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We investigate with computer simulations the critical radius of

pores in a lipid bilayer membrane. Ilton et al. (Ilton et al. 2016

Phys. Rev. Lett. 117, 257801 (doi:10.1103/PhysRevLett.117.

257801)) recently showed that nucleated pores in a

homopolymer film can increase or decrease in size, depending

on whether they are larger or smaller than a critical size which

scales linearly with film thickness. Using dissipative particle

dynamics, a particle-based simulation method, we investigate

the same scenario for a lipid bilayer membrane whose

structure is determined by lipid–water interactions. We

simulate a perforated membrane in which holes larger than a

critical radius grow, while holes smaller than the critical radius

close, as in the experiment of Ilton et al. (Ilton et al. 2016 Phys.
Rev. Lett. 117, 257801 (doi:10.1103/PhysRevLett.117.257801)).

By altering key system parameters such as the number of

particles per lipid and the periodicity, we also describe

scenarios in which pores of any initial size can seal or even

remain stable, showing a fundamental difference in the

behaviour of lipid membranes from polymer films.
1. Introduction
A recent article by Ilton et al. [1] examined the evolution of pores in a

model membrane constructed from polystyrene in a water bath.

A tightly focused laser was used to create a temperature gradient

in the film, decreasing the local surface tension and driving

the formation of a hole whose size was determined by the power

and exposure time of the laser. It was found that holes below a

critical size rc sealed, while larger holes began to increase in size, a

behaviour which had previously been observed in solid-state

membranes [2].

The liquid polymer films of [1] are easily observable via

traditional microscopy techniques due to their large size (the

thinnest homopolymer film studied was approximately 100 nm
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thick, with most films of the order of 1 mm). By contrast, a typical lipid membrane, as might be found in a

biological cell, is much smaller (approx. 10 nm thick) [3,4]. Pore formation and evolution in a lipid

membrane thus have a number of experimental difficulties owing to the small spatial and temporal scales

[5]. Previous work has modelled membrane pore dynamics with Monte Carlo mesh simulation [6],

continuum elasticity and energy arguments [7–9] and small-scale particle simulations [7,10,11]; in this

paper, we simulate a porated lipid membrane with a coarse-grained method which allows feasible

computation at large scales. The simulated system will be shown to reproduce many of the results

observed in [1].

Simulating dynamics on the scale of individual atoms and molecules (such as lipids) is often done with

molecular dynamics, a class of commonly used simulation methods which operate by numerically solving

Newton’s equations of motion for each particle [12]. Because particles are simulated individually, the

computational cost of such simulations becomes infeasible at even moderate scales. This is particularly

evident when simulating particles or structures immersed in fluids (e.g. membranes), whose

characteristic time of motion often differs significantly from that of the solvent.

To explicitly simulate a lipid bilayer membrane, we employ dissipative particle dynamics (DPD), a

modification of molecular dynamics which reduces computational complexity by aggregating small

groups of like atoms or molecules into single ‘dissipative particles’. Extensive comparisons with

molecular dynamics and Navier–Stokes simulations have shown that, with the proper choice of

intermolecular forces, DPD simulations maintain the correct hydrodynamic behaviour across a wide

range of spatial and temporal scales [13–15]. The result is a method which explicitly models the

solvent (via coarse-grained dissipative particles) while being computationally feasible at the scale of

large biological structures [12,16].

We begin by describing the explicit formulation of DPD in §2. The construction of the membrane and

measurement techniques are detailed in §3. Sections 4 and 5 present the simulation results. Finally, the

results are contextualized and discussed in §6.

2. The DPD simulation method
Let the mass, velocity and position of dissipative particle i be given by mi, vi and ri, respectively. The DPD

equation of motion for particle i comprises three pairwise contributions:

mi
dvi

dt
¼
X
j=i

FC
ij þ

X
j=i

FD
ij þ

X
j=i

FR
ij :

FC
ij is a conservative force deriving from a potential exerted on particle i by particle j, similar to the usual

pairwise forces implemented in molecular dynamics schemes. Here, we adopt the common explicit form

FC
ij ¼

aij 1� rij

rc

� �
r̂ij, if rij , rc,

0, else,

(

in terms of a conservative coefficient aij, the inter-particle displacement rij ¼ ri 2 rj (with magnitude rij and

unit vector r̂ij) and a cutoff radius rc. The DPD conservative force is a soft potential (i.e. does not diverge

as rij! 0), and so particles can overlap or even occupy the same point in space, corresponding to the

notion of DPD particles as coarse-grained clusters of smaller atoms or molecules [14,17].

The dissipative force Fij
D and random force Fij

R function as a thermostat and are given by

FD
ij ¼ �gijv

D(rij)(̂rij � vij )̂rij

FR
ij ¼ �sijv

R(rij)uijr̂ij

where vD( � ) and vR( � ) are position-dependent weight functions, vij ¼ vi 2 vj, and gij and sij are the

dissipative and random strengths, respectively. Noise is introduced by the Gaussian white-noise term

uij, which satisfies the stochastic conditions

huij(t)i ¼ 0 and huij(t)ukl(t)i ¼ (dikd jl þ dild jk)d(t� t):

In order to ensure conservation of momentum, it is assumed that the noise terms are symmetric in i and j,
i.e. uij ¼ uji. Español & Warren [13] provided an additional condition in order to preserve the invariant

distribution of the system with conservative forces alone, namely, the fluctuation–dissipation relation

vD(rij) ¼ [vR(rij)]
2 and s2

ij ¼ 2gijkBT,



Table 1. Pairwise coefficients for DPD membrane.

head tail water

aij

head 25.0 50.0 35.0

tail 50.0 15.0 75.0

water 35.0 75.0 25.0

gij

head 4.5 9.0 4.5

tail 9.0 4.5 20.0

water 4.5 20.0 4.5
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where kB is the Boltzmann constant and T the equilibrium temperature. In total, the DPD equations of motion

can then be written as the following set of coupled stochastic differential equations:

dri ¼ vidt,

and dvi ¼
dt
mi

X
j=i

(FC
ij (rij)� gij[v

R(rij)]
2(̂rij � vij )̂rij)

þ 1

mi

X
j=i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gijkBT

q� �
vR(rij )̂rijdWij,

9>>>>>>>>=
>>>>>>>>;

(2:1)

where Wij ¼Wji is a Wiener process for each i, j.
To proceed with the DPD simulation, the system is then stepped forward with a numerical solver.

Here, we use the DPD velocity-Verlet scheme: given positions rn and velocities vn at step n and a

timestep Dt, compute the half-step velocities

v
nþ1=2
i ¼ vn

i þ
1

2mi

�
FC

i (rn)Dtþ FD
i (rn, vn)Dtþ FR

i (rn)
ffiffiffiffiffi
Dt
p �

,

then calculate the next step as

rnþ1
i ¼ rn

i þ v
nþ1=2
i Dt,

vnþ1
i ¼ v

nþ1=2
i þ 1

2mi

�
FC

i (rnþ1)Dtþ FD
i (rnþ1, vnþ1=2)Dtþ FR

i (rnþ1)
ffiffiffiffiffi
Dt
p �

:

This scheme is very similar to traditional velocity-Verlet, with the exception that the dissipative force

term FD must be calculated twice per step since it is both position- and velocity-dependent [12,18].
3. Lipid bilayer simulation
Before carrying out the simulations, it remains to specify the coefficients of equation (2.1). Because there

is a choice of scale for the coarse-graining, DPD coefficients are usually specified for the non-

dimensionalized system. In their foundational paper on DPD, Groot & Warren [19] found that

the dimensionless compressibility of water could be matched by using the conservative coefficient

aij ¼ 25.0, dissipative coefficient gij ¼ 4.5, cutoff radius rc ¼ 1.0 and numerical density r ¼ 3 for unit-

mass DPD particles. To model a lipid bilayer membrane, we additionally introduce particles with

modified coefficients to model the lipids, here referred to as ‘head’ and ‘tail’ particles. The pairwise aij

and gij, chosen to be similar to the existing literature on DPD membranes [20–22] and to reproduce

mesoscopic properties such as lateral fluidity and a stable bilayer structure [23], are shown in table 1.

Head and tail particles are connected as in figure 1c by harmonic bonds with dimensionless energy

Eij ¼ 64(rij 2 0.5)2, so that the resting length of a bond is 0.5. Along the tails, three-body potentials Eijk ¼

20(1 þ cosfijk) are introduced to provide stiffness, where fijk is the angle between bond ij and bond jk; the

resulting hydrophobic chains are thus governed by a bending energy with zero curvature. Copies of

the lipids are then placed in two layers at the vertices of a square lattice, with the tails facing inward.



lipid schematic and bilayer initialization

(b)(a)

(c) (d)

Figure 1. (a) Three-dimensional view of the simulated membrane with pore. Fluid particles (not shown) fill the space on both sides
of the membrane and in the pore. (b) Side and front view of initial membrane configuration. Blue lines at boundary show the
simulation box. (c) Lipid with three heads and two tails comprising six tail particles each. Bonds are shown as thin rods.
Three-body potentials are imposed among triplets with consecutive horizontal bonds. (d ) Binary matrix (value 1 shown in
black) resulting from smoothing and thresholding the front view in (b).
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The outside of the membrane is initialized with water particles placed on a cubic lattice with numerical

density r ¼ 3. Periodic boundary conditions are imposed around the simulation box.

For the first simulation, the periodic simulation box of 144 � 144 � 40 was filled entirely in the first

two dimensions with a bilayer membrane comprising 28 700 lipids with three head particles and two

tails of six particles each, so that the side length of the square lattice on which lipids were initialized

was approximately 1.202. The number of lipids was chosen experimentally to achieve stability in the

membrane. To simulate abrupt pore formation by laser ablation, all lipids intersecting an orthogonal

cylinder of the fixed radius were removed, and the cylinder was included in the initialization region

for fluid particles. The resulting initial state can be seen in figure 1b.

In each simulation, the time evolution of the pore was observed using DPD velocity-Verlet with a

temperature T ¼ 1.0 and timestep Dt ¼ 0.005. To track the size of the pore, the locations of all lipids

were recorded every 1000 steps. Images of the system were created by rendering spheres of radius 0.5

at the location of every head and tail particle, then projecting the three-dimensional system into a

two-dimensional plane tangent to the membrane surface. The resulting images were then smoothed

and thresholded, resulting in binary matrices Mi with value 1 within the pore and 0 without, as in

figure 1d. Finally, the two-dimensional centre of mass position �xi was computed, and the sumP
x Mi(x)jx� �xijwas calculated. For a circle of radius R, the result should be approximated by the integral

ð2p

0

ðR

0

jrjrdrdu ¼ 2p

3
R3,

and so the approximate radius of the pore is given by

Ri �
3

2p

X
x

Mi(x)jx� �xij
 !1=3

: (3:1)

To compute the membrane width, the three-dimensional representation was instead projected into a

plane bisecting the membrane (i.e. an orthographic side view) as in the side view of figure 1b. For each

row in the projected image, the number of non-background pixels was summed, approximating the

width of the membrane at that location; to reduce the effect of the natural thermal fluctuations in the

membrane surface, the minimum of all row widths was used as the membrane width for that image.



time evolution of membrane pores (I)
t = 0 t = 200 t = 400 t = 1000

r0 = 10

r0 = 15

r0 = 20

(b)(a) (c) (d )

Figure 2. Rendered images of pores of three different initial sizes (rows). Four images throughout the simulation are shown,
progressing from (a – d ). Pores shrink or grow exponentially depending on the initial pore radius.
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time evolution of membrane pores (II)
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Figure 3. Membrane pore size over time as calculated by equation (3.1). Size (y axis) is shown in units of the average membrane
width, h ¼ 7.98. Several initial sizes are shown, ranging from r0/h ¼ 1.21 (bottom) to r0/h ¼ 2.56 (top). The shaded region
denotes possible values of the critical ratio rc/h below which pores seal, 1.34 , rc/h , 1.47.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181657
5

The resulting value was time-averaged over 20 images (one every 1000 steps) to obtain a reference value h
for the membrane width.
4. Pores in periodic membranes
4.1. Existence of a critical radius
Results for pores of various initial radii can be seen in figure 2. The behaviour of the pore is a function of

its radius: sufficiently small pores begin to shrink and eventually seal entirely, while sufficiently large

pores begin expanding, eventually severing the membrane. The time-evolving radius of each pore, as

measured by equation (3.1), is shown in figure 3.
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Figure 4. Pore size over time via equation (3.1) for a membrane with increased lipid density. Three initial sizes are shown: top: r0/h ¼ 3.19,
middle: r0/h ¼ 2.52, and bottom: r0/h ¼ 1.86. The shaded region corresponds to the possible range of rc/h derived in figure 3.
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The growth of supercritical pores proceeds in a roughly exponential fashion, in agreement with the

findings for homopolymer films in [1]. For very large times (t . 1000), the pore approaches the order of

the simulation box, and so begins interacting with itself across the periodic boundary, resulting in slower

growth. The subcritical pore, which closed around t ¼ 400, yielded a stable membrane for the remainder

of the simulation. The observed critical ratio 1.34 , rc/h , 1.47 is larger than the ratio rc/h ¼ p/4 derived

by Ilton et al. [1] for a homopolymer film, suggesting an additional free energy cost for pore formation

due to the lipid structure. Note that we define the ratio in terms of the initial size r0, meaning it is possible

a pore which evolves to be smaller than the critical radius may still expand as t!1.

A second set of simulations examined the effect of increasing internal pressure in the membrane. The

number of lipids in the periodic simulation box was increased by 4:4% to 29 970, resulting in a stable

membrane with a lipid excess. For short times, a pore opened in the modified membrane begins to

close regardless of pore size as the membrane relieves internal pressure. As seen in figure 4, the

existence of a critical ratio remains in this scenario, as sufficiently large pores reverse the initial

collapse and expand exponentially as in the first simulation. This behaviour is governed by

equilibrium size, rather than initial size; the pore with r0/h ¼ 1.88, well above the critical ratio, closes

regardless in this new scenario despite having expanded in the initial case of figure 3.

4.2. Membranes of varied thickness
The curvature of the membrane around the lip of the pore decreases with the membrane width h;

increasing the thickness should decrease the energy cost of pore formation, thereby increasing the

critical radius rc. It was shown in [1] that for a homogeneous film, where the free energy cost of pore

formation is derived entirely from edge tension, the scaling should be linear as rc ¼ hp/4. To examine

this scaling for the simulated lipid membrane, we changed the membrane thickness by altering the

number of particles per lipid tail.

Initially, the tail length was increased from six to seven particles. The resulting membrane was

found to be stable and at equilibrium with 29 200 lipids in the same simulation box, i.e. a lipid

density increase of 1.74%. The resulting membrane had a width of approximately h ¼ 8.63 (8.15%

thicker than the original membrane).

Results for this set are shown in figure 5. The single additional tail particle induced an upward shift in

the critical ratio, to 1.48 , rc/h , 1.59, an increase of between 0.68 and 18.66% from the six-particle case.

In addition, there was a notable change in the time scale on which pores evolved away from the critical

region. In particular, the pore initialized at r0/h ¼ 1.59 was nearly stable for the entire duration of the

previous simulations (t � 2000) before eventually opening up into supercritical growth. Figure 5 also

demonstrates the stochastic nature of the dynamics at this spatial scale: in these realizations, the pore

with initial size r0/h ¼ 1.48 closed faster than an initially smaller pore with radius r0/h ¼ 1.36.

Next, the tail length was increased further to 12 particles. The resulting time series can be seen in figure 6.

For very small pores, the behaviour was unchanged, with the hole quickly being sealed. For pores of

moderate size, the doubling of lipid tail length afforded significantly increased stability—above some size

threshold, all pores in the membrane are stable indefinitely, showing a marked contrast with the



po
re

 r
ad

iu
s/

m
em

br
an

e 
w

id
th

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.5
membrane pore evolution, seven lipids per tail

4.0

500 1000
simulation time

1500 2000 2500 3000 3500 4000

Figure 5. Membrane pore size over time from equation (3.1). Size (y axis) uses the new average membrane width h ¼ 8.63. The
shaded region corresponds to the new range for the critical radius, 1.48 , rc/h , 1.59.
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Figure 6. Pore size over time via equation (3.1) for a membrane with 12 particles per lipid tail. Only the smallest pore simulated
was not stable for the duration of the simulation. This membrane had a width of h ¼ 13.49, or 69.05% thicker than the membrane
of figures 3 – 5.
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behaviour of the membranes of figures 3–5. The largest simulated pore (r0 ¼ 50) required the simulation

box be expanded to 240 � 240 � 40 to avoid interference from periodic boundary effects.

Tail lengths of eight and nine lipids were also considered but were found to produce nearly identical

results to the case of 12 lipids per tail. The simulated bilayer membrane thus exhibits a sharp change in

stability as the number of lipids per tail increases from seven to eight.
5. Pores in finite membranes
To further understand this change in stability, we finally considered the case of a finite membrane, i.e. a

free-floating square patch of the membrane of finite size. To simulate such a membrane, lipids placed on

a lattice in the initialization phase were truncated a fixed distance of 5 units away from the edge of the

simulation box. The empty space left by truncating the membrane was included in the region of

initialization for fluid particles.

All simulated finite membrane pores invariably sealed, regardless of initial radius. The membrane

with six particles per lipid tail, which formerly exhibited a critical pore radius, transitioned through a

metastable torus configuration to a layered cluster (see figure 7). The membrane with 12 particles per

lipid tail, whose pores were stable above a small threshold radius, sealed its pore but remained stable

in a finite bilayer disc. We hypothesize that the existence of a critical radius of pores in the periodic

case corresponds directly to the stability of the finite membrane; a stable finite membrane prevents

pores from expanding regardless of their initial size.



time evolution of perforated finite membranes

(a) (b)

Figure 7. Rendered images of simulation results for truncated membranes; time increases left to right. Front and internal side views
for the original membrane with six particles per lipid tail are shown in (a), while the modified membrane with 12 particles per lipid
tail is shown in (b). The original membrane seals its pore but simultaneously transitions into a layered cluster. Conversely, the thicker
membrane seals its pore but remains in a stable finite disc indefinitely. The interior of the membrane in (b) comprises only tail
particles and is not shown.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181657
8

6. Discussion
Many of the experimental findings about the polymer films of [1] were also observed in our dissipative

particle dynamics simulation of a bilayer membrane. In particular, the existence of a critical pore radius

was observed in the periodic simulations when membrane tails comprised six to seven monomers. Ilton

et al. [1] explain the mechanism for such a phenomenon by writing the energy cost of pore formation

DG(r) as a function of the pore radius: (A 2 2pr2)g, in terms of the surface area A of the pore edge

and the per-area surface tension of the film g. Modelling the pore edge as the inner half-surface of a

regular torus with diameter h (the membrane width), the edge surface area A is given by p2hr 2 ph2.

The resulting cost DG(r) is a concave function maximized when @
@rDG(r) ¼ (p2h� 4pr)g ¼ 0, yielding

a critical radius rc ¼ hp/4 which scales linearly with the thickness h of the film. The cost DG(r) is a

barrier for pore formation: once the critical size is reached, further expansion of the pore begins to

reduce the free energy.

This expression ignores any energy cost associated with the molecular structure of the membrane; the

authors also describe a modified argument for a diblock film, which has been used as a simple model of a

lipid bilayer membrane in theoretical work [24]. Owing to the additional cost of rearranging molecules

on the curved surface around the pore, they predict a critical radius larger than for a homopolymer film

by a factor proportional to the non-dimensional curvature L/h, where L is the equilibrium thickness of

the lamellar layers. Our simulation results agree in this respect: critical radii of the lipid membranes

with six to seven monomer tails were found to be 1.34h , rc , 1.47h and 1.48h , rc , 1.59h,

respectively, compared to the homopolymer rc ¼ hp/4 � 0.79h.

There also exist significant differences between our simulations and the work of Ilton et al., most

notably in the case of the thicker membrane. As the diblock copolymer correction term scales with the

non-dimensional curvature, its influence should decay as the membrane width increases, reaching the

same limit of rc/h ¼ p/4 as h! 1. By contrast, our simulations of a thicker lipid bilayer membrane

showed pores above a certain size to be stable indefinitely, i.e. a critical radius above which pores

expanded no longer existed. This suggests that the structure of a lipid bilayer membrane is

fundamentally different to the structure of a diblock copolymer. Unlike the polystyrene film and PS-b-

PMMA diblock copolymer of [1], whose critical radius was a continuous function of membrane

width, the simulated bilayer membrane exhibits a phase transition from a regime where critical radius

relates to thickness (less than or equal to seven monomer lipid tails) to a regime where arbitrarily

large pores are stable (greater than or equal to eight monomer lipid tails).

Our simulations additionally provide insight into the time scale on which growth occurs. Although

pores above the critical radius (in simulations where a critical radius existed) were found to increase in

size roughly exponentially, the time scale of the exponential growth was markedly different between the

membranes with tail lengths of six and seven particles. To compare these time scales, the time series for
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the radius of the smallest supercritical pore was fit to an exponential r0et/t in terms of the characteristic

time t. The thinner membrane (§4.1) was found to have a characteristic time of t1 � 900, while the slightly

thicker membrane (§4.2) was found to have a characteristic time of t2 � 2000. The time scale of pore

evolution for lipid bilayer membranes is thus significantly affected by the structure/width, potentially

in addition to chemical properties (in this context, the force coefficients for particle interaction, which

were not changed between simulations).

Since the DPD method explicitly models the solvent and does not make equilibrium assumptions, it is

also suitable for examining the behaviour of lipid membrane pores in the presence of fluid flows or

pressure gradients, such as those observed in biological cells during movement. Future work can

examine the stability and dynamics of such pores in a variety of contexts of interest in cell biology.
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