

Article

Poor Oral Health and its Neurological Consequences: Mechanisms of Porphyromonas gingivalis Involvement in Cognitive Dysfunction

Olsen, Ingar and Singhrao, Simarjit Kaur

Available at http://clok.uclan.ac.uk/27830/

Olsen, Ingar and Singhrao, Simarjit Kaur ORCID: 0000-0001-9573-5963 (2019) Poor Oral Health and its Neurological Consequences: Mechanisms of Porphyromonas gingivalis Involvement in Cognitive Dysfunction. Current Oral Health Reports .

It is advisable to refer to the publisher's version if you intend to cite from the work. http://dx.doi.org/10.1007/s40496-019-0212-8

For more information about UCLan's research in this area go to http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>.

For information about Research generally at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the <u>http://clok.uclan.ac.uk/policies/</u>

- 2 Curr Oral Health Rep.
- **3** Poor Oral Health and its Neurological Consequences:
- 4 Mechanisms of Porphyromonas gingivalis Involvement in

- **5** Cognitive Dysfunction
- 6

7 Ingar Olsen^{1*} • Sim K. Singhrao²

- 8 ¹Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- 9 ²Dementia and Neurodegenerative Diseases Research Group, Faculty of Clinical and
- 10 Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
- 11
- 12 Corresponding author: Prof. Ingar Olsen
- 13 <u>E-mail: ingar.olsen@odont.uio.no</u>
- 14 <u>Telephone:</u>
- 15 ORCID ID (IO) and
- 16 (SKS): orcid.org/0000-0001-9573-5963
- 17
- 18

19 Abstract

- 20 Purpose of review: There is an increasing body of evidence from epidemiology and
- 21 laboratory investigations on periodontal disease being a risk factor for dementia. In particular,
- 22 Porphyromonas gingivalis infections in animal models suggest causal associations with
- 23 Alzheimer's disease (AD). This review focusses on how *P. gingivalis* infections promote the
- 24 incidence of functional loss in AD.
- 25 Latest findings: The risk of the sporadic form of AD doubles when periodontitis persists for
- 26 ten or more years. AD differs from other forms of dementia in that the clinical signs together
- 27 with the presence of amyloid_beta $(A\beta)$ plaques and neurofibrillary tangles must be present at
- 28 autopsy. *P. gingivalis* oral infections in mice have demonstrated all of the characteristic
- 29 <u>pathological and clinical</u> features of AD <u>following infection upon their entry</u> to<u>f</u> the brain.

- **Summary:** Multiple factors (inflammation, Aβ oligomers, and bacterial factors) are likely to
- 31 disrupt neuronal communication channels (synapses) as a plausible explanation for the
- 32 functional loss.
- 33 Abstract: 150 words
- 34 Bulk of article: 3,640 words
- 35
- 36
- 37 Keywords Alzheimer's disease; Periodontitis; Interaction; P. gingivalis; Virulence factors
- 38

39 *Corresponding author: Ingar Olsen, Department of Oral Biology, Faculty of Dentistry,

- 40 University of Oslo, P.O.B. 1052 Blindern, 0316 Oslo, Norway. E-mail address:
- 41 ingar.olsen@odont.uio.no

42 Introduction

43 Longstanding periodontitis, formerly known as "chronic" periodontitis has an adverse effect on a number of complex human diseases associated with longstanding inflammation [1-3]. 44 Recent research has linked poor oral hygiene to other neurological conditions that manifest 45 with dementia. Currently they include the sporadic form of Alzheimer's disease (AD), and the 46 47 Lewy body Parkinson's disease (dementia) [4-6]. Amyloid-beta (AB) plaques are central to all forms of dementia, but are more important to AD pathology. A significant body of literature 48 49 considers the A β plaques of AD and the α -synuclein of Lewy bodies to be antimicrobial peptides that combat infections of the brain [7-10]. This concept may provide vital clues to 50 51 the occurrence of these neuropathological lesions. 52 53 Porphyromonas gingivalis 54 Porphyromonas gingivalis is found in the oral cavity (saliva) of all humans where it may or 55 may not cause oral pathology, but is able to tolerate low concentrations of oxygen (microaearophilic). In addition, recent research has implicated P. gingivalis as the keystone 56 57 pathogen of periodontitis, which is an inflammatory disease constituting complex dysbiotic 58 microbial community residing below the gumline, within "pockets". P. gingivalis appears to translocate from the saliva to the subgingival location using neutrophils as "Trojan horses" in 59 some individuals because clinical observations suggest that not everyone progresses to 60 manifesting periodontal disease. 61 62 The mouth harbours a microbiome, which essentially is a reservoir of health 63 promoting microbes until their balance changes to more pathogenic forms. The fact that P. 64 gingivalis can act as a commensal, and provides us with an opportunity to discuss the role of its source of Porphyromonas gingivalis its primary oral source to its access of the brain in 65 relation to cognitive dysfunction. This is not only because AD is a prime example of a 66 67 dementing neurological disease but also forthat has a plausible the established association withof P. gingivalis with both the AD brain [11, 12], and periodontitis as a keystone 68 bacterium [12]. In addition, This is strengthened by the development of models for 69 70 periodontal infection and AD in mice P. gingivalis infection to the brain directly from its 71 primary oral niche [13] where it has been demonstrated to ean reproduce the cardinal 72 hallmark pathology inclusive of A β <u>plaques</u>, phosphotau [14], and cognitive function in

73 74 experimental mice [15-17].

75 Alzheimer's disease

AD is end of life stage and the most common example of dementia. The cardinal clinical signs 76 77 are cognitive decline with deterioration in memory. The hHippocampus is the region of the 78 brain where memory is processed and the functional loss has been associated with the death of 79 neurons in specific regions of the brain related to memory. AD has a long preclinical phase 80 (20 years) with the duration of suffering lasting on average for 8-10 years and longer [18]. At the preclinical stage of the illness, the individual may not seek medical help. Usually a family 81 member or the caregiverr of the person with declining cognition and memory may voice their 82 concern to a health care professional. This may be their general medical practitioner (GP) or a 83 health care professional (district nurse). The first stage in exploring this health complaint is 84 for the caregiver to take the person (with suspected dementia signs) to his/her GP. The GP 85 86 will then refer the person on to a memory service to establish a more formal clinical 87 diagnosis, and initiate treatment and support. The final diagnosis of AD rests with both the clinical history together with the demonstration of the neuropathological occurrence of Aß 88 plaques and hyperphosphorylated tau protein binding to neurofibrillary tangles in a 89 characteristic pattern and distribution in the specific regions of the brain. AD neuropathology 90 can co-exist with other neurological and/or vascular pathologies because it is not an isolated 91 92 disease. 93

94 Plausible cause of Alzheimer's disease and Lewy-body dementia

95 The cause of the sporadic forms of the neurological diseases under discussion (AD and 96 Parkinson's disease with Lewy bodies) remains unclear. However, amongst others, the risk 97 factors include ageing and inheritance of the apolipoprotein E gene allele 4 (*APOE c4*) [19, 98 20]. The *APOE c4* susceptibility gene links with environmental risk factors that include the 99 host's dysbiotic oral microbiome [21]. *P. gingivalis* infections of the brain in laboratory mice 100 induced with periodontitis demonstrate excessive oxidative stress and inflammation [13-15, 101 22].

Lewy bodies are intra-neuronal cytoplasmic inclusions composed of synuclein and other proteins lying within the pigmented neurons of the substantia nigra, limbic and the cerebral cortex regions of the brain. The clinical symptoms of Parkinson's disease in its purest form are tremor, immobility and rigidity of muscles. However, cognitive deficit occurs when Parkinson's disease co-exists with dementia (Lewy body Parkinsonian dementia), see comment above related to mixed pathologies. Epidemiological investigations [4, 5] in a

Taiwanese population have linked this to periodontal disease. As mentioned earlier, the $A\beta$ 108 109 protein of AD plaques and the α -synuclein within Lewy bodies are a form of broad-spectrum antimicrobial peptides, released following infection, including that caused by the periodontal 110 pathogen P. gingivalis [7-10, 14]. If A β and α -synuclein represent the host's response to a 111 previous infection, it follows that these neurodegenerative diseases have causative 112 associations with microbes during their development. This has given rise to the antimicrobial 113 114 protection hypothesis [23] linking infection as a plausible trigger for the sporadic form of AD. If this theory becomes widely accepted, then explaining the existing oxidative stress, the 115 activated complement, the longstanding inflammation and the defects in the blood-brain 116 barrier (BBB) would be easy in the context of P. gingivalis infection [13, 22, 24]. All of the 117 118 above-mentioned signaling cascades and others (not included here), would enhance the role of 119 Aβ as an antimicrobial peptide in killing the elusive invader(s) and/or the little understood brain's own microbiome converting to a pathobiome. In addition, the elderly are unlikely to 120 be immuno-privileged because the BBB defects in the 70+ year's age group are associated 121 with more rapid cognitive decline [25] and could have implications for pathogen entry. 122 123 124 Plausible cause of cognitive deficit 125 What actually causes the cognitive deficit during dementia onset is unclear, because the individual examples of dementia such as AD are seldom pure. However, the amyloid cascade 126 hypothesis originally focused on AB deposits as a possible cause [26]. Subsequent 127 immunological therapy to remove $A\beta$ plaques from the brains of AD patients disproved the 128

notion that insoluble A β deposits contribute to cognitive dysfunction [27]. Prior to the

amyloid hypothesis, the synaptic loss hypothesis of Terry et al. [28] and Masliah et al. [29]

originated from the fact that specific neuronal loss may be due to synaptic loss. The revised

plausible that microbial debris, inflammatory mediators, oligometric A β , smaller tau peptides

released by gingipains, and pathogen activated inflammasomes [31], can all act to disrupt

version of the amyloid cascade hypothesis has incorporated soluble oligomeric AB in the

synaptotoxicity and cognitive impairment theory [30]. It is possible that there is close interplay between the mechanisms underlying these three hypotheses. After all, it is highly

136 137

129

130

131 132

133

134

135

138

139 Relationship between periodontitis and AD

synapses and result in cognitive deficit.

The idea of dementia being a risk factor for periodontitis is undisputable, but then one would 140 141 expect all demented individuals to have periodontitis by the time of death. Literature suggests the formerly known "chronic" periodontitis has a clearer relationship with a subgroup of AD 142 cases [32-36]. Significant progress will only be made to find the actual direction of this 143 relationship, once we better understand the parameters that should be included and/or 144 145 excluded from the investigation in case control and/or cohort studies. For example, we now understand that periodontitis only becomes a risk factor for AD development some 10 years 146 147 after it is diagnosed [37, 38]. This would imply that studies conducted in less than 10-year 148 cohort analysis would provide inconclusive results [39]. One suggested risk of developing AD 149 is having fewer remaining teeth (loss of up to 9 teeth) in early to mid-life due to periodontitis [30, 40], resulting from longstanding poor oral hygiene. For a more comprehensive discussion 150 on the direction of the relationship between oral health and risk of developing AD, see Daly et 151 al. [41]. There is agreement that periodontitis doubles the risk for developing late onset AD 152 153 with an odds ratio of 2.2 (95% CI 1.1, 4.5) 10 years after its initial diagnosis [37, 38]. An interventional study on the periodontal treatment in AD patients [42] indicated a plausible 154 155 causal relationship in demented individuals. It is suggested that patients with early stage 156 dementia (at the time of point when they visiting the memory clinic for initial diagnosis) show worsening oral hygiene [43], implying that dementia may be the risk factor for periodontal 157 disease in this group of patients. It is also suggested that if dental intervention is provided at 158 159 the early stage of dementia onset, it would delay the speed of cognitive deterioration. Early 160 intervention is important and memory clinics should consider taking it on at the time the 161 initial diagnosis [43]. However, to confirm the direction of the relationship, more studies with 162 larger cohorts are needed in the "at risk" subpopulation of individuals whose periodontitis coexists with AD cases. In addition, future interventional studies should include participants 163 who suffer from periodontitis approaching the risk age for dementia (pre 65-year age) for 164 maximal impact on delaying the onset of AD. 165

166

167 Relationship of *P. gingivalis* with AD development

As mentioned, *P. gingivalis* is considered a keystone pathogen in periodontitis [12] and it is

- adept at manipulating the sub-gingival microbiome and the host's immune system [44-49]. P.
- 170 gingivalis is an intracellular pathogen that has been used to develop AD via periodontal
- 171 infection in mice [13, 14]. The infection periodontal model of Ilievski et al. [14] produced the
- 172 AD defining hallmark lesions in the mouse brains (A β and phosphotau neurofibrillary

tangles), a finding reproduced in mice by Dominy et al. [50]. Since the Ilievski and the 173 174 Dominy models were of wild type mice, there is a high probability that A β was cleaved from its precursor protein into various oligomer sizes following oxidative stress initiated by P. 175 gingivalis, which in turn activated cathepsin B within the endo/lysosomes [22, 51]. This 176 intracellular processing of A β agrees with the earlier report of Wu et al. [15] showing, that 177 metabolic processing of the amyloid precursor protein after P. gingivalis lipopolysaccharide 178 (LPS) was administered into cathepsin B sufficient mice. Other studies in which either P. 179 180 gingivalis or its LPS was introduced, supported the development of the AD-like clinical 181 phenotype [15-17, 52] resulting in impaired spatial learning and memory. All of these 182 investigations support a causal relationship of periodontitis with the development of AD. 183 Mechanisms of cognitive deficit by P. gingivalis infection 184 Soluble oligometric $A\beta$ and BBB defects 185 186 In line with Dominy et al. [50] confirming P. gingivalis genetic footprints (DNA) in the AD brains, in vivo infection models of periodontitis are recapitulating hallmark proteins and the 187 emerging phenotype is supporting cognitive deficit [14-17, 52]. P. gingivalis produces two 188 189 types of cysteine proteases (gingipains). They are the lysine specific Kgp and the arginine specific RgpA and RgpB gingipains [53]. A novel finding described by Dominy et al. [50] is 190 191 the capacity of these proteases to hydrolyse the biochemical structure of the protein tau, and this opens up future avenues for research. 192 193 Gingipains activity has the potential to erode endothelial tight junction proteins [24] as 194 supported by the P. gingivalis/host interactome study [54]. Cognitive deterioration due to 195 BBB defects in the human elderly individuals are also documented [25] and this may yet be another contributory factor in mice models displaying AD-like clinical phenotype. In addition, 196 if the soluble form of the olgomeric $A\beta$ can interfere with synapses and contribute to 197

is in the soluble form of the orgometre rep can interfere with synapses and contribute to

cognitive deficit, as proposed by Cline et al. [30]. Then *P. gingivalis* oral infection can alsocontribute to this protein following its entry into the brain [14, 50].

200

201 Inflammation and inflammatory mediators in general

202 Numerous studies have shown that LPS from Gram negative bacteria either administered

203 directly into the peritoneum or the brain, induce neuroinflammation in the form of glial cell

activation [55] and when measured, the inflammatory response is accompanied by learning

and memory impairment [56, 57] as a result of IL-1 β secretion following peripheral challenge

206 with LPS [58]. This is in agreement with the Wu et al. [15] hypothesis that systemic

207	administration of <i>P. gingivalis</i> LPS leads to cognitive deficit following Aβ liberation in an IL-
208	1β receptor dependent pathway on neurons, (also see [21]). IL- 1β cytokine is implicated in
209	synaptic loss [59, 60] and with reduced long-term potentiation, which is a unit of memory
210	[59], supporting the role of this cytokine in deteriorating cognition.

212 P. gingivalis, complement, and immune dysbiosis

213 Gingipains are virulence factors of great importance to the immune subversion activity of P. gingivalis [53]. In the context of the complement cascade, these proteases play a major role. 214 P. gingivalis oral infection of apolipoprotein E^{-/-} mice demonstrated complement activation in 215 216 their brains [13]. Activation of complement does take place in AD brains, where AB plaques are the suggested trigger [61]. If, according to the novel hypothesis of Allen [62] that $A\beta$ 217 218 senile plaques are miniature foci of bacterial biofilms, and that the antimicrobial protection 219 theory of Moir et al. [23] supporting the A β antimicrobial peptide idea then the downstream 220 immune activity triggering complement activation in AD brains does fit. Inappropriately 221 activated complement compromises the function of healthy neurons, because of their 222 inadequate shielding from protective proteins that rescue them from the non-specific mode of 223 activity of this powerful innate immune signaling cascade [63]. During complement 224 activation, release of several small proteins (opsonins) takes place, which then opsonize to 225 neurons [13]. Depending on the site of opsonin binding to the neuron, (e.g. at the synaptic 226 cleft), there remains a potential to disrupt the path of neuronal communication and give way 227 to cognitive dysfunction. In addition, the continuation of this cyclic cascade will generate more cytokines and contribute to cognitive deficit (see above). 228

P. gingivalis infection continues to cleave complement components (C1-C5) through 229 its gingipains activity, and prevents both deposition of C3b on the bacterial surface and 230 231 capture of the C4b binding protein [64-68]. By hijacking the complement regulator C4bp on 232 the bacterial surface, P. gingivalis prevents assembly of the membrane attack complex and 233 acquires the ability to regulate C3 convertase [66]. Accordingly, the gingipains do not only destroy complement through proteolytic degradation, but they also inhibit activation of 234 complement by binding to the complement inhibitor C4bp [66]. This inhibits complement 235 action and results in a local accumulation of the anaphylatoxin C5a [69]. P. gingivalis also 236 exerts C5 convertase-like enzymatic activity and exploits complement-Toll like receptor 237 (TLR) crosstalk to subvert host defenses and thus escape elimination from the host [45]. 238 239 Zhang et al. [52] recently demonstrated that the mechanism by which P. gingivalis impaired

spatial learning and memory is via TLR crosstalk because inhibiting this pathway rescued 240 241 memory in their infection mouse model. As an analogy to TLR signaling, our in house data clearly showed that CD14, an LPS 242 binding receptor, expressed on healthy IMR32 neurons (also participates in TLR signaling) 243 was completely or partially removed following exposure to endo/exotoxins from P. gingivalis 244 ATCC 33277^T and W50, respectively (see Figure 1). Such mechanisms lead to defective 245 immune surveillance because of their influence in remodeling the periodontal microbiota into 246 247 a dysbiotic state. P. gingivalis can also reduce the antibacterial and proinflammatory activity 248 of C5a by deiminating its C-terminal arginine residues [70]. Degradation of complement 249 proteins probably allows colonization and proliferation of bacteria possessing higher sensitivity towards complement killing than found in P. gingivalis itself [47]. Thus, P. 250 gingivalis may support survival of the entire biofilm community by helping bystander bacteria 251 evade complement mediated killing [46], whilst neurons survive with compromised function. 252 253 These activities have consequences for the developing neuropathology. Thus, the neuropathology and the clinical functional loss together, constitute the AD diagnosis. P. 254 255 gingivalis infection under laboratory conditions are supporting both of these possibilities [13-256 17, 22, 24, 52]. 257 258 Bacterial factors disrupting synapses Our in-house in vitro studies in which IMR32 (neuroblastoma-derived) neurons challenged 259 260 with P. gingivalis virulence factors (containing LPS and gingipains) indicated considerable 261 alterations in their actin cytoskeletal filaments following their detection with fluorescein-262 phalloidin dye. The LPS binding to cell surface membranes caused blebbing [11], whilst the protease caused the cells to withdraw their processes and round up (see Figure 2). In 263 summary, the structural alteration of the IMR32 neurons, in vitro, could provide the basis for 264 the failure of communication between neighboring cells. In addition, excess 265 bacterial/inflammatory mediators possibly trap between micro spaces of opposing (pre-post) 266 267 synapses (synaptic clefts) or adversely affect synaptosomes during their neurotransmitter 268 release contributing to cognitive loss. These areas are open to future investigations in relation 269 to memory. Infection of microglia with P. gingivalis in mice has promoted cell migration and

- an inflammatory response through gingipain-mediated activation of protease-activated
- 271 receptor-2 [71]. We need to clarify if and how infectious episodes impair memory at the
- 272 synaptosomal level, rather than at the synaptic cleft level. Such information may refine our

understanding at an earlier stage of deteriorating cognition albeit at the neurotransmitterrelease and its uptake levels.

275

276 Dysbiosis of immune defense by alternative means

277 miRNA has a role in the virulence of *P. gingivalis*, contributing to modulation of host-cell

immune responses in a manner that promotes bacterial survival, and progressively reduces the

host's protective function [49]. Some miRNAs are even associated with *P. gingivalis* itself

[72], while others (miRNA-128, miRNA-146, miRNA-203, and miRNA-584) are host

281 derived for inflammation. Bacterium-associated miRNAs are likely to influence the innate

282 immune response against *P. gingivalis*, whereas LPS from this bacterium may affect the level

283 of the host's miRNA–mRNA interactions. These miRNA-dependent effects may supplement

284 other forms of deception exerted by *P. gingivalis* thus subverting innate and adaptive immune

responses possibly by altering gene function [54, 69].

286

288

287 P. gingivalis and tau protein phosphorylation

As mentioned earlier, Ilievski et al. [14] demonstrated that P. gingivalis infection can lead to 289 tau phosphorylation and neurofibrillary tangle formation in mice. The neurons that develop 290 291 these hallmark lesions in the human AD brain are cells with compromised function, and the 292 structural change in the nerve cell soma and axons, the later disrupting their connectivity. The effect of gingipains on the integrity of actin filaments seen with IMR32 neurons (Figure 2) 293 may be analogous to the neurofibrillary tangle bearing neurons in AD. This structural change 294 is likely to be detrimental to their communications with other brain cells resulting in 295 deteriorated cognition. 296

297 Previously, we have discussed outer membrane vesicles (microbullets) from P. 298 gingivalis [73] playing a role in AD development. P. gingivalis cultures produce them in vast numbers, suggesting they constitute the main superhighway of communication with other 299 bacteria in the biofilm [74]. Since they carry additional arsenals of weapons to manipulate 300 their entry into disparate organs, disrupt actin structures, erode epithelial junctional proteins, 301 hijack phagocytosis, destroy tissues, and affect complement related genes, they may also be 302 responsible for transducing proinflammatory signaling cascades that ultimately lead to disease 303 304 defining lesion development and cognitive decline, typical of clinical AD.

305 Ilievski et al. [14] demonstrated a chronic infection with live *P. gingivalis* strain W83 306 for 22 weeks with both the hallmark lesions (A β and NFTs) that characterize AD with tau **Commented [SKS<oD1]:** I think this is the sentence asked to be clarified?, needs addressing

protein phosphorylation at the serine396 (ser396) residue. This generated a new concept that an 307 308 oral infective focus in neurological diseases may result in dementia. Up until now, abnormally phosphorylated tau protein has not featured negatively in the pathophysiology of periodontal 309 disease per se. However, Adamowicz et al. [75] implicated the role of glycogen synthase kinase 310 3 (GSK-3) in bacterial-induced periodontitis because its inhibition rescued bone loss. Thus, 311 312 GSK-3 may be influencing phosphorylation of brain tau via immune responses mediated by P. gingivalis, in the Ilievski et al. [14] study. GSK-3β appears to mediate proinflammatory 313 314 cytokine production during bacterial infections because inhibition of GSK-3β leads to an innate 315 hypo-reactivity to oral pathogens [76]. Macrophages treated with LPS, in vitro suggest that 316 GSK-3 β stimulates interferon- β (IFN- β) production via c-Jun thus activating a transcription factor (ATF)-2-dependent mechanism [76]. GSK-3β also negatively regulates production of the 317 endogenous IL-1β antagonist, IL-1R, via its ability to regulate the MAPK and ERK 1/2 in LPS-318 stimulated innate immune cells. There is no doubt that further research will widen investigation 319 320 of these pathways for more direct causal links with oral disease and dementing diseases with 321 cognitive deterioration.

The Dominy et al. [50] publication has provided a stronger argument for the role of pathogenic tau in AD development. In their *in vitro* neuronal culture system, Dominy et al. [50] demonstrate that tau is a substrate for gingipains and show a low molecular weight band corresponding to a novel tau peptide. Further research will establish if it is neurotoxic or not.

326

327 P. gingivalis and lymphocytes

It is possible that T cell entry into the AD brain is restricted and this somehow influences 328 ineffective clearance of the A β by macrophages and the resident microglia. Back et al. [77] 329 found that Treg cells (subpopulation of T cells) had an effect on cognitive function by 330 decreasing AB deposition and inflammatory cytokine secretion in a 3xTg-AD mice model. In 331 332 contrast, depletion of Tregs increased the onset of cognitive deficit, accelerated the amount of the Aß burden, enhanced microglia/macrophage responses and decreased glucose metabolism 333 in 3xTg-AD mice. In patients with atherosclerosis, the Treg population was reduced if they 334 harbored type II fimA of P. gingivalis compared to those with other types of fimbriae [78]. 335 Therefore, P. gingivalis type II fimA could be associated with dysregulation of Tregs in 336 extraoral lesions. Severe immunosuppression seems to favor not only colonization with 337 338 varying serotypes of periodontopathogenic bacteria, but also with species not commonly found in the subgingival microbiota [79]. In the brain, this may contribute to the 339

establishment of a multi species microbiota, previously reported in AD patients [80]. In
addition, accumulation of insoluble and toxic Aβ42 has detrimental effect on the neighboring
neurons and their connections, which may have further implications for neurodegeneration
and related cognitive loss.

344

345 Conclusions

Dominy et al. [50] have recently provided robust data linking the main pathogen (P. 346 gingivalis) of periodontitis with the cause of AD. This bacterium appears to migrate from the 347 348 mouth to the brain of some individuals as they age and a significant proportion of subjects 349 who go onto developing AD. This further highlights the possibility that AD has a microbial 350 infection origin. Ilievski et al. [14] provide evidence for *P. gingivalis* infection having causal associations by reproducing the hallmark lesions. Four independent studies carried out in mice 351 infected with P. gingivalis provide causal links through impaired learning and memory. The 352 suggested mechanism is related to the TLR crosstalk and this may have relevance to the 353 inflammasome formation with the resulting cytokines (mature IL-1ß) being linked to memory 354 355 disturbances. These studies reinforce the advice that oral hygiene is important in keeping pathogens 356 357 low and encouraging greater diversity of commensals (health promoting bacteria). This provides a healthy microbiome and better general health. Health authorities need to heed this 358 warning and take research based evidence seriously. The UK NHS England provides a 359 360 recommendable oral health toolkit for the elderly to maintain better oral hygiene with the aim 361 of delaying/preventing AD. 362 Conflict of Interest The authors declare no conflict of interest. 363 364

365 Human and Animal Rights and Informed Consent

366 Not applicable. This is a review of literature and does not rely on freshly obtained data from

- 367 human and/or animal studies. Figures are from our in-house cell culture studies that are
- 368 exempt from ethical issues.

369

370 References

371

372 Papers of particular interest, published recently, have been highlighted as:

373	*Of importance	
374	**Of major importance.	
375	***Of	significant importance
376		
377	1.	Olsen I. From the Acta Prize Lecture 2014: the periodontal-systemic connection seen
378		from a microbiological standpoint. Acta Odontol Scand. 2015; 73(8): 563-8. DOI:
379		10.3109/00016357.2015.1007480.
380	2.	Olsen I, Singhrao SK. Can oral infection be a risk factor for Alzheimer's disease? J
381		Oral Microbiol. 2015; 7: 29143. DOI: 10.3402/jom.v7.29143.
382	3.	Olsen I, Singhrao SK, Potempa J. Citrullination as a plausible link to periodontitis,
383		rheumatoid arthritis, atherosclerosis and Alzheimer's disease. J. Oral Microbiol.
384		2018; 10(1):1487742. DOI: 10.1080/20002297.2018.1487742.
385	4.	**Chen CK, Wu YT, Chang YC. Periodontal inflammatory disease is associated with
386		the risk of Parkinson's disease: a population-based retrospective matched-cohort
387		study. PeerJ. 2017; 5:e3647. DOI: 10.7717/peerj.3647. Reducing periodontitis may
388		modify the risk of developing Parkinson's disease.
389	5.	**Chen CK, Huang JY, Wu YT, Chang YC. Dental scaling decreases the risk of
390		Parkinson's disease: A nationwide population-based nested case-control study. Int J
391		Environ Res Public Health. 2018; 15(8). pii: E1587. DOI: 10.3390/ijerph15081587.
392		First study to show that patients without periodontitis who received dental
393		scaling over 5 consecutive years had a significantly lower risk of developing
394		Parkinson's disease.
395	6.	**Pang S, Li J, Zhang Y, Chen J. Meta-analysis of the relationship between the
396		APOE gene and the onset of Parkinson's disease dementia. Parkinsons Dis. 2018;
397		2018: 9497147. DOI: 10.1155/2018/9497147. APOE genotypes, ε3/4 and ε4/4 may
398		be risk factors for Parkinson's disease dementia.
399	7.	**Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, et al.
400		The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide.
401		PLoS One. 2010; 5(3): e9505. DOI: 10.1371/journal.pone.0009505. Abeta is a
402		hitherto unrecognized antimicrobial peptide that may normally act in the innate
403		immune system.
404	8.	Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, et al.
405		Amyloid- β peptide protects against microbial infection in mouse and worm models of

Formatted: Hidden

406	Alzheimer's disease. Sci Transl Med. 2016; 8(340): 340ra72. DOI:
407	10.1126/scitranslmed.aaf1059.
408	9. **Park SC, Moon JC, Shin SY, Son H, Jung YJ, Kim NH, et al. Functional
409	characterization of alpha-synuclein protein with antimicrobial activity. Biochem
410	Biophys Res Commun. 2016; 478(2): 924-8. DOI: 10.1016/j.bbrc.2016.08.052.
411	Alpha-synuclein appears to be a natural antimicrobial peptide in addition to
412	having a role in neutransmitter release.
413	10. Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, Rodriguez AS, Mitchell
414	T, Washicosky KJ, et al. Alzheimer's disease-associated β-Amyloid is rapidly seeded
415	by Herpesviridae to protect against brain infection. Neuron. 2018; 99(1): 56-63.e3.
416	DOI: 10.1016/j.neuron.2018.06.030.
417	11. **Poole S, Singhrao SK, Kesavalu L, Curtis MA, Crean S. Determining the presence
418	of periodontopathic virulence factors in short-term postmortem Alzheimer's disease
419	brain tissue. J Alzheimers Dis. 2013; 36(4): 665-77. DOI: 10.3233/JAD-121918. The
420	original study confirmed that P. gingivalis lipopolysaccharide reaches the
421	Alzheimer disease brain.
422	12. *Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat
423	Rev Microbiol. 2012; 10(10): 717-25. DOI: 10.1038/nrmicro2873. The keystone-
424	pathogen hypothesis holds that certain low-abundance microbial pathogens can
425	orchestrate inflammatory disease by remodelling a normally benign microbiota
426	into a dysbiotic one.
427	13. ***Poole S, Singhrao SK, Chukkapalli S, Rivera M, Velsko I, Kesavalu L, et al.
428	Active invasion of Porphyromonas gingivalis and infection-induced complement
429	activation in ApoE ^{-/-} mice brains. J Alzheimers Dis. 2015; 43(1): 67-80. DOI:
430	10.3233/JAD-140315. <i>P. gingivalis</i> was able to access the ApoE ^{-/-} mice brain
431	contributing to complement activation by bystander neuronal injury.
432	14. ***Ilievski V, Zuchowska PK, Green SJ, Toth PT, Ragozzino ME, Le K, et al.
433	Chronic oral application of a periodontal pathogen results in brain inflammation,
434	neurodegeneration and amyloid beta production in wild type mice. PLoS One. 2018;
435	13(10): e0204941. DOI: 10.1371/journal.pone.0204941. First study to show
436	neurodegeneration and formation of extracellular AB42 and phosphotau bound
437	to neurofibrillary tangles in young adult wild type mice after repeated
438	application of P. gingivalis.

439	15. ***Wu Z, Ni J, Liu Y, Teeling JL, Takayama F, Collcutt A, et al. Cathepsin B plays a
440	critical role in inducing Alzheimer's disease-like phenotypes following chronic
441	systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice.
442	Brain Behav Immun. 2017; 65: 350-61. DOI: 10.1016/j.bbi.2017.06.002. Chronic
443	systemic exposure to PgLPS induced AD-like phenotypes, including microglia-
444	mediated neuroinflammation, intracellular Aß accumulation in neurons and
445	impairment of the learning and memory functions in the middle-aged mice in a
446	CatB-dependent manner. Linked IL-1 β involvement in memory deterioration.
447	16. **Ishida N, Ishihara Y, Ishida K, Tada H, Funaki-Kato Y, Hagiwara M, et al.
448	Periodontitis induced by bacterial infection exacerbates features of Alzheimer's
449	disease in transgenic mice. NPJ Aging Mech Dis. 2017; 3: 15. DOI: 10.1038/s41514-
450	017-0015-x. Periodontitis caused by <i>P. gingivalis</i> may exacerbate brain Aβ
451	deposition, leading to increased cognitive impairments, by a mechanism that
452	involves triggering brain inflammation.
453	17. **Ding Y, Ren J, Yu H, Yu W, Zhou Y. Porphyromonas gingivalis, a periodontitis
454	causing bacterium, induces memory impairment and age-dependent
455	neuroinflammation in mice. Immun Ageing. 2018; 15: 6. DOI: 10.1186/s12979-017-
456	$0110\mathchar`-7.$ The learning and memory abilities of the middle-aged mice infected with
457	P. gingivalis were impaired.
458	18. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL.
459	Alzheimer's disease. Nat Rev Dis Primers. 2015; 1: 15056. DOI:
460	10.1038/nrdp.2015.56.
461	19. **Singhrao SK, Harding A, Chukkapalli S, Olsen I, Kesavalu L, Crean S.
462	Apolipoprotein E related co-morbidities and Alzheimer's disease. J Alzheimers Dis.
463	2016; 51(4): 935-48. DOI: 10.3233/JAD150690. The apolipoprotein E gene allele 4
464	is the plausible commonality for the etiology of co-morbidities that eventually
465	result from periodontal diseases and ultimately progress to mixed pathologies
466	and dementia.
467	20. Li J, Luo J, Liu L, Fu H, Tang L. The genetic association between apolipoprotein E
468	gene polymorphism and Parkinson disease: A meta-analysis of 47 studies. Medicine
469	(Baltimore). 2018; 97(43): e12884. DOI: 10.1097/MD.00000000012884.
470	21. *Singhrao SK, Olsen I. Assessing the role of Porphyromonas gingivalis in
471	periodontitis to determine a causative relationship with Alzheimer's disease. J Oral
472	Microbiol. 2019; 1563405. DOI: 10.1080/20002297.2018.1563405. Summation of

473	animal studies supporting the P. gingivalis infection link with AD risk factor
474	development.
475	22. *Rokad F, Moseley R, Hardy RS, Chukkapalli S, Crean S, Kesavalu L, et al. Cerebral
476	oxidative stress and microvasculature defects in TNF- α expressing transgenic and
477	Porphyromonas gingivalis-infected ApoE ^{-/-} mice. J Alzheimers Dis. 2017; 60(2): 359-
478	69. DOI: 10.3233/JAD-170304. The hippocampal microvascular structure of P.
479	gingivalis-infected ApoE ^{-/-} mice possesses elevated oxidative stress levels,
480	resulting in the associated tight junction proteins being susceptible to increased
481	oxidative/proteolytic degradation, leading to hydrolysis of the amyloid precursor
482	protein to generate $A\beta$ in wild type mice infected with <i>P. gingivalis</i> .
483	23. ***Moir RD, Lathe R, Tanzi RE. The antimicrobial protection hypothesis of
484	Alzheimer's disease. Alzheimers Dement. 2018; 14(12): 1602-14. DOI:
485	10.1016/j.jalz.2018.06.3040. The new Antimicrobial Protection Hypothesis reveals
486	brain microbial burden may directly generate β -amyloid deposits, inflammation,
487	and AD progression. This study underpins the role of microbes in the
488	pathogenesis of AD.
489	24. ***Singhrao SK, Chukkapalli S, Poole S, Velsko I, Crean SJ, Kesavalu L. Chronic
490	Porphyromonas gingivalis infection accelerates the occurrence of age-related granules
491	in ApoE ^{-/-} mice brains. J Oral Microbiol. 2017; 9(1):1270602. DOI:
492	10.1080/20002297.2016.1270602. ApoE ^{-/-} mice showing the earliest inflammation-
493	mediated tissue injury, accompanied by cerebral blood-brain barrier
494	breachment.
495	25. **Bowman GL, Dayon L, Kirkland R, Wojcik J, Peyratout G, Severin IC, et al.
496	Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older
497	adults. Alzheimers Dement. 2018; 14(12):1640-50. DOI: 10.1016/j.jalz.2018.06.2857.
498	Blood-brain-barrier breakdown is associated with cognitive decline and
499	inflammation in non-demented elders.
500	26. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and
501	problems on the road to therapeutics. Science. 2002; 297(5580): 353-6. Erratum in:
502	Science 2002; 297(5590): 2209.
503	27. **Boche D, Donald J, Love S, Harris S, Neal JW, Holmes C, et al. Reduction of

aggregated Tau in neuronal processes but not in the cell bodies after Abeta42

505	immunisation in Alzheimer's disease. Acta Neuropathol. 2010; 120(1): 13-20.
506	Removal of Abeta from the brain via immunisation does not improve memory.
507	28. *Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, et al. Physical
508	basis of cognitive alterations in Alzheimer's disease: synapse loss is the major
509	correlate of cognitive impairment. Ann Neurol. 1991; 30(4): 572-80. Origins of the
510	synaptic loss theory to explain cognitive deficit.
511	29. *Masliah E, Hansen L, Albright T, Mallory M, Terry RD. Immunoelectron
512	microscopic study of synaptic pathology in Alzheimer's disease. Acta Neuropathol.
513	1991; 81(4): 428-33. Provides evidence to support the synaptic loss theory.
514	30. **Cline EN, Bicca MA, Viola KL, Klein WL. The Amyloid-β Oligomer Hypothesis:
515	Beginning of the third decade. J Alzheimers Dis. 2018; 64(s1): S567-S610. DOI:
516	10.3233/JAD-179941. Revised Amyloid-β oligomer theory. Soluble Aβ oligomers
517	accumulate in an AD-dependent manner in human and animal model brain
518	tissue and, experimentally, to impair learning and memory and instigate major
519	facets of AD neuropathology, including tau pathology, synapse deterioration and
520	loss, inflammation, and oxidative damage.
521	31. **Olsen I, Singhrao SK. Inflammasome involvement in Alzheimer's disease. J
522	Alzheimers Dis. 2016; 5;54(1): 45-53. This review supports the mechanism of P.
523	gingivalis infection promoting cognitive deficit (see ref 52).
524	32. Gatz M, Mortimer JA, Fratiglioni L, Johansson B, Berg S, Reynolds CA, et al.
525	Potentially modifiable risk factors for dementia in identical twins. Alzheimers
526	Dement. 2006; 2: 110-7.
527	33. Stein PS, Desrosiers M, Donegan SJ, Yepes JF, Kryscio RJ. Tooth loss, dementia and
528	neuropathology in the Nun study. J Am Dent Assoc. 2007; 138(10): 1314-22; quiz
529	1381-2.
530	34. Stein PS, Kryscio RJ, Desrosiers M, Donegan SJ, Gibbs MB. Tooth loss,
531	apolipoprotein E, and decline in delayed word recall. J Dent Res. 2010; 89(5): 473-7.
532	DOI: 10.1177/0022034509357881.
533	35. Kamer AR, Craig RG, Pirraglia E, Dasanayake AP, Norman RG, Boylan RJ, et al.
534	TNF-alpha and antibodies to periodontal bacteria discriminate between Alzheimer's
535	disease patients and normal subjects. J Neuroimmunol. 2009; 216(1-2): 92-7. DOI:
536	10.1016/j.jneuroim.2009.08.013.

537	36.	*Farhad SZ, Amini S, Khalilian A, Barekatain M, Mafi M, Barekatain M, et al. The
538		effect of chronic periodontitis on serum levels of tumor necrosis factor-alpha in
539		Alzheimer disease. Dent Res J (Isfahan). 2014; 11(5): 549-52. Not all of the AD
540		cases they examined at the clinical level co-existed with periodontitis.
541	37.	**Sparks Stein P, Steffen MJ, Smith C, Jicha G, Ebersole JL, Abner E, et al. Serum
542		antibodies to periodontal pathogens are a risk factor for Alzheimer's disease.
543		Alzheimers Dement. 2012; 8(3): 196-203. DOI: 10.1016/j.jalz.2011.04.006. A
544		laboratory study that agreed with the epidemiological study of Chen et al., (ref
545		38) for the 10 year timeline in risk development following periodontitis diagnosis
546	38.	**Chen CK, Wu YT, Chang YC. Association between chronic periodontitis and the
547		risk of Alzheimer's disease: a retrospective, population-based, matched-cohort study.
548		Alzheimers Res Ther. 2017; 9(1): 56. DOI: 10.1186/s13195-017-0282-6. A 10-year
549		CP exposure was associated with a 1.707-fold increase in the risk of developing
550		AD.
551	39.	Stewart R, Weyant RJ, Garcia ME, Harris T, Launer LJ, Satterfield S, et al. Adverse
552		oral health and cognitive decline: the health, aging and body composition study. J Am
553		Geriatr Soc. 2013; 61(2): 177-84. DOI: 10.1111/jgs.12094.
554	40.	Kaye EK, Valencia A, Baba N, Spiro A, 3rd, Dietrich T, Garcia RI. Tooth loss and
555		periodontal disease predict poor cognitive function in older men. DOI:
556		10.1111/j.1532-5415.2010.02788.x.
557	41.	*Daly B, Thompsell A, Sharpling J, Rooney YM, Hillman L, Wanyonyi KL, et al.
558		Evidence summary: the relationship between oral health and dementia. Br Dent J.
559		2018;223(11): 846-53. DOI: 10.1038/sj.bdj.2017.992. Poor oral hygiene is
560		associated with dementia, and more so amongst people in advanced stages of the
561		disease.
562	42.	*de Souza Rolim T, Fabri GM, Nitrini R, Anghinah R, Teixeira MJ, de Siqueira JT, et
563		al. Oral infections and orofacial pain in Alzheimer's disease: a case-control study. J
564		Alzheimers Dis. 2014; 38(4): 823-9. DOI: 10.3233/JAD-131283. An interventional
565		study on the periodontal treatment in AD patients indicated a plausible causal
566		relationship in demented individuals.
567	43.	*Emanuel R, Sorensen A. A study of oral health prevention behaviours for patients
568		with early stage dementia. Br Dent J. 2018; 224(1): 38-42. DOI:
569		10.1038/sj.bdj.2018.5. There was clearly scope for improving oral health
570		education and prevention for dementia patients.

571	44. *Hajishengallis G. Immune evasion strategies of Porphyromonas gingivalis. J Oral
572	Biosci. 2011; 53(3): 233-40. Exploitation of Toll-like receptor-2, complement
573	receptor 3, C5a anaphylatoxin receptor, and CXC-chemokine receptor 4 by P.
574	gingivalis allows the pathogen to escape elimination, obtain nutrients, and
575	collaterally inflict periodontal tissue injury.
576	45. *Hajishengallis G, Lambris JD. Complement and dysbiosis in periodontal disease.
577	Immunobiology. 2012; 217(11): 1111-6. DOI: 10.1016/j.imbio.2012.07.007. P.
578	gingivalis expresses C5 convertase-like enzymatic activity and adeptly exploits
579	complement-TLR crosstalk to subvert host defenses and escape elimination.
580	46. Hajishengallis G, Abe T, Maekawa T, Hajishengallis E, Lambris JD. Role of
581	complement in host-microbe homeostasis of the periodontium. Semin Immunol. 2013;
582	25(1): 65-72. DOI: 10.1016/j.smim.2013.04.004.
583	47. Hussain M, Stover CM, Dupont A. P. gingivalis in periodontal disease and
584	atherosclerosis - scenes of action for antimicrobial peptides and complement. Front
585	Immunol. 2015; 6: 45. DOI: 10.3389/fimmu.2015.00045.
586	48. Olsen I, Hajishengallis G. Major neutrophil functions subverted by Porphyromonas
587	gingivalis. J Oral Microbiol. 2016; 8: 30936. DOI: 10.3402/jom.v8.30936.
588	49. Olsen I, Singhrao SK, Osmundsen H. Periodontitis, pathogenesis and progression:
589	miRNA-mediated cellular responses to Porphyromonas gingivalis. J Oral Microbiol.
590	2017; 9(1): 1333396. DOI: 10.1080/20002297.2017.1333396.
591	50. ***Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, et al.
592	Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease
593	causation and treatment with small-molecule inhibitors. Sci. Adv. 2019; 5: eaau3333.
594	This study has provided the strongest evidence for causal links of P. gingivalis
595	infection with AD. It has raised the vital awareness in periodontitis and AD
596	developmental links. It offers hope for a future treatment via their gingipain
597	inhibiting drugs
598	51. **Llorente P, Kristen H, Sastre I, Toledano-Zaragoza A, Aldudo J, Recuero M, et al. A
599	free radical-generating system regulates amyloid oligomers: Involvement of cathepsin
600	B. J Alzheimer's Dis. 2018; 66: 1397–408. DOI 10.3233/JAD-170159. Cathepsin B
601	participates in the changes of amyloid oligomer induced by mild oxidative stress.
602	This supports the oxidative stress related damage following P. gingivalis infection
603	as reported in reference 22.

- 52. **Zhang J, Yu C, Zhang X, Chen H, Dong J, Lu W, et al. *Porphyromonas gingivalis*lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation
 via activation of the TLR4 signaling pathway in C57BL/6 mice. J Neuroinflammation.
 2018; 15(1): 37. DOI: 10.1186/s12974-017-1052-x. Offer a mechanism of how *P*. *gingivalis*-LPS-induced neuroinflammation plays an important role in cognitive
 impairment. This reference complements the review by Olsen and Singhrao
 reference no 31.
- 53. Imamura T. The role of gingipains in the pathogenesis of periodontal disease. J
 Periodontol. 2003; 74(1): 111-8.
- 54. *Carter CJ, France J, Crean S, et al. The *Porphyromonas gingivalis*/host interactome
 shows enrichment in GWASdb genes related to Alzheimer's disease, diabetes and
 cardiovascular diseases. Front Aging Neurosci. 2017; 9: 408. DOI:
- 10.3389/fnagi.2017.00408 *P. gingivalis* intractome supporting AD susceptibility
 genes or gene expression changes. In particular lists the supporting references for
 eroding proteins that keep epithelial/endothelial barriers intact.
- 55. Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. Central and systemic
 endotoxin challenges exacerbate the local inflammatory response and increase neuronal
 death during chronic neurodegeneration. J Neurosci. 2005; 25: 9275-84.
- 56. Tanaka S, Ide M, Shibutani T, Ohtaki H, Numazawa S, Shioda S, et al.
 Lipopolysaccharide-induced microglial activation induces learning and memory deficits
 without neuronal cell death in rats. J Neurosci Res. 2006; 83: 557–66.
- 57. Chen J, Buchanan JB, Sparkman NL, Godbout JP, Freund GG, Johnson RW.
 Neuroinflammation and disruption in working memory in aged mice after acute
 stimulation of the peripheral innate immune system. Brain Behav Immun. 2008; 18:
 223-30.
- 58. *Henry CJ, Huang Y, Wynne AM, Godbout JP. Peripheral lipopolysaccharide (LPS)
 challenge promotes microglial hyperactivity in aged mice that is associated with
 exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10
 cytokines. Brain Behav Immun. 2009; 23(3): 309-17. Implicates LPS with release of IL1β and intracerebral inflammation
- 59. *Bellinger FP, Madamba S, Siggins, GR. Interleukin 1 beta inhibits synaptic strength
 and long-term potentiation in the rat CA1 hippocampus. Brain Res. 1993; 628: 227-34.
 Implicate IL-1β in cognitive deficit.

- 60. Mishra A, Kim HJ, Shin AH, Thayer SA. Synapse loss induced by interleukin-1beta
 requires pre- and post-synaptic mechanisms. J Neuroimmune Pharmacol. 2012; 7(3):
 571-8. DOI: 10.1007/s11481-012-9342-7.
- 640 61. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and
 641 Alzheimer's disease. Neurobiol Aging. 2000; 21(3): 383-421.
- 642 62. Allen HB. Alzheimer's disease: Assessing the role of spirochetes, biofilms, the immune
 643 system, and amyloid-β with regard to potential treatment and prevention. J Alzheimers
 644 Dis. 2016; 53(4):1271-6. DOI: 10.3233/JAD-160388.
- 645 63. Singhrao SK, Neal JW, Rushmere NK, Morgan BP, Gasque P. Spontaneous classical
 646 pathway activation and deficiency of membrane regulators render human neurons
 647 susceptible to complement lysis. Am J Pathol. 2000; 157(3): 905-18.
- 64. Wingrove JA, DiScipio RG, Chen Z, Potempa J, Travis J, Hugli TE. Activation of
 complement components C3 and C5 by a cysteine proteinase (gingipain-1) from *Porphyromonas (Bacteroides) gingivalis.* J Biol Chem. 1992; 267(26): 18902-7.
- 65. Popadiak K, Potempa J, Riesbeck K, Blom AM. Biphasic effect of gingipains from *Porphyromonas gingivalis* on the human complement system. J Immunol. 2007;
 178(11): 7242-50.
- 654 66. Potempa M, Potempa J, Okroj M, Popadiak K, Eick S, Nguyen KA, et al. Binding of
 655 complement inhibitor C4b-binding protein contributes to serum resistance of
 656 *Porphyromonas gingivalis.* J Immunol. 2008; 181(8): 5537-44.
- 657 67. Slaney JM, Curtis MA. Mechanisms of evasion of complement by *Porphyromonas*658 *gingivalis*. Front Biosci. 2008; 13: 188-96.
- 659 68. Wang M, Krauss JL, Domon H, Hosur KB, Liang S, Magotti P, et al. Microbial
 hijacking of complement-toll-like receptor crosstalk. Sci Signal. 2010; 3(109): ra11.
 661 DOI: 10.1126/scisignal.2000697.
- 662 69. *Olsen I, Singhrao SK. Genetic defects, complement and *Porphyromonas gingivalis*663 immune subversion in Alzheimer's disease. J Oral Microbiol. 2018; submitted. *P*.
- 664 *gingivalis* is a keystone pathogen for periodontitis and its co-morbidities because 665 of the mastery of this bacterium at subverting selective steps in the immune
- 666system for effective dysbiosis, which in turn amplifies altered gene functions in667Alzheimer's disease.
- 70. *Bielecka E, Scavenius C, Kantyka T, Jusko M, Mizgalska D, Szmigielski B, et al.
 Peptidyl arginine deiminase from *Porphyromonas gingivalis* abolishes anaphylatoxin
 C5a activity. J Biol Chem. 2014; 289(47): 32481-7. DOI: 10.1074/jbc.C114.617142. In

671		the context of previous studies, which showed crosstalk between C5aR and Toll-
672		like receptors, and enhanced arthritis development in mice infected with PPAD-
673		expressing P. gingivalis, a crucial role of PPAD in the virulence of P. gingivalis
674		was supported.
675	71.	*Liu Y, Wu Z, Nakanishi Y, Ni J, Hayashi Y, Takayama F, et al. Infection of microglia
676		with Porphyromonas gingivalis promotes cell migration and an inflammatory response
677		through the gingipain-mediated activation of protease-activated receptor-2 in mice. Sci
678		Rep. 2017; 7(1): 11759. DOI: 10.1038/s41598-017-12173-1. The authors provide the
679		first evidence that Rgp and Kgp cooperatively contribute to the P. gingivalis-
680		induced cell migration and expression of proinflammatory mediators through the
681		activation of protease-activated receptor 2.
682	72.	Choi JW, Kim SC, Hong SH, Lee HJ. Secretable small RNAs via outer membrane
683		vesicles in periodontal pathogens. J Dent Res. 2017; 96: 458-66. DOI:
684		10.1177/0022034516685071.
685	73.	*Singhrao SK, Olsen I. Are Porphyromonas gingivalis outer membrane vesicles,
686		microbullets for sporadic Alzheimer's disease manifestation? J Alzheimers Dis Rep.
687		2018; 1: 1-10. DOI: 10.3233/ADR-180080. Bacterial cultures and established oral
688		biofilms generate vast numbers of microvesicles and P. gingivalis outer membrane
689		vesicles encase key virulence factors (LPS, gingipains, capsule, fimbriae) as
690		though they are complete destructive "microbullets" when shed in the host.
691	74.	Schertzer JW, Whiteley M. Microbial communication superhighways. Cell. 2011;
692		144(4): 469-70. DOI: 10.1016/j.cell.2011.02.001.
693	75.	**Adamowicz K, Wang H, Jotwani R, Zeller I, Potempa J, Scott DA. Inhibition of
694		GSK3 abolishes bacterial-induced periodontal bone loss in mice. Mol Med. 2012; 18:
695		1190-6. DOI: 10.2119/molmed.2012.00180. This study confirms the relevance of
696		prior <i>in</i> vitro phenomena and establish GSK3 as a novel, efficacious therapeutic
697		preventing periodontal disease progression in a susceptible host.
698	76.	Wang H, Brown J, Martin M. Glycogen synthase kinase 3: a point of convergence for
699		the host inflammatory response. Cytokine. 2011;53: 130-40.
700	77.	Baek H, Ye M, Kang GH, Lee C, Lee G, Choi DB, et al. Neuroprotective effects of
701		CD4 ⁺ CD25 ⁺ Foxp3 ⁺ regulatory T cells in a 3xTg-AD Alzheimer's disease model.
702		Oncotarget. 2016; 7(43): 69347-57. DOI: 10.18632/oncotarget.12469.

703	78. Yang J, Wu J, Liu Y, Huang J, Lu Z, Xie L, et al. Porphyromonas gingivalis infection
704	reduces regulatory T cells in infected atherosclerosis patients. PLoS One. 2014; 9(1):
705	e86599. DOI: 10.1371/journal.pone.0086599.
706	79. Gonçalves LS, Ferreira SM, Silva A Jr, Villoria GE, Costinha LH, Souto R, et al.
707	Association of T CD4 lymphocyte levels and subgingival microbiota of chronic
708	periodontitis in HIV-infected Brazilians under HAART. Oral Surg Oral Med Oral
709	Pathol Oral Radiol Endod. 2004; 97(2): 196-203.
710	80. Emery DC, Shoemark DK, Batstone TE, Waterfall CM, Coghill JA, Cerajewska TL, et
711	al. 16S rRNA Next Generation Sequencing analysis shows bacteria in Alzheimer's
712	post-mortem brain. Front Aging Neurosci. 2017; 9: 195. DOI:
713	10.3389/fnagi.2017.0019.
714	
715	
716	Figure legends
717	Figure 1. Western blot showing CD14 protein on the human neuroblastoma cell line
718	IMR32. a) is an immunoblot of cell lysate prepared from IMR32 neurons following
719	their standard growth culture medium and incubation conditions, no exposure to
720	virulence factors (control) (lane 1). and eIMR32 neurons cultured in their growth
721	medium to which ontrol with P. gingivalis sterile growth medium diluted 1:4 from
722	stockfor P. gingivalis was addedeultures (lane 2).; IMR32 neurons in their growth
723	medium plus P. gingivalis ATCC 33277 ^T conditioned medium diluted 1:4 from stock
724	(lane 3) with exposure (test) to P. gingivalis ATCC 33277 [‡] (lane 3) and strain W50
725	conditioned medium (diluted 1:4 from stock) (lane 4) spent medium (diluted 1:4 from
726	stock) for 24 h. The proteins were separated by SDS-PAGE electrophoresis and
727	electro transferred onto the PVDF (polyvinylidene difluoride) membrane. Following
728	incubation of the membrane overnight with mouse anti-CD14 antibody, clear bands
729	around the 55 kDa molecular weight were seen (in the control lanes 1 and 2, long
730	arrow) indicatesing that the CD14 receptor protein was expressed present on control
731	by these cells. Upon challenge with <i>P. gingivalis</i> 33277^{T} the band completely
732	diminished (lane 3, CD14 cleaved from cell membrane). Treatment of the same cells
733	with the W50 strain surprisingly, only partially cleaved CD14 (lane 4) as compared
734	with the control lanes 1 and 2. b) IMR32 cells grown on coverslips were also
735	incubated with the same anti-CD14 antibody. The green colour shows CD14 labelling
736	on the surface membrane of cells <u>confirmingmeaning</u> that the receptor is intact. The

737	red colour indicates the nucleus due to propidium iodide uptake from the mounting
738	medium. c) Following exposure to <i>P. gingivalis</i> 33277^{T} , the cells for 24 h (as for the
739	blot), the green labelling was missing and correlated with the blot data. d) Exposure to
740	P. gingivalis W50, demonstrated green labelling on the membranes again correlating
741	with the blot data.
742	
743	
	Figure 1.
	att we
	a we weether storight standard
	a Mwt Markers kDa w ^{R32-cuture} 19 ^{23-cuture} 19 ^{23-cuture} 19 ^{22-cuture} 19 ^{22-cuture} 19 ^{22-cuture} 19 ^{22-cuture}
	KDA IN IT DO'S INTOID. IN OTO

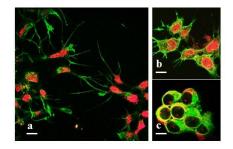
55kDa 🗕

Figure 2

IMR32 neurons in culture: Fluorescein-phalloidin (5 units/ml final, for 30 min)
labelling for actin cytoskeletal protein (green), (nuclei = red due to propidium
iodide uptake). a) IMR32 monolayer in growth medium shows long processes of
the cells extending outwards. b) Exposure to <i>P. gingivalis</i> ATCC 33277 ^T , spent
medium (diluted 1:4) for 6 h demonstrated the processes thickened, whilst the cell
soma enlarged. c) As for b, but after 24 h exposure, the cells rounded up and
detached. Images taken after examining the cells under the 510 series Zeiss

CD14 positive

b


CD14 partially cleaved

CD14 cleaved

c

confocal microscope (Carl Zeiss Ltd). Micron bar = 10

Figure 2.

