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Abstract

This is a pioneering effort to test the comparative performance of two competing models

for out-of-sample forecasting the term structure of volatility of crude oil price changes

employing both symmetric and asymmetric evaluation criteria. Under symmetric error

statistics, our empirical model using the estimated growth factor of volatility through

time is overall superior, and it beats in most cases the benchmark model of the square-

root-of-time (
√
T ) for holding periods between one and 250 days. Under asymmetric

error statistics, if over-prediction (under-prediction) of volatility is undesirable, the

empirical (benchmark) model is consistently superior. Relative performance of the

empirical model is much higher for holding periods up to fifty days.
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1. Introduction

It is well documented that volatility of financial asset returns is out-of-sample pre-

dictable (Poon and Granger, 2003), with extensions to commodities markets, including en-

ergy markets
[
Wang and Wu (2012) and their Table 1; Haugom, Langeland, Molnár, and

Westgaard (2014)
]
; albeit there is no consensus on universal superiority of a specific fore-

casting technique; and model performance is both investment horizon and loss-function de-

pendent. However, to the best of our knowledge, there is no explicit published research on

out-of-sample forecasting of the term strcuture of volatility, and subsquent forecast eval-

uation (Balaban, 1998); although there is primarily substantial theoretical and empirical

analysis of the term structure of volatility implied by option prices and credit markets, and

of time scaling of risk and volatility. It should be noted that among other areas of its use,

most notably; traditional option pricing models such as the Black-Scholes formula, and the

regulatory market risk management using the Value-at-Risk technique under a chosen con-

fidence level advocate the use of time scaling of volatility based on the square-root-of-time

(
√
T ) model. It asserts that volatility in terms of return standard deviation grows pro-

portionally by the square root of time, allowing to compound volatility for longer horizons

based on shorter-horizon in-sample estimates of volatility. However, there is ample empirical

evidence against the validity of this
√
T rule, which assumes identically, and independently

returns and a normal distribution (Engle, 2004). Among these, Diebold, Hickman, Inoue,

and Schuermann (1998) show that the common practice of converting one-day volatility

estimates to T -day estimates by scaling by the
√
T model is inappropriate, and produces

overestimates of the variability of long-horizon volatility. Danielsson and Zigrand (2006)

find that by applying the
√
T model to the time scaling of quantiles of return distributions,

risk is underestimated at an increasing rate as the extrapolation horizon is extended, if the

probability of a jump increases, or the confidence level is raised. It is concluded that in

particular, as the scaling horizon increases, the bias introduced by the
√
T rule grows at a

rate faster than time. By examining 47 markets globally, Wang, Yeh, and Cheng (2011) find
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the
√
T rule to be lenient, in that it generally yields downward-biased 10-day and 30-day

Value-at-Risk estimates; particularly in Eastern Europe, Central-South America, and the

Asia Pacific.

This is a pioneering effort aiming at filling the empirical gap in forecasting the out-of-

sample term structure of volatility using the crude oil price changes. To this end, we first

empirically estimate the growth rate of volatility through time for holding periods one to 250

days. Then, we construct volatility forecasts for each holding period using both the empirical

model and the
√
T rule. The predictive ability of both models is compared employing both

symmetric and asymmetric error statistics.

2. Data and methodology

Daily spot prices for WTI-crude oil are used to calculate the T -day realized standard

deviation (σRT ) of T -day non-overlapping continuously compounded changes between January

1986 and November 2014, with 7542 observations. The full sample is equally divided into

the estimation and forecast periods. The empirical growth factor (β) of volatility through

time is obtained in the estimation period by

ln(σRT ) = α + β ln(T ) + εT (1)

where holding period T = 1, 2, 3, ..., 250 days. The out-of-sample T -days volatility forecasts

(σFT ) in the forecasting period are generated by using estimated β̂ from (1) for the empirical

model; while the benchmark
√
T model uses β = 0.5. Both models use one-day realized

standard deviation (σR1 ) in the estimation period as a base to produce out-of-sample forecasts.

σFT = σR1 × T β̂ (2)

The out-of-sample predictive ability of both models is evaluated by, first through the

2



standard and most widely used symmetric error statistics; namely, the mean error (ME), the

mean absolute error (MAE), the root mean squared error (RMSE), and the mean absolute

percentage error (MAPE); and then through the relatively less employed asymmetric error

statistics; namely, the mean mixed error for under-predictions and over-predictions, MME(U)

and MME(O) as in Brailsford and Faff (1996), Balaban, Bayar, and Faff (2006), and Balaban

(2004); and the mean logarithmic error (MLE) as in Pagan and Schwert (1990).1 Note that

the MME(U) and MME(O) penalize under-predictions and over-predictions more heavily,

respectively. The T -day error statistic, forecast volatility minus realized volatility for horizon

T in the forecast period, is given by ET = σFT − σRT .

MME(U) =

∑n
T=1ETDT,O +

∑n
T=1 |ET |0.5DT,U

n
(3)

MME(O) =

∑n
T=1E

0.5
T DT,O +

∑n
T=1 |ET |DT,U

n
(4)

where DT,O = 1 if σFT > σRT , i.e., σFT is an over-prediction, and 0 otherwise; and similarly,

DT,U = 1 if σFT < σRT , i.e., σFT is an under-predicion, and 0 otherwise. Note that |ET | < 0,

and n is the number of forecasts.

MLE =

∑n
T=1

(
ln

σF
T

σR
T

)2
n

(5)

All evaluation criteria are applied for the full sample, where n = 250 and holding period

T = 1, 2, 3, ..., 250; and for five different sub-sets of holding periods, with n = 50 in each.

3. Empirical results

The estimated growth factor (β) of volatility of crude oil price changes through time

in the estimation period January 1986 to mid-June 2000 for holding periods from one day to

250 days is 0.448, which is statistically smaller than 0.5 as assumed by the benchmark model

1The utility-based and profit-based loss functions are out of the scope of the paper.
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of
√
T for the term structure of volatility (). The corresponding figure in the forecasting

period mid-June 2000 to November 2014 is 0.470; again, statistically smaller than 0.5.2 This

implies that the volatility in the crude oil market grows slower than the theoretical model

assumes. Hence, the use of the
√
T model may overall result in over-prediction of volatility,

compared to what it should be.

Table 2 presents the results for the symmetric error statistics, which do not differentiate

between the positive and negative prediction errors. The ME shows that the empirical

(benchmark) model under-predicts (over-predicts), on the average, in all subset of holding

periods. Under the MAE, RMSE and MAPE criteria, it is consistently reported that the

empirical model is overall superior for holding periods from one day to 250 days; and holding

period sub-groups one to 50 days, 151-200 days, and 201-250 days. Most notably, and

calculated as (1 − Relative); the empirical model is 65.8%, 58.3% and 68.4% better than

the benchmark model for the one to 50-day sub-period under the MAE, RMSE and MAPE,

respectively. In this group, it is superior in 44 horizons out of fifty. On the other hand,

for holding periods 51-100 days, and 101-150 days; the benchmark model is better than

the empirical model by between a minimum of 4.9% (51-100, MAPE) and a maximum of

25.5% (101-150, RMSE) depending on the error criterion chosen. Note that the empirical

(benchmark) model is superior for 59.4% (40.6%) of the total 250 horizons. As expected,

the prediction errors increase with the increasing length of holding period.

Table 3 shows the results for the asymmetric error statistics. Recall that the MME(U)

and MME(O) penalize under-predictions and over-predictions more heavily, respectively. If

under-prediction of volatility is undesirable, the benchmark should be chosen regardless of

the length of the holding period group. Its relative performance over the empirical model is

better by between a minimum of 35.4% for holding periods 151-200 days and a maximum

of 78.9% for holding periods 51-100 days. Note that under the MME(U) the benchmark

2The correlation coefficient between the estimation and forecast periods volatility series is 79.8%, signif-
icant at < 0.01. The equality of mean, median and standard deviation of natural log of volatility series in
two periods cannot be rejected at any conventional level.
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(empirical) model is superior for 69.1% (30.9%) of the time if all horizons included. Most

notably, the
√
T rule is superior for 46 horizons within 51 to 100-day group. If, however,

over-prediction of volatility is undesirable, the empirical model should be chosen regardless

of the length of the holding period. Its relative performance over the benchmark model is

better by between a minimum of 45% for holding periods 151-200 days and a maximum of

78.8% for holding periods one to 50 days. On the average, the empirical model is superior

for 79.5% of the time if all horizons included. Within one to 50-day group, the empirical

model is always superior if over-prediction is undesirable.

Under another asymmetric criterion, the MLE, a proportional measure; the empirical

model is overall superior by 28.9% for holding periods one to 250 days. Most notably, it

is superior by 83.5% within one to 50-day horizon. It is also superior for the two longer

holding periods 151-200 days, and 201-250 days over the benchmark model by 35.6% and

51.3%, respectively. The benchmark model is better than its empirical competitor by between

32.1% (51-100 days) and 43.9% (101 to 150 days).

Note that under the MLE criterion, the empirical (benchmark) model is superior for

57.4% (42.6%) of the time in case of all horizons. Within one to 50-day group, the empirical

model is better for 44 holding periods.

4. Conclusion

This is a pioneering effort to compare out-of-sample predictive ability of two competing

models for the term structure of volatility of crude oil price changes between mid-June 2000

and November 2014 for holding periods one to 250 days, and five different subsets of 50-day

holding periods. Using symmetric error statistics, it is found that our empirical model is

overall superior over the benchmark of model of
√
T model, which tends to over-predict

volatility. The superiority of the empirical model is much clearer in the short horizon, or for

holding periods one to 50 days; being its relative performance, on the average, 65% better.
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The benchmark model consistently generates better results if under-prediction of volatility is

undesirable, and this is valid regardless of the length of holding period group. The empirical

model is overall superior if volatility over-prediction is undesirable, and in particular, it is

better for all horizons within one to 50-day holding period.

Our research contributes to the empirical literature on time scaling of volatility by pro-

viding evidence against the
√
T rule in an out-of-sample forecasting framework. We suggest

practical use of empirical growth rate to compound volatility for longer horizons; and re-

inforce that any T -day volatility should ideally be estimated based on appropriate T -day

volatility time series. Our results have important implications, particularly, for financial

and real options pricing, regulatory market risk management using Value-at-Risk models,

and management of short?long portfolio positions; which each and all require out-of-sample

volatility forecasts in the short, medium and long horizons in the crude oil markets. In ad-

dition, differentiation of forecasting performance with special reference to under-prediction

and over-prediction of volatility is of particular importance to options pricing and trading;

as volatility being the only unobservable input with a positive impact on both call and put

options. Further research could and should look into the performance of both models in

these areas through using utility-based and profit-based evaluation criteria. In addition,

we suggest that this forecasting exercise should be extended to analyze the volatility term

structure of other financial time series.
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Table 1: Empirical growth factor (β) for term structure of volatility

Period α β R2 Wald (χ2)

Estimation -3.591∗∗∗ 0.448∗∗∗ 0.939 50.729∗∗∗

-106.590a 61.681

Forecast -3.678∗∗∗ 0.470∗∗∗ 0.867 6.646∗∗∗

-67.979 40.274

Notes: The Wald test gives the χ2 statistic for the difference of β from 0.5.
∗∗∗ Significance at 1% level.
a t-statistic is shown below each coefficient.
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Table 2: Symmetric error statistics

Holding period
(days)

ME MAE RMSE MAPE % superiora

Empirical Benchmark Empirical Benchmark Relative Empirical Benchmark Relative Empirical Benchmark Relative

1-250 -0.0236 0.0366 0.0392 0.0457 0.857 0.0540 0.0643 0.840 0.1451 0.2073 0.700 59.4

1-50 -0.0028 0.0161 0.0055 0.0161 0.342 0.0075 0.0180 0.417 0.0477 0.1507 0.316 87.8
51-100 -0.0249 0.0196 0.0252 0.0216 0.855 0.0298 0.0251 0.840 0.1184 0.1127 0.951 44.9
101-150 -0.0451 0.0183 0.0494 0.0378 0.765 0.0619 0.0461 0.745 0.1684 0.1516 0.900 38.8
151-200 -0.0272 0.0525 0.0571 0.0696 0.820 0.0703 0.0835 0.841 0.1914 0.2906 0.659 63.3
201-250 -0.0178 0.0763 0.0587 0.0834 0.703 0.0698 0.1031 0.676 0.1995 0.3310 0.603 67.3

Notes: The highlighted model is superior. Mean error (ME), mean absolute error (MAE), root mean
squared error (RMSE), and mean absolute percentage error (MAPE). Relative is the ratio between
the actual error statistic of a model and that of the worst performing model.
a Percent of time where the empirical model is superior compared to the benchmark model.
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Table 3: Asymmetric error statistics

Holding period
(days)

MME(U) MME(O) % of over-predictions MLE

Empirical Benchmark Relative %
superiora

Empirical Benchmark Relative %
superiorb

Empirical Benchmark Empirical Benchmark Relative %
superiorb

1-250 0.1415 0.0658 0.465 69.1 0.0712 0.1695 0.420 79.5 29.6 83.6 0.0387 0.0544 0.711 57.4
1-50 0.0454 0.0161 0.355 53.1 0.0260 0.1224 0.212 100.0 44.0 100.0 0.0036 0.0219 0.165 87.8
51-100 0.1455 0.0308 0.211 91.8 0.0284 0.1289 0.221 85.7 8.0 88.0 0.0223 0.0152 0.679 40.8
101-150 0.1893 0.0783 0.414 83.7 0.0647 0.1391 0.465 65.3 16.0 70.0 0.0534 0.0300 0.561 38.8
151-200 0.1625 0.1050 0.646 55.1 0.1145 0.2082 0.550 69.4 40.0 74.0 0.0580 0.0901 0.644 63.3
201-250 0.1649 0.0987 0.598 59.2 0.1223 0.2490 0.491 83.7 40.0 86.0 0.0560 0.1149 0.487 61.2

Notes: Mean mixed error for under-predictions (MME(U)), mean mixed error for over-predictions
(MME(O)), root mean squared error (RMSE), and mean logarithmic error (LE). Relative is the ratio
between the actual error statistic of a model and that of the worst performing model.
a Percent of time where the benchmark model is superior compared to the empirical model.
b Percent of time where the empirical model is superior compared to the benchmark model.
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