
 

Baldry, IK

 Reinventing the slide rule for redshifts: the case for logarithmic wavelength 

shift

http://researchonline.ljmu.ac.uk/10379/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 

University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 

the individual authors and/or other copyright owners. Users may download and/or print one copy of 

any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. 

You may not engage in further distribution of the material or use it for any profit-making activities or 

any commercial gain.

The version presented here may differ from the published version or from the version of the record. 

Please see the repository URL above for details on accessing the published version and note that 

access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 

intend to cite from this work) 

Baldry, IK Reinventing the slide rule for redshifts: the case for logarithmic 

wavelength shift. (Unpublished) 

LJMU Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/190365025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Mon. Not. R. Astron. Soc. 000, 1–4 (2018) Printed 18 December 2018 (MN LATEX style file v2.2)

Reinventing the slide rule for redshifts: the case for logarithmic

wavelength shift

Ivan K. Baldry
Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, UK
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ABSTRACT

Redshift is not a shift, it is defined as a fractional change in wavelength. Nevertheless, it
is a fairly common misconception that ∆z c represents a velocity where ∆z is the redshift
separation between two galaxies. When evaluating large changes in a quantity, it is often more
useful to consider logarithmic differences. Defining ζ = lnλobs − lnλem results in a more
accurate approximation for line-of-sight velocity and, more importantly, this means that the
cosmological and peculiar velocity terms become additive: ∆ζ c can represent a velocity at
any cosmological distance. Logarithmic shift ζ, or equivalently ln(1+ z), should arguably be
used for photometric redshift evaluation. For a comparative non-accelerating universe, used in
cosmology, comoving distance (DC) is proportional to ζ. This means that galaxy population
distributions in ζ, rather than z, are close to being evenly distributed in DC, and they have a
more aesthetic spacing when considering galaxy evolution. Some pedagogic notes on these
quantities are presented.

Key words: redshift, wavelength, peculiar velocity, cosmological scalefactor, frame, comov-
ing distance

1 REDSHIFT IS NOT A SHIFT

The definition of redshift is given by

z =
λobs − λem

λem

, (1)

where λobs is the observed wavelength and λem is the emitted or

rest-frame wavelength (e.g. eq. 7 of Hubble & Tolman 1935). For

low redshifts, it is common to quote z c for observed galaxies as a

recession velocity in units of km s−1. This is related to the approx-

imation

zpec ≃
v

c
(2)

where zpec is the redshift (or blueshift) caused by a line-of-sight

peculiar velocity (v) component. This sometimes leads to the incor-

rect assumption that the ‘velocity’ due to the cosmological expan-

sion and the peculiar velocity add, or that the redshifts add. Davis

& Scrimgeour (2014) show how, that even at modest redshift, the

peculiar velocity can be significantly overestimated by naively sub-

tracting the cosmological redshift from the observed redshift.

The correct formula for relating redshift terms, also incorpo-

rating the Sun’s peculiar motion, can be given by

1+zcmb = (1+zhelio)(1+zpec,⊙) = (1+zcos)(1+zpec) , (3)

where zcmb and zhelio are the redshifts of an observed galaxy in

the cosmic-microwave-background (CMB) frame and heliocentric

frame, respectively, zpec,⊙ is the component caused by the motion

of our Sun wrt. the CMB frame toward the observed galaxy, zpec is

caused by the peculiar velocity of the observed galaxy, and zcos is

the cosmological redshift caused by the expansion of the Universe

only. This is evident from considering the definition of redshift,

i.e., ‘one plus redshift’ has a multiplicative effect on wavelength

(Harrison 1974). Note there is also a term for gravitational redshift

and the heliocentric redshift should be determined correctly from

the observed redshift.

Taking the difference in redshifts between two galaxies that

are at the same distance, we obtain

∆z = z1 − z2 = (1 + zcos) (z1,pec − z2,pec)

≃ (1 + zcos)
v1 − v2

c

, (4)

using the approximation of Eq. 2. So it appears that to estimate the

velocity difference requires knowledge of the cosmological red-

shift, though typically one could just set ∆v = ∆z c/(1 + z1),
for example, or use one plus the average redshift for the denomi-

nator (Danese, de Zotti, & di Tullio 1980). This is a well known

consideration when determining the velocity dispersions of galaxy

clusters. A related consequence for counting galaxies in cylinders

(e.g. Balogh et al. 2004) is that to allow a fixed maximum extent in

velocity difference around a galaxy requires increasing the extent

in ∆z with redshift proportional to 1 + z.

Revisiting the approximation, the peculiar redshift is accu-

rately given by the Doppler shift formula:

1 + zpec = γ(1 + βlos) (5)

where γ = (1− β2)−1/2 is the Lorentz factor and βlos is the line-

of-sight velocity divided by the speed of light. Using Taylor series
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2 I. K. Baldry

Figure 1. Comparison between approximations for recession velocity, i.e.,

assuming pure line-of-sight motion (βlos = β). The Doppler formula is

used to compute the redshift (Eq. 5), zeta (Eq. 7) and the radio definition of

velocity as a function of β. Notably zeta remains an accurate approximation

of recession velocity, within a percent, up to 0.1 c.

expansion, we can then simplify to:

zpec ≃ βlos +
1

2
β2 +

1

2
β2βlos . (6)

This simplifies further to zpec ≃ βlos after dropping the higher

order terms. This is usually sufficiently accurate for use in astro-

physics but it is worth bearing in mind that it is an approximation.

2 LOGARITHMIC SHIFT ZETA

Determining redshifts by cross correlation makes it evident that a

‘redshift’ or velocity measurement is actually a shift on a logarith-

mic wavelength scale (Tonry & Davis 1979). So arguably it is more

natural to define a quantity (here called zeta) that is a logarithmic

shift as

ζ = lnλobs − lnλem = ln(1 + z) . (7)

First we check its approximation for velocity, using Taylor series,

ζpec = −
1

2
ln(1− β2) + ln(1 + βlos)

≃ βlos +
1

2
(β2

− β2
los) +

1

3
β3
los

(8)

from the natural logarithm of Eq. 5. Such that ζpec is always a more

accurate approximation for βlos than zpec, with the quadratic term

vanishing for pure line-of-sight motion. Figure 1 shows a compari-

son between the redshift, zeta and ‘radio definition’ approximations

for recession velocity.

Given the improved accuracy, it is reasonable to use

ζpec ≃
v

c
(9)

for peculiar velocities. This is used implicitly when velocity dis-

persions of galaxies are determined from a logarithmically binned

wavelength scale (Simkin 1974).

More importantly, the use of zeta means that, the equivalent of

Eq. 3 for relating redshift terms becomes

ζcmb = ζhelio + ζpec,⊙ = ζcos + ζpec . (10)

It is immediately evident that the separation in zeta between two

galaxies at the same distance is related to velocity directly by

∆ζ ≃
∆v

c
(11)

with no dependence on the choice of frame or cosmological red-

shift. In addition to being more accurate than Eq. 4, it is precisely

symmetric when determining the separations in velocity between

two or more galaxies, i.e., there is no need to pick a fiducial red-

shift. A velocity dispersion is given by σ(ζ) regardless of the frame.

Redshift measurement errors can also be addressed as follows.

Spectroscopic or photometric redshifts are generally estimated by

matching a template to a set of observed fluxes at different wave-

lengths. In order to determine the redshift, the template must be

shifted in lnλ, thus we can immediately see that:

σ(ζ) = σ[∆ ln(λ)] , (12)

which is the uncertainty in the logarithmic shift between the ob-

served and emitted wavelengths. Alternatively the redshift uncer-

tainties are often quoted in fractional form:

σ(ζ) ≃
σ(z)

1 + z
. (13)

Either can be related to a velocity uncertainty (Eq. 11), and it is

thus reasonable to quote spectroscopic measurements using veloc-

ity uncertainties (Baldry et al. 2014). The concern is that some pa-

pers quote redshift errors in km/s using σ(z) c (e.g. Colless et al.

2001), which does not represent a physical velocity uncertainty

even though it has the same units.

It is appropriate to treat the evaluation of photometric redshift

errors in the same way and determine the uncertainties in ζ. The

typical use of quoting σ(z)/(1 + zspec), where zspec is a spec-

troscopic redshift, for the performance of photometric redshift es-

timates, approximates this (e.g. Brinchmann et al. 2017). This is

somewhat inelegant because the uncertainties on photometric red-

shifts are obtained using spectroscopic redshifts in the denomina-

tor. This is no such problem using σ(ζ) and it is more natural since

a measurement corresponds to a shift in lnλ. This is just a recog-

nition that fractional differences between two quantities (1 + z in

this case) depend on a fiducial value whereas logarithmic differ-

ences are symmetric. More importantly, this strongly suggests that

probability distribution functions, for example, should be assessed

as a function of zeta (binning, outliers, biases, second peak offsets)

rather than z. Rowan-Robinson (2003) used log10(1 + z), which

equals ζ/ ln(10), in his analysis including plots but this is far from

standard in the literature.

3 COSMOLOGICAL SCALEFACTOR

At a team meeting, I once presented a slide jokingly noting that “z

is an abomination, it is neither multiplicative, additive or a shift”.

Of course, redshift’s saving grace is that a human’s computational

ability is sufficient to convert z to the inverse scalefactor, add unity

and you get 1+zcos = a−1, where a is the cosmological scalefactor

with the common convention that the present-day value a0 = 1.

Using the logarithmic shift ζ, the relationship is evidently

ζcos = ln a−1. Spacing in logarithm of the scalefactor has desir-

able properties when considering galaxy populations or cosmology

c© 2018 RAS, MNRAS 000, 1–4
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Figure 2. Comparison between spacing in redshift and zeta. The black lines show the comoving separation per 0.01 in z (left) and ζ (right) (Eq. 14). The solid

lines represents the ‘737 cosmology’ (h = 0.7, Ωm = 0.3, ΩΛ = 0.7) while the dashed lines represent an Einstein-de-Sitter cosmology (h = 0.37 arbitrary,

Ωm = 1). The dotted lines show the points at which the universe was one half, one quarter, etc., of its present-day age for the 737 cosmology.

(Table 1). Figure 2 shows the separation in line-of-sight comoving

distance (DC) versus redshift and zeta for two different cosmolo-

gies. The black lines show

Sz = 0.01
dDC

dz
and Sζ = 0.01

dDC

dζ
(14)

in each plot. These are inversely proportional to ȧ/a (e.g. Hogg

1999) and ȧ, respectively. Notably Sζ varies less, particular at

ζ < 1. This is a desirable property since large-scale structure is

evaluated using comoving distances. Spacing in ζ corresponds to

constant velocity and approximately constant comoving distance.

The turnover in Sζ demonstrates the onset of dark energy

dominating the dynamics for the ‘737 cosmology’. This is evident

even without the comparison to the Einstein-de-Sitter (EdS) cos-

mology because for a non-accelerating universe (ä = 0), Sζ is

constant. For the EdS model, Sz ∝ a3/2 and Sζ ∝ a1/2 so that

lnSζ = −
1

2
ζ + ln(0.01 c/H0) , (15)

which explains why the dashed line is straight in the right plot of

Figure 2. See, for example, fig. 2 of Aubourg et al. (2015) for re-

lated plots [using ȧ and ln(1 + z)] comparing different models

of dark energy, and Sutherland & Rothnie (2015) who advocated

changing the redshift variable to ln(1 + z) in analysis of luminos-

ity distance residuals.

Also shown in Figure 2, with vertical lines, are the points at

which the universe halves its age (737 cosmology), with increas-

ing z and ζ. For z, the last half of cosmic time covers only a small

fraction of the plot (z < 0.8), whereas for ζ, the spacing is approx-

imately logarithmic in time. For an EdS model, it would be equally

spaced in ln t because a ∝ t2/3. For the 737 cosmology, an in-

crease in ζ of ∼ 0.5 corresponds to halving the age of the universe

across the epochs shown. A generic plot related to galaxy evolu-

tion shows the cosmic star-formation rate (SFR) density, logarith-

mically scaled, versus z but often scaled linearly in ln(1+z) (Hop-

kins & Beacom 2006; Madau & Dickinson 2014). This a recogni-

tion of the aesthetic of ln(a) separation.

Table 1. zeta-redshift-scalefactor lookup

ζ z a note

0.1 0.105 0.905 ∼ present-day galaxy properties

0.5 0.649 0.607 ∼ transition to cosmic acceleration

1.0 1.72 0.368 ∼ peak of cosmic SFR density

1.5 3.48 0.223

2.0 6.39 0.135 ∼ end of reionization

2.5 11.2 0.0821

3.0 19.1 0.0498 ∼ first stars

7.0 1096 0.000912 ∼ matter-radiation decoupling

4 CLOSING REMARKS AND PERSONAL COMMENTS

In closing, redshift z started out being considered as a ‘recession

velocity’ but is now considered as the inverse scalefactor minus

unity when assuming z = zcos, noting also that z ∼ ζ at z ≪ 1 and

z ∼ a−1 at z ≫ 1. Using the logarithmic shift ζ, the cosmological

and peculiar velocity terms are additive (Eq. 10). In addition, linear

spacing in ζ corresponds to logarithmic spacing in a, which is often

a practical and aesthetically desirable feature for plots highlighting

cosmological models and galaxy evolution. Astronomers regularly

use logarithmic differences, magnitude and dex, so it would be nat-

ural to use logarithmic shift for wavelength.

Selected points are given below:

• Use of z c for galaxy recession velocities is poor practice es-

pecially beyond a couple of thousand km/s.

• Regarding ζ c, it is neat that the quadratic term vanishes for

pure line-of-sight motion. I appreciate this is a special case for pe-

culiar velocities but it is arguably more appropriate for ‘recession

velocity’ out to ζ ∼ 0.1.

• For sources at the same distance, ∆z c is not a velocity, ∆ζ c
is a velocity other than for highly relativistic sources.

• Use of ζ, or ln(1 + z), is natural for studies that deal with the

combination of cosmological and velocity terms.

c© 2018 RAS, MNRAS 000, 1–4
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• Photometric redshift analysis should arguably use ζ as stan-

dard including presentation and diagnostics. These measurements

are effectively analysing shifts in ln(λ).
• A plot of zphot versus zspec is inelegant on two counts: it does

not relate to the logarithmic shift nature of the measurements, and

the spacing is aesthetically poor.

• The Hubble-Lemaı̂tre law v = H0D is exact for a non-

accelerating universe if we use velocity and distance definitions

v = ζ c and D = DC (line-of-sight comoving distance). Thus

any deviations from the ‘law’, in this form, reflect accelerating or

decelerating expansion.

Comments on the revision history of this paper are given be-

low:

• An earlier iteration of this paper was rejected by MNRAS

(with the title “Shouldn’t we be using a shift in logarithmic wave-

length as standard?”). The anonymous referee noted that it was just

an argument for “re-inventing the slide rule”: harsh but fair. I have

used this quote in the revised title.

• The same iteration was also rejected as a tutorial by PASP. The

referee noted “It isn’t exactly a tutorial, ... it is more a plea to es-

tablished astronomers for a revision of notation. That notation is so

deeply embedded in the literature that most working astronomers

would not think that the small benefits of changing it would be

worth the disruption and confusion that would result”. I would ar-

gue that confusion, related to z and velocity, for example, already

exists and will continue; I’ve noticed it many times. While the ref-

eree’s view will be common, I think there are some uses mentioned

in this paper where switching to ζ, or ln(1 + z) to avoid a new

symbol, is more readily justified.

• The tone of the MNRAS submitted version was changed

somewhat for arXiv v1, along with other minor changes.

• A reference and note on Hubble-Lemaı̂tre law were added,

following comments from W. Sutherland, for arXiv v2.
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