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Abstract 26 

This mini-review considers the idea that guanylate nucleotide energy charge acts as an 27 

integrative signal for the regulation of gene expression in eukaryotic cells and discusses 28 

possible routes for that signal’s transduction. Gene expression is intimately linked with cell 29 

nutrition and diverse signaling systems serve to coordinate the synthesis of proteins required 30 

for growth and proliferation with the prevailing cellular nutritional status. Using short 31 

pathways for the inducible and futile consumption of ATP or GTP in engineered cells of 32 

Saccharomyces cerevisiae, we have recently shown that GTP levels can also play a role in 33 

determining how genes act to respond to changes in cellular energy supply. This review 34 

aims to interpret the importance of GTP as an integrative signal in the context of an 35 

increasing body of evidence indicating the spatio-temporal complexity of cellular de novo 36 

purine nucleotide biosynthesis.  37 

  38 
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Introduction 39 

Life requires energy, and the proliferation of life even more so. The common energy 40 

currency in living cells is ATP, generated from oxidative and substrate-level phosphorylation 41 

and consumed to drive the fundamental processes of DNA maintenance, synthesis and 42 

replication, the expression of genes to produce RNA and proteins, and the transport and 43 

movement of chemicals and macromolecules. Of these, gene expression - chromatin 44 

remodelling, transcription initiation, transcription elongation, mRNA splicing, and translation - 45 

accounts for the majority of cellular energy demand, with ~75% frequently offered as an 46 

estimate  (Lane and Martin 2010). Whether gene transcription is responsive to prevailing 47 

cellular energetic conditions is therefore of fundamental interest. We recently sought to 48 

answer this question by developing methods for manipulating metabolic demand for ATP 49 

and GTP in a yeast model system, measuring responses in both cellular energy status and 50 

the transcriptome (Fig. 1)  (Hesketh et al. 2019). 51 

 52 

What is meant by cellular energy status, and what is the significance of GTP? A useful way 53 

of representing energy status is in terms of the cellular adenylate energy charge (AEC) - 54 

defined as the relative concentrations of all three phosphorylated adenosine nucleotides 55 

[ATP] + 0.5[ADP]/[ATP]  + [ADP] + [AMP]  (Atkinson and Walton 1967). The concept of AEC 56 

as an integrator capable of signaling changes in the regulation of cell proliferative processes 57 

is well established  (Hardie et al. 2016; Hoxhaj et al. 2017).  The closely related high energy 58 

purine nucleotide in cells, GTP, is usually overlooked in this context because it is: (i) not the 59 

major initial product of cellular energy generation, (ii) is less abundant than ATP in cells, and 60 

(iii) can readily be produced from ATP by phosphotransfer to GDP. GTP is, however, the 61 

immediate source of energy for the highly demanding process of protein synthesis, where 62 

two molecules of GTP are consumed for each amino acid incorporated into the growing 63 

polypeptide chain. It is also required for the assembly and functioning of the cell cytoskeleton 64 

and endoplasmic reticulum and is, in addition, central to the signalling functions of 65 

intracellular G-protein switches. The ability of cells to modulate the expression of their genes 66 
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in response to changes in both guanylate and adenylate energy charge would therefore 67 

make good physiological sense. In particular, the evolution of a role for GEC as an 68 

integrative signal would provide a direct link between energy metabolism and protein 69 

synthesis. .  70 

 71 

  72 



5 
 

GTP/GEC levels can modulate gene transcription in yeast 73 

To explore the effects of increasing the metabolic use of the energy stored in ATP or GTP on 74 

gene transcription in the budding yeast Saccharomyces cerevisiae, strains were engineered 75 

for the inducible futile conversion of two NTP molecules to two lower energy NMP molecules, 76 

via non-native cyclic-di-NMP intermediates (Fig. 1a)  (Hesketh et al. 2019). In order to 77 

ensure well-defined physiological conditions, our experiments were performed on yeast cells 78 

grown in continuous culture in chemostats (Fig. 1b).  Cultivation in chemostats, where cells 79 

grow at a fixed rate in constant nutritional conditions, was used to control for confounding 80 

effects of any changes in growth rate or external nutrient supply during induction. 81 

Surprisingly, the resulting changes in transcription we observed were most consistently 82 

associated with changes in GTP and GEC levels, although the reprogramming in gene 83 

expression during glucose repression was sensitive to adenine nucleotide levels. During 84 

steady-state growth using the fermentable carbon source glucose, the futile consumption of 85 

ATP led to a decrease in intracellular ATP concentration but an increase in GTP and GEC. 86 

Expression of transcripts encoding proteins involved in ribosome biogenesis, and those 87 

previously reported to be controlled by promoters subject to SWI/SNF-dependent chromatin 88 

remodeling  (Amariei et al. 2013; Machné and Murray 2012; Nocetti and Whitehouse 2016), 89 

was correlated with these nucleotide pool changes. 90 

 91 

How might a GTP/GEC signal be transduced?  92 

In prokaryotic systems GTP levels can be directly sensed via influencing the selection of 93 

transcription start sites by RNA polymerase  (Krásný et al. 2008)   or though allosteric effects 94 

on the binding activities of transcriptional regulators  (Brinsmade 2017; Ratnayake-95 

Lecamwasam et al. 2001). There are also examples of eukaryotic genes whose transcription 96 

can be controlled by the initiating nucleotide. While a notable example in yeast is the 97 

influence of GTP on the transcription of IMD4 (encoding inosine monophosphate 98 

dehydrogenase [IMPDH], a key enzyme in guanine nucleotide biosynthesis), in S. cerevisiae  99 

(Kuehner and Brow 2008), there is no evidence that this is a widespread occurrence. An 100 
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influence on the activity of signaling pathways regulated by GTPases is a more likely 101 

hypothesis. Evidence for an influence of guanine nucleotide pools on the level of active, 102 

GTP-bound, Ras2p has previously been reported  (Besozzi et al. 2012; Cazzaniga et al. 103 

2008; Pescini et al. 2012), and the signalling activity of mTORC1 has similarly been shown 104 

to be responsive to guanine nucleotide availability (in addition to adenine nucleotides) 105 

through alterations in the level of the active, GTP-bound Rheb-GTPase  (Emmanuel et al. 106 

2017). While yeast TORC1 lacks a direct Rheb homolog, and the timeliness of the effect of 107 

GTP on Rheb-GTPase is under debate  (Hoxhaj et al. 2017), control of the activity of TOR-108 

complex signalling by GTPase switches is a conserved feature of signal transduction 109 

between yeast and mammals. An increase in the activity of either the Ras/PKA or TORC1 110 

pathways in yeast through elevated GTP levels would be expected to up-regulate 111 

transcription of genes associated with growth processes. Alternative protein targets for 112 

sensing GTP cannot, however, be excluded. A reverse genetics approach identified a GTP-113 

binding domain in the lipid kinase PI5P4K which functions to convert GTP concentration 114 

cues into phosphatidylinositol 5-phosphate (PI(5)P) second messenger signaling for the 115 

control of metabolism and tumorigenesis  (Sumita et al. 2016; Takeuchi et al. 2016). 116 

 117 

The unusual dynamic spatial organization of the enzymes required for purine biosynthesis 118 

into cellular macrostructures, filamentous cytoophidia  (Aughey and Liu 2015; Chang et al. 119 

2015; Keppeke et al. 2015) and purinosomes  (An et al. 2008; French et al. 2016; Pedley 120 

and Benkovic 2017), may also offer a potential route for the control of gene expression by 121 

GTP in eukaryotes. The IMPDH enzyme, which controls a rate-limiting step for guanine 122 

nucleotide synthesis, has been shown to moonlight as a cell-cycle-regulated transcription 123 

factor in Drosophila cells, mediating the repression of histone genes and E2f, a key driver of 124 

cell proliferation  (Kozhevnikova et al. 2012). E. coli IMPDH was also shown to exhibit the 125 

same sequence-specific DNA-binding activity as the Drosophila enzyme, suggesting that 126 

moonlighting as a transcriptional regulator may be a broadly conserved function of this 127 

enzyme  (Kozhevnikova et al. 2012).  Interestingly, IMPDH in mammalian cells has also 128 
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been shown to undergo assembly into cytoplasmic filaments, known as cytoophidia, during 129 

periods of rapid cell proliferation  (Chang et al. 2015; Keppeke et al. 2018), a process which 130 

is promoted by intracellular IMP accumulation and antagonised by elevated levels of guanine 131 

nucleotides  (Keppeke et al. 2018). While believed to be a mechanism for controlling 132 

metabolic flux through the biosynthesis pathway, reversible aggregation could also be 133 

expected to affect its function as a transcriptional regulator by influencing transport into the 134 

nucleus.  135 

 136 

Upstream of IMPDH, many of the enzymes required for de novo IMP biosynthesis have been 137 

observed to dynamically assemble and disassemble into a multi-enzyme cytoplasmic 138 

macrostructure termed the purinosome  (Pedley and Benkovic 2017). The transient nature of 139 

purinosomes has made them challenging to characterize and study, but a consensus is 140 

emerging in which it is believed that purinosome formation enhances IMP synthesis and is 141 

spatially focused around mitochondria and microtubules  (Chan et al. 2018; French et al. 142 

2016; Zhao et al. 2015). The proximity of mitochondrial ATP production, GTP-fueled 143 

microtubule formation, and the energy intensive process of de novo purine biosynthesis is 144 

intriguing and offers opportunities for functional harmonization. Whether this is just limited to 145 

a sharing and channeling of common nucleotide metabolites or extends to include regulatory 146 

interactions is an interesting question. Retrograde signaling communication between 147 

mitochondria and the nucleus coordinates mitochondrial protein synthesis and 148 

communicates mitochondrial functional status, triggering compensatory responses in nuclear 149 

gene expression. On a global level, cell-to-cell differences in mitochondrial content can 150 

account for much of the variability in average rates of cellular transcription observed in 151 

populations of identical eukaryotic cells, with an increased mitochondrial mass correlating 152 

with increased chromatin activation and RNA polymerase II activity  (Guantes et al. 2015; 153 

das Neves et al. 2010). ATP is thought to be the prime driver behind these effects, but a 154 

contribution from GTP has yet to be considered, not least because GTP levels tend to 155 

shadow those of ATP. As part of this complexity, the proliferation of mitochondria by 156 
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membrane fission has recently been shown to be driven by GTP, produced at the site of 157 

action from ATP by a member of the division machinery complex, DYNAMO1  (Imoto et al. 158 

2018). A homologous protein DYNAMO2 has recently been proposed as a regulator of 159 

global GTP levels during the cell cycle of the red alga Cyanidioschyzon merolae  (Imoto et al. 160 

2019). 161 

 162 

Puzzles and prospects 163 

Testing the hypotheses discussed above concerning the mechanisms by which high energy 164 

guanine nucleotide status modulates gene transcription will require multidisciplinary 165 

investigations using the latest techniques in molecular biology and fluorescence microscopy. 166 

How induction of the ATP- or GTP-consuming pathways affects formation of IMPDH 167 

filaments and purinosomes, and how the abundance of activated GTPase switch proteins is 168 

influenced are key questions yet to be answered. The synthesis and use of high energy 169 

adenine and guanine nucleotides are intimately linked (see Fig. 1) and obtaining a clear view 170 

of the control exerted by GTP from amongst the shadow cast by ATP will be challenging. 171 

Inhibitors of IMPDH activity have been used to good effect for specifically lowering GTP 172 

levels relative to ATP (see  (Emmanuel et al. 2017; Hoxhaj et al. 2017))  but are of limited 173 

use for modulating GEC, since they also inhibit the production of GMP and GDP.  Specific 174 

inhibition of the conversion of GDP to GTP would be desirable but has yet to be achieved.  175 

 176 

The success of future work will depend on the ability to cleanly dissect the in vivo effects of 177 

GTP/GEC from those of ATP/AEC, using tools to manipulate the levels of these closely 178 

related nucleotides independently from one another. Recent in vitro studies analysing the 179 

filamentation state and activity of human IMPDH enzymes indicate differential allosteric 180 

responses to adenine and guanine nucleotides such that IMPDH cytoophidia formation 181 

facilitates the accumulation of high levels of guanine nucleotides when the cell requires them 182 

(Fernández-Justel et al. 2019) .  A similar mechanism in yeast may explain a surprising 183 

observation in our own recent study, where induction of the ATP-consuming pathway 184 
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produced a net increase in GEC and GTP concomitant with a decrease in the concentration 185 

of ATP and a stable AEC. Genetic approaches to understand and develop this differential 186 

activity may therefore provide a useful way forward and provide conclusive evidence of the 187 

key integrative role of GEC or GTP in the economy of the eukaryotic cell. 188 

 189 
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 287 

 288 

Figure legends 289 

Fig. 1. Exploring the effects of increased use of the energy stored in ATP or GTP on gene 290 

transcription in the budding yeast Saccharomyces cerevisiae  (Hesketh et al. 2019). The 291 

inducible heterologous expression of bacterial enzymes forms futile shunt pathways to AMP 292 

or GMP (a) capable of influencing intracellular nucleotide composition and gene transcription 293 

(b). Data interpretation alongside published information on the correlation of anabolic gene 294 

transcription with nucleosome remodeling  (Machné and Murray 2012; Nocetti and 295 
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Whitehouse 2016) suggests GTP/GEC as an integrative signal linking growth to energy 296 

status (c). 297 


