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Abstract

This paper studies the predictive ability of corridor implied volatility (CIV) measure.
It is motivated by the fact that CIV is measured with better precision and reliability
than the model-free implied volatility due to the lack of liquid options in the tails
of the risk-neutral distribution. By adding CIV measures to the modified GARCH
specifications, the out-of-sample predictive ability of CIV is measured by the forecast
accuracy of conditional volatility. It finds that the narrowest CIV measure, covering
about 10% of the RND, dominate the one-day ahead conditional volatility forecasts
regardless of the choice of GARCH models in high volatile period; as market moves to
non volatile periods, the optimal width broadens. For multi-day ahead forecasts narrow
and mid-range CIV measures are favoured in the full sample and high volatile period
for all forecast horizons, depending on which loss functions are used; whereas in non
turbulent markets, certain mid-range CIV measures are favoured, for rare instances,
wide CIV measures dominate the performance. Regarding the comparisons between
best performed CIV measures and two benchmark measures (market volatility index
and at-the-money Black-Scholes implied volatility), it shows that under the EGARCH
framework, none of the benchmark measures are found to outperform best performed
CIV measures, whereas under the GARCH and NAGARCH models, best performed
CIV measures are outperformed by benchmark measures for certain instances.

Keywords : Corridor implied volatility; GARCH models; Model-free implied volatility; Black-
Scholes implied volatility.
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1. Introduction

Forecasts of volatility are important for accessing and managing risks of portfolios of

securities. Particularly, it has emerged that volatility measured by realized volatility indi-

cators over future horizons is widely traded across various markets for a variety of financial

assets. These volatility indicators are facilitated with the development of extracting market

predictions of future volatility from option prices with the consensus that volatility implied

by market prices of options is a well-informed prediction of underlying asset future volatility.

Various methods for extracting volatility information from option prices have been pro-

posed. The Black-Scholes implied volatility (BSIV) is obtained by inverting market prices

of options via the Black-Scholes model. However, due to the multitude of BSIV, one is

unable to get a single market prediction of future volatility given a panel of options. It

was recognized that prices of some options may be more informative and less sensitive to

market frictions, to this end, a natural choice is the at-the-money BSIV. Besides, it was

also suggested that some weighting schemes of the BSIV may improve the forecast ability.

Perhaps due to its ad hoc feature, BSIV enjoys little success in predicting volatility (see

Figlewski, 1997). The model-free implied volatility (MFIV), introduced by Carr and Madan

(1998); Britten-Jones and Neuberger (2000), offers a way of obtaining what is meant by

a single market prediction from a cross section of option prices. The MFIV, in principle,

can be derived from a continuum of cross section of European call and put option prices

by replicating the variance contract with the support of the entire risk-neutral distribution

(RND). However, due to the data limitations, the computation of MFIV truncates the tails

of the RND where no reliable option prices can be obtained. Given the inherent feature of

the option data that the range of available option prices differs across trading days, the de-

gree of truncation varies stochastically over time (see CBOE, 2015). More recently, corridor

implied volatility (CIV), introduced by Carr and Madan (1998); Andersen and Bondarenko

(2007), fixes MFIV in this regard. Compared to MFIV, the computation of CIV extends

the tails of the RND in a reliable fashion so that the severity of the truncation is consis-

tent over time. The computation of CIV only requires options with strike prices that lie

inside pre-defined price barriers (termed as ”corridor”) without the need of the support of

the entire RND. Andersen, Bondarenko, and Gonzalez-Perez (2015) compares the behaviour

of high-frequency MFIV and CIV, and show that MFIV is severely biased due to artificial

jumps caused by inconsistent truncations during turbulent periods.

CIV recognizes that different parts of the RND are estimated with different degrees

of precision; it allows one to dissect the information of the entire RND into slices. By

constructing CIV measures with different corridors, Andersen and Bondarenko (2010) study
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the pattern of risk premiums for the upside and downside variance; Muzzioli (2013) show

that downside implied volatility is a better forecast of downside variance than upside implied

volatility for the upside variance; Dotsis and Vlastakis (2016) show that only upside risk is

priced in cross-section stock returns and subsumes all the relevant information for volatility

forecasting.

But selecting the most informative parts (corridor) of the RND to extract an efficient

market forecast of underlying asset future volatility given a panel of option prices remains

largely an empirical question. Besides, questions of how CIV measure is compared to BSIV

and MFIV (represented by market volatility index) in terms of predictive ability are left

open.

Several studies have analyzed the optimal corridor with which the constructed CIV mea-

sure is closest correlated to future realized volatility. Andersen and Bondarenko (2007) show,

for index options, that CIV is more correlated to future return volatility than MFIV, and

certain narrow CIV measure outperforms BSIV. Tsiaras (2010) compare CIV with different

corridors from a symmetric cut of the RND for individual stocks from DJIX 30 index and

find that CIV measures with a wider corridor are better forecasts of future realized volatility

compared to both BSIV and MFIV. Muzzioli (2013) show, in line with the findings of An-

dersen and Bondarenko (2007), that for index options CIV measures with narrower corridors

outperforms CIV measures with wider corridors.

In terms of methodology, while regression based methods for comparing the predictive

content of implied volatility are popular among prior literature where implied volatility

itself is interpreted as a forecast of future volatility, it is suggested that GARCH models

provide a general framework for comparing the incremental information content of implied

volatilities for both in-sample hypothesis testing and out-of-sample forecast accuracy test.

The GARCH method adopts a more pragmatic view that implied volatility contains all

relevant information necessary to form a market prediction of future volatility. By adding

implied volatility into GARCH models as an exogenous variable, the predictive content of

implied volatility can be tested. Day and Lewis (1992) estimate the modified GARCH(1,1)

and EGARCH(1,1) specifications for the S&P 100 index without allowing the decay rates for

conditional variance and implied volatility to differ, they find that both returns and implied

volatility contains incremental information. The same GARCH specification is also used

by Kroner, Kneafsey, and Claessens (1995) for the commodity markets where they reach a

similar conclusion. Xu and Taylor (1995); Guo (1996) also use a similar GARCH specification

for the currency options markets but with conditional generalized error distribution. More

recently, Blair, Poon, and Taylor (2001) use the modified TGARCH model to compare the

information content of implied volatilities and high-frequency intraday returns, in contrast
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to specifications in prior studies, they allow the decay rates for conditional variance, implied

volatility and intraday returns to differ, they find that VIX provides most accurate forecasts.

Similar approach is also used by Taylor, Yadav, and Zhang (2010) for the comparison of

predictive content of different (implied) volatility measures.

Since out-of-sample forecasting is more practical relevant than in-sample testing of hy-

pothesis of the information content, the comparisons of forecasting performance in this paper

is carried out in an out-of-sample context. Out-of-sample comparisons are included in most

aforementioned studies under the GARCH framework. This is because the parameters of

in-sample fitted GARCH models only characterize the within-sample properties of implied

volatility, in-sample predictive ability is not transferable to out-of-sample. Dimson and

Marsh (1990) show that the improvement of in-sample forecast ability due to data snooping

is not transferable to out-of-sample forecasting. Nelson (1992) show that ARCH models

provide good in-sample predictive performance even when the model is misspecified, but

out-of-sample forecasting is poor.

By using the modified GARCH models incorporating CIV measures with different corri-

dors, the paper, firstly, assesses the out-of-sample predictive ability of CIV measures through

evaluating the forecast accuracy of out-of-sample conditional volatility. The out-of-sample

approach is similar to Blair et al. (2001) who apply the nested model constructed from the

modified TGARCH specification with implied volatility to out-of-sample forecasting, utiliz-

ing information only from implied volatilities. This paper, instead of using the nested model,

employs the unrestricted model containing information from both index returns and implied

volatilities. Besides, CIV measures are compared to two benchmark measures, BSIV and

a market volatility index. Finally, a simple trading strategy is used to assess the economic

significance of CIV measures.

Our empirical results show that the narrowest CIV measure, covering about 10% of the

RND, dominate the one-day ahead conditional volatility forecasts regardless of the choice of

GARCH models in high volatile period; as market moves to non volatile periods, the optimal

width broadens. For multi-day ahead forecasts, narrow and mid-range CIV measures provide

the most accurate conditional volatility forecasts in high volatility period and the full sample

for all forecast horizons, whereas mid-range and certain broad CIV measures dominate non

turbulent regimes. Our results echoes those by Andersen and Bondarenko (2007); Muzzioli

(2013) for index options where they find CIV measures, covering about 50% of the RND,

are closest related future realized volatility for the forecast horizon of 21 days.

The paper is arranged as follows. Section 2 describes the data.Section 3 introduces the

volatility measures used in this paper. Methods for forecasting and evaluation are presented

in Section 4. Section 5 presents results from out-of-sample forecasting. Section 6 presents
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the economic significance of competing implied volatility measures in a simulated options

market. Section 7 concludes the paper.

2. Data

Data used in this paper are obtained from several sources. Daily end-of-day DJX options

(underlying: Dow Jones Industrial Average) are obtained from the Chicago Board Options

Exchange (CBOE). Daily DJIA index levels and dividend yields are downloaded from the

Thomson Reuters DataStream; The volatility index under the ticker symbol ”VXD”1 is

downloaded from the Federal Reserve Economic Data (FRED) of the Federal Reserve Bank

of St. Louis. Option sample period is from October 1, 2004 to March 6, 2015. DJX options

are European style, and have up to three near-term expiration months and up to three

months on the March quarterly cycle (March, June, September and December), and may

also have up to five years to maturity Leaps. Procedures of option data set construction are

described in the Appendix.

Daily treasury yield curve (also called constant maturity treasury, CMT) rates are used as

risk-free rates and are obtained from the Board of Governors of the Federal Reserve System.

Various maturities, from one-month to thirty-year rates, are available. Interest rates with

intermedia maturities are linearly interpolated, and interest rates with maturities that are

beyond available ranges are estimated by a natural cubic spline extrapolation.

Mid bid-ask prices, instead of traded prices, are used as option prices to eliminate the

bounce effect (Bakshi, Cao, and Chen, 1997, 2000), and the spread effect (Figlewski, 1997).

Option’s time to maturity is calculated by the number of calendar days remaining to maturity

less one (Dumas, Fleming, and Whaley, 1998) for AM-expiration options.

3. Volatility Measures

3.1. Construction of CIV

Unlike MFIV which needs the support of the entire RND, CIV only captures a fraction

of the RND. For a pre-defined corridor/strike range (BL, BH), CIV is computed as

CIV (BH , BL) =
2erT

T

∫ BH

BL

M0(K)

K2
dK (1)

1VXD is the model-free implied volatility index extracted from DJX options by the CBOE.
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where M0(K) = min(C0(K), P0(K)) is the out-of-money European option price, C0(K) and

P0(K) denote the current prices of European call and put options with strike price K and

expiration date T . BL and BH denote the lower and upper corridor bounds for the underlying

asset price.

Corridor implied volatility defined in Eq. (1) is numerically implemented by:

CIV (BL, BH) =
erT

T

m∑
i=1

[
g(Ki) + g(Ki−1)

]
∆K (2)

where g(Ki) = M0(Ki, T )/K2
i , ∆K = (BH − BL)/m, Ki = BL + i∆K, BL = R−1(pl),

BH = R−1(pu). R(·) is the empirical cumulative risk-neutral probability distribution (RND)

function. A large m (m = 6000) is chosen in order to eliminate the discretization error

(Jiang and Tian, 2005, 2007). Since the available strike price points are sparse, a natural

cubic spline interpolation and a linear extrapolation 2 of the implied volatility with respect

to options moneyness3 are used to obtain prices of options with unavailable strikes. Two

sets of options with maturities closest to 30 (calendar) days are used to construct the CIV

measure: near-term options with maturities smaller than 30 days and next-term options with

maturities larger than 30 days. CIV measures at the two maturities are linearly interpolated

to obtain a CIV measure over a 30-day horizon (CBOE, 2015).

Similar to Andersen and Bondarenko (2007), only a symmetric cut of the RND is consid-

ered to construct CIV measures, meaning that the lower and upper risk-neutral probabilities

satisfy pl + pu = 1. Eleven lower risk-neutral probabilities are chosen, pl = 0, 0.01, 0.05,

0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and denote the respective eleven CIV measures as

CIV0, CIV1, CIV5, CIV10, CIV15, CIV20, CIV25, CIV30, CIV35, CIV40, CIV45, with CIV0 the

broadest CIV measure, and CIV45 the narrowest CIV measure. For example, CIV20, repre-

senting CIV (R−1(0.2), R−1(0.8)), is a CIV measure computed with lower and upper corridor

bounds corresponding to risk-neutral probabilities of 0.2 and 0.8, respectively. CIV0 can be

regarded as the corridor-fixed MFIV (Andersen et al., 2015).

The RND is extracted from a cross section of option prices and approximated by the

ratio statistic, R(K) proposed by Andersen et al. (2015)

R(K) =
P (K)

C(K) + P (K)
(3)

where C,P are call and put option prices, respectively. The method overcomes the drawbacks

of percentile-based methods, details are discussed in Andersen, Bondarenko, and Gonzalez-

2See Jiang and Tian (2007) for explanations.
3The convention of BSIV interpolation for different asset classes is shown on page 4 of Malz (2014).
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Perez (2011). The statistic is a monotonically increasing function of the strike price. There-

fore, for each chosen risk-neutral probability there must be a single corresponding strike

price.

3.2. Other Volatility Measures

At-the-money Black-Scholes implied volatility (BSIV) is extracted from ATM option

prices by inverting the Black-Scholes model. The 30-day at-the-money BSIV is obtained by

linearly interpolating BSIVs obtained from prices of near-term and next-term options.

n-day realized volatility is calculated by the Parkinson’s estimator of Parkinson (1980):

nσ2
RV,t =

n∑
t=1

ln(Hight)− ln(Lowt)

4 ln(2)
(4)

where Hight and Lowt are daily high and low DJIA index levels, respectively. The left super-

script n indicates the length of time horizon over which the realized volatility is calculated.

4. Forecasting Methodology

4.1. Model

The exponential GARCH (EGARCH) is employed since the EGARCH model has the

advantage that it captures the stylized facts about return volatility such as the leverage effect

and volatility clustering. Implied volatility measures are incorporated into the EGARCH,

producing the following specification:

lnht =
α0 + α1zt−1 + κ

(
|zt−1| −

√
2
π

)
1− βL

+
δ lnσ2

imp,t−1

1− βvL
(5)

zt = (rt − µ)/
√
ht, zt ∼ i.i.d.(0, 1)

where rt − µ is the excess index return with µ being the expected return, L is the lag

operator, α1 measures the sign effect and is typically negative, and κ measures the size effect

and is typically positive, δ is the parameter that captures the in-sample information content

of the implied volatility measure. β and βv are volatility decay rates for the conditional

volatility and the option term, respectively; they are allowed to differ from each other sicne

the condition β = βv as assumed in the EGARCH specification in Day and Lewis (1992)

is an unnecessary restrictive assumption (Taylor, 2005). σimp,t is the option term which is
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represented by implied volatility measures (CIV, VXD or BSIV).

By placing certain parameter restrictions on the model defined in Eq.(5), three different

models are obtained using different information sets:

1. a volatility model that uses daily index returns alone: δ = 0.

2. a volatility model that uses information contained in option prices without explicit use

of daily index returns: α1 = κ = 0.

3. the unrestricted model that uses information in both historical index returns and im-

plied volatility.

We compared the in-sample volatility forecasting performance of aforementioned two re-

stricted models with the unrestricted model by a log-likelihood ratio test 4, and we found

that the unrestricted model consistently outperform restricted models significantly at 1% sig-

nificance level; the parameter δ on the option term are significant at 5% significance level for

all CIV measures, indicating a significant information content of CIV measures in addition

to the historical information in index returns. The unrestricted model is used in compar-

ing the out-of-sample forecasting performance. The model is estimated by maximizing the

log-likelihood function with respect to the normal density 5 without parameter restrictions.

4.2. Forecasting Methods

Rolling-window forecast is employed to perform out-of-sample forecast of conditional

variances of DJIA index returns. The model evaluation period is from January 3, 2006 to

March 5, 2015 (2308 trading days), data from October 1, 2014 to December 30, 2015 (316

trading days) are used as pre-sample.

Over the evaluation period, at each forecast origin t, the n-day realized volatility nσ2
RV,t

is the variable to forecast by incorporating the implied volatility measure into the EGARCH

model. A total number of 2308 n-day ahead volatility forecasts nht are produced, where

nht is a forecast of nσ2
RV,t based on the information Ψ̂t−1,...,t−316 (6)

for trading days t = N + 1, ..., N + T , where N = 316 is the fixed length of the estimation

window, T = 2308 is the length of period for forecasting. Ψ̂t−1,...,t−316 = (α̂0, α̂1, β̂, β̂v, δ̂)
′ is

4Results of in-sample volatility forecasting performance of restricted and unrestricted models are not
reported.

5A student-t or a generalized error distribution might provide better performance than a normal dis-
tribution does due to the observed leptokurtic distributed asset returns. However, since the information
content of market volatility expectations are studied in the same model setting, the choice of the assumed
density function is orthogonal to the ranking of the forecasting performance of different market volatility
expectations
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the EGARCH model parameter estimates based on past 316 observations of index returns

and implied volatility. One-day ahead volatility forecast 1ht is given by

1ht = exp

(
α̂0 + α̂1zt−1 + κ̂

(
|zt−1| −

√
2
π

)
1− β̂L

+
δ̂ lnσ2

imp,t−1

1− β̂vL

)
(7)

Since only lag one implied volatility measure is available at each forecast origin, multi-day

ahead forecasts cannot be computed by dynamic forecast. Similar to Blair et al. (2001),

under the assumption that E(nht|Ψt−1,...,t−316) =1 ht, to produce 5, 10 and 21 day volatility

forecasts, the one-day ahead volatility forecast is, respectively, multiplied by 5, 10 and 21,

nht = 1ht × n, n = 5, 10, 21 (8)

However, due to the stochastic feature of volatility, this multiplicative method for computing

multi-day ahead conditional variance forecasts may handicap the forecasting performance of

implied volatility measures, and may lead to a different ranking of forecasting performance

compared to the ranking produced in the evaluation of one-day ahead forecast. The square-

root-of-time rule for compounding short-term volatility for long-horizons are discussed and

empirically tested in Balaban and Lu (2016); Danielsson and Zigrand (2006); Diebold, Hick-

man, Inoue, and Schuermann (1998).

4.3. Forecast Evaluation

Let Mk denote the EGARCH model that incorporate implied volatility measure k, and

hk,t which is defined in Eq.(6) denote the volatility forecast obtained from modelMk. Model

Mk yields a sequence of forecasts, hk,1, ..., hk,T , that are compared to σ2
RV,1, ..., σ

2
RV,T , using

a loss function Lk,t, for t = N + 1, ..., N + T . Consequently, the matter for determining the

forecasting performance of implied volatility measures then relies on the evaluation criterion.

Various forecasting criteria are considered in this paper for accessing the forecasting

performance of an implied volatility measure. A number of loss functions are chosen and are

summarised in Table 1. These loss functions are considered by Patton (2010) and Hansen

and Lunde (2005). Particularly, the mean squared error (MSE) is robust in the presence of

noise in the volatility proxy (Patton, 2010).

Besides, the serial correlation R2 obtained from the Mincer-Zarnowitz regression

nσ2
RV,t = α + β(nht) + εt (9)
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is also reported. It offers the proportion of variance explained by the best linear combination

of α + β(nht).

In addition, out-of-sample tests require a robust test statistic for determining the statis-

tical significance of the forecasting performance. Once the test statistic is constructed, its

statistical significance needs to be evaluated, probably by a bootstrap. There are a number of

candidate tests in the literature on out-of-sample forecasting. For instance, Hodrick (1992)

constructs a test statistic under a null hypothesis of no predictability; Goyal and Welch

(2008) uses the historical average return as a benchmark for evaluating forecast ability of

the index return; Diebold and Mariano (1995) and West (1996) focus on the framework of

testing for equal predictive ability (EPA), while White (2000) develops a framework (known

as the Reality Check) of testing for whether a particular forecast model or procedure is

outperformed by alternative forecasts, representing a test of superior predictive ability. A

further development of this framework by Hansen (2005) is known as the superior predictive

ability test (SPA). The SPA test has the advantage over the reality check of White (2000)

that SPA is less sensitive to the inclusion of poor and irrelevant alternative forecasts, and it

is more powerful than other alternative tests for accessing predictive ability (Hansen, 2005;

Hansen and Lunde, 2005). Therefore, this paper adopts the SPA test of Hansen (2005) to

investigate the relative performance of various implied volatility measures under GARCH

models.

The procedure of the SPA test of Hansen (2005) is briefly introduced below. Consider

K + 1 different implied volatility measures k for k = 0, ..., K, which then produces K + 1

EGARCH models Mk. Let M0 be the benchmark model that is compared to models k =

1, ..., K. Each model leads to a sequence of losses Li,k,t for a particular choice of loss function

i, the relative performance variable can then be defined as

Xk,t ≡ Li,0,t − Li,k,t, k = 1, ..., K, t = N + 1, ..., N + T. (10)

The null hypothesis is, in terms of the expected loss E(Xk,t), that the benchmark modelM0

does not underperform any alternative modelMk. Under the null hypothesis, the loss Li,0,t

obtained from benchmark modelM0 is no larger than the loss Li,k,t obtained from alternative

model Mk for all k = 1, ..., K, for a chosen loss function i. Thus the null hypothesis can be

formulated as

H0 : λ ≤ 0, λ = (λ1, ..., λK)′. (11)
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where

λk ≡ E(Xk,t). (12)

The test statistic for the SPA test of Hansen (2005) is given by

T SPA = max
k=1,...,K

√
TX̄k

ω̂kk
(13)

where X̄k = T−1
∑N+T

t=N+1Xk,t (the expected loss), ω̂2
kk is the consistent estimator of ω2

kk and

ω2
kk = limT→∞ var(

√
TX̄k). As suggested by Hansen (2005), the SPA test is implemented

based on the stationary bootstrap of Politis and Romano (1994). The bootstrap resamples

{X∗b,1, ..., X∗b,K}, b = 1, ..., B, are constructed by combining blocks of random lengths, and

block lengths are chosen to be geometrically distributed with mean q = 0.5. The number of

resamples B are chosen to be relatively large. The consistent estimator ω̂kk of ωkk can then

be computed using the bootstrap resamples:

ω̂kk =
1

B

B∑
b=1

(X̄∗b,k − ¯̄X∗k)2 (14)

where X̄∗b,k = 1
T

∑N+T
t=N+1X

∗
b,k,t (the sample mean of each bootstrap resample), ¯̄X∗k = 1

B

∑B
b=1 X̄

∗
b,k.

The empirical distribution of the test statistic for resamples

T ∗b = max
k=1,...,K

√
TZ̄∗b,k
ω̂kk

, b = 1, ..., B (15)

converges to the distribution of the test statistic T SPA under the null hypothesis, with

Z̄∗b,k = X̄∗b,k − ¯̄X∗k × 1 ¯̄X∗
k>−Ak

, Ak = 1
4
T−4ω̂kk, 1{·} is the indicator function. The p-value can

then be computed

p-value =
1

B

B∑
b=1

1{T ∗
b >T

SPA}. (16)

The null hypothesis of the SPA test is rejected for small p-values. In the case where T SPA ≤ 0,

there is no evidence that the benchmark model underperforms all alternative models, by

convention p-value ≡ 1. The SPA p-value is not a p-value in the conventional sense, the SPA

p-value can be interpreted as the intensity of the benchmark producing superior forecasts.

A SPA p-value of 1 indicates the benchmark outperforms all alternatives.
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4.4. Subsamples

The model evaluation period is divided into three ex-ante sub-periods: high volatility,

medium volatility, and low volatility periods. These ex-ante sub-periods are chosen accord-

ing to 21-(trading)day conditional volatility forecasts obtained from a GJR-GARCH(1,1)

model estimated from historical DJIA index returns. The GJR-GARCH(1,1) model has the

following specification:

ht =
α0 + α1ε

2
t−1 + θε2t−11{εt−1 < 0}

1− βL
(17)

the one-step ahead 21-day volatility forecast is obtained by

σt,t+21 =

√
252

21

[
21σ2 +

1− φ21

1− φ
(ht+1 − σ2)

]
(18)

where φ = α1 + 0.5θ + β (persistence parameter), σ2 = α0/(1 − φ) (unconditional return

variance). Days with 21-day conditional volatility forecasts larger than 66.6 percentile of the

volatility forecasts sample are included in high volatility period.

Figure 1 show the selected high volatility periods. It’s expected to be intermittent.

However, the high volatility period generally coincides with the public perception of periods

of volatile markets such as the financial crisis from late 2007 to 2009, and the European

Union’s sovereign credit issues in 2010.

5. Results

5.1. Descriptive Statistics

Table 2 reports the summary statistics for the option data sample. There are some

patterns: (1) more put option contracts are traded than call option contracts, especially

for deep out-of-money (DOTM) contracts (k < 0.9 or K ≥ 1.1), implying that the market

provides insurance against extreme price movements over a broader price interval on the left

side of the price distribution than on the right side. This is also reflected by the option

traded volume: the total traded volume for DOTM put options with moneyness k < 0.9 is

almost four times as many as the traded volume of DOTM calls with moneyness k ≥ 1.1. (2)

Near-the-money (NTM) and at-the-money (ATM) (0.95 ≤ k < 1.05) options are the most

liquid options. For example, the total traded volume of NTM puts is almost nine times as

many as the total traded volume of DOTM put options for the first maturity, and is more
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than three times as many as the total traded volume of DOTM put options for the second

maturity. The summary statistics for the open interest are in line with the findings above.

Table 3 reports various summary statistics for eleven CIV measures, VXD and BSIV over

the full sample and three subsamples. Focusing on the full sample, VXD is compatible with

the level of the broadest CIV measure CIV0, they both exceed the level of realized volatility

by 36.7%. There is a monotonically decreasing pattern in the mean level of CIV measures as

corridor width narrows. The mean level of CIV15, covering only 70% of the RND, is 5% higher

than realized volatility. Narrower CIV measures are more stable than broader CIV measures

in terms of higher serial auto-correlation, lower sample standard deviation, skewness and

kurtosis. Realized volatility is more volatile than all implied volatility measures, it has the

highest sample standard deviation, skewness and kurtosis statistics, and the lowest 21-day

serial auto-correlation when measurement overlap has minimum effects. Concerning the at-

the-money BSIV, the magnitude of BSIV is significantly lower than broad CIV measures and

VXD. It is more persistent than broad CIV measures at both daily and monthly frequencies,

and has lower skewness and kurtosis of all series. Note that for all measures the serial auto-

correlation decay very slowly and can be well approximated by a hyperbolic shape, indicating

there is a long memory component in the volatility process. The summary statistics for

subsamples are consistent with the findings above.

5.2. One-Day Ahead Forecasting Performance

Table 4 reports the goodness-of-fit measure R2 and best performed CIV measure based

on the SPA test. The R2 is obtained from the Mincer-Zarnowitz regression as defined in

Eq.(9). R2 shows that in high-volatility period and the full sample, the pattern of one-day

ahead forecasts obtained from EGARCH incorporating the narrowest measure (CIV45) is

closest to the pattern of one-day realized volatility itself compared to other CIV measures.

The optimal corridor width broadens as the market moves from high volatility to medium

and low volatility periods, covering 40% and 50% of the RND, respectively. On the other

hand, best performed CIV measures are obtained via the SPA test under a null hypothesis

that the benchmark CIV measure does not underperform any other CIV measures. The

SPA test assesses wether same results can be obtained from similar samples. Therefore, it

measures the statistical significance of results of our sample. All of the best performed CIV

measures have a SPA p-value of 1. The SPA results support the results from R2. Particularly,

the results for MSE are consistently with R2, this is due to the fact that R2 compares the

sum of squared mean deviations of forecast errors. Different results are shown for the low

volatility period according to MAE, MAE-SD, and MSE-SD, with CIV35 showing a better
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performance.

Broader CIV measures have larger total forecast errors than the narrowest CIV measure

in high-volatility period, whereas they have smaller total errors in medium volatility and low

volatility periods (Table 11 in the supplemental material). For instance, compared to CIV45,

the disadvantages of CIV30 and CIV35 in high volatility periods offset their advantages in

medium and low volatility periods. The advantage of CIV45 offsets its disadvantage in other

subsamples.

To compare the forecasting performance of CIV measures with other implied volatility

measures, the forecasting procedure is repeated for the CBOE volatility index VXD (under-

lying: DJIA index) and the ATM Black-Scholes implied volatility (BSIV).

Table 5 reports the relative performance of the benchmark measure (VXD/BSIV) com-

pared to CIV measures and SPA test p-values. The relative performance is measured by the

mean loss λk, only the sign of λk is reported. A negative λk indicates a superiority of the

benchmark measure over the alternative. P-values are obtained from the SPA test under

a null hypothesis that the benchmark measure is not inferior to any CIV measures. Con-

cerning VXD, results show that only in the medium volatility period, VXD outperforms two

broadest CIV measures (CIV0 and CIV5), and for rare instances, VXD outperforms narrow

CIV measures according to MAE-SD. For the full sample and all other subsamples, VXD is

outperformed by CIV measures. Note that for periods excluding high volatility period, VXD

is outperformed by all CIV measures except CIV5 according to MSE. SPA p-values indicate

that VXD does not outperform all CIV measures.

Moving to the performance of BSIV, results show that BSIV outperforms two broadest

CIV measures for almost all instances. Mid-range CIV measures are outperformed by BSIV

in all subsamples and the full sample except the medium volatility period. Two narrowest

CIV measures are outperformed in low volatility period, and in high volatility period and the

full sample according to MAE-SD. For the periods excluding high volatility period, BSIV

does not outperform narrow CIV measures. The p-values indicate that for all instances,

BSIV does not outperform all CIV measures.

5.3. Multi-Day Ahead Forecasting Performance

Moving to the performance of multi-day ahead forecasts, Table 6 reports forecasting

performance for three forecasting horizons: 5, 10 and 21 days. Panel A shows the best

performed CIV measures which obtained via the SPA test under a null hypothesis that the

benchmark CIV measure does not underperform any other CIV measures. All of the best

performed CIV measures have a SPA p-value of 1. The narrowest measure CIV45 outperforms
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other CIV measures in the full sample and high-volatility periods for all instances. This is

similar to the pattern of one-day ahead forecasts. Yet, the narrowest CIV measure stays

superior in terms of predictive ability in medium-volatility periods over 5- and 10-day forecast

horizons according to MSE and MSE-SD, and over 5-day horizon according to MAE. For

other instances in the medium-volatility periods and all instances in low-volatility periods,

the SPA test favours broader CIV measures, covering 30 to 50% of the RND. However,

there are some instances where broad CIV measures, covering about 80 to 98% of the RND,

outperform others in medium- and low-volatility periods.

Panel B compares the performance of the benchmark measure (VXD/BSIV) with best

performed CIV measures. Relative performance measure λk and the SPA p-values are re-

ported. The SPA p-values are obtained from the SPA test under a null hypothesis that the

benchmark measure does not underperform any CIV measures. λk shows that VXD are out-

performed by CIV measures for all instances. All p-values are small, the null hypothesis of

the SPA test for VXD is rejected. Concerning BSIV, for all instances in the full sample, high

and medium volatility periods, both λk and SPA test disfavours BSIV in terms of forecast

ability. In contrast, in low volatility periods, BSIV outperforms all CIV measures for three

forecasting horizons, except for 21-day horizons according to MSE-SD, and 5- and 10-day

horizons according to MAE.

5.4. Alternative Models

The forecasting procedure is repeated for two other frequently used GARCH family mod-

els: namely GARCH and the nonlinear asymmetric GARCH (NAGARCH) with the following

specifications respectively:

GARCH: ht =
α0 + α1ε

2
t−1

1− βL
+
δσ2

imp,t−1

1− βvL
(19)

NAGARCH: ht =
α0 + α1

(
εt−1 − θ

√
ht−1

)2

1− βL
+
δσ2

imp,t−1

1− βvL
(20)

5.4.1. One-Day Ahead Forecasts

Table 7 reports the one-day ahead forecasting performance of alternative models. Under

both GARCH and NAGARCH models, as suggested by R2, the narrowest CIV measure

provides the most accurate out-of-sample one-day ahead forecasts for the full sample and

high volatility period, and the optimal width broadens as market moves from high volatility

period to medium and low volatility periods, covering 40 to 60% of the RND, except for

the medium volatility period under the NAGARCH model where R2 favours the broad CIV
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measure (CIV1). In addition, the results from R2 are consistent with the SPA test if MSE

is used. The advantage of best performed CIV measure in high volatility period offsets its

disadvantage in medium and low volatility periods, so that the best performed CIV measure

for the full sample is the same as in high volatility period (Table 12 and 13 in the supplemental

material). Those patterns support the results of EGARCH one-day ahead forecasts.

The results for comparisons with benchmark measures under alternative models are

slightly different from results under EGARCH. Under GARCH, CIV measures are outper-

formed by VXD only in medium volatility period if MAE and MAE-SD are used. For other

periods, VXD is outperformed by best performed CIV measures. In contrast, under NA-

GARCH, VXD does not outperform all CIV measures for all instances. Moving to BSIV,

under GARCH, BSIV outperforms all CIV measures in medium volatility period, whereas

it is outperformed by the best performed CIV measures for all other instances, except for

the full sample and high volatility period if MSE is used. However, under NAGARCH, it

is found that best performed CIV measures are outperformed by BSIV for the full sample

and high volatility period, while CIV measures are able to deliver more accurate forecasts

in medium and low volatility periods.

5.4.2. Multi-Day Ahead Forecasts

Table 8 reports the multi-day ahead forecasting performance for GARCH and NA-

GARCH. Under GARCH, mid-range and narrow CIV measures are favoured for the full

sample for all three horizons, covering 10 to 50% of the RND. Note that the best performed

CIV measures for the full sample are almost the same as for high volatility period except for

the loss function MAE-SD, this is similar to the pattern for results discussed in previous sec-

tions. For the medium volatility period, all loss functions prefer two narrowest CIV measures

for all three forecast horizons, whereas in low volatility period, mid-range and narrow CIV

measures are preferred for horizons of 5 and 10 days, broader measures for 21-day forecast

horizon. Under NAGARCH, no obvious patterns exist. However, for most instances in the

full sample, high volatility and low volatility periods, SPA test favours mid-range and narrow

CIV measures over broad measures with some exceptions. Two broadest CIV measures are

preferred in medium volatility period.

Panel B shows the results for comparisons with the benchmark measure (VXD/BSIV).

Under GARCH, best performed CIV measures are outperformed by VXD only in medium

volatility period for horizons of 10 and 21 days, whereas they outperform VXD for all other

instances. BSIV outperforms all CIV measures similarly in medium volatility period , but

for 5 and 10-day horizons. BSIV are favoured for 21-day horizon if MSE is used in medium

volatility period. For all other instances, BSIV is not able to deliver a superiority over
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best performed CIV measures. Under NAGARCH, similar patterns are presented for VXD,

but only for 5-day horizon. However, different patterns are presented for BSIV under NA-

GARCH. BSIV is found to be superior for the forecast horizon of 5 days in the full sample

and high volatility period, and for 10-day horizon for high volatility period if MAE and

MAE-SD are used. BSIV is also preferred for 10-day horizon if MAE is used in the full

sample, and for 21-day horizon if MAE-SD is used in high volatility period. The mixed

results of comparisons between best performed CIV measures and the benchmark measure

for multi-day ahead forecasts may be due to that the multiplicative method in Eq.(8) for

computing multi-day ahead forecasts under a constant volatility assumption contradicts with

the fact that volatility is stochastic.

5.5. Corridor Bounds

Table 9 reports the percentage of days when corridor bounds are beyond the available

strike range. The corridor bounds for the broadest CIV measure stay outside the available

strike range for all the sample days. The percentage number decreases dramatically as

corridor width narrows. It should be noted that the extrapolation used to compute broad

CIV measures should not affect our results because: (1) a linear extrapolation ensures that

the extrapolated prices are not under- (over) estimated for puts (calls); (2) corridor bounds

for CIV measures covering 70% of the RND or less stay outside the available strike range

on less than 1% of sample days, yet their out-of-sample performance differs, this is true

especially for high volatility periods; (3) except for the narrowest CIV measure which provides

consistent superior performance in high volatility periods, the optimal corridor width for

medium and low volatility periods does change under different models: for instance, under

the NAGARCH, CIV1 outperforms narrower CIV measures in the medium volatility periods,

while on more than half of sample days the upper corridor bounds for the first maturity stay

outside the available strike range.

6. Economic Significance

In this section, we examine the economic significance of various implied volatility mea-

sures based on simulated options trading. Option strategies are constructed to only allow

speculations on the volatility information. A simple delta-hedged put option strategy is

used.
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6.1. Simulated Trading

The trading is carried out ex ante (out-of-sample). On each trading day, market agents

fit past 316 observations of CIV measures in a simple AR(1) model with the following

specification:

lnCIVt = β0 + β1 lnCIVt−1 + εt. (21)

The estimated parameters are used to forecast today’s CIV, and the CIV forecast is then

used to obtain a price forecast for the ATM put options by using the Black-Scholes Model.

Market agents enter their positions by buying (selling) one put contract if the option portfolio

is underpriced (overpriced), and simultaneously buying (selling) ∆p number of DJIA index

futures. The positions are closed by an offsetting order so that they can rebalance their

portfolio the next day. Only options with maturities between 7 to 60 days are traded.

Futures with a maturity closest to the put option are chosen. If a put option traded on the

previous day cannot be found on the next day, the rate of return for that contract during

this period is recorded as -1. The rate of return of the delta-hedged puts is calculated as, if

an put contract is bought:

π =
(Pclose − Popen) + |∆p|(Fclose − Fopen)

Popen

(22)

and if an put option contract is sold:

π = −(Pclose − Popen) + |∆p|(Fclose − Fopen)

Popen

(23)

where P is the put option price, ∆p is the put option’s delta. Market agents are allowed

to borrow at the risk-free rate and to invest all profits from option trades into risk-free

assets. Therefore, a risk-free rate are deducted (added) from (to) the rate of return of the

delta-hedged puts. p-values for the mean are based on Efron and Tibshirani (1993) and

Efron (1979), and p-values for the Sharpe ratio are based on Opdyke (2007). All p-values

are calculated through a bootstrap t-test. The t-test is based on the empirical distribution

of returns. The empirical distribution of returns is obtained from 10000 nonparametric

bootstrap repetitions of the return sample. Each repetition is obtained by drawing daily

rates of returns with replacement.

6.2. Before Transaction Costs

Table 10 reports the results of trading in short-term delta-hedged puts. Numbers in bold

indicate significance at 10% significance level. We find that in high volatility periods, the
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narrowest CIV has a significant mean return of 0.776% at 10% significance level. In the

medium volatility periods, measures from CIV20 to CIV45 have significant mean returns,

with a mean return of 1.1052% for CIV45, the highest among all significant mean returns.

In low volatility periods, no CIV measure is found to have significant mean returns. In the

full sample, CIV15, CIV30 and narrower CIV measures have significant means, with CIV45

possessing the highest significant mean return of 0.6305%. None of CIV measures have a

significant Sharpe ratio.

The results of comparisons of mean returns and Sharpe ratios are reported in the supple-

mental material (Table 14 and Table 15). They show that in the medium-volatility periods

and the full sample, narrower CIV measures generate significant larger mean returns than

broader CIV measures, VXD and BSIV at 10% significance level. No significant differences

between mean returns are found in high volatility and low volatility periods. The profitability

pattern of Sharpe ratios is similar to that of mean returns.

6.3. After Transaction Costs

Extensive literature has documented that transaction costs are quite substantial in the

options market. Transaction costs mainly include two parts: the bid-ask spread and com-

mission fees. The bid-ask spread reflects the supply and demand conditions in the options

market, and is often seen to be quite small in a liquid market. We introduce a 25% effective

bid-ask spread6: the effective ask (bid) price is the midpoint price plus (minus) 12.5% of the

bid-ask spread. In addition, we also include a commission fee which is set to 0.5% of the

value of the traded option portfolio; see (Hull, 2012, Table 9.1) for a typical commission fee

scheme in the options market. Since we close out our positions in the options market by

an offsetting order, commission fees are payable both upon entering and exiting the current

position in the market. Results present similar patterns to before translaction costs, except

that all CIV measures are found to generate significant losses under all market conditions.

The results of trading after transaction costs are not reported in the paper.

7. Conclusion

This paper provides studies on the predictive ability of corridor implied volatility (CIV)

measure. It is motivated by the fact that CIV is measured with better precision and reliability

than the model-free implied volatility (MFIV) due to the lack of liquid options in the tails of

6In our unreported results, a larger or smaller effective bid-ask spread does not change the pattern of the
profitability of CIVs, nor does the commission fee.
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the risk-neutral distribution (RND) (Andersen and Bondarenko, 2007). By selecting different

parts of the RND with pre-defined upper and lower price barriers (termed as ”corridor”),

CIV measures with different corridors are constructed. The paper differs from prior research

on CIV, in terms of methodology, that the predictive ability of CIV measures is evaluated

through the out-of-sample forecast accuracy of conditional volatility, by adding CIV measures

to the modified GARCH models.

Out-of-sample comparisons show, for the Dow Jones Industrial Average index, that the

narrowest CIV measure, covering about 10% of the RND, provide the most accurate one-day

ahead conditional volatility forecasts for the full sample and high-volatility period, regardless

of the choice of GARCH models. It is also observed that the optimal corridor width broad-

ens as market moves from high volatility regime to medium and low volatility regimes, with

mid-range CIV measures dominate non volatile markets. Regarding the multi-day ahead

forecasts, similar conclusions are reached: narrow and mid-range CIV measures, covering

about 10 to 50% of the RND, are favoured in the full sample and high volatile period, de-

pending on which loss functions are used; whereas certain wide and mid-range CIV measures

are favoured in non turbulent markets. It is also find that since the advantage of the best

performed CIV measure in high volatility period is large, it offsets its disadvantages in non

turbulent times, the optimal CIV measures in the full sample is consistently in line with

in high volatility period. Our results echoes those by Andersen and Bondarenko (2007);

Muzzioli (2013) for index options where they find mid-range CIV measures, covering about

50% of the RND, are closest related future realized volatility for 21-day forecast horizon.

The comparisons between CIV measures and two market benchmark measures show

that best performed CIV measures are occasionally outperfomed by the CBOE volatility

index VXD only in medium volatility regimes. Whereas BSIV is found to outperform best

performed CIV measures in high volatility period and the full sample under GARCH and

NAGARCH framework, and is inferior to CIV measures under the EGARCH model.

The trading simulation shows that only the narrowest CIV measure is able to generate

significant mean returns at 10% significance level before transaction costs. After transaction

costs, none of the implied volatility measures are able to generate significant profits.

Appendix A. Option Data Set Construction

This appendix provides a detailed description of the procedure of option data cleaning,

since the raw option data are disorganized, and may contain stale price quotes and quotes

that violate non-arbitrage conditions.

1. Call and put options with the same contract specifications are matched.
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2. The underlying asset price is adjusted by deducting the cash dividends from the

daily closing index levels. For DJIA index, daily actual dividends are not available, the

dividend-adjusted prices are calculated by using daily dividend yield

S∗i = Sie
−ζiτi

where S∗i is the dividend-adjusted index level, Si is the daily closing index level, ζi is the

daily dividend yield on day i, τi is options’ time to maturity (annualized).

3. Several option filters are applied to exclude stale option quotes. These quotes are

generated by options that are illiquid and likely mispriced. The filters are:

(1) Options with zero-bid quotes are excluded from the sample.

(2) Options with less than 7 days time to maturity are excluded. These options are illiquid

and are affected by microstructure factors.

(3) In-the-money options are excluded. In-the-money options are generally overpriced and

are less liquid than ATM and OTM options. Both OTM put and call options are used

in order to ensure the range of the available strikes is sufficiently wide, and this will

minimize the approximation errors due to extrapolation in BSIV at strikes beyond the

available strikes.

(4) Options that violate basic non-arbitrage conditions are excluded. Non-arbitrage con-

ditions for European options include boundary conditions, monotonic conditions and

convexity conditions.

4. Robust implied forward prices are calculated. The procedure is as follows:

(1) First, for each maturity pair, the VIX method is used to calculate the implied forward

prices F , which can be expressed as

F = K∗ + erτ
(
C(K∗)− P (K∗)

)
where K∗ is the strike price at which the absolute difference between the call and put

prices is the smallest.

(2) Second, for all maturity pairs we set a threshold of $87 for the difference between DJX

call and put option prices. Any put-call pairs that satisfy the threshold are included.

Then by using the above equation each put-call pair produces a forward price. Finally,

the median of the forward price series is chosen as the robust forward price and is

7The threshold is determined empirically and it’s ensured to be larger than the max price differences
between ATM call and put options. We also tried other thresholds, no change in calculated robust forward
price has been detected.
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denoted as F ∗. F is retained if F deviates no more than 0.5% from F ∗, otherwise F ∗

is used.
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Fig. 1. High Volatility Periods
The figure shows the high-volatility periods (shadow area) and one-day ahead 21-day con-
ditional volatility forecasts (solid line). Model evaluation periods are divided according to
21-(trading)day conditional volatility forecasts obtained from a GJR-GARCH(1,1) model
estimated from historical DJIA index levels.
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Table 1: Specifications of Loss Functions

Loss Specification

Absolute error L1,k,t =
∣∣∣nσ2

RV,t − nhk,t

∣∣∣
Absolute error (S.D.) L2,k,t =

∣∣∣nσRV,t −√nhk,t

∣∣∣
Squared error L3,k,t =

(
nσ2

RV,t − nhk,t

)2

Squared error (S.D.) L4,k,t =
(
nσRV,t −

√
nhk,t

)2

The table summarizes the loss functions and their specifications. nσ2
RV,t is n-day realized

volatility, nhk,t is the n-step ahead conditional volatility forecast from model Mk, where
model Mk is a GARCH family model that incorporates implied volatility measure k.
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Table 2: Summary Statistics of DJX Options

Panel A Number of Traded Option Contracts

Maturity OTM Put OTM Call

k < 0.9 0.9 ≤ k < 0.95 0.95 ≤ k < 1 1 ≤ k < 1.05 1.05 ≤ k < 1.1 k ≥ 1.1 Total

First 14243 11314 15555 12742 3379 1183 58416
Second 36646 14846 15728 15155 8759 4479 95613

Panel B Option Traded Volume

Maturity OTM Put OTM Call

k < 0.9 0.9 ≤ k < 0.95 0.95 ≤ k < 1 1 ≤ k < 1.05 1.05 ≤ k < 1.1 k ≥ 1.1 Total

First 504214 866264 4619497 4294058 497958 128129 10910120
Second 593249 720841 2162809 2379316 493843 133317 6483375

Panel C Open Interest

Maturity OTM Put OTM Call

k < 0.9 0.9 ≤ k < 0.95 0.95 ≤ k < 1 1 ≤ k < 1.05 1.05 ≤ k < 1.1 k ≥ 1.1 Total

First 12622654 18289594 48565078 43497632 8350618 2404667 133730243
Second 23086095 16057421 26710772 29596155 9651710 4240892 109343045

The table summarizes the the number of traded option contracts, option traded volume, and open interest for different strike price intervals in
the option data sample. The number of traded option contracts counts the number of contracts with different contract specifications (strikes and
time to maturity). The traded volume counts the total number of option contracts traded in the market. The open interest counts the number of
outstanding options in the market. ’First Maturity’ and ’Second Maturity’ refer to option samples with a shorter time-to-maturity (less than 30
days) and a longer time-to-maturity (larger than 30 days).
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Table 3: Summary Statistics for Volatility Measures

Panel A: Full Sample
21σRV CIV0 CIV1 CIV5 CIV10 CIV15 CIV20 CIV25 CIV30 CIV35 CIV40 CIV45 VXD BSIV

Mean 0.139 0.190 0.183 0.169 0.157 0.146 0.136 0.125 0.113 0.099 0.082 0.059 0.190 0.170
St.Dev 0.091 0.092 0.090 0.084 0.079 0.074 0.068 0.063 0.057 0.050 0.041 0.030 0.090 0.085
Skewness 3.080 2.364 2.381 2.378 2.375 2.366 2.369 2.362 2.356 2.353 2.342 2.335 2.335 2.330
Kurtosis 15.217 10.237 10.378 10.398 10.393 10.302 10.319 10.269 10.211 10.203 10.130 10.111 10.031 10.113
ρ(1) 0.997 0.977 0.976 0.975 0.976 0.9778 0.978 0.979 0.980 0.980 0.979 0.977 0.981 0.976
ρ(21) 0.771 0.816 0.814 0.815 0.817 0.820 0.821 0.822 0.823 0.823 0.824 0.823 0.825 0.822

Panel B: High-Volatility
21σRV CIV0 CIV1 CIV5 CIV10 CIV15 CIV20 CIV25 CIV30 CIV35 CIV40 CIV45 VXD BSIV

Mean 0.211 0.280 0.271 0.253 0.235 0.220 0.204 0.188 0.170 0.149 0.124 0.089 0.279 0.255
St.Dev 0.119 0.106 0.104 0.097 0.090 0.084 0.078 0.072 0.065 0.057 0.047 0.034 0.104 0.096
Skewness 2.180 1.760 1.792 1.815 1.821 1.810 1.814 1.807 1.800 1.803 1.797 1.797 1.727 1.803
Kurtosis 7.917 6.228 6.388 6.517 6.545 6.469 6.485 6.450 6.403 6.423 6.399 6.428 6.081 6.483
ρ(1) 0.991 0.965 0.963 0.961 0.961 0.963 0.963 0.963 0.964 0.963 0.963 0.959 0.964 0.957
ρ(21) 0.692 0.686 0.685 0.685 0.686 0.688 0.688 0.689 0.690 0.690 0.690 0.688 0.694 0.685

Panel C: Medium-Volatility
21σRV CIV0 CIV1 CIV5 CIV10 CIV15 CIV20 CIV25 CIV30 CIV35 CIV40 CIV45 VXD BSIV

Mean 0.112 0.165 0.158 0.145 0.135 0.125 0.116 0.107 0.096 0.085 0.070 0.050 0.164 0.145
St.Dev 0.041 0.0272 0.027 0.025 0.023 0.021 0.020 0.018 0.016 0.014 0.012 0.008 0.025 0.024
Skewness 2.772 1.363 1.432 1.416 1.213 1.133 1.044 0.893 0.829 0.788 0.776 0.771 0.531 0.727
Kurtosis 13.317 9.435 9.734 9.383 7.654 7.139 6.420 5.057 4.506 4.234 4.133 4.099 3.093 3.685
ρ(1) 0.939 0.766 0.764 0.769 0.791 0.803 0.813 0.829 0.836 0.839 0.836 0.828 0.869 0.830
ρ(21) 0.055 0.288 0.287 0.292 0.304 0.310 0.315 0.322 0.324 0.327 0.328 0.333 0.318 0.320

Panel D: Low-Volatility
21σRV CIV0 CIV1 CIV5 CIV10 CIV15 CIV20 CIV25 CIV30 CIV35 CIV40 CIV45 VXD BSIV

Mean 0.094 0.125 0.119 0.109 0.101 0.094 0.087 0.080 0.072 0.063 0.052 0.038 0.125 0.109
St.Dev 0.034 0.0173 0.016 0.015 0.014 0.013 0.012 0.011 0.010 0.008 0.007 0.005 0.017 0.015
Skewness 2.807 1.063 1.228 1.223 1.085 0.847 0.855 0.836 0.789 0.784 0.776 0.751 0.646 0.727
Kurtosis 14.166 6.259 7.189 6.921 5.554 3.732 3.804 3.724 3.567 3.555 3.554 3.552 3.061 3.461
ρ(1) 0.939 0.854 0.839 0.841 0.852 0.878 0.876 0.878 0.888 0.888 0.883 0.873 0.916 0.867
ρ(21) 0.157 0.525 0.474 0.461 0.465 0.482 0.479 0.480 0.491 0.488 0.483 0.476 0.556 0.475

ρ(1) and ρ(21) refer to serial auto-correlation coefficients with lags of 1 and 21 trading days.



Table 4: One-day ahead forecasting performance of EGARCH

Panel A: Squared Correlation R2

CIV0 CIV1 CIV5 CIV10 CIV15 CIV20 CIV25 CIV30 CIV35 CIV40 CIV45

High 0.3774 0.3535 0.4047 0.3819 0.3938 0.3603 0.3771 0.3955 0.4055 0.3993 0.4057
Medium 0.0613 0.0610 0.0682 0.0825 0.0669 0.0679 0.0862 0.0989 0.0875 0.0733 0.0787

Low 0.0412 0.0350 0.0391 0.0408 0.0528 0.0477 0.0695 0.0529 0.0640 0.0435 0.0494
Full 0.4351 0.4145 0.4622 0.4402 0.4516 0.4200 0.4369 0.4537 0.4623 0.4559 0.4623

Panel B: SPA Test Best Performed CIV Measure
High Medium Low Full

MAE MAE-
SD

MSE MSE-SD MAE MAE-
SD

MSE MSE-SD MAE MAE-
SD

MSE MSE-SD MAE MAE-
SD

MSE MSE-
SD

CIV45 CIV45 CIV45 CIV45 CIV30 CIV30 CIV30 CIV30 CIV35 CIV35 CIV25 CIV35 CIV45 CIV45 CIV45 CIV45

The table reports the serial correlation R2 and bet performed CIV measures. R2 is obtained from the Mincer-
Zarnowitz regression as defined in Eq.(9). Best performed CIV measures are obtained via the SPA test under
a null hypothesis that the benchmark CIV measure does not underperform any other CIV measures. All of the
best performed CIV measures have a SPA p-value of 1.



Table 5: Comparison with VXD and BSIV

Loss Negative λk p-value

Benchmark: VXD CIV0 CIV1 CIV5 CIV10 CIV15 CIV20 CIV25 CIV30 CIV35 CIV40 CIV45

Full Sample
MAE 0.217
MAE-SD 0.067
MSE 0.281
MSE-SD 0.198

High
MAE 0.222
MAE-SD X 0.173
MSE 0.260
MSE-SD 0.199

Medium
MAE X X 0.425
MAE-SD X X X X X 0.604
MSE X X 0.083
MSE-SD X X 0.187

Low
MAE 0.010
MAE-SD 0.016
MSE 0.024
MSE-SD 0.027

Medium + Low
MAE 0.068
MAE-SD 0.067
MSE X 0.055
MSE-SD 0.046

Benchmark: BSIV CIV0 CIV1 CIV5 CIV10 CIV15 CIV20 CIV25 CIV30 CIV35 CIV40 CIV45

Full Sample
MAE X X X X 0.419
MAE-SD X X X X X X X 0.374
MSE X X X 0.404
MSE-SD X X X 0.364

High
MAE X X X 0.414
MAE-SD X X X X X X 0.440
MSE X X X 0.365
MSE-SD X X X 0.366

Medium
MAE X 0.104
MAE-SD 0.193
MSE X X X 0.030
MSE-SD X X 0.097

Low
MAE X X X X X X X X 0.347
MAE-SD X X X X X X X X X X 0.506
MSE X X X X X X 0.249
MSE-SD X X X X X X X 0.334

Medium + Low
MAE X X X 0.128
MAE-SD X X X X X 0.360
MSE X X X 0.058
MSE-SD X X X X 0.117

The table reports the relative performance between CIV measures and market benchmark measures: VXD and BSIV. The relative performance
is measured by λk as defined in Eq.(12). Negative λk is marked with X, indicating a superiority of the benchmark measure over the alternative.
p-values are obtained from the SPA test under a null hypothesis that the benchmark measure does not underperform any CIV measures.
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Table 6: Multi-day ahead forecasting performance of EGARCH

Loss Panel A: SPA Best Performed CIV measure
n = 5 n = 10 n = 21

Full-Sample
MAE CIV45 CIV45 CIV45
MAE-SD CIV45 CIV45 CIV45
MSE CIV45 CIV45 CIV45
MSE-SD CIV45 CIV45 CIV45
High
MAE CIV45 CIV45 CIV45
MAE-SD CIV45 CIV45 CIV45
MSE CIV45 CIV45 CIV45
MSE-SD CIV45 CIV45 CIV45
Medium
MAE CIV45 CIV30 CIV30
MAE-SD CIV1 CIV30 CIV1
MSE CIV45 CIV45 CIV30
MSE-SD CIV45 CIV45 CIV30
Low
MAE CIV35 CIV35 CIV35
MAE-SD CIV25 CIV35 CIV5
MSE CIV25 CIV25 CIV10
MSE-SD CIV25 CIV25 CIV5

Panel B: Negative λk and SPA p-values
VXD BSIV

Loss n = 5 n = 10 n = 21 n = 5 n = 10 n = 21
λk p-value λk p-value λk p-value λk p-value λk p-value λk p-value

Full-Sample
MAE 0.200 0.215 0.275 0.362 0.381 0.375
MAE-SD 0.032 0.054 0.282 0.419 0.461 0.522
MSE 0.258 0.287 0.326 0.379 0.407 0.412
MSE-SD 0.180 0.211 0.245 0.274 0.336 0.377
High
MAE 0.200 0.219 0.235 0.322 0.326 0.317
MAE-SD 0.107 0.162 0.195 0.314 0.347 0.378
MSE 0.258 0.269 0.306 0.341 0.358 0.371
MSE-SD 0.215 0.233 0.278 0.247 0.300 0.292
Medium
MAE 0.203 0.402 0.671 0.184 0.135 0.190
MAE-SD 0.164 0.387 0.706 0.258 0.232 0.345
MSE 0.131 0.240 0.431 0.060 0.054 0.039
MSE-SD 0.079 0.160 0.465 0.042 0.118 0.059
Low
MAE 0.019 0.013 0.033 0.803 0.745 X 1
MAE-SD 0.014 0.022 0.060 X 1 X 1 X 1
MSE 0.041 0.069 0.312 X 1 X 1 X 1
MSE-SD 0.035 0.061 0.503 X 1 X 1 0.694

The table reports the best performed CIV measures, the relative performance between best performed CIV measures and market benchmark measures:
VXD and BSIV, and the SPA test p-values. Best performed CIV measures are obtained via the SPA test under a null hypothesis that the benchmark CIV
measure does not underperform any other CIV measures. All of the best performed CIV measures have a SPA p-value of 1. The relative performance is
measured by λk as defined in Eq.(12). Negative λk is marked with X, indicating a superiority of the benchmark measure over the alternative. p-values
are obtained from the SPA test under a null hypothesis that the benchmark measure does not underperform any CIV measures.



Table 7: One-day ahead forecasting performance of alternative models

Panel A: Squared Correlation R2

CIV0 CIV1 CIV5 CIV10 CIV15 CIV20 CIV25 CIV30 CIV35 CIV40 CIV45

GARCH
High 0.3870 0.3935 0.3908 0.4017 0.4026 0.3997 0.3981 0.4003 0.3989 0.3999 0.4080

Medium 0.0669 0.0729 0.0720 0.0751 0.0795 0.0819 0.0838 0.0884 0.0809 0.0818 0.0830
Low 0.0179 0.0216 0.0228 0.0254 0.0300 0.0323 0.0293 0.0279 0.0301 0.0296 0.0291
Full 0.4475 0.4534 0.4507 0.4601 0.4606 0.4582 0.4570 0.4587 0.4575 0.4586 0.4654

NAGARCH
High 0.4137 0.4050 0.4156 0.4163 0.4130 0.4118 0.4141 0.4086 0.4063 0.4057 0.4175

Medium 0.0952 0.0992 0.0934 0.0956 0.0934 0.0904 0.0916 0.0966 0.0930 0.0939 0.0971
Low 0.0721 0.0755 0.0756 0.0743 0.0748 0.0742 0.0758 0.0757 0.0736 0.0725 0.0733
Full 0.4703 0.4630 0.4715 0.4719 0.4690 0.4678 0.4699 0.4653 0.4636 0.4633 0.4730

Panel B: SPA Test Best Performed CIV Measure
High Medium Low Full

MAE MAE-
SD

MSE MSE-SD MAE MAE-
SD

MSE MSE-SD MAE MAE-
SD

MSE MSE-SD MAE MAE-
SD

MSE MSE-
SD

GARCH
CIV45 CIV45 CIV45 CIV45 CIV40 CIV40 CIV30 CIV30 CIV40 CIV15 CIV20 CIV40 CIV45 CIV45 CIV45 CIV45

NAGARCH
CIV10 CIV10 CIV45 CIV45 CIV1 CIV1 CIV1 CIV1 CIV45 CIV45 CIV25 CIV45 CIV10 CIV10 CIV45 CIV45

Panel C: Negative λk
High Medium Low Full

MAE MAE-
SD

MSE MSE-SD MAE MAE-
SD

MSE MSE-SD MAE MAE-
SD

MSE MSE-SD MAE MAE-
SD

MSE MSE-
SD

GARCH
VXD X X

BSIV X X X X X X

NAGARCH
VXD

BSIV X X X X X X X X

The table reports the serial correlation R2, best performed CIV measures and the relative performance between best performed
CIV measures and market benchmark measures: VXD and BSIV. R2 is obtained from the Mincer-Zarnowitz regression as defined
in Eq.(9). Best performed CIV measures are obtained via the SPA test under a null hypothesis that the benchmark CIV measure
does not underperform any other CIV measures. All of the best performed CIV measures have a SPA p-value of 1. The relative
performance is measured by λk as defined in Eq.(12). Negative λk is marked with X, indicating a superiority of the benchmark
measure over the alternative.



Table 8: Multi-day ahead forecasting performance of alternative models

Panel A: SPA Best Performed CIV measure
Loss GARCH NAGARCH

n = 5 n = 10 n = 21 n = 5 n = 10 n = 21
Full Sample
MAE CIV35 CIV35 CIV35 CIV20 CIV20 CIV20
MAE-SD CIV45 CIV45 CIV25 CIV1 CIV1 CIV1
MSE CIV30 CIV30 CIV30 CIV20 CIV20 CIV20
MSE-SD CIV25 CIV25 CIV25 CIV20 CIV20 CIV20
High
MAE CIV35 CIV35 CIV35 CIV30 CIV30 CIV20
MAE-SD CIV10 CIV35 CIV35 CIV45 CIV30 CIV25
MSE CIV30 CIV30 CIV30 CIV20 CIV20 CIV20
MSE-SD CIV25 CIV25 CIV25 CIV20 CIV20 CIV20
Medium
MAE CIV40 CIV40 CIV40 CIV1 CIV0 CIV0
MAE-SD CIV40 CIV40 CIV40 CIV1 CIV0 CIV0
MSE CIV40 CIV40 CIV40 CIV0 CIV0 CIV0
MSE-SD CIV45 CIV45 CIV45 CIV0 CIV0 CIV0
Low
MAE CIV45 CIV20 CIV20 CIV45 CIV45 CIV45
MAE-SD CIV40 CIV20 CIV1 CIV45 CIV45 CIV1
MSE CIV20 CIV20 CIV20 CIV45 CIV45 CIV25
MSE-SD CIV20 CIV20 CIV5 CIV45 CIV1 CIV1

Panel B: Negative λk
GARCH NAGARCH

VXD BSIV VXD BSIV
n = 5 n = 10 n = 21 n = 5 n = 10 n = 21 n = 5 n = 10 n = 21 n = 5 n = 10 n = 21

Full Sample
MAE X X
MAE-SD X
MSE
MSE-SD X
High
MAE X X
MAE-SD X X X
MSE
MSE-SD
Medium
MAE X X X X X
MAE-SD X X X X X
MSE X X X X X X
MSE-SD X X X X X X
Low
MAE
MAE-SD
MSE
MSE-SD

The table reports the best performed CIV measures and the relative performance between best performed CIV measures and market benchmark measures: VXD and
BSIV. Best performed CIV measures are obtained via the SPA test under a null hypothesis that the benchmark CIV measure does not underperform any other CIV
measures. All of the best performed CIV measures have a SPA p-value of 1. The relative performance is measured by λk as defined in Eq.(12). Negative λk is marked
with X, indicating a superiority of the benchmark measure over the alternative.



Table 9: Percentage (%) of Days when corridor bounds are beyond the available strike range

Whole (2308 obs.) CIV0 CIV1 CIV5 CIV10 CIV15 CIV20 CIV25 CIV30 CIV35 CIV40 CIV45

First Maturity
Upper 99.8 51.4 6.5 1.9 0.8 0.4 0.2 0.2 0.0 0.0 0.0
Lower 99.8 12.5 1.3 0.5 0.2 0.1 0.1 0.1 0.0 0.0 0.0
Second Maturity
Upper 99.9 27.3 1.6 0.3 0.1 0.1 0.1 0.1 0.1 0.0 0.0
Lower 99.8 12.5 1.3 0.5 0.2 0.1 0.1 0.1 0.0 0.0 0.0

High (769 obs.)

First Maturity
Upper 100.0 23.9 1.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lower 100.0 6.1 1.2 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Second Maturity
Upper 100.0 5.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lower 100.0 6.1 1.2 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Medium (769 obs.)

First Maturity
Upper 100.0 54.4 6.0 2.2 0.7 0.5 0.1 0.1 0.0 0.0 0.0
Lower 100.0 10.1 2.2 1.0 0.5 0.4 0.4 0.3 0.0 0.0 0.0
Second Maturity
Upper 100.0 22.0 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.1 0.1
Lower 100.0 10.1 2.2 1.0 0.5 0.4 0.4 0.3 0.0 0.0 0.0

Low (770 obs.)

First Maturity
Upper 99.5 76.0 12.2 3.5 1.7 0.6 0.5 0.5 0.1 0.1 0.1
Lower 99.5 21.3 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Second Maturity
Upper 99.7 54.2 4.3 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lower 99.7 21.3 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The table summarizes the percentage (%) of days when corridor bounds are beyond the available strike range. ’First Maturity’ and ’Second
Maturity’ refer to option samples with a shorter time-to-maturity (less than 30 days) and a longer time-to-maturity (larger than 30 days). ’High’,
’Medium’ and ’Low’ refer to high volatility, medium volatility and low volatility periods, respectively.

34



Table 10: Delta-Hedged Puts

Period CIV0 CIV1 CIV5 CIV10 CIV15 CIV20 CIV25 CIV30 CIV35 CIV40 CIV45 VXD BSIV

High (769 obs.)
Mean (%) -0.0450 0.3011 0.3278 0.5831 0.6347 0.4863 0.5033 0.5746 0.6064 0.6578 0.7760 -0.0870 0.4428
p-value 0.9139 0.4892 0.4560 0.1699 0.1358 0.2499 0.2452 0.1808 0.1636 0.1330 0.0815 0.8442 0.3138
Sharpe Ratio (%) -0.3772 2.5284 2.7574 4.9155 5.3570 4.1057 4.2515 4.8554 5.1184 5.5244 6.3597 -0.7299 3.7248
p-value 0.9122 0.4440 0.3759 0.2490 0.2264 0.3075 0.2981 0.2553 0.2572 0.2299 0.1843 0.8277 0.3209
% of + returns 39.79 43.82 53.45 59.69 62.81 64.76 65.54 65.54 65.41 66.06 66.06 39.40 51.76
Avg. # of futures 0.4887 0.4891 0.4902 0.4911 0.4920 0.4929 0.4939 0.4951 0.4965 0.4984 0.5017 0.4887 0.4900
Medium (769 obs.)
Mean (%) -0.4894 -0.0721 -0.0567 0.0678 0.4533 0.8188 1.0215 1.0100 1.0212 1.0611 1.1052 -0.4162 -0.1666
p-value 0.2535 0.8612 0.8947 0.8780 0.2790 0.0515 0.0170 0.0207 0.0184 0.0152 0.0185 0.3321 0.6954
Sharpe Ratio (%) -4.2079 -0.6194 -0.4868 0.5813 3.8853 7.0162 8.7390 8.5984 8.6225 8.8070 8.7118 -3.5774 -1.4314
p-value 0.2647 0.8398 0.8845 0.8519 0.2850 0.1473 0.1022 0.1060 0.1078 0.1063 0.1078 0.3030 0.6382
% of + returns 36.93 39.92 46.68 55.27 61.90 65.41 66.32 66.32 66.06 66.58 66.19 37.19 46.16
Avg. # of futures 0.4906 0.4909 0.4914 0.4918 0.4921 0.4924 0.4926 0.4929 0.4931 0.4932 0.4929 0.4907 0.4914
Low (768 obs.)
Mean (%) 0.1875 0.3648 0.5378 -0.0474 0.3041 -0.2060 -0.3566 -0.1341 -0.0985 -0.0634 0.0096 0.1960 0.4903
p-value 0.7170 0.4645 0.2859 0.9311 0.5491 0.6758 0.4741 0.7925 0.8504 0.8970 0.9847 0.6955 0.3231
Sharpe Ratio (%) 1.3542 2.6374 3.8956 -0.3433 2.2059 -1.4950 -2.5882 -0.9719 -0.7120 -0.4545 0.0665 1.4167 3.5518
p-value 0.7019 0.4716 0.2544 0.6972 0.4764 0.6860 0.4870 0.7863 0.8414 0.8907 0.9874 0.7017 0.2647
% of + returns 38.67 39.71 44.53 52.34 59.51 61.72 61.98 62.76 62.76 63.41 64.32 38.67 45.05
Avg. # of futures 0.4965 0.4969 0.4976 0.4982 0.4988 0.4994 0.5000 0.5009 0.5019 0.5034 0.5063 0.4965 0.4977
Whole (2306 obs.)
Mean (%) -0.1158 0.1979 0.2695 0.2013 0.4641 0.3666 0.3897 0.4838 0.5100 0.5521 0.6305 -0.1025 0.2554
p-value 0.6674 0.4530 0.3014 0.4385 0.0756 0.1664 0.1428 0.0636 0.0541 0.0367 0.0231 0.6967 0.3151
Sharpe Ratio (%) -0.9260 1.5835 2.1593 1.6132 3.7231 2.9400 3.1234 3.8714 4.0653 4.3558 4.7908 -0.8202 2.0466
p-value 0.5977 0.5198 0.3089 0.4010 0.1673 0.2158 0.2038 0.1581 0.1498 0.1302 0.1138 0.6418 0.2785
% of + returns 38.46 41.15 48.22 55.77 61.41 63.96 64.61 64.87 64.74 65.35 65.52 38.42 47.66
Avg. # of futures 0.4919 0.4923 0.4930 0.4937 0.4943 0.4949 0.4955 0.4963 0.4972 0.4983 0.5003 0.4920 0.4930

The table reports the summary statistics from trades in short-term at-the-money delta-hedged puts in the DJX options
market from January 3, 2006 to March 6, 2015. No transaction costs are considered. p-values for the mean are based on
Efron and Tibshirani (1993) and Efron (1979), and p-values for the Sharpe ratio are based on Opdyke (2007). All p-values
are calculated through a bootstrap t-test. The t-test is based on the empirical distribution of returns. The empirical
distribution of returns is obtained from 10000 nonparametric bootstrap repetitions of the return sample. Each repetition
is obtained by drawing daily rates of returns with replacement. Numbers in bold indicate significance at 10% significance
level. ’High’, ’Medium’ and ’Low’ refer to high volatility, medium volatility and low volatility periods, respectively.
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