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SUMMARY

Macroscopic wires fabricated from carbon nanotubes (CNTs) are an exciting new

material that aims to replicate the exceptional electric properties of microscopic individual

CNTs in a macroscopic scale material. Recently there have been significant experimental

advances that allow these wires to be synthesised reliably and on an industrial scale. Their

electrical conductance, however, is orders of magnitude lower than expected and the origin

of this poor performance is not well understood. In these wires, the CNTs form a conducting

network whereby current flows along individual CNTs and also between the CNTs. This

dissertation presents theoretical investigations of mechanisms that affect conduction in these

networks.

First, the factors that affect tunnelling rates between axially-aligned CNTs are inves-

tigated. Using scattering theory and tight-binding calculations, a novel mechanism is

identified whereby momentum scattering induced by weak perturbations can greatly im-

prove conductances between CNTs with a large chirality mismatch. It is suggested that the

disorder found in realistic networks is vital to the conductance of the network as a whole

and, unintuitively, that purifying these networks by removing disorder will decrease rather

than increase the overall network conductivity.

This mechanism is then investigated using first-principles calculations for the specific

structural perturbations of terminations and bends in CNTs. An optimised methodology is

described that couples density functional theory with the Landauer-Büttiker transport for-

malism and allows for the unbiased study of the quantum conductance of systems containing

thousands of atoms. Using this methodology, it is found that small, physically realistic

bends can improve the conductance between CNTs by an order of magnitude, confirming

the relevance of the momentum-scattering mechanism to realistic CNT networks. A com-

parison is made between improvements to the conductance and the induced backscattering

due to bends and a range of termination geometries.

Finally, the evidence for charge doping of CNTs by adsorbed water molecules is

investigated. The conclusion of earlier calculations from the literature that water dopes

carbon nanotubes is suggested to be unreliable due to the difficulty in isolating charge

doping from charge polarisation effects due to the permanent electric dipole moment of

water. Using large-scale first-principles simulations, novel semi-classical models and an

analysis of the local electronic structures it is shown that the residual charge transfer between

water and carbon nanotubes, once charge polarisation have been accounted for, is negligible.
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CHAPTER

ONE

INTRODUCTION

1.1 Carbon nanotubes

Since the time of Benjamin Franklin’s early investigations into electricity, conventional

metals, such as iron or copper, have remained more-or-less unchallenged as the material of

choice for making electrical wires. The excellent conductivity that these materials posses,

coupled with the ease with which wires can be made, has led to their dominant use for the

transport of electrical signals.

Whilst these conventional wires currently remain the de facto standard, there have

recently been concerted efforts to search for new materials that out-perform this standard.

There are various motivators for this search, including superior electrical performance (lower

resistivities, higher sustainable band widths); greater endurance (stable performances at high

temperatures, or under chemically harsh conditions); or economic reasons (material costs,

wire weight). In particular, the weight of conventional wires can be especially significant in

weight-sensitive applications due to the typically-high densities of conventional metals. For

instance, copper wiring can account for over a third of the weight of a satellite; similarly,

the 135 miles of copper wiring in commercial aircraft weighs more than two tonnes.

One material that has emerged as a potential candidate for novel electrical wiring is

carbon nanotubes.1 The properties of individual carbon nanotubes have been found to

1The discovery by Iijima in 1991[1] of hollow nanometre-sized graphitic tubules in the soot from electric

arc-discharge between graphite electrodes can certainly be identified as the discovery that prompted significant

research into carbon nanotubes. Naturally, however, a number of studies prior to this date identified carbon

nanotube-like structures[2, 3, 4, 5]. The earliest of these discoveries, from 1952, went mostly unnoticed in

Western science as it was printed in Russian at a time when Western access to Soviet journals was limited.

Implicit discovery can also be traced back to far earlier dates: recent analyses have found carbon nanotubes in

1



Chapter 1. Introduction

be quite remarkable with measurements determining that conductivities and maximum

current densities can be exceptionally high whilst having a density much lower than that

of conventional metals. (See chapter 2 for a more detailed exposition of the properties of

carbon nanotubes.)

Recently, there has been significant focus on fabricating carbon nanotube-based materi-

als that reproduce the exceptional properties of individual carbon nanotubes on the macro-

scopic scale, meters or even kilometers in length. Synthesising individual nanotubes that are

this large remains unfeasible, with typical rapid-production methods producing nanotubes

of the order microns or millimetres in length.2 Instead approaches have been developed

that combine many individual microscopic nanotubes into fibres and threads.[8, 9, 10]

The results are similar to conventional fibres such as cotton, with the addition that these

nanotube fibres offer good conductance.

The measured conductance is, however, orders of magnitude lower than that expected

based on the maximum conductance of the individual constituent nanotubes,[8, 9, 10] and

the origin of this poor conductance is currently not well understood. In addition to the

conductance of the individual nanotubes within the fibre, the intra-tube conductance, the

conductance of the fibre network as a whole is dependent on how the current flows between

the nanotubes within that network, the inter-tube conductance. The highlighted terminology

introduced here will be used throughout this dissertation.

The aim of the work described in this dissertation is to study the factors that affect

conduction in these carbon nanotube networks. The goal of these studies, which are based

on theory and simulation, is to identify optimisations and improvements to improve the

electrical performance of this material.

1.2 The experimental theorist: computational modelling

Whilst experiment remains the only method for confirming the laws of nature that govern

the properties of materials, the study of materials through computer simulation can offer

significant insights that are difficult if not impossible to achieve through experiment alone.

For instance, in simulation individual atoms may be manipulated and moved with a level

of control inaccessible to the experimentalist, and the resulting consequences calculated

without ever donning a lab coat. Further, through simulation, mechanisms can be identified

on a microscopic scale directly and strategies for developing or exploiting such mechanisms

Damascus steel dating from the seventeenth century[6].
2Whilst synthesis of carbon nanotubes that are over half a meter in length has been reported[7], practical

use of this approach is limited by long synthesis times of over an hour.

2



1.3. Outline of this thesis

can be screened using a single piece of apparatus — the computer. In the experimental study

of carbon nanotubes, controlling all the factors that may affect conductivity is challenging,

whereas in simulation one does have this degree of control. Computer simulation is therefore

invaluable as a tool to identify and understand the mechanisms that affect the properties of

carbon nanotubes.

1.3 Outline of this thesis

In chapter 2 we outline some of the fundamental properties of carbon nanotubes, focusing

on the structural and electronic properties from a theoretical perspective. The fundamental

concepts, and associated notation, introduced within this chapter will be used throughout

this dissertation.

In chapter 3 we turn to the theoretical problem of calculating conductances using quan-

tum mechanics. We first discuss the mechanisms of conductance in carbon nanotubes and

explain that the observation of large electron scattering lengths justifies treating conduc-

tance as ballistic. We introduce the theoretical methodology due to Landauer for computing

conductance from a quantum-mechanical description of electronic structure and discuss its

limitations.

In chapter 4 we explain the theoretical methodology for computing electronic structures

from first principles. We outline the difficulty associated with dealing with the many-body

electronic structure in an exact fashion, even numerically, and introduce the formalism

of density functional theory as a practical alternative. We outline the approximations and

limitations associated with this method and discuss several practical implementations that

are used within this thesis.

In chapter 5 we describe a practical method, implemented within the ONETEP project,

for computing the Landauer conductance using electronic structures derived from the first-

principles methods described in chapter 4. This implementation, which builds on previous

similar implementations, benefits from use of a series of optimisations that allows for the

study of conductance through systems containing thousands of atoms whilst achieving

systematically improvable accuracy.

In chapter 6 we investigate the factors that affect conductance between carbon nanotubes.

Using scattering theory within a perturbative framework, and confirmed by tight-binding

calculations, we identify a novel mechanism for improving the inter-tube conductance

using momentum scattering mediated by weak interactions between the nanotubes and the

environment or from defects. This mechanism leads to the wholly unintuitive conclusion

3
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that increasing the purity of carbon nanotube networks by removing local disorder will

decrease the conductivity of the network.

In chapter 7 we investigate this mechanism further using the first-principles techniques

developed in chapter 5. We focus on two sources of momentum scattering, arising

from terminations and from strain fields due to bends in nanotubes, confirming that weak

momentum scattering is vital to the conduction of carbon nanotube networks. A number of

related effects are also investigated.

In chapter 8 we look at the problem of charge doping in water adsorbed carbon

nanotubes. We discuss the contradictions found in earlier experimental and theoretical

works over the effect of water on the conductivity of carbon nanotubes, and suggest that

previous calculations that predict that water n-dopes carbon nanotubes are unreliable due to

the difficulty in isolating charge doping from charge polarisation effects due to the dipole

moment of water. Using large-scale first-principles simulations, novel semi-classical models

and an analysis of the local electronic structures we show that the residual charge transfer

between water and carbon nanotubes, once charge polarisation have been accounted for, is

negligible.

Finally, in chapter 9 we summarise the overall conclusions from this thesis and outline

some suggestions for future work in this field.
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CHAPTER

TWO

THE STRUCTURAL AND ELECTRONIC PROPERTIES

OF CARBON NANOTUBES

Carbon has a rich and varied chemistry, forming compounds with almost every other known

element of the periodic table. It is also the compounds that it forms with itself, however,

that are of great technological interest. Bulk carbon materials, such as diamond and

graphite, have been known for centuries; more recently, quasi-low-dimensional allotropes

of carbon have been discovered: the two-dimensional graphene[11, 12], zero-dimensional

fullerenes[13], and one-dimensional nanotubes[14]. The excitement that arises from these

newly discovered materials comes from their physical properties which offer unparalleled

improvements over conventional materials. For instance, many remarkable properties of

carbon nanotubes have been identified including a mechanical strength greater than most

other materials [15] and thermal conductivity an order of magnitude greater than that of

copper[16].

It is the electronic properties of carbon nanotubes that form the focus of this thesis.

Very high conductivities have been observed in CNTs, with ballistic conductance occurring

over very large length-scales or order microns (see section 3.2). The maximum current

densities obtainable in carbon nanotubes is found to be very high, up to 109 − 1010 A/cm2,

which considerably exceeds the 106 A/cm2 current found to destroy copper nanowires[17],

and even exceeds the critical current densities of superconductors (108 − 109 A/cm2)[18].

Applications for high-frequency electronics may also prove fruitful as the impact of the skin

effect is reduced.[19] In a wire made from a conventional material, the skin effect makes

high frequency current flow at the surface of a wire reducing the effective cross-sectional

area of a wire and increasing the resistance; in carbon nanotubes, the tubular structure

already makes the current flow at the nanotube surface minimising the impact of the skin

5



Chapter 2. The structural and electronic properties of carbon nanotubes

effect. Coupled with the low mass density of carbon nanotubes, 1.3− 2.1 g/cm3[20, 21]

compared to 9 g/cm3 for copper, carbon nanotubes are promising candidates for light-

weight high-performance electrical wires.

In this chapter, we introduce the fundamental structural and electronic properties of

carbon nanotubes (CNTs). The theoretical electronic structure is derived within a tight-

binding framework, and a discussion is made on how these results are modified by more

sophisticated calculations. The aim of this chapter is to introduce this background and

define relevant quantities in sufficient detail that are then used throughout the remainder of

this dissertation. For a comprehensive review of the electronic and structural properties of

carbon nanotubes see [14, 22].

2.1 The structure of carbon nanotubes

Carbon nanotubes (CNTs) are tubules of carbon with walls made from a single layer of

carbon atoms arranged in a hexagonal structure. As structures, they can have remarkably

high aspect ratios, defined as the ratio of the tube diameter to the length of the tube, on

the order of 1 : 106 — typical diameters are on the order of nanometres, and maximum

length on the order of microns up to centimetres[7] — and can therefore be considered as a

realisation of ideal atomic wires of carbon.

Along with individual single-walled CNTs, multiple CNTs can be combined to form

composite structures. A CNT inside another CNT with larger diameter forms a double-

walled CNT, shown in Fig. 2.1; further CNTs contained within this double-walled CNT

forms multi-walled CNTs1 with a spacing between the concentric shells of individual CNTs

around 3.4 Å as in graphite.

These single- or multi-walled CNTs may also conglomerate together to form bundles.

The axes of the constituent CNTs are aligned and the individual CNTs have a hexagonal

packing arrangement as shown in Fig. 2.1, with a similar inter-tube separation.

2.1.1 Carbon nanotube wires, fibres and networks

As a result of the impressive electronic properties of individual CNTs on the atomic scale,

considerable effort has been made to construct macroscopic materials that reproduce these

desirable quantities. It is currently impractical to grow perfect CNTs that are macroscopic

in length, and so alternative approaches have been investigated. One approach is to spin the

1Note that double-walled CNTs are often referred to as multi-walled CNTs.
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c
multi-wall

bundles

Figure 2.1: Bundles of double walled CNTs imaged under transmission electron mi-

croscopy. a) bulk-like region; b) a cross-sectional view demonstrating the hexagonal

packing within the bundle and the double walls of the CNTs; c) the schematic geometry of

multi-walled CNTs and CNT bundles. Adapted from Ref. [23] with permission from The

Royal Society of Chemistry.

individual CNTs into bundles and then into fibres and wires.[8, 9, 10] Fig. 2.2a shows such

a CNT fibre.

In this material, a conducting network of CNTs is formed and, as no individual CNT

traverses the length of the wire, electrons must percolate through paths involving many

CNTs. The conductivities of these wires is orders of magnitude lower than expected based

on the conductances of the individual CNTs. To date, the highest specific conductivity2

obtained for a CNT fibre is 20 S m−1/(g cm−3)[25] which is somewhat better than the

same quantity for copper (6.5 S m−1/(g cm−3)) and aluminium (14 S m−1/(g cm−3)).

The theoretical maximum specific conductivity for CNTs can be estimated to be of order

103 − 104 S m−1/(g cm−3), however, indicating that significant improvement could still

be made.3 The additional resistance found in experiment is attributed to a range of factors,

2Specific conductivity, defined as the conductivity normalised by the density, is used to allow comparison

of CNT networks with different morphologies and densities.
3This estimate is obtained by assuming that conductance within a CNT can be considered ballistic over

the electron mean free path of carbon nanotubes `m.f.p. ∼ 1 µm (see chapter 3 for a discussion of ballistic

conductance and mean free paths). This defines a conductivity of σ ∼ G`m.f.p./A where the conductance G

is of order the quantum conductance G0 = 7.75× 10−5 S and A is the CNT cross-sectional area. Assuming

that each CNT within the network contributes independently to the conductivity, the specific conductivity of

the network as a whole is equal to the specific conductivity of an individual CNT. The mass density of an

individual CNT is obtained as ρ = NmC/Ad where d is the unit length of the tube, mC ∼ 10−26 kg is the

atomic mass of a carbon atom and N = 2πDd/3
√

3a2CC is the number of carbon atoms per unit length d with

D ∼ 1 nm the CNT diameter and aCC = 1.4 Å the carbon-carbon bond length. The resulting expression for

the specific conductivity is

σ′ =
σ

ρ
=

3
√

3G0`m.f.p.a
2
CC

2πDmC
. (2.1)
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Figure 2.2: The hierarchical structure of carbon nanotubes: (a) a macroscopic nanotube

fibre with knot; (b) a disordered nanotube bundle network; (c) bundles of single and

multiwall carbon nanotubes; (d) an individual (double wall) nanotube. From [24], copyright

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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2.2. The geometry of individual carbon nanotubes

including the relative contributions from metallic/semiconducting CNTs (see section 2.3),

the morphology of the network and the presence of defects and impurities. An additional

significant contribution to the resistance is believed to come from poor tunnelling between

CNTs in the network. Understanding the factors that affect this inter-tube tunnelling rate

and how it may be improved forms a significant focus of this thesis. To achieve this goal,

however, an understanding of the electronic structure of individual CNTs is required.

2.2 The geometry of individual carbon nanotubes

The structure of an individual CNT can be considered to be derived from the graphene

lattice, an infinite hexagonal planar network of carbon atoms, which is rolled up to form a

cylinder. Depending on how this rolling performed, CNTs of different structure, diameter

and indeed electronic properties (see section 2.3) can be made.

To uniquely determine the type of CNT, it is sufficient to specify the circumferential

vector (Ch) that defines the chiral vector (AA′ in Fig. 2.3) between two sites of the graphene

lattice (A and A′) that are equivalent once the sheet is rolled. This chiral vector can be

defined simply in terms of a pair of indices (n,m) which define the vector in terms of the

graphene lattice vectors (a1, a2):

Ch = na1 +ma2. (2.2)

A vector within the graphene plane that is perpendicular to Ch defines the direction of the

CNT axis. In addition to Ch, a chiral angle θ can be defined as the angle between the chiral

vector and the a1 graphene lattice vector

cos θ =
Ch · a1

|Ch||a1|
=

2n+m

2
√
n2 + nm+m2

. (2.3)

Due to the hexagonal symmetry of the graphene lattice, the chiral angle can always be

defined within the range 0◦ ≤ θ ≤ 30◦. In general, CNTs are chiral and have a left- or

right-handed screw direction (Fig. 2.3 bottom right). There are two exceptions, however,

where the CNTs are achiral: for either n = 0 or m = 0, θ = 0◦ and the CNT is said to be

zig-zag; for n = m, θ = 30◦, the CNT is said to be armchair. These names arise from the

profile of the CNT cross-sections as shown in Fig. 2.3. The diameter of the CNT can also

be defined from the chiral vector (a = |a1|)

d =
|Ch|
π

=
a

π

√
n2 + nm+m2. (2.4)
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Figure 2.3: Top panel: the graphene hexagonal lattice with lattice vectors a1, a2. The chiral

vector Ch = 7a1 + 4a2 represents one wrapping of the graphene lattice to form the (7, 4)

CNT which is shown on the right; rolling into a tube joins the two dashed lines. The shaded

atoms represent the periodic repeating unit of this CNT. The chiral angle θ is defined as the

angle between Ch and the a1 vector defining the zig-zag (n, 0) direction. Bottom panel: the

atomic structures of the zig-zag (10, 0), armchair (6, 6), and chiral (8, 4) CNTs; the zig-zag

and armchair edges are indicated in red. Adapted from [22].
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2.3. The electronic properties of carbon nanotubes

Figure 2.4: A |σ〉 bond and |pz〉 orbital of the graphene sheet.

2.3 The electronic properties of carbon nanotubes

As a result of the relationship between the structure of CNTs and graphene, it is useful to

describe the CNT bonding structure in terms of the electronic structure of graphene. In the

following discussion, we follow the review of Ref. [22].

The electronic structure within graphene can be described using hybridisation theory.

Of the four valence orbitals of the carbon atom (2s, 2px, 2py and 2pz with the z-axis

perpendicular to the atomic-plane), the s, px and py orbitals are combined together into

a planar sp2 hybridisation scheme. These sp2 orbitals are symmetric with respect to the

planar symmetry and hybridise with equivalent orbitals on adjacent carbon atoms producing

strong, covalent σ/σ∗ bonds that are responsible for the majority of the binding energy and

elastic properties of the graphene sheet. The remaining pz orbitals are out-of-plane and, for

a flat graphene lattice, cannot couple with the σ/σ∗ bonds due to symmetry. Interactions

between neighbouring pz orbitals, however, are strong creating a manifold of delocalised

π/π∗ orbitals which exist in the planes above and below the atomic sheet. In Fig. 2.4 we

show the relative shapes of the σ bonds and pz orbitals.

The energy of the σ/σ∗ bonds lie far from the Fermi energy (see Fig. 2.5), and therefore

contribute little to conduction. In contrast, the Fermi energy is located within the π/π∗

bands making these states the dominant contributor to conduction within the material.

2.3.1 Tight-binding model of graphene

A simple but efficient description of the electronic band structure of graphene can be

obtained using a straightforward tight-binding model which we now describe. The primitive

unit cell of graphene is hexagonal and contains two carbon atoms, each of which form

hexagonal sublattices which are conventionally denoted the A and B sublattices. Each

atom contributes four electrons for a total of eight electrons per unit cell. The interactions

between the six sp2 hybrid orbitals within the primitive unit cell (three per carbon atom)

produce three bonding σ bands and three anti-bonding σ∗ bands. The three bonding σ bands

11
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Figure 2.5: The band structure of graphene. The solid lines are calculated from first-

principles calculations (see chapter 4), and coloured by the symmetry of the orbitals: σ in

red, π in blue. The dashed line gives band structure calculated using the π/π∗ tight-binding

model (section 2.3.1).

are occupied by six of the eight electrons per unit cell, but as these bands lie far below the

Fermi energy their contribution to the transport properties is negligible. The anti-bonding

σ∗ bands lie high in energy and are unoccupied. The remaining two electrons per unit cell

are placed within the π/π∗ bands which are formed from the interactions between the pz
orbitals only. The Fermi energy is found to lie within these bands and therefore a tight-

binding model that describes only this band is sufficient to describe the electronic transport

properties of graphene. A suitable basis for this tight-binding calculation is therefore a

single pz(r− rA,B) orbital located on each atom site rA,B of the A/B sublattice.

To solve the Schrödinger equation for graphene, we apply Bloch’s theorem[26] and

write the wavefunctions4 as

ψk(r) = cA(k)p̃Az (k, r) + cB(k)p̃Bz (k, r), (2.5)

where

p̃A,Bz (k, r) =
∑
R

eik·Rpz(r− rA,B −R), (2.6)

k is the electron momentum within the plane and R is a lattice vector. In the basis of p̃A,Bz ,

4For clarity, we omit the normalisation of the wavefunction.
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2.3. The electronic properties of carbon nanotubes

the Schrödinger equation is solved by the solutions to the secular equation∣∣∣∣∣HAA − E(k) HAB

HBA HBB − E(k)

∣∣∣∣∣ = 0, (2.7)

with the matrix elements defined as

HAA(k) =
∑
R,R′

eik·(R−R
′)〈pAz (R′)|Ĥ|pAz (R)〉, (2.8)

HAB(k) =
∑
R,R′

eik·(R−R
′)〈pAz (R′)|Ĥ|pBz (R)〉, (2.9)

where Ĥ is the Hamiltonian operator. The state

〈r|pA/Bz (R)〉 = pz(r− rA,B −R) (2.10)

denotes a pz orbital at position rA,B + R and we have assumed that the orbitals are

orthogonal.

Under a nearest-neighbour approximation, shown schematically in Fig. 2.6, HAA =

HBB are independent of k and can be set to zero as an energy reference, and HAB simplifies

to

HAB =[
〈pAz (0)|Ĥ|pBz (0)〉+ eik·a1〈pAz (0)|Ĥ|pBz (a1)〉+ eik·a2〈pAz (0)|Ĥ|pBz (a2)〉

]
(2.11)

=− t0α(k), (2.12)

where t0 defines the transfer integral between first-nearest neighbours, typically of order

2.9 eV[27], and α(k) = (1 + eik·a1 + eik·a2).

Upon solving Eqn. (2.7) the dispersion relations become (k = (kx, ky), a = |a1|)5

E(k) = |HAA|2 ± |HAB|2 (2.13)

= ±t0|α(k)| (2.14)

= ±t0

√
1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
. (2.15)

From the plot shown in Fig. 2.7a, this dispersion relation is seen to consist of two sheets

that touch at E = 0. These contacts occur at the corners of the first Brillouin zone and are
5We assume the graphene lattice vectors to be

a1 = (a1,x, a1,y) =

(√
3

2
,

1

2

)
a, a2 =

(√
3

2
,−1

2

)
a.
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Figure 2.6: The basis vectors and hexagonal lattice of graphene. The red bars indicate

interactions between the three nearest-neighbour pz orbitals. The shaded region indicates

the graphene unit cell.

denoted as the K and K ′ points. As the π/π∗ manifold is to contain two electrons, both6

are placed within the lower sheet (the negative energy branch of Eqn. (2.15)) which is fully

occupied, the upper sheet is unoccupied and therefore the Fermi energy is the energy at

which the two sheets touch which can be verified to beEF = HAA = 0 by our choice energy

reference. As there are unoccupied states within the upper sheet that lie at infinitesimal

energy away from the Fermi energy, graphene therefore displays metallic characteristics,

although it is found that there is a low density of states in the vicinity of the Fermi energy

and the term semi-metal is often used.

The low energy excitations can be obtained by expanding the dispersion relation about

either the K or K ′ point7 resulting in linear dispersion relations

E(K + δk) = ±
√

3a

2
t0|δk|, (2.16)

where K is the co-ordinate vector of the K point with respect to the origin of the Brillouin

zone.

6Placed in each spin channel.
7These points are equivalent under time-reversal symmetry.
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2.3. The electronic properties of carbon nanotubes

(a) Graphene band structure and Brillouin zone
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(b) (8, 2) band structure

Figure 2.7: Top panel: the π/π∗ band structure of graphene (Eqn. (2.15)). In the right

panel, the Brillouin zone is indicated by the hexagon; the lines indicate the states of the

(8, 2) CNT that are allowed under the zone-folding approximation. The resulting (8, 2)

one-dimensional band structure is shown in the lower panel.

15
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2.3.2 Zone-folding approximation

To relate the band structure of graphene to the band structure of CNTs the periodicity around

the CNT circumference must be imposed on the wavefunction

ψk(r + Ch) = eik·Chψk(r) = ψk(r), (2.17)

where the first equality is due to Bloch’s theorem. Consequently, the imposed periodicity

restricts the values that the electron momentum can take such that k ·Ch = 2π` for integer

`, which corresponds to the allowed values of k being confined to discrete lines, termed

subbands, within the graphene Brillouin zone. This is shown in Fig. 2.7a where we show

these allowed lines for the (8, 2) CNT. The momentum along these subbands is the axial

momentum and can take a continuous range of values; for each subband there is a single

azimuthal momentum. Depending on the symmetry of the CNT, two distinct cases are

possible: metallic and semiconducting CNTs, which we now describe in turn.

Metallic CNTs

If a subband includes the K point, the CNT will maintain the linear dispersion relations of

the graphene Brillouin zone and will therefore be metallic. The condition to achieve this is

K ·Ch = 2π` which can be straightforwardly shown to be equivalent to n−m = 3`. All

armchair (n, n) CNTs and subset of zig-zag (n, 0) and chiral CNTs are therefore metallic.

The low energy excitations retain the linear dispersion relations of the graphene excitations

but the axial momentum where the bands cross, the Fermi momentum kF , depends on the

chirality

E(k) = ±~vF |k − kF |, (2.18)

where k is the axial momentum and vF =
√

3at0/2~ defines the Fermi velocity. In Fig. 2.7b

and Fig. 2.8 we show the dispersion relations of the metallic (8, 2), (9, 0) and (5, 5) CNTs

under the zone-folding approximation. In Fig. 2.8 we also plot the densities of states for the

(9, 0) and (5, 5) CNTs. The divergences are called Van Hove singularities and are a result

of the quasi one dimensional nature of CNTs and their functional dependence scales as the

inverse of the energy difference to the band edge (1/
√
E − Eb).

Semiconducting CNTs

In the case that no subband includes the K point, i.e. when n−m = 3`± 1, the CNT will

be semiconducting and there exists a band gap. Expanding the low energy excitations for
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Figure 2.8: The band structures and densities of states (DOS) of the achiral (9, 0) and (5, 5)

metallic CNTs as calculated using the π/π∗ tight-binding model under the zone-folding

approximation. After [22].

the subband closest to the K point results in a dispersion relation[22]

E(k) ≈ ±
√

3a

2
t0

√(
2π

3|Ch|

)2

+ k2, (2.19)

with a band gap opening at the Fermi energy

Eg =
2πat0√
3|Ch|

. (2.20)

This is shown in the left panel of Fig. 2.9 where we plot the band structure of the semi-

conducting (10, 0) CNT; in the right panel we superimpose one of the lowest-energy CNT

subband on the low-energy dispersion relation of graphene. The size of the band gap is

inversely proportional to the CNT diameter (d = |Ch|/π) and is approximately 0.6 eV for

CNTs with diameter of 1 nm.[28, 27] The effective mass of the charge carriers, given by

the curvature at the band edges, can be derived to be

m∗ =
1

~

[
∂2E

∂k2

]−1

=
2π~

3|Ch|vF
(2.21)

and therefore also depends on the inverse of the diameter.

The complex dependence of bandstructure character on the (n,m) indices in turn

introduces a sensitive dependence on the tube diameter (Eqn. (2.4)), and CNTs with similar

diameter but different (n,m) may have strikingly different electronic structures. A particular

synthesis route will typically create CNTs with a range of diameters and therefore also a
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Figure 2.9: The band structure of the achiral (10, 0) semiconducting CNT as calculated

using the π/π∗ tight-binding model under the zone-folding approximation. The left panel

indicates the allowed subband closest to the K point of the graphene Brillouin zone.

range of electronic characters. The ratio of metallic to semiconductor CNTs, which strongly

affects the conductivity of a CNT network, is therefore not easy to control at synthesis.

2.3.3 Beyond the π/π∗ zone-folding model

The successes of the π/π∗ tight-binding model and zone-folding approximation arise from

the resulting analytic expression that effectively captures the electronic structure of a wide

range of CNTs. Some deficiencies are notable, however.

Firstly, it is assumed that the pz orbitals do not interact with the σ bonds. Whilst for

a perfectly flat graphene sheet this is true by symmetry, the introduction of curvature can

allow for coupling between the σ bonds and the π/π∗ manifold. For narrow diameter CNTs

(< 1 nm), the strong curvature allows mixing of the σ and π bands and the π/π∗ model

can fail to describe the electronic structure. Calculations derived from first principles (see

chapter 4) have shown that hybridization between the π∗ and σ∗ can lower the energy of low-

lying conduction bands considerably[29] reducing, or even closing, the band gaps of small-

diameter CNTs that the zone-folding approximation predicts to be semiconducting[30, 31].

Further, high curvature reduces the Fermi wave-vector compared to the result derived from

the zone-folding approximations[32].

Curvature effects are less prominent in larger diameter CNTs and do not significantly

change the electronic character predicted by the zone-folding model for large diameter

semiconductor or armchair metallic CNTs. In zig-zag and chiral metallic CNTs, the
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2.3. The electronic properties of carbon nanotubes

curvature creates a small (∼ 20 meV) band gap, however this can be ignored at ambient

temperatures due to thermal excitation of the electronic occupancies.[33]

A second implicit assumption within the graphene tight-binding model is symmetry

between the two sheets of the Brillouin zone (Eqn. (2.15)), resulting in a symmetry between

the valence and conduction bands describing the electrons and holes. First-principles

calculations show that the symmetry of the valence and conduction bands is indeed broken,

as shown in Fig. 2.5. Whilst this effect can be corrected by extending the π/π∗ model to

include non-orthogonal overlap elements between the pz orbitals[34], in the vicinity of the

K points first-principles calculations still predict the linear-dispersion relations showing

that these corrections are largely unnecessary for studying conduction at low-bias.

2.3.4 Electronic structure of carbon nanotube bundles

Where CNTs bundle together, their electronic structure can be modified by the interactions

between the tubes. Whilst this interaction is weak, arising from van der Waals interactions,

the low-energy excitations can be strongly modified due to the lowering of symmetry which

can open band gaps in the low energy dispersion relations. In bundles of (10, 10) CNTs,

it was shown theoretically that the tube-tube interaction induces a pseudogap of around

0.1 eV at the Fermi energy [35], a result that was confirmed experimentally using low-

temperature scanning tunnelling spectroscopy[36]. Where the bundles retain the symmetry

of the individual CNTs, for example in bundles of symmetrically aligned (6, 6) CNTs, no

pseudogap is opened [37]. Similarly, pseudogaps were also predicted for CNTs bundles

containing a range of metallic chiralities, however the reduction in densities of states is

much smaller in magnitude and occurs over a wider range of energies around the Fermi

level[38]. Equivalent modifications to the band structures are calculated in multi-walled

CNTs.[39, 40]

At ambient temperatures, however, these modifications to the electronic band structures

have little impact on the bundle conductance. Whilst the opening of the pseudogap reduces

the density of states precisely at the Fermi energy, the redistribution of the state energies

ensures that the average density of states in the vicinity of the Fermi level remains constant.

A finite electronic temperature comparable to the magnitude of the pseudogap ensures that

the number of states that contribute to conductance is unchanged by the symmetry breaking.

Furthermore, ambient thermal energies are also sufficient to overcome the weak inter-

tube interaction, which is of order 8 meV/atom[41], allowing the significant contribution

of lower-symmetry, pseudogapless configurations to the ensemble-averaged electronic

properties.
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Therefore, the electronic structure of bundles of CNTs at ambient temperatures can be

well approximated by the superposition of the electronic structures of individual CNTs,[38]

which itself can be well described by the π/π∗ tight-binding model. The advantage of

this model lies with the simple analytic expression for the band structure and its ability to

capture well the low energy excitations.

2.4 Summary

In this chapter we have introduced the basic electronic properties of carbon nanotubes.

Using a simple tight-binding model, we have reviewed the electronic properties of CNTs

and have shown that their electronic structure can be metallic or semiconducting in character

depending on their structure and chirality. For metallic CNTs, the low energy dispersion

relations were demonstrated to depend linearly on the electron momentum. We discussed

how this result is modified by the use of more sophisticated calculations, however we

concluded that these corrections do not strongly modify the result determined by the simple

tight-binding model.

We have also discussed the conductive properties of CNT wires, made from fibres

of many individual CNTs, and noted that the electrical performance of this material is

considerably lower than expected based on the conductances of the individual constituent

CNTs. One approach for improving the conductivity of CNT fibres is to develop an

understanding of the theoretical mechanisms that inhibit conductance. In the next chapter,

we introduce a theoretical formalism to study the conductances of CNTs.
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CHAPTER

THREE

MESOSCOPIC CURRENT AND BALLISTIC

CONDUCTANCE

In this chapter we introduce the methodology used throughout this dissertation for comput-

ing the conductance of carbon nanotubes. We first describe the role of scattering lengths in

determining how electrons conduct in a material, and show how the very large scattering

lengths measured in carbon nanotubes require their conduction to be described using a

mesoscopic formalism. We describe such a methodology, the Landauer-Büttiker formalism,

that forms the primary method used within this dissertation for computing conductances,

and discuss its approximations and limitations.

3.1 Introduction

One of the simplest relations of circuit theory is Ohms’ law. For materials that obey this

law, a potential bias V applied across a wire made from this material creates a current I

flowing through that wire, the magnitude of which is directly proportional to the magnitude

of the bias I = GV .1 The quantity G is the conductance of the wire, which for macroscopic

wires can be written in terms of the wire diameter A, length L, and a quantity intrinsic to

the material of the wire, σ, the conductivity

G =
σA

L
. (3.1)

For microscopic wires, however, Eqn. (3.1) is no longer appropriate. As the size of the

wire reaches the atomic scale, the conductivity can no longer be defined macroscopically

1In this dissertation, we will focus only on current flow in the steady-state at zero frequency.
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Chapter 3. Mesoscopic current and ballistic conductance

and instead the quantum-mechanical nature of the electrons must be accounted for. As a

result, a vastly different picture of conductance is found on the atomic scale. Indeed, the

failure of Ohm’s law has been observed in experiments on quantum point-contacts[42],

atomic wires[43] and carbon nanotubes[44].

The transition between the macroscopic and microscopic description of conductance is

governed by three length-scales: the de Broglie or Fermi wavelength λF ; the momentum-

relaxation length or mean free path `e; and the phase-relaxation or coherence length Lϕ.

The Fermi wavelength λF is related to the kinetic energy of electrons at the Fermi energy.

The mean free path `e defines the typical distance an electron travels before appreciably

changing its momentum due to any scattering events, for example from defects or impurities

or inelastic scattering. The coherence length Lϕ is the typical distance an electron travels

before losing phase coherence due only to inelastic scattering events such as electron-

phonon or electron-electron scattering. Over distances shorter than Lϕ, the phase of the

electron is well defined along its path and so it can interfere with other electrons as well as

with itself.

A wire usually exhibits Ohmic behaviour when its length L is much greater than any

of these lengths2 L� λF , `e, Lϕ. This condition is certainly not satisfied in microscopic

wires, where sizes are comparable to the Fermi wavelength L ∼ λF , but can also be violated

in wires with size between the microscopic and macroscopic scales, termed mesoscopic,

where L � λF but still shorter than the mean free path or coherence length. In these

mesoscopic wires, significant deviation from Ohm’s law can be observed, and we note here

three important limiting cases.

When the wire is much larger than either the mean free path or the coherence length,

L� Lϕ, `e, conductance is said to be diffusive and the classical limit is retrieved. Phase

coherency is destroyed by each scattering event and the resistance is proportional to the

total length of the wire. When the coherence length is large but the mean free path is much

shorter than the wire, `e � L� Lϕ, conductance is said to be localised. Inelastic scattering

may be neglected, but localisation results from the accumulation of quantum interference

due to many elastic scattering events, and resistance is found to grow exponentially with

wire length. In contrast with this, ballistic conductance occurs when the wire length is much

shorter than both the coherence length and the mean free path, L � `e, Lϕ. In this case,

electrons can propagate without any significant scattering and the conductance becomes

independent of length of the wire (see Fig. 3.1 and section 3.3.2).

2The conductance also behaves classically when the coherence length is very short compared to any other

length scale. Due to a rapid loss of phase coherence, the effect of coherent interference at each scattering

event can be neglected and Ohm’s law can be recovered[45].
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3.2. Scattering lengths in carbon nanotubes

For a macroscopic CNT fibre, conductance is within the diffusive regime; the description

of conductance within that wire, and in particular between the individual CNTs in that

wire, may deviate significantly from the classical limit. This is a result of the scattering

length-scales associated with CNTs, which we now discuss.

3.2 Scattering lengths in carbon nanotubes

Experimental investigations have found remarkably large scattering lengths in carbon

nanotubes. In Table 3.1 we summarise experimental measurements from the literature,

from which it can be seen that scattering lengths as large as 10 µm are found in metallic

CNTs, or bundles of CNTs, even at room temperature; scattering lengths are found to

be somewhat shorter for semiconducting CNTs, yet these can still approach 100 nm.

The differences in the observed scattering lengths are due to the precise experimental

conditions and different CNT samples. Nonetheless, the largest scattering lengths presented

in Table 3.1 can be considered as minimum bounds for the maximum possible scattering

lengths. For comparison, the typical electron scattering length in copper is 40 nm at room

temperature[46].

Fig. 3.1 demonstrates the measurement of ballistic conductance in metallic CNTs. The

left panel shows the experimental setup consisting of a probe with protruding metallic

CNTs that can be lowered into a liquid mercury contact. In the right panel, the resulting

conductance of the CNT is shown as a function of the depth z of the CNT tip in the mercury.

The conductance is found to be constant over large regions of z, indicating that conductance

is ballistic. The step-like increases in conductance occur due to additional CNTs coming

into contact with the mercury.3

The reason for such large scattering lengths comes down to the unique properties of

CNTs. Elastic scattering by long-range perturbations, varying on scales much larger than the

inter-atomic distance, has been shown to be forbidden due to symmetry considerations.[48,

49] The elastic mean free path associated with short-range (Anderson-type) random disorder

has been calculated to be of order 1 µm [50]. Particularly pristine CNT structures can

be produced, with distances between defects as large as microns[51] or greater. These

considerations result in elastic mean free paths of order microns.

Inelastic scattering is dominated by acoustic-phonon scattering, however this scattering

3We note for completeness that a recent study[47] has questioned the observation of ballistic conductance

as reported in Ref. [44] (Fig. 3.1) and similar studies. It has been suggested that nanoscale contacts directly

between the probe and mercury may have been mistaken for ballistic-conductor CNTs. Nevertheless, extremely

large electron scattering lengths have been inferred in CNTs using independent methods as shown in Table 3.1.
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Chapter 3. Mesoscopic current and ballistic conductance

Figure 3.1: Ballistic conductance measured in metallic CNTs. The conductance is in terms

of the quantum conductance (see section 3.3.2). Modified from Ref. [44]. Reprinted with

permission from AAAS.

is found to be weak[52, 53]. Inelastic acoustic-phonon scattering lengths at room tem-

perature have been measured to be larger than Lϕ ∼ 1 µm[54, 55]. Optical phonons are

unpopulated at ambient temperatures as the strong interatomic bonding results in optical

phonon excitation energies greater than thermal energies. Optical-phonon scattering is

therefore typically found to be negligible. At high temperatures or large bias, however,

optical-phonon scattering can be much greater and inelastic scattering lengths can be as short

as 10 nm.[54] The contribution to scattering from electron-electron scattering is smaller

than the electron-phonon contribution.[33, 55] Inelastic scattering lengths can therefore be

of order microns.

As the calculations within this dissertation focus on relatively small CNTs (L . 50 nm),

the effects of inelastic scattering can be neglected and conductance can be assumed phase

coherence and ballistic-like. The effects of elastic scattering are incorporated but only those

arising from the precise geometry of the system; elastic scattering from electron-phonon and

electron-electron scattering are neglected. To calculate the effects of geometric scattering

on the conductance, the Landauer-Büttiker formalism is used which we now describe.

3.3 Conductance in mesoscopic materials: the Landauer-

Büttiker formalism

In mesoscopic systems, coherent electron conduction (Lϕ =∞) can be rigorously investi-

gated with either the Kubo-Greenwood [64, 65] or Landauer-Büttiker formalisms[66, 67,
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3.3. The Landauer-Büttiker formalism

Scattering length CNT type Method Ref.

` > 3 µm

metallic

CB; LT [56]

` > 10 µm IV; RT [57]

` = 10 µm CB; LT [58]

Lϕ = 1.6 µm (phonon-scattering) IV; RT [54]

Lϕ = 300 nm (phonon-scattering) IV; RT [59]

Lϕ ≈ 100 nm MR; LT [60]

` = 100 nm
semiconductor

CB; LT [58]

` = 2 nm IV; RT [61, 58]

`e ≈ 250 nm, Lϕ ∼ 500 nm

(electron-electron scattering)
metallic, p-doped IV; LT [62]

` > 200 nm
bundles

CB; LT [63]

` > 600 nm IV; RT [44]

Table 3.1: Experimentally-determined scattering lengths in CNTs. The symbol ` refers

to the measured scattering length where no mechanism is identified. The methods used

to determine the scattering length are defined using the following key: CB: inferred from

coulomb blockade measurements;

IV: direct measurement of conductance inferred from IV characteristics;

MR: inferred from magnetoresistance measurements;

LT: at low temperature;

RT: at room temperature.
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Chapter 3. Mesoscopic current and ballistic conductance

68]. Whilst these two formalisms have been shown to be formally equivalent[69], the

former is better suited to the diffusive regime where elastic scattering is relatively strong.

Where the mean free path `e becomes larger than the CNT being simulated, the Landauer-

Büttiker formalism is more appropriate, and further, its formal extensions for incorporating

inelastic electron-electron scattering (the Meir-Wingreen formalism[70]) or conduction out

of equilibrium or at finite bias (the nonequilibrium Green’s function (NEGFs) and Keldysh

formalisms[71, 72]) allow a wide range of physical effects to be incorporated.

Prior to Landauer, the flow of current was conventionally interpreted as the response

of the system to an electric field within the wire. This electric field results in the electrons

accelerating within the material, and scattering is introduced as resistance to this acceler-

ation.4 Landauer’s realisation, however, was that conductance could also be interpreted

as the flux of current into a system with a net current flowing due to an imbalance in the

number of electrons entering the system with different velocities. The causative agent for

conductance here is instead a difference in carrier concentration, equivalent to the chemical

potential, on either side of a wire. This is shown schematically in Fig. 3.2. A net flow of

electrons then occurs from high chemical potential to low chemical potential. An electric

field is still present, however unlike the conventional interpretation, it arises as a reaction to

the bias in chemical potential and to scattering within the wire.

Landauer’s idea was generalised by Fisher and Lee [75] for multi-channel, three-

dimensional conductors, and then further generalised by Büttiker[68] for multi-channel

devices connected to multiple probes. The theory is also often referred to as the Landauer-

Büttiker formalism. A comprehensive introduction to this formalism can be found in

[45, 76].

3.3.1 Current from transmission

In the Landauer-Büttiker formalism, resistance arises due to scattering which affects the

transmission probability that electrons pass through the wire. The conceptual set-up for

a wire is shown in Fig. 3.2. The conductance to be calculated is that of the central device

region, which is connected to two reservoirs that supply the current. The reservoirs are

assumed to be in local equilibrium with some local chemical potential µL,R, and are assumed

to be very large such that they can accept or donate an arbitrary number of electrons without

changing their internal state. Due to the asymmetry of the system, each reservoir is only

able to inject electrons into the device region from one direction. If the reservoirs have a

different local chemical potential, there is then an imbalance in carrier densities travelling

4This was in fact the picture first proposed by Drude in 1900, which pre-dates quantum theory[73, 74].
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3.3. The Landauer-Büttiker formalism

each direction and a net current flows. This is shown schematically in the lower panel of

Fig. 3.2.

It is assumed that the current flowing through the device is in the steady state and is

therefore time-independent. It is also assumed that the electrons can be treated independently

in a mean-field approximation.[76]

The contribution to the current through the device from electrons that originate in the

left reservoir in the energy interval [E,E + δE] is

δiL = −2e

L

∑
m

vg,m(E)Tm(E)ρm(E) δE

= −2e

h
T (E) δE (3.2)

where L is the size of the device, vg,m and ρm(E) are the electron group velocity and density

of states of the mth conduction channel within the device, and Tm(E) is the transmission

probability of the electron passing through the device.5 The sum is performed over all

conduction channels within the device and the factor of 2 is assuming spin degeneracy.

The second line in Eqn. (3.2) is reached by noting the cancellation between the group

velocity vg,m = (1/~)∂Em/∂k and the density of states in quasi-one dimensions ρm =

L/(π∂Em/∂k). Due to this cancellation, the transmission from each channel can be

amalgamated into a total transmission T (E) =
∑
Tm(E), which may be greater than unity

where multiple channels contribute.

The total conductance is the difference between the left- and right-travelling electrons

IL→R = −2e

h

∫ ∞
−∞

dE
[
fL(E;µL)− fR(E;µR)

]
T (E) (3.3)

= −2e

h

∫ µL

µR

dE T (E), T → 0, (3.4)

where fL,R(E;µL,R) = [1 + exp((E − µL,R)/kBT )]−1 is Fermi-Dirac function at tempera-

ture T defining the (local) thermal equilibrium populations within the reservoirs and in the

final line we have taken the limit of zero temperature.

The same formalism holds for devices that connect to multiple reservoirs, with a current

and transmission defined between each pair of reservoirs.

5The lead region that connects the reservoirs to the device is assumed to do so adiabatically, and therefore

does not introduce any additional scattering. Scattering at this location is referred to as contact resistance[45].

In addition, we have assumed time-reversal symmetry so that the transmission is not dependent on the direction

of travel of the electrons. Such an assumption is broken in the presence of a magnetic field[45].
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Chapter 3. Mesoscopic current and ballistic conductance

states from
left reservoir

states from
right reservoir

conducting
states

left reservoir right reservoirdevice

Figure 3.2: Upper panel: the schematic geometry used in the Landauer formalism for a

device connected to two reservoirs at chemical potentials µL and µR. The arrows represent

the propagation of electrons through the device region, with a probability T of being

transmitted to the right reservoir. Lower panel: the schematic band structure of electrons

propagating through the device. Multiple bands at a given energy correspond to multiple

conduction channels at that energy. The states from the left (right) reservoir travel forward

(backwards) with respect to the geometry shown in the upper panel. The grey shading

indicates the occupied bands for states travelling in each direction: the light grey region

indicates states that contribute no net current; the dark grey region has states travelling in

the forward direction only contributing a net current.
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3.3. The Landauer-Büttiker formalism

3.3.2 Ballistic conductance

In the limit of no scattering, conduction is said to be ballistic. The transmission is unity for

all conduction channels allowing Eqn. (3.4) to be evaluated exactly. An electric potential

bias can be assigned as V = (µL − µR)/(−e) permitting a conductance to be defined

G =
IL→R

V
=

2e2

h
M(V ) = G0M(V ) (3.5)

where M(V ) is simply the number of conduction channels available in the bias window,

and the constant G0 = 2e2/h ≈ 7.74 × 10−5 S is known as the quantum conductance.

This total conductance represents the maximum-possible conductance of the device; the

observation that it is finite is a consequence of the Pauli exclusion principle. Note that

ballistic conductance is independent of the length of the wire L, marking a significant

deviation from Ohmic conductance. Where weak scattering occurs, conductance can still

be said to be ballistic if the conductance is approximately independent of the wire length.

Fig. 3.3 is remarkable experimental confirmation of the existence of quantized conduc-

tance, where conduction through the constriction is observed to be ballistic and quantized

in units of G0. As the gate voltage is adjusted, the number of conduction channels available

changes, resulting in abrupt step-like changes in the conductance. Ballistic conduction

has also been observed in CNTs at room temperature, as shown in Fig. 3.1. In Fig. 3.4,

the conductance of a micrometer-length metallic CNT is found to be comparable to the

quantum conductance indicating that scattering is weak, even at room temperature, and

conduction is ballistic-like.

3.3.3 Conduction at low bias and linear-response

In the limit of low bias, conduction is dominated by electrons with energy close to the Fermi

energy EF .6 Expanding Eqn. (3.3) to first order in the bias ∆µ = µL − µR = −eV , the low

bias current and conductance are

IL→R ≈ −
2e

h

∫ ∞
−∞

dE
∂f

∂µ

∣∣∣∣
E=EF

T (E)∆µ (3.6)

G ≈ 2e2

h
T (EF ) (3.7)

where the bias and temperature are assumed sufficiently small that the transmission can

be approximated as constant in the vicinity of the Fermi energy E = EF ± kBT where

6The Fermi energy may be modified through a gate voltage or through doping; the effect of charge doping

in CNTs due to water is the focus of chapter 8.
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Chapter 3. Mesoscopic current and ballistic conductance

Figure 3.3: The point-contact conductance as a function of gate voltage for a current

passing through the restriction shown in the inset. The conduction shows plateaus at

multiples of G0 = 2e2/h. Adapted with permission from van Wees et al., Phys. Rev. Lett.,

vol. 60, p. 848 1988. Copyright 1988 by the American Physical Society.

Figure 3.4: The temperature de-

pendence of the conductance of

a micrometer-length single-walled

metallic CNT. Modified with permis-

sion from [57]. Copyright 1999, AIP

Publishing LLC.
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3.3. The Landauer-Büttiker formalism

the derivative of the Fermi function is non-zero. Eqn. (3.7) shows that the transmission

spectrum may be directly interpreted as the low-bias conductance as a function of the carrier

energy: G(E).

3.3.4 Transmission from Green’s functions

The key task, therefore, is to compute the transmission spectrum T (E), which can be done

using either the Fisher-Lee relation[75], which relates transmission to the transmission

amplitude matrix (see appendix A.5), or using a Green’s function approach[71, 76]. Whilst

both methods are equivalent, computational efficiencies to be discussed in chapter 5 favour

the latter approach for the applications used in this dissertation.

The most significant advantage of the Green’s function methodology is that the entire

system including the semi-infinite reservoirs can be described in terms of the finite device

region, making this approach more amenable to a numerical implementation. Further, the

methodology can be naturally extended to compute conduction at finite-bias. Here we focus

only on the main results; an outline of the somewhat algebraically-tedious proof of the

formulae presented in this section can be found in appendix A.

For a device connecting an arbitrary number of leads to the same number of reservoirs,

the Green’s function for the device region is given by

Gd(E) =
[
(E + iη)−Hd − Σ1(E)− Σ2(E)− . . .

]−1 (3.8)

where Hd is the device Hamiltonian and Σi(E) is the self energy for lead i. The self

energies account for the perturbation to the device region due to the leads, which act as

current sources and sinks. The reservoirs are included indirectly and determine the chemical

potential and carrier population within the leads.

The transmission coefficient between leads i and j is given by[76]:

Tij(E) = tr
[
Γi Gd Γj G

†
d

]
. (3.9)

where Γi(E) are the coupling matrices defined in terms of the corresponding lead self

energy

Γj = i
(
Σj − Σ†j

)
. (3.10)

In addition to the transmission coefficients, the device Green’s function allows the

device density of states to be computed using

Nd(E) = − 1

π
Im tr

[
Gd(E)

]
. (3.11)

For a detailed discussion of these relations, see [45, 76].
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Chapter 3. Mesoscopic current and ballistic conductance

3.3.5 Limitations of the Landauer-Büttiker formalism

As inelastic processes are neglected, the Landauer-Büttiker formalism applies only to

non-interacting charge carriers. The validity of this approximation improves at higher

temperatures where thermal fluctuations suppress interactions. Within this dissertation,

we therefore restrict our attention to conductance at ambient temperatures, permitting a

mean-field approach.

We note, for completeness, that at very low temperatures this approximation is insuf-

ficient and instead correlation of the charge carriers must be described by the Tomonaga-

Luttinger-liquid theory[77, 78, 79, 80]. For reviews of Tomonaga-Luttinger-liquid theory

and its applications to CNTs see [81, 82].

The Landauer-Büttiker formalism also does not explicitly provide a methodology for

computing transmission at finite bias. This problem is addressed in the nonequilibrium

Green’s function (NEGF) and Keldysh formalism,[71, 72] which is discussed briefly in

appendix A.

3.4 Summary

In this chapter, we have introduced the ideas behind the Landauer-Büttiker formalism

for ballistic electronic conductance and justified the need for its use when calculating the

conductance of carbon nanotubes. A Green’s function approach was described that allows

the conductance of a device to be computed from a description of the device Hamiltonian

and self energies. These quantities are unique to any system, and a method must be found

to obtain the matrix elements by which they are defined.

One approach is to use a tight-binding model for the matrix elements parameterised

from known features about the system, such as the bulk band structure. This approach

allows for rapid determination of the device electronic structure and is the approach adopted

in chapter 6 where we use the graphene π/π∗ model introduced in chapter 2 to study very

large systems of bulk-like CNT networks.

For more complex devices, suitable tight-binding models are more difficult to identify

and the applicability of such models to a range of device geometries is not assured. Instead

approaches that derive these matrix elements directly from first-principle calculations, that

is without prior assumptions about the device other than the electrons obey the Schrödinger

equation, offer a great predictive advantage. A procedure to achieve this is the focus of

chapter 5, which constitutes the main technique by which conductance is calculated in this

dissertation. First, we discuss the theoretical ideas that underlie practical first-principle
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schemes.
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CHAPTER

FOUR

FIRST-PRINCIPLES METHODS

In the previous chapter, we demonstrated how the conductance through a device can be

calculated from a quantum-mechanical description of the system. In this chapter, we

consider the problem of determining this quantum-mechanical description, focusing on

methods that do this without any prior assumption about our device, other than it obeys the

Schrödinger equation. This approach is referred to as a first-principles method, and draws

significant success from its ability to predict new and unexpected phenomena.

We first explore the computational difficulty associated with determining the exact

electronic structure when working directly with the many-body wavefunction. We then

introduce the formalism of density functional theory, wherein the key parameter is the

electronic density rather than the wavefunction. Through a series of approximations, we

show how this formalism can be made practical for computing electronic structures from

first principles, and discuss the limitations it holds that are particularly relevant to the

study of electronic transport. We conclude this chapter with a discussion of the particular

implementations used in this work.
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Chapter 4. First-principles methods

4.1 Quasi-particles

The Hamiltonian for any system is known exactly, and can be written down as a sum of the

electron kinetic energies and the interactions present in the material1,2

Ĥ = T̂ + Ûe−e + V̂ext

= −1

2

∑
i

∇2
i +

1

2

∑
i 6=j

1

|ri − rj|
−
∑
i,α

Zα
|ri −Rα|

. (4.1)

The three terms within this Hamiltonian represent the electron kinetic energy T̂ , the Coulom-

bic electron-electron interaction Ûe−e, and the electron-nuclei interaction V̂ext. Latin indices

correspond to sums over electrons, which are located at the positions ri; the Greek index is

a sum over nuclei, located at positions Rα with charge Zα.

Whilst Eqn. (4.1) is exact, the form of this Hamiltonian is not well suited to quantum

conductance calculations. The Landauer formalism is valid only in the limit of non-

interacting particles, but making this approximation directly in Eqn. (4.1) corresponds to

neglecting the strong interaction between the electrons, equivalent to setting Ûe−e = 0, and

is a poor approximation.

The interactions contained within Eqn. (4.1) are written in terms of individual electrons.

Within a material, however, the notion of individual electrons becomes somewhat mean-

ingless as the interaction between the electrons is strong and the motion of an individual

electron is correlated with those around it. The fundamental excitations of a material are

collective modes of many electrons, with behaviour that can be described as an ensemble of

interacting particles, but with an interaction strength that is often much weaker than that

between the individual electrons. These collective modes are termed quasi-particles, and

are the fundamental excitations responsible for current flow within a material. To compute

the conductance of a material, therefore, the Hamiltonian given in Eqn. (4.1) must be solved

to determine its weakly-interacting quasi-particles.

1Here and throughout this thesis we make the adiabatic approximation[74], also known as the Born-

Oppenheimer approximation, that neglects the quantum-mechanical nature of the ionic nuclei and treats them

instead as stationary, charged classical particles. This is justified by the large difference in mass between

electrons and the nuclei, a factor of ≈ 2000 for Hydrogen and larger for heavier nuclei, which results in the

electronic structure relaxing rapidly to changes in the nuclear positions. In terms of the system Hamiltonian,

this approximation neglects the kinetic energy of the nuclei and interactions between electrons and the lattice

vibrations (electron-phonon interactions). The Coulombic interactions between pairs of nuclei are included

simply as a classical electrostatic energy.
2We adopt atomic units: e = 1, ~ = 1, me = 1.
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4.2. The exact solution to the Schrödinger equation

4.2 The exact solution to the Schrödinger equation

For all but the most trivial of systems, there exists no analytic solution for the eigenstates

of a Hamiltonian and instead numerical approaches are required. One method to do this is

using the variational approach, which is in principle exact, however a direct approach to

determine the eigenstates for a system is unfortunately unfeasible, as we now show.

4.2.1 The variational principle

Finding the eigenstates of the system Hamiltonian is equivalent to finding the stationary

points of the energy functional

E[Ψ] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 , (4.2)

i.e. solving the variational equation δE[Ψ] = 0.

The proof of this comes by considering a small change to the wavefunction |Ψ〉 →
|Ψ〉+ |δΨ〉. The corresponding change to the functional Eqn. (4.2) is

δE[Ψ] = E[Ψ + δΨ]− E[Ψ]

=
〈Ψ + δΨ|Ĥ|Ψ + δΨ〉
〈Ψ + δΨ|Ψ + δΨ〉 −

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

=
δ(〈Ψ|Ĥ|Ψ〉)
〈Ψ|Ψ〉 − 〈Ψ|Ĥ|Ψ〉

(〈Ψ|Ψ〉)2
δ(〈Ψ|Ψ〉) +O(δΨ)2

=
1

〈Ψ|Ψ〉
[
〈δΨ|(Ĥ − E[Ψ])|Ψ〉+ c.c.

]
+O(δΨ2), (4.3)

where c.c. denotes the complex conjugate of the previous term and the Hermiticity of the

Hamiltonian has been used. The variation δE[Ψ] = 0 is true to first order in δΨ when

Ĥ|Ψ〉 = E[Ψ]|Ψ〉which is exactly the condition that |Ψ〉 is an eigenstate of the Hamiltonian.

The value of the energy functional at this stationary point is the corresponding eigenenergy

of this state.

Furthermore, the wavefunction that places the E[Ψ] at its global minimum stationary

point is the ground-state wavefunction, with E[Ψ] equal to the ground-state energy at that

point. The proof of this statement comes by considering a wavefunction that is close to the

ground-state |Ψ0〉 with contributions from higher-energy states |Ψi〉, i > 0,

|Ψ〉 = |Ψ0〉+
∞∑
i=1

ci|Ψi〉. (4.4)
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Inserting Eqn. (4.4) into Eqn. (4.2) and using the orthogonality of the eigenstates gives

E[Ψ] =
E0 +

∑∞
i=1Ei|ci|2

1 +
∑∞

i=1 |ci|2

= E0 +

∑∞
i=1(Ei − E0)|ci|2
1 +

∑∞
i=1 |ci|2

(4.5)

where E0 is the ground-state energy and Ei > E0 are the energies of the excited states.

Therefore E[Ψ] ≥ E0, with equality only at the ground-state where |Ψ〉 = |Ψ0〉.3

The ground-state can therefore be computed, in principle, by minimising E[Ψ] with

respect to all trial wavefunctions |Ψ〉 that are anti-symmetric with respect to electron

exchange as required for Fermionic statistics. Higher excited states can be computed by

repeating this procedure for each desired state with the additional constraint that each

subsequent eigenstate is orthogonal to all those previously calculated.

4.2.2 Exponential scaling

Although this procedure is exact and guaranteed to produce the entire spectrum of eigen-

states, from a computational view it is completely impractical for all systems containing

more than a few electrons. The issue arises because the method deals directly, and in an ex-

act fashion, with the many-body wavefunction. In a real-space approach, the wavefunction

depends on the positions of all N electrons in the system

〈{ri}|Ψ〉 = Ψ(r1, r2, . . . , rN) (4.6)

and is therefore an object of dimension 3N . The size of this object therefore scales

exponentially with number of electrons in the system and the Schrödinger equation rapidly

becomes impossible to solve exactly, even numerically.

As an example, consider the memory requirements to store numerically the wavefunction

for the first six atoms, up to carbon, of the periodic table. Here we consider only describing

the wavefunction for a single isolated atom within a cubic box, a problem that bears little

physical interest. Assuming a (somewhat coarse) discretisation of real space into 10 grid

points in each cardinal direction, the number of grid points to describe the many-body

wavefunction increases by a factor of 103 = 1000 for each additional electron added to

the system. Assuming a single byte of data storage per grid point (for simple estimation

purposes), the memory foot print for each atom is of order: 1 kB for hydrogen; 1 MB for

3For systems with degenerate ground-states, the upper bound on the ground-state energy still holds; the

corresponding wavefunction is contained within the subspace of degenerate ground-state wavefunctions.
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helium; 1 GB for lithium, . . ., 1 EB for carbon etc..4

Dealing directly with the wavefunction without any simplifying approximation is there-

fore unsuitable for any useful theoretical strategy. Whilst several approximation schemes

that work with the wavefunction have been developed over the past century[83, 84, 85, 86],

the method used within this thesis works instead directly with the electronic density, as we

now explain.

4.3 Density functional theory

In 1964, Hohenberg and Kohn showed that there exists a route to the ground-state using the

electronic density directly as the fundamental parameter.[87] As the electronic density is a

three dimensional quantity for a system containing any number of electrons, the exponential

scaling shown in section 4.2.2 in principle vanishes, giving the method an exceptional

advantage over wavefunction approaches. As a result, the method has arguably become the

method of choice in studying materials from first principles.

The main result of Hohenberg and Kohn is that all ground-state properties, including

the ground-state energy, are functionals of the ground-state electronic density, giving rise to

the name Density Functional Theory (DFT).

Before entering a discussion of DFT, we note that it is useful to partition the Hamiltonian

as

Ĥ = (T̂ + Ûe−e) + V̂ext

= F̂ + V̂ext (4.7)

where F̂ = T̂ + Ûe−e is defined to be the sum of the kinetic and electron-electron Coulomb

interactions and V̂ext is the electron-nuclei Coulomb interactions. This partitioning divides

the Schrödinger equation into a part, F̂ , identical for all N-electron systems, and a part,

V̂ext, unique to the system under study.

4.3.1 The Hohenberg-Kohn theorems

The proof of Hohenberg and Kohn comes within two theorems. The first Hohenberg-Kohn

theorem states:

HK 1. The ground-state charge density for an N -electron system uniquely defines the

external potential that it is generated by, up to a global constant.
4Somewhat coincidentally, the memory footprint for carbon in this estimation scheme corresponds,

roughly, to the maximum memory address space that can be stored within a 64-bit computer architecture.
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The proof of this theorem proceeds by contradiction in two steps. Firstly we show

that there is a one-to-one mapping between the external potential and its corresponding

ground-state wavefunction. We then show that there is a one-to-one mapping between the

ground-state wavefunction and the electronic density. The proof we show below relies

on the assumption that the Hamiltonian has a non-degenerate ground-state, however the

theorem can be extended to systems with degenerate ground-states using the formalism of

Levy[88].

Consider two potentials V̂ext and V̂ ′ext that differ by more than an additive constant:

V ′ext(r)− Vext(r) 6= constant. (4.8)

Suppose that the N-electron ground-states for these potentials are |Ψ0〉 and |Ψ′0〉, with

energies E0 and E ′0 respectively. The Schrödinger equations for these potentials then satisfy

Ĥ|Ψ0〉 = (F̂ + V̂ext)|Ψ0〉 = E0|Ψ0〉 (4.9)

Ĥ ′|Ψ′0〉 = (F̂ + V̂ ′ext)|Ψ′0〉 = E0|Ψ′0〉. (4.10)

Assume now that the two potentials give rise to identical ground-states: |Ψ0〉 = |Ψ′0〉.
Subtracting Eqn. (4.9) from Eqn. (4.10) gives

(V̂ ′ext − V̂ext)|Ψ0〉 = (E ′0 − E0)|Ψ0〉. (4.11)

Inspecting this in a real-space representation, V̂ext and V̂ ′ext are multiplicative operators,

meaning that for Eqn. (4.11) to hold

V ′ext(r)− Vext(r) = E ′0 − E0. (4.12)

This violates our earlier assumption that the two potentials differ by more than an additive

constant, thus proving that a given ground-state arises from a unique potential up to an

additive constant and that there is a one-to-one mapping between the external potential and

the ground-state wavefunction

V̂ext ⇒ Ψ0. (4.13)

For the second part of the proof, consider the relationship between the ground-state

wavefunction and the ground-state density

n0(r) = N

∫ ( N∏
i=2

d3ri

)∣∣Ψ0(r, r2, . . . , rN)
∣∣2. (4.14)

Assume that there are two different N-electron ground-states, |Ψ0〉 and |Ψ′0〉, that give

rise to the same electronic density. As shown just now, these ground-states must arise from
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different external potentials V̂ext and V̂ ′ext, and hence different Hamiltonians Ĥ and Ĥ ′. The

corresponding ground-state energies are E0 = 〈Ψ0|Ĥ|Ψ0〉 and E ′0 = 〈Ψ′0|Ĥ ′|Ψ′0〉. The

variational principle asserts the strict inequality5

E0 < 〈Ψ′0|Ĥ|Ψ′0〉 = 〈Ψ′0|Ĥ ′ + V̂ext − V̂ ′ext|Ψ′0〉

= E ′0 +

∫
d3r

(
Vext(r)− V ′ext(r)

)
n0(r). (4.15)

A similar argument starting with E ′0 gives

E ′0 < 〈Ψ0|Ĥ ′|Ψ0〉 = 〈Ψ0|Ĥ + V̂ ′ext − V̂ext|Ψ0〉

= E0 +

∫
d3r

(
V ′ext(r)− Vext(r)

)
n0(r). (4.16)

Summing these inequalities leads to the contradiction

E ′0 + E0 < E0 + E ′0 (4.17)

proving that there is a one-to-one mapping between the ground-state wavefunction and

ground-state density

Ψ0 ⇒ n0. (4.18)

Combining Eqns. 4.13 and 4.18 establishes a one-to-one mapping between the external

potential and the ground-state electronic density

V̂ext ⇒ Ψ0 ⇒ n0, (4.19)

proving the first Hohenberg-Kohn theorem.

The first Hohenberg-Kohn theorem therefore proves that a given N-electron ground-

state charge density uniquely determines the external potential that creates that density, the

ground-state wavefunction and hence also all ground-state properties of the system.

Due to the mapping between the ground-state wavefunction and density, a functional

can now be defined for an arbitrary external potential V (r) unrelated to Vext(r)

EV [n] = 〈Ψ[n]|F̂ + V̂ |Ψ[n]〉 = F [n] +

∫
d3r V (r)n(r) (4.20)

where square brackets indicate an implicit functional dependence of the quantity on the

electronic density and F [n] = 〈Ψ[n]|F̂ |Ψ[n]〉 is a functional universal for all N-electron

systems.

From this, the second Hohenberg-Kohn theorem can be established

5Note that equality is not allowed as |Ψ′0〉 cannot be the ground-state of Ĥ by the first part of the first

Hohenberg-Kohn theorem. The wavefunctions are assumed normalised 〈Ψ0|Ψ0〉 = 1.
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HK 2. EV [n] ≥ E0 where E0 is the ground-state energy, with equality occurring only

where n(r) is the ground-state density n0(r).

Proof of this comes from the variational theorem. The trial density n(r) determines an

external potential V̂ext and ground-state |Ψ〉. Using this ground-state as a trial ground-state

for the Hamiltonian with external potential V̂ gives

〈Ψ[n]|Ĥ|Ψ[n]〉 = 〈Ψ[n]|F̂ + V̂ |Ψ[n]〉

= F [n] +

∫
d3r V (r)n(r)

= EV [n] ≥ E0. (4.21)

Therefore, the ground-state energy and density to the Schrodinger equation can be deter-

mined by minimising the functional in Eqn. (4.20) directly with respect to the electronic

density.6

The Hohenberg-Kohn theorems provide a powerful proof that the ground-state electronic

density contains, through a functional dependence, the information of all ground-state prop-

erties of a system of electrons interacting within an array of static nuclei. The exponential

cost associated with working directly with the exact many-body wavefunction is lifted and

replaced, in principle, with the linearly-scaling cost of the electronic density.

4.3.2 The Kohn-Sham mapping

Whilst the Hohenberg-Kohn theorems provide the proof of principle that the electronic den-

sity may be used as the fundamental parameter in determining the ground-state properties, a

practical difficulty arises due to the universal N-electron functional F [n] which is unknown

except through its implicit dependence on the many-body wavefunction, itself a functional

of the density. Dealing directly with the many-body wavefunction is unacceptable and

exactly the problem that is to be avoided, and therefore a method to approximate F [n] is

required.

There exist a number of approaches that directly approximate the functional F [n][92,

93, 94, 95, 96, 97, 98], but their success has been limited to bulk metallic systems where

6A small caveat exists with this approach as the minimisation must proceed only over those densities

that can be created by an external potential, the so-called v-representability problem; examples have been

found of trial densities for which there exists no external potential[89, 90, 91]. This problem can be solved

by an alternative approach to the one presented here, the constrained search formulation,[88] that removes

this constraint, and instead imposes much weaker constraints on the trial densities which are more generally

satisfied.
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the electron density more closely resembles the free electron gas, and these approaches

are not appropriate for the study of carbon nanotubes. Indeed, the difficulties faced with

generating approximations for F [n] are associated with the inherently many-body aspect of

the wavefunctions with which it is implicitly defined. An approach which has found much

wider success is due to Kohn and Sham[99] as we now describe.

Considering the many-body interacting system, we may solve variationally for the

ground-state density

δ

[
F [n] +

∫
d3r n(r)Vext(r)− µ

(∫
d3r n(r)−N

)]
= 0 (4.22)

where we have introduced the Lagrange multiplier µ to constrain the number of electrons to

be N .

Kohn and Sham suggested that one might hope that the functional F [n] could be ap-

proximated by that for a non-interacting system of N electrons. They proposed partitioning

the functional, without approximation, as

F [n] = Ts[n] + EH [n] + Exc[n], (4.23)

where, Ts[n] represents the kinetic energy of the system of N non-interacting electrons,

EH [n] =
1

2

∫
d3r d3r′

n(r)n(r′)

|r− r′| (4.24)

the Hartree energy due to the classical electrostatic interactions of the electrons, and Exc

the exchange-correlation correction energy, which is by definition the difference between

the non-interacting system and the interacting system, and is hoped to be the smaller

contribution.7

The solution to Eqn. (4.22) is given by the Euler-Lagrange equation:

δTs
δn

+

∫
d3r′

n(r′)

|r− r′| +
δExc

δn
+ Vext(r) = µ (4.25)

where δTs/δn, δExc/δn represent the (unknown) functional derivatives of the non-interacting

kinetic energy and the exchange-correlation energy.

The key observation of Kohn and Sham is that one arrives at the exact same solution for

a system of non-interacting electrons moving in the potential

VKS(r) =

∫
d3r′

n(r′)

|r− r′| + Vxc[n](r) + Vext(r) (4.26)

7The name exchange-correlation is historic due to the Hartree-Fock method for electronic structure, which

preceded DFT; see section 4.3.3.
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where Vxc[n](r) = δExc/δn implicitly defines the exchange-correlation potential.

The ground-state density for the exact interacting and the fictitious non-interacting Kohn-

Sham systems are therefore identical, and can be obtained from the occupied eigenstates of

the Kohn-Sham equation:[
− 1

2
∇2 + VKS(r)

]
ψi(r) = εiψi(r) (4.27)

n0(r) = 2

N/2∑
i

|ψi(r)|2 (4.28)

where the factors of 2 and N/2 in the sum account for double state occupancy due to an

assumed (but not necessary) electron spin degeneracy and our notation makes clear the

distinction between the many-body and single particle wavefunctions Ψ and ψ respectively.

The Lagrange multiplier µ is set by the constraint on electron number, and must lie between

the εN/2 and εN/2+1 eigenenergies of the non-interacting system.

As VKS depends on n(r), which in turn depends on VKS, one must look for a self-

consistent solution for VKS and n(r), which can be achieved through iterative techniques.[100]

4.3.3 The exchange-correlation functional

The Kohn-Sham scheme is, again in principle, exact however the problem of the unknown

universal functional F [n] has been shifted to another unknown functional Exc[n], the

exchange-correlation functional, which must be approximated. What is remarkable about the

Kohn-Sham scheme is that surprisingly crude approximations for the exchange-correlation

functional can reproduce experimentally measured parameters with a good degree of

accuracy. Indeed, it is important to bear in mind that it is only due to this agreement with

experiment that the validity of calculations using DFT has received any confidence.

In the simplest approximation, exchange and correlation are dependent only on the local

density and is known therefore as the Local Density Approximation (LDA):

Exc,LDA[n] =

∫
d3r n(r)εLDA(n(r)), (4.29)

Vxc,LDA[n](r) = εLDA(n(r)) + n(r)
∂εLDA(n(r))

∂n
. (4.30)

The function εLDA(n(r)) has been determined analytically at high densities by Gell-Mann

and Brueckner [101] and numerically at low densities by Ceperley and Alder [102] based

on calculations of the homogeneous electron gas for which it is exact. In this work we use

the parametrisation for εLDA by Perdew and Zunger[103].
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The LDA is typically better suited to materials in which the density is slowly varying,

and hence most closely resembles the homogeneous electron gas from which it is derived.

Great success has been found in the LDA for periodic crystalline materials where electron

homogeneity is better observed, but finite-sized systems have proved more challenging as

the transition from molecule to vacuum manifestly requires significant density gradients for

which the exchange and correlation cannot be captured by the local density only. Indeed,

the LDA results in an incorrect exponential localisation of the exchange-correlation energy

density whereas the correct limit is asymptotically Coulombic into the vacuum[104, 105].

Furthermore, non-local effects such as van der Waals interactions cannot be described by

the local functional. Consequently, the LDA description of inter-molecular binding is poor.

A first step beyond the LDA is to use a semi-local functional dependent on local

density gradients∇n(r), the so-called Generalised Gradient Approximations (GGA). This

extension can be done in a manner that satisfies known conditions of the true exchange-

correlation functional producing a gradient-corrected approximation to the true functional

that is derived from first principles. These functionals are generally considered to improve

the description of molecular systems and are the functionals of choice within this work for

studying carbon nanotubes. In this dissertation, we use the GGA functional due to Perdew,

Burke and Ernzerhof (PBE)[106].

Further classes of functionals exist that invoke different approximations or try to over-

come various shortcomings found with other functionals (see section 4.3.5). We mention

briefly a few relevant to this thesis.

An important method, which actually precedes DFT historically and is strictly a

wavefunction-based method not a density functional, is that of Hartree-Fock (exact)

exchange.[84] Here, the required anti-symmetry of the Fermionic electron wavefunction

under exchange of electronic co-ordinates is explicitly enforced, e.g.

Ψ(r1, r2, . . .) = −Ψ(r2, r1, . . .), (4.31)

and results in an exchange energy and a non-local exchange potential

Ex = −1

2

∑
nn′

∫
d3r d3r′ ψ∗n(r)ψ∗n(r′)

1

|r− r′|ψ
∗
n′(r)ψ∗n′(r′), (4.32)

V̂xφ(r) =

∫
d3r′ Vx(r, r

′)φ(r′)

= −1

2

∑
n

ψn(r)

∫
d3r′

ψ∗n(r′)φ(r′)

|r− r′| (4.33)

where the sums are performed over the occupied states ψn and φ(r) is an arbitrary state

that is being acted upon by the non-local exchange operator V̂x. This method, which
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should be noted is considerably more expensive than the semi-local functionals presented

above, removes the interaction of an electron with its own electric field (the so-called

self-interaction error, see section 4.3.5) by cancelling exactly the contribution to the Hartree

energy that arises from an electron interacting with itself. Electron correlation effects are

neglected entirely however, which can lead to poor agreement with experimental results.

Hybrid functionals attempt to correct for this by incorporating fractions of exact exchange

with contributions from semi-local functionals whilst retaining a non-local exchange-

correlation potential and removing part of the self-interaction error.[107] The relative

fractions of the local and non-local contributions are determined empirically however and

therefore the use of hybrid functionals is not strictly a first-principles technique.

A somewhat recent development has been classes of non-local van der Waals density

functionals (vdW-DF) which attempt to capture the weak dispersion interactions that are

poorly described by semi-local functionals.[108] In section 7.5, we use the functional of

Dion et al. in the efficient implementation of Román-Pérez and Soler[108, 109], to study

from first principles the weak forces that arise from dispersion interactions between CNTs.

It is worth noting that the great number of proposed exchange-correlation functionals

represents a philosophical challenge for marrying density functional theory with the goal of

first-principles calculations. It is the opinion of this author that the theorist using density

functional theory can learn most about an unknown system from using a small set of

exchange-correlation functionals, with well understood limitations, and accepting that a

calculated result will not exactly reproduce experiment. The predictive power of density

functional theory comes not from getting a known answer right, but rather from being able

to predict an unknown answer with a reasonable degree of confidence.

4.3.4 Quasi-particles from density functional theory

Despite the success of density functional theory, there is an elephant in the room for the

purposes of this thesis. The foundations of the Hohenberg-Kohn theorems refer only to the

ground-state properties of the system, yet the flow of current is not a ground-state property.

Indeed, this chapter was started by discussing the need to calculate the quasi-particles of a

system and density functional theory was suggested as a suitable method.

The resolution to this problem again comes from a theoretically dubious approxima-

tion that only becomes justified post-hoc by comparison of results generated by DFT to

experiment and higher levels of theory. Throughout this work, we make the following

assumption:

The quasi-particles to the real many-body system are the same as the corresponding
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single-particle eigenstates of the Kohn-Sham Hamiltonian.

Heuristically, it appears reasonable that this approach may offer some success as the

Kohn-Sham eigenstates are determined self-consistently with the mean-field potential and

density. There is, however, no theoretical justification to this assumption as the Kohn-Sham

system is an auxiliary system that was introduced solely because it produces the correct

ground-state density and allows computation of the ground-state energy.

Theoretical investigations have shown that properties derived from the Kohn-Sham

Hamiltonian are good approximations to those derived from the true interacting Hamilto-

nian [110, 111], at least for materials where the quasi-particles are not strongly interact-

ing. Further, the agreement with experiment for DFT-calculated properties, such as band

structures[112], electron energy loss spectra[113], NMR spectra[114], and most importantly

electronic transport[115, 116], provide good confidence in the method. Note, however,

that there are cases where the Kohn-Sham eigenvalues fail to reproduce experimentally-

measured quantities, see section 4.3.5.

In this work, transport Hamiltonians that are determined from first principles make use

of the Kohn-Sham Hamiltonian. The exact procedure for achieving this is the focus of

chapter 5.

4.3.5 Limitations of density functional theory

Before discussing practical implementations, we finally note some additional known limi-

tations with density functional theory, the problem of determining quasi-particles having

already been discussed in section 4.3.4.

The Kohn-Sham band gap

In addition to problems with describing quasi-particles, the Kohn-Sham band gap, defined

as the energy difference between the highest occupied and lowest unoccupied Kohn-Sham

eigenvalues, is typically found to seriously underestimate the experimentally determined

band gap. This problem is particularly severe for the semi-local functionals (LDA, or GGA

levels of theory) where the calculated band gap can be a less than 50% of the measured

value. For a detailed discussion of the origin of this problem, see [117].

The dispersion relations of conduction bands are typically found to be in good agreement

with experiment, however, and a common fix to the band gap issue, where needed, is to shift

the entire conduction spectrum of states upwards in energy to correct only for the band gap,
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referred to as applying a scissor operator.[112, 118] Such an approach can be complicated,

however, by defect states that are located within the gap.

In terms of electron transport calculations, aside from conductance within the conduc-

tance band occurring at lower energies, an underestimated band gap may have an impact

on the calculated ballistic conductance in the valence or conduction bands. The effect is

likely to be small, however, which can be understood from perturbation theory. Consider

conductance in the valence band. The lowest-order scattering contribution involving the

conduction band arises at second order as conductance is assumed ballistic: scattering must

occur from an initial state in the valence band, to an intermediate conduction band state, and

then finish in a valence band state. This second-order contribution is suppressed by a factor

of 1/∆E where ∆E is the energy difference between the conduction and valence bands,

and is of order the band gap. The suppression is automatically present in Kohn-Sham DFT,

and such contributions are expected to be negligible for semiconductor materials where

the band gap is & eV; increasing the band gap with a scissor operator correction will only

suppress this small contribution further and does not appreciably change the calculated

conductance.

Self-interaction error

As briefly mentioned in section 4.3.3, semi-local approximations to exchange and correlation

introduce self-interaction error which introduces an incorrect interaction between an electron

and its own electric field. This can be understood by comparing the Kohn-Sham equation

for a single electron in an external potential[
− 1

2
∇2 +

∫
d3r′

n(r′)

|r− r′| + Vxc[n](r) + Vext(r)
]
ψi(r) = εiψi(r), (4.34)

to the true Schrödinger equation, which is exactly[
− 1

2
∇2 + Vext(r)

]
ψi(r) = εiψi(r). (4.35)

A self-interaction error arises in this case, but also more generally, if the exchange-

correlation potential does not exactly cancel the interaction of the electron with its own

electron density. For the one electron Hamiltonian in Eqn. (4.34) this corresponds to the

violation ∫
d3r′

n(r′)

|r− r′| + Vxc[n](r) 6= 0. (4.36)

Note that Eqn. (4.36) can never be satisfied for a semi-local approximation to exchange and

correlation.
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The presence of this error causes an increased delocalisation of the occupied eigenstates

due to repulsion from its own electronic density. This has the effect of decreasing the rate

of decay of Hamiltonian matrix elements into the vacuum, resulting in an overestimation of

tunnelling rates. This is of particular relevance to the conductance geometry discussed in

chapter 7.

Dispersion interactions

As also briefly mentioned in section 4.3.3, semi-local functionals describe weak dispersion

interactions poorly. These interactions are important in non-bonded systems, which include

CNT bundles.

One solution is the non-local van der Waals functionals described in section 4.3.3, but an

alternative is to introduce empirical corrections described as additional energy contributions

dependent on the distances between pairs of nuclei.[119, 120] Whilst not a first-principles

technique, this method offers a computationally inexpensive solution to the problem and is

the method used in this thesis where a more accurate treatment of dispersion is not required.

4.4 Practical implementations

We now focus on the practical implementations of the Kohn-Sham DFT scheme that have

been used in this work. The need for different implementations and approximations can

largely be condensed into a compromise between the accuracy and computational cost of

studying a system, and the principle factor that affects this compromise is the method used

to describe the wavefunctions.

4.4.1 Basis sets

Within this work, two classes of codes are used which differ mainly in the choice of basis

set to describe the wavefunctions that solve the Kohn-Sham equations (Eqn. (4.28)). Each

wavefunction is considered a weighted sum of the basis functions

ψn(r) =
∑
i

cinφi(r). (4.37)

Whilst any basis set could in principle be used, practical considerations favour different

choices which we now discuss, focusing on the implementations used in this work. Common

amongst all implementations is truncation of the basis set, rendering the expansion in

Eqn. (4.37) finite in size.

49



Chapter 4. First-principles methods

In all cases, the details of how the ground-state self-consistent electronic structure is

reached is beyond the scope of this thesis, and we refer the reader to the specific references

for that implementation.

Plane-wave basis: CASTEP, PWSCF

In a plane-wave implementation, the Kohn-Sham wavefunctions are described using a large

number of plane-wave basis functions8

φi(r) = exp
[
iGi · r

]
. (4.38)

The cin coefficients are exactly the Fourier transform, or the reciprocal-space representation,

of the wavefunction.

To render the basis finite, two requirements are met. Firstly, the calculation is performed

within a finite simulation cell, lattice vectors a1, a2, a3, with periodic boundary conditions

forcing the plane-wave wavevectors Gi to be integer sums of the corresponding reciprocal

lattice vectors b1 etc.:

Gi = n1ib1 + n2ib2 + n3ib3 (4.39)

b1 = 2π
a2 × a3

a1 · a2 × a3

etc.. (4.40)

Secondly, the basis set is truncated by choosing a cut-off energy Ecut which defines the

maximum kinetic energy of the plane waves included in the calculation

1

2
|Gi|2 < Ecut. (4.41)

The advantage of this approach is that a single parameter Ecut determines the quality

of the basis set; increasing this parameter is guaranteed to improve the accuracy of the

calculation by virtue of the variational principle (Eqn. (4.2)). For systems requiring large

simulation cells, however, the number of basis functions becomes very large which limits

the maximum system size that can be studied in a reasonable amount of time. For the study

of CNTs, the plane-wave basis is particularly inefficient due to the large regions of vacuum

which are described using the same level of detail as bonding regions. Furthermore, the basis

functions are delocalised across the entire simulation cell meaning that a transformation to

an equivalent localised basis, for example using maximally localised Wannier functions[121,

122], must be performed before this method can be used to compute quantum conductances

(see chapter 5).

8Here we assume that the Brillouin zone is sampled at the Γ point only; see section 4.4.3.
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Within this work, two plane-wave codes are used: CASTEP [123] and PWSCF, of the

QUANTUM ESPRESSO package[124]. The use of these implementations is largely restricted

to determining the optimum geometry for smaller systems containing up to several hundred

atoms.

Localised numerical orbital basis: SIESTA

For the study of systems containing hundreds or thousands of atoms, an alternative approach

is required. The SIESTA method[125] relies on a far smaller basis of non-orthogonal

numerical orbitals, localised on each atom. As these orbitals are strictly localised in

real-space, no basis function is required to describe regions where the wavefunction is

negligibly small and hence the vacuum regions are essential free. Matrix elements can also

be computed efficiently by noting that matrix elements between orbitals that do not directly

overlap must be zero and therefore do not need to be calculated explicitly. Further, the

quantum conductance can be computed directly within this basis.

These orbitals are generated by solving the Kohn-Sham equations for an isolated atom9

and including orbitals with a desired symmetry or angular momentum. For example, a

carbon atom may contribute one s-type and three p-type orbitals to the basis. The method is

analogous to the linear combination of atomic orbitals method, or the tight-binding model

introduced in section 2.3.1 except with the tight-binding parameters calculated from first

principles. The electronic density itself is described on a real-space grid with grid-spacing

determined by a cut-off energy, however adjusting this parameter should not be confused

with changing the quality of the basis.

To improve the ability of the basis to describe more accurately a wider range of wave-

functions, the above minimal set of basis functions is augmented using a variety of schemes

as described in Ref. [126]. One technique is to radially divide an orbital into two or more

orbitals, referred to as ζ-splitting, to allow additional freedom in describing wavefunctions

close to the nuclei and in the inter-atomic bonding regions. A second approach is to intro-

duce higher angular momentum channels by exposing an orbital to an electric field and

incorporating the first-order perturbation to the orbital into the basis. This is referred to

as orbital polarisation. The difficulty with these approaches is in ensuring that the basis

has sufficient freedom to describe the electronic structure, and improving the basis is more

complicated than simply increasing the kinetic energy cut-off as done in a plane-wave

approach.

9Strictly speaking, only the valence orbitals are solved for in the pseudo-atom; the orbitals from core

electrons are removed by the pseudopotential approximation. See section 4.4.2.
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Figure 4.1: A single NGWF centred on one carbon atom of an trans-dichloroethene

molecule before (left) and after (right) optimisation in ONETEP.

Optimised localised numerical orbital basis: ONETEP

The final and main implementation used within this thesis is the ONETEP method.[127]

Similarly to the SIESTA implementation, a set of localised atom-centred numerical atomic

orbitals are used as the basis. These orbitals are termed non-orthogonal generalised Wannier

functions (NGWFs)[128].

Rather than working with a large set of fixed basis functions, a smaller set of NGWFs

are used which are iteratively optimised in situ during the calculation to accurately describe

the local chemical environment. Each NGWF is localised within a localisation radius and

described in terms of a basis of periodic cardinal sine functions (psincs) which are equivalent

to plane-waves.[128] The quality of the basis is guaranteed to improve by increasing the

NGWF localisation radius and the equivalent kinetic energy cut-off of the psinc functions.

The resulting basis set of NGWFs is a compact yet accurate basis, allowing for the study

of semiconducting/insulating[129] or metallic[130] systems containing thousands of atoms

yet retaining the accuracy of plane-wave methods.[131, 132] In Fig. 4.1, we compare the

initial guess for an NGWF to the fully optimised NGWF centred on one carbon atom of a

dichloroethene molecule.

4.4.2 The pseudopotential approximation

An additional approximation used in all the implementations described in section 4.4.1 is

the pseudopotential approximation which we now describe.

Each atom present in a neutral material contributes a number of electrons equal to its

atomic number. The contribution from these electrons to bonding differs, however, based

on the energies of those electrons in the neutral atom. The core electrons, lying lowest in

energy, are tightly bound to the nucleus and therefore do not strongly interact with electrons
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from other nuclei or contribute significantly to bonding. The valence electrons, lying highest

in energy, are less strongly bound and dominate bonding.

The idea of the pseudopotential approximation is to remove the explicit inclusion of

the core electrons, and instead reintroduce them as an effective screening of the bare-ionic

Coulomb potential resulting in a much weaker effective potential close to the nucleus.

This procedure achieves two computational efficiencies. Firstly, the number of electrons

in the system is reduced, thereby reducing the number of occupied Kohn-Sham eigenstates

that must be computed. Secondly, the screening causes the valence wavefunctions to be

much smoother, allowing the use of a much coarser real-space grid, or fewer plane waves

with lower kinetic energy cut-off. This second point can be understood from the requirement

that the true valence wavefunctions are orthogonal to the localised core wavefunctions,

necessitating their rapid oscillation in the core-region. Removing the core wavefunctions

allows the pseudised wavefunctions to be smoother within the core region. The relationships

between the pseudised and all-electron wavefunctions and potential are illustrated in Fig. 4.2;

note that the pseudised wavefunction is nodeless and considerably smoother than the all-

electron wavefunction and so is expected to be described by a coarser real-space grid/fewer

plane-waves with greater accuracy.

A detailed discussion of the procedure for generating and using pseudopotentials can be

found in Ref. [133, 134]; we mention here the more pertinent points. A pseudopotential

is defined with respect to an inner cut-off radius rc, typically less than 1 Å for the lighter

elements. Outside of this radius, the pseudopotential and pseudised wavefunction are

identical to their all-electron counterparts

ψps(r) = ψ(r)

Vps(r) = V (r)
for r > rc; (4.42)

within the cut-off radius, a smoother pseudised wavefunction is chosen and the corre-

sponding potential that creates this wavefunction, the pseudopotential, is calculated by

inverting the Schödinger equation. The success of any pseudopotential comes from its

ability to use the potential in different chemical situations, its transferability. One method

to increase transferability is to ensure the same normalisation of the real and pseudised

wavefunctions, a property referred to as norm-conservation[135]. In this work, we use

norm-conserving pseudopotentials in the Kleinman-Bylander form[136] generated using

the RRKJ method[137].
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ψ(r)

ψps(r)

V (r)

Vps(r)

r
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Figure 4.2: An illustration of the pseudopotential approximation. The all-electron wave-

function ψ(r) and unscreened potential V (r) are compared to their pseudised counterparts

ψps(r) and Vps(r) for an isolated atom.

4.4.3 Periodic and aperiodic systems

In the final part of this chapter we discuss the boundary conditions used in the calculations

in this thesis. In a plane-wave implementation, periodic boundary conditions are forced

by the choice of basis; in local numerical orbital methods, any boundary condition could

be used but computational efficiencies favour periodic boundary conditions,10 and are the

boundary conditions used within SIESTA and ONETEP. For a comprehensive discussion of

periodic boundary conditions in electronic structure calculations, see [74].

Bloch’s theorem[26] provides the methodology for computing electronic structure under

periodic boundary conditions. The wavefunction becomes the product of a wave-like part

and a function that satisfies the simulation cell periodicity

ψn,k = exp(ik · r)un,k(r). (4.44)

10For instance, computing the Hartree potential can be performed most efficiently in reciprocal space:

VH(r) =

∫
d3r′

n(r′)

|r− r′| → ṼH(G) =
4π

Ωcell

ñ(G)

|G|2 , (4.43)

where Ṽ , ñ are the Fourier transforms of the Hartree potential and electronic density, and Ωcell is the unit cell

volume. The Hartree potential in real-space is then obtained by inverse Fourier transform. This procedure

replaces integrals over the whole simulation cell for each r with the considerably computationally faster

Fourier transform, multiplication and inverse transform.
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Due to the periodicity of the wave-like part, the wavefunctions are unique only for vectors

k lying within the principle Brillouin zone, defined as the primitive unit cell in reciprocal

space.

In order to calculate quantities such as the electronic density, the wavefunctions must

be sampled at every point within the Brillouin zone and the contributions integrated. In

practice, wavefunctions with similar k are themselves sufficiently similar to allow the

wavefunctions at one k-point to represent a region of the Brillouin zone. The integral over

the Brillouin zone then becomes an average over a finite number of k-points.

The volumes of the simulation cell Ωcell and Brillouin zone ΩBZ are related by

ΩBZ =
(2π)3

ΩBZ

(4.45)

so that for very large unit cells the Brillouin zone can be accurately sampled by a single

k-point only which is chosen in this work to be k = 0, known as the Γ point.

Within this work, the study of aperiodic systems, or systems with periodicity in fewer

than all three directions, is still performed with periodic boundary conditions. The aperiodic

directions are made large to minimise fictitious interactions between periodic images. This

is known as the supercell approximation, and is illustrated for a carbon nanotube in Fig. 4.3.

4.5 Summary

In this chapter, we have described an efficient methodology for calculating the electronic

structure of an ensemble of atoms using density functional theory. We are now in a position

to describe how these electronic structures can be used to compute the ballistic conductance

of a material, which is the focus of the next chapter.
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Figure 4.3: The simulation cell for a CNT. The atoms included in the calculation are shown

by the heavy grey structure in the centre; its periodic images are shown in lighter grey. The

blue boxes give the simulation cell and its periodic images. Directions perpendicular to the

CNT axis are treated with the supercell approximation; directions along the CNT axis are

properly periodic.
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CHAPTER

FIVE

FIRST-PRINCIPLES ELECTRONIC TRANSPORT

In the previous chapter, we showed how the Hamiltonian that describes the electronic

structure of a system can be computed using the density functional theory formalism to

map the many-body problem onto an effective single-body problem of non-interacting

electrons. Whilst the Hamiltonian for these non-interacting electrons is not identical to the

true many-body Hamiltonian, we justified its use, with caution, by comparing results to

those from experimental studies and higher levels of theory. In this chapter, we identify

how the ground-state Kohn-Sham Hamiltonian can be used to build the Hamiltonian for

a device. Whilst there exist formal procedures to couple density functional theory with

the non-equilibrium Green’s function (NEGF) technique, which self-consistently build

the charge density from the scattering states within the device (e.g. see [138], see also

appendix A), in this chapter we describe a simplification of this method that uses a non

self-consistent approach whereby a conventional Kohn-Sham ground-state DFT calculation

is used to describe conduction at zero-bias. This implementation is based within the ONETEP

linear-scaling DFT project[127] and has been submitted for publication.[139]

5.1 Introduction

As a result of the drive towards miniaturisation of electronic devices and the fabrication

of nanostructured materials, there is great interest in theoretical methods to calculate their

charge transport characteristics. Approaches that provide a full atomistic description are

particularly appealing, and are invaluable in improving our understanding of such devices,

and optimising their performance.

A popular method to determine the conductance properties of nanoelectronic devices
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Chapter 5. First-principles electronic transport

combines the framework of Landauer transport [66, 67, 68] with a description of electronic

structure determined from first-principles[87, 99]. As discussed in the previous chapter,

the advantage of this approach is in its predictive power that comes from a fully-quantum

mechanical treatment of conductance with an unbiased and accurate description of elec-

tronic structure. Whilst there are limitations regarding its validity in certain situation[140],

approaches combining Landauer transport with density functional theory (DFT)[87, 99]

have been remarkably successful in describing a wide variety of materials [141, 142, 143].

Several computational implementations of this approach exist [138, 144, 145, 146, 147,

148, 149, 150, 151, 152, 153] and, for a given amount of available computing resource,

there is a trade-off to be made between accuracy and the size of the system that can be

simulated. Existing implementations can be broadly categorized into two classes. The first

relies on very large sets of simple basis functions, such as plane-waves, in order to compute

the electronic structure accurately and with systematically improvable accuracy, within the

limitations of the underlying theory (e.g., the choice of exchange-correlation functional,

pseudopotentials, etc.). A subsequent transformation to a much smaller, if not minimal,

set of localized Wannier functions then enables efficient transport calculations[121, 154,

146, 152, 153]. In this approach it is the computational cost of the underlying electronic

structure calculation, which scales asymptotically cubically with respect to system size for

traditional methods, that severely limits the ability of this method to study realistic devices.

In a second class of methods, the electronic structure is calculated using a fixed basis

set of localised functions, such as Gaussians [145, 155] or numerical atomic orbitals

[148, 138, 144], and the same basis set is then used to calculate the transport properties

of the device. There are competing requirements here because an accurate description of

the electronic structure often requires a large basis set, typically several times larger than

the minimal Wannier function basis, yet using this same basis for calculating transport

properties results in much higher computational cost than if a minimal basis is used. In the

case of an atomic-like orbital basis, therefore, it is the cost of computing transport properties

that often restricts the accessible system size.

The trade-off between accuracy and system-size poses a problem for simulations of

realistic devices as, typically, several thousands of atoms or more may need to be included

to capture the characteristics of the device faithfully.

In this chapter we present an approach that combines the advantages of both classes of

method described above to calculate Landauer transport from first-principles using a small

basis, whilst retaining plane-wave accuracy. Our implementation is within the ONETEP

linear-scaling DFT project[127], which uses a small basis of localised orbitals, called non-
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orthogonal generalised Wannier functions (NGWFs)[156], that are represented in terms

of an underlying systematic basis of Fourier-Lagrange, or psinc, functions equivalent to

a set of plane-waves[128]. The NGWFs are optimised in situ to their unique chemical

environment[156] such that plane-wave accuracy is achieved. Transport properties are

calculated efficiently within the same basis. See section 4.4.1 for more details of the

ONETEP implementation.

Our implementation can be used to calculate transport through devices connected to an

arbitrary number of leads and containing thousands of atoms on a routine basis using even

relatively modest parallel computational resources. Chapter 7 demonstrates its scope and

applicability through a study of inter-tube electron transport in carbon nanotube networks;

the focus of this chapter is to describe our methodology.

The rest of this chapter is organised as follows: we first recapitulate the results of

section 3.3.4, focusing specifically on their application to the ONETEP implementation;

section 5.2 gives details of our specific implementation within the ONETEP code; we discuss

the optimisations in our implementation that enable the study of transport in very large

systems in section 5.3, and the calculation of the bulk-lead band structures and eigenchannels

in multi-lead devices in section 5.4. In section 5.5, we give example applications of our

method to conduction in a poly-acetylene molecular chain and conduction between end-

terminated CNTs, focusing in both cases on the practical aspects1. Finally, in section 5.7

we summarise our findings.

5.1.1 Preliminaries and definitions

Recall from section 3.3.4 that the standard geometry considered in the Landauer-Büttiker

formalism consists of a number of semi-infinite leads connected to a central scattering

region. The leads act as current sources and sinks, and are assumed to couple only through

the device region. Current must flow through the device region to travel between two leads.

Scattering occurs in the central region only, and is assumed to occur elastically.

The most general transport setup involves transmission between leads of different

material or structure, through a central device region with arbitrary geometry. We refer to

this transmission as device transmission. A special case is when the full device, i.e. central

region and leads, is formed from the same bulk material. Such a system has no scattering

and transmission takes an integer value determined by the number of transmission modes

available at that energy. We refer to this special case as bulk transmission.

1Chapter 7 presents a more detailed study of conduction between end-terminated CNTs.
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5.1.2 Non-orthogonal basis

As the NGWF basis functions employed in the ONETEP method are non-orthogonal, the

results presented in section 3.3.4 must be modified. It is straightforward to show2 that the

device Green’s function is given by

Gd(E) =
[
(E + iη)Sd − Hd − Σ1(E)− Σ2(E)− . . .

]−1
, (5.1)

and the device density of states is

Nd(E) = − 1

π
Im tr

[
GdSd

]
. (5.2)

where Hd is the device Hamiltonian, Sd is the overlap matrix and Σi(E) is the self energy for

lead i, where all matrices are in the NGWF basis. The remaining quantities in section 3.3.4

remain unchanged.

5.2 Constructing the device matrices

In this section we describe our procedure for computing the transmission coefficients for

a device and semi-infinite leads from a single ground-state DFT calculation. A trans-

port calculation follows as a post-processing step after a ground state electronic structure

calculation.

The method involves two structures, shown schematically for a two-lead system in

Fig. 5.1. (Each lead is indexed by L/R to indicate the left/right lead. The geometries extend

straightforwardly to multi-lead devices.) The geometry in Fig. 5.1a, which we refer to

as the transmission geometry, is the system for which the transmission properties are to

be calculated. The electronic structure of this representation, however, is not explicitly

calculated. Instead, a ground-state electronic structure calculation is performed on what we

refer to as the auxiliary simulation geometry, shown in Fig. 5.1b, which is then used to build

the device Hamiltonian and overlap matrices of the transmission geometry of Fig. 5.1a.

The transmission geometry is an open system with semi-infinite leads, whilst the auxiliary

simulation geometry is, in our implementation, periodically repeated, due to the periodicity

of the underlying psinc basis set used in the electronic structure calculation.

From Eqn. (5.1) it can be seen that the matrices required are the device Hamiltonian Hd,

overlap Sd, and each lead self energy Σi. These matrices are constructed from matrix blocks

obtained from an electronic structure calculation on the auxiliary simulation geometry. As

2See the derivation presented in appendix A.
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the NGWF basis functions are atom-centred, these matrix blocks can be unambiguously

associated with regions of real space and the atoms contained within these regions.

Throughout this chapter, we will denote device matrices that have been constructed in

uppercase sans-serif, e.g. Hd. These are large matrices that are the size of the entire device.

The smaller matrix blocks used to build these matrices are extracted from the ground-state

calculation on the auxiliary simulation geometry and are denoted in lowercase bold, e.g.

hLC .

5.2.1 Lead self energies

We first focus on the matrix elements required to determine the lead self energies Σi. The

electronic structure of the quasi-one dimensional leads can be efficiently described in

terms of principle layers, defined as the minimal stacking unit that is sufficiently large

that matrix elements between localised functions in non-adjacent principle layers are zero.

With NGWFs, this is achieved exactly when the principle layer is larger than the maximum

NGWF diameter, or can be approximated by neglecting matrix elements between non-

adjacent principle layers.

The electronic structure of the lead is then defined exactly by two blocks of Hamiltonian

and overlap matrix elements: the block between NGWFs within the same principle layer

h00, s00, and the block between NGWFs in adjacent principle layers h01, s01. This structure

can be seen in the two leads in Fig. 5.1a.

Once these matrix element blocks are determined, the calculation of the lead self energies

can be efficiently performed using the iterative method of Lopez-Sancho et al.[157].

5.2.2 The auxiliary simulation geometry

We now discuss how the device Hamiltonian and overlap matrices are constructed from the

auxiliary simulation DFT geometry. The auxiliary simulation DFT structure must contain

enough of the device structure such that the device matrices Hd, Sd can be extracted directly.

The definition of the device region is not unique, however, as an arbitrary amount of each

lead can be included. The inclusion of large amounts of lead region is unnecessary and

increases computational expense; by including just two principle layers of each lead, the

device Hamiltonian and overlap matrices and the principle layer matrices necessary to

construct the lead self energies, i.e., all matrices required to compute the transmission

through the device, can be extracted from a single ground-state DFT calculation on the

auxiliary simulation geometry.
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Figure 5.1: The schematic geometry of a two-lead device. a) The transmission geometry

that is to be simulated. Dashed lines indicate the lead principle layers. Open boundary

conditions are used and the left and right leads are semi-infinite. b) The auxiliary simulation

geometry for which the DFT ground-state is computed. The surrounding black box gives

the periodic DFT simulation cell. Matrix elements are extracted from this calculation and

used to build the device matrices in the transmission geometry. Annotating each diagram

are the location of the matrix elements within each structure (see main text, HL/R are the

Hamiltonians describing the leads). The bottom panel gives a description of each region

within the auxiliary simulation geometry. The shading defines the regions that are included

in building the device matrix elements; in the transmission geometry, the non-shaded region

is included using the lead self energies; in the auxiliary simulation geometry, the non-shaded

regions are used to achieve bulk-like electronic structure within the lead regions but are not

included in the device matrices. The auxiliary simulation geometry may be a truncated/finite

system, or use the simulation cell periodic boundaries.
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In Fig. 5.1, the spatial extent of the device is indicated with a grey shaded box. The

locations of the matrix blocks within this device are also indicated for each geometry.

To ensure that the lead self energies accurately represent their bulk form, the lead matrix

blocks h00, h01 etc., must be extracted from a region where the local electronic structure has

converged to the bulk for that lead. This can always be achieved by including a sufficient

amount of ‘buffer’ lead material adjacent to the central scattering region such that the

system contains lead regions that are bulk-like from which to extract h00 and h01. These

buffer regions are then included as part of the Hamiltonian of the scattering region hC . If

within the auxiliary simulation geometry the leads are terminated (e.g. Fig. 5.5), then there

is also the need for buffer regions of lead material to screen the influence of the termination,

as indicated in Fig. 5.1b.

Typically, a lead principle layer will contain multiple primitive lead unit cells. The

periodic symmetry of these unit cell matrix elements is not guaranteed, however, as the unit

cells are different distances from the central scattering region. To restore this periodicity,

we explicitly symmetrise the lead Hamiltonian and overlap matrix elements by averaging

equivalent matrix blocks.

Outside the device region, the auxiliary simulation geometry can take any form that is

convenient for the ground-state DFT calculation. Our approach is very flexible and allows

calculation of transmission through any device geometry connected to an arbitrary number

of leads.

A major advantage of this procedure is the ease with which the device matrices can be

constructed from a suitable auxiliary simulation geometry. All submatrices are automatically

identified by a list of atoms that define the device, and the subsets of these atoms that form

the two principle layers for each lead. As this can all be done using matrix elements from

a single ground-state DFT calculation, the Hamiltonian blocks of the leads and device

already share the same background potential. This contrasts with approaches that build the

device matrices from multiple ground-state DFT calculations, where the local chemical

potential must be aligned at the interface between matrix elements derived from different

calculations.[146]

5.3 Optimisation strategies

We now discuss the particular optimisation strategies that we have used to increase the

system sizes that can be studied using our method.

An important part of our implementation is its ability to exploit the sparsity of the
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device Hamiltonian and overlap matrices as this greatly increases the capability of the

implementation to study large systems.[145]

Due to the strict localisation of the NGWF basis functions, the device matrices are very

sparse. For example, the device Hamiltonian for the two-lead system shown schematically

in Fig. 5.1a takes a tri-diagonal form

Hd =



h00,L h01,L · · ·
h†01,L h00,L hLC · ·
· h†LC hC hCR ·
· · h†CR h00,R h01,R

· · · h†01,R h00,R


, (5.3)

where the matrix blocks are defined in Fig. 5.1a and blocks of elements that are zero are

denoted by a dot. The device overlap matrix takes the same form.

The lead self energies have greater sparsity, and are only non-zero on the block diagonal

of the lead principle layer furthest from the central scattering region, e.g. for the left lead in

Fig. 5.1a

ΣL =



σL · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·


. (5.4)

This is a direct consequence of including at least one lead principle layer in the device

region: the only spatial bulk-like region of the device that has non-zero matrix elements

with the rest of the lead is the final principle layer of lead furthest from the central scattering

region. The lead coupling matrices, ΓL etc., take the same sparsity pattern, with the non-zero

block denoted γL = i(σL − σ†L).

This sparsity can be used to improve the performance of the evaluation of the transmis-

sion coefficients. By evaluating the matrix products in Eqn. (3.9) and using the sparsity

of the coupling matrices Γi, the transmission coefficients for a two-lead device can be

evaluated as

T (E) = tr
[
γL gLR γR g

†
LR

]
, (5.5)

where gLR is the off-diagonal block of the retarded Green’s function between all NGWFs

belonging to the left and right leads. An identical relation is found for multi-lead devices.

For the two-lead device geometry in Fig. 5.1a, the required Green’s function block is
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located within the top right of the device Green’s function

Gd =



· · · · gLR

· · · · ·
· · · · ·
· · · · ·
· · · · ·


, (5.6)

where the dots refer not to zero blocks, but instead to blocks that do not need to be calculated.

Note that the sizes of the matrix blocks in Eqn. (5.5) depend only on the size of the lead

principle layers and not on the size of the entire device.

The block gLR is computed using a block tri-diagonal Gaussian elimination algorithm[158,

159]. This method is exact and directly computes this block only, removing the need to

compute or store the dense device Green’s function. At no point is it necessary to store the

device Hamiltonian and overlap in dense form, allowing very efficient memory use. The

device density of states Eqn. (5.2) can similarly be computed efficiently using the same

block tri-diagonal algorithm.

The efficacy of the block tri-diagonal inverse algorithm depends on the particular trans-

port geometry. However, for quasi one-dimensional systems, including devices connected

by multiple quantum wires, it asymptotically scales linearly with number of basis functions

in both operation count and memory requirements. This should be compared to standard

dense matrix inversion routines, such as LAPACK[160], for which memory requirements

and operation count scale respectively as the square and cube of the number of basis

functions.

Our method has been implemented to make use of parallel architectures using the

Message Passing Interface (MPI). The majority of the calculation is spent determining the

transmission spectrum which is evaluated over a set of linearly-spaced energies within a

user-defined energy window. As each evaluation of the transmission is independent, each

MPI process takes a subset of the energies and performs the calculation in serial. Once

matrix element data has been distributed among the processes, no communication between

them is required and the calculation exhibits ideal scaling with the number of processes. As

a result of these optimisations, our implementation is able to tackle very large systems.
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5.4 Properties beyond the transmission coefficients

5.4.1 Properties of the leads

As the lead matrix elements and self energies are not derived from a separate bulk-lead

calculation, it is important to be able to assess how accurately the bulk-like region of the

auxiliary simulation geometry describes the true bulk lead. A simple assessment can be

made by comparing the band structure generated by the lead matrix elements h00, h01 etc.,

which we will refer to as the lead band structure, to the true bulk band structure obtained

from a separate calculation.

The lead band structure εnk is calculated using a non self-consistent Fourier interpolation

approach, solving the generalised eigenvalue problem

hkun = εnkskun (5.7a)

hk = h00 + eikh01 + e−ikh†01 (5.7b)

sk = s00 + eiks01 + e−iks†01, (5.7c)

where hk, sk are the lead Hamiltonian and overlap matrices at a general k-point where

k is in fractional units of the reciprocal lattice vector.3 This procedure is computationally

inexpensive allowing for a dense k-point sampling.

5.4.2 Eigenchannels for multi-lead devices

We have also implemented a method to decompose the total transmission into contributions

from eigenchannels. Our implementation is, as far as we are aware, the first example within

a modern first-principles code to allow eigenchannels to be computed for multi-lead devices.

The procedure to generate the eigenchannels follows Paulsson and Brandbyge[161] (see

also Appendix A); in the following discussion, we first outline this method for the special

case of two-lead systems before providing our extension for multi-lead devices.

An eigenchannel decomposition achieves two things: firstly for leads with multiple

conduction channels, the contributions from each channel can be isolated; and secondly the

spatial form of the scattering state within the device can be computed, thus indicating the

locations of scattering within the device.

3For principle layers containing multiple primitive lead unit cells, the band structure for a single primitive

lead unit cell can be obtained by replacing the principle layer matrix blocks by equivalent primitive unit cell

matrix blocks, and modifying Eqn. (5.7) to include contributions from non-adjacent primitive unit cells, e.g.

introducing h02, s02 etc..
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The channels are defined as superpositions of scattering states injected in a lead, and

are non-mixing in the sense that the transmission of a scattering state |ψ〉 that is a superpo-

sition of multiple eigenchannels |χn〉 is given by the corresponding weighted sum of the

eigenchannel transmissions: i.e.

|ψ〉 =
∑
n

αn|χn〉 (5.8a)

T =
∑
n

|αn|2Tn (5.8b)

where |χn〉 and Tn are eigenchannels and the corresponding eigenchannel transmissions.

There is no interference term in the transmission as the channels are non-mixing.

We now summarise the results of Ref. [161]. For a two-lead device with leads labelled

L, R, the (propagating and non-propagating) scattering states |χ̃Ll 〉 which are injected into

the device by lead L can be computed by diagonalising the lead spectral function

AL = GΓLG† = 2π
∑
l

|χ̃Ll 〉〈χ̃Ll |. (5.9)

These scattering states are used to compute the transmission matrix for this lead, defined

using the Fisher-Lee relation[75] as

TL = (tL)†tL, (5.10)

where tL is the transmission amplitude matrix for scattering states originating in lead L. It

is worth noting that the trace of Eqn. (5.10) gives the total transmission but the transmission

matrix is not the same as the matrix products defined in Eqn. (3.9). The elements (tL)lm

define the transmission amplitude for the scattering state |χ̃Ll 〉 injected in lead L, to the

scattering state |χ̃Rm〉 received in lead R. The indices l and m run over all scattering states

in the left and right lead, respectively.

The matrix tL is not explicitly computed, but instead the elements of the transmission

matrix (Eqn. (5.10)) are calculated using(
TL
)
l′l

= 2π〈χ̃Ll′ |ΓR|χ̃Ll 〉. (5.11)

The unitary combination of scattering states that makes Eqn. (5.11) diagonal define the

eigenchannels, which are computed as the eigenvectors of the matrix defined in Eqn. (5.11);

the corresponding eigenvalues give the eigenchannel transmission. The superposition of

scattering states can then be constructed in the NGWF basis to plot the spatial form of the

eigenchannels.
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The eigenchannels produced using this method are normalised, allowing direct compari-

son of multiple states by relative amplitude.

We now provide our extension for multi-lead devices. For devices containing more than

two leads, we define the eigenchannels as the superposition of scattering states injected by

lead i that are non-mixing. Note that eigenchannels are computed for each source lead with

respect to all other leads together, rather than eigenchannels between each pair of leads.

The eigenchannels calculated this way determine how a state injected into lead i propagates

throughout the entire device, and contributions from this state may be received in any other

lead j 6= i.

To achieve this, we return to the definition of the transmission matrix using the Fisher-

Lee relation (Eqn. (5.10)). For multi-lead devices, the incident scattering state |χ̃il〉 can

be received in any conduction channel of a drain lead |χ̃jmj
〉. The transmission amplitude

matrix must include separate contributions from each drain lead and has elements (ti)lm,

where l still runs over all scattering states in the source lead i, but now m = {mj} runs over

all scattering states in all other leads j 6= i, with mj indexing the scattering states in lead j.

The elements of the transmission matrix become

(Ti)l′l =
∑
m

(ti)∗l′m(ti)lm (5.12a)

=
∑
j 6=i

[∑
mj

(ti)∗l′mj
(ti)lmj

]
. (5.12b)

The term in square brackets is recognised as the transmission matrix evaluated between the

source lead and a single drain lead, and using Eqn. (5.11), the transmission matrix becomes(
Ti
)
l′l

= 2π
∑
j 6=i

〈χ̃il′|Γj|χ̃il〉. (5.13)

The eigenchannels and their corresponding transmissions are computed by diagonalising

Eqn. (5.13), with the scattering states determined as in Eqn. (5.9).

From Eqn. (5.13), it can be seen that the only modification is that the self energy of the

drain leads j 6= i is summed. This can be understood straightforwardly by considering all

conducting channels of all drain leads together as part of a single effective lead. The self

energy of this effective lead is simply the sum of the self energies of the constituent leads.

As the matrices involved in Eqns. (5.9) and (5.13) are the same size as the device Hamil-

tonian and, in contrast to the computation of the transmission coefficients, as the matrix

sparsity cannot easily be exploited, calculating the eigenchannels is considerably more

computationally demanding than computing the transmission coefficients alone. Plotting

the eigenchannels, however, is typically only required at a few energies rather than across
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the entire transmission spectrum. We therefore adopt a different parallelisation strategy for

computing the eigenchannels, whereby each eigenchannel calculation is distributed over all

processes and linear algebra operations occur in parallel using the ScaLAPACK library[162].

This implementation makes use of distributed memory and computation, greatly increasing

the system size that can be studied.

If only the eigenchannel transmissions without spatial description are required, distribut-

ing the calculations over energy points is still possible by again exploiting again the sparsity

of the coupling matrices Γi. The eigenchannel transmissions originating from lead i are

computed as the eigenvalues of the matrix[161]

T̄ i =
∑
j 6=i

γigijγjg
†
ij, (5.14)

i.e. the sum of the matrices defined by the products in Eqn. (5.5). Note that this matrix

is not the transmission matrix given in Eqn. (5.13), but shares the same eigenvalues and

eigenvectors[161]. The sizes of these matrices depend only on the size of the principle

layers in the leads and therefore the calculation scales independently of system size and can

be computed in serial, as with the total transmission.

5.5 Applications

We apply our implementation to two systems to demonstrate the methods that we have

developed. The first is a relatively small (67 atoms for the underlying DFT calculation) poly-

acetylene wire with a single nitrogen substitution, for which it is possible to make direct

comparison with results obtained using other implementations for calculating conductance.

The second system is much larger containing 610 atoms and computes the tunnelling current

between two terminated carbon nanotubes.

Unless otherwise stated, electronic structures were determined using an 850 eV kinetic

energy cutoff for the psinc basis, exchange and correlation was treated using the PBE

generalised gradient approximation[106], and the Brillouin zone was sampled at the Γ

point only. Core electrons were described using norm-conserving pseudopotentials in

Kleinman-Bylander form[136], and non-periodic directions were treated using the supercell

approximation, with at least 10 Å separation between periodic images. A small basis of

NGWFs were used, with four per carbon and nitrogen ion, and one per hydrogen ion. We

define the Fermi energy as the average mean gap level of the leads of the device; throughout

this section we set the Fermi energy to zero.
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scatterer
buffer bufferPL2 PL1 PL1 PL2

Figure 5.2: The geometry of the poly-acetylene wire with a single nitrogen substitution in

the centre. The lead principle layers (PL) are indicated by dark/light coloured spheres and

labelled above the geometry. The periodic simulation cell is donated by the surrounding

blue box.

5.5.1 Poly-acetylene wire

We first describe our results for a 67 atom poly-acetylene wire with a single nitrogen

substitution as shown in Fig. 5.2. The entire auxiliary simulation geometry is included

in the device; in the auxiliary simulation geometry, periodic boundary conditions make

the two leads adjacent meaning that each acts as a bulk-lead buffer region for the other

lead ensuring that the local lead electronic structure is bulk-like. The short-circuit between

the leads across the periodic boundary is automatically removed when building the device

Hamiltonian/overlap using the method described in section 5.2. The NGWF localisation

radius was set to 3.7 Å, which results in lead principle layers defined exactly by three

primitive unit cells, as indicated in Fig. 5.2.

In Fig. 5.3, we compare the lead band structure that is derived from the auxiliary

simulation geometry (solid lines) to the bulk lead band structure calculated for a single

periodic poly-acetylene unit cell (open circles) calculated separately using the plane-wave

DFT code CASTEP [123]4. The agreement is very good for the valence bands and first

conduction band, confirming that the leads are sufficiently far from the nitrogen substitution

that the electronic structure has converged to that of the bulk lead. We note that a series of

bands appearing above 3 eV are not captured by our method. These correspond to states

that are delocalised in the vacuum and not on the poly-acetylene molecule and are therefore

properties of the vacuum and depend on the size of the simulation cell. Contributions from

these states to conduction in the poly-acetylene molecule appear only at high energies where

4The calculation uses the same pseudopotentials and, as far as possible, parameter set. During the

self-consistent field calculation of the ground state, the Brillouin zone was sampled at 8 equally spaced points

along the periodic direction.
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electrons are ionised. Neglecting these contributions is an excellent approximation when

studying low-bias conduction.

The device and bulk transmission are compared in Fig. 5.4, where it is found that

the nitrogen substitution causes little back scattering in the vicinity of the Fermi level.

This may be understood as a result of the nitrogen retaining the sp2 hybridisation of the

substituted carbon, and therefore maintaining the π/π∗ channels that are responsible for

low-bias conduction. Scattering due to this substitution is weak as the π/π∗ are not strongly

perturbed.

In Fig. 5.4, we also show a comparison between our method and a similar calculation

using a basis of maximally-localised Wannier functions (MLWFs)[122, 163, 121] extracted

from eigenstates determined from a plane-wave DFT calculation.5

We note that whilst the physical motivation behind MLWFs and NGWFs are similar[128],

the MLWFs form an orthogonal basis whereas the NGWFs are non-orthogonal. Further, un-

like the NGWFs, the MLWFs are not fully localised within a given radius. Some truncation

of the lead principle layers must therefore be made. Three primitive lead unit cells in each

principle layer are found to be sufficient to accurately describe the lead band structures.

Increasing the primitive layers to four primitive unit cells changes the lead band structures

by no more than 3 meV.

Fig. 5.4 shows that transmission calculated using the NGWF basis is in excellent

agreement with the MLWF method. This confirms that the quality of transmission calculated

using the NGWF basis is equivalent to that of the plane-wave basis that underlies the MLWF

results.

As a further example, we consider the transmission between the nitrogen-substituted

poly-acetylene chain and a polyyne carbon chain which acts as a probe. The probe has

alternating bond lengths of 1.27 Å and 1.30 Å and is placed 2.4 Å from the poly-acetylene

carbon backbone. The auxiliary simulation geometry is shown in the bottom panel of

Fig. 5.5 and consists of 91 atoms, of which 82 are included in the three-lead transmission

geometry. In the upper two panels of Fig. 5.5 we compare the form of the two eigenchannels

that originate in the polyyne probe with energy 2 eV below the Fermi energy. Within

the probe, the two channels have similar π/π∗ forms, as expected from the form of the

bulk polyyne eigenstates. Only electrons in the first channel are able to tunnel into the

poly-acetylene chain as the axes of the polyyne and poly-acetylene π/π∗ states are aligned;

5Plane-wave eigenstates were calculated using the QUANTUM ESPRESSO package[124] using the same

pseudopotentials and, as far as possible, calculation parameters. A set of 102 MLWFs were extracted from

lowest 170 bands resulting in 68 MLWFs localised in the bonding region between species, 32 pz type orbitals

centred on carbon atoms, and two additional MLWFs on the nitrogen lone pairs.
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Figure 5.3: The band structure of the left lead of the poly-acetylene wire shown in Fig. 5.2.

The solid (blue) lines give the interpolated band structure calculated in the NGWF basis;

the red circles give the band structure calculated separately for bulk poly-acetylene using

the plane wave DFT code CASTEP. The Fermi level has been been set to zero.
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Figure 5.4: The transmission calculated for the poly-acetylene wire shown in Fig. 5.2. The

solid and dashed lines give, respectively, the device and left lead bulk transmission in the

NGWF basis using the method described in this work; the dotted line gives the device

transmission calculated using maximally localised Wannier functions (MLWFs).
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electrons in the second channel cannot couple with the poly-acetylene π/π∗ states due to

poorly-aligned symmetry and transmission of this channel therefore is negligible. Within the

probe, both channels are approximately standing waves, which reflects the low transmission

between the probe and the poly-acetylene molecule. Within the poly-acetylene molecule,

the first eigenchannel shows an increasing complex phase indicating that the eigenchannel

is propagating.

5.5.2 Conduction between terminated carbon nanotubes

We now apply our implementation to a more complex problem, namely the conductance

between two terminated carbon nanotubes (CNTs). In this section, we focus on the particular

details relevant to the large-scale transport calculations; a more detailed discussion of the

conductance characteristics will be provided in chapter 7.

We next consider the inter-tube tunnelling between two hydrogen-terminated (5, 5)

CNTs in the geometry shown in Fig. 5.6.6 The electronic ground state is determined for

a 73 Å long CNT fragment containing 29.5 unit cells of a (5, 5) CNT. Each terminating

carbon atom is passivated with a single hydrogen atom, giving the simulation cell a total of

610 atoms. Periodic boundary conditions are used and there is 10 Å overlap between the

terminated ends. The inter-tube separation was chosen to be 3.4 Å, the inter-layer separation

in graphite. The relative orientation of the hexagonal lattice in the contact region gives

a graphite Bernal-like stacking. The dark/light spheres indicate the atoms that define the

lead principle layers, each of which consist of four primitive unit cells of the CNT. Unless

otherwise stated, the NGWF localisation radii for all atoms are set at 4.2 Å.

The full calculation for the DFT ground state and subsequent transport calculation was

performed using 64 Intel Sandy Bridge cores (2.60 GHz, E5-2670 processors), requiring 94

minutes, of which under 2 minutes were required to compute the transmission spectrum

evaluated at 1000 energies, i.e., only 2% of the total calculation time. The transmission

calculation used 2380 NGWF basis functions, with a memory requirement of 150 MB per

core.

The main results of this calculation are given in Fig. 5.7. The left panel gives the band

structure of the left lead (the band structure for the right lead is indistinguishable) which

is as expected for a metallic (5, 5) CNT: two bands cross the Fermi energy with linear

6We note that as a consequence of the connection between the leads across the periodic boundary, the

auxiliary simulation geometry in Fig. 5.6 can only study conductance between CNTs of the same chirality.

The results presented in chapter 7 use an alternative geometry consisting of finite CNT fragments that allows

for the study of conduction between CNTs of different chirality.
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Figure 5.5: Bottom panel: the auxiliary simulation geometry for the nitrogen-substituted

poly-acetylene chain with a polyyne chain acting as a probe. The lead principle layers are

given by dark/light spheres; a region of buffer polyyne chain is included in the auxiliary

simulation geometry, but excluded from the transmission geometry, to ensure that the

polyyne lead principle layers are bulk-like. The blue box gives the periodic supercell.

Top panels: the two eigenchannels originating from the polyyne probe at energy 2.0 eV

below the Fermi energy. The isosurface represents the absolute value of the eigenchannel,

with the complex phase indicated by the shading and the color bar. The transmission for

each channel, T , gives the total transmission from the probe into either of the leads on the

poly-acetylene chain.
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Figure 5.6: The auxiliary simulation cell geometry for inter-tube conductance between two

terminated (5, 5) CNTs. The system contains 610 atoms. The lead principle layers, indicated

with light and dark coloured spheres respectively, correspond to four CNT primitive unit

cells. The blue box gives the periodic boundary of the simulation cell.
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Figure 5.7: The computed transmission and related quantities for the end-end geometry

shown in Fig. 5.6a. Left: the band structure of the left lead (solid blue) and the bulk (red

circles). Centre: the bulk transmission of the left lead. Right: the device transmission

between the two leads in the device (note the logarithmic scale).
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Figure 5.8: The device transmission at the Fermi energy between CNTs in the geometry

shown in Fig. 5.6a as a function of inter-tube spacing and NGWF radius. The inset gives

the relative error in the transmission |(T − T0)/T0| for several inter-tube separations dCNT

as a function of NGWF radius; the reference value T0 is taken to be the transmission for

NGWF radius RNGWF = 5.29 Å.

dispersion. The lead band structure derived from the auxiliary simulation geometry is found

to be very similar to the bulk (5, 5) CNT band structure (red circles) calculated separately

using the plane-wave DFT code CASTEP. This demonstrates that the lead principle layers

are sufficiently far from the scattering region and the local electronic structure has converged

to the bulk. The two band structures do not agree exactly, which may be due to too small

NGWF localisation radius, but for states in the vicinity of the Fermi energy, which have the

dominant contribution to low-bias conduction, the agreement is excellent.

The bulk transmission, shown in the central panel, agrees with the lead band structure

with one unit of transmission for each band present at a given energy. Around the Fermi

level the bulk transmission is 2, as expected for a metallic CNT and from the two bands

that cross the Fermi level. The right panel gives the device transmission between the

semi-infinite CNTs (note the logarithmic scale). Transmission is low as there is no bonded

connection between the CNTs, and transmission occurs via tunnelling.

In Fig. 5.8 we consider the effect of the NGWF radius on the inter-tube transmission

evaluated as a function of the CNT separation. As the set of NGWFs that directly overlap

changes with the NGWF radius, the inter-tube tunnelling transmission might be expected
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to be sensitively dependent on the NGWF localisation radius making this weakly-coupled

system an excellent test of our method. As shown in Fig. 5.8, we observe rapid convergence

of inter-tube transmission as the NGWF radius increases confirming the applicability of

our method to this system. Note also that whilst the use of larger NGWF localisation radii

increases the computation time to reach the DFT ground state, the total number of NGWF

basis functions remains constant. Although the number of primitive unit cells that define a

lead principle layer may increase with larger radii NGWFs, these matrices are still small

when compared to the device matrices and the increased computational cost is not severe.

This means that the time required to compute the transmission spectrum is therefore almost

independent of the accuracy of the NGWF basis set.

Finally, we note that in chapter 7 we use the implementation presented in this chapter

to study conduction in systems containing up to 4028 atoms (in the geometry shown in

Fig. 7.3b, the transmission geometry corresponds to the entirety of the auxiliary simulation

geometry). The largest calculation, when parallised over 416 cores (Intel Sandy Bridge,

2.60 GHz, E5-2670), required 12 minutes to evaluate the transmission spectrum evaluated at

1500 energies with a memory footprint for the transport calculation of 1.44 GB per processor.

This calculation illustrates the ability of this implementation to study conductance through

extremely large devices.

5.6 Outstanding issues

To conclude this chapter, we discuss a technical issue with our implementation that remains

to be fully resolved. It is known that whilst the optimised NGWFs describe valence states

with excellent accuracy, the description of the conduction states can be poor.[164] Part of

the issue is the greater delocalisation of the conduction states, which require NGWFs with a

larger localisation radius, but more fundamentally the NGWF optimisation procedure only

optimises for the occupied states. A solution to this problem has recently been implemented

whereby a second set of conduction NGWFs are generated and optimised to describe only

the lowest-lying conduction states.[164] By combining the standard valence NGWFs and

the conduction NGWFs, this joint NGWF basis is able to describe simultaneously a range

of occupied and unoccupied states around the Fermi energy.

The transport implementation described in this chapter is in principle automatically

compatible with the joint NGWF basis as this basis does not differ conceptually from the

valence NGWF basis. Test calculations using the joint basis were often found to provide

an inaccurate description of the transport characteristics, however, even at energies deep
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within the valence bands where the ordinary valence NGWFs alone are sufficient to describe

transport.

The origin of this issue was identified as ill-conditioning in the joint basis, arising

from near-degeneracies in the valence and conduction NGWFs. These degeneracies arise

as the valence and conduction states in the vicinity of the Fermi level often have similar

character, yet each are described using a separate set of NGWFs. This results in numerical

instabilities when computing the lead self energies and leads to a poor description of the

transport properties. The effect of this degeneracy on the lead self energies can be more

easily understood in terms of the equivalent instability when computing the lead band

structures.

To ensure that the lead bandstructure computed using Eqn. (5.7) is physically acceptable

and has real eigenenergies, the overlap matrix at a general k-point sk must be positive

definite. This is equivalent to the condition that sk has all positive eigenvalues. An overlap

matrix is said to be ill-conditioned when the ratio of the largest to smallest eigenvalues,

termed the condition number, is much greater than unity. In general, an overlap matrix is

always positive definite. However, extracting matrix elements from the auxiliary simulation

produces only an approximation to the proper overlap matrix. Recall that sk is constructed

from the s00 and s01 matrices that are extracted from the two lead principle layers. As these

principle layers are different distances from the device region, the NGWFs in these layers

are in general different. The extraction of the s01 matrix is therefore only an approximation:

in an exact calculation of s01, the NGWFs in both principle layers would be identical. There

is therefore an error associated with s01.

The error in s01 introduces a perturbation to the eigenvalues of sk, and the magnitude

of this error depends on the condition number of sk. If the condition number is small, as in

the valence NGWF basis, the perturbation does not strongly perturb these eigenvalues and

sk remains positive definite: in this case the error in the lead self energy introduced by the

error in s01 is negligible. If the condition number is larger, however, the perturbation can be

sufficient to make one or more eigenvalues of sk negative. Consequently, certain lead band

energies become complex and unphysical, and the corresponding eigenstates decay rather

than propagate through the device resulting in an incorrect transmission spectrum.

To illustrate this problem, we consider transmission between two polyyne probes.

Transmission is calculated using a valence basis with NGWF radius 4.2 Å, and a joint basis

using the same valence NGWFs and optimising conduction NGWFs of radius 6.4 Å to

describe the 11 lowest lying conduction states. Using the valence basis only, the condition

number and minimum eigenvalue of sk at the Γ point are 19.5 and 0.102 respectively. The
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Figure 5.9: The transmission and lead band structure for conductance between two polyyne

probes using the joint and valence NGWF bases. For the joint basis calculation, only the

real part of the band energies are shown. The Fermi energy is set to zero.

maximum change of this minimum eigenvalue over the Brillouin zone is 0.003 indicating

that transmission calculations performed using this basis will be stable. When using the

joint NGWF basis, the condition number of sk at the Γ point increases to 10386. The

minimum eigenvalue of sk is found to vary over the Brillouin zone between −2× 10−3 and

−1× 10−4. As this quantity is negative, the calculation of the lead band structure and lead

self energies both become numerically unstable. Indeed, in the joint basis, the lead band

structure is found to contain complex eigenvalues with an imaginary component as large as

270 eV. Fig. 5.9 compares the lead band structure and transmission between two polyyne

probes calculated using the valence and joint basis. The spurious band that is introduced in

the joint basis band structure contains a large imaginary component where the real part of

the band energy is approximately 6 eV. This figure demonstrates that the ill-conditioning of

the joint NGWF basis can calculate a transmission spectrum that is not even in qualitative

agreement with the valence calculation.

One solution to this problem is to ensure that both principle layers use the same subset

of NGWFs. This may not completely solve the problem, however, as the calculation of each

s01 element is performed on a real-space grid, and if that grid is not commensurate with the

periodic length of the lead principle layer then the NGWF is not invariant upon translation

by a fraction of the grid.7 For an arbitrary device containing at least two leads, it is not

7The variation in the real-space integral as atoms are shifted a fraction of a grid-spacing is known as the

egg-box effect.[165]
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possible to guarantee a commensurate grid spacing and a non-positive definite overlap may

still be encountered.

A potentially more promising solution is to directly address the problem of ill-conditioning.

One approach is to perform a transformation of the existing joint basis within the lead prin-

ciple layers to eliminate the ill-conditioning[166]. A simpler physically-motivated solution,

however, may be to modify the conduction NGWF optimisation procedure to ensure that

the conduction and valence NGWFs on a given atom are always orthogonal. This could

be achieved by expanding the low-energy conduction states in the valence and conduction

NGWFs, and optimising only the conduction NGWFs whilst keeping the valence NGWFs

fixed. In addition to improving the calculation of the lead band structures and self energies,

this approach would also remove any ill-conditioning of the device overlap matrix and may

offer better numerical stability overall.

The calculations presented in this chapter and in chapter 7 use only the valence NGWF

basis. Comparison of the lead and corresponding bulk band structures shown in Fig. 5.3 and

Fig. 5.7, and the transmission calculated using the MLWF basis shown in Fig. 5.4, suggest

that the valence NGWFs do provide a good description of the low-lying conduction bands

thus justifying this approximation.

5.7 Summary

In this chapter, we have presented an implementation of a method to model the zero-bias

ballistic electronic transport through a multi-lead device using the Landauer-Büttiker formal-

ism. The method is implemented into the ONETEP code and uses matrix elements derived

from first-principles calculations using density functional theory. Our implementation has

been specifically designed to study transport through very large systems, and enables the

calculation of electronic transport properties of systems consisting of thousands of atoms

on a routine basis. This brings the possibility of studying more realistic nano-electronic

devices than has been previously possible with first-principles techniques. Key features

of our implementation include: a highly compact basis set of localised non-orthogonal

Wannier functions that are optimised in situ to achieve near basis set complete accuracy;

transmission calculations for devices containing an arbitrary number of leads; calculation on

highly parallel computer architectures; efficient exploitation of matrix sparsity; computing

and plotting the eigenchannel decomposition in multi-lead devices.

Several example calculations have been presented in this chapter to demonstrate the

accuracy and capability of the computational methodology. This implementation is used
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extensively in chapter 7 where we perform calculations on very large systems to explore a

mechanism that enhances the inter-tube conductance in arrays of carbon nanotubes. The

theoretical evidence for the existence of this mechanism is the focus of the following

chapter.
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CHAPTER

SIX

MOMENTUM-RESONANT TUNNELLING BETWEEN

CARBON NANOTUBES

The focus of this chapter is an investigation into the mechanisms that affect the conductance

between carbon nanotubes. Possible mechanisms for the transfer of electrons between the

tubes are myriad, and a search using the first-principles methods presented earlier is not

only computationally impractical but also unsuitable for this problem. Instead, we adopt an

analytical approach and use computationally inexpensive empirical tight-binding models

which allows us to constrain the types of interactions that facilitate conduction between

CNTs.

Using analytical results based on scattering theory, and validated by numerical tight-

binding simulations, we show that significant enhancements of conductance between CNTs

can arise from relatively weak interactions with the surrounding environment. The origin

of the enhancement is that these interactions enable momentum-conserving tunnelling to

occur by accepting any momentum difference between the initial and final states. The

improvement in the conductance is very general and applies to metallic as well as doped

semiconductor CNT networks. A key point to this mechanism is that the interaction with

the environment need only be weak and can therefore be effected without chemical bonding,

relying instead on weaker inter-molecular interactions. It is likely that this mechanism

contributes significantly to the conduction in CNT networks, arising from weak-disorder and

impurities in the nanotube system that remain from synthesis. Our conclusions lead to the

counter-intuitive realisation that removing this disorder may in fact reduce the conductance

of CNT networks.

Parts of this chapter have been published [167].
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Chapter 6. Momentum-resonant tunnelling between carbon nanotubes

6.1 Introduction

In a wire made from a macroscopic network of CNTs, no single CNT spans the two ends of

the wire and so to traverse the length of the wire, electrons must travel through pathways

involving many CNTs. The overall conductivity of the wire, therefore, is determined not

only by the intrinsic (intra-tube) conductivity of the individual CNTs, but also by the

morphology of the network [168] and by the inter-tube conductivity.

Appreciating the importance of the role of inter-tube conductivity is vital to understand

how to retain the properties of individual CNTs when scaling up to macroscopic wires

and devices. For example, the conductivity of CNT wires is orders of magnitude lower

than expected from the theoretical conductivity of individual CNTs and poor inter-tube

conductance is believed to be a dominant cause [169, 8, 9, 10]. One route to improving

network conductivity is, therefore, to improve inter-tube tunnelling.

There have been several studies on inter-tube transport between the ends of capped

or terminated CNTs [170, 171, 172]. The tendency for CNTs to align axially in bundles

however[173], together with their high aspect ratio, gives a relatively larger side-wall

contact region over which inter-tube tunnelling could take place [174]. Side-wall inter-tube

conduction between perfect CNTs has been shown to be strongly suppressed for CNTs

of different chirality when compared to those of the same chirality [38, 175]. This is a

consequence of the sensitivity of the electronic structure of the CNT to chirality and the

requirement for both momentum and energy conservation in the tunnelling process.1

As typical synthesis methods generate CNT networks with a range of chiralities, the

overall conductance of the CNT network may be strongly suppressed even if the constituent

CNTs are defect free, perfectly aligned and only metallic in character.

It has proved difficult to improve the total conductance of CNT networks by enhancing

side wall conductance as modifications that strongly interact with the CNTs, say through

covalently bonded groups [176], defects[175], or adsorbed transition metal ions[174],

dramatically reduce the intrinsic conductance of individual CNTs. Weak interactions with

adsorbed molecules have been shown to improve side-wall conductance through energy-

1Here we neglect the possibility of energy non-conserving scattering arising from, e.g., inelastic phonon

scattering. As discussed in section 3.2, whilst optical phonons could in principle allow energy dissipation

in scattering events, the high optical phonon energy makes these modes thermally unpopulated at ambient

temperatures and therefore unable to contribute to inelastic scattering. As acoustic phonons have far smaller

energies, of order 10 meV, inelastic acoustic phonon scattering can be approximated as elastic and momentum

conserving if the momentum is understood as the sum of the phonon and electron momenta. Phonon-assisted

inter-tube scattering is discussed briefly in section 6.8 but how it may contribute to inter-tube conductance

remains an open question.
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resonant tunnelling[177], but this mechanism requires molecular states close in energy to

the CNT Fermi energy and, therefore, the effectiveness of this approach is dependent on

extrinsic factors that may be difficult to control.

In this chapter we consider the general problem of electron transport between CNTs

of arbitrary chirality. We focus on transport between metallic CNTs, but our conclusions

equally apply to semiconducting ones and to bulk inter-sheet conduction in twisted bilayer

graphene[178]. The main result is that transport between tubes of different chirality can

be greatly enhanced by the presence of a weak external potential that achieves momentum-

conserving tunnelling by enabling momentum exchange by scattering off the potential. The

fact that the potential need only be weak removes the need to modify the bonding structure

of the CNTs and, hence, the intrinsic CNT conductance is unaffected. Furthermore, for a

potential that varies on length-scales larger than inter-atomic bond lengths, back-scattering

is forbidden and the total conductivity of the network is only improved by its presence. We

conclude that interactions between the CNTs and environmental impurities are likely to

accomplish this enhancement and that, counter-intuitively, the presence of weak disorder in

CNT networks is vital to ensuring a high network conductivity.

In section 6.2 we use perturbation theory to identify a mechanism to improve the side-

wall inter-tube conductance; in section 6.3 a tight-binding model is introduced which is

then used in sections 6.4–6.7 to explore and numerically verify the predictions made from

perturbation theory.

6.2 Linear-response from perturbation theory

We first investigate the factors that affect tunnelling between CNTs using scattering theory

within a perturbative framework. We consider a system containing two metallic CNTs of

arbitrary chirality axially aligned as shown schematically in Fig. 6.1. We denote the intrinsic

tunnelling interaction between the CNTs by the operator ĤT ; this interaction is assumed to

be weak, arising from non-bonding interactions, thus allowing for it to be treated within a

perturbative expansion.

Taking |ψ1〉 and |ψ2〉 to be electronic states at the Fermi energy EF localised in each

CNT, respectively, the contribution from these states to the small bias conductance G1→2

can be calculated using linear response theory. To first order,

G1→2 = 2e2Γ
(1)
1→2ρ1(EF), (6.1)

Γ
(1)
1→2 =

2π

~
ρ2(EF)

∣∣〈ψ1|ĤT |ψ2〉
∣∣2, (6.2)
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Chapter 6. Momentum-resonant tunnelling between carbon nanotubes

where Γ
(1)
1→2 is the first-order tunnelling rate between |ψ1〉 and |ψ2〉, and ρ1(EF) and ρ2(EF)

are the densities of states at the Fermi level for the two CNTs.

The most relevant term in Eqn. (6.2) is the matrix element and its dependence on the

momenta of the initial and final electronic states and, in turn, on the chiralities of the two

CNTs. In typical networks, the CNT diameters are sufficiently large that the electronic

states of the CNTs and their momenta are well described by the band-structure of graphene

under a zone-folding approximation (see section 2.3.2). For two weakly-interacting axially-

aligned CNTs we may consider two graphene Brillouin zones, each rotated by the chiral

angle of the respective CNTs such that their axial momenta are aligned[38], as shown

schematically in Fig. 6.3. Scattering between CNT states at the Fermi energy is equivalent

to scattering between the Dirac points of these rotated Brillouin zones[38], which in general

have different momenta. This difference in momentum, containing both axial and azimuthal

components, increases as the difference in chiral angle increases.

For two CNTs that are commensurate (i.e., the ratio of the unit cell lengths is a rational

fraction), the tunnelling interaction is translationally invariant and momentum must be

strictly conserved[38], resulting in the remarkable conclusion that conductance between

pristine CNTs of different chirality is zero. The more common scenario, however, is that the

CNTs are incommensurate, in which case translational invariance is broken [38, 179], and

the requirement for momentum conservation is no longer strictly applicable. Nonetheless, it

has been shown that inter-tube conductance at first order is still strongly suppressed for CNTs

of different chirality due to the momentum mismatch of initial and final states [38, 179].

Irrespective of whether commensurate or not, therefore, there is a strong suppression of

inter-tube transport between CNTs of mismatched chirality.

How may the inter-tube conductance between CNTs of different chirality be improved?

There are two general statements that can be made about any additional tunnelling inter-

action: (1) it must couple two states that are spatially separated and localised on different

CNTs; (2) it must accept any momentum difference between the conducting states.

We now consider the effect of an extrinsic weak local potential Vext(r) (which may be

thought of as arising from the interaction of the environment with the CNTs) and consider the

conditions it must satisfy to improve the inter-tube conductance. To improve conductance

at first order, because the initial and final states are localised to different CNTs, Vext

would need to perturb the contact region between the CNTs where there is greatest spatial

overlap. Whilst defects[175], functionalization[174] and structural deformations[175, 180]

may achieve this, they may also significantly reduce the intrinsic intra-tube conductance

[176, 181] and, particularly in the case of side-wall functionalization, may increase the
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inter-tube separation and hence the width of the tunnelling barrier.

In order to circumvent these problems, we consider alternative mechanisms to this

first-order process and examine the second order scattering rate:

Γ
(2)
1→2 =

2π

~
ρ2(EF)

∣∣∣∑
m

〈ψ1|Ĥ ′T |m〉〈m|Ĥ ′T |ψ2〉
EF − Em

∣∣∣2, (6.3)

where Ĥ ′T is the sum of the tunnelling interaction and the extrinsic potential, Ĥ ′T = ĤT + V̂ext,

and the sum runs over all possible states |m〉. Expanding the matrix element gives four

terms

〈ψ1|Ĥ ′T |m〉〈m|Ĥ ′T |ψ2〉 =

〈ψ1|ĤT |m〉〈m|ĤT |ψ2〉+ 〈ψ1|ĤT |m〉〈m|V̂ext|ψ2〉 +

〈ψ1|V̂ext|m〉〈m|ĤT |ψ2〉+ 〈ψ1|V̂ext|m〉〈m|V̂ext|ψ2〉. (6.4)

These four terms are represented schematically in Fig. 6.2. The first and final terms

correspond to an even number of inter-tube scatterings and hence do not contribute to the

inter-tube conductance. The remaining two terms, however, do contribute to inter-tube

conductance and can be large if Vext strongly couples states in the same CNT but with

different momenta.

The third term, for example, represents scattering the initial state |ψ2〉 to an intermediate

state |m〉 localised within the same CNT possibly with different momentum, which then

scatters into state |ψ1〉 of the other CNT. If V̂ext is chosen such that the intermediate state

has the same momentum as the final state, then inter-tube tunnelling by ĤT is no longer

suppressed, and can be much larger than first order tunnelling. From this analysis it can

be concluded that the undesirable consequences associated with improving the inter-tube

conductance at first order may be avoided by focusing instead on improving the second

order tunnelling rate.

6.3 Tight-binding model

We validate the above mechanism with numerical results using a tight-binding model. The

system Hamiltonian is given by

Ĥ =
2∑

α=1

Ĥα + ĤT + V̂ext, (6.5)

where α = 1, 2 indexes the two CNTs.
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Chapter 6. Momentum-resonant tunnelling between carbon nanotubes

Figure 6.1: The four-lead side-wall tunnelling geometry considered in this chapter. The

tunnelling and external interaction occur in the shaded region, over a length-scale L, outside

of which the leads are isolated.

Do not contribute to inter-tube tunelling:

Contribute to inter-tube tunelling:

Figure 6.2: A diagrammatic representation of the four second-order scattering processes in

Eqn. (6.4). Each curved line represents a scattering event; the different dashes on the lines

represent different state momenta.
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6.3. Tight-binding model

The band structures of the CNTs are described using a π-orbital model including only

nearest neighbour hopping

Ĥα = −t0
∑
〈i,j〉

(
c†iαcjα + c†jαciα

)
, (6.6)

where c†iα and ciα are the creation and annihilation operators, respectively, for an electron

on atomic site i, at position ri, belonging to CNT α.

The summation is performed over nearest neighbour sites 〈i, j〉 on a rolled hexagonal

lattice, with interatomic bond lengths aC−C = 1.415 Å. The Fermi energy is set to zero and

the hopping parameter t0 = 2.77 eV, as in [175].

The intrinsic tunnelling interaction between the CNTs is taken to be

ĤT = −
∑
ij

tij
(
c†i1cj2 + c†j2ci1

)
, (6.7)

where atom sites i, j are on different CNTs. Following Refs. [38] and [175], the tunnelling

matrix element is

tij = t⊥e
−|ri−rj |/δ, (6.8)

with t⊥ = 492 eV and δ = 0.5 Å. The separation between the surfaces of the CNTs is

3.4 Å which is the inter-layer separation in graphite.

For the external potential, we make the ansatz Vext(r) = V0 sin(∆kz), (the z-axis is

chosen as the CNT axial direction). When written in a plane-wave representation, it is seen

that this potential couples strongly two states in the same CNT with axial momenta differing

by ∆k.

In the tight-binding basis, this potential is approximated as diagonal

V̂ext =
∑
iα

V0 sin(∆kziα)c†iαciα, (6.9)

and, therefore, does not directly couple the two CNTs. The amplitude V0 = 0.1 eV (i.e.

V0 � t0), which is sufficiently small to be characteristic of a weak perturbation rather than

a bonding interaction. A physical external potential can be considered as a sum of these

Fourier components.

The form of this external potential allows only axial momentum exchange, however

the azimuthal momentum difference between the Dirac points involved in scattering is not

conserved as rotational symmetry is broken by the side-by-side geometry of the CNTs.

We use the damping function of Ref. [175] to mutually isolate the leads with negligible

contact-induced scattering:

tij → t(ri, rj)× fd(zi;L,Lc)fd(zj;L,Lc) (6.10)

Vext(r)→ Vext(r)× fd(z;L,Lc) (6.11)
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with

fd(z;L,Lc) =
[
(e(z−L)/Lc + 1)(e−z/Lc + 1)

]−1
. (6.12)

This introduces a contact length-scale Lc over which the intrinsic and external interactions

activate. We choose Lc = 5 Å which is larger than the inter-tube separation (3.4 Å) and

therefore is not the dominant source of momentum relaxation, and has negligible effect on

the inter-tube conductance[175]. The length L defines the contact length over which the

CNTs interact (Fig. 6.1), which we set to L = 190 Å.

The ballistic conductance between the four semi-infinite leads is calculated using the

Landauer-Büttiker formalism via a Green’s function approach [45]. We define the inter-tube

conductance as the sum of the conductances between a lead and the two leads of the other

CNT.

By ensuring that Vext varies only on length-scales greater than the inter-atomic bond

length aC−C , back-scatting is vanishingly small[48], corresponding to a maximum momen-

tum exchange presented in this work

∆kmax = π/aC−C. (6.13)

In the remainder of this chapter, resonant momentum exchanges and corresponding poten-

tials are denoted as as ∆k? and Vext(∆k
?) respectively.

6.4 Resonant tunnelling between CNTs

In Fig. 6.3 we plot the inter-tube conductance between two CNT pairs at the Fermi energy

as a function of the momentum exchange ∆k. The results are typical for CNT pairs with

low intrinsic inter-tube conductance. We observe resonant peaks where the inter-tube

conductance increases greatly.2 The momentum exchanges ∆k correspond precisely to the

axial momentum difference between Dirac points. We indicate these predicted positions

with arrows and show for selected peaks (Fig. 6.3, top) the corresponding Dirac point

scatterings.3 Off momentum-resonance, the inter-tube conductance is unaffected by the

weak potential, but for small momentum exchanges there is no decrease in the intra-tube

conductance (see section 6.7).
2The amplitudes of the peaks are dependent on the specific form of the tight-binding model and are

therefore not of direct interest to the discussion of the mechanism.
3We also note that additional peaks exist for momentum exchanges larger than the maximum exchange

∆kmax presented here. These processes involve scattering between Dirac points outside the first graphene

Brillouin zone. For incommensurate CNTs, these Dirac points are not equivalent to those in the principle

Brillouin zone as the combined CNTs have no overall periodicity.
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Figure 6.3: Top: schematic representation of tunnelling between CNTs. The hexagons

represent the first graphene Brillouin zone (BZ) for CNT pairs: a) (10, 10)/(18, 0) (dotted

line/solid line) and b) (19, 1)/(14, 8) (dotted/ solid). Each BZ has been rotated so that

the axial momentum lies along the horizontal. The metallic states are at the BZ corners.

Bottom: corresponding momentum exchange dependence of inter-tube conductance at the

Fermi level. Vertical arrows indicate the predicted momentum exchanges corresponding to

scattering between Dirac points. For selected peaks, we show in the top panel the Dirac

points involved in the scattering.
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Figure 6.4: The inter-tube conductance between the (19, 1)/(14, 8) CNT pair as a function

of momentum exchange. Top panel: same handedness; bottom panel: opposite handedness.

Where both CNTs are chiral, the relative handedness of the CNTs may be the same

or opposite. Chemically, the situations are almost identical, however different momentum

resonances are predicted as a change in handedness results in the two graphene Brillouin

zones being rotated in the opposite direction. This gives rise to different momentum

differences between Dirac points, and hence a separate set of resonant momentum exchanges.

This is confirmed in Fig. 6.4 where we show the inter-tube conductance at the Fermi energy

as a function of momentum exchange for the (19, 1)/(14, 8) CNT pair with the same and

opposite relative handedness.

The momentum resonance occurs not only between metallic CNTs, but also semicon-

ductor CNTs. In Fig. 6.5 we show the inter-tube conductance between the semiconducting

(20, 0)/(14, 7) CNT pair at E = 0.4 eV, with the peaks in conductance corresponding to

momentum-resonant tunnelling.

6.4.1 Scaling relations of the momentum-resonant scattering
mechanism

We compare the external potential amplitude V0 and contact length L dependence of the

numerical results presented in section 6.4 to the analytic results of Eqn. (6.4) to confirm

that these resonances are due to the second-order mechanism described in section 6.2.
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Figure 6.5: Solid line: the conductance between leads 1 and 4 at E = 0.4 eV for the

(20, 0)/(14, 7) CNT pair. Dashed line: intra-tube conductance for the (20, 0) CNT.

The second-order scattering rate is predicted to scale quadratically with V0 which is

indeed found to be the case as can be seen in Fig. 6.6a. For sufficiently large interaction

strength, scattering becomes non-perturbative and the inter-tube conductance decreases

greatly. The density of states at the Fermi level is strongly modified, resulting in increased

back-scattering which, in turn, strongly reduces the overall conductivity of the network.

In Ref. [175], it was shown that the intrinsic tunnelling matrix element 〈m|ĤT |ψ2〉
oscillates as a function of L in cases where momentum-conservation is not satisfied, a

consequence of interference, and that at momentum resonance it grows linearly with L.

Consequently, the second-order scattering rate is oscillatory off resonance and grows

quadratically with L at momentum-resonance. In Fig. 6.6b we show the dependence of

inter-tube conductance at the Fermi energy on the overlap length L for the (9, 0)/(5, 5)

CNT pair. Off resonance (∆k = 0.45 Å−1), the second-order contribution is negligible

and the inter-tube conductance is oscillatory due to the dominant non-resonant first-order

contribution. At momentum-resonance (∆k = 0.63, 0.85 Å−1), the total conductance is

the sum of the quadratically-growing second-order term and an oscillatory interference term

due to the non-resonant contribution arising at first order. These scalings therefore confirm

that the resonance does, indeed, arise from the mechanism presented in section 6.2.
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Figure 6.6: Top: the dependence of resonant inter-tube conductance and density of states

(DOS) on the external potential amplitude V0. The intrinsic contribution (i.e. with V0 = 0)

is subtracted to show only the momentum-resonant contribution ∆G, ∆DOS; resonance

is ∆k? = 0.85 Å−1. The line segment shows a quadratic dependence ∆G ∼ V 2
0 . Bot-

tom: the dependence of inter-tube conductance on the overlap length L for resonant

(∆k? = 0.63, 0.85 Å−1) and non-resonant (∆k = 0.45 Å−1) momentum exchanges. The

dotted lines show quadratic fits to guide the eye. In all cases, conductance is between the

(9, 0)/(5, 5) CNT pair; quantities are evaluated at the Fermi energy.
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6.5. Momentum resonances in compositionally disordered networks

6.5 Momentum resonances in compositionally disordered

networks

Real CNT networks are compositionally disordered in the sense that they contain CNTs

with a range of chiralities.[182] As the tunnelling between the CNTs is weak, inter-tube

conductance in the whole network can be approximated accurately as tunnelling between

pairs of CNTs, ignoring scattering events involving three or more CNTs[38]. Under this

approximation, the effect of momentum resonant conductance on the entire network can be

studied by considering the pair-wise interactions of the candidate CNTs within that network.

The left panels of Fig. 6.7 shows the intrinsic inter-tube conductance (Vext = 0) at the

Fermi energy between all pairs of metallic CNTs in the diameter range 1.2− 1.6 nm with

the CNTs ordered by increasing chiral angle. We consider pairs of CNTs with opposite and

same handedness separately. From the peak along the diagonal, it is evident that inter-tube

conductance is large between CNTs of the same or similar chirality. As the difference in

chirality between the two CNTs increases, however, momentum-conserving tunnelling is

not possible and the inter-tube conductance is strongly suppressed.

The right panel of Fig. 6.7 shows the inter-tube conductance upon the introduction

of the momentum-resonant potential Vext(∆k
?), at which the inter-tube conductance is a

maximum. The conductance between CNTs of the same chirality is unaffected and remains

high, whilst there is a strong enhancement of the inter-tube conductance for CNTs of

different chirality. The same conclusions can be drawn for conduction between pairs of

metallic CNTs of either handedness4 and for semiconductor CNTs, as shown in Fig. 6.8.

For different CNT pairs, the inter-tube conductance is maximised at different values of

momentum exchanges ∆k? (see, e.g., Fig. 6.3). These are found to be distributed across

a broad range of momentum as shown in Fig. 6.9a. The external potential, therefore,

should contain a wide range of resonant momenta to improve the conductance of a network

consisting of a set of CNTs with a wide range of chiralities. Thus, there is no need to

fine-tune the external potential.

In Fig. 6.9b we show the relative improvement in the inter-tube conductance for all pairs

of metallic CNTs considered as a function of the difference in chiral angle. We define the

relative improvement as the ratio of the maximum improvement at momentum-resonance

4The reduced intrinsic conductance between CNTs of the same handedness, when compared to the

opposite handedness calculations, can be understood due to a greater registry mismatch between the two

graphene lattices in the former. For sufficient contact interaction length for incommensurate CNTs this relative

handedness effect will diminish as the irrational unit cell length ratio removes any pseudo-alignment of the

graphene lattices.
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(a) Opposite handedness

(b) Same handedness

Figure 6.7: The inter-tube conductance between all pairs of metallic CNTs in the diameter

range 1.2 − 1.6 nm. For each subfigure: left: intrinsic conductance Vext = 0; right:

maximum enhanced conductance (Vext resonant). The CNTs are ordered according to

increasing chiral angle and labelled by the (n,m) chiral indices.
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Figure 6.8: The inter-tube conductance between all pairs of semiconductor CNTs in the

diameter range 1.2− 1.6 nm. We show CNTs of opposite handedness only. Left: intrinsic

conductance Vext = 0; right: maximum enhanced conductance (Vext resonant). The CNTs

are ordered according to increasing chiral angle and labelled by the (n,m) chiral indices.
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Figure 6.9: Left: the fraction of the 382 CNT pairs studied that have a given momentum

resonance that increases inter-tube conductivity by factors of at least 2, 5 and 10. Right: the

enhancement in the inter-tube conductance as a function of the difference between the chiral

angles of the CNTs. The enhancement is defined as the ratio of the maximum inter-tube

conductance when the external potential is at momentum-resonance G∆k? to the intrinsic

conductance G0.

to the intrinsic inter-tube conductance. For CNTs with similar chiral angles, there is no

improvement in the inter-tube conductance as energy-momentum-conserving tunnelling

can occur at first-order, and hence this conductance is already large even in the absence of

an external potential. For CNTs with chiral angles differing by more than 3◦, there is an

improvement in the conductance by up to two orders of magnitude due to the momentum-

resonant external potential. We reiterate again that for non-resonant momentum exchanges,

the weak external potential does not decrease the inter-tube conductance.

6.6 Momentum resonances in doped nanotubes

In addition to momentum-resonant conduction at the Fermi energy, we can also consider

the effect of this mechanism over a wider range of energies and thereby understand how

momentum resonance improves the inter-tube conductance in doped CNTs and CNTs

at finite bias. As a result of the linear dispersion relations around the Dirac points, for

electronic states propagating in the same direction in both CNTs, the momentum exchange

is resonant over a wide band of energies around the Fermi level. This effect can be seen in

Fig. 6.10a where we plot the transmission spectrum between leads 1 and 4, corresponding
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6.7. Resonant back-scattering

to tunnelling between initial and final states that propagate in the same direction, for a range

of momentum exchanges near resonance. As the inter-tube conductance is improved over a

wide range of energies in the vicinity of the undoped Fermi energy, a change to the Fermi

energy due to doping will not reduce the improvement in the inter-tube conductance due to

momentum resonance. [33] and applies to doped CNT networks.

For pairs of semiconductor CNTs with similar diameter the valence and conduction

bands become aligned and an equivalent broad-energy inter-tube conductance is observed

as shown in Fig. 6.10b. At the valence and conduction band edges, the improved inter-tube

conductance is further enhanced by the large density of states at the van Hove singularities.

Transmission between leads 1 and 3 requires the coupling of states travelling forward in

one CNT, and backward in the other CNT, corresponding to coupling bands with opposite

Fermi velocities. In Fig. 6.11 we compare the transmission spectra with and without the

external potential as a function of momentum exchange for the metallic (9, 0)/(5, 5) CNT

pair. In the absence of the external potential, two peaks5 exist at∼ ±0.70 eV, corresponding

to energies where the two CNT dispersion relations cross. At these energies, momentum

conserving tunnelling can occur at first order, and the conductance is not suppressed, as

discussed in Ref. [175]. Due to the linear dispersion relations around the Fermi energy, for

CNTs with different chiralities these peaks are guaranteed to lie away from the (un-doped)

Fermi energy and will therefore generally not contribute to the inter-tube conductance.

In the presence of an external potential that is slightly off-resonance, additional peaks

appear in the transmission between leads 1 and 3 due to the second-order mechanism.

These peaks correspond to tunnelling between states that are separated by this momentum

exchange, but they do not lie at the Fermi energy, as indicated in the inset to Fig. 6.11. As

the momentum exchange approaches a resonant value, these additional peaks move towards

the Fermi energy, and transmission at the Fermi energy is momentum-resonant for states

propagating in either direction after tunnelling.

6.7 Resonant back-scattering

Finally, we discuss the effect of the external potential on back-scattering within the indi-

vidual CNTs. Back-scattering by potentials which vary on length-scales larger than the

carbon-carbon bond-length has been shown to be vanishingly small for metallic CNTs

[48]. To put this into the context of this work, we consider the intra-tube conductance

corresponding to transmission from lead 1 to lead 2 (Fig. 6.1). In Fig. 6.12a we show the

5The side lobes associated with these peaks are a result of interference due to finite overlap length L[175].
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Figure 6.10: Top left: the transmission between leads 1 and 4 for the metallic (12, 9)/(13, 4)

CNT pair as a function of electron energy for V̂ext = 0 (solid red), and for momentum trans-

fer increasing in steps of 0.01 Å−1 from ∆k = 1.32 Å−1 (dashed green) to ∆k = 1.36 Å−1

(dot-dashed black) where momentum- resonance occurs. The transmission increases as

resonance is approached. The Fermi energy is zero. Top right: the Dirac points involved

in this resonance, and the projection of the dispersion relation onto the axial momentum

axis. The momentum exchange, indicated by the arrows, is resonant over a wide range of

energies around the Fermi level. Bottom: the same for the semiconductor (20, 0)/(14, 7)

CNT pair. Resonance is at 1.12 Å−1 (dot-dashed, cyan).
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Figure 6.11: Main: transmission between leads 1 and 3 for the (9, 0)/(5, 5) CNT pair as

a function of electron energy for V̂ext = 0 (solid black), off-resonance ∆k = 0.78 Å−1

(long-dashed red) and at resonance ∆k = 0.85 Å−1 (short-dashed blue). The Fermi energy

is zero. Inset: the projection of the dispersion relations onto the axial momentum axis. The

states involved in scattering for ∆k = 0.78 Å−1 are shown by the arrows.
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intra-tube conductance at the Fermi energy as a function of momentum exchange for the

(18, 0)/(10, 10) CNT pair. For most momentum exchanges, there is no noticeable decrease

in intra-tube transmission, in agreement with Ref. [48]. However, for three momentum ex-

changes, sharp reductions in the conductance appear. The momentum exchange associated

with these features correspond precisely to the momentum difference between different

Dirac points belonging to the same CNT. This is illustrated in the inset to Fig. 6.12a. At

these momentum exchanges, the electronic states at two different Dirac points can mix

causing strong back-scattering, greatly reducing the intra-tube conductance. As a result of

this mixing and the local change in the conducting states/density of states, the inter-tube

conductance may also be increased, as shown in Fig. 6.12b. This enhancement in inter-tube

conductance is not a consequence of the second order mechanism presented in section 6.2,

but rather is due to the resonant back-scattering in the intra-tube conductance. Note, how-

ever, that the decrease in the intra-tube conductance is far greater than the increase in

the inter-tube conductance indicating that the overall resistance of the CNT pair greatly

decreases. Mixing between states away from the Fermi energy but at the same Dirac point

is forbidden by the orthogonality of the subbands, thus preventing back-scattering for small

momentum exchanges. Resonant back-scattering is also found in semiconducting CNTs

as shown in Fig. 6.5, but differs from pairs of metallic CNTs as back-scattering is strong

for small momentum exchanges. This arises due to scattering within the low-energy states

of the conduction or valence band. In contrast with metallic CNTs, this low-momentum

scattering is not forbidden as scattering takes place between two states belonging to the

same subband. Note that there is no inter-tube enhancement associated with the resonant

back-scattering observed in Fig. 6.5, suggesting that the inter-tube enhancements associated

with back-scattering, as shown in Fig. 6.12b, are not general.

Finally, we note that these conclusions about the effects of resonant back-scattering are

not uniquely associated with the second-order mechanism described in this chapter, and

are general for any perturbation to individual, or bundles of, metallic or semiconducting

CNTs. What is important about our proposed mechanism is that it can be effected using

metallic only CNTs and long-ranged weak perturbations without introducing significant

back-scattering.

6.8 Summary

To summarise the results of this chapter, we have presented a mechanism that increases

the side-wall inter-tube conductance between CNTs of different chirality. The results from
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Figure 6.12: Top: the intra-tube conductance for the (10, 10)/(18, 0) CNT pair. The inset

shows the Dirac points involved in the resonant back-scattering processes. Bottom: the

inter-tube conductance between the (10, 10)/(13, 4) CNT pair. In addition to the peaks

arising due to the second-order mechanism discussed in the main text, two additional peaks

at ∆k ≈ 1.7 Å−1 and 3.4 Å−1 are present due to resonant back-scattering in the (10, 10)

CNT shown in the left panel. The dashed lines give the positions of these back-scatterings.
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this chapter suggest that the greatest improvement in inter-tube conductance can be made

by reducing the range of chiralities present in a network. However, in the continuing

absence of an experimental method to reliably achieve this at the bulk scale, then significant

increases in the inter-tube conductance can also be made with a weak external potential

allowing momentum exchange with the environment promoting momentum conserving

scattering. By ensuring that the potential varies slowly compared to the inter-atomic distance,

back-scattering will be vanishingly small[48], and as the mechanism is second order in

the inter-tube interaction, the perturbation can be localised away from the contact region.

Chemical bonding is not required, and instead weaker, long-range physical interactions

can be utilised. Possible candidates include electrostatic influences of adsorbed molecules;

substrate surface reconstructions; Moiré patterns induced in multi-walled CNTs [183];

phonon-assisted tunnelling6; and polymer-wrapped CNTs[184]. Indeed, we expect that

enhancements due to this mechanism are already present in CNT wires and networks due

to naturally-occurring disorder. Improving the quality of the material by removing this

disorder may, counter-intuitively, reduce the conductance of these CNT networks.

In the next chapter, two candidate sources of momentum scattering are described

and investigated: that of scattering at CNT terminations, and scattering at CNT bends.

The transport properties of these configurations are investigated using the first-principles

methodologies described in chapter 5 thus providing an unprejudiced description of their

relative contributions to conduction in carbon nanotube networks.

6Due to the low energies of the acoustic phonon modes, phonon-assisted tunnelling can be considered as

quasi-elastic. The higher energy optical phonons are unpopulated at room temperature.
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CHAPTER

SEVEN

FIRST-PRINCIPLES CONDUCTANCE BETWEEN

CARBON NANOTUBES

7.1 Introduction

In the previous chapter, we showed that the inter-tube conductance between CNTs of

different chirality can be strongly affected by weak perturbations to the electronic structure

of the CNTs. The origin of this mechanism lies in the momentum difference between the

conducting states in each CNT: where the chirality mismatch between the CNTs is large,

the conducting states in each CNT have very different momentum which suppresses the

intrinsic inter-tube conductance; the addition of the weak perturbation creates momentum

scattering which can compensate for the momentum difference between these states and

greatly enhance the inter-tube conductance. Several candidate sources of perturbations were

suggested at the end of the previous chapter, but it is neither known which perturbations

may be more effective at improving the inter-tube conductance, nor whether any significant

improvement over the intrinsic inter-tube conductance can be achieved.

A number of studies have used tight-binding models to investigate inter-tube tun-

nelling in the presence of defects, structural distortions and terminations to the CNT

structure.[185, 186, 175, 187, 188] However, as a variety of tight-binding models have been

used in these studies, it is difficult to compare the relative enhancements to the inter-tube

conductance. Moreover, the reliability of these models when describing different geometries

and conformations is a priori unknown, and indeed may be particularly deficient when

describing defects and/or terminated CNTs where the electronic structure is significantly

different from the bulk.

Several studies have calculated conductances between terminated CNTs using electronic
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Chapter 7. First-principles conductance between carbon nanotubes

structures derived from first-principles calculations[170, 171, 172, 174], however these

studies have focused on conduction between CNTs of the same chirality with a single

termination geometry, such as hydrogen passivation or fullerene capping, and are therefore

not representative of the range of geometries and chiralities observed experimentally. There

is, therefore, a need for a comprehensive study, using calculations performed on a single

theoretical footing, that addresses different sources of momentum-scattering and compares

how they can affect inter-tube conductances.

In this chapter, we focus on two candidate perturbations to the structure of CNTs that

cause momentum scattering between the electronic states in axially aligned CNTs, namely:

bends and terminated ends. We concentrate on the two axially-aligned geometries shown

schematically in Fig. 7.1: the first (Fig. 7.1a) is used to study tunnelling between the

side-walls of two CNTs with arbitrary termination and chirality and overlap length L; the

second (Fig. 7.1b) is used to study tunnelling between the side-walls of two CNTs of which

one has two bends with mean slope φ as defined in Fig. 7.1. In both cases the first-principles

methodology developed in chapter 5 is used to calculate inter-tube conductances.

Our main conclusion from these calculations is that terminations and bends increase the

inter-tube conductance, with the magnitude of the increase consistent with the magnitude of

the momentum-scattering introduced by the perturbation. Neither perturbation, however,

fully compensates for the suppression of inter-tube conductance due to chirality mismatch

suggesting that, whilst introducing sources of momentum scattering will increase the

conductance of CNT networks, reducing the range of CNT chiralities present in a network

is the best way of improving the overall network conductivity. Nonetheless, we observe up

to ten-fold increases in inter-tube conductances between chirality-mismatched CNTs with

realistic bends and terminations.

The remainder of this chapter is organised as follows. We first describe in section 7.2

our methods used to generate the geometries and electronic structures. In section 7.3 we

discuss how momentum scattering at bends in the CNT structure may improve the inter-tube

conductance; in section 7.4 we then address the role of different end termination geometries

affects the inter-tube conductance. Finally, in section 7.5, we explore how the inter-tube

conductances may be affected by non-equilibrium forces arising due to a finite bias applied

across the junction. Parts of this chapter are being prepared for publication[189].
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a) end-scattering b) bend-scattering

Figure 7.1: The schematic geometries of the CNTs in the end-scattering and bend-scattering

configurations. L is the overlap length in the end-scattering geometry; a number of end

termination geometries are considered. In the bend-scattering geometry, φ describes the

bend angle and the contact length between the onset of the two bends is taken to be 70 Å.

The actual bend geometries studied are smoother than the representation in this figure.

7.2 Methods

Conductances are calculated using the methodology discussed in chapter 5. The auxiliary

simulation geometries for the end-scattering and bend-scattering configurations are shown

in Fig. 7.3. In the end-scattering configuration (Fig. 7.3a), which consists of two finite CNT

fragments, the structure represented by the thick lines forms the device geometry. Lead

self energies are constructed using matrix elements derived from the extreme left/right of

the device geometry; buffer atoms, indicated in grey, are included to ensure that the local

electronic structure in this region is bulk-lead like, which is confirmed by inspecting the lead

bandstructure as discussed in section 5.5.2. The bend-scattering configuration (Fig. 7.3b) is

a four-lead geometry, with the lead regions taken to be at the far left/right of each CNT in

the structure shown; no buffer atoms are necessary for this geometry.

The electronic structures of these auxiliary simulation geometries are computed using

a minimal basis of four NGWFs per carbon atom and one per hydrogen atom, each with

a localisation radius of 4.2 Å. An equivalent kinetic energy cutoff of 850 eV is used

for the underlying psinc basis, and the Brillouin zone is sampled at the Γ point only.

Periodic boundary conditions are used throughout, with non-periodic directions treated

using the supercell approximation and with a distance of at least 12 Å separating atoms

in the periodic images. Exchange and correlation are treated using the PBE expression

of the generalised gradient approximation[106]; dispersion interactions are included with

empirical corrections[190].1 In all calculations, we define the Fermi energy as the average

chemical potential of the leads, which is set to zero.

1Note that these empirical dispersion corrections do not directly affect the electronic structure, but do

affect the optimised geometry.
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7.2.1 Generating the structure

The atomic structures shown in Fig. 7.3 are generated for four CNT chiralities: (5, 5),

(7, 4), (8, 2), (9, 0). In all cases, relaxed bulk CNT structures were used as the starting

point for obtaining the atomic geometries shown in Fig. 7.3 and other similar structures

used in this study, which are described in more detail below. Full first-principles geometry

relaxations of the entire perturbed structure are not performed due to the high computational

cost and because the precise structure has bearing on the main conclusions of this work.

The bulk CNT structures are generated by relaxing the geometry using the plane wave

DFT code CASTEP. A maximum force and stress tolerance of 5 meV/Å and 0.02 GPa,

respectively, is used in this optimisation. For each CNT, the Brillouin zone was sampled

with a single k-point in non-periodic directions, and a uniform mesh of k-points along

the periodic direction with spacing no larger than 0.05 Å−1. All other parameters were

equivalent, in so far as possible, to those used in the ONETEP calculations for determining

the ground state electronic structure of the final perturbed structures (i.e. the auxiliary

simulation geometries).

For the terminated geometry, we focus on achiral (5, 5) and (9, 0) metallic CNTs, and

consider the five different termination geometries shown in Fig. 7.2: the none/sp2/sp3 termi-

nations (shown in Fig. 7.2a–c) saturate the terminating carbons with no hydrogen atoms/a

single hydrogen atom/two hydrogen atoms, retaining the zig-zag/armchair termination

geometry of the original CNT; the slant geometry (Fig. 7.2d) replaces the zig-zag edge with

an armchair edge and vice versa; and, the capped geometry (Fig. 7.2e) terminates the CNTs

with half a C60 fullerene molecule. Experimentally, it is difficult to determine the precise

termination geometry of any CNT termination although it is known that both fullerene

capped and open CNTs exist.[191] Our justification for considering these five terminations

is that they cover a range of possible geometries that are relatively clean and may exist after

purification of CNT samples.

The termination geometries are generated using CASTEP by relaxing a CNT fragment

at least 10 Å in length containing the required termination. Relaxations are performed on

non-magnetic electronic structures though relaxation under spin-unrestricted conditions was

not found to appreciably change the geometries. The fragment was then attached to bulk

CNT structure (calculated as described above) without further optimisation to form the full

fragment. Two such fragments were then axially-aligned with a 3.3 Å separation between

the CNT surfaces which is close to the graphite interlayer distance, with an overlap length

L, defined as the axial difference between the extremal carbon atoms of the two CNTs.

In the bend geometry, we consider inter-tube conductance between a (5, 5) and (n,m)
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Figure 7.2: The different passivation schemes considered to terminate the (9, 0) zig-zag

CNT. Equivalent terminations were used for the (5, 5) arm chair CNT. Chiral CNTs were

terminated using a slant-like hydrogen passivation.

CNT, where (n,m) is one of the four chiralities considered in this work. Bends were created

in each end of the (5, 5) CNT, as shown in Fig. 7.3b, by displacing at least 8 primitive CNT

unit cells off-axis by 5.2 Å. Both of these regions were divided into two four-primitive

unit cell principle layers in order to define the leads of this CNT; principle layers were

defined at equivalent locations within the unbent CNT containing four, three, two, and one

primitive unit cells for the (5, 5), (9, 0), (8, 2) and (7, 4) CNTs, respectively. The resulting

separation between the principle layers of each lead is 8.5 Å, which is larger than twice

the NGWF radius thus resulting in no direct coupling between the leads. For the bends, a

region of bulk-like CNT is introduced to connect the principle layers to the central contact

region. The angle of the bend is controlled by modifying the number of primitive unit cells

within the bend region. The geometry within each bend region is fully relaxed using the

Brenner empirical bond-order potential[192, 193, 194], whilst holding fixed the geometry

of the contact region, the lead principle layers and the entirety of the unbent CNT.2 This

procedure allows for the bend slope to be defined as shown in Fig. 7.1. The length of the

contact region is taken to be 70 Å in all cases.

Three bend angles are considered, φ = 4.9◦, 7.4◦, 9.9◦. As each CNT chirality has a

different unit cell length, it is not possible to ensure that each unbent CNT has the same

length. To fit the bent CNT into the same periodic simulation cell as the unbent CNT, the

geometries of the bends introduced cannot be identical across all CNT pairs for a given

bend angle. The perturbation induced by the bend will not be identical for different CNT

pairs with the same bend angle. We have chosen our simulation cells to minimise this

difference and have confirmed that similar bond strains are produced for a given bend angle.

We believe that this procedure controls the difference in strains sufficiently well to allow for

2The pristine structure generated by the Brenner potential and PBE functional with empirical dispersion

interactions are found to be very similar, with structural parameters (bond lengths, diameter, unit cell length)

differing by less than 1%.
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(a) end-scattering

(b) bend-scattering

Figure 7.3: The auxiliary simulation geometries from which transport matrix elements

are extracted. (a) The end-scattering geometry. Grey atoms are buffer atoms, included in

the DFT calculation, but excluded from the transport calculation. (b) The bend-scattering

geometry. The blue boxes indicate the size of the periodic simulation cell.

meaningful comparison of inter-tube conductances for each CNT pair.

7.3 The role of bend angle

The inter-tube conductance between pairs of CNTs with a large difference in chiral angle

is found to have a strong dependence on bend angle. Fig. 7.4a compares the inter-tube

conductance of the (9, 0)/(5, 5) CNT pair as a function of energy for three bend angles,

showing that as the bend angle is reduced the conductance around the Fermi energy can

decrease by an order of magnitude. Fig. 7.4b compares the inter-tube conductance 0.2 eV

below the Fermi energy for the same CNT pair and for the (5, 5)/(5, 5) pair, where there

is no chiral difference between the CNTs. The inter-tube conductance for the (5, 5)/(5, 5)

pair is found to be approximately constant with bend angle. These results can again be

understood as a consequence of the momentum scattering provided by the bends: for a

large chiral angle difference, the steeper the bend the greater the momentum scattering,

permitting greater coupling between the states in each CNT; for the case where there is no

chiral angle difference, momentum-scattering is not required to facilitate conductance and

the bend has minimal effect on the inter-tube conductance.

Whilst we compare these bends largely by the difference in slope angle, the strain
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Bend angle: 9.9◦ 7.4◦ 4.9◦

rms (max) rms (max) rms (max)

(5, 5)/(5, 5) 1.9 (5.1) 1.0 (2.9) 0.8 (2.3)

(7, 4)/(5, 5) 2.2 (5.3) 1.1 (3.0) 1.3 (2.8)

(8, 2)/(5, 5) 1.8 (5.0) 1.7 (3.7) 1.5 (3.1)

(9, 0)/(5, 5) 2.0 (5.3) 1.7 (3.7) 0.9 (2.3)

Table 7.1: The rms and maximum bond strains (in %) within the bend region for the

different CNT pairs and bend angles. The bends are introduced to the (5, 5) CNT.

induced by the bends is an equally important physical parameter. In Table 7.1, we show

the rms and maximum bond strains induced in the structure for the three bends and for the

different CNT chirality combinations, indicating that the strain and bend angle are correlated,

as expected. The correlation is a complex one due to the computational constraint of periodic

boundary conditions which requires the length of the bent (5, 5) CNT to coincide with an

integer number of primitive unit cells of the unbent CNT; using our technique, it is not

possible to systematically change the strain rate values. Nonetheless, the maximum strains

are much lower than the elastic yield strain predicted for CNTs (≈ 30% [195]), and are

smaller than the maximum average strain observed experimentally (≈ 6% [196]) which are

believed to be entirely plausible structures, if not much less extreme deformations than those

likely present in a CNT network. As a consequence of the low strains, all of the structures

maintain their tubular shape and there are no kinks. The resulting weak perturbation has

been shown to introduce little backscattering in individual CNTs [197]. In Fig. 7.4c we

compare the sum of the intra- and inter-tube conductances to the backscattered conductance

and the results show that very little current is backscattered into the original source lead.

Similar results are found for the all bend angles considered. Hence the magnitude of the

backscattering is not strongly dependent on the bend angle for the relatively shallow bends

studied, indicating that the bend itself is not a significant source of backscattering, as

expected. The effect of the bends, therefore, is only to improve the inter-tube conductance

without significantly increasing the resistance of the individual CNTs, confirming the

mechanism proposed in [167].

As further evidence of the impact of the bends on the inter-tube conductance, we

compare the spatial extent of the transmission eigenchannels for the (5, 5)/(5, 5) and

(9, 0)/(5, 5) CNT pairs. In the top two panels of Fig. 7.5 we plot the modulus-square

density of these eigenchannels, integrated over the direction perpendicular to the plane

containing the two CNT axis; the lower panel of Fig. 7.5 shows the inter-tube eigenchannel
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Figure 7.4: Left panel: the inter-tube conductance spectrum between (9, 0)/(5, 5) CNTs for

three bend angles. Centre panel: the bend angle dependence of the inter-tube conductance

0.2 eV below the Fermi energy for the (9, 0)/(5, 5) and (5, 5)/(5, 5) CNT pairs. Right

panel: the backscattering conductance and sum of intra- and inter-tube conductances for the

(9, 0)/(5, 5) pair with 9.9◦ bend.

density as a function of length along the CNT axis, which is obtained by integration over

the second (non-source) CNT only. For the (5, 5)/(5, 5) pair, where there is no chiral

mismatch, the weight of the eigenchannel on the second CNT increases over the overlap

region indicating that tunnelling between the CNTs is occurring due to the proximity of the

CNTs. The amplitude of the eigenchannel density integrated on the second CNT is found

to increase approximately quadratically as the state propagates in the contact region, in

agreement with previous analytic calculations.[175] In contrast, however, the eigenchannel

for the (9, 0)/(5, 5) pair is approximately constant within the contact region but increases

dramatically at the location of the bend. This confirms that it is the presence of the bend that

is responsible for the inter-tube conductance when there is a mismatch in chirality between

the CNTs.

These simulations therefore highlight the importance of weak sources of momentum

scattering on the conductance of the network as a whole. The source of weak momentum

scattering in these simulations is the perturbation introduced by a relatively shallow bend in

the CNT structure.

7.3.1 The effect of chirality mismatch

In Fig. 7.6 we compare the inter-tube conductance in the bend scattering geometry for a

range of differences in chiral angles between the CNTs. We plot the conductance evaluated

112



7.3. The role of bend angle

0 20 40 60 80 100 120 140 160
z (Å)
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Figure 7.5: The probability density of the first eigenchannel evaluated 0.35 eV below the

Fermi energy for the (5, 5)/(5, 5) and (9, 0)/(5, 5) CNT pairs with 9.9◦ bends. In the top

two panels, the eigenchannel is integrated over the direction perpendicular to the plane

containing both CNT axes. The lower panel gives the same quantity integrated over the two

axes perpendicular to the CNT axis within the spatial region of the second (non-source)

CNT only. The state is injected into the bottom left lead.
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Figure 7.6: A comparison of the inter-tube conductance as a function of difference in

chiral angle for pairs of CNTs in end-scattering and bend-scattering geometries. For the

bend-scattering geometries, conductance is given for states 0.2 eV below the Fermi energy.

Three bend angles are considered φ = 4.9◦ (shallowest), 7.4◦, 9.9◦ (steepest). For the end-

scattering geometry, the quantity is the characteristic conductance 〈G〉 defined in Eqn. (7.6);

the dashed line gives an exponential fit to guide the eye.

0.2 eV below the Fermi energy, away from the van Hove singularities associated with

the band gap and in a region where the inter-tube conductance is approximately constant

over a range of energies. For each chirality pair, we show the inter-tube conductance for

the three bend angles considered. We find that there is an exponential suppression of the

inter-tube conductance with increased chirality mismatch. The introduction of steeper bend

angles improves the inter-tube conductance most between the CNTs with largest chirality

mismatch, whereas for much smaller chirality differences there is less or no improvement.

This result can be understood in terms of the momentum scattering that is required to

couple the states in each CNT. For small chirality mismatch, little momentum scattering

is required and the scattering introduced by any of the bends is sufficient to enhance the

inter-tube conductance. For larger chirality mismatch, the stronger scattering introduced

by the steeper bend angle better satisfies the momentum scattering required to effect the

inter-tube conductance.
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Figure 7.7: Top panel: the conductance spectra between (9, 0) and (5, 5) CNTs in the

end-scattering geometry, for three pairs of terminations. The first termination in the label

refers to the termination of the (9, 0) CNT. Bottom panel: the corresponding device density

of states. The Fermi energy is set to zero.

7.4 The role of end termination

We now describe our investigations into momentum scattering at CNT end terminations.

We first focus on the role of the end termination geometry before considering the effect of

chirality mismatch.

In Figs. 7.7 and 7.8 we show the conductance spectra for several termination geometries

for the (9, 0)/(5, 5) and (9, 0)/(9, 0) CNT pairs respectively. We find that the form of the

inter-tube conductance in the end-scattering geometry can be understood in terms of two

main features, which are consistent across the different chirality pairs and termination

combinations.

The first feature we note is the sharp peaks in conductance that occur over a narrow

energy range, e.g. at −0.2 eV and −0.5 eV in both figures. As these peaks occur for

only some of the termination combinations (in particular ones involving the none and sp3

termination of the (9, 0) CNT), they can be understood to arise from the termination itself,

and not from the bulk CNT.

There are sharp rises in the density of states associated with each of these peaks in

conductance, as shown in the lower panels to Figs. 7.7, 7.8. This indicates that at these
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Figure 7.8: Top panel: the conductance spectra between (9, 0) and (9, 0) CNTs in the

end-scattering geometry, for three pairs of terminations. Bottom panel: the corresponding

device density of states. The Fermi energy is set to zero.

energies there exist localised or quasi-localised states, which are known to be present in

terminated CNTs[198, 199, 200], and the rise in conductance is due to resonant scattering

from these localised states. The asymmetry of these resonances is typical for Fano-resonant

scattering[201], which arises from scattering of continuum states by a localised state.

The importance of the localised state to this resonance is confirmed in Fig. 7.9 where

we show the eigenchannel decomposition and the eigenchannels themselves[161]. The

top panel of Fig. 7.9 shows the two propagating eigenchannels which are both observed

to exhibit resonances at the same energies. This indicates that these resonant features

are independent of the eigenchannels themselves which is consistent with scattering from

a localised end state. In the bottom panel, we compare the eigenchannels at the two

energies indicated in the top panel. One of these energies is resonant whilst the other is

non-resonant. The non-resonant eigenchannel is well localised within the source CNT

and propagates little onto the second CNT. It is almost entirely real and characteristic of

a standing wave, reflecting the fact that the inter-tube conductance is low in this case. At

resonance, significant eigenchannel weight is found to exist on the second CNT and, deep

into this CNT, the eigenchannel phase is increasing indicating a propagating electronic

state. Close to the second CNT termination, however, the eigenchannel remains standing
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wave-like indicating no propagation. The form and energy of the eigenchannel within

this region is very similar to those of the localised end state of the finite CNT fragment,

shown in the bottom panel of Fig. 7.9, confirming that the resonant tunnelling is due to

scattering from a localised end state. An equivalent observation is made when inspecting

the eigenchannels at the resonance at −0.2 eV and the corresponding localised end state.

Fano resonant conduction has also previously been observed in crossed CNTs[202, 203].

The enhancement in the inter-tube conductance caused by these localised states should

also be compared to resonant back-scattering in individual CNTs that is caused by quasi-

localised states associated with defects.[181] In the present case, as the localised states are

located at the end of the CNT their additional contribution to back-scattering is minimal

when compared to the reflection caused by the termination itself. The presence of the

localised states, therefore, primarily acts to increase the inter-tube conductance, albeit

within narrow ranges of energy.

The second prominent feature in Figs. 7.7 and 7.8 is the oscillation in conductance that

occurs over a broad energy range. This feature can be understood in terms of interference

arising from the finite spatial overlap of the CNTs and can be accounted for using a simple

analytic model. At first order in perturbation theory, the conductance between the two states

|ψ1〉, |ψ2〉 that originate in different CNTs is approximately proportional to the square of

the overlap of those states

T (E) ∝ |〈ψ1|ψ2〉|2. (7.1)

When the CNTs are isolated, the two states will be standing waves with a node at the CNT

end and with a periodicity determined by the state wave vector ki where i = 1, 2 indexes

the CNTs. Treating the wavefunctions as simple one-dimensional waves, the wavefunction

overlap is

|〈ψ1|ψ2〉| ∝
∫ L

0

dz sin[k1(z − L)] sin(k2L)

∝


k2 sin(k1L)− k1 sin(k2L)

k2
1 − k2

2

for k1 6= k2,

sin(k1L)− k1L cos(k1L)

2k1

for k1 = k2.

(7.2)

For a given pair of CNTs, the contribution to the overlap matrix element from the azimuthal

momenta of the two states is approximately the same for all end termination geometries

and overlap lengths and can therefore be neglected in Eqn. (7.2). The wave vector for both

states is dependent on the state energy and CNT chirality, and is given by the lead band
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Figure 7.9: Top panel: the eigenchannel decomposition for conductance between a

fullerene-terminated (5, 5) CNT and sp3 terminated (9, 0) CNT. Lower panel, top: the

conductance eigenchannel for a non resonant channel. Lower panel, centre: the conduc-

tance eigenchannel for a resonant channel. Lower panel, bottom: the localised end state of

the isolated (9, 0) fragment. The energies of these three states are given on the right. Each

eigenchannel/eigenstate is plotted at an arbitrary isosurface and coloured by the complex

phase, and the eigenchannels are injected into the left CNT.
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structure, which is linear in the vicinity of the Fermi energy

ki(E) = kF,i ±
E

~vF,i
. (7.3)

The Fermi momentum kF,i and Fermi velocity vF,i for each lead CNT can be determined

directly from the bulk CNT band structure, leaving only the overlap length L, and the overall

amplitude as free parameters. As the terminated CNT does not obey periodic symmetry, the

Brillouin zone for the system is vanishingly small. It was shown in Ref. [38] however that

states of the (extended) CNT Brillouin zone still prove a useful basis for the states involved

in conductance, with the caveat that states outside the first Brillouin zone are inequivalent

to those within and must be considered separately. This corresponds to considering wave

vectors that are a sum of a wave vector ki,(0) from the first Brillouin zone and an integer

number α of reciprocal lattice vectors Gi:3

ki = ki,(0) + αGi. (7.4)

The dominant contribution to the conductance may not be one from a state within the first

Brillouin zone[38, 175]; in the following we find that the dominant contribution is from

α = 1 and α = 0 for the (9, 0) and (5, 5) CNTs, respectively, in agreement with the results

presented in Ref. [175].

In Fig. 7.10 we show the calculated inter-tube conductance for two sp2 terminated (9, 0)

CNTs and for fullerene capped (5, 5) and (9, 0) CNTs. We compare these numerical results

to the model presented in Eqn. (7.2); the Fermi momenta and velocities are determined for

each CNT separately using the corresponding bulk lead band structure, while the overlap

length L and overall amplitude are determined by fitting the model to the conductance

calculated from first principles within the valence band over the linear region of the bulk

CNT band structures where Eqn. (7.2) is valid.4 The fitted overlap lengths are 22.6 Å for

(9, 0)/(9, 0) and 14.6 Å for (9, 0)/(5, 5), which compare excellently with the axial distance

between the terminal atoms on each CNT which are 23.2 Å and 15.4 Å, respectively.

Further verification that the interference model captures the main behaviour of the

inter-tube conductance is provided in Fig. 7.11 where we plot the conductance between

CNTs in the end-scattering geometry evaluated 0.2 eV below the Fermi energy as a function

of the overlap length. The model (dashed line) accurately reproduces the periodicity of the
3For achiral CNTs, the two reciprocal lattice vectors of the CNTs differ only in their azimuthal momentum

and have the same axial momentum. Therefore, only a single integer α is required to describe the addition of

the reciprocal lattice vectors.
4The fit is restricted to the valence band due to the difficulty in describing the higher-energy conduction

band states using the valence NGWF basis (see section 5.6).
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Figure 7.10: A comparison of the calculated (solid line) verses model (dashed line,

Eqns. 7.1 and 7.2) inter-tube conductance spectra in the end-scattering geometry. The

model is fitted over the linear region of the bulk CNT band structures, indicated by the

range of the dashed line.

calculated conductance (solid line), confirming that interference is the predominant factor

influencing the inter-tube conductance. This finding is in agreement with several other

works that have highlighted the importance of interference effects in inter-tube scattering

between terminated CNTs.[185, 186, 204]

As the dominant factors that affect inter-tube conductance between terminated CNTs can

be understood in terms of resonant tunnelling due to localised end states and interference

effects, some more general conclusions can be drawn. Firstly, we expect these factors to

remain dominant in metallic CNTs of other chiralities as the local chemical structure is

unchanged by the chirality. Where the CNTs are of different chirality, Eqn. (7.2) predicts that

inter-tube conductance is oscillatory with overlap length and therefore increasing overlap

length does not always improve the conductance. Where two CNTs have the same chirality,

Eqn. (7.2) predicts that the inter-tube conductance grows quadratically with overlap length

L, with an additional oscillatory envelope due to interference caused by the standing wave

states in each CNT. This is a consequence of tunnelling between the initial and final states
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Figure 7.11: A comparison of the calculated (solid line) verses model (dashed line,

Eqns. 7.1 and 7.2) inter-tube conductance spectra in the end-scattering geometry. Top

panel: conductance between two (5, 5) CNTs; bottom panel conductance between (9, 0)

and (5, 5) CNTs; all CNTs are terminated with the sp2 passivation scheme (see Fig. 7.2).

Conductance is evaluated 0.2 eV below the Fermi energy, as a function of overlap length,

defined as the axial distance between terminal atoms of each CNT.
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being permitted over the entire contact region. The same interference/quadratic growth

behaviour has been found for conductance between side-walls of CNTs[175], obtained from

tight-binding models; our results confirm this behaviour for terminated CNTs using a first-

principles approach. For CNTs of the same chirality, the quadratic growth in conductance

means that the effects of the end termination become negligible; for CNTs of different

chirality, however, the effect of the end termination does not become negligible with large

overlap length. Indeed, the momentum scattering provided by the end termination means

that, in this geometry, the termination is the dominant contributor to conductance between

CNTs of different chirality.

The different inter-tube conductances calculated for the different terminations can

largely be accounted for by the number and energies of the end states present. Whilst it

would be desirable to construct CNT terminations with end states located at the Fermi

energy, thereby increasing the inter-tube conductance, such an approach is likely to be

impractical given the level of structural fine-tuning that would be required. Furthermore,

dynamical effects arising from finite temperature will modify the termination geometry

and therefore also the energy of these localised states, reducing the effectiveness of this

approach. We therefore do not consider these resonances to be a practical route to enhance

the inter-tube conductance.5

Whilst we argue that the energy resonances associated with different termination ge-

ometries are not of practical interest, the amplitude of the interference component of the

inter-tube conductance (i.e. the amplitude of Eqn. (7.2)) may depend significantly on the

termination geometry. Inspection of the range of non-resonant conductances observed in

Figs. 7.7 and 7.8, however, suggests that this is not the case. To make a more concrete

comparison, we consider the average inter-tube conductance over the valence band and

compare this for different terminations. Specifically, we set the overlap length L such that

the distance between terminal carbon atoms for each CNT is 20 Å and define a characteristic

conductance 〈G〉 as the mean conductance of electrons in the valence band in the range

−0.8 eV < E < −0.2 eV. The contributions from resonant scattering are excluded by

removing from this average contributions where the device density of statesN (E) increases

5This conclusion also justifies a posteriori our neglecting magnetism at the end terminations which results

mainly in different energies of these localised states whilst leaving the bulk states unaffected.
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by more than 10% of the bulk value Nbulk. More formally,

〈G〉 =
1

w0

∫ −0.2 eV

−0.8 eV

dE G(E)w(E), (7.5)

w0 =

∫ −0.2 eV

−0.8 eV

dE w(E), (7.6)

w(E) =

1 if N (E) ≤ 1.1 Nbulk

0 otherwise
. (7.7)

This approach helps to remove the effect of resonances and the dependence of conduction

on the overlap length, both of which depend on the end termination in a manner that is

difficult to otherwise isolate, and allows for a better isolation of any residual dependence

of inter-tube conductances on the end termination geometry. By comparing this quantity

calculated for an sp2-terminated (9, 0)/(5, 5) CNT pair for a range of overlap lengths around

20 Å, we estimate that 〈G〉 is independent of resonances and overlap length to within a

factor of 2. The dependence of the inter-tube conductance on the chirality mismatch is found

to be much larger than this. In Fig. 7.12, we show the average value of 〈G〉 for the different

combinations of the five end termination geometries. The error bars give the maximum

and minimum value of 〈G〉 for that pair of CNTs. These quantities are compared for the

three pairwise combinations of the (5, 5) and (9, 0) CNTs which shows that conductance

between CNTs of different chirality is approximately an order of magnitude lower than

conductance between CNTs of the same chirality.

We conclude therefore that the dominant effect determining the inter-tube conductance

is the difference in chirality rather than the geometry of the termination. It is this conclusion

that then allows us to meaningfully compare in Fig. 7.6 the inter-tube conductance between

the different pairs of CNT chiralities which necessarily have different end terminations.

7.4.1 The effect of chirality mismatch

Superimposed on the bend scattering chirality dependence shown in Fig. 7.6, we show the

dependence of the end-scattering inter-tube conductance on the chirality mismatch. As

we concluded in the previous section that the dominant effect determining the inter-tube

conductance is the chirality mismatch, we use the same termination scheme for all CNTs and

passivate dangling bonds with a single hydrogen in the slant geometry. For this termination

scheme, all end states are located within the gap and therefore no tunnelling resonances

were found. To help isolate interference effects, for each chirality pair we calculate 〈G〉 as

defined in Eqn. (7.6), with the same overlap length L = 20 Å for each geometry.
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Figure 7.12: The mean and range of the characteristic conductance 〈G〉, as defined in the

main text, for all combinations of end terminations in the (9, 0)/(9, 0), (9, 0)/(5, 5) and

(5, 5)/(5, 5) CNT pairs in the end-scattering geometry. The error bars give the maximum

and minimum value of 〈G〉 for each pair of CNTs. The dependence of the inter-tube

conductance on the chirality mismatch is found to be larger than the dependence on the end

termination.

For the end-scattering geometry, we find a similar exponential suppression of inter-tube

conductance as the chirality mismatch increases. When compared to the bend-scattering

conductances, however, the suppression is less severe and for larger differences in chiral

angle the inter-tube conductance in the end-scattering geometry is several times greater.

This reflects the greater momentum scattering introduced by the termination: a termination

is a spatially localised defect which therefore introduces a stronger momentum scattering

when compared to the bend defect which is more spatially delocalised. For large differences

in chiral angles, therefore, inter-tube conductance is dominated by momentum scattering

arising from the end termination as shown in Fig. 7.6. For small differences in chiral angles,

no momentum scattering is required to facilitate conductance and so inter-tube conductance

is larger in the bend-configuration where the overlap length between the CNTs is greater.

These conclusions indicate that the primary means by which to increase the inter-tube

conductance, and therefore also the conductivity of CNT networks, is to reduce the range of

chiralities present in the network.
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7.5 Conductance between terminated nanotubes at finite

bias

Finally in this chapter, we consider how a finite bias might affect the inter-tube conductance,

focusing in particular on conductance between terminated CNTs. Recall that a bias is

applied across a device by connecting the two sides of the device to leads which are

themselves connected to reservoirs with different chemical potentials and which inject

electrons into the device with energy up to the chemical potential for that reservoir. As a

result of this non-equilibrium set up, the chemical potential throughout the device is not

spatially constant but instead varies between the chemical potentials defined by the leads.

The locations where the local chemical potential varies most rapidly are the locations where

the leads are most weakly coupled, and hence where the resistance is greatest, which is

an effect entirely equivalent to the conventional understanding of classical circuit theory,

where large resistances accompany large drops in electric potential.

The weak coupling between the CNTs is expected to create a large bias drop between

the CNTs when a bias is applied. It is straightforward to conjecture, therefore, that the

bias drop will result in a large electric field between the CNTs and generate forces in this

non-equilibrium current carrying system that are not present in the system in the absence of

current. This mechanism is entirely analogous to the classical force between capacitor plates.

These forces may then modify the inter-tube separation distance which, in turn, due to the

exponential dependence of tunnelling on barrier width, may strongly modify the inter-tube

conductance as a function of bias. The current-bias characteristics for such a device would

be highly non-linear and might somewhat resemble the exponential characteristics of a

diode.

7.5.1 Methods

To test this hypothesis, the electronic structure of two sp2 hydrogen-terminated axially

aligned (5, 5) CNTs in the geometry shown in Fig. 7.13 were calculated using the NEGF

formalism coupled with DFT. Calculations were performed using the tranSIESTA extension

to the SIESTA DFT package.[125, 138] A double-ζ with polarisation (DZP) pseudo-atomic

basis set was used, and the charge density was described with a well-converged grid cutoff of

350 Ry. The contour integrals to determine the NEGF electron density were performed using

six Fermi poles and 30 and 8 energy points for the circular and line part, respectively, of the

equilibrium contour; a fine spacing of 0.01 eV was used for the non-equilibrium contour.

Under the PBE exchange-correlation density functional, it is known that the attractive
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van der Waals force between CNTs is severely underestimated.[109] This under-binding

does not affect the previous sections of this chapter as the main focus was the electronic

structure. To study the inter-tube forces and their dependence on non-zero bias, however,

a more accurate first-principles description of the van der Waals interactions is required.

In this section, we use the non-local van der Waals functional of Dion et al.[108, 109]

which has been shown to accurately describe binding in carbon-based systems.[109] The

separation between the CNTs was adjusted to 3.25 Å corresponding to the equilibrium

binding separation between two axially aligned periodic (5, 5) CNTs. The overlap length

between the CNTs, defined as the distance between the terminal hydrogen atoms, was

set at 20 Å, and the terminating hydrogen atoms and CNT fragments were relaxed for

this exchange-correlation functional using the method described section 7.2. No further

relaxation of the geometry was performed. The CNT axes are aligned with the z-axis with

both axes contained within the yz-plane.

7.5.2 Bias drop

In Fig. 7.13, we plot the difference in the local electrostatic potential (Hartree and ionic)

calculated for zero bias and ∆µ = 0.5 eV bias. The potential drop between the CNTs occurs

in the non-bonded vacuum region between the CNTs, whilst throughout the individual

CNTs the potential remains largely at the value of the lead connected to that CNT (±∆µ/2).

The local potential is a good indicator of the local chemical potential, confirming that the

bias drop in this system occurs in the vacuum region between CNTs. Similar results are

observed for different potential differences, down to ∆µ = 0.1 eV, the smallest value

considered.

7.5.3 Non-equilibrium forces

As the structure of the CNT system was generated without full relaxation of the geometry,

the residual forces at zero bias were not within standard convergence tolerances, but were all

no more than 0.2 eV/Å. The additional non-equilibrium contribution to the forces arising

at finite bias can be calculated by subtracting this equilibrium contribution.

In the top three panels of Fig. 7.14, we compare the non-equilibrium forces on the

atoms as a function of bias. The light lines give the forces for each individual atom, with

the red/blue lines distinguishing to which CNT that atom belongs. An increase in the non-

equilibrium force with the bias is found, however this increase is quite modest, requiring

a bias of over 0.2 V before the non-equilibrium forces increase by more than a typical
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Figure 7.13: The difference between the electrostatic local potentials (Hartree and ionic)

for the (5, 5)/(5, 5) CNT pair at 0.5 V and 0 V bias, plotted in the plane containing both

CNT axes.

convergence tolerance of 5 meV/Å. The forces are found to act with almost equal spread in

positive and negative directions for both CNTs. In particular, the forces between the CNTs,

shown in Fig. 7.14b, act almost equally in a repulsive and attractive manner for both CNTs,

suggesting that there is no net force between the CNTs.

To quantify this further, we consider the average force acting on the carbon atoms within

the contact region. This average is carried out for atoms belonging to each CNT separately,

resulting in an effective measure of the average non-equilibrium force acting on each CNT.

We show these averages and the corresponding standard deviations by the dark solid and

dashed lines, respectively. If there existed an attractive inter-tube force arising at finite bias,

the force between the CNTs (Fig. 7.14b) would show the average forces on each CNT acting

in opposing directions. As the average force is seen to be approximately independent of the

applied bias, the inter-tube force arising due to non-equilibrium appears to be negligible.

Fig. 7.14d shows spatial directions of the non-equilibrium forces at 0.5 V bias, confirming

that there is negligible attractive inter-tube force at finite bias.

The absence of an attractive inter-tube force might be explained by screening effects,

and there is some evidence to suggest this given by the redistribution of the electron

density shown in Fig. 7.15. At finite bias, some electron density is redistributed to the

CNT connected to the lower bias reservoir, which acts to screen the bias drop between the

CNTs. This screening might be expected to be visible in Fig. 7.13 with some bias drop

occurring within the CNTs in addition to a drop in the vacuum, however this is not observed

in Fig. 7.13. Further, the large non-equilibrium forces within the bulk-like region of the
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Figure 7.14: The non-equilibrium forces arising at finite bias. Top panels: the bias

dependence of the non-equilibrium forces for the atoms within the contact region. The

light coloured lines indicate the forces on individual atoms; the red/blue lines distinguish to

which CNT that atom belongs. The solid and dashed dark coloured lines are the average

and standard deviation of the forces acting on the atoms in each CNT. Bottom panel: the

directions and magnitudes of the non-equilibrium forces at 0.5 V bias.
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Å

2 )

Figure 7.15: The electron density difference between the 0.5 V bias, and zero-bias calcula-

tions. The density has been integrated over the x-axis.

CNT and away from the contact region, as shown in Fig. 7.14d, are unexpected as the

local electrostatic potential is almost constant here. This should make the local electronic

structure bulk-like, resulting in only small residual non-equilibrium forces.

Whilst care was taken to ensure that convergence was achieved in these calculations, we

speculate that the computed forces may be unreliable possibly due to incorrect convergence

or due to an error in their calculation within the tranSIESTA implementation. Similar

calculations for the (9, 0)/(5, 5) CNT pair were found to be difficult to converge, requiring

an order of magnitude more self-consistent iterations than for the (5, 5)/(5, 5) CNT pair.

Furthermore, the drop in bias was found to occur within the bulk CNT and not in the vacuum

suggesting that a different minimum was reached at convergence. It may, therefore, indeed

be that the non-equilibrium forces presented in this section are unreliable and the presence

of an inter-tube force arising at finite bias remains an open question.
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7.6 Conclusions

Using electronic structures derived from first principles, we have studied the role of end

terminations and bends on the conduction between axially aligned CNTs. We find that the

predominant factor influencing inter-tube conductance in both geometries is a difference in

CNT chirality: the larger the chirality difference, the more the inter-tube conductance is

suppressed. This conclusion confirms earlier empirical tight-binding calculations[38, 175],

but also demonstrates that the momentum-scattering provided by end termination and bend

defects does not fully remove the suppression of inter-tube conductance due to momentum

mismatch. For large chirality mismatch, the strong momentum-scattering provided by an end

termination makes the termination a significant source of inter-tube conduction. Therefore,

the presence of the end terminations cannot be neglected in the study of conduction in

CNT networks. This contrasts with the negligible effect that an end termination has on

the intrinsic conduction within the bulk-like region (i.e. far from the end termination) of

individual CNTs.

Tunnelling between the ends of two terminated CNTs is found to be well described

by an interference mechanism arising from finite spatial overlap of the conducting states

in the two CNTs, and is predominantly dependent on the relative chirality mismatch and

not on the geometry of the end termination. The main difference arising from the different

end terminations is the presence of resonant tunnelling phenomena where conductance

rises by over an order of magnitude. These occur due to scattering from defect-states

localised at the ends of the CNTs. The energies of these states, and hence the resulting

resonances, are dependent on the particular termination geometry and the magnetic structure

at the termination[198, 199, 200]. We do not consider these resonances to be a practical

route to enhancing inter-tube conductances, however, due to the difficulty in generating

precise termination geometries to ensure that they are located at the Fermi energy and,

further, because thermal effects are likely to broaden the resonant energy, reducing the

resonant tunnelling amplitude. These conclusions therefore extend the range of validity of

earlier studies that have considered only one termination geometry or overlap length by

demonstrating that these effects can be accounted for using simple interference and resonant

tunnelling models.

The inter-tube conductance between bent CNTs with a large chiral mismatch is found

to be strongly dependent on the bend angle, which can be understood in terms of the

greater momentum-scattering introduced by a sharper bend. The scattering from the bend

is much weaker than that from an end termination and consequently the bend introduces

little backscattering. The presence of these shallow bends in a network of CNTs, therefore
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only acts to improve the conductance of the network without increasing the resistance of

the individual CNTs.

We note that whilst DFT using semi-local functionals (including PBE) is known to

introduce a spurious self-interaction error (see section 4.3.5), which results in an erroneously-

increased delocalisation of the electronic eigenstates, this does not affect our overall conclu-

sions as we compare conductances between calculations that will have similar such errors.

The absolute conductances may, however, be overestimates of their true value by as much

as an order of magnitude[142, 205].

We have also investigated the possibility of non-equilibrium forces that may arise at

finite bias. Our calculations do not support the presence of such forces, however physical

intuition suggests that the large electric field that is calculated to exist between the CNTs

at finite bias should introduce significant non-equilibrium forces. We suspect that these

calculations are erroneous and further investigation is suggested.

The overall conclusion from this chapter is that weak perturbations to the CNT electronic

structure, in this case as a result of bends of end terminations introduced to the geometric

structure, can enhance the inter-tube conductance. This finding therefore provides theo-

retical first-principles verification of the inter-tube conductance mechanism proposed in

chapter 6.
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CHAPTER

EIGHT

CHARGE DOPING IN WATER-ADSORBED CARBON

NANOTUBES

In the previous chapters, we have largely focused on the role of transmission between CNTs

and its effect on the conductance of the network as a whole. In this chapter we investigate a

separate mechanism, that of charge doping due to adsorbed water molecules, and consider

its effect on the conductivity of individual CNTs.

The effect of water on the electrical properties of carbon nanotubes (CNTs) has been

controversial for some time. Theoretical calculations have suggested that water dopes

CNTs, predicting a strong dependence of CNT conductivity on humidity. The theoretical

evidence for doping in this system has been questioned, however, and experimental studies

have not been able to clearly confirm or refute this model. In this chapter, we propose that

the theoretical methods used in previous calculations are indeed insufficient. We investigate

in detail the conditions that must be satisfied for charge doping to occur, and provide a

theoretical method, based on large-scale density functional theory calculations, to identify

the presence of charge doping. Key to our analysis is the isolation of electrostatic effects,

which we do using a novel application of maximally-localised Wannier functions. Our

findings lead us to conclude that water does not dope CNTs.

Parts of this chapter have been published [206].

8.1 Introduction

The optimal performance of CNT devices often requires the CNTs to have a particular

electronic character, whether semiconducting or metallic. The control of chirality, and

hence the electronic character, during CNT synthesis is challenging, which has led to the

133



Chapter 8. Charge doping in water-adsorbed carbon nanotubes

development of alternative in-solution techniques for separating bulk-grown CNT samples

with respect to electronic type. Examples include density gradient ultracentrifugation[207,

208], polymer wrapping[209, 210] and chromatography[211, 212].

As a consequence of this post-processing, residual water may remain adsorbed to the

CNTs. Therefore it is important to understand the influence that water has on the electronic

structure of CNTs.

Experimental investigations of the effect of water vapour on the conductivity of mats and

fibres of CNTs have reached contradictory conclusions with both increases[213, 214, 215,

216, 217] and decreases[218, 219, 220] in conductivity observed. The lack of agreement

may be attributable to an abundance of factors, including the CNT sample composition and

purity, the presence of impurities and their composition, contact resistances with external

electrodes and between the CNTs themselves, and the alignment and connectivity of CNTs

in the mat/fibre network. The relative contribution of these factors, and their dependence on

local water concentration, may be significantly different between the different samples used

in the reported experiments, and are difficult to isolate.

Theoretical calculations based on density functional theory (DFT) have shown that

water interacts weakly with CNTs, binding by physisorption.[221, 222, 219, 223, 224] This

weak interaction has been shown to cause little scattering, and the conductance of individual

CNTs when hydrated is little changed from when dry[225, 222].

Charge transfer analyses, also performed within DFT, have suggested that water may n-

dope CNTs[221, 222, 219, 223, 224]. The conductance of semiconductor CNTs is sensitive

to the amount of doping, and in Ref. [217] a mechanism based on charge transfer between

water and CNTs has been proposed to explain experimental observations.

There are, however, several issues with the charge transfer analyses used to determine

this mechanism. Most fundamentally, there is no unique formalism to partition the DFT-

derived ground-state charge density among different species in a system. The magnitude of

charge transfer is sensitive to the details of the calculations, including the choice of func-

tional for exchange and correlation[226], the basis set[227, 228, 229], and the partitioning

method used[227, 229]. Changing the partitioning method will often alter the computed

partial charges by 0.1 e or more[228, 229], which is comparable to the proposed water/CNT

charge transfer.[221, 222, 219, 223, 224] These theoretical calculations may still, therefore,

be consistent with no charge transfer or even p-doping. Indeed, it has been suggested by

some authors that there is no overall charge transfer.[223, 218, 230]

Regardless of the method used to determine the charge partitioning, it is also not clear

that charge doping can be determined by considering only the total partial charge of the CNT,
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as used in previous studies[221, 222, 219, 223, 224]. In principle, doping is manifested by

additional or reduced electron charge density, as compared to the bulk, far from the defect

that may be causing the doping, such that all electrostatic perturbations have been screened.

Only this delocalised charge transfer can result in doping and contribute to conductance;

localised charge transfer will in fact act to scatter current and decrease the conductance.

Accordingly, the long-range spatial distribution of the electron charge density must be

considered to determine whether doping occurs.

Neither experiment nor theory, therefore, have reached agreement over the interac-

tion between CNTs and water and further analysis of the calculated charge transfers is

required to support a doping hypothesis. In this chapter, we revisit the problem of charge

transfer between water and CNTs. Working directly with the charge density, derived from

first-principles calculations, we calculate the long-range perturbation to the CNT charge

density due to the water molecule. Our main result is that the interaction is a long-ranged

electrostatic polarisation that arises due to the dipole moment of the water molecule which

cannot be fully captured within a small simulation cell. Using large simulation cells, we

isolate the contribution to the density perturbation due to the water dipole moment by using

a simple classical model for the electrostatic effects of the adsorbed water molecules. This

allows us to estimate the residual charge transfer between a CNT and water molecule which

we find to be negligible. We therefore conclude that water does not n-dope CNTs.

The remainder of this chapter is organised as follows: we first give details of our

methods; we then analyse the electrostatic interaction between the CNT and water molecule,

and introduce an electrostatic model to disentangle charge transfer from charge polarisation;

we then discuss why this picture does not change when including thermal effects; the

effectiveness of the classical model allows us to then make an estimate for the residual

charge transfer between water and CNT; and finally, we discuss the wider context of these

conclusions.

8.2 Methods

We consider supercells containing a single water molecule adsorbed on one of two CNT

structures: 16 unit-cells of a semiconducting (10, 0) CNT; and 28 unit-cells of a metallic

(5, 5) CNT. The overall length of each supercell is 68.5 Å and 69.1 Å, respectively.

Electronic structures are calculated using ONETEP. Four NGWFs per carbon and oxygen

atom and one per hydrogen atom are used, with a generous localisation radius of 5.3 Å in

order to capture charge polarisation accurately.
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Chapter 8. Charge doping in water-adsorbed carbon nanotubes

Equivalent plane-wave kinetic energy cutoffs of 1000 eV and 4000 eV are used for the

psinc basis sets representing the NGWFs and charge density, respectively, and the Brillouin

zone is sampled at the Γ point only.

All calculations in this chapter employ the PBE generalised gradient approximation for

exchange and correlation[106]; our conclusions are unchanged when equivalent calculations

are performed using the local density approximation (LDA)[103]. The PBE functional

results in no binding between water and CNT and so dispersion interactions are corrected for

empirically[190]. Note that this correction affects only the total energy and not electronic

densities.

Periodic boundary conditions are used along the CNT axis, which is denoted as the

z-direction; directions perpendicular to the axis are treated with the supercell approximation

with at least 12 Å separating periodic images.

The atomic structures of the atoms in the CNT unit cells are determined using CASTEP.

A fully-converged Brillouin zone sampling scheme of 16 and 28 equally-spaced k-points,

including the Γ point, is used for the (10, 0) and (5, 5) CNTs, respectively. The states

sampled are equivalent to those sampled in the larger supercell. The same pseudopotentials

and parameter set, as far as possible, are used as for the ONETEP calculations.

After relaxation, the maximum residual forces and stress are 5 meV/Å and 0.02 GPa

respectively. Calculated C–C bond lengths are 1.424 Å and 1.432 Å for the (10, 0) CNT,

and 1.429 Å and 1.431 Å for the (5, 5) CNT; and the relaxed periodic unit cell lengths are

4.279 Å and 2.469 Å, respectively.

The water molecule is similarly relaxed in isolation in a 22 Å cubic simulation cell

within the supercell approximation. Previous calculations have shown that the change to

the structure of CNT and water is negligible when water is adsorbed[224], therefore the

geometry of the composite structure is not relaxed further. We have verified for a selection

of structures that our conclusions are unaffected by this lack of further relaxation.

The maximally-localised Wannier functions[122, 154] used for the point charge model

of section 8.3 are calculated using the QUANTUM ESPRESSO interface to WANNIER90.[121]

8.3 Computing the charge polarisation

Our key result is given in Fig. 8.1 where we show the long-range electron density redis-

tribution for a (10, 0) semiconducting CNT with a single water molecule adsorbed (solid

lines). The supercell is 68 Å in length along the CNT axis and the oxygen ion of the water

molecule is directly above a carbon site, at a distance of 3.20 Å which is approximately the
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8.3. Computing the charge polarisation

Figure 8.1: The laterally-integrated density difference profile for a 68 Å (10, 0) CNT

supercell with a single water molecule adsorbed (full DFT calculation, solid lines). Also

shown (dashed lines), the corresponding induced polarisation when the water molecule

treated as classical Wannier charges (see main text). The angle θ corresponds to the angle

between the water dipole vector and the normal to the CNT surface as shown in Fig. 8.2.

average equilibrium binding distance of these orientations, and is positioned at the centre of

the CNT supercell (z ≈ 34 Å). The water molecule is oriented such that the normal to the

atomic plane makes an angle θ to the radial vector of the CNT as shown in Fig. 8.2. The

four panels show different orientations of the water molecules that are thermally accessible

at room temperature. As we will show shortly, the precise CNT/water geometry does not

strongly affect the interactions present, precluding the need for a detailed thermodynamic

analysis.

The induced density polarisation is calculated through the charge density difference,

defined as the difference between the density for the CNT and water combined n1,2(r), and

the isolated CNT and water molecule alone n1(r), n2(r):

∆n(r) = n1,2(r)− n1(r)− n2(r). (8.1)

Three separate calculations per configuration are performed to determine the density differ-

ence. The periodicity due to the underlying atomic lattice is smoothed out by convolving this

quantity with a window function w(z) with width equal to the CNT unit cell length Luc. In

order to smooth out the large variations due to the underlying ionic lattice, we integrate this

quantity over planes perpendicular to the CNT axis defining an electron density difference
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Chapter 8. Charge doping in water-adsorbed carbon nanotubes

Figure 8.2: The structure of the water molecule adsorbed on a (10,0) CNT. The water

oxygen ion is situated 3.20 Å above a carbon, with the water dipole making an angle θ

to the CNT axis. Shown here is θ = 90◦. Only the part of the CNT closest to the water

molecule is shown, the CNT extends for an additional ≈ 30 Å in both directions to form

the full supercell.

per unit length,

λ(z) =

∫
∆n(x′, y′, z′)w(z − z′)dx′ dy′ dz′ , (8.2)

w(z) =

{
1/Luc |z| < Luc/2

0 otherwise
. (8.3)

The charge redistribution shown in Fig. 8.1 is remarkably long-ranged, occurring over

a length-scale greater than 30 Å. As this is much larger than the CNT unit cell length,

this long-range polarisation cannot be observed in the smaller supercells used in previous

calculations.[221, 222, 219, 223, 224]

The form of the charge polarisation is strongly dependent of the orientation of the water

molecule, but correlates well with the direction of the water dipole. For example, at θ = 0◦,

the dipole points away from the CNT and electron density is repelled; at θ = 180◦, the

dipole is towards the CNT and electron density is attracted.

The dominant effect of the water molecule on the CNT appears to be purely electrostatic

in origin. In order to demonstrate this more rigorously, we calculate the charge polarisation

of the system using a purely electrostatic model for the water molecule, i.e., without explicit

inclusion of the real electron density of the water molecule in the system. The water
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molecule is treated as a set of point charges, whose influence appears as a correction to the

local Kohn-Sham potential[231]

δVloc(r) =
∑
i

qi∣∣r− ri
∣∣ , (8.4)

where ri and qi are the position and magnitude, respectively, of each point charge. Positive

(ionic) charges are located at the ionic positions with magnitudes given by those of the

corresponding pseudo-ions. For the negative (electronic) charges, the positions are the

centres of the maximally-localised Wannier functions (MLWFs)[122, 121] obtained by

subspace rotation of the manifold of occupied eigenstates of an isolated water molecule.1

The magnitude of each electronic charge is then the integrated charge density of each

MLWF. Due to the unitarity of the Wannier transformation, this gives −2 e, with the factor

of two being a result of spin degeneracy. In practice, to prevent unphysical “charge-spilling”

into the deep Coulombic potential, these point charges are smeared with a Gaussian function

of half-width 0.16 Å.[231] The geometry of the MLWF centres in relation to the ionic

positions is shown in Fig. 8.3 (bottom left). Our method is similar in spirit to that of

Ref. [232], but differs in that the procedure is parameter free and requires no fitting.

The difference in electronic density induced by this classical electrostatic model for

the water molecule can be calculated using the equivalent of Eqn. (8.1) and is shown

in Fig. 8.1 (dashed lines). The agreement with the full DFT calculation (solid lines) is

excellent for all configurations. This can be understood by comparing the long-range

electrostatic potential corresponding to the MLWF model and that of the water molecule

from DFT. This comparison is shown in the top two panels of Fig. 8.3. The classical model

reproduces the potential to high accuracy, with only small differences very close to the

water molecule where the detailed charge density distribution is important. Equivalent

calculations performed on a metallic (5, 5) CNT produce similar results as shown in Fig. 8.4,

left panel, providing evidence for the general applicability of our model.

It is interesting to note that simpler models for the water electrostatics also reproduce

the density polarisation well. In Fig. 8.4 we compare the density polarisation induced in

a metallic (5, 5) CNT for three different models. The left panel gives the Wannier charge

model which most accurately reproduces the DFT induced polarisation. The central panel

uses a classical dipole model for the water potential, with classical charges of magnitude

±8 e at the centres of positive and negative charge of the isolated water molecule; the CNT is

still treated using DFT. The agreement between this model and the DFT induced polarisation

1Taking the MLWF centres from an isolated molecule is an excellent approximation: when adsorbed on

the CNT, the MLWF centres of the water molecule are found to change by less than 3× 10−3 Å.
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Figure 8.3: Top panels: a comparison between the electrostatic potential (local ionic and

Hartree) for the isolated full DFT water molecule (left), and the classical Wannier charge

representation (right). Contours are in steps of 20 meV, in the plane 3.20 Å below the water

molecule, where the surface of the CNT would be when the water is in the 90◦ orientation.

The water oxygen ion is located at the origin. The inset in the bottom right panel gives the

difference between the two potentials in the region indicated by the dashed box. Contours

are in steps of 5 meV, and the shading gives the absolute difference between 0 meV (white)

and 50 meV (black). Outside the region shown, the difference between the potentials is less

than 5 meV. Bottom panel, left: the positions of the Wannier charge centres (blue spheres)

and oxygen/hydrogen ions.
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Figure 8.4: Comparison of the different electrostatic models for the water molecule ad-

sorbed on a (5, 5) CNT in the θ = 45◦ orientation. Left panel: point charge (MLWF) model

for the water molecule; centre panel: dipole model for the water molecule; right panel:

classical conducting cylinder model (see main text for details). In all cases the dashed blue

line gives the full DFT result.

is still excellent, however differences between the classical and DFT electrostatic potential

in the near-field produce a small lateral shift in the polarisation along the z-direction. The

right panel shows the induced charge density for the simplest model where the CNT is

treated as a classical conducting cylinder. The water molecule is described as a series of

classical point charges, as in the Wannier charge model, with the induced density calculated

by solving the classical Poisson equation, as detailed in Appendix C. We note that the

classical induced polarisation calculated by this crude final model captures well the main

form of the full DFT induced polarisation supporting the conclusion that the dominant

interaction is electrostatic.

Similar results are obtained for the (10, 0) CNT, as shown in Fig. 8.5, including the

classical conducting cylinder model despite the CNT being semiconducting.

8.4 Thermal effects

At ambient temperatures, the structure of the water on the CNT cannot be considered

static and instead the system explores a range of thermally-accessible configurations. It is

therefore important to consider how thermal effects might change the electrostatic picture
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Figure 8.5: Comparison of the different electrostatic models for the water molecule ad-

sorbed on a (10, 0) CNT in the θ = 90◦ orientation, as in Fig. 8.4. Left panel: point charge

(MLWF) model for the water molecule; centre panel: dipole model for the water molecule;

right panel: classical conducting cylinder model (see main text for details). In all cases the

dashed blue line gives the full DFT result.

present above.

The problem of temperature and pressure can be understood simultaneously as factors

that affect the range of binding distances and orientation angles between CNT and water.

Fig. 8.6 gives the binding energy curves for a single water molecule on a (10,0) CNT,

calculated for the water molecule orientations shown in Fig. 8.1. The binding energies and

distances are in good agreement with previous studies[221, 222, 219, 223, 224]. At room

temperature (25 meV), the water molecule is unlikely to explore binding distances less than

3.0 Å due to the large energy penalty associated with these configurations.

In Fig. 8.7, the electronic charge density difference is compared for three binding

distances, 2.48 Å, 2.96 Å, 3.67 Å, in the θ = 0 orientation. For binding distances of 2.96 Å

and 3.67 Å, the density perturbation induced by the Wannier charge model agrees well with

the full DFT treatment of the water molecule. Small differences can be seen at close range,

as in Fig. 8.1, but this can be related either to localised charge transfer, which, as discussed

in section 8.3, cannot contribute to doping, or to details of the electrostatic potential of the

water molecule in the near field that are not captured by the Wannier charge model.

Most importantly, however, the long-range behaviour of the electronic charge density is

described very accurately by the Wannier charge model indicating that the dominant long

range interaction between CNTs and water is electrostatic and not due to charge transfer.

It is only for binding distances less than 2.5 Å that the long-range charge redistribution
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is not well-described by the Wannier charge model. At these separations it is possible,

therefore, that charge transfer is taking place. Such small separations, however, incur

a serious energy penalty of at least 200 meV (or 8kBT at ambient temperature) above

the lowest energy configuration shown in Fig. 8.7. The Boltzmann weights for such

configurations are vanishingly small and, therefore, these configurations can be safely

neglected at the ambient conditions at which experiments take place.

For a single water molecule we conclude that it is unnecessary to take further account

of thermal effects as for all thermally-accessible configurations the interaction between the

CNT and water is primarily electrostatic.

For CNTs with clusters of adsorbed water molecules, the electrostatic interaction is still

expected to dominate. The weak binding between CNT and water should not change and

the short (< 2.5 Å) binding distances required to potentially achieve charge transfer will

remain thermally inaccessible at ambient conditions.

8.5 Estimating the residual charge transfer

In any calculation of the electronic density, the difference in charge density given by

Eqn. (8.1) consists of both charge polarisation ∆np(r) and charge transfer ∆nt(r) compo-

nents,

∆n(r) = ∆np(r) + ∆nt(r). (8.5)

A convincing indicator of charge transfer would be additional charge delocalised in the

CNT, far from the water molecule. As shown by the results above, however, the charge

polarisation induced by the water dipole moment is very long-ranged. In principle, the

charge transfer contribution could be determined by increasing the system size to screen the

electrostatic perturbation, and considering regions where ∆np(r)→ 0.2 Such an approach

is impractical, especially for low-dimensional systems such as CNTs in which the relatively

weak screening necessitates the use of very large systems. The larger the system size,

the more accurately the charge densities must be determined as any charge transfer ∆Q

becomes delocalised over a larger volume V , and the associated density difference becomes

smaller: ∆nt(r) ∼ ∆Q/V . Discerning small amounts of charge transfer accurately in this

way is challenging from a computation point of view.

Instead, we approximate the polarisation contribution to the charge density difference in

the full DFT calculation ∆np(r) (Fig. 8.4, dashed lines) as exactly the density difference

2This method cannot determine charge transfer that remains localised, however localised charge transfer

does not contribute additional conductance.
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calculated by the Wannier charge model ∆nWF(r) (Fig. 8.4, left panel, solid line) in which

the charge density difference is entirely due to electrostatic polarisation: i.e. ∆np(r) ≈
∆nWF(r). The residual charge transfer is then approximated as

∆nt(r) ≈ ∆n(r)−∆nWF(r). (8.6)

Summing ∆nt(r) over the unit cell furthest from the water molecule provides an estimate

of the charge transfer between the CNT and the water molecule, which we find to be no

more than |∆Q| . 10−4 e, independent of orientation. This is three orders of magnitude

lower than the value calculated by Mulliken population analysis, and shows that there is

negligible charge transfer in this system.

8.6 Considerations of the electronic energy level alignment

Finally, we consider the evidence for charge transfer in terms of the energy levels of the

CNT and water systems. Previous calculations have shown that water interacts weakly with

a CNT [221, 222, 219, 223, 224]. As there is little chemical bonding, the eigenstates of the

isolated water and CNT are expected to be little perturbed.

This is confirmed in Fig. 8.8, which compares the density of states of a 16 unit cell (10, 0)

semiconductor CNT and a water molecule when mutually isolated, and the corresponding

CNT/water local density of states3 (LDOS)[233] with the water adsorbed. Indeed, the

LDOS/DOS of the CNT are indistinguishable. The same result is found for multiple

adsorbed water molecules, as shown in Fig. 8.9.4

For significant charge transfer between CNT and water to occur, charge must transfer

from the highest occupied molecular orbital (HOMO) of the water molecule to the CNT

conduction band. As the water HOMO lies almost 4 eV below the CNT conduction band,

this transfer would involve a large energy penalty, the magnitude of which is dependent on

the CNT band gap.

The energy penalty for metallic CNTs is smaller than for semiconducting CNTs, and

so calculations for these systems should show a large difference in either the binding

energy or the charge transferred to the CNT. As neither of these effects are observed in

3See Appendix D for a definition of the local density of states.
4The water geometry was generated using classical molecular dynamics as implemented in the Gromacs

4.5.5 package[234, 235, 236, 237] with the GROMOS96 force field and 43a1 parameter set[238] and SPC

water model[239] using NVT dynamics[240] at 300 K for 20 ps. The water cluster was chosen as the first

hydration shell surrounding a fully hydrated (10, 0) CNT. The electronic structure was calculated using

ONETEP.

145



Chapter 8. Charge doping in water-adsorbed carbon nanotubes

−6 −4 −2  0  2  4

(L
)D

O
S 

(a
rb

. u
ni

ts
)

(E−Ef) (eV)

CNT LDOS
H2O LDOS
CNT DOS
H2O DOS

Figure 8.8: A comparison of the density of states (DOS) for a (10, 0) CNT and water

molecule when isolated (dashed red/blue respectively), and the local density of states

(LDOS) of the CNT and water molecule (solid red/blue) when the water is adsorbed 3.20 Å

above the CNT in the 90◦ configuration. A Gaussian smearing of 0.1 eV has been used.

The CNT LDOS and DOS are indistinguishable. For each calculation, energies have been

aligned by the potential far into the vacuum.

calculation[224, 221], we conclude that if charge transfer occurs then it must be very

small, consistent with our estimation from the previous section. We also conclude that the

Mulliken population analysis reported in previous calculations[221, 222, 219, 223, 224] is

not suitable for determining charge transfer in this system.

Whilst the energy levels calculated by Kohn-Sham DFT do not correspond to the true

quasi-particle energy levels, the many-body correction to the energy levels is likely to be

smaller than the large difference between water and CNT states. Moreover, the correction

to the under-estimated DFT band gap will increase the energy difference between the

occupied water states and the CNT conduction band. Therefore we do not believe that

this conclusion will change under a higher level of theory. For other adsorbed molecules,

significant charge transfer would be possible if the molecular levels better align with the

CNT states. For example, molecular oxygen in the triplet spin state has been calculated to

have an unoccupied molecular level that sits within the CNT band gap.[241] We therefore

do not dispute the conclusion that oxygen may p-dope semiconductor CNTs.[242, 230]
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Figure 8.9: The CNT and water local density of states (LDOS) for the (10,0) CNT with an

adsorbed water cluster in the geometry shown in the bottom panel.
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8.7 Summary

In this chapter, we have used large-scale density-functional theory simulations to calculate

the long-range electronic effects of a water molecule adsorbed onto a CNT. We have shown

that the interaction is described very well with classical electrostatics: the permanent dipole

moment of the water molecule induces a polarisation of the electronic charge density of the

CNT that is remarkably long-ranged, occurring over a length-scale greater than 30 Å.

By comparing our full DFT calculations with ones in which the water molecule is treated

as a classical charge distribution defined by its Wannier charge centres, we estimate that the

charge transfer between CNT and a water molecule is no more than 10−4 e. We therefore

conclude that water does not significantly dope CNTs. This conclusion is supported by

the poor alignment of the relevant energy levels of the water molecule and the CNT, and

contrasts with previous results, based on Mulliken charge partitioning in small supercells,

that suggest much greater charge transfer.

As a consequence of the lack of charge transfer and the weak interaction between CNT

and water, we conclude that water has a very weak effect on the conductivity of individual

CNTs.[225, 222] In order to understand the origin of the humidity-dependent conductivities

observed in experiments on CNT fibres and mats, therefore, it is vital to go beyond the

effect of water on individual CNTs, and consider also the effect of water on the conductivity

of networks of CNTs, i.e., on the conductivity between CNTs.
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CHAPTER

NINE

CONCLUSIONS

9.1 Summary

In this dissertation I have presented an investigation into that mechanisms that affect

the conduction of networks of carbon nanotubes. In chapter 6 a novel mechanism was

proposed that improves the conductance between CNTs of different chirality using resonant

momentum scattering to promote momentum-conserving inter-tube tunnelling. A key

feature of this mechanism is that it arises from weak interactions between the CNTs and

the surrounding environment and can result in an improvement in inter-tube conductance

without penalising the intrinsic conductance of the constituent CNTs. This mechanism leads

to the wholly unintuitive conclusion that cleaning CNT networks by removing impurities

may not improve the network conductance, and may in fact lead to decreases in the

conductance of the network as a whole. Further, it highlights the importance of considering

the interactions between CNTs and the environment which have often been neglected in

previous theoretical studies. This conclusion applies only to networks containing a range of

CNT chiralities.

Aspects of this mechanism were investigated further using the computational methodol-

ogy developed in chapter 5. In particular, the role of momentum scattering at terminations

and bends in CNTs on the inter-tube conductance were investigated. These results were

found to support the mechanism and demonstrated that relatively weak perturbations, in

the form of bends in the CNT structure, can strongly enhance the inter-tube conductance

due to the promotion of momentum-conserving inter-tube tunnelling. In addition, chirality

mismatch was found to be the predominant factor that affects conductance between CNTs

with the end termination and bend severity taking lesser roles. The strong dependence
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on relative CNT chirality underlines the importance of considering the effect of chirality

mismatch when investigating mechanisms that affect inter-tube conductance.

Finally, the evidence for charge doping of CNTs by adsorbed water molecules was

investigated. By combining large-scale first-principles simulations with semi- and fully-

classical models it was shown that the predominant effect of water adsorbed in CNTs is

a charge polarisation due to the permanent dipole moment of the water molecule. An

estimation of the residual charge transfer, once charge polarisation effects were removed,

was made indicating that negligible charge transfer occurs between water and CNTs.

In addition to the study of CNTs, the computational methodology described in chapter 5

can be used to study electronic transport from first principles in a wide range systems. This

implementation has been specifically designed to simulate systems containing thousands

of atoms with systematically controllable accuracy, and brings into scope the possibility

of studying more realistic nano-electronic devices than has been previously possible with

first-principles techniques.

9.2 Further work

The factors that affect conduction in carbon nanotube networks are still far from well

understood, and it remains unclear to what extent the remarkable electronic properties

of individual CNTs can be achieved in these macroscopic networks. Unless this goal is

achieved, the answer to this problem cannot come from experiment. Instead, it is necessary

to study theoretically the factors that limit the conduction and to understand how these

mechanisms may be passivated.

Whilst the developments presented in chapter 5 greatly increase the system sizes that

can be studied using high-accuracy first-principles calculations, the calculations in isolation

are not the right tool for identifying these mechanisms. The extremely large system

sizes required to study inter-tube conductance, compounded by the number of unknown

potential external influences such as impurities, make the search phase space too large and

computationally expensive to be studied with density functional theory alone. Further under

such an approach, as demonstrated in chapter 7 by the coupling of resonant and interference

effects, decoupling the different mechanisms becomes difficult.

Instead, a more fruitful approach is to identify potential mechanisms using analytic

approaches or computationally inexpensive tight-binding models. The use of density

functional theory then comes in verifying and quantifying these mechanisms, and allowing

for the identification of their relative contributions, which is the approach that has been
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adopted in this dissertation.

Confirmation of the momentum exchange mechanism introduced in chapter 6 represents

a primary goal of future work. Whilst the results of chapter 7 do support this mechanism,

the smoking gun evidence would be strong enhancements of inter-tube conductances by

weakly adsorbed molecules, such as water. Some preliminary investigations into resonant

momentum scattering by adsorbed water molecules were indeed performed. The magnitude

of the long-range Fourier components of the perturbation induced by the water molecule

was found to be comparable to the 0.1 eV used in chapter 6, yet the enhancement to the

inter-tube conductance was found to be very small if present at all. These preliminary

calculations do not rule out the contribution of the mechanism, however, as computational

constraints required the introduction of bends to the CNTs which, as shown in chapter 7,

introduce momentum scattering and strongly influence the inter-tube conductance. Fur-

thermore, as semi-local exchange-correlation functions were used, self-interaction error

(see section 4.3.5) likely overestimates the wavefunction delocalisation. The inter-tube

tunnelling interaction is therefore likely overestimated, masking the enhancement due to

the momentum-resonant tunnelling. These caveats highlight the difficulty of isolating the

different mechanisms that affect inter-tube conductance when performing first-principles

calculations.

One method to tackle this problem is to build a tight-binding model that describes

the inter-tube interactions using calculations derived from first-principles. This could be

done using localised Wannier functions, either NGWFs or maximally localised Wannier

functions, that are derived from first-principles calculations using any desired level of theory,

for example to minimise self-interaction error. The computational expense associated with

building such a model is offset by its use in inexpensive tight-binding calculations in which

sources of momentum scattering can be isolated.

Additional potential avenues of research could include the effects of phonon-assisted

tunnelling on the inter-tube conductance, which has already received some attention[243,

244], or the mechanisms behind the observed increases in CNT network conductivity due

to polymer-wrapping[184]. Due to the size of the systems involved and the difficulty in

creating reliable empirical models to describe the nanotube/polymer interactions, this last

suggestion is a prime candidate for first-principles investigation using the methodology

developed in chapter 5.

Further theoretical investigation into the mechanisms by which water affects the CNT

network conductivity are also of significant interest. There is considerable experimental

evidence that water affects the conductivity of CNT networks[213, 214, 215, 216, 217, 218,
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219, 220], but the origins of these variations are not well understood. Whilst water does not

dope pristine CNTs, as shown in chapter 8, the interaction between water and defects in

the CNT lattice may present new mechanisms, and indeed there is experimental evidence

that water interacts more strongly with defects[245]. Such interactions are highly suited for

study using first-principles techniques.

To understand the nature of conductance in CNT networks will require a combination

of theoretical and experimental studies. Only by identifying the mechanisms that affect

conductance in CNT networks will it be possible to determine the true capability of this

material.
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APPENDIX

A

TRANSMISSION FROM GREEN’S FUNCTIONS

In this appendix we prove Eqn. (3.9) for computing transmission through a device and

the non-equilibrium Green’s function equations for computing the scattering-state density

matrix, following the derivation given in Ref. [161]. We focus on a two-lead device; the

extension to multi-lead devices follows straightforwardly. The route that we will take is

to propagate the states that exist deep within a lead into the central device region using a

Green’s function technique. These states are referred to as scattering states. From these

scattering states, the total current that propagates between leads can then be calculated.

A.1 Preliminaries

For a two-lead device, the one-particle Hamiltonian can be written in operator matrix form

as

H = H0 + V

=


HL 0 0

0 Hd 0

0 0 HR

+


0 VLd 0

VdL 0 VdR

0 VRd 0

 (A.1)

where the HL,R, Hd are the Hamiltonians describing the isolated leads and central device

region, and V is the coupling between the leads and the device region. The partitioning in

this matrix operator represents the operators describing the interactions between the left

lead, device, and right lead regions respectively. We define a set of operators which project
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onto the device region Pd and the left/right leads PL,R (note PL + Pd + PR = I)

PL =


1 0 0

0 0 0

0 0 0

 , Pd =


0 0 0

0 1 0

0 0 0

 , PR =


0 0 0

0 0 0

0 0 1

 , (A.2)

where 1 is the identity operator for that subspace. For example, HL = PLHPL, or VRd =

PRHPd. Note that the two leads do not directly couple, PLHPR = 0, which forces a

current flowing between leads to do so through the device region, but otherwise the form of

Eqn. (A.1) is completely general.

The retarded Green’s function can be defined for the system using the eigenstates of the

Hamiltonian H|Ψm(E)〉 = E|Ψm(E)〉

G(E) = [E + iδ −H]−1

=

∫
dE ′

∑
m

|Ψm(E ′)〉〈Ψm(E ′)|
E + iδ − E ′ (A.3)

where m indexes any degenerate states at a given energy and the infinitesimal energy δ = 0+

is used to select the retarded response in the system; in the following we will neglect

explicitly writing δ for clarity. The Green’s function can be written similarly in operator

matrix form as

G =


GL GLd GLR

GdL Gd GdR

GRL GRd GR

 . (A.4)

The device part of the Green’s function can be computed from the relation between the

Green’s function and the Hamiltonian (E −H)G(E) = 1, i.e.
E −HL −VLd 0

−VdL E −Hd −VdR
0 −VRd E −HR



GL GLd GLR

GdL Gd GdR

GRL GRd GR

 =


1 0 0

0 1 0

0 0 1

 . (A.5)

Considering the products involving the second column of the Green’s function operator

matrix, three equations are identified

(E −HL)GLd − VLdGd = 0, (A.6)

−VdLGLd − HdGd + VdRGRd = 1, (A.7)

− VRdGd + (E −HR)GRd = 0. (A.8)

Using the first and last of these results,

GLd = gLVLdGd, (A.9)

GRd = gRVRdGd, (A.10)
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where gL,R = [E − HL,R]−1 are the Green’s functions of the isolated leads. Combining

these results with Eqn. (A.7) results in

Gd = [E −Hd − ΣL − ΣR]−1, (A.11)

where

ΣL = VdLgLVLd,

ΣR = VdRgRVRd,

are the lead self energies.

From the Green’s function, the spectral function can be defined

A(E) = i
(
G(E)−G†(E)

)
= 2π

∑
n

|Ψn(E)〉〈Ψn(E)|. (A.12)

We also define the coupling matrices

ΓL = i
(
ΣL − Σ†L

)
,

ΓR = i
(
ΣR − Σ†R

)
.

A.1.1 State normalisation

The normalisation of the states is chosen such that each state injects the same current flux

into the device, a property referred to as flux normalisation. States with this property can be

combined together using a unitary transformation whilst retaining the flux normalisation.

Deep within the leads where there is no scattering, the scattering states are Bloch

waves |ul(k)〉 where l denotes the band index. If these Bloch states are normalised in the

conventional manner over the entire semi-infinite leads

〈ul(k)|ul′(k′)〉 = δll′δ(k − k′), (A.13)

then flux normalised Bloch states are generated by dividing the Bloch state by
√
vl where

vl = (1/~)dε(k)/dk is the Bloch state group velocity. Using Eqn. (A.13), the condition for

flux-normalised states is then

1√
vl
〈ul(k)|ul′(k′)〉

1√
vl′

=
1

vl
δll′δ(k − k′)

= ~δll′δ(E − E ′). (A.14)

Therefore, scattering states generated from incoming energy-normalised states will also be

flux-normalised, up to a factor of ~.
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A.2 Scattering states from the leads

For the two-lead system there exist two sets of scattering states, each set originating from

each of the reservoirs connected to the leads. The scattering states originating from one

lead can be computed by considering the isolated eigenstates of the semi-infinite lead and

treating the interaction between the leads as a perturbation. If |U (L)〉 is an orthogonal and

energy-normalised eigenstate of the isolated left lead, then this state can be propagated into

the device region

|Ψ(L)〉 = GV |U (L)〉+ |U (L)〉, (A.15)

where the bracketed superscript indicates that this state originates from the left reservoir. In

the spatial partitioning, the states |Ψ(L)〉 and |U (L)〉 are given as

|U (L)〉 =


|u(L)〉

0

0

 , |Ψ〉 =


|ψ(L)
L 〉
|ψ(L)
d 〉
|ψ(L)
R 〉

 .

Using the operator block structure of G and V , the block components of |Ψ〉 can be

computed as

|ψ(L)
d 〉 = GdVdL|u(L)〉, (A.16)

|ψ(L)
L 〉 = (1 + gLVLdGdVdL)|u(L)〉

= |u(L)〉+ gLVLd|ψ(L)
d 〉, (A.17)

|ψ(L)
R 〉 = gRVRdGdVdL|u(L)〉

= gRVRd|ψ(L)
d 〉. (A.18)

The set of states |Ψ(E)〉 are orthogonal and energy normalised, which can be shown

using Eqn. (A.15) and the Lippmann-Schwinger equation

|Ψn(E)〉 = G0(E)V |Un(E)〉+ |Un(E)〉, (A.19)

where G0 =
(
E + iδ −H0

)−1 is the unperturbed Green’s function:

〈Ψn(E)|Ψn′(E ′)〉 = 〈Un(E)|Ψn′(E ′)〉+ 〈Un(E)|V †G†(E)|Ψn′(E ′)〉 (A.20)

= 〈Un(E)|Un′(E ′)〉+ 〈Un(E)|G0(E ′)V |Ψn′(E ′)〉 +

〈Un(E)|V G†(E)|Ψn′(E ′)〉 (A.21)

= δnn′δ(E − E ′) +

〈Un(E)|V |Ψn′(E ′)〉
(

1

E ′ − E + iδ
+

1

E − E ′ − iδ

)
(A.22)

= δnn′δ(E − E ′) (A.23)
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where n, n′ indexes degenerate states, and we have used the fact the V is Hermitian and

that |Un(E)〉 and |Ψn(E)〉 are eigenstates of G0 and G respectively.

A.3 Device spectral function

Within the device region, the spectral function is defined by the sum of contributions arising

from each reservoir. The contribution to the device spectral function from states originating

from the left reservoir is

A
(L)
d = 2π

∑
l

|ψ(L)
d,l 〉〈ψ

(L)
d,l |

= 2π
∑
l

GdVdL|u(L)
l 〉〈u

(L)
l |VLdG†d

= GdVdLaLVLdG
†
d

= GdΓLG
†
d (A.24)

where the sum is performed over all the eigenstates states of the isolated left lead {|u(L)
l 〉},

and aL = i(gL − g†L) = 2π
∑

l |u
(L)
l 〉〈u

(L)
l | is the spectral function of the isolated left lead.

An equivalent expression is found for scattering states originating from the right lead and

the total density matrix is the sum of the contributions from each lead.

The density matrix within the device in non-equilibrium is then given as

ρ =
1

2π

∫ ∞
−∞

dE
[
fL(E)A

(L)
d (E) + fR(E)A

(R)
d (E)

]
, (A.25)

where fL,R is the Fermi function of the leads that populates the scattering injected scattering

states. To compute the integral over energy within Eqn. (A.25), analytic continuation of

the device Green’s function is used and the integral is performed as a contour integral in

the complex plane, as shown in Fig. A.1. Away from the real axis, the Green’s function

is smoother and a relatively coarse Gaussian quadrature, typically consisting of a circular

arc segment and a linear segment, can be used to perform the integration more efficiently

than a direct integration along the real axis. Note that Eqn. (A.25) can only account for

states within the device region that can be accessed by states originating in the leads; states

that are localised within the device region and do not interact with the scattering states

must be included separately. Eqn. (A.25) is the relation central to the non-equilibrium

Green’s function formalism, from which the electron density can be computed using the

diagonal elements n(r) = 〈r|ρ|r〉. Coupling this with density functional theory, a self-

consistent procedure for computing the electronic structure of a device at finite bias can be

constructed[138].
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C

I

Figure A.1: The complex contour C used to calculate the integral I defined in Eqn. (A.25).

By the residue theorem, I is equal to C with an additional term arising from the residues of

the poles of the Fermi function (represented by crosses) that are included within the contour.

The pluses represent the points at which the Green’s functions are evaluated to compute

the integral. The contour is computed using two separate Gaussian quadrature integrations,

evaluated along the curved and linear part of the contour C.

A.4 Current operator

The number of electrons in lead R is described by the projection operator PR. The operator

for current into the right lead can therefore be determined as the time derivative of this

operator which results in

JR = 2eṖR =
i2e

~
[H,PR] (A.26)

where the factor of two is for spin degeneracy.

The contribution to the current between the left and the right leads from the state |Ψ(L)〉
can then be computed

j(L) = 〈Ψ(L)|JR|Ψ(L)〉

=
i2e

~

(
〈ψ(L)

d |VdR|ψ
(L)
R 〉 − 〈ψ

(L)
R |VRd|ψ

(L)
d 〉
)

=
i2e

~

(
〈ψ(L)

d |VdRgRVRd|ψ
(L)
d 〉 − 〈ψ

(L)
d |VdRg†RVRd|ψ

(L)
d 〉
)

=
2e

~
〈ψ(L)

d |ΓR|ψ
(L)
d 〉 (A.27)

where we have expanded the commutation relation in Eqn. (A.26) and used the block

partitioning of the wavefunction and have used Eqn. (A.18).

The total current arising from all states originating the in the left lead is the sum over all
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scattering states |ψ(L)
d,l 〉, indexed by l,

j
(L)
tot =

2e

~
∑
l

〈ψ(L)
d,l |ΓR|ψ

(L)
d,l 〉

=
2e

2π~
∑
m

〈m|ΓR
(

2π
∑
l

|ψ(L)
d,l 〉〈ψ

(L)
d,l |
)
|m〉

=
2e

h
tr
[
ΓRGdΓLG

†
d

]
, (A.28)

where in the second line, we have used the resolution of identity within the device region

and introduced a complete set of states |m〉, and used the device spectral function defined

in Eqn. (A.24). On comparison to Eqn. (3.2), the transmission function can be identified

with the operator trace within Eqn. (A.28) thus proving Eqn. (3.9).

A.5 The transmission amplitude matrix and the

Fisher-Lee relation

The transmission may also be equivalently calculated using the Fisher-Lee relation[75].

If a state |u(L)
l 〉 is a Bloch state originating in the lead of a two-lead device, then after

propagation through the device, this state becomes a superposition of the Bloch states in the

right lead

|u(L)
l 〉 →

∑
r

tlr|u(R)
r 〉. (A.29)

The tlr elements collectively define the transmission amplitude matrix t. The transmission

probability for this state is then Tl =
∑

r |tlr|2 and the total transmission between the left

and right leads is the sum over all such probabilities for Bloch states originating in the left

lead

T =
∑
l

Tl =
∑
lr

tlrt
∗
lr

= tr
[
t†t
]
. (A.30)

Eqn. (A.30) is known the Fisher-Lee relation and relates the transmission amplitude matrix

to the total transmission.
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Appendix A. Transmission from Green’s functions

A.6 Computing the transmission matrix and

eigenchannels

Comparison of Eqn. (A.27) to Eqn. (3.2) shows that 2π〈ψd,l|ΓR|ψd,l〉 may be associated as

the transmission probability for that scattering state (we omit the superscripts that define the

source lead of that state for clarity). At a given energy, a number of degenerate scattering

states may exist, and therefore new states can be formed using a linear combination of the

original states

|φd,n〉 =
∑
l′

Mnl|ψd,l〉 (A.31)

where Mll′ is a unitary matrix that preserves the flux normalisation of the original states.

The total transmission (c.f. Eqn. (A.28)) is then

Ttot = 2π
∑
nml

M †
lnMml〈φd,n|ΓR|φd,m〉

=
∑
nml

M †
lnMmlTnm

= tr
[
M †TM

]
(A.32)

where we have defined the transmission matrix

Tnm = 2π〈φd,n|ΓR|φd,m〉 (A.33)

which is in general non-diagonal. As ΓR is Hermitian, there must exist a unitary rota-

tion Mml that makes the transmission matrix diagonal, i.e. Tnm = diag{Ti}, where the

eigenvalues are Ti = 2π〈φd,i|ΓR|φd,i〉, and 2π〈φd,i|ΓR|φd,j〉 = 0 for i 6= j.

The scattering states |φd,i〉 are known as the eigenchannels of the device, with Ti

the corresponding eigentransmission, and have the useful property that they propagate

through the device without mixing with other scattering states. Any scattering state can

be decomposed as a weighted sum of the set of eigenchannels at that energy, and the total

transmission of that scattering state is given by the corresponding weighted sum of the

eigentransmissions

|χd〉 =
∑
i

αi|φd,i〉, (A.34)

Ttot =
∑
i

|αi|2Ti. (A.35)

The eigenchannels can be constructed by first generating the scattering states by diago-

nalising the spectral function (Eqn. (A.24))

A(L) =
∑
l

|ψ̃(L)
d,l 〉λl〈ψ̃

(L)
d,l | = 2π

∑
l

|ψ(L)
d,l 〉〈ψ

(L)
d,l | (A.36)
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A.6. Computing the transmission matrix and eigenchannels

where |ψ(L)
d,l 〉 =

√
λl/2π|ψ̃(L)

d,l 〉. These scattering states are then used to compute the trans-

mission matrix (Eqn. (A.33)) which is then diagonalised to generate the eigenchannels and

corresponding eigentransmissions. The eigenchannels can then be plotted for visualisation,

and the process repeated for each lead acting as the source.
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APPENDIX

B

BLOCK TRI-DIAGONAL MATRIX INVERSION

Here we list the results of Ref. [159] for computing the matrix inverse via block tri-diagonal

Gaussian elimination for a matrix in block tri-diagonal form

A =



a11 a12

a21 a22 a23

a32 a33 a34

a43 a44 a45

. . . . . . . . .


(B.1)

where aij are themselves submatrices, zero submatrices are left blank and A is partitioned

into n× n submatrix blocks.

Selected matrix blocks, according to the same block tri-diagonal form, can be computed

using the following recursion relations using a forward (left) and backward (right) pass

through the matrix blocks of A. We use the same notation as in Ref. [159]. The left pass:

dLii = aii + cLi−1ai−1,i for i = 2, 3, . . . , n (B.2)

cLi = −ai+1,i(d
L
ii)
−1 for i = 1, 2, . . . , n− 1 (B.3)

dL11 = a11. (B.4)

The right pass:

dRii = aii + cRi+1ai+1,i for i = n− 1, n− 2, . . . , 1 (B.5)

cRi = −ai−1,i(d
R
ii)
−1 for i = n, n− 1, . . . , 2 (B.6)

dRnn = ann. (B.7)
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Appendix B. Block tri-diagonal matrix inversion

Defining
cR1,2,...,i = cR1 c

R
2 · · · cRi

cLi,i−1,...,1 = cLi c
L
i−1 · · · cL1

 where i = 1, 2, . . . n, (B.8)

a selected submatrix block of the inverse of A, G = A−1 can then be computing using

gii =
(
− aii + dLii + dRii

)−1 where i = 1, 2, . . . n (B.9)

gij = giic
R
i+1,i+2,...,j−1,j for i < j (B.10)

gij = giic
L
i−1,i−2,...,j+1,j for i > j. (B.11)

Operations on submatrix blocks are performed using dense matrix algebra implemented

in standard LAPACK routines.[160]
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APPENDIX

C

CLASSICAL ELECTROSTATIC CHARGE

POLARISATION MODEL

In Chapter 8.3, we model the interaction between a CNT and an adsorbed water molecule

as a classical conducting cylinder interacting with point charges. The cylinder radius is set

as the radius of the CNT. The water molecule is modelled as point charges placed at the

centres of the Wannier/ionic charges, as described in Section 8.3. We calculate the charge

density profile induced in the conducting cylinder due to the classical charges.

The electric potential is calculated by solving for the Green’s function to the Poisson

equation subject to the constant potential Dirichlet boundary condition on the cylinder

∇2φ(r) = 4π
∑
i

qiδ(r− ri) (C.1)

where we have adopted atomic units.

In the limit of an infinite radius cylinder, the conductor becomes an infinite conducting

plane and the solution is obtained using the method of images in a simple analytic form. For

a single charge a position ri = (xi, 0, 0) above a conductor in the yz plane, the potential is

φ(r) =
q

|r− ri|
− q

|r− rmi |
(C.2)

where rmi = (−xi, 0, 0) is the position of the mirror charge.

The surface charge of the conductor is calculated using Gauss’ law giving σ(y, z) =

1/(2π)Ex|x=0, where Ex|x=0 is the electric field perpendicular to the plane, evaluated at the

plane. The charge density per unit length of CNT is given by the sum of the surface charge

along a direction perpendicular to the CNT axis, i.e.

λ(z) =

∫
dy σ(y, z) =

q

π

xi
z2 + x2

i

. (C.3)
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Appendix C. Classical electrostatic charge polarisation model

The charge density due to multiple charges is generated through superposition. To compare

to the charge polarisation derived from the DFT calculations, this quantity is convolved

with the same window function given in Eqn. (8.3).

Whilst the shape of the induced density calculated using this model is in excellent

qualitative agreement with our DFT calculations, the amplitude is an order of magnitude

too large. Heuristically, this can be understood to arise from the difference in screening in

the metallic cylinder as compared to a real CNT. We account for this by including a single

parameter to the model that scales all the classical charges by the same factor, and choose

its value such that the best fit to the DFT data is obtained. For the calculations shown in the

right panels of Fig. 8.4 and Fig. 8.5, the fitted scaling factors are 0.13 and 0.28 respectively.

The same calculation can be performed treating the finite radius of the CNT explicitly by

calculating the Green’s function using cylindrical polar symmetry[246]. The corresponding

induced charge density per unit length of CNT for a single point charge at cylindrical

co-ordinate (z1, r1) is (Ref. [246], Eqn. (45))

λcyl(z) =
q

π

∫ ∞
0

dk cos
[
k(z − z1)

]K0(kr1)

K0(ka)
(C.4)

where the CNT axis is aligned with r = 0, a is the CNT radius and K0 is the zeroth-order

modified Bessel function of the second kind.

The difference between the induced charge density in the planar and cylindrical geome-

tries is found to be negligible, however, as seen in Fig. C.1. This observation is reasonable

as the CNT diameter (≈ 8 Å) is much larger than the distance between point charges and

CNT surface (3.20 Å). Regardless, we find that the classical model captures well the main

features of the charge polarisation due to the water molecule.
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Figure C.1: The difference between the classical induced charge density difference in the

cylindrical geometry (Eqn. (C.4)) and the planar geometry (Eqn. (C.3)). The point charges

are for the Wannier charge model with the water in the θ = 90◦ orientation with the charge

due to the oxygen nucleus at z = 0; the CNT radius is 4.0 Å.
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APPENDIX

D

LOCAL DENSITY OF STATES

The local density of states (LDOS) provides simultaneously a description of the energetic

and spatial distribution of the electronic structure of a material, and is thus an invaluable tool

used in section 8.6 for probing the possibility of bonding between two molecular fragments.

An LDOS decomposition is achieved by diagonalising the Hamiltonian and then pro-

jecting the resulting eigenstates onto a set of spatially-localised orbitals; within ONETEP,

the NGWFs themselves are used as the localised basis.[233]

The generalised eigenproblem that must be solved is∑
β

HαβM
β
n = εn

∑
β

SαβM
β
n (D.1)

where Hαβ, Sαβ are the Hamiltonian and overlap matrices in the NGWF basis and εn is

the eigenenergy of the nth state. The matrix Mβ
n describes the eigenvectors in terms of the

NGWF basis |ψn〉 =
∑

βM
β
n |φβ〉 where |φβ〉 are the NGWFs. The total density of states

can be calculated as

N (E) =
∑
n

δ(E − εn), (D.2)

where the Dirac δ-function is, in practice, replaced with a Gaussian broadening typically of

order 0.1 eV.

The partitioning of the density of states is performed according to groups of atoms. The

LDOS for such a group, which we will refer to as region I , is calculated by projecting each

eigenstate onto the local orbitals of all the atoms within this region

NI(E) =
∑
n

δ(E − εn)〈ψn|
∑
α∈I

(
|φα〉〈φα|

)
|ψn〉. (D.3)

The non-orthogonality of the NGWFs has been accounted for by introducing the duals of

the NGWFs |φα〉 which are related to the NGWFs by |φα〉 =
∑

β Sαβ|φβ〉 and together

169



Appendix D. Local density of states

with the NGWFs satisfy the bi-orthogonality relation 〈φα|φβ〉 = δαβ . Using these results,

Eqn. (D.3) can be rewritten as

NI(E) =
∑
n

δ(E − εn)
∑
βγ,α∈I

(M †)γn〈φγ|
(
|φα〉〈φα|

)
|φβ〉Mβ

n ,

=
∑
n

δ(E − εn)
∑
α∈I

(M †)αn

(∑
β

SαβM
β
n

)
. (D.4)

A resulting series of functions NI(E) are obtained for each of the chosen regions I .

170



BIBLIOGRAPHY

[1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56–58,

Nov 1991.

[2] M. Monthioux and V. L. Kuznetsov, “Who should be given the credit for the discovery

of carbon nanotubes?,” Carbon, vol. 44, no. 9, pp. 1621–1623, 2006.

[3] L. V. Radushkevich and V. M. Lukyanovich, “O strukture ugleroda, obrazujucegosja

pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte (About the structure

of carbon formed by thermal decomposition of carbon monoxide on iron substrate),”

Zurn. Fisic. Chim., vol. 1, p. 88, 1952.

[4] W. Bollmann and J. SpreadBorough, “Action of graphite as a lubricant,” Nature,

vol. 186, pp. 29–30, Apr 1960.

[5] A. Oberlin, M. Endo, and T. Koyama, “Filamentous growth of carbon through

benzene decomposition,” Journal of Crystal Growth, vol. 32, no. 3, pp. 335–349,

1976.

[6] M. Reibold, P. Paufler, A. A. Levin, W. Kochmann, N. Patzke, and D. C. Meyer,

“Materials: Carbon nanotubes in an ancient Damascus sabre,” Nature, vol. 444,

pp. 286–286, Nov 2006.

[7] R. Zhang, Y. Zhang, Q. Zhang, H. Xie, W. Qian, and F. Wei, “Growth of half-meter

long carbon nanotubes based on Schulz-Flory distribution,” ACS Nano, vol. 7, no. 7,

pp. 6156–6161, 2013. PMID: 23806050.

[8] R. M. Sundaram, K. K. K. Koziol, and A. H. Windle, “Continuous direct spinning of

fibers of single-walled carbon nanotubes with metallic chirality,” Advanced Materials,

vol. 23, no. 43, pp. 5064–5068, 2011.

171



BIBLIOGRAPHY

[9] N. Behabtu, C. C. Young, D. E. Tsentalovich, O. Kleinerman, X. Wang, A. W. K. Ma,

E. A. Bengio, R. F. ter Waarbeek, J. J. de Jong, R. E. Hoogerwerf, S. B. Fairchild, J. B.

Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M. J. Otto, and M. Pasquali,

“Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity,”

Science, vol. 339, no. 6116, pp. 182–186, 2013.

[10] N. Behabtu, M. J. Green, and M. Pasquali, “Carbon nanotube-based neat fibers,”

Nano Today, vol. 3, no. 5–6, pp. 24–34, 2008.

[11] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.

Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,”

Science, vol. 306, no. 5696, pp. 666–669, 2004.

[12] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,

“The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, pp. 109–162, Jan.

2009.

[13] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60:

Buckminsterfullerene,” Nature, vol. 318, pp. 162–163, Nov 1985.

[14] R. Saito, G. Dresselhaus, and S. Dresselhaus, Physical Properties of Carbon Nan-

otubes. Imperial College Press, 1998.

[15] M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and

breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science,

vol. 287, no. 5453, pp. 637–640, 2000.

[16] E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, “Thermal conductance of

an individual single-wall carbon nanotube above room temperature,” Nano Letters,

vol. 6, no. 1, pp. 96–100, 2006.

[17] C. Liao, K. Chen, W. Wu, and L. Chen, “In situ transmission electron microscope

observations of electromigration in copper lines at room temperature,” Applied

Physics Letters, vol. 87, p. 141903, Oct 2005.

[18] D. Dew-Hughes, “The critical current of superconductors: an historical review,” Low

Temperature Physics, vol. 27, no. 9, pp. 713–722, 2001.

[19] H. Li and K. Banerjee, “High-frequency analysis of carbon nanotube interconnects

and implications for on-chip inductor design,” Electron Devices, IEEE Transactions

on, vol. 56, pp. 2202–2214, Oct 2009.

172



BIBLIOGRAPHY

[20] M. Meyyappan, ed., Carbon nanotubes: Science and applications. CRC Press, 2004.

[21] J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunier, “Evaluating

the characteristics of multiwall carbon nanotubes,” Carbon, vol. 49, no. 8, pp. 2581–

2602, 2011.

[22] J.-C. Charlier, X. Blase, and S. Roche, “Electronic and transport properties of

nanotubes,” Rev. Mod. Phys., vol. 79, pp. 677–732, May 2007.

[23] J.-F. Colomer, L. Henrard, G. Van Tendeloo, A. Lucas, and P. Lambin, “Study of the

packing of double-walled carbon nanotubes into bundles by transmission electron

microscopy and electron diffraction,” J. Mater. Chem., vol. 14, pp. 603–606, 2004.

[24] M. Motta, A. Moisala, I. A. Kinloch, and A. H. Windle, “High performance fibres

from ‘dog bone’ carbon nanotubes,” Advanced Materials, vol. 19, no. 21, pp. 3721–

3726, 2007.

[25] Y. Zhao, J. Wei, R. Vajtai, P. M. Ajayan, and E. V. Barrera, “Iodine doped carbon

nanotube cables exceeding specific electrical conductivity of metals,” Sci. Rep., vol. 1,

Sep 2011.
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[135] D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-conserving pseudopotentials,”

Phys. Rev. Lett., vol. 43, pp. 1494–1497, Nov. 1979.

[136] L. Kleinman and D. M. Bylander, “Efficacious Form for Model Pseudopotentials,”

Phys. Rev. Lett., vol. 48, no. 20, pp. 1425–1428, 1982.

[137] A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos, “Optimized pseu-

dopotentials,” Phys. Rev. B, vol. 41, pp. 1227–1230, Jan. 1990.

[138] M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, “Density-

functional method for nonequilibrium electron transport,” Phys. Rev. B, vol. 65,

p. 165401, Mar. 2002.

[139] R. A. Bell, S. M.-M. Dubois, M. C. Payne, and A. A. Mostofi, “Electronic transport

calculations in the ONETEP code: implementation and applications,” submitted, 2014.

[140] M. Koentopp, C. Chang, K. Burke, and R. Car, “Density functional calculations

of nanoscale conductance,” Journal of Physics: Condensed Matter, vol. 20, no. 8,

p. 083203, 2008.

[141] A. R. Rocha, M. Rossi, A. Fazzio, and A. J. R. da Silva, “Designing real nanotube-

based gas sensors,” Phys. Rev. Lett., vol. 100, p. 176803, Apr. 2008.

183



BIBLIOGRAPHY
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manual and user guide. Zürich, Switzerland: Hochschuleverlag AG an der ETH
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