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Abstract

We consider two types of disruptions arising in the multi-depot vehicle scheduling; the delays
and the extra trips. These disruptions may or may not occur during operations, and hence
they need to be indirectly incorporated into the planned schedule by anticipating their likely
occurence times. We present a unique recovery method to handle these potential disruptions.
Our method is based on partially swapping two planned routes in such a way that the effect on
the planned schedule is minimal, if these disruptions are actually realized. The mathematical
programming model for the multi-depot vehicle scheduling problem, which incorporates these
robustness considerations, possesses a special structure. This special structure causes the
conventional column generation method fall short as the resulting problem grows also row-wise
when columns are generated. We design an exact simultaneous column-and-row generation
algorithm to find a valid lower-bound. The novel aspect of this algorithm is the pricing
subproblem, which generates pairs of routes that form recovery solutions. Compromising on
exactness, we modify this algorithm in order to enable it to solve practical-sized instances
efficiently. This heuristic algorithm is shown to provide very tight bounds on the randomly
generated instances in a short computation time.

Keywords: multi-depot vehicle scheduling; robust planning; column-and-row generation

1. Introduction

Urban and intercity bus services are the pillars of the public transportation systems. The
planning process for these systems involves constructing timetables according to the forecasted
passenger demand and scheduling of the buses/crews. One of the components, namely the
vehicle (bus) scheduling problem (VSP), concerns the assignment of a fleet of vehicles to a
set of trips that have predetermined departure and arrival locations as well as fixed start and
end times. The VSP is an important problem of public transportation and logistics, since the
fuel cost accounts for one of the largest amount among the operational costs.
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The VSP is studied extensively in the literature. Two general lines of research on this
problem are the single depot vehicle scheduling problem (SDVSP) and the multi-depot vehicle
scheduling problem (MDVSP). The SDVSP is polynomially solvable, and the models and
algorithms for this problem are reviewed by Freling et al. (2001). However, the MDVSP, which
is the problem we particularly consider in this paper, has been proven to be NP-Complete
by Bertossi et al. (1987). The MDVSP involves assigning the timetabled trips feasibly to the
available vehicles located at a set of depots. Here, a sequence of feasible trips corresponds to
a route of a vehicle.

The routes that are found by the solution of MDVSP are subject to disruptions at the time
of operation, such as; vehicle breakdowns, traffic congestions or adverse weather conditions.
The consequences of such disruptions are cancellations and delays, which require changes in
the planned schedule in order to satisfy the requests of the customers. The recovery procedures
that are developed at the time of disruption may not lead to a feasible schedule, and even
they do, they may inflict substantially large extra costs on the planned schedule. On the
other hand, tackling disruptions at the planning stage is known as robust planning approach,
which is based on anticipating disruption scenarios before they are actually realized. This
approach readily provides a feasible recovery solution with the lowest possible increase in the
planned cost, if the disruption scenario taken into account at the planning stage is realized
at the time of operation. Robust planning has been considered in several studies for handling
crew scheduling and vehicle scheduling (Huisman et al. 2004, Shebalov and Klabjan 2006).

In this paper, we consider two types of disruptions and present a robust planning approach
that provides a unified way to recover them. The first type of disruptions consists of delays
possibly caused by adverse conditions in weather and traffic. If long enough, a delay in the
planned arrival time of a vehicle may, in turn, affect also the departure time of the successive
trips assigned to the same vehicle. The second type of disruption is caused by the excess
demand for a particular origin-destination pair that mandates the planners to insert an extra
trip into the schedule at the operation phase (Tekiner et al. 2009, Muter et al. 2013b). Both
types of disruptions are quite common in countries with a large bus transportation network
like Turkey. A trivial recovery option for both types of disruptions (delay and extra trips) is
to assign an idle vehicle, if exists, to cover the trips succeeding the delayed trip or the extra
trip itself. This type of recovery solution is conceived when the disruption reveals itself and
may result in additional costs associated with the relocation of the idle vehicle as well as other
potential issues in crew scheduling. Such a recovery procedure is, in general, very hard and
costly to handle. Hence, the only way to recover the delay or extra trip lies in the rescheduling
of the vehicles (see Section 2 for studies handling disruptions by rescheduling).

Incorporating robustness into the planned schedule is possible, only if the sources of these
two types of disruptions can be anticipated. Given a set of possibly delayed and extra trips,
our robust planning approach provides a schedule that can be modified in such a way that
exactly two routes deviate from the original plan in the recovery solution. The cost of the
robust solution is generally higher than that corresponding to the planned schedule. However,
if one of the disruptions is realized at the time of operation, then the cost savings achieved
by the proposed robust schedule compensate for the loss due to execution of the robust plan.

The robust model that we tackle in this paper is the counterpart of that proposed in Muter
et al. (2013b) for the robust airline crew pairing problem, in which the extra flights cause
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disturbances to the planned schedule. The novelty of this model lies in a set of constraints
linking a pair of variables corresponding to two routes that constitute a recovery solution to
an auxiliary variable. The number of linking constraints associated with recovery solutions is
not only too large to consider explicitly in the model but also their enumeration requires the
presence of the entire set of routes. The enumeration of the complete set of routes is generally
not viable due to its large cardinality, and column generation is the prevalent methodology
to attack such large-scale problems. During the course of column generation, as new routes
are generated, those that pair up to form a recovery solution trigger the generation of new
linking constraints. This raises two major issues in the application of the column generation
approach: (i) The dual variable values of the new linking constraints, which appear as new
recovery solutions are created during column generation, are not known. This causes the
miscalculation of the reduced costs. (ii) Designing a pricing subproblem that generates pairs
of routes forming recovery solutions for an extra trip is a challenging problem. To circumvent
these difficulties in the solution of the robust airline crew pairing problem, Muter et al. (2013b)
solve the linear programming (LP) relaxation of this problem only by a heuristic two-phase
iterative column-and-row generation strategy. Thus, they are unable to provide a valid lower
bound for the overall problem. Later, Muter et al. (2013a) focus on a general class of large-
scale LP problems, referred to as problems with column-dependent-rows, and propose an
exact solution method. This exact method, in theory, can be used to solve the robust airline
crew pairing problem. In this paper, we not only employ the results proposed in Muter et al.
(2013a) but also extend those results with a stronger termination condition.

The contributions of this paper are as follows:

⋄ We present a unified methodology for the robust MDVSP when the sources of disruptions
are extra trips and delays that can be anticipated at the planning phase.

⋄ We give an exact simultaneous column-and-row generation algorithm to find a lower-
bound for the robust MDVSP in which the pricing subproblem generates simultaneously
pairs of routes forming recovery solutions.

⋄ We design explicit search algorithms on graphs for the generation of route pairs used in
pricing subproblems.

⋄ We prove a stronger termination condition than the one given in Muter et al. (2013a)
for the LP relaxation of the quadratic set covering problem. This is a new result in
column-and-row generation.

⋄ The termination condition of the proposed exact column-and-row generation algorithm
may be computationally demanding to reach. We relax this condition and present a
heuristic algorithm. We show that the proposed heuristic approach provides very tight
bounds on the considered randomly generated instances.

⋄ We conduct an extensive computational study to demonstrate the impact of the disrup-
tions and to evaluate the performances of the proposed approaches.

2. Related Literature

In this section, we present the related studies in the literature on the MDVSP and disrup-
tion management. We refer the interested reader to Visentini et al. (2014) for an extensive
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review on various recovery methods. Although most of the solution methodologies are heuris-
tics and handle the disruptions at the operational level, there exist few studies proposing exact
approaches that incorporate robustness in their model in the planning stage.

One of the earliest studies on vehicle scheduling is by Bodin et al. (1978). Dell’Amico
et al. (1993) solve the MDVSP with the objective of minimizing the number of vehicles and
the overall operational cost. They use the structural properties of the problem to design a new
polynomial time heuristic algorithm which always guarantees the use of the minimum number
of vehicles. Haghani and Banihashemi (2002) develop new formulations for the MDVSP and
its extension with route time constraints. To solve the latter problem, they propose two
heuristic approaches and an exact method that is based on constraint generation. For the
same problem, Haghani et al. (2003) propose two single depot vehicle scheduling with route
time constraints model and present a comparative analysis of three vehicle scheduling models.
Petersen et al. (2012) propose a planning approach to obtain a favorable trade-off between the
two contrasting objectives, passenger service and operating cost, by modifying the timetable.
The planning approach is referred to as the simultaneous vehicle scheduling and passenger
service problem, and they solve this problem by large neighborhood search. The MDVSP
with multiple vehicle types, where vehicle types are linked to each trip according to the trip’s
characteristics is studied by Ceder (2011). The author presents a heuristic algorithm based on
the deficit function theory to solve this problem. Hassold and Ceder (2014) propose four exact
methods and show the benefit of vehicle types substitutions on a real-life case study. Shen
et al. (2016) consider randomness of the trip times and incorporate them into a probabilistic
model of the vehicle scheduling problem with the objectives of minimizing the total cost and
maximizing the on-time performance.

Besides the heuristic approaches, several exact methods are also applied to solve the MD-
VSP. Carpaneto et al. (1989) propose an exact branch-and-bound algorithm based on the
computation of lower bounds by an additive scheme. Ribeiro and Soumis (1994) formulate
the MDVSP as a set partitioning problem with side constraints and propose a column gen-
eration algorithm. They also show that the LP relaxation of the MDVSP generates a better
bound than the additive bound proposed by Carpaneto et al. (1989). Fischetti et al. (2001)
develop a branch-and-cut algorithm to solve the MDVRP in which limits are imposed on both
the total time between the start and the end of any duty, and the total duty time. Löbel
(1998) solves the LP relaxation of the multi-commodity flow formulation of the MDVSP by
column generation. He devises two different Lagrangian relaxations of this formulation that
constitute the pricing subproblem. To test the algorithm, a real-world data involving the cities
of Germany is used. Hadjar et al. (2006) propose a branch-and-bound algorithm to solve the
MDVSP. At each node in the tree, the LP relaxation is solved by column generation, and a
variable fixing procedure is applied to reduce the number of variables. Moreover, to improve
the LP bound, they introduce a class of valid inequalities.

In the literature, the solution methods to manage disruptions can be categorized under
two groups. The first group is the online approaches that generate the schedules of vehicles
on the fly during the execution and update the schedules at the operational level. The second
group is the offline approaches that consider the possible disruptions at the planning stage.
This class of solution procedures creates schedules that are likely to remain stable when
disruptions occur. The studies in the vehicle scheduling literature presented below generally

4



present methods to recover from disruptions in real-time through vehicle rescheduling, and
hence, they fall in the category of online methods. The proposed approach in this study can
be classified as an offline approach.

Huisman et al. (2004) develop a solution methodology for the dynamic vehicle schedul-
ing problem, which consists of solving a sequence of optimization problems, where different
scenarios for future travel times are taken into account. In the study of Kramkowski et al.
(2009), the possible delays that can occur at the operational level are handled by inserting
buffer times between trips. The critical point of this approach is to determine the right place
to insert the buffer times. To solve the resulting robust vehicle scheduling problem, they apply
a path based flow decomposition method on a network.

The disruptions in the SDVSP are handled by rescheduling the vehicles, and the resulting
problem solved at the operational level is referred to as the vehicle rescheduling problem.
Li et al. (2007) consider the disruptions due to a disabled vehicle and develop several fast
algorithms to solve the mathematical model. For the same problem, Li et al. (2009) develop
an arc-based formulation and present a Lagrangian heuristic. Their aim is to minimize the
general arc costs, such as travel and idle times, as well as the trip cancellation costs and
penalty costs incurred due to rescheduling. Sato et al. (2009) develop a recovery methodology
to manage disruptions that are caused by delays and that can be applied both on vehicle
and crew scheduling. They propose a network flow based formulation and a heuristic solution
methodology for the rescheduling problem. The swap operation to recover disruptions devel-
oped in Sato et al. (2009) resembles the route swapping employed in this paper. However,
the vehicle rescheduling problem is a dynamic problem which is solved when the disruption
occurs at the time of operation.

The way we model robustness to handle disruptions in this paper is inspired by the works of
Shebalov and Klabjan (2006) and Tekiner et al. (2009). The authors of the latter paper focus
on a specific disruption caused by extra flights in airline crew pairing, where the pairings play
a similar role as the routes in this work. To handle these disruptions at the planning stage,
Tekiner et al. (2009) come up with two recovery solutions: type A and type B. Type A solution
is similar to the recovery solutions that we have mentioned in the preceding paragraphs. Type
B solution, on the other hand, is based on modification of a single pairing to cover an extra
flight. This approach is based on enumeration of all possible pairings. Therefore, only small
instances can be solved to optimality by standard commercial solvers. Muter et al. (2013b)
propose a heuristic two-phase iterative column-and-row generation algorithm to attack large
instances of the same problem. In the first phase, the number of constraints is fixed and
then column generation is applied in a conventional manner. In the second phase, additional
type A recovery solutions are identified based on the pairings generated during the last call
to the column generation. In our present study, we utilize only type A solutions –referred
to as recovery solutions in this paper– for recovery of disruptions. We do not make use of
type B solutions as they introduce significantly long buffer times between trips in the planned
schedule. Such long buffer times are unacceptable for real world planning.
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3. Multi Depot Vehicle Scheduling Problem with Disruptions

In this section, we elaborate on the recovery solutions for the two types of disruptions
defined earlier, namely the delayed and extra trips. We demonstrate that although these two
disruption types are seemingly different, we may apply similar changes to the planned (robust)
schedule to recover them. These changes are based on swapping two routes in such a way that
if any one of these disruptions occurs, then the recovery is possible with the existing routes.
Finally, the mathematical model for the robust MDVSP is presented.

Figure 1 illustrates our notation. A set of trips is indexed by t ∈ T with a given start time
(st) and end time (et). There exists a set of depots indexed by d ∈ D, each of which hosts Cd

vehicles. For a vehicle to operate trip tj ∈ T after trip ti ∈ T , it needs to be relocated from
the arrival location of ti to the departure location of tj, and the duration of the relocation,
also known as deadheading, of the vehicle between ti and tj is denoted by δtitj . Trip tj can
be feasibly operated after trip ti if the relocation time of the vehicle from the arrival location
of ti to the departure location of tj satisfies eti + δtitj ≤ stj . A pair of trips that satisfy this
condition is called compatible. There exists an operational cost of operating these trips one
after the other, denoted by ctitj . Such relocation times and costs are also applicable to the
depot-trip and trip-depot pairs without any condition on compatibility of these pairs except
that a vehicle must return to its original depot after completing its last trip.

Figure 1: The notation used in the paper.

The MDVSP can be defined on a graph G = (V,A), where V = T ∪D1 ∪D2 is the set of
nodes which is itself composed of a set of trips indexed by t ∈ T , and two sets of nodes D1 and
D2 both of which are the copies of D. While D1 represents the source depot nodes denoted
by dm,m = 1, ..., |D|, D2 contains the sink depot nodes denoted by dn, n = |D| + 1, ..., 2|D|.
Hence, there is a total of |T |+2|D| nodes. The arc set A is composed of two sets, A = AC∪AD

where AC connects compatible pairs of trips and AD includes the arcs of the form (dm, ti) for
m = 1, ..., |D| and (ti, dn) for ti ∈ T and n = |D| + 1, ..., 2|D|. Hence, there is an arc from
each source depot node to each trip node and from each trip node to each sink depot node.
For AC , ctitj denotes the arc cost between trips ti and tj. For AD, cdmti and ctidn denote the
costs on arcs (dm, ti) and (ti, dn), respectively.
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A feasible vehicle route starts from a depot, realizes a set of trips, and ends at the same
depot. It can be represented as a vector (dm, t1, t2..., dn), where n = m + |D|. The cost of a
route is equal to the total costs of the arcs it traverses. The MDVSP is to determine a set
of feasible vehicle routes that cover each trip once and has the smallest total cost. Letting
R denote the set of all routes in G, the MDVSP can be stated as a set partitioning problem
with side constraints (Hadjar et al. (2006)):

minimize
∑

r∈R

cryr, (1)

subject to
∑

r∈R

atryr = 1, t ∈ T, (2)

∑

r∈R

brdyr ≤ Cd, d ∈ D, (3)

yr ∈ {0, 1}, r ∈ R, (4)

where cr is the cost of route r, and atr = 1, if trip t is covered by route r and 0, otherwise.
Decision variable yr equals 1, if route r is selected and 0, otherwise. Binary parameter brd is
1, if route r starts and ends at depot d and 0, otherwise. The parameter Cd is the number of
identical vehicles residing at depot d. The objective function minimizes the total cost of the
selected routes. While constraints (2) impose that each trip should be covered exactly once,
constraints (3) limit the number of vehicles leaving from each depot by the fleet size located
at that depot.

(a) Delayed Trip (b) Extra Trip

Figure 2: Swapping solutions for disruptions

At this point, we emphasize our assumption that the information pertinent to delayed
trips and extra trips can be anticipated at the planning phase. Both the expected length
of a delayed trip and the departure and arrival locations of an extra trip as well as its time-
window – the earliest departure and the latest arrival time – are generally determined by using
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historical data and past experience. Extra trips are usually requested around the same time
to popular destinations. A typical example is a summer Friday evening, when the walk-in
customers are requesting tickets to a vacation resort. The swapping operation for delays and
extra trips are illustrated in Figures 2(a) and 2(b), respectively. In the solution of (1)-(4), one
of the vehicles covers trip ti and continues with trip tj, and another vehicle covers tk and tl in
this order. In Figures 2(a), ti is delayed, causing the connection between ti and tj to become
incompatible. This disruption can be recovered by swapping the duties of the vehicles covering
the trip pairs ti − tj and tk − tl, assuming that the relocation time between these trip pairs
allows a feasible connection. In Figure 2(b), emerging extra trip te is covered by the vehicle
operating ti, which then continues with tl. The other vehicle covers tk and continues with
tj. Again, such a swap is feasible, only if the relocation time between the newly connected
trips are compatible. As illustrated in these figures, both delayed trips and extra trips can
be recovered in a similar way by swapping the route assigned to the delayed or the extra trip
with another route. In referring to the route pairs that form a recovery solution, we use the
ordered-pair notation (r, q), where route r ∈ R is the one that covers the delayed or extra
trip, and latter route q ∈ R recovers the rest of the trips of r. In this case, we refer to r and
q as the primary and secondary routes of recovery solution (r, q), respectively.

By taking into consideration the recovery solutions for the disruptions, the robust MDVSP
can be modeled as follows:

(RMDVSP) minimize
∑

r∈R

cryr, (5)

subject to
∑

r∈R

atryr = 1, t ∈ T, (6)

∑

r∈R

brdyr ≤ Cd, d ∈ D, (7)

∑

(r,q)∈P (k)

xk
(r,q) ≥ 1, k ∈ K, (8)

yr ≥ xk
(r,q), (r, q) ∈ P (k), k ∈ K, (9)

yq ≥ xk
(r,q), (r, q) ∈ P (k), k ∈ K, (10)

yr + yq ≤ 1 + xk
(r,q), (r, q) ∈ P (k), k ∈ K, (11)

yr ∈ {0, 1}, r ∈ R, (12)

xk
(r,q) ∈ {0, 1}, (r, q) ∈ P (k), k ∈ K, (13)

where K denotes the set of all possible disruptions (delayed trips or extra trips). The index
set P (k) denotes the set of route pairs that form recovery solutions for disruption k. The
auxiliary binary variable xk

(r,q) is set to 1, if the route pair (r, q) ∈ P (k) and both routes r

and q are selected, and to 0, otherwise. The set of constraints (9)-(11), which is referred to as
the set of linking constraints, imposes that xk

(r,q) takes the value 1 if and only if yr = yq = 1.

Through constraints (8), the selected routes of the above model provide at least one recovery
solution for each k ∈ K.
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4. Proposed Solution Methodology

Even for moderate size instances of (RMDVSP), the number of routes in R can be
prohibitively large. To solve such large-scale models, column generation method, pioneered
by Dantzig and Wolfe (1960) and Gilmore and Gomory (1961), is commonly employed. This
method initializes a problem with a small subset of columns, referred to as the restricted
master problem (RMP), and generates promising columns during the course of the algorithm.
To that end, the dual information retrieved by solving the RMP is utilized in the solution of
the pricing subproblem (PSP) which determines whether to add a new column or terminate
the algorithm at the LP optimal solution (see Desaulniers et al. (2005) for a comprehensive
survey on column generation). In the application of column generation to the conventional
MDVSP given (1)-(4), the PSP is a shortest path problem that is solved for every source-sink
pair each of which represent a depot. In the current study, this PSP constitutes only one
element of our proposed methodology.

Notice that the number of linking constraints depends on the set of recovery solutions
P (k), k ∈ K. Hence, when the LP relaxation of (RMDVSP) is solved by column generation,
a newly formed recovery solution that is comprised of the route pair (r, q) ∈ P (k) introduces
variable xk

(r,q) and three linking constraints (9)-(11). This structure of (RMDVSP) qualifies
it as a problem with column-dependent-rows, for which a generic simultaneous column-and-
row generation algorithm is proposed by Muter et al. (2013a). In this section, we first outline
the application of the simultaneous column-and-row generation algorithm to (RMDVSP).
Then, in the rest of the section, we elaborate on the details of the PSPs by addressing the
associated difficulties and pointing out our approaches to alleviate them.

4.1. Simultaneous Column-and-Row Generation

In forming the RMP of the LP relaxation of (RMDVSP), we replace R by its subset R̄.
Moreover, we add those (r, q) ∈ P (k), k ∈ K, where both r and q exist in R̄. That is, the
linking constraints given in (9)-(11) and the associated x−variables are only partially present
in the RMP. The subset of the linking constraints and x−variables that are induced by R̄ are
denoted by P̄ (k). The resulting RMP, which also lacks some of the linking constraints as well
as columns, is referred to as the short RMP (SRMP):

minimize
∑

r∈R̄

cryr, (14)

subject to
∑

r∈R̄

atryr = 1, t ∈ T, (15)

∑

r∈R̄

brdyr ≤ Cd, d ∈ D, (16)

∑

(r,q)∈P̄ (k)

xk
(r,q) ≥ 1, k ∈ K, (17)

yr − xk
(r,q) ≥ 0, (r, q) ∈ P̄ (k), k ∈ K, (18)

yq − xk
(r,q) ≥ 0, (r, q) ∈ P̄ (k), k ∈ K, (19)

yr + yq − xk
(r,q) ≤ 1, (r, q) ∈ P̄ (k), k ∈ K, (20)
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yr ≥ 0, r ∈ R̄, (21)

xk
(r,q) ≥ 0, (r, q) ∈ P̄ (k), k ∈ K. (22)

According to the model above, when route pairs {(r, q), (q, r) ∈ P (k)\P̄ (k)} are completed
in the SRMP, say with the generation of route r, a new set of linking constraints (18)-(20)
and xk

(r,q) or xk
(q,r) associated with these pairs are also introduced into the SRMP. Route r

can form a recovery solution both as the primary route in the form (r, q) or as the secondary
route in the form (q, r) in a recovery solution. Therefore, when pricing yr, we need to take into
consideration the dual variable values associated with the newly introduced linking constraints
currently missing from the SRMP. This shall be handled in a PSP that both generates recovery
solutions and correctly calculates the values of these unknown dual variables.

At this point, we discuss an important feature of the simultaneous column-and-row gen-
eration algorithm. When the solution of (RMDVSP) is obtained, the planners are given a
set of recovery solutions for each disruption k ∈ K, namely pairs (r, q) ∈ P (k) with xk

(r,q) = 1.
For a given disruption k, a selected route r ∈ R may be part of more than one selected recov-
ery solutions, say (r, q) and (r, s) ∈ P (k), s ∈ R, and one of these pairs can be swapped to
recover k, if that particular disruption is realized at the time of operation. On the other hand,
suppose that r forms recovery solutions for more than one disruptions, say (r, q) ∈ P (k1) and
(s, r) ∈ P (k2) for k1, k2 ∈ K, and these are the only selected recovery solutions for these
disruptions. If both disruptions are realized at the time of operation, the planner can only
recover either k1 or k2 but not both, since swapping a pair of routes to recover a disruption,
say k1, impairs the structure of r which can no longer recover k2. This issue was referred
to as double counting by Shebalov and Klabjan (2006), and was handled by adding a set
of constraints to the robust model by Tekiner et al. (2009). In this paper, to alleviate this
peculiarity, we generate the route pairs through simultaneous column-and-row generation for
each k ∈ K separately so that a route is not part of recovery solutions for more than one
disruption. Even if the same route coincidentally takes part in recovery solutions for different
disruptions, treating them as distinct columns for each disruption prevents double counting
thanks to the partitioning constraints in (RMDVSP).

As a consequence of the above explanation on the structure of recovery solutions, for a
given k ∈ K, the reduced costs of route r and x−variable associated with one of the recovery
solutions that r induces, say xk

(r,q), are denoted by c̄r and d̄(r,q),k, respectively. Formally

c̄r = cr −
∑

t∈T

atrut −
∑

d∈D

brdvd −
∑

(r,q)∈P (k)

(γ1
(r,q),k + γ3

(r,q),k) +
∑

(q,r)∈P (k)

(γ2
(q,r),k + γ3

(q,r)) (23)

and
d̄(r,q),k = γ1

(r,q),k + γ2
(r,q),k + γ3

(r,q),k − zk, (24)

where ut ∈ R, vd ∈ R
−, zk ∈ R

+, γ1
(r,q),k, γ

2
(r,q),k ∈ R

+ and γ3
(r,q),k ∈ R

− are the dual variables

corresponding to constraints (15)-(20), respectively. Note that newly generated variables yr
and xk

(r,q) do not reside in the existing linking constraints indexed by P̄ (k), and hence, none of

the dual variables associated with these constraints appear in (23) and (24). Each (r, q) ∈ P (k)
or (q, r) ∈ P (k) triggers three constraints and one x−variable, and some q ∈ R may not exist
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in the SRMP, i.e. q ∈ R\R̄. Therefore, there are two difficulties in designing a PSP for this
problem: First, dual variables γ associated with the linking constraints currently missing from
the SRMP are unknown. Second, the recovery solutions involving route pairs {(r, q), (q, r) ∈
P (k)} must be generated simultaneously. The former issue has been tackled in Muter et al.
(2013a) through the thinking-ahead approach for the closely related problem quadratic set
covering, in which each pair of variables is associated with three linking constraints and an
auxiliary x−variable. After giving the outline of the simultaneous column-and-row generation,
we address these issues in a PSP which we call route-pair generating PSP that generates a
set of recovery solutions. We also further the thinking-ahead approach in this paper to avoid
degenerate iterations that stall the termination of the overall algorithm.

The simultaneous column-and-row generation algorithm to solve the LP relaxation of
(RMDVSP) is illustrated in Figure 3, which starts with the construction of the SRMP
with a small set of routes. After solving the SRMP and obtaining the optimal values of the
dual variables, the first PSP, referred to as the individual route generating PSP, is called.
This PSP is solved under the condition that no recovery solution is generated; that is, no
unknown dual variable resides in (23). If at least one negative reduced cost route is found,
then the route having the minimum reduced cost is added to the SRMP, and the algorithm
continues with the same PSP. Otherwise, the column pool is searched for possible pairs since
the set of routes generated via consecutive calls to the individual route generating PSP may
pair up to create new recovery solutions. For each pair that can be swapped feasibly, the
auxiliary x−variable and the associated linking constraints are added to SRMP. If at least
one of the new linking constraints is violated, which is the case when the left-hand-side of (20)
exceeds one, the SRMP is re-solved and the algorithm returns to individual route generating
PSP. Otherwise, the route-pair generating PSP is called to generate pairs of routes forming
recovery solutions. In this PSP, we check whether there is any column r ∈ R having a negative
reduced cost only after pairs of routes containing r are generated along with a set of linking
constraints. If so, the columns and the rows are added to SRMP and the algorithm returns
back to the first PSP. If the algorithm cannot find such pairs of routes for all disruptions,
then the algorithm terminates with the LP optimal solution of (RMDVSP).

For the optimality of this column-and-row generation algorithm, we also need to ensure
primal feasibility (in addition to the dual feasibility checked by the PSPs) as new rows are
added iteratively to SRMP. At any iteration, constraints (18)-(20) for some (r, q) ∈ P (k)\P̄ (k),
k ∈ K are not violated, in fact they are redundant, unless both yr and yq are in the SRMP. As
mentioned previously, some of the columns generated during the execution of the individual
route generating PSP may form a recovery solution. The linking constraints associated with
those recovery solutions are added after this PSP terminates. Hence, the primal feasibility may
be impaired during the execution of the individual route generating PSP. However, since all
the recovery solutions are extracted and the associated linking constraints are added before the
route-pair generating PSP, the primal feasibility is guaranteed when the algorithm terminates.

4.2. Individual Route Generating Subproblem

Our first subproblem checks whether there is any route r ∈ R with a negative reduced
cost using only the optimal values of ut, t ∈ T and vd, d ∈ D obtained by solving the SRMP.
Therefore, the recovery solutions coincidentally formed by this route and the dual variables of
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Figure 3: Flow of the proposed column-and-row generation algorithm

the linking constraints induced by these recovery solutions are first disregarded in this PSP.
Formally, this PSP is given as

ζy = min
r∈R

{

cr −
∑

t∈T

atrut −
∑

d∈D

brdvd

}

, (25)

which is simply a shortest path problem for each d ∈ D. To that end, for each d ∈ D, we
define Gd = (V d, Ad), where V d is composed of T and two nodes associated with d ∈ D, say
dm and dn, and Ad is composed of AC and the set of arcs of the form (dm, ti) and (ti, dn)
for n = |D| + m. Moreover, for all arcs in Gd, c̄titj = ctitj − uti , c̄tidn = ctidn − uti and
c̄dmti = cdmti are the associated reduced cost parameters. If ζy < 0 after solving the shortest
path problems, the route with the smallest reduced cost is added to the SRMP. Otherwise,
the algorithm continues as in Figure 3.

According to the flowchart given in Figure 3, the SRMP grows only column-wise until
the individual route generating PSP cannot find any negatively priced columns. Some of
the columns generated through solving the individual route generating PSP consecutively
may incidentally form recovery solutions. Before moving to the route-pair generating PSP,
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we search for such recovery solutions that involve the routes generated by the individual
route generating PSP. The identification procedure will be explained in Section 4.4 where the
trip quadruples are used to forge the formation of candidate recovery solutions. In short,
by checking whether the selected pair of routes from the SRMP possesses these quadruples,
we will be able to detect the recovery solutions. Another characteristic of a pair of routes
forming a recovery solution is that they must be disjoint. Otherwise, they can never be
selected together in a feasible integer solution to recover a disruption due to the partitioning
constraints of (RMDVSP). As mentioned previously, each route can be part of recovery
solutions only for a single disruption. Hence, if route r generated during the individual route
generating PSP constitutes a recovery solution for k1 ∈ K with q ∈ R̄, which already forms
a recovery solution for k2 ∈ K, we add yq′ , a duplicate of yq, to the model and consider this
new variable only in the linking constraints associated with (r, q′) ∈ P (k1). Next, we add the
linking constraints and the x−variables associated with these recovery solutions to the SRMP.
If at least one of the new linking constraints is violated by the current optimal solution of the
SRMP, then we resolve it and return back to the first subproblem. Otherwise, the route-pair
generating PSP is called.

4.3. Route-Pair Generating Subproblem

The objective of this subproblem is to identify new columns that price out favorably only
after adding new linking constraints currently absent from the SRMP. The generation of new
linking constraints is triggered by the generation of recovery solutions in P (k)\P̄ (k), which
correspond to pairs of routes that can be swapped feasibly to recover disruption k ∈ K. Hence,
to solve this subproblem, we need to design a methodology that simultaneously generates a
set of routes (some of which can already exist in the SRMP) that forms recovery solutions
and generates new linking constraints and x−variables. Recall, the reduced costs of y− and
x−variables in (23) and (24), respectively. As alluded to previously, the values of dual variables
γ associated with the new linking constraints induced by the generated recovery solutions are
unknown when this subproblem is called, and must be estimated to correctly calculate the
reduced costs of the variables. In addressing the aforementioned difficulties of this subproblem,
which are related to the generation of recovery solutions and the anticipation of the values of
the unknown dual variables, we divide this section into two: First, we tackle the latter difficulty
by demonstrating the application of the thinking-ahead approach and then present a stronger
termination condition that improves the performance of the simultaneous column-and-row
generation algorithm. Second, for the generation of recovery solutions consisting of route
pairs, we present a model based on implicit enumeration of the recovery solutions. Admittedly,
enumeration is not practical for large-scale instances. To circumvent this difficulty, we propose
a heuristic algorithm that generates a single pair of routes with the minimum total reduced
cost.

Since a route can form recovery solutions only for a single disruption, the route-pair gen-
erating PSP is solved for each disruption. For a given disruption k ∈ K, we define set Pk

r

consisting of all recovery solutions for k containing route r. The outcome of this PSP is Fk
r

which is a family of route pairs for disruption k of the form {(r, q), (q, r) ∈ P (k)} involving
route r ∈ R\R̄. While Pk

r contains all recovery solutions for k, Fr ⊂ Pr may exclude some of
the recovery solutions, which is justified by our termination condition given later in Lemma
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4.1. The introduction of each (r, q) ∈ Fr or (q, r) ∈ Fr adds three constraints, an auxiliary
x−variable and yq, q ∈ Σr\R̄, where Σr is the index set of y−variables in the route pairs, to
the SRMP.

For given k ∈ K and Fk
r , we restate the reduced cost of yr as follows

c̄r =cr −
∑

t∈T

atrut −
∑

d∈D

bdrvd −
∑

(r,q)∈Fk
r

(γ1
(r,q),k + γ3

(r,q),k)−
∑

(q,r)∈Fk
r

(γ2
(q,r),k + γ3

(q,r),k) (26)

where γ.
(r,q),k and γ.

(q,r),k are the unknown dual variables associated with the linking constraints

induced by (r, q) ∈ Fr and (q, r) ∈ Fr, respectively. Since new x−variables and yq, q ∈
Σr\{r} reside in these linking constraints, the reduced costs of these variables also include the
unknown dual variables. We point out that Fk

r and the unknown dual variables induced by
Fk

r are determined to minimize the reduced cost of yr. The rationale of the thinking-ahead
approach can be summarized as follows: For recovery solutions (r, q) ∈ Fk

r and (q, r) ∈ Fk
r ,

we conceive a new SRMP, referred to as the augmented SRMP, which is an extension of
current SRMP with the new linking constraints and their slack and surplus variables; xk

(r,q)

and xk
(q,r), respectively. Then, the optimal basis of the SRMP, denoted by B, is expanded

with new columns to construct the optimal basis for the augmented SRMP, denoted by Br.
This is called basis augmentation, of which the most crucial point is that the values of the
existing dual variables remain the same so that the reduced costs of the variables can be
calculated correctly. As the term thinking-ahead implies, we can correctly anticipate the
optimal values of the dual variables of the new linking constraints without actually forming
and solving to optimality the augmented SRMP. In our analysis, we formally show that the
basis augmentation prescribed by the thinking-ahead approach not only preserves B and the
values of the existing dual variables but also ensures that the reduced costs of the variables
in the SRMP do not change.

At first sight, it may seem that the construction of the augmented basis after the addition
of the set of linking constraints can be easily handled using standard sensitivity analysis.
This could be achieved by adding the slack/surplus variables provided that primal feasibility
is not impaired. However, in our case, for a recovery solution, say (r, q) ∈ Fk

r , the associated
variable xk

(r,q), whose reduced cost is affected by the dual variables associated with these new
constraints, is also considered in the augmented SRMP. The dual constraint associated with
xk
(r,q), which is given by

γ1
(r,q),k + γ2

(r,q),k + γ3
(r,q),k − zk ≥ 0, (27)

is violated, if zk > 0 and the slack/surplus variables associated with the linking constraints
are selected as basic, which renders γ1

(r,q),k = γ2
(r,q),k = γ3

(r,q),k = 0. When xk
(r,q) with a

negative reduced cost enters the basis, the iteration is degenerate due to the associated linking
constraints which force xk

(r,q) to be zero unless yr and yq are in the basis.

Taking into account the above considerations, we define the conditions that the dual
variables associated with each (r, q) ∈ Fk

r –which are also valid for (q, r) ∈ Fk
r – should satisfy:

1. The inequalities γ1
(r,q),k ≥ 0, γ2

(r,q),k ≥ 0 and γ3
(r,q),k ≤ 0 must hold.
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2. The inequality (27), which ensures the feasibility of the dual constraint associated with
xk
(r,q), is satisfied.

3. To warm-start the augmented SRMP in the next iteration, three new variables among
xk
(r,q) and slack/surplus variables associated with the linking constraints must be selected

in the augmentation of B. By complementary slackness, this condition amounts to
selecting values of γ in such a way that three dual constraints among those given in 1
and 2 become tight.

4. The values of the new dual variables must not affect the reduced costs of yq, q ∈ R̄,
especially the ones in the basis. Otherwise, the values of existing dual variables change,
and the reduced cost calculation of r cannot be done correctly.

Note that no condition is imposed on yq, q ∈ Σr\R̄ whose reduced costs are considered sep-
arately in part of the route-pair generating PSP. Hence, in pricing yr, we do not let the new
dual variables affect the reduced costs of these variables. The optimality of the augmented
basis can be argued by the primal feasibility, which is satisfied since the set of linking con-
straints induced by Fk

r is redundant when pricing r ∈ R\R̄, the dual feasibility (by conditions
1, 2 and 4 which enforce that the reduced costs of the variables in the augmented SRMP be
nonnegative), and the complementary slackness (by 3 which adds three basic variables to B

for each (r, q) ∈ Fk
r and 4 which preserves the current basis B). Condition 4 can be satisfied

only if the dual values of the new linking constraints in which the existing y−variables reside
are set to zero; i.e., γ2

(r,q),k = 0 and γ3
(r,q),k = 0, and for (q, r), pairs γ1

(q,r),k = 0 and γ3
(q,r),k = 0.

By complementary slackness, these two equalities prescribe the surplus and slack variables as
basic for (19) and (20), respectively. The third basic variable required for condition 3 must be
determined for (18), in which the only y−variable is yr, and either the surplus variable asso-
ciated with this constraint or xk

(r,q) can be selected. The above conditions translate formally
into the following definition of the route-pair generating PSP:

ζyx = min
r∈(R\R̄)







cr −
∑

t∈T

atrut −
∑

d∈D

brdvd − max
k∈K,Fk⊂Pk





∑

(r,q)∈Fk
r

α(r,q) +
∑

(q,r)∈Fk

α(q,r)











, where

(28)

α(r,q) =maximize γ1
(r,q),k + γ3

(r,q),k, (29a)

subject to − γ1
(r,q),k − γ2

(r,q),k − γ3
(r,q),k ≤ −zk,

(29b)

γ2
(r,q),k = γ3

(r,q),k = 0, (29c)

γ1
(r,q),k ≥ 0, (29d)

At least one of (29b) or (29d) is tight, (29e)

α(q,r) =maximize γ2
(q,r),k + γ3

(q,r),k, (29f)

subject to − γ1
(q,r),k − γ2

(q,r),k − γ3
(q,r),k ≤ −zk, (29g)

γ1
(q,r),k = γ3

(q,r),k = 0, (29h)
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γ2
(q,r),k ≥ 0, (29i)

At least one of (29g) or (29i) is tight. (29j)

In the above two-level problem, the lower-level problems (29a)-(29e) and (29f)-(29j) determine
the values of the dual variables associated with the new linking constraints induced by (r, q) ∈
Fk

r and (q, r) ∈ Fk
r , respectively. The constraints imposed in these problems stem from the

previously defined conditions entailing the optimality of the augmented basis Br. The upper-
level problem (28) finds the route with the minimum reduced cost together with recovery
solutions set Fk

r . The solution of (29a)-(29e) and (29f)-(29j) can be easily obtained by setting
γ1
(r,q),k = γ2

(q,r),k = zk. When zk > 0, xk
(r,q) and xk

(q,r) are selected as basic for the constraints

(18) and (19), respectively. The surplus variables are added to form Br when zk = 0. After
incorporating the solution of the lower-problems, the route-pair generating PSP becomes

ζyx = min
r∈R\R̄







cr −
∑

t∈T

atrut −
∑

d∈D

brdvd − max
k∈K,Fk

r ⊂Pk







∑

(r,q)∈Fk
r

zk +
∑

(q,r)∈Fk
r

zk













= min
r∈R\R̄

{

cr −
∑

t∈T

atrut −
∑

d∈D

brdvd − max
k∈K,Fk

r ⊂Pk

{

|Fk
r |zk

}

}

. (30)

When zk = 0, there is no need to solve this PSP since we have confirmed by individual route
generating PSP that no route can have negative reduced cost without the dual values of the
new linking constraints. The formal proof showing the optimality of Br for the augmented
SRMP together with the optimality of the simultaneous column-and-row generation algorithm
can be found in Muter et al. (2013a) for general problems with column-dependent-rows. We
show through Lemma 4.1 that augmenting B to Br does not change the values of the existing
dual variables, and the dual values of the newly generated constraints induced by Fk

r are as
anticipated by the thinking-ahead approach applied through the constraints in (29). Using
these dual values induced by Br as calculated in the proof of Lemma 4.1, we calculate the
reduced cost of yr correctly as defined in (30). We give the proof of the next lemma in the
appendix for completeness.

Lemma 4.1 For the SRMP augmented with a set of linking constraints and x−variables as-
sociated with Fk

r , Br found by the thinking-ahead approach is optimal.

Proof. See Appendix A.
�

It can be inferred from the definition of the route-pair generating PSP given in (30) that
when zk > 0 for some k ∈ K, the family Fk

r contains all possible route pairs {(r, q), (q, r) ∈
P (k)} since each of them decreases c̄r by zk. Solving (30) boils down to enumerating all
possible recovery solutions involving r, even the ones that may never enter the basis. In the
following theorem, we demonstrate that after the variable yr with negative reduced cost enters
the basis, it only causes a degenerate iteration without changing the values of the existing
dual variables, if y−variables which yr pairs up with in the new recovery solutions do not enter
the basis in the consecutive iterations. Hence, solving (30) using solely the thinking-ahead
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approach may retard the termination of the algorithm by adding many variables together
without changing the solution. The theorem given below proposes a stronger termination
condition than that found by the thinking-ahead approach. We redefine Fk

r so that it contains
only those variables for which the reduced costs are negative after the dual value of the linking
constraint is subtracted. That is, Fk

r = {(r, q), (q, r) ∈ P (k)\P̄ (k) | c̄q − zk < 0}.

Theorem 4.1 Given an optimal basis Br, a set of optimal dual values (u, v, z, γ), in which
missing values in γ are obtained as prescribed by (29b)-(29e) ((29g)-(29j)), and reduced cost
of variables c̄r, r ∈ R, the proposed algorithm terminates with an optimal solution for the LP
relaxation of (RMDVSP) when

minr∈(R\R̄){c̄r +
∑

q∈Sk
r
c̄q− | Fk

r | zk} ≥ 0.

where Sk
r = {q ∈ R|(r, q), (q, r) ∈ Fk

r }.

Proof. See Appendix B.
�

4.4. Generation of the Recovery Solutions

In this section, we present our graph search algorithm that is designed to generate recovery
solutions. At this point, we formally describe the characteristics of the route pairs as follows:

Definition 4.1 A pair of routes (r, q) is a recovery solution, that is (r, q) ∈ P (k), k ∈ K, if
it satisfies the following conditions:

(i) r and q belong to the same depot to ensure that after swapping r and q, these routes still
end at their base depot.

(ii) r and q are disjoint, that is, no trip can be visited by both of these routes.

(iii) r and q satisfy the swappability conditions given in Section 3.

In generating the recovery solutions, we first label nodes in G that forge swappability for the
routes visiting them. Then, the routes that visit these labeled nodes are constructed, and an
optimization problem is solved to identify Fk

r that results in a minimum reduced cost variable
yr. This approach boils down to implicit enumeration of a subset of routes that exists in
recovery solution set and solving an integer program. Clearly, such an approach could be
computationally very demanding especially for large problems. Therefore, we instead employ
a heuristic method to simultaneously generate a single route pair with the smallest total
reduced cost.

For some extra trip k, if it is possible to add an arc from trip t ∈ T to k, et + δtk ≤ sk,
this trip and its successors are labeled as tkp1 and tkp2 , respectively. This indicates that these
trips can be a part of primary routes in possible recovery solutions. If the type of disruption
is delay, the delayed trip itself and its successor are labeled as tkp1 and tkp2 , respectively. If
it is possible to add an arc from k, which can be either extra or delayed trip, to trip t ∈ T

(ek + δkt ≤ st), then this trip and its predecessors are labeled as tks2 and tks1 , respectively. This
shows that these trips can be a part of secondary routes in possible recovery solutions. Since
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(a) Extra trip (b) Delayed trip

Figure 4: Search algorithm for swapping solution of disruptions

there is a time-window on the operation of the extra trips, we consider the late start time
and the early finish time of extra trips in the above calculations. If there is an arc from tks1 to
tkp2 , then these four nodes, constituting a quadruple (tkp1 , t

k
p2
, tks1 , t

k
s2
), can be connected to the

source and sink depot nodes through partial paths to form recovery solutions (r, q) ∈ P (k) for
extra trip k. Arcs (tkp1 , t

k
p2
) and (tks1 , t

k
s2
) are referred to as the primary and secondary parts

of quadruple (tkp1 , t
k
p2
, tks1 , t

k
s2
). If the disruption is realized at the time of operation, then tkp1

covers the delayed trip or the extra trip k and connects to tks2 while tks1 continues with tkp2 .
Moreover, Qk denotes the set of all quadruples for k ∈ K. Therefore, the last condition in
Definition 4.1 can be updated by stating that r and q, which form a recovery solution for
k ∈ K, contain the primary and the secondary parts of a quadruple in Qk.

In Figures 4(a) and 4(b), we demonstrate the labeling technique to identify the quadruples
that are potentially part of the recovery solutions for disruptions caused by extra trip and
delayed trip, respectively. In Figure 4(a), trips 3 and 6 are labeled as tkp1 and tks2 , respectively.
Likewise, trips 4 and 5 are labeled as tkp2 , and trips 1 and 2 correspond to tks1 . Then, we
should check whether there is an arc from 1 to 4, 1 to 5, 2 to 4 and 2 to 5. If so, then this
enables swapping possible route pairs for the recovery of k. The existing arcs (2, 5) and (1, 4)
render that {(3, 5, 2, 6), (3, 4, 1, 6)} ∈ Qk. That is, a route pair of the form (r, q), in which
primary route r involves arcs (3, 5) and (3, 4), and secondary route q traverses (2, 6) and (1, 6),
constitutes a candidate recovery solution for the extra trip k. In Figure 4(b), the labeling for
a delayed trip is illustrated. Trip 3 is labeled as tkp1 and connected to trips 4, 5 and 6. Delayed
trip 3 can be connected to trip 6 with label tks2 whose predecessors 1 and 2 have the label tks1 .
As for the extra trip case, (3, 5, 2, 6) and (3, 4, 1, 6) are the quadruples.

The enumeration of Qk, k ∈ K is executed only once at the beginning of the overall
algorithm. When the individual route generating PSP terminates, the routes generated during
the consecutive calls to this PSP are examined for possible formation of recovery solutions
before we move to the route-pair generating PSP. This is accomplished for each k ∈ K by
checking whether a given pair of routes covers the primary and secondary parts of any o ∈ Qk.

In order to terminate the route-pair generating PSP with the condition stated in Theorem
4.1, an enumeration-based algorithm is needed to construct the set of route pairs conforming
to the conditions on the recovery solutions given in Definition 4.1. Let Ro be the set of
all routes that contain either the primary part (tkp1 , t

k
p2
) or the secondary part (tks1 , t

k
s2
) of
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o = (tkp1 , t
k
p2
, tks1 , t

k
s2
) ∈ Qk and RQk =

⋃

o∈Qk R
o. While some route in RQk covers the primary

part of one quadruple, it can contain the secondary part of another quadruple, which is
possible for only extra trips since a delayed trip always corresponds to tkp1 . According to
Theorem 4.1, we aim to find route r ∈ RQk that has negative reduced cost when added to
the SRMP with recovery solutions {(r, q), (q, r) ∈ Fk

r : c̄q − zk < 0}. Hence, any route q ∈ R

that satisfies c̄q − zk ≥ 0 can be discarded from RQk . The routes in RQk are enumerated
on G using a depth-first search algorithm. Whenever a partial path covers one of (tkp1 , t

k
p2
)

or (tks1 , t
k
s2
) for (tkp1 , t

k
p2
, tks1 , t

k
s2
) ∈ Qk during the course of the algorithm, it is flagged as a

prospective member of RQk . On the other hand, an unflagged partial path reaching a node
that is topologically later than the latest start times of tkp1 or tks1 for all (tkp1 , t

k
p2
, tks1 , t

k
s2
) ∈ Qk

can be discarded since it cannot be a member of RQk . The search algorithm can be enhanced
through a bounding method that eliminates partial routes which can never satisfy c̄q − zk < 0
at the final depot node when completed. To that end, we find the shortest path from the
sink nodes to the source nodes associated with all depots d ∈ D using only the reverse arcs
in A (the reverse graph is explained later in this section). Let the reduced cost of the partial
path in the enumeration tree from source node dm to t and the value of the shortest path
from corresponding sink node dn to t on the reversed graph be denoted by c̄dm,t and ĉdn,t,
respectively. Thus, if c̄dm,t+ ĉdn,t− vdm − zk ≥ 0, the partial path is discarded from the search
algorithm.

Given the set of routes RQk , the route-pair generating PSP is a subset selection problem
that determines the minimum reduced cost route r together with Fk

r . This problem can be
formulated as an integer programming problem in which binary variable θq indicates that
route q ∈ RQk takes part in one of the recovery solutions in Fk

r and λr = 1 if and only if r is
the route whose reduced cost is to be minimized with incorporation of Fk

r . The constraints
of the model given below are based on the conditions that are defined in Definition 4.1. The
mathematical model is as follows

minimize
∑

r∈RQk

c̄rθr − zk





∑

r∈RQk

θr − 1



 , (31)

subject to
∑

r∈RQk

λr = 1, (32)

λr ≤ θr, r ∈ RQk

(33)
∑

q∈RQk

atq(θq − λq) ≤ M(1−
∑

r∈RQk

atrλr), t ∈ T, (34)

∑

o∈Qk

∑

r∈RQk
:β1

or=β2
oq=1∨β2

or=β1
oq=1

λr ≥ (θq − λq), q ∈ RQk

, (35)

M
∑

r∈RQk

brdλr ≥
∑

q∈RQk

bqd(θq − λq), d ∈ D, (36)

θr, λr ∈ {0, 1}, r ∈ RQk

, (37)
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where binary parameters β1
qo and β2

qo are 1 if and only if route q ∈ RQk

covers the primary
and the secondary parts of quadruple o ∈ Qk, respectively. Through constraints (32) and
(33), only one route r ∈ RQk is selected for reduced cost minimization, and it must exist in
recovery solutions by fixing θr = 1. Constraints (34) ensure that route r, for which λr = 1, is
disjoint from the other selected routes. Constraints (35) enforce that if route q with λq = 0
does not form a recovery solution with route r with λr = 1 for any one of the quadruples
o ∈ Qk, then route q cannot be selected. The depot compatibility of r and the other selected
routes are satisfied through (36). The objective is to minimize the total reduced cost of the
selected routes subtracted by the dual value of all recovery solutions.

There are two major difficulties in (31)-(37). First, the enumeration of RQk requires
a depth-first search algorithm for all k ∈ K, which can be cumbersome. Moreover, the
cardinality of RQk may be very large, which then results in a large-scale integer program that
should be solved for each k ∈ K. Due to these complications that may lead to impractical
solution times, we employ a heuristic methodology that compromises optimality for efficiency.
Instead of generating all possible routes RQk and solving (31)-(37), we only generate two
routes with minimum reduced cost; one covering (tkp1 , t

k
p2
) and the other covering (tks1 , t

k
s2
), for

each (tkp1 , t
k
p2
, tks1 , t

k
s2
) ∈ Qk, k ∈ K. Therefore, two routes (r, q) forming a recovery solution for

k ∈ K are selected from Ro for each o ∈ Qk, and the route-pair generating PSP becomes

ζyx = min
(r,q)∈Ro,o∈Qk,k∈K

{c̄r + c̄q − zk} . (38)

When ζyx < 0, variables yr, yq and xk
(r,q) and the associated linking constraints are added to

the SRMP. Then, the algorithm continues. If ζyx ≥ 0, then the algorithm terminates.

Generating the minimum reduced cost routes, each covering one of the two arcs associated
with a quadruple, can be achieved by solving a shortest path problem. The proposed method-
ology is illustrated in Figures 5(a) and 5(b). Let (3, 5, 2, 6) ∈ Qk be one of the quadruples for

(a) Original Graph (b) Reversed Graph

Figure 5: Reduced cost calculation for route-pair pricing subproblem

extra trip k. To generate a recovery solution associated with this quadruple, two routes are
generated, one including trips 3 and 5, and the other containing trips 2 and 6. As mentioned
previously, these routes must belong to the same depot to ensure compatibility of them. The
minimum reduced cost primary route starting from a source depot, say d1, covering a set of
trips and arcs, including (3, 5), and ending at the sink node d|D|+1 can be achieved by finding
two shortest paths, one from d1 to node 3 and the other from 5 to d|D|+1. For the secondary
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route, the minimum reduced cost path is obtained by finding two shortest paths, one from d1
to node 2 and the other from 6 to d|D|+1. The shortest paths from d1 to nodes 3 and 2 are
already available from the last iteration of the individual route generating PSP, in which the
algorithm for the shortest path from d1 to d|D|+1 also provides the shortest paths to each node
t ∈ T . To calculate the shortest paths from nodes 5 and 6 to sink node d|D|+1 we should solve
two shortest path problems from each of these nodes to d|D|+1. However, when the number
of quadruples in Qk is large, solving many shortest path problems inflicts a computational
burden on the solution of the PSP. Instead, we find the shortest path from d|D|+1 to each t ∈ T

in the reversed graph by solving only one shortest path problem from d|D|+1 to d1. Figure
5(a) shows the shortest paths to nodes 2 and 3 with the reduced costs on the original graph.
In Figure 5(b), the reversed graph is illustrated with the reversed arcs. This graph is used to
find the shortest paths from the sink node to nodes 5 and 6. The reduced cost of the route r

that contains trips 3 and 5 and the reduced cost of route q that contains trips 2 and 6 are

c̄r = c̄d1,3 + ĉd|D|+1,5 + c3,5 − u3 − vd1 ,

c̄q = c̄d1,2 + ĉd|D|+1,6 + c2,6 − u2 − vd1 .

We show in the next section that this heuristic method reaches the optimal solution in most
of the small instances and solves instances with as many as 500 trips efficiently.

5. Computational Experiments

In this section, we present the setting of the computational experiments and report the
results obtained by solving a set of randomly generated instances using our proposed simulta-
neous column-and-row generation algorithm. We conduct our computational experiments on
a machine with a 2.66 GHz Intel(R) Core(TM)2 Quad CPU and 8 GB of RAM. The algorithm
is implemented in Visual C++, and the SRMPs formed at each iteration of our algorithm
are solved by ILOG CPLEX 12.1 using ILOG Concert Technology 2.9. Since our proposed
algorithm solves the LP relaxation of (RMDVSP), in order to obtain an integer solution,
we solve the final SRMP with the mixed integer programming (MIP) solver of ILOG CPLEX
12.1 which is also employed to find the optimal solution of (RMDVSP) when enumeration
is possible. We impose a one-hour time limit in the solution of each instance.

To test the computational efficiency of the proposed simultaneous column-and-row gen-
eration algorithm, we randomly generate a set of timetabled trips and depots along with
disruptions. We select 33 cities in Turkey as the set of locations and utilize up to five of them
as depot locations. Similar to the random data generator utilized by Carpaneto et al. (1989),
we determine the arrival and departure locations of each trip by sampling from uniform dis-
tribution. To generate the departure times of the trips, we discretize the time horizon into 30
minutes intervals and randomly select the intervals.

For the generation of the extra trips, we first select the possible departure and arrival
locations of extra trips, and then we form these trips similar to the timetabled trips. For
the generation of the delayed trips, we choose the possible delayed trips randomly from the
set of timetabled trips. The length of the delay is also uniformly distributed between 60 and

180 minutes. We determine the fleet size at each depot randomly between
[

|T |
3|D|

,
|T |
2|D|

]

. In the
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experiments, we test the algorithms on instances with different values for |T | ∈ {100, 300, 500}.
Moreover, the number of depots |D| is selected from the set {1, 3, 5}.

The performance of our proposed heuristic is compared against an optimal approach for
(RMDVSP). To that end, we enumerate all feasible routes and identify all recovery so-
lutions for each disruption. Since the size of the route set and the recovery solution set are
prohibitively large, the enumeration is possible only for problems with a limited size. In Figure
6, the results of the tests conducted to assess the performance of the proposed methodology are
given. A set of instances with 100 trips and varying number of depots and disruptions is solved
by our proposed heuristic simultaneous column-and-row generation algorithm (SCRG) and an
enumeration-based approach (Enumeration) that finds the optimal solution of (RMDVSP).
In Figure 6(a), the total computation time of SCRG combined with the solution time of the
MIP solver – when the solution is fractional – and the computation time for Enumeration are
compared. As the number of disruptions and depots increases, the total number of routes
and the total number of recovery solutions increase dramatically. For instance, in the case of
5 disruptions and 5 depots, 118,995 recovery solutions are available. According to the math-
ematical model, each recovery solution induces three linking constraints, so that the total
number of rows is larger than 350,000, which causes Enumeration to bear a huge burden in
solving (RMDVSP). It is evident from this figure that Enumeration is faster than SCRG
in solving the small instances, however, for large instances, using SCRG is inevitable. For
5 disruptions and 5 depots, SCRG is much faster than Enumeration. We also evaluate the
performance of our proposed method in terms of the solution quality by calculating the gap
between the value obtained by our methodology and the value of the optimal integral solution,
known as the optimality gap, in Figure 6(b). In many instances, we observe that SCRG itself
or the subsequent MIP solution result in an objective value coinciding with the value of the
optimal integer solution of (RMDVSP) obtained by Enumeration. This finding is one way
of justifying the usefulness of the heuristic approach explained in Section 4.4. We note that
the average optimality gap using the proposed SRCG is only 1.3% for these 9 instances.
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Figure 6: Comparison of SCRG and Enumeration
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In Figure 7, the results of large instances that are obtained by the application of SCRG
are given for extra trips and delayed trips. Figure 7(a) shows the percentage gap between the
objective function value reached by SCRG and the value obtained by solving the final SRMP
with the MIP solver. Solving the final SRMP by the MIP solver leads, on average, to a gap
of 0.4 % for delayed trips and to a gap of 0.5 % for extra trips. While this tight gap does
not provide any evidence on the quality of these integer solutions, it justifies the use of the
MIP solver instead of integrating SCRG within a branch-and-bound framework which would
increase the solution time drastically. The computation times to find the integer solution,
which includes the solution time of both SCRG and MIP solver, are reported in Figure 7(b).
The results of tests with both delayed and extra trips convey that the solution time of the
MIP solver is negligible, namely smaller than a second on the average. There is a discernible
increase in the solution time as the number of disruptions increases. In the tests with larger
number of disruptions, the algorithm terminates due to time limit for the instances with 500
trips.

To investigate the effect of the number of disruptions in the total cost of the planned
schedule, we add up to 20 disruptions to a medium size problem (300 trips, 3 depots) and
obtain the solution with SCRG combined with the MIP solver. To that end, we find the
objective function value of each instance without disruptions as the basis for comparison and
calculate the percentage increase in the objective function value when extra trips and delayed
trips are incorporated. These results are illustrated in Figure 8(a). Even though these values
are not obtained by an exact approach, they still provide an insight about the behavior of the
robust model proposed in this paper when the number of disruptions increases. Analyzing
the results in terms of the types of disruptions, we observe that the average increase in the
total cost is slightly larger when extra trips are handled. The largest increase in the total
cost is observed in the case of 20 extra trips and delayed trips with approximately 7.6%
and 6.5%, respectively. However, we re-emphasize that if the proposed solution method is
not used, it would be not only difficult but also more costly for the planner to handle these
disruptions with the solution of the conventional MDVSP. Moreover, in Figure 8(b), the total
computation times including the MIP solver times are reported for extra trips and delayed
trips. According to these results, there is an upward trend in the computation time as the
number of disruptions increases.
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6. Conclusions

In this paper, we have studied disruptions to the planned vehicle schedules, and presented
a unique recovery method based on partially swapping two planned routes. The linear pro-
gramming relaxation of the proposed mathematical model has been solved by a simultaneous
column-and-row generation algorithm. The unique feature of this algorithm is that a set of
variables forming recovery solutions is generated simultaneously in a novel pricing subprob-
lem. We have accelerated this algorithm by limiting this pricing subproblem to generate a
single pair of variables with the smallest total reduced cost. Our computational experiments
convey that the resulting heuristic method is capable of yielding small optimality gaps and
more importantly, present recovery solutions that can be operated when the disruptions are
realized.
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Appendix A. Proof of Lemma 4.1

We first explain the structure of B and the augmented basis Br, and then show in the
proof that with the proposed basis augmentation, the values of the existing dual variables
do not change and the values of the new dual variables are anticipated correctly. While we
denote the values of the dual variables associated with B (existing dual variables) and those
associated with Br by w and waug, respectively, the reduced cost of variable yr calculated by
using waug is denoted by c̄augr . Finally, Ar and Aaugr denote the columns of variable yr in
the rows of the SRMP and the augmented SRMP, respectively.

We define the optimal basis of the SRMP as B =
(

A1 0 E1

0 B1 E2

C1 D1 E3

)

. Here, the matrix
(

A1

0

C1

)

shows the columns of y−variables in the basis and the matrix (A1 0 E1 ) represents the set of

constraints (15) and (16). The matrix
(

0

B1

D1

)

includes the columns of x variables. The matrix

( 0 B1 E2 ) is associated with constraints (17), the matrix
(

E1

E2

E3

)

corresponds to the columns

of the basic surplus and slack variables, and the matrix (C1 D1 E3 ) represents the existing
linking constraints. The augmented basis for recovery solution (r, q) ∈ Fk

r can be constructed
as

Br =

















A1 0 E1 0 0 0

0 B1 E2 B2 0 0

C1 D1 E3 0 0 0

0 0 0 −1 0 0
C2 0 0 −1 −1 0
C3 0 0 −1 0 1

















=









B F 0 0

0 −1 0 0
G −1 −1 0
H −1 0 1









(A.1)

where F =
(

0

B2

0

)

, G = (C2 0 0 ) and H = (C3 0 0 ). The fourth column contains the coefficient

of xrq, and the fifth and the sixth columns represent the surplus and the slack variables
associated with constraints (19) and (20), respectively. If yq is already part of the basis, C2

and C3 are zero vectors containing a single 1, and they are 0, otherwise. According to the
basis augmentation designed in (29a)-(29e), the dual variables associated with the rows in
which an existing variable reside are set to 0 through selecting the corresponding surplus and
slack variables as basic. Assuming zk > 0, xk

(r,q) is chosen as basic for constraint (18) which

is the fourth row in Br, where only yr resides. Instead of only one route pair (r, q), we can
construct Br for all {(r, q), (q, r) ∈ Fk

r } by combining new linking constraints in three groups
as those for which x−variables, surplus and slack variables are basic.

Br =









B F 0 0

0 −I 0 0

G −I −I 0

H −I 0 I









(A.2)

The fourth set of rows involves constraints for which x−variables are selected as basic, and the
fifth and sixth sets of rows correspond to constraints for which surplus and slack variables are
basic, respectively. Lemma 4.1 shows that the augmented basis is optimal for the augmented
SRMP. Here is the proof of this lemma.
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Proof. To prove the optimality of the augmented basis Br, we need to show that the
primal and dual feasibility and complementary slackness are satisfied. The primal feasibility is
satisfied because all linking constraints and x−variables associated with the existing recovery
solutions have already been added to the SRMP before the route-pair generating PSP is called,
and the new linking constraints of type (18)-(20) induced by Fk

r are redundant before yr is
added to the SRMP.

To prove the dual feasibility and complementary slackness, we first present the inverse of

Br. Let J =

(

B F

0 −I

)

. The inverse is J−1 =

(

B−1 B−1F

0 −I

)

. Letting M =

(

G −I

H 0

)

and

K =

(

−I 0

0 I

)

, Br andB−1
r can be written asBr =

(

J 0

M K

)

andBr
−1 =

(

J−1 0

−K−1MJ−1 K−1

)

,

respectively. Thus,

B−1
r =









B−1 B−1F 0 0

0 −I 0 0

GB−1 GB−1F+ I −I 0

−HB−1 −HB−1F− I 0 I









. (A.3)

Let the objective function values of the variables in the augmented basis be cBaug =
(

cB 0 0 0
)

where cB is comprised of the objective function coefficients of the basic vari-
ables whose columns form B, and the next three entries are the objective function coefficients
of x, surplus and slack variables, respectively. The values of the dual variables induced by Br

become

wr
aug =

(

cB 0 0 0
)









B−1 B−1F 0 0

0 −I 0 0

GB−1 GB−1F+ I −I 0

−HB−1 −HB−1F− I 0 I









=
(

cBB
−1 cBB

−1F 0 0
)

,

(A.4)
where F now stands for the coefficients of the new x−variables induced by Fk

r in the current
SRMP. Note that each column of F has a single nonzero entry with value one which is located
at the kth row of (17) so that cBB

−1F = wF = zk. Thus, wr
aug =

(

w zk 0 0
)

, in
which the values of the dual variables induced by B do not change, and the values of the dual
variables associated with the new linking constraints, denoted by vector zk with size 1x|Fk

r |,
are equal to those designated by the route-pair generating PSP.

Since existing x−variables do not appear in the new linking constraints, their reduced
cost remains non-negative. Non-negativity of the reduced costs of the new x−variables and
slack/surplus variables associated with the new linking constraints induced by Fk

r are imposed
through the constraints in (29). The reduced cost of q ∈ R̄ incorporating the dual values of
the new constraints associated with (r, q) ∈ P (k)\P̄ (k) is calculated as

c̄augq = cq −waugAaugq = cq −
(

w zk 0 0
) (

Aq 0 1 1
)T

= c̄q. (A.5)

which also holds for (q, r) ∈ P (k)\P̄ (k). Hence, the values of the dual variables induced by
Br satisfy dual feasibility. This concludes the proof. �
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Appendix B. Proof of Theorem 4.1

We only consider the case zk > 0 for a given k ∈ K since otherwise Fk
r would be an empty

set. For ease of illustration, we take two route pairs, (r, q) and (r, l), in Fk
r , i.e. Sk

r = {q, l}.
However, the result can simply be extended to larger sets in which r is the secondary route
in some of the route pairs. In that case, our proof follows with the same steps but with larger
matrices.

Proof. To cover possible cases, let us assume that yq is not part of the basis and yl is
part of the basis. The termination condition then becomes

c̄r + c̄q + c̄l − 2zk ≥ 0, (B.1)

where c̄r, c̄q ≥ 0 and c̄l = 0. We show that if the above condition is satisfied for a given Fk
r ,

only degenerate iterations can be performed without changing the values of the existing dual
variables.

According to the basis augmentation defined previously, for both route pairs, (r,m) ∈

Fk
r , we can augment the basis as {xk

(r,m), s
[2]
rm, s

[3]
rm} where s.rm is the slack/surplus variable

associated with the second or the third row of the linking constraint set. The augmented
basis can be written as

Br =



















B F 0 0 F 0 0

0 −1 0 0 0 0 0
0 −1 −1 0 0 0 0
0 −1 0 1 0 0 0
0 0 0 0 −1 0 0
G 0 0 0 −1 −1 0
H 0 0 0 −1 0 1



















, (B.2)

where the second, third and fourth columns are associated with xk
(r,q), s

[2]
rq and s

[3]
rq , respectively.

The rows with the same order correspond to the linking constraints associated with (r, q).
The rest of the columns and rows are associated with (r, l). In order to facilitate the inverse

operations, we multiply the last row by -1 and define D1 = ( −1
1 ), D2 =

(

−1 0 0
−1 −1 0
−1 0 1

)

, M =
(

G

−H

)

and X1 = ( F 0 0 ). Hence, the augmented basis and its inverse become

Br =







B X1 F 0

0 D2 0 0

0 0 −1 0

M 0 D1 −I






(B.3)

and

B−1
r =







B
−1 −B

−1
X1D2

−1
B

−1
F 0

0 D2
−1

0 0

0 0 −1 0

MB
−1 −MB

−1
X1D2

−1
MB

−1
F−D1 −I






, (B.4)

respectively. The values of the dual variables induced by the augmented basis given above are
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calculated as

waug =
(

cB 0 0 0
)

Br
−1

=
(

cBB
−1 −cBB

−1X1D2
−1 cBB

−1F 0
)

=
(

cBB
−1

(

zk 0 0
)

zk 0
)

.

According to the thinking-ahead approach, only the reduced cost of variable yr is affected by
the newly added linking constraints, which is shown in the proof of Lemma 4.1 in Appendix
A. The reduced cost of yr

c̄augr = cr −waug

(

Ar 1 0 1 1 0 1
)T

= c̄r − 2zk

is negative given that (B.1) is not satisfied and c̄q, c̄l ≥ 0. Hence, yr is the only candidate to

enter the basis. Next, we show that s
[2]
rq , which corresponds to the third column in Br, can be

selected as the leaving variable after the minimum ratio test. To that end, we calculate the
third entries of Āraug = Br

−1Araug and b̄aug = B−1
r baug, which are denoted by Ā

[3]
raug and b̄

[3]
aug,

respectively. That is

Āraug = Br
−1Araug = Br

−1
(

Ar 1 0 1 1 0 1
)T

Ā
[3]
raug =

(

0 1 −1 0 0 0
) (

Ar 1 0 1 1 0 1
)T

= 1

and

b̄aug = Br
−1baug = Br

−1
(

b 0 0 1 0 0 −1
)T

b̄
[3]
aug =

(

0 1 −1 0 0 0 0
) (

b 0 0 1 0 0 −1
)

= 0.

Consequently, yr enters the basis and s
[2]
rq leaves the basis in a degenerate iteration. The

augmented basis Br is updated as

Br =



















B F Ar 0 F 0 0

0 −1 1 0 0 0 0
0 −1 0 0 0 0 0
0 −1 1 1 0 0 0
0 0 1 0 −1 0 0
G 0 0 0 −1 −1 0
−H 0 −1 0 +1 0 −1



















=







B X2 F 0

0 D3 0 0

0 D4 −1 0

M D5 D1 −I






, (B.5)

where D3 =
(

−1 1 0
−1 0 0
−1 1 1

)

, D4 = ( 0 1 0 ), D5 = ( 0 0 0
0 −1 0 ) and X2 = ( F Ar 0 ). The inverse of the

basis is given by

B−1
r =









B
−1 −B

−1
X2D3

−1 −B
−1

FD4D3
−1

B
−1

F 0

0 D3
−1

0 0

0 D4D3
−1 −1 0

MB
−1 −MB−1X2D3

−1−MB−1FD4D3
−1

+D5D3
−1+D1D4D3

−1 MB
−1

F−D1 −I









. (B.6)
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Thus, the values of the dual variables become

waug =
(

cB cX2
0 0

)

Br
−1

=
(

cBB
−1 −cBB

−1
X2D3

−1 − cBB
−1

FD4D3
−1 + cX2

D3
−1

cBB
−1

F 0
)

=
(

cBB
−1 (−cBB−1Ar, cBB−1F+cBB−1Ar, 0 )− ( zk, −zk, 0 ) + ( cr, −cr, 0 ) zk 0

)

=
(

cBB
−1 ( c̄r−zk, 2zk−c̄r, 0 ) zk 0

)

,

where cX2
= ( 0 cr 0 ). Neither the values of w nor the reduced costs of the variables other

than yq change as

c̄augq = cq −waug

(

Aq 0 1 1 0 0 0
)T

= c̄q + c̄r − 2zk.

If (B.1) is not satisfied; i.e., c̄l+ c̄q+ c̄r−2zk = c̄augq < 0, then yq enters the basis and changes
the values of the existing dual variables as well as, possibly, the solution. Otherwise, yq and
no other variable can enter the basis so that the algorithm can be terminated.

Observe that each recovery solution in Fk
r decreases the reduced cost of yr by c̄q − zk,

q ∈ Sk
r . The row-generating PSP boils down to finding r ∈ R and Fk

r with the minimum
reduced cost. If variable q that pairs with r does not satisfy c̄q − zk < 0, then it cannot exist
in Fk

r since the reduced cost of yr would be smaller without yq belonging to Sk
r . With this

last observation, we conclude the proof. �
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