain map
CCW∗ (|P |)⊗ CCW∗ (|Q|)→ CCW∗ (|P |×|Q|) making the following diagram commute:

C∗(P )⊗ C∗(Q)
ζ

//

∼=cell⊗cell
��

C∗(P ⊗Q)

∼= ψP,Q∗◦cell
��

CCW∗ (|P |)⊗ CCW∗ (|Q|)
µ
// CCW∗ (|P | × |Q|)

A straightforward verification shows that µ coincides on CCWp (|P |) ⊗ CCWq (|Q|)
with the composite

Hp(|P≤p|, |P<p|)⊗Hq(|Q≤q|, |Q<q|)
×−→ Hp+q(|P≤p| × |Q≤q|, |P≤p| × |Q<q| ∪ |P<p| × |Q≤q|)
j∗−→ Hp+q((|P | × |Q|)p+q, (|P | × |Q|)p+q−1)

= CCWp+q (|P | × |Q|)

where j is the inclusion and the relative cross product × is defined using the map

S∗(|P≤p|, |P<p|)⊗ S∗(|Q≤q|, |Q<q|)→ S∗(|P≤p|×|Q≤q|, |P≤p|×|Q<q|∪|P<p|×|Q≤q|)
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induced by the Eilenberg-Zilber map (see Section 5.2). It follows that µ is natural
with respect to cellular maps, and this implies that ζ is natural with respect to
cellular maps. �

It is clear that ζ is associative and can be iterated. Given precubical sets
P1, . . . , Pn, the chain isomorphism C∗(P1) ⊗ · · · ⊗ C∗(Pn) → C∗(P1 ⊗ · · · ⊗ Pn)
will also be denoted by ζ. It follows from Lemma 7.2.1 that this iterated ζ is
natural with respect to cellular maps.

7.3. Interchange map of a square. Consider the interchange map

t : |J0, 1K⊗2| = |J0, 1K|2 = [0, 1]2 → |J0, 1K⊗2| = |J0, 1K|2 = [0, 1]2, (x, y) 7→ (y, x)

and the induced chain map

t∗ : C∗(J0, 1K⊗2)→ C∗(J0, 1K⊗2).

Lemma 7.3.1. t∗(ι2) = −ι2.

Proof. Since the boundary operator

d : C2(J0, 1K⊗2)→ C1(J0, 1K⊗2)

is injective, it is enough to show that dt∗(ι2) = −dι2. In view of the commutative
diagram

C∗(J0, 1K⊗2)
t∗ //

∼=cell

��

C∗(J0, 1K⊗2)

∼= cell

��

CCW∗ (|J0, 1K⊗2|)
t∗
// CCW∗ (|J0, 1K⊗2|),

it suffices to show that dt∗(cell(ι2)) = −dcell(ι2). We have

dcell(ι2) =

2∑
i=1

(−1)i(cell(d0i ι2)− cell(d1i ι2))

and hence

dt∗(cell(ι2)) =

2∑
i=1

(−1)i(t∗(cell(d
0
i ι2))− t∗(cell(d1i ι2))).

Identifying |(dki ι2)]| = δki : |J0, 1K| = [0, 1]→ |J0, 1K⊗2| = [0, 1]2, we compute

t∗(cell(d
k
i ι2)) = t∗([δ

k
i ]) = [t ◦ δki ] = [δk3−i] = cell(dk3−iι2).

It follows that

dt∗(cell(ι2)) =

2∑
i=1

(−1)i(t∗(cell(d
0
i ι2))− t∗(cell(d1i ι2)))

=

2∑
i=1

(−1)i(cell(d03−iι2)− cell(d13−iι2))

= −
2∑
i=1

(−1)i(cell(d0i ι2)− cell(d1i ι2))

= −dcell(ι2). �
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7.4. The chain map induced by an elementary cubical dimap. Let f be an
elementary cubical dimap from a precubical set Q to a precubical set P .

Proposition 7.4.1. The chain map f∗ : C∗(Q)→ C∗(P ) is given by

f∗(x) =

{
f0(x), x ∈ Q0,
sgn(σx)

∑
y∈(Rx)n x[(y), x ∈ Qn, n > 0.

Proof. Let x ∈ Q0. Since f ◦ |x]| = |f0(x)]|, the map f∗ : CCW0 (|Q|) → CCW0 (|P |)
sends cell(x) to cell(f0(x)). Hence f∗ : C0(Q)→ C0(P ) sends x to f0(x).

Let n > 0 and x ∈ Qn. Consider the following commutative diagram:

C∗(J0, 1K⊗n)
tσx∗ //

x]∗

��

C∗(J0, 1K⊗n)
(φx1×···×φxn)∗

// C∗(Rx)

x[∗

��

C∗(Q)
f∗

// C∗(P )

We have f∗(x) = f∗ ◦ x]∗(ιn) = x[∗ ◦ (φx1 × · · · × φxn)∗(tσx∗(ιn)). We show first
that tσx∗(ιn) = sgn(σx)ιn. If n = 1, there is nothing to show. If n > 1, write
σx = σ1 ◦ · · · ◦ σm where each σj is a transposition of the form (i i+1). Then tσx =
tσm ◦ · · · ◦ tσ1 and sgn(σx) = (−1)m. It is thus enough to show that t(i i+1)∗(ιn) =
−ιn. Since

t(i i+1) = id× · · · × id
i− 1 times

×t× id× · · · × id
n− i− 1 times

,

Lemma 7.2.1 implies that the following diagram is commutative:

C∗(J0, 1K⊗i−1)⊗ C∗(J0, 1K⊗2)⊗ C∗(J0, 1K⊗n−i−1)
ζ
//

id⊗t∗⊗id
��

C∗(J0, 1K⊗n)

t(i i+1)∗

��

C∗(J0, 1K⊗i−1)⊗ C∗(J0, 1K⊗2)⊗ C∗(J0, 1K⊗n−i−1)
ζ
// C∗(J0, 1K⊗n)

Thus, by Lemma 7.3.1,

t(i i+1)∗(ιn) = t(i i+1)∗ ◦ ζ(ιi−1 ⊗ ι2 ⊗ ιn−i−1)

= ζ ◦ (id⊗ t∗ ⊗ id)(ιi−1 ⊗ ι2 ⊗ ιn−i−1)

= ζ(ιi−1 ⊗ (−ι2)⊗ ιn−i−1)

= −ιn.

We next compute (φx1×· · ·×φxn)∗(ιn). Suppose that Rx = J0, l1K⊗· · ·⊗J0, lnK.
By Lemma 7.2.1, we have the following commutative diagram:

C∗(J0, 1K)⊗n
φx1∗⊗···⊗φxn∗ //

ζ

��

C∗(J0, l1K)⊗ · · · ⊗ C∗(J0, lnK)

ζ

��

C∗(J0, 1K⊗n)
(φx1×···×φxn)∗

// C∗(J0, l1K⊗ · · · ⊗ J0, lnK)

One easily computes that φxi∗ : C∗(J0, 1K)→ C∗(J0, liK) sends ι1 to
∑li−1
ji=0[ji, ji+1].

Hence

(φx1 × · · · × φxn)∗(ιn) = (φx1 × · · · × φxn)∗ ◦ ζ(ι1 ⊗ · · · ⊗ ι1)
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= ζ ◦ (φx1∗ ⊗ · · · ⊗ φxn∗)(ι1 ⊗ · · · ⊗ ι1)

= ζ(φx1∗(ι1)⊗ · · · ⊗ φxn∗(ι1))

= ζ

l1−1∑
j1=0

[j1, j1 + 1]

⊗ · · · ⊗
ln−1∑
jn=0

[jn, jn + 1]


=

l1−1∑
j1=0

· · ·
ln−1∑
jn=0

ζ([j1, j1 + 1]⊗ · · · ⊗ [jn, jn + 1])

=

l1−1∑
j1=0

· · ·
ln−1∑
jn=0

([j1, j1 + 1], . . . , [jn, jn + 1])

=
∑

y∈(Rx)n

y.

Finally, f∗(x) = x[∗ ◦ (φx1 × · · · × φxn)∗(tσx∗(ιn)) = sgn(σx)
∑
y∈(Rx)n x[(y). �

7.5. Naturality of labeled homology. We are now ready to establish the natu-
rality of labeled homology with respect to cubical dimaps.

Theorem 7.5.1. Let f be a cubical dimap from a Σ∗-HDA B to a Σ∗-HDA A.
Then lnB = lnA ◦ f∗ for all n ≥ 0. Consequently, `B = `A ◦ f∗ in all degrees.

Proof. We may suppose that f is elementary. For any vertex v ∈ Q0, l0B(v) = 1 =
l0A(f0(v)) = l0A ◦ f∗(v). Suppose that n > 0. Consider an element x ∈ Qn, and let
Rx = J0, l1K⊗ · · · ⊗ J0, lnK. For i ∈ {1, . . . , n} and ji ∈ {0, . . . , li − 1}, consider the
edge

bjii = (l1, . . . , li−1, [ji, ji + 1], li+1, . . . , ln)

of Rx. We show first that the following diagram is commutative:

|J0, 1K|
φxi //

|(e0σx(i)ιn)]|
��

|J0, liK|

|b0i]···b
li−1

i] |
��

|J0, 1K⊗n|
tσx

// |J0, 1K⊗n|
φx1×···×φxn

// |J0, l1K⊗ · · · ⊗ J0, lnK|

We have (e0σx(i)ιn)](ι1) = e0σx(i)ιn = (1, . . . , 1, [0, 1]
σx(i)

, 1, . . . , 1) and hence

(φx1 × · · · × φxn) ◦ tσx ◦ |(e0σx(i)ιn)]|([ι1, t])
= (φx1 × · · · × φxn) ◦ tσx([(1, . . . , 1, [0, 1]

σx(i)

, 1, . . . , 1), t])

= (φx1 × · · · × φxn) ◦ tσx(1, . . . , 1, t
σx(i)

, 1, . . . , 1)

= φx1 × · · · × φxn(1, . . . , 1, t
i
, 1, . . . , 1)

= (l1, . . . , li−1, φxi(t), li+1, . . . , ln).

Let ji ∈ {0, . . . , li−1} and s ∈ [0, 1] be numbers such that φxi(t) = ji + s =
[[ji, ji + 1], s]. Then

(φx1 × · · · × φxn) ◦ tσx ◦ |(e0σx(i)ιn)]|([ι1, t])
= [(l1, . . . , li−1, [ji, ji + 1], li+1, . . . , ln), s]
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= [bjii , s]

= [b0i] · · · b
li−1
i] ([ji, ji + 1]), s]

= |b0i] · · · b
li−1
i] |([[ji, ji + 1], s])

= |b0i] · · · b
li−1
i] | ◦ φxi([ι1, t]).

Since x] ◦ (e0σx(i)ιn)](ι1) = x](e
0
σx(i)

ιn) = e0σx(i)x](ιn) = e0σx(i)x, we have

x] ◦ (e0σx(i)ιn)] = (e0σx(i)x)]

and therefore

f I((e0σx(i)x)]) = x[ ◦ b0i] · · · b
li−1
i] = x[(b

0
i )] · · ·x[(b

li−1
i )].

Hence

λB(e0σx(i)x) = λB((e0σx(i)x)]) = λA(f I((e0σx(i)x)])) = λA(x[(b
0
i )) · · ·λA(x[(b

li−1
i )).

Consequently,

l1B(e0σx(i)x) =

li−1∑
ji=0

|λA(x[(b
ji
i ))|∑

r
ji
i =1

λA(x[(b
ji
i ))

r
ji
i

=

li−1∑
ji=0

l1A(x[(b
ji
i )).

Thus

lnB(x) = l1B(e01x) ∧ · · · ∧ l1B(e0nx)

= sgn(σx)l1B(e0σx(1)x) ∧ · · · ∧ l1B(e0σx(n)x)

= sgn(σx)

l1−1∑
j1=0

l1A(x[(b
j1
1 ))

 ∧ · · · ∧
ln−1∑
jn=0

l1A(x[(b
jn
n ))


= sgn(σx)

l1−1∑
j1=0

· · ·
ln−1∑
jn=0

l1A(x[(b
j1
1 )) ∧ · · · ∧ l1A(x[(b

jn
n )).

Consider the element y = ([j1, j1 + 1], . . . , [jn, jn + 1]) ∈ (Rx)n. We have

lnA(x[(y)) = l1A(e01x[(y)) ∧ · · · ∧ l1A(e0nx[(y))

= l1A(x[(e
0
1y)) ∧ · · · ∧ l1A(x[(e

0
ny)).

Now, by Lemma 4.1.1,

λA(x[(e
0
i y)) = λA(x[(j1 + 1, . . . , ji−1 + 1, [ji, ji + 1], ji+1 + 1, . . . , jn + 1))

= λA(x[(l1, . . . , li−1, [ji, ji + 1], li+1, . . . , ln))

= λA(x[(b
ji
i )).

Thus l1A(x[(e
0
i y)) = l1A(x[(b

ji
i )) and therefore

lnA(x[(y)) = l1A(x[(b
j1
1 )) ∧ · · · ∧ l1A(x[(b

jn
n )).

Using Proposition 7.4.1, we obtain

lnB(x) = sgn(σx)
∑

y∈(Rx)n

lnA(x[(y)) = lnA(f∗(x)). �

As an immediate consequence of Theorem 7.5.1, we note the following result:
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Corollary 7.5.2. Let A be a Σ∗-HDA such that the label of some homology class
of degree > 0 is nonzero. Then there does not exist any cubical dimap from A to a
contractible Σ∗-HDA.

8. Applications

In this section we discuss two potential applications of labeled homology in con-
currency theory.

8.1. Independence. An important global question about a given concurrent sys-
tem is which subsystems are independent from each other. Let us define here that
the M -HDAs B1, . . . ,Bn are independent in the M -HDA A if there exist a subau-
tomaton B of A and a cubical dimap of M -HDAs |B1 ⊗ · · · ⊗ Bn| → |B| that is a
homeomorphism. This concept of independence is a variant of the one considered
in [FGH+16, 5.21].

Proposition 8.1.1. Suppose that the Σ∗-HDAs Bi (i = 1, . . . , n) are independent
in the Σ∗-HDA A, and consider homology classes βi ∈ H∗(Bi) (i = 1, . . . , n). Then
there exists a homology class α ∈ H∗(A) such that

`A(α) = `B1
(β1) ∧ · · · ∧ `Bn(βn).

Proof. This follows immediately from Theorems 5.3.4 and 7.5.1. �

Example 8.1.2. Let us consider the following version of the classical dining philoso-
phers system [Dij71]: Four philosophers sit at a round table having dinner. A
chopstick is placed to the left of each philosopher. In order to eat, a philosopher
needs this chopstick and also the one on the right. Each philosopher alternately
thinks and eats according to the following instructions:

• Think.
• Wait until the left chopstick is free and pick it up.
• Wait until the right chopstick is free and pick it up.
• Eat.
• Put the left chopstick down.
• Put the right chopstick down.
• Repeat the procedure from the beginning.

At the beginning of the dinner, all chopsticks are free.
The reachable part of the state space of the dining philosophers system may be

modeled by a Σ∗-HDA A where the alphabet Σ is given by

Σ = {thinki, eati, pick li, put li, pick ri, put ri | i ∈ {0, 1, 2, 3}}.

Here the indexes correspond, of course, to the four philosophers. The HDA A is of
dimension 4 and has 465 vertices, 1508 edges, 1766 2-cubes, 884 3-cubes, and 160
4-cubes.

For each i ∈ {0, 1, 2, 3}, the HDA A contains a subautomaton Bi correspond-
ing to the subsystem where only the ith philosopher has dinner and the others
remain inactive in their initial states. The HDA Bi is a directed circle and has a
1-dimensional homology generator with label

li = thinki + pick li + pick ri + eati + put li + put ri.
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By Theorem 7.5.1, it follows that A has four 1-dimensional homology classes with
labels l0, l1, l2, and l3, respectively. Since these labels are linearly independent, so
are the homology classes.

If two philosophers, say philosophers i and j, are not neighbors at the table,
they eat independently because they do not share any chopstick. Consequently,
Bi and Bj are independent in A. By Proposition 8.1.1, it follows that A has a
2-dimensional homology class with label li ∧ lj . Since the other two philosophers
are also not neighbors, A has a second 2-dimensional homology class of this type,
and the two homology classes are linearly independent because their labels are.

Computing the Z2-homology of A using the software CHomP [Pil18], one obtains
that Hn(A) = 0 for n > 2, dimH0(A) = 1, dimH1(A) = 4, and dimH2(A) = 2.
We have thus completely determined the labeled Z2-homology of A.

Suppose that philosophers i and j are neighbors at the table. Then, as one might
expect, the HDAs Bi and Bj are not independent in A. Otherwise, by Proposition
8.1.1, li ∧ lj would be the label of a 2-dimensional homology class of A, which is
not the case. Note that the reason for the dependence of Bi and Bj is not just
that philosophers i and j share a resource. Indeed, as shows Example 8.2.2 below,
processes that share resources may very well be independent.

8.2. Specification. Consider the practical problem to decide whether an M -HDA
A implements a certain specification that is given by another M -HDA S. Let us
say here that A implements S if there exists a finite sequence of cubical dimaps of
M -HDAs

|A| → · ∼←− · → · · · ∼←− · → |S|

where the cubical dimaps indicated by
∼←− are homotopy equivalences that could

also be required to preserve relevant constructions such as the trace category and
the homology graph (see [Kah14a, Kah14b, Kah16]). This implementation relation
can be seen as a kind of simulation preorder that permits one to relate HDAs of
different refinement levels.

Proposition 8.2.1. Let A and S be Σ∗-HDAs such that A implements S. Then
for each homology class α ∈ H∗(A), there exists a homology class β ∈ H∗(S) such
that `S(β) = `A(α).

Proof. This follows immediately from Theorem 7.5.1. �

Example 8.2.2. As an example, consider the task to implement a locking mechanism
for two processes by incrementing and decrementing an integer variable x using the
operators x++ and x−−, respectively. These operators are to be interpreted in such
a way that x++ means to acquire the lock and x−− means to release it. In order to
specify the task more formally, consider the alphabet

Σ = {x++0, x++1, x−−0, x−−1},

where the indexes in the instructions are the process IDs, and the Σ∗-HDA S given
by a wedge of two directed circles, one labeled with the string x++0; x−−0 and
the other with the string x++1; x−−1. Let us suppose now we had the (bad) idea
to implement this locking mechanism through a concurrent program where both
processes execute a loop consisting of the instruction sequence x++; x−−. Assuming
that x is initially 0, the HDA A corresponding to the reachable part of the state
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space of this program is a directed torus, and there exists a 2-dimensional homology
class with label

(x++0 + x−−0) ∧ (x++1 + x−−1),

which is nonzero. Since the 2-dimensional homology of S is trivial, Proposition
8.2.1 implies that A does not implement S. The error in our program is, of course,
that we forgot to include a guard condition that forces the processes to wait until
the variable x is 0 before they increment it.
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