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Abstract 

 

Atherosclerosis induces abnormal blood-flow patterns in coronary arteries mainly because of 

the irregular accumulation of fibrofatty plaque on the artery walls. Morphological alterations of 

the wall-surface attributes downgrade vascular elasticity, which compromises the normal 

blood-pressure gradient behavior by sporadically interfering with the effective-flow cross-

section adjustment. An iron-oxide booster has been recently studied as a potential nano-

particle treatment to regulate an elevated blood-pressure condition. Taguchi-type multi-

factorial experimentation rapidly generates small and dense datasets in order to expedite 

arterial flow screening/optimization predictions. The optimal blood pressure-drop performance 

is investigated against four vital controlling factors. We show that tracking down inherently 

complex blood-flow phenomena often entails the elucidation of non-linear and messy data 

structures. Translating such data demands robust and agile techniques to decipher governing 

relationships while guarding against spurious effects from uncertainty asymmetry. We also 

show that by using distribution-free profiling, we may synchronously accomplish the screening 

and optimization tasks more accurately in comparison to other competing techniques. 

Illustrating our technique on a chemical engineering paradigm, we found that out of the four 

investigated factors only the blood behavior index to be strongly influential. A blood behavior 

index setting of 0.5, which is below the normal physiological limit, minimizes the blood pressure 

drop at an optimal value of 385 Pa/m. The proposed methodology demonstrates how the 

required sampling size may be further reduced, thus making the study even more economically 
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and practically efficient. This was shown to be achieved without relinquishing important 

information about the dominant phenomena, hence rendering our solution to be also lean and 

agile.        

 

Keywords: Atherosclerotic coronary artery, nano-bioengineering, screening/optimization 

engineering, robust blood pressure-drop profiling, non-linear non-normal data, data messiness. 
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1. Introduction 

Blood is a non-Newtonian bio-fluid that nourishes a mammalian organism and partakes in 

sustaining its normal physiological condition. Modeling the complex multiphase flow of blood in 

normal and pathophysiological cases has been the subject of several chemical engineering 

studies 1-4. The practical implications of attempting to delineate the complexity of the blood 

flow behavior in several situations, with great engineering interest, such as at interfaces5, in 

suspension concentrations6 and for modified vascularity propensities7, pose continuous 

challenges. Among the most intriguing blood flow phenomena that currently attract the 

attention of modern biomedical engineering and chemical bioengineering areas deal with novel 

applications that promote the efficient regulation of blood pressure abnormalities. Primarily, 

the emphasis is placed on the treatment and prevention of the atherosclerosis disease8. 

Advances in popular nanomedicine aim to assist all three relevant phases: diagnosis, treatment 

and monitoring 9-12. Managing to recommend maintenance tactics for lowering high blood 

pressure levels is susceptible to plenty of factors. It requires deep knowledge about how 

atherosclerosis impairs the function of a coronary artery network. Nanoparticle-based diagnosis 

and drug delivery may be ameliorated by encompassing state of the art chemical engineering 

know-how 13-15. For example, nanoparticles could be applied as drug carriers to mediate the 

underlying hemodynamics in a stenotic vascular channel 16-20. A promising screening study in 

atherosclerotic nano-hemodynamics has been recently examined by Nematollahzadeh et al.21. 

The main influence on the deteriorated blood-flow profile was taken to be due to a significant 

fibrofatty plaque deposition in a coronary artery. It was suspected that fluctuations in the blood 

pressure-drop could be attributed at least to four controlling factors. It was speculated that the 
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same four factors could directly influence blood viscosity, too. Blood was assumed to obey the 

classical Herschel-Bulkley model. The biofluid properties were to be tracked down by combining 

the physics of an assumed plug flow (along the flow centerline) and a Poiseuille flow (adjacent 

to the arterial wall surface). The inherent narrowing of the flow cross-section due to the 

fibrofatty plaque obstruction was bound to complicate the hemodynamics. Thus, a departure 

from a condition of a normal blood flow was clearly anticipated22. When experimenting with 

blood-viscosity models, the yield stress term may also introduce significant uncertainty in the 

overall non-Newtonian flow predictions. This is because the local wall topology attenuates the 

fluid mechanics to its proximity 23. Owing to noise from multifarious sources, profiling effects 

from blood flow data becomes itself a complex process. At the core of modeling the abnormal 

behavior of atherosclerotic nano-hemodynamics might be the robust quantification of the 

uncertainty and its potential asymmetric influence at different controlling factor settings 24, 25.   

One commonly-used toolset in the robust optimization of biotechnological 

products/processes is associated with the Taguchi method26. Taguchi’s quality improvement 

philosophy requires organizing rapid and economic trials in order to swiftly gain knowledge on 

the researched product/process tendencies27. It often promotes the synchronous stochastic 

screening and parameter optimization for a group of investigated effects. Enquiring the 

optimum for a process/product performance does not mean that experiments should be 

executed in isolation from its real production environment. Moreover, product performance is 

adjusted taking in account its pragmatic conditions of use. There is a plethora of paradigms of 

successful applications of the Taguchi method that extends to knowledge discovery in chemical 

systems and other innovative products28. One such contemporary application of the Taguchi 
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method has been focused on the bioengineered nano-regulation of the atherosclerotic 

hemodynamics21. In that study, the blood pressure drop was the critical characteristic that it 

was sought to be optimized; it was symbolized as: -dp/dz (Pa/m). Four controlling factors were 

considered for that study: 1) the radius of the smallest coronary-artery cross-section area, 

owing to the artery narrowing which is caused by the deposited fibrofatty plaque, R (m), 2) the 

iron-oxide (Fe3O4) nano-particle volume-fraction, φ (%), 3) the initial velocity of the blood, Vo 

(m/s), and 4) the blood behavior index1, n. The investigation implemented a four-level, four-

factor L16(44) Taguchi-type orthogonal array (OA) to accommodate the four examined 

controlling factors. The experimental design was balanced, unreplicated but not saturated. 

There was a provision to allocate remainder degrees of freedom such that to estimate the 

experimental error. The four-level trial plan was selected in order to ensure that if there are any 

non-linear effects among the four examined controlling factors, then, it will be likely to uncover 

their curvature(s). Usually, a three-level OA is minimally recommended to track unknown non-

linear effect trends, but the four-level design heightens the resolution for a discovery. Of 

course, ramping up the number of tested factor levels increases the total number of required 

trials and consequently its project cost. No prescreening of the effects was conducted. Thus, it 

was attempted to be simultaneously captured in a single step: 1) the effect potency, 2) the 

effect curvature, and 3) the effect optimization - as envisaged through the classical Taguchi 

experimentation philosophy. There is merit in this strategy because it signifies a substantial 

acceleration of the discovery process by greatly reducing the total trial logistics. This makes 

practical and economic sense when viewing it from a wider engineering perspective27. 

Nevertheless, a task that engages stochastic screening/optimization tools to a targeted complex 
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product/process cannot be reliable if ensuing asymmetric manifestations of the experimental 

uncertainty, among the different tested trial recipes, are not contained 29, 30. Blood flow may be 

viewed as a multi-component chemical system but also as a complex biological system that 

continuously interacts with other intricate physiological systems. Non-linearity and non-

normality may not be exempted from the basic framework of modeling abnormal blood 

pressure behavior. Thus, any attempt to reasonably predict fluctuations in the blood flow 

properties should be capable of distinguishing between the signal and the noise contributions. 

To achieve this, a seamless coordination of an effective data collection scheme with a robust 

data analysis strategy is desired. A Taguchi-type sampling strategy is usually efficient if 

measurements are replicated such that the signal to noise ratio can be evaluated among 

replicates. For unreplicated trials, the signal to noise ratio can still be established but its usage 

ceases to be meaningful as a preferred variability estimator31. But uncertainty always lurks in 

experiments and it is immaterial if the trials have been programmed with Taguchi-type 

orthogonal recipes. Optimal predictions, which have been estimated from measurements, to be 

viable still require a convincing disjunction of the signal from the noise32.  In dense unreplicated 

Taguchi-type trials, it is probably more pertinent to ensure the symmetric contribution of 

uncertainty across all conducted recipes before reaching to any statistical inferences 33. In 

modeling pathological blood flow characteristics this aspect may become pivotal because of the 

intermixing of multi-natured distributions, i.e. often dictated from various sporadically altering 

conditions. The resulting nonreplicated messy datasets would necessitate a proper analysis 

tactic that focuses on the restricted data volume that is available 34, 35. Messiness in gathered 

data is not foreign to chemical engineering studies as non-Gaussian phenomena, data 
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inconsistencies and model inadequacies may run rampant in complex chemical systems 36, 37. 

Orthogonally-designed Taguchi-type experiments when paired with a robust analysis that is apt 

to handle fast, dense, and messy datasets perhaps might find more often application 

opportunities in the field of stochastic screening/optimization of complicated chemical 

processes. Areas such as screening complex reaction networks, optimizing biomedical 

processes as well as large-size industrial operations may be benefited, too 38-40. Fast and robust 

profilers have already been contrived to diagnose non-linear effects in small and messy 

datasets for polymerase chain reaction processes41. The purpose of this work is to review an 

iron-oxide nano-particle screening-optimization (dual) process in an atherosclerotic coronary 

artery by re-working from a different perspective the blood pressure-drop datasets of 

Nematollahzadeh et al. 21. The major motivation for focusing on this bio-chemical system is 

because ischemic heart disease and stroke is the world’s primary causes of human deaths45. 

Worldwide deaths which have been attributed to both diseases tallied up to 15.2 million in the 

year 2016 alone. Naturally, it is bound to attract great scientific attention. The cardiovascular 

disease is associated with impaired blood circulation in the heart vessels due to the excessive 

fibrofatty plaque depositions. Plaque formation restricts blood flow in the heart muscle and 

thus it causes oxygen delivery rate to decrease. Elevated blood pressure levels that persist over 

time may signal the onset and development of pathological conditions owing to atherosclerosis. 

Similarly, ischemic stroke occurs when brain arteries become very narrow, such as in the case of 

an advanced-stage atherosclerosis, leading to severely reduced blood-flow toward the brain 

cells. Atherothrombogenesis exacerbates further the fatality probability because the fat and 

cholesterol plaque buildup in the artery walls may rupture, thus triggering a blood clot 
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formation. Therefore, the study of the phenomena that cause such progressive physiological 

deterioration may aid to gaining knowledge such as to prevent future health impairment. 

Ostensibly, examining further the effect properties in the atherosclerotic coronary-artery flow 

data, published by Nematollahzadeh et al. 21, merits the additional effort because it exemplifies 

a pathological blood-flow improvement research that is first in its kind in the current scientific 

literature. A methodological section follows where the robust screening/optimization essentials 

for a fast and robust analysis are described. Extensive analysis of the case study is detailed in 

the Results section along with issues that may be raised from the implementation of alternative 

techniques in the Discussion section. Conclusions summarize the importance of our findings 

and suggestions for future work. The paper is organized in a manner that emphasizes the 

empirical case study as the centerpiece for the research effort rather than focusing on a general 

development of a theory that may be didactic but lacks immediate practical/engineering 

application42.   

2. Methodology 

 

2.1 The basic hemodynamic flow model 

Hemorheology is a field that explores the non-Newtonian behavior of the blood flow. Blood is a 

shear thinning fluid. Its properties are influenced by its plasma and cell constituents. Blood 

viscosity is regulated by the plasma viscosity, the hematocrit level, the fluid temperature as well 

as physicochemical phenomena such as the erythrocyte aggregation and deformability. To 

evaluate the blood flow properties in an atherosclerotic coronary artery, dispersions of nano-

particles were utilized, for the first time, in the recent research by Nematollahzadeh et al. 21. 

Magnetite nano-particles were introduced into the blood stream in an attempt to model the 
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strength and significance of four specific controlling factors on the blood pressure-drop. The 

proposed constitutive law was based on the Herschel-Bulkley model. This rheological model 

selection offered the joint predictive advantages of the power-law and Bingham plastic models: 

            
   

  
 
 

                       (1) 

where     is the rz-stress tensor component in polar coordinates and    is the yield stress. 

Moreover, the quantity    is the velocity component in the z-direction and   is the blood 

behavior index which specifies the extent of the non-Newtonian blood behavior as controlled 

by several constituents such as cholesterol, hematocrit, fibrinogen and so forth. The blood 

behavior index is fitted from viscosity data collected from standard viscometers. The effective 

blood viscosity,    , was defined as:  

     
         

                                                           (2) 

where   is the volume fraction of the magnetite (Fe3O4) nano-particles in the blood stream. It is 

estimated from the masses and densities of the two added materials. The fitted coefficients 

were found to be:   = 0.13,   =2.24,   =0.13,   =1.91. The viscosity of blood,   , was defined as: 

                                                                   (3) 

with average hematocrit value,  , of 40 and blood plasma viscosity value,   , of 1.10 mPa·s at 

37 oC. The effective density of the blood fluid,    , was estimated from the blood density,    

(=1060 kg m-3), and the nano-particle density,     (=5.17 kg m-3), through the volume fraction 

of the particles in the equation: 
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                            (4) 

The equations of motion were solved using the Herschel-Bulkley model (eq. 1) in a narrow tube 

geometry while allowing for the possibility of a tilted arterial-vessel topology at an angle,  . The 

final quantity of interest that was derived by Nematollahzadeh et al. 21 is the blood pressure-

drop expression that was found to be: 
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 In equation 5, the effective tube radius,       is attributed to the fibrofatty vessel-wall 

deposits, and the initial blood velocity,   . Also, the plug flow radius,    , was defined as: 

 

     
   

 
  
             

 

                                                                                                                                                                       (6) 

2.2 The effect screening method 

Effect screening and parameter optimization are traditionally treated as two separate 

optimization stages that complement innovation, discovery and improvement projects 27, 28, 31. 

Effect screening is the less visible procedure of the two as its direct connection to optimization 

is rarely acknowledged. However, effect screening is a crucial optimization step, inasmuch as 
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during this stage, the strength hierarchy of a group of investigated factors is stochastically 

gauged. The end deliverable is a minimized (short) list of factors that will receive a deeper 

probing in the next stage where the parameter optimization is to be undertaken. Therefore, the 

primary goal of screening is the elimination of weak-performing effects. Criteria, based on 

economic and/or other practical considerations, are often imposed on the stringent 

requirements of industrial experiments. To be meaningfully exploitable, the conduction of 

industrial trials necessitates the actual utilization of operational machinery and other line 

equipment units. A common specification is that trials ought to be carried out rapidly with 

minimum schedule interruptions and minimum resource usage. A similar philosophy may be 

applied to studies that focus on blood biomedical engineering. Hemorheologically-related 

variables are expected to exhibit non-linear dependencies - according to eqs 1-6. Then, a 

methodology for stochastic screening/optimization should incorporate information from the 

individual strength as well as the type of curvature of the investigated effect.  The basic tactic is 

to use the practical rule of minimum trials that could allow deciphering a statistically estimated 

trend. This might be accomplished by either implementing a three- or four-setting Taguchi-type 

orthogonal array (OA) in order to plan the experiments. In bio-modeling a non-linear blood-flow 

condition, a four-level OA may seem to be preferable because it provides the minimum 

opportunity to reveal skewed behavior in the data. On the other hand, comparing to selecting a 

corresponding three-level OA, a four-level OA is more expensive to carry out since it requires 

more trials. Nematollahzadeh et al. 21 adopted the same industrial experimentation mentality 

to screen and optimize the behavior of a very difficult process, that of the reduction of the 

atherosclerotic coronary blood pressure. Strictly from an engineering design point of view, an 
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L9(34) OA could have been implemented to accommodate all four nominated factors and would 

simultaneously allow the tracing of any non-linear modulations if befitting (Table 1). Such 

choice would maximize the number of permitted factors that the trial plan could exploit, which 

coincides with the desired group size of four. It also minimizes the number of experimental 

recipes that need to be formulated to just nine. A single execution of the resulting nine OA 

recipes would evoke the “unreplicated and saturated” constraint on the screening dataset. This 

type of data structure deters standard multifactorial solvers from reaching to a trustworthy 

prediction because all available degrees of freedom are reserved to be distributed only among 

the studied effects. Hence, no remainder is allowed for an estimation of the experimental error 

31, 41. Even though there are specialized methods to overcome this complication, 

Nematollahzadeh et al. 21 opted for the L16(44) OA design (Table 1) that upfront disposes of this 

condition by reserving at least three degrees of freedom for estimating the unexplainable error. 

Another obvious advantage of such a decision is that two middle factor settings, instead of one 

as in the L9(34) OA option, are allocated to ensure the detection of a non-linear effect by 

probing the shape of the curvature through four increasing control adjustments. Both of those 

propitious features mount up to an increase of 78% in the sampling requirement – from nine to 

sixteen recipes -  when compared to the alternative L9(34) OA plan.  Of course, now, the design 

structure is relieved from the “saturated” OA condition but it still retains the “unreplicated” 

form. Unreplication is not necessarily an alarming restriction in engineering trials since resource 

savings are always to be realized. Thus, it may be viewed as a favorable condition as long as the 

quantification of uncertainty is coped with. 
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The original L16(44) OA dataset of Nematollahzadeh et al.21 along with the logarithmic 

transformation of the response gradient –(dp/dz) data have been tabulated in Table 2. The non-

linear surrogate screening/optimization method of Besseris31 is used to decompose the 

compacted blood pressure-drop response. The general method, which might be applicable for 

any type of a non-linear multifactorial problem, has been outlined in Besseris31 along with an 

illustrative example from the biomedical area of screening/optimization of a polymerase chain 

reaction process. That highlighted paradigm involved an unreplicated L9(34) OA design. 

Therefore, the procedure of setting up a L9(34) OA-designed dataset for analysis will not be 

repeated in this work.  

Table 1: Four-factor non-linear OA plan options. 

               L9(34) OA              L16(44) OA 

 
Factors 

  
Factors 

Run 
# A B C D 

 

Run 
# A B C D 

1 1 1 1 1 
 

1 1 1 1 1 
2 1 2 2 2 

 
2 1 2 2 2 

3 1 3 3 3 
 

3 1 3 3 3 

4 2 1 2 3 → 4 1 4 4 4 
5 2 2 3 1 

 
5 2 1 2 3 

6 2 3 1 2 
 

6 2 2 1 4 
7 3 1 3 2 

 
7 2 3 4 1 

8 3 2 1 3 
 

8 2 4 3 2 
9 3 3 2 1 

 
9 3 1 3 4 

      
10 3 2 4 3 

      
11 3 3 1 2 

      
12 3 4 2 1 

      
13 4 1 4 2 

      
14 4 2 3 1 

      
15 4 3 2 4 

      
16 4 4 1 3 
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               Table 2: The original nano-regulated atherosclerotic blood pressure-drop response21. 

 

   

 

 

 

 

 

 

 

The non-linear surrogate screening/optimization method is fairly new and novel since 

the only other application that has been attempted is in a demanding manufacturing process46 

where a four-level L16(44) OA was utilized.   

The general steps of the methodology for the screening-optimization task are: 

1) Select and prepare the response datasets for the appropriate four-level OA 

arrangement. 

2) Evaluate the robust micro-analytics per investigated controlling factor, i.e. use the 

estimators: median, interquartile range (IQR), skewness, excess kurtosis. 

Run # R Vo N φ -(dp/dx) Ln(-(dp/dx)) 
1 0.0015 0.25 0.5 0 141.37 4.951381 

2 0.0015 0.3 0.78 0.5 1018.01 6.925605 

3 0.0015 0.35 1 1.5 5491.89 8.611028 

4 0.0015 0.4 1.5 2 175287.10 12.07418 

5 0.0012 0.25 0.78 1.5 2090.95 7.645374 

6 0.0012 0.3 0.5 2 325.02 5.783887 

7 0.0012 0.35 1.5 0 398468.66 12.89538 

8 0.0012 0.4 1 0.5 13590.51 9.517127 

9 0.00105 0.25 1 2 15928.14 9.675843 

10 0.00105 0.3 1.5 1.5 829928.90 13.6291 

11 0.00105 0.35 0.5 0.5 444.04 6.095915 

12 0.00105 0.4 0.78 0 3736.63 8.225939 

13 0.0009 0.25 1.5 0.5 1308082.66 14.08407 

14 0.0009 0.3 1 0 28818.44 10.26877 

15 0.0009 0.35 0.78 2 6914.90 8.841434 

16 0.0009 0.4 0.5 1.5 780.61 6.660076 
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3) Inspect the main effects plots for the raw responses as well as for the log-

transformed entries. 

4) Assess curvature tendencies and goodness of fit using the general linear modeling 

approach. 

5) Inspect effect-shape anisotropies using boxplots in the original and in the log-

transformed dataset versions. 

6) Evaluate uncertainty and effect symmetries within the various controlling factor 

settings using the non-linear surrogate profiling method. 

7) Decide on the stochastically strong effects and suggest the optimal settings. 

8) Assess and demonstrate the possibility of transferring the data generation process 

to smaller, i.e. to more economic and faster OA designs, for more practical trial 

deployment and quicker decision-making.   

 

2.3 The effect screening model analysis for the L16(44) OA. 

 

To simplify the dataset layout form for the analysis part that follows, we define the response 

variable, y, which is meant to be pertinent for either of the two data types that we choose to 

work with, i.e.:                     

                                                       
  

  
            

  

  
                                                           (7) 

            The generic non-linear effects model for four four-level tested effects that are 

symbolized as A, B, C and D will be:  



  

17 
 

                                                                                 (8) 

Each of the subscripts, α, β, γ, and δ in equation 8 mirrors the four admissible states appointed 

by each respective recipe as dictated by the L16(44) OA in Table 1. It is generically coded as: αi, 

βj, γk, and δl,  i, j, k, l  {1, 2, 3, 4}. By default, we let coded levels ‘1’ and ‘4’ to represent the 

two selected operating endpoints of each factor. No assumptions are placed on the error term, 

     . Simply, it should be checked for stochastic symmetry across the four settings, for each 

examined factor individually. This checking should be completed before attempting to assess 

the results of the effect screening/optimization task. The overall (grand) median, M, for all 16  

      response entries is defined as: 

                                          (9) 

The four factorial contributions of the terms in equation 8 may be conveniently defined:  

                  

                  

                  

                  

                                                       (10) 

The reconstructed response carrying the individual factorial profile is redefined as     where x 

 { α, β, γ, δ }. 

                                                         

              

              

              

              

                                                                   (11) 

For each effect separately, we rank-order     which leads to the rank response,    :  
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                                                                    (12) 

Mean rank sums of the four data entries for each factor-setting are formed according to the 

prescription of the Kruskal-Wallis method31, 43.     

                                 
  

      

 
                                                                    (13) 

The Kruskal-Wallis test statistic31,   , is appropriate for testing the one-way fluctuation of ranks 

across the four settings for a total of n=16 observations: 

                                       
 

  
     

  
                                                 (14) 

The stochastic validity of equation 14 hinges upon demonstrating the uniformity and stability of 

the residual error. This uncertainty component is constructed from the fragmentation of the 

response while retaining only the part that relates to the residual error for each specific recipe. 

The uncertainty vector is     such that: 

                                                                                                  (15) 

Repeating the rank-ordering process for    , this time will yield the transformed uncertainty 

response,   : 

                                                                               (16) 

Forming the mean rank sums of the    variable for each four setting entries, we obtain for each 

individual factor setting,      
:  
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                                                         (17)                    

          

The Kruskal-Wallis test statistic for testing symmetry across the recipe uncertainties,    , is 

similarly defined as: 

    
 

  
      

  
                                (18) 

The exact Kruskal-Wallis-test significance values for equations 14 and 18 are computed with the 

statistical software package STATISTICA 9 (StatSoft). The significance of the stochastic 

comparisons in equation 14 may be reliable as long as there is no detected statistical 

significance which is attributed to uncertainty fluctuations across all four settings for each 

controlling factor separately (equation 18). Results are finalized after rating significances by 

controlling the false discovery rate for the multi-factorial treatment44. 

3. Results 

In Table 3, we have tabulated the respective micro-analytics, i.e. median, IQR, skewness, and 

excess kurtosis estimations (MINITAB 18) for the hemodynamical pressure-drop datasets of 

Table 2. The descriptive trends have been evaluated for both the original dataset as well as the 

log-transformed response. It is obvious that the blood index behavior dramatically regulates the 

variability of the pressure-drop magnitude regardless of the dataset form. The rise of the 

setting median values of the pressure-drop due to n transcends to three orders of magnitude. 

From a design engineering standpoint, the corresponding IQR behavior of the pressure drop is 

also modulated by tweaking n. The pressure drop does not seem to react to varying the rest of 

the screened factors.  
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Table 3: Descriptive robust micro-analytics of the four factors of the blood pressure-drop. 

Micro-analytics for:  R vs  -(dp/dz)  R vs  Ln(-dp/dz)   

Variable R Total Median IQR Skewness Excess 
Kurtosis Count 

–(dp/dz) 0.0009 4 17867 985952 2 3.99 
  0.00105 4 9832 625162 2 3.99 
  0.0012 4 7841 301483 1.99 3.98 
  0.0015 4 3255 132478 2 3.99 
              
Ln(-(dp/dz)) 0.0009 4 9.56 5.92 0.71 0.85 
  0.00105 4 8.95 6.01 0.78 0.92 
  0.0012 4 8.58 5.8 0.64 0.06 
  0.0015 4 7.77 5.76 0.65 0.35 

 

Micro-analytics for: Vo vs  -(dp/dz)  Vo vs  Ln(-dp/dz)   

Variable Vo Total Median IQR Skewness Excess 
Kurtosis Count 

–(dp/dz) 0.25 4 9010 984415 2 4 

  0.3 4 14918 629153 1.99 3.98 
  0.35 4 6203 298874 2 4 
  0.4 4 8664 133343 1.98 3.91 
              
Ln(-(dp/dz)) 0.25 4 8.66 7.36 0.59 0.44 
  0.3 4 8.6 6.72 0.63 -1.68 
  0.35 4 8.73 5.16 0.8 1.83 
  0.4 4 8.87 4.38 0.57 0.25 
      

 

 

 

 

 

Micro-analytics for: n vs  -(dp/dz)  n vs  Ln(-dp/dz)   

Variable n Total Median IQR Skewness Excess 
Kurtosis Count 

–(dp/dz) 0.5 4 385 509 0.77 0.97 
  0.78 4 2914 4834 0.99 0.47 
  1 4 14759 18079 0.71 1.51 
  1.5 4 614199 957462 0.56 -1.36 
              
Ln(-(dp/dz)) 0.5 4 5.94 1.36 -0.52 0.76 
  0.78 4 7.936 1.582 -0.16 -0.78 
  1 4 9.596 1.283 -0.66 1.49 
  1.5 4 13.262 1.691 -0.47 -1.31 
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Data messiness may be contemplated at this stage as a complicating condition. One way 

that it may be quickly construed is by inspecting the magnitudes of the estimations of 

the effects through the measures of skewness and excess kurtosis in Table 3. In brief, an 

intermixing of conflicting tendencies is manifested as follows: 

a) For the original data: There is a consistent departure from normality in accord to all 

skewness estimates. Skewness values for all examined settings of R, Vo and φ are in the 

vicinity of ‘+2’ which implies that their distributions are consistently highly skewed on 

the right. All settings for n are also skewed right to a lesser degree though. Furthermore, 

there is a departure from normality according to an assessment on the excess kurtosis 

estimations. All settings of R, Vo and φ are leptokurtic. The peakedness of the settings of 

n is milder leptokurtic and on its highest adjustment (n=1.5) switches to platykurtic (<0). 

b) For the transformed data: In general, a departure from normality is detected in the 

skewness estimates but it appears to be moderate for all factors. This is compatible to 

the impact of a log-transformation on the dataset distribution. For all the settings of R 

and Vo, the setting distributions are skewed right. Setting distributions due to n are 

Micro-analytics for: φ vs  -(dp/dz)  φ vs  Ln(-dp/dz)   

Variable φ Total Median IQR Skewness Excess 
Kurtosis Count 

–(dp/dz) 0 4 16278 305016 1.97 3.91 
  0.5 4 7304 983872 2 4 
  1.5 4 3791 622711 2 4 
  2 4 11422 133475 1.97 3.88 
              
Ln(-(dp/dz)) 0 4 9.25 6.47 -0.25 -0.19 
  0.5 4 8.22 6.64 1.15 0.53 
  1.5 4 8.13 5.47 1.61 2.76 
  2 4 9.26 4.93 -0.37 1.08 
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skewed left. The φ-factor settings display mixed tendencies with setting distributions to 

alternate skewness directions. Excess kurtosis estimations are overall less diverted from 

normality in contrast to the original dataset. Three of the four factors exhibit an 

intertwined trend by mixing leptokurtic and platykurtic behavior. 

c) From comments in a) and b) above, it is plausible to proceed by separately conducting 

screening/optimization predictions for the two different data types and then compare 

their outcomes for some level of agreement. 

Depicting the appropriate main effects plots is always advisable as a preliminary screening step. 

The two response graphs (MINITAB 18) that portray the four effects on the blood pressure-drop 

are prepared in terms of the original dataset (Fig. 1A) and in its log-transformed response 

version (Fig. 1B). From either plot, we deduce that the blood behavior index is again the 

dominant effect, at least in a qualitative way. However, the initial velocity and the nano-particle 

volume fraction appear to possess conflicting relative strengths, which depend on the data type 

we opt to treat the pressure-drop response. For example, in Fig. 1A, both of those two 

controlling factors could influence the characteristic behavior of the blood pressure in spite of 

exhibiting distinctly different curvature trends. On the contrary, when the blood pressure drop 

data have been log-transformed (Fig. 1B), then both of those factors may be clearly declared as 

inactive. Finally, sizing the effect of the radius of the atherosclerotic coronary artery, R, we may 

surmise that it causes some detectable disturbance in both kinds of screenings. But its relative 

effect with respect to the blood behavior index varies between the two screenings. To cast the 

potencies of the four controlling factors in a functional form, we fit the dataset of Table 2 in 

both versions by employing the General Linear Modelling method (MINITAB 18).  
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A) 

 

 

B) 

Figure 1: Main effects plot for the blood pressure-drop: A) –(dp/dz), and B) Ln(-(dp/dz)). 



  

24 
 

Table 4: General Linear Modelling of the blood pressure drop in the original (A) and 

transformed (B) data. 

                 A: Original Data                                  B: Log-transformed Data 

Term Coef* SE Coef T-Value P-Value  Coef** SE Coef T-Value P-Value 

Constant -2.15E6 3.50E7 -0.06 0.955  5.2 29.6 0.17 0.873 

R 3.22E9 6.61E10 0.05 0.964  -1.90E4 5.59E4 -0.34 0.756 

Vo 1.62Ε7 2.30Ε8 0.07 0.948  67 194 0.35 0.752 

n 2.68Ε6 9.73Ε6 0.28 0.801  7.04 8.24 0.85 0.456 

φ 7.27Ε5 6.52Ε5 1.11 0.346  0.217 0.552 0.39 0.720 

R2 -4.16E12 5.68E13 -0.07 0.946  1.25E7 4.81E7 0.26 0.811 

Vo
2 -6.32Ε7 7.16Ε8 -0.09 0.935  -204 607 -0.34 0.759 

n2 -3.71Ε6 1.08Ε7 -0.34 0.754  0.27 9.16 0.03 0.978 

φ2 -6.24Ε5 7.96Ε5 -0.78 0.490  -0.169 0.674 -0.25 0.818 

R3 1.42E15 1.59E16 0.09 0.934  -3.20E9 1.35E10 -0.24 0.828 

Vo
3 7.12Ε7 7.34Ε8 0.10 0.929  204 622 0.33 0.765 

n3 1.67Ε6 3.69Ε6 0.45 0.682  -0.08 3.12 -0.03 0.980 

φ3 1.23Ε5 2.60Ε5 0.47 0.668  0.031 0.220 0.14 0.896 

 

 

Regression Equations: 

*-dp/dz = -2151139 + 3216713083 R + 16225141 Vo + 2677576 n + 727172 φ - 4160014361111 R2 
- 63170218 Vo

2 - 3709853 n2 - 623789 φ2+ 1424689444444458 R3 
+ 71154790 Vo

3 + 1667584 n3 + 122829 φ3                                                                                 (19) 

 

**Ln(-pd/dz) = 5.2 - 19022 R + 67 Vo + 7.04 n + 0.217 φ + 12542057 R2- 204 Vo
2+ 0.27 n2 

- 0.169 φ2- 3201110158 R3+ 204 Vo
3- 0.08 n3 + 0.031 φ3                                      (20) 

Model Summary 

 

 

 

Response R2 R2(adj) R2(pred) 

-(dp/dz) 91.35% 56.74% 0.00% 

Ln(-(dp/dz)) 99.89% 99.46% 96.95% 
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The four-level L16(44) OA design allows regression-fitting of the linear, quadratic and cubic terms 

of all four controlling factors. We list the respective coefficients for each factor in Table 4 as 

well their model building strength contribution and significance. From Table 4, we infer that no 

effect is significant according to the processing of the original dataset. 

Not even the constant term can be stabilized at level of significance of 0.05. However, 

its coefficient of determination, R2, which demonstrates the goodness of the curve fitting, is 

estimated at 91.35%. The corresponding predicted R2 estimation dips to 0% to no avail. On the 

other hand, the modeling of the log-transformed dataset presents a substantially different 

picture. The regular and the predicted coefficients of determination – 99.89% versus 96.95% 

(model summary in Table 4B) - are not disparate from each other. Still, a constant coefficient 

cannot be established for this model. All four controlling factors do not play any significant role. 

We conclude that the predictability of detecting any active effects along with their associated 

curvature details becomes independent of the decision to transform or not the original blood 

pressure-drop dataset. Before making further inferences about the viability of both types of 

predictions, the residuals from both modeling efforts have been plotted in Figure 2. It is obvious 

that in both situations, the residuals do not obey a Gaussian reference law. This is discerned by 

the fact that: 1) there are points that are located on or outside the 95% confidence intervals 

when they are not expected to for this small sample, and 2) the Anderson-Darling test rejects - 

at a level of 0.05 - the normality of the residuals. We conclude that the predictions of the fitted 

coefficients in Table 4 may need to receive more scrutiny in order to explain more convincingly 

the behavior of a realistic blood pressure-drop profile under the pathological condition of 

atherosclerosis. This may hold for both versions of data analysis.  
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A. 

 

B. 

Figure 2: Normal probability plots (95% confidence interval) for blood pressure drop residuals- 

response dataset based on: A) –(dp/dz), and B) Ln(-(dp/dz)). 
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A) 

 

B) 

Figure 3: Boxplots for the blood pressure-drop response based on: A) –(dp/dz), and B) Ln(-

(dp/dz)).  
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Figure 4: Boxplot screening across all factor settings for the blood pressure-drop based on the –

(dp/dz) response.  

At this stage, it becomes evident that the blood pressure-drop dataset of Table 2 is an 

interesting case study that is worthwhile to be re-investigated with a more specialized robust 

treatment. The overall median behaviors and the 95% confidence intervals for both types of 

datasets have been depicted in box-plots (Figure 3). We observe that the log-transformation of 

the blood pressure-drop dataset tends to favor a centered location for the median with a fairly 

symmetric spread of its associated bounds (Fig. 3B). In contrast, the original dataset (Fig. 3A) 

appears strongly skewed.  
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Figure 5: Boxplot screening across all factor settings for the blood pressure-drop based on the 

Ln(–(dp/dz)) response.  

 

Additionally, it is remarked that the log-transformation of the data eclipses the presence of 

outliers and extremities that seem to distinctly protrude in the original-data boxplot (Fig. 3A). In 

Figure 4, the effect profiling on the –(dp/dz) gradient response reveals that there is a great non-

homogeneity among different factors. There is a strong indication of severe skewness within 

data groups for particular settings, too. It is only the blood behavior index that influences the 

total response of the pressure drop. However, assessing of the outcomes from the 

multifactorial micro-analysis point of view should be attentive to the inherent messy-data 
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landscape. Key findings in the first three adjustments of the blood behavior index (Fig. 4) are: 1) 

no significant dispersion across settings, since all three medians are levelled, and 2) variability is 

very tight within each setting. On the contrary, the fourth setting (n=1.5) appears to cause a 

dramatic elevation on the median estimation of the –(dp/dz) gradient which is escorted with an 

equally dramatic increase in variability - widened 95% confidence intervals for the blood 

pressure-drop median predictions. We conclude that the major influence in the trials is 

identified to the blood behavior index. Regulating it within the range of 0.5 -1.0 will maintain 

the blood pressure-drop in a desirable status.  

Re-examining the effects for the log-transformed data of the blood pressure-drop, we 

depict the tendencies of the four effects in the tiled boxplots of Figure 5. We observe that for 

each of the three factors, R, Vo and φ, there is great variability within each setting. 

Nevertheless, it is statistically indiscernible if we extent the comparison among the different 

effects. There is also a likelihood that there is some skewness in the data that is related to each 

of those effects. The blood pressure-drop displays an increasingly monotonic trend due to the 

influence of the blood behavior index. The median estimations for the four n settings are fairly 

balanced and their associated variability is reasonably contained. The variation of this effect 

transcends almost nine orders of magnitude. This descriptive micro-analysis offers a practical 

aid in comprehending the dominant character of the blood behavior index in connection to 

regulating blood pressure fluctuations in an atherosclerotic coronary-artery network. 

Ostensibly, it is the blood-behavior-index setting of 0.5 that will harness the hemodynamical 

performance in this study by maintaining the blood pressure-drop to the optimal median and 

IQR estimated values of 385 Pa/m and 509 Pa/m, respectively (Table 3). The optimal setting for 
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the blood behavior index of 0.5 improves over the natural blood rheology (n = 0.78) - with no 

additives - which was also represented in the experimental scheme as the second tested blood 

behavior index condition 1, 21. It is insightful to review the descriptive non-parametric 

evaluations we discussed above from a different angle of robust micro-analytics. At this stage, a 

fast-and-agile multi-factorial profiler might conveniently provide value to this study by 

quantifying distribution-free effect significances. Utilizing our robust optimization treatment for 

the –(dp/dz) dataset, we list in Table 5 the nonparametric comparisons of the uncertainty 

balances across each individual controlling factor. This permits inspecting the symmetry of 

errors across all individual settings. Sizing symmetry is necessary to ascertain the stable 

detection of the strength of the effects. We notice the asymmetry of the experimental errors 

that are associated with nano-particle volume fraction, at a level of significance of 0.05. 

However, profiling all effects indicates that the sole active factor is the blood behavior index at 

a level of significance of 0.05. We repeat the same procedure for the Ln(-(dp/dz)) response and 

we list the outcomes in Table 6. The asymmetry of errors still persists with respect to the 

influence of the nano-particle volume fraction, at a level of significance of 0.05. Besides the 

blood behavior index that may be convincingly declared to be active, the (atherosclerotic 

coronary-artery) minimum cross section radius, R, may be also identified as an active factor. 

However, if we control the false discovery rate44 at a significance level of 0.05, then the cross 

section radius is eliminated from the influential group of factors. Thus, the blood behavior index 

remains as the sole stochastically-predominant effect in the last robust screening effort. 

Consequently, all approaches that we employed in this section reach to an agreement that the 
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optimization of the blood pressure drop may be regulated statistically from the same single 

factor, n. 

Table 5: Uncertainty and effect robust profiling for the –(dp/dz) dataset (Table 2). 

Factor          Uncertainty Effect  

 Η p-value Η p-value 
R 0.551 0.907 6.243 0.100 
Vo 3.022 0.388 4.610 0.203 
n 0.066 0.996 12.331 0.006 
φ 9.926 0.019 2.934 0.402 

 

 

Table 6: Uncertainty and effect robust profiling for the Ln(–(dp/dz)) dataset (Table 2). 

Factor              Uncertainty Effect  

 Η p-value Η p-value 
R 0.088 0.993 7.985 0.046 
Vo 2.206 0.531 0.176 0.981 
n 0.265 0.967 14.118 0.003 
φ 11.338 0.010 0.860 0.835 

 

4. Discussion 

Using ordinary optimization methods to recommend nano-engineered remedies to pathological 

(atherosclerotic) hemodynamics may harbor arduous complications. Therefore, searching for 

robust techniques to predict optimal blood pressure-drop (gradient) profiles necessitated a 

deeper probing. First, we should stress the fact that screening and optimizing simultaneously an 

abnormal blood pressure-drop response using classical multi-factorials may not be applicable to 

all situations. Employing a more specialized method, such as the half-normal plot (Figure 6), it 

may still not be capable of resolving the stochastic potency of the effects.  
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A) 

 

B) 

Figure 6: Normal probability screening of the standardized effects with 95% confidence 

intervals - based on the response as in Table 2: A) –(dp/dz), B) Ln(-(dp/dz)). 



  

34 
 

From Figure 6, we notice that it becomes indifferent the choice of the dataset form (log-

transformed or not) when gauging the significance of the controlling factors. All standardized 

effects participate in the half-normal plots by retaining their three terms (a linear and two 

nonlinear contributions). Their values are directly taken from the t-test estimations of Table 4. 

In either case, the estimated Anderson-Darling test scores (Figure 6) suggest a rejection of 

normality at the 0.05 significance level. Meanwhile, no particular effect seems to dramatically 

differentiate itself from the rest of the group when using the original dataset (Figure 6A). On 

the other hand, in Figure 6B, we observe that the linear part of the standardized effect of the 

blood behavior index poses as an outlier in the half-normal plot of the log-transformed –(dp/dz) 

dataset. This outcome contradicts the declared inactiveness as actually appraised by its 

individual significance (p-value = 0.456) from Table 4. Hence, this approach hampers the rapid 

factorial screening by blurring the profiler diagnostics. Consequently, a terminal decision may 

not be confidently delivered by simply resorting to the results of the two half-normal plots 

alone. The enigmatic messiness might underlie the behavior of the small datasets such the ones 

generated for this blood pressure-drop optimization study. Messiness might be the culprit for 

perplexing the discovery cycle. In turn, this aids to appreciate the robustness, agility and 

resilience of our proposed approach. It was demonstrated that our non-linear multi-factorial 

technique may be suitable to furnish a fast synchronous profiling as well as an optimal 

adjustment by profitably exploiting scarcely available information. The distribution-free multi-

factorial slicing of the ‘small-and-dense’ orthogonal dataset was followed by a simple stochastic 

repackaging of the effects as standalone “clones”. This facilitated the sturdy and rapid 

convergence to a robust solution. It is best exemplified by attributing high significance to the 
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only discovered effect which is the blood behavior index regardless of the type of treatment of 

the original response dataset. 

It was found21 that none of the effects essentially plays any significant role in modulating 

the blood pressure-drop response regardless of the dataset form. Counter-intuitively, the 

coefficients of determination (Table 4A) were very high in both cases. It is particularly puzzling 

that the predicted coefficient of determination for the original dataset is 0% while that of the 

log-transformed response is 99.97% (Table 4B). This is another reason to ponder that our 

solution differentiates from the results in reference [21]. Our predictions are valid because our 

solver extracts information from the screening/optimization scheme exactly on the same 

dataset arrangement that was planned and collected from the trials.  

The best way to convince about the potential usefulness of our methodology is to 

demonstrate its capacity to deliver predictions much faster and with less data. To show this, we 

suppress the trial volume of the original experimental plan (16 runs) which were required by 

the L16(44) OA (Table 2) in the original report. Instead, we implement the minimum feasible 

orthogonal array that could accommodate all four factors such that not to omit in the 

investigation the potential non-linearity in the effects. This means that at least three data 

points per effect are necessitated. The L9(34) OA is the appropriate trial plan for this situation. 

We immediately notice that the working trial-volume requirement is downsized by a substantial 

amount (44%) with respect to the original L16(44) OA scheme, since now only nine runs – 

instead of sixteen - are needed to make the predictions. Moreover, with respect to the 

response surface methodology that was also adopted in the original report21, the trial volume 
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reduction becomes even more pronounced (65%). To adapt the information content that has 

been previously generated by the L16(44) OA to the smaller L9(34) OA, we utilize the best fitting 

curve out of the two data-type versions, i.e. either from equation 19 or 20. Obviously, we select 

equation 20, because the transformed blood pressure drop predicts more accurately the 

original L16(44) OA dataset. We select two convenient endpoints for each controlling factor that 

relate close to the range of the original experiments and a suitable middle data-point to 

investigate the possibility for a non-linear behavior. The newly reconstructed dataset is now 

tabulated in Table 7. Repeating the analysis cycle for the L9(34) OA dataset, as we did for the 

original L16(44) OA data, we list the new outcomes in Table 8. It becomes clear again that the 

blood behavior index appears to be the stochastically dominant effect (p < 0.05). It is also 

confirmed that there are no error asymmetries (p > 0.05). Thus, the computed effect 

comparisons may be considered valid. We find that the blood behavior index setting of 0.5 

minimizes the quantity Ln(-(dp/dx)). This agrees with the outcome of our initial analysis in the 

preceding section using the 16-run original dataset. We have demonstrated that our technique 

rapidly delivers robust results. Comparing to the original published report, our proposal reduces 

the amount of work in five aspects: 

1) It requires a much smaller data volume. 

2) It averts the double estimation effort due to: i) classical Taguchi analysis and ii) response 

surface methodology; it is a “single-pass” technique. 

3) It is distribution-free: there is no need to search for a stochastic parametric reference 

law to describe the response data. 
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4) It is assumption-free: i) it does not require a check of normality and heteroscedasticity 

in Taguchi analysis and ii) it does not require residual analysis as in the response surface 

methodology method; it prevents the need for a subjective interpretation of the 

regression errors according to four customary plots:  a) normal-probability plot, b) data 

histogram c) residuals-versus-fitted-values plot, and d) residuals-versus-observation-

order plot.    

5) It predicts effects equally well with or without log-transforming of the response data.  

The screening results may be interpreted as that the examined range of radius of the 

smallest coronary-artery cross-section area may be indifferent in affecting severely the blood 

pressure drop. Similar conclusion may be deduced for the effect of the initial blood-flow 

velocity. Since the nano-particle volume fraction is not a strong influence then its appropriate 

setting should rest on the practicality and convenience of the method of administering the 

drug.  

Table 7: The new nano-regulated atherosclerotic blood pressure-drop response for the L9(34) 

OA dataset. 

Run # R Vo N φ Ln(-(dp/dx)) 

1 0.001 0.2 0.5 0 5.968447 
2 0.001 0.3 1 1 10.07595 
3 0.001 0.4 1.5 2 13.63845 
4 0.00125 0.2 1 2 8.875296 
5 0.00125 0.3 1.5 0 12.9128 
6 0.00125 0.4 0.5 1 5.639796 
7 0.0015 0.2 1.5 1 11.93138 
8 0.0015 0.3 0.5 2 4.914381 
9 0.0015 0.4 1 0 8.528881 
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Table 8: Uncertainty and effect robust profiling for the Ln(–(dp/dz)) dataset (Table 7). 

Factor              Uncertainty Effect  

 Η p-value Η p-value 
R 0.269 0.874 2.241 0.326 
Vo 3.294 0.193 0.622 0.733 
n 0.605 0.739 7.2 0.0273 
φ 3.832 0.147 0.089 0.957 

 

With respect to the direction of the blood pressure index, it becomes clear that a setting below 

the normal value (n=0.78) would drive the blood pressure-drop to even lower magnitudes. This 

of course entails direct manipulation of the blood constituents such as cholesterol, hematocrit, 

fibrinogen and so forth. Parallel comparison to the accuracy of the results in reference [21] 

cannot be accomplished. This is because there is no estimation of uncertainty for each fitting 

coefficient and no estimation of the screening uncertainty at all. In lack of providing a statistical 

hierarchy of the effects in reference [21], predictions may become spurious in absence of the 

evaluations of the t-test comparisons. For example, it was found that through the response 

surface methodology, the coefficient of determination was reported to be 99.99%. But it 

performed with a discrepancy in accuracy as high as 41.37% and 13.90% in the extrapolation 

and interpolation prediction attempts, respectively. This disparity is not deemed reasonable 

and hence it motivated and justified further our work.   

 

5. Conclusions 

Managing blood pressure levels in pathological hemodynamic conditions is a critical area where 

chemical engineering is anticipated that could contribute with new knowledge. Synchronous 

rapid screening and robust optimization is a technology that might be appreciated in 
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applications congruent to engineering a biochemical regulation of blood pressure drop. We 

offered new insight about how to approach fast optimization studies that rely on Taguchi-type 

orthogonal sampling. Based on previously published data, we demonstrated that the 

optimization process may be tricky and the final outcomes to be elusive. The complex nature of 

blood flow measurements may be the culprit that spurs such confusion. Impeding data-

messiness, non-normality, and non-linearity in small samples provide the motivation for 

engaging robust engineering analysis methods in new ways. We found that fitting blood data 

with ordinary regression techniques to lead to results with profound disadvantages that may 

short-circuit the knowledge discovery process. We proposed a synchronous, non-linear, 

distribution-free screening-and-optimization method that may be suitable to treat fast-and-

small unreplicated bio-flow observations. 

In the worked-out paradigm, we highlighted the consistency that the robust 

screening/optimization solver exhibited by converging on the same outcome regardless of log-

transforming the blood pressure-gradient response or not. In both cases it was found that it is 

the strong influence of the blood behavior index at lower than the normal physiological limit 

that governs the pressure drop attenuation.  This result was controlled for false discovery at a 

significance level of 0.05. Future works may consider screening/optimization to additional 

controlling factors that may include indigenous blood constituents, varying further the 

concentrations of iron oxide as well as trying other novel nano-carriers that may enrich the 

local oxygen content. 

 



  

40 
 

Acknowledgements: We thank the Editors and the two reviewers for providing insightful 

comments that improved the final version of this work.  

 

References 

1. Neofyto P. Comparison of blood rheological models for physiological flow simulation. 

Biorheology. 2004; 41: 693–714. 

2. Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular 

pathophysiology. Nat. Clin. Practice. Cardiovasc. Med. 2009;6:16–26. 

3. Apostolidis AJ, Beris AN. Modeling of the blood rheology in steady-state shear flows. J. 

Rheol. 2014;58: 607–633. 

4. Mimouni Z. The rheological behavior of human blood-comparison of two models. Open 

J. Biophys. 2016; 6: 5. 

5. Adams AL, Fischer GC, Vroman L. The complexity of blood at simple interfaces. J. Colloid 

Interf. Sci. 1978; 65: 468-478. 

6. Stack SW, Berger SA. The effects of high hematocrit on arterial flow—a 

phenomenological study of the health risk implications. Chem. Eng. Sci. 2009;64:4701–

4706. 

7. Sankar DS, Lee U. Two-fluid Herschel-Bulkley model for blood flow in catheterized 

arteries. J. Mech. Sci. Technol. 2008;22:1008. 

8. Klabunde RE. Normal and abnormal blood pressure. 1st edition, RE Klabunde 

Publications, 2013. 



  

41 
 

9. Nadeem S, Ijaz S. Nanoparticles analysis on the blood flow through a tapered 

catheterized elastic artery with overlapping stenosis. Eur. Phys. J. Plus 2014;129:249–

263. 

10. Nadeem S, Ijaz S. Impulsion of nanoparticles as a drug carrier for the theoretical 

investigation of stenosed arteries with induced magnetic effects. J. Magn. Magn. Mater. 

2016a;410:230–241. 

11. Nadeem S, Ijaz S. Theoretical examination of nanoparticles as a drug carrier with slip 

effects on the wall of stenosed arteries. Int. J. Heat Mass Trans. 2016b; 93:1137–1149. 

12. Wang Y-J, Larsson M, Huang W-T, Chiou S-H, Nicholls SJ, Chao J-I, Liu D-M. The use of 

polymer-based nanoparticles and nanostructured materials in treatment and diagnosis 

of cardiovascular diseases: recent advances and emerging designs. Prog. Polym. Sci. 

2016;57: 153–178. 

13. Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM. Nanoparticles as contrast agents 

for in-vivo bioimaging: Current status and future perspectives. Anal. Bioanal. Chem. 

2011;399:3-27. 

14. Anselmo AC, Mitragotri S. A chemical engineering perspective of nanoparticle-based 

targeted drug delivery: A unit process approach. AICHE J. 2016; 62:966-974. 

15. Gupta AS. Role of particle size, shape, and stiffness in design of intravascular drug 

delivery systems: insights from computations, experiments, and nature. Wiley 

Interdiscip Rev Nanomed Nanobiotechnol  2015; 8: 255-270.  

http://onlinelibrary.wiley.com/doi/10.1002/wnan.1362/full
http://onlinelibrary.wiley.com/doi/10.1002/wnan.1362/full


  

42 
 

16. Cicha I, Lyer S, Alexiou C, Garlichs CD. Nanomedicine in diagnostics and therapy of 

cardiovascular diseases: Beyond atherosclerotic plaque imaging. Nanotechnol. Rev. 

2013;2:449-472. 

17. Nishihara H. Human pathological basis of blood vessels and stromal tissue for 

nanotechnology. Adv. Drug Delivery Rev. 2014;74:19-27. 

18. Cicha J, Garlichs CD, Alexiou C. Cardiovascular therapy through nanotechnology - How 

far are we still from bedside? Eur. J. Nanomed. 2014;6:63-87. 

19. Kelley WJ, Safari H, Lopez-Cazares G, Eniola-Adefeso O. Vascular-targeted nanocarriers: 

design considerations and strategies for successful treatment of atherosclerosis and 

other vascular diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol  2016; 8: 909-

926. 

20. Ijaz, S., Nadeem, S. A biomedical solicitation examination of nanoparticles as drug 

agents to minimize the hemodynamics of a stenotic channel. Eur. Phys. J. Plus 

2017;132:448–461. 

21. Nematollahzadeh A, Dabaleh A, Ahadi-Jomairan N, Torabi S. Iron-oxide nano-particles 

effect on the blood hemodynamics in atherosclerotic coronary arteries. Chem. Eng. Sci. 

2018; 177: 293–300. 

22. Kanaris, A.G., Anastasiou, A.D., Paras, S.V. Modeling the effect of blood viscosity on 

hemodynamic factors in a small bifurcated artery. Chem. Eng. Sci. 2012; 71: 202–211. 

23. Schrauwen JTC, Wentzel JJ, van der Steen AFW, Gijsen FJH. Geometry based pressure 

drop prediction in mildly diseased human coronary arteries.  J. Biomech. 2014;47:1810–

1815. 

http://onlinelibrary.wiley.com/doi/10.1002/wnan.1414/full
http://onlinelibrary.wiley.com/doi/10.1002/wnan.1414/full
http://onlinelibrary.wiley.com/doi/10.1002/wnan.1414/full


  

43 
 

24. Pereira JMC, Serra e Moura JP, Ervilha AR, Pereira JCF.  On the uncertainty quantification 

of blood flow viscosity models. Chem. Eng. Sci. 2013; 101:253–265. 

25. Hoaglin, D.C., Mosteller, F. and Tukey, J.W. (2000), Understanding Robust and 

Exploratory Data Analysis, Wiley-Interscience, Hoboken, NJ. 

26. Rao RS, Kumar CG, Prakasham RS, Hobbs PJ. The Taguchi methodology as a statistical 

tool for biotechnological applications: A critical appraisal. Biotechnol. J. 2008; 3:510-523. 

27. Taguchi G, Chowdhury S, Taguchi S. Robust Engineering: Learn How to Boost Quality 

While Reducing Costs and Time to Market. New York: McGraw-Hill; 2000. 

28. Taguchi G, Chowdhury S, Wu Y. Quality Engineering Handbook. Hoboken: Wiley-

Interscience; 2004. 

29. Briggs W. Uncertainty: The soul of modeling, probability and statistics, 1st ed. 

Switzerland: Springer International; 2016. 

30. Floudas CA. Research challenges, opportunities and synergism in systems engineering 

and computational biology. AICHE J 2005:51; 1872-1884. 

31. Box GEP, Hunter WG, Hunter JS. Statistics for experimenters – design, innovation, and 

discovery, 2nd ed. New York: Wiley; 2005. 

32. Silver N. The signal and the noise: Why so many predictions fail-but some don’t, 1st ed. 

New York: Penguin; 2015. 

33. Besseris GJ. A distribution-free multi-factorial profiler for harvesting information from 

high-density screenings. PLoS One 2013; 8: e73275. 

34. Milliken GA, Johnson DE. Analysis of Messy Data Volume I: Designed Experiments. Boca 

Raton: Chapman and Hall/CRC; 2004. 

http://www.amazon.com/George-A.-Milliken/e/B0034P63JA/ref=ntt_athr_dp_pel_1
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&field-author=Dallas%20E.%20Johnson&search-alias=books&sort=relevancerank


  

44 
 

35. Milliken GA, Johnson DE. 1989. Analysis of Messy Data, Volume II: Nonreplicated 

Experiments. Boca Raton: Chapman and Hall/CRC; 1989. 

36. Zeng J, Xie L, Kruger U, Gao C. Regression-based analysis of multivariate non-Gaussian 

datasets for diagnosing abnormal situations in chemical processes. AICHE J 2014:60; 

148-159. 

37. Pernot P, Cailliez F. A critical review of statistical calibration/prediction models handling 

data inconsistency and model inadequacy. AICHE J 2017:63; 4642-4665. 

38. Steimel J, Engell S. Optimization-based support for process design under uncertainty: A 

case study. AICHE J 2016:62; 3404-3419. 

39. Gao Y, Mi Y, Lakerveld R, An optimization-based approach for structural design of self-

assembled DNA tiles. AICHE J 2017:63; 1804-1817. 

40. Marcoulaki EC, Kokossis AC. Scoping and screening complex reaction networks using 

stochastic optimization. AICHE J 1999:45; 1977-1991. 

41. Besseris GJ. A fast-and-robust profiler for improving polymerase chain reaction 

diagnostics. PLoS One 2014: 9; e108973. 

42. Ketokivi M, Choi T. Renaissance of case research as a scientific method. J Oper Manage 

2014:32; 232-240. 

43. Wilcox RR. Fundamentals of Modern Statistical Methods: Substantially improving power 

and accuracy. London: Springer; 2010. 

44. Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful 

approach to multiple testing. J Royal Stat Soc 1995;57:289-300. 

http://www.amazon.com/George-A.-Milliken/e/B0034P63JA/ref=ntt_athr_dp_pel_1
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&field-author=Dallas%20E.%20Johnson&search-alias=books&sort=relevancerank
http://onlinelibrary.wiley.com/doi/10.1002/aic.14230/full
http://onlinelibrary.wiley.com/doi/10.1002/aic.14230/full


  

45 
 

45. World Health Organization. The top 10 causes of death. ttp://www.who.int/en/news-

room/fact-sheets/detail/the-top-10-causes-of-death (Accessed: 9/21/2018). 

46. Toulfatzis A, Pantazopoulos G, Besseris, G, Paipetis A. Machinability evaluation and 

screening of leaded and lead-free brasses using a non-linear robust multifactorial 

profiler. Int J Adv Manuf Technol 2016;86:3241-3254. 

 

  



  

46 
 

 

 

Highlights 

 Fast and robust profiling is useful in hemodynamic monitoring and optimization 

 Taguchi-type experimental designs speed up blood flow pressure drop data collection 

 Translating data demands robust and agile techniques to decipher governing relationships 

 Guarding against spurious effects from uncertainty asymmetry is important in small, dense and 

messy datasets. 

 Testing published data from four examined factors, only the blood behavior index was found to 
be strongly significant at minimizing the blood pressure drop, at 385 Pa/m for the optimal 
setting of 0.5.     
 

 


