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Abstract. In this paper we propose a variational approach for video de-
noising, based on a total directional variation (TDV) regulariser proposed
in [21,20] for image denoising and interpolation. In the TDV regulariser,
the underlying image structure is encoded by means of weighted deriva-
tives so as to enhance the anisotropic structures in images, e.g. stripes
or curves with a dominant local directionality. For the extension of TDV
to video denoising, the space-time structure is captured by the volumet-
ric structure tensor guiding the smoothing process. We discuss this and
present our whole video denoising workflow. The numerical results are
compared with some state-of-the-art video denoising methods.

Keywords: Total directional variation · Video denoising · Anisotropy ·
Structure tensor · Variational methods.

1 Introduction

Video denoising refers to the task of removing noise in digital videos. Compared
to image denoising, video denoising is usually a more challenging task due to the
computational cost in processing large data and the redundancy of information,
i.e. the expected similarity between two consecutive frames that should be inher-
ited by the denoised video. A straightforward approach to video denoising is to
denoise each frame of the video independently, by using the broad literature on
image denoising methods, see e.g. [26,24,6,23,4,11,15,3,19,12,21]. Computational
cost is then stratified across image frames by sequentially processing them, which
is seen as an advantage. However, a significant disadvantage of this frame-by-
frame processing is the appearance of flickering artefacts and post-processing
motion compensation step may be required [18,2].

In recent years different approaches have been proposed for solving the video
denoising problem: we refer to the introduction of [1] for an extensive survey.
Notably, patch-based approaches are usually considered among the most promis-
ing video denoising methods in that they are able to achieve qualitatively good
denoising results. For example, V-BM3D is the 3D extension of the BM3D col-
laborative filters [10]: without inspecting the motion time-consistency, V-BM3D
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independently filters 2D patches resulting similar in the 3D spatio-temporal
neighbourhood domain. As mentioned in [1], while generally receiving good de-
noising results, the problem of flickering still occurs in V-BM3D. For this reason,
authors of V-BM3D developed an extension, called V-BM4D, where the patch-
similarity is explored along space-temporal blocks defined by a motion vector,
see [17]. Similarly, in [5] the authors propose to group patches via an optical flow
equation based on [28] and implemented in [25]. In these approaches, while the
incorporation of motion helps to provide consistency in time, denoising results
also suffer from the lack of accuracy in the estimated motion. A possible way
to avoid the motion estimation is to consider 3D rectangular patches so as to
inherently model the 3D structure and motion in the spatio-temporal video di-
mensions, based on the fact that rectangular 3D patches are less repeatable than
motion-compensated patches. However, such approach is not efficient for uniform
motion or homogeneous spatial patterns, cf. the discussion on this topic in [1].
Motivated by this reasoning the authors of [1] introduce a Bayesian patch-based
video denoising approach with rectangular 3D patches modelled as independent
and identically distributed samples from an unknown a priori distribution: then
each patch is denoised by minimising the expected mean square error. Other
approaches in video denoising are the straightforward extension of the Rudin-
Osher-Fatemi (ROF) model [24] to 3D data, by using a spatio-temporal total
variation (referred in the next as ROF 2D+t), the joint video denoising with the
computation of the flow [7] and CNN approaches [13].

Scope of the paper. In this paper we propose an extension of the recently intro-
duced total directional variation (TDV) regulariser [21,20] for video denoising,
via the following variational regularisation model:

u? ∈ arg min
u

(
TDV(u,M) +

η

2
‖u− u�‖22

)
, (1)

where u? is the denoised video, M is a weighting field that encodes directional
features in two spatial and one temporal dimension, η > 0 is the regularisation
parameter and u� is a given noisy video. The model (1) will be made more
precise in the next sections where we mainly focus on its discrete and numerical
aspects. In order to accommodate for spatial-temporal data, we consider here a
modification of the TDV regulariser given in [21,20] that derives directionality in
the temporal dimension. Differently from the patch-based approach, we compute
for each voxel the vector field of the motion, to be encoded as a weight in the
TDV regulariser. With this voxel-based approach we will reduce the flickering
artefact which appears in patch-based approaches due to the patch selection,
especially in regions of smooth motion. Results are presented for a variety of
videos corrupted with Gaussian white noise.

Organisation of the paper. This paper is organised as follows: in Section 2 we
describe the estimation of the vector fields, the TDV regulariser and the varia-
tional model to be minimised; in Section 3 we describe the optimisation method
for solving the TDV video denoising problem and comment on the selection
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of parameters; in Section 4 we show denoising results on a selection of videos
corrupted with Gaussian noise of varying strength.

2 Total directional variation for video denoising

Let u : Ω × [1, . . . , T ] → RC+ be a clean video and Ω a spatial, rectangular
domain indexed by x = (x, y), with number of T frames and C colours. Let u�

be a corrupted version of u in each space-time voxel (x, t) ∈ Ω × [1, . . . , T ] by
i.i.d. Gaussian noise n of zero mean and (possibly known) variance ς2 > 0:

u�(x, t) = u(x, t) + n(x, t), ∀(x, t) ∈ Ω × [1, . . . , T ]. (2)

In what follows, we propose to compute a denoised video u? ≈ u by solving

u? ∈ arg min
u

(
TDV(u,M) +

η

2
‖u− u�‖22

)
, (3)

where TDV(u,M) is the proposed total direction regulariser w.r.t. a weighting
field M, both specified in the next sections, and η > 0 a regularisation parameter.

2.1 The directional information

In order to capture directional information of u in (3), we eigen-decompose the
two-dimensional structure tensor [27] in each coordinate plane.

To do so, we first construct the 3D structure tensor: let ρ ≥ σ > 0 be two
smoothing parameters, Kσ,Kρ be the Gaussian kernels of standard deviation σ
and ρ, respectively, and let uσ = Kσ ∗u. Then the 3D structure tensor reads as

S := Kρ ∗ (∇uσ ⊗∇uσ) =

ux,xσ,ρ ux,yσ,ρ ux,tσ,ρuy,xσ,ρ u
y,y
σ,ρ u

y,t
σ,ρ

ut,xσ,ρ u
t,y
σ,ρ u

t,t
σ,ρ

 , (4)

where ∇uσ⊗∇uσ = ∇uσ∇uTσ , up,qσ,ρ := Kρ∗(∂puσ⊗∂quσ) for each p, q ∈ {x, y, t}.
For a straightforward application to the TDV regulariser in [21], we extract

the 2D sub-tensors of (4), whose eigen-decomposition encodes structural infor-
mation in each of the coordinate frames spanned by {x, y}, {x, t} and {y, t}:

on coordinates {x, y}: Sx,y =

(
ux,xσ,ρ u

x,y
σ,ρ

uy,xσ,ρ u
y,y
σ,ρ

)
= λ1(e1 ⊗ e1) + λ2(e2 ⊗ e2);

on coordinates {x, t}: Sx,t =

(
ux,xσ,ρ u

x,t
σ,ρ

ut,xσ,ρ u
t,t
σ,ρ

)
= λ3(e3 ⊗ e3) + λ4(e4 ⊗ e4);

on coordinates {y, t}: Sy,t =

(
uy,yσ,ρ u

y,t
σ,ρ

ut,yσ,ρ u
t,t
σ,ρ

)
= λ5(e5 ⊗ e5) + λ6(e6 ⊗ e6).

(5)

For each s ∈ {1, . . . , 6}, the eigenvector es = (es,1, es,2) has eigenvalue λs.
The tangential directions in the 2D planes {x, y}, {x, t} and {y, t} are e2, e4, e6,
respectively, with e1, e3, e5 the gradient directions, see Fig. 1.
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From (5), the ratios between the eigenvalues, called confidence, measure the
local anisotropy of the gradient on the slices within a certain neighbourhood:

ax,y =
λ2

λ1 + ε
, ax,t =

λ4

λ3 + ε
, ay,t =

λ6

λ5 + ε
, with ε > 0. (6)

Here, ax,y, ax,t, ay,t ∈ [0, 1] and the closer to 0, the higher is the local anisotropy.

Fig. 1. Left: grey-scale video xylophone.mp4, corrupted by Gaussian noise (ς = 20);
right: streamlines of the weighting field with e2 (blue), e4 (red) and e6 (yellow).

2.2 The regulariser

The TDV regulariser is composed of a gradient operator weighted by a tensor
M, whose purpose is to smooth along selected directions. In view of the spatial-
temporal data, we extend the natural gradient operator to the Cartesian planes

{x, y}, {x, t} and {y, t}. We will denote with ∇̃ the concatenation of resulting
2-dimensional gradients. Further, we encode (5) and (6) in M, leading to the

weighted gradient M∇̃ for the video function u = u(x, y, t):

M∇̃⊗ u =


ax,y 0 0 0 0 0

0 1 0 0 0 0
0 0 ax,t 0 0 0
0 0 0 1 0 0
0 0 0 0 ay,t 0
0 0 0 0 0 1




e1,1 e1,2 0 0 0 0
e2,1 e2,2 0 0 0 0
0 0 e3,1 e3,2 0 0
0 0 e4,1 e4,2 0 0
0 0 0 0 e5,1 e5,2
0 0 0 0 e6,1 e6,2


︸ ︷︷ ︸

M


∂x
∂y
∂x
∂t
∂y
∂t


︸ ︷︷ ︸

∇̃

⊗u (7)

=
(
ax,y∇x,y

e1 u, ∇
x,y
e2 u, a

x,t∇x,t
e3 u, ∇

x,t
e4 u, a

y,t∇y,t
e5 u, ∇

y,t
e6 u

)T
. (8)

Note that M is computed once from the noisy input u�. For a fixed frame
{p, q} with p, q ∈ {x, y, t} and direction z = (z1, z2) the gradient ∇p,q

z u =
∂pu ·z1 +∂qu ·z2 is the directional derivative of u along z w.r.t. the frame {p, q}.
See [22, Fig. 3.12] for more details about this choice. With this notation in place,
we consider the total directional variation (TDV) regulariser,

TDV(u,M) = sup
Ψ

{∫
Ω

(M∇̃⊗ u) · Ψ dx
∣∣∣ for all suitable test functions Ψ

}
. (9)

By plugging (8) into (9) we reinterpret (9) as a penalisation of the rate of change
along e2, e4, e6, with coefficients ax,y, ax,t, ay,t as bias in the gradient estimation.
Note, that while in [21] the TDV regulariser has been proposed for a general
order of derivatives, we consider here only a TDV regulariser of first differential
order.
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2.3 Connections to optical flow

Let (x, y, t) ∈ Ω× [1, . . . T ] be a voxel and u(x, y, t) its intensity in the grey-scale
video sequence u. If u(x, y, t) is moved by a small increment (δx, δy, δt) between
two frames, then the brightness constancy constraint reads

u(x, y, t) = u(x+ δx, y + δy, t+ δt). (10)

If u is sufficiently smooth, then the optical flow constraint is derived [16,14] as
a linearisation of (10) with respect to a velocity field z:

∇u(x, y, t)T · z = 0, for all (x, y, t) ∈ Ω × [1, T ]. (11)

For a specific field z = (z̃, 1) with z̃ = (z1(x, y), z2(x, y)), Equation (11) is
equivalent to

−∂tu = ∂xu · z1 + ∂yu · z2 = ∇x,y
z̃ u for all (x, y, t) ∈ Ω × [1, T ]. (12)

We can now re-write (11) by means of the following velocity vector fields:

ax,y(e1,1, e1,2, 1), ax,t(e3,1, 1, e3,2), ay,t(1, e5,1, e5,2),

(e2,1, e2,2, 1), (e4,1, 1, e4,2), (1, e6,1, e6,2),
(13)

leading to
−ax,y∂tu
−∂tu
−ax,t∂yu
−∂yu
−ay,t∂xu
−∂xu

 =


ax,y∂xu · e1,1 + ax,y∂yu · e1,2

∂xu · e2,1 + ∂yu · e2,2
ax,t∂xu · e3,1 + ax,t∂tu · e3,2

∂xu · e4,1 + ∂tu · e4,2
ay,t∂yu · e5,1 + ay,t∂tu · e5,2

∂yu · e6,1 + ∂tu · e6,2

 =


ax,y∇x,y

e1 u
∇x,y
e2 u

ax,t∇x,t
e3 u

∇x,t
e4 u

ay,t∇y,t
e5 u

∇y,t
e6 u

 . (14)

Here, the right-hand side of (14) encodes the components that we aim to penalise
in (8). Thus, the penalisation of (8) is equivalent to the penalisation of the left-
hand side of (14), assumed (11) holds with velocity fields in (13). Note that the
weights ax,y, ax,t and ay,t add a contribution in the direction of the gradients
e1, e3, e5, respectively.

2.4 The minimisation problem

We aim to find the denoised video u? from the noisy input video u� by solving the
TDV − L2 minimisation problem (3). For the numerical optimisation of (3) we
use a primal-dual scheme [9]. For this, we rewrite (3) as a saddle point problem

for the operator K := M∇̃, whose adjoint will be denoted by K∗. In what
follows, we denote by u the primal variable, y the dual variable, f∗ the Fenchel
conjugate of f , by g the fidelity term and by σ, τ > 0 the dedicated parameters
of the primal-dual algorithm, see [9] for more details on the primal-dual schemes
in image processing and [21] for their application to variational problems with
TDV regulariser. The resulting saddle-point problem reads

u? ∈ arg min
u

max
y

(
〈Ku, y〉 − δ{‖ · ‖2,∞≤1}(y)︸ ︷︷ ︸

f∗(y)

+
η

2
‖u− u�‖22︸ ︷︷ ︸
g(u�)

)
. (15)
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In the primal-dual algorithm solving (15) we need the proximal operators:

proxσf∗(y) =
y

max{1, ‖y‖2}
, proxτg(u) = u+ (I + τη)−1τη(u� − u), (16)

where I is the identity matrix. Note that g is uniformly convex, with convexity
parameter η, so the dual problem is smooth. An accelerated version of the primal-
dual algorithm can be used in this case, e.g. [8, Alg. 2], starting with τ0, σ0 > 0

where τ0σ0L
2 ≤ 1 and L2 is the squared operator norm, L2 := ‖K‖2 ≤ 24 (which

holds in connection with the discretisation in (17) and stepsize h = 1).

3 The discrete model

In the discrete model, Ω is a rectangular grid of size M × N and a video u
is a volumetric data of size M × N × T × C (height×width×frames×colours).
Here, we consider grey-scale videos (C = 1) along the axes (i, j, k) ∈ Ω × [1, T ],
with i = 1, . . . ,M , j = 1, . . . , N and k = 1, . . . , T . An extension to coloured
videos is straightforward by processing each colour channel separately. Here, a
fixed (i, j, k) ∈ Ω × [1, T ] identifies a voxel in the gridded video domain, i.e.
a small cube of size h in each axis direction. Then, ui,j,k := u(i, j, k) is the
intensity in the voxel (i, j, k) in the grey-scale video sequence u. The noisy input
video is denoted by u� as well as the other discrete vectorial quantities, namely
a1,2,a1,3,a2,3 and λs for s = 1, . . . , 6.

3.1 Discretisation of derivative operators and vector fields

We describe a finite difference scheme on the voxels by introducing the discrete
gradient operator ∇ : RM×N×T → RM×N×T×3, with ∇ = (∂1, ∂2, ∂3) defined
via the central finite differences on half step-size and Neumann conditions as

(u1)i,j,k := (∂1u)i+0.5,j,k =


ui+1,j,k − ui,j,k

h
, if i = 1, . . . ,M − 1,

0 if i = M ;

(u2)i,j,k := (∂2u)i,j+0.5,k =


ui,j+1,k − ui,j,k

h
, if j = 1, . . . , N − 1,

0 if j = N ;

(u3)i,j,k := (∂3u)i,j,k+0.5 =


ui,j,k+1 − ui,j,k

h
, if k = 1, . . . , T − 1,

0 if k = T.

(17)

Remark 1. While u lies at the vertices of the discrete grid, ∇u lies on its edges.
Thus, (17) is advantageous for local anisotropy since it has sub-pixel precision
and a more compact stencil radius than the classical forward scheme.

In (7), ∇̃ : RM×N×T → RM×N×T×6 acts on u as follows:(
∇̃⊗ u

)
i,j,k

:=
(
u1, u2, u1, u3, u2, u3

)T
i,j,k

. (18)
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Algorithm 1: TDV for video denoising

Input : A video u� ∈ [0, 255] (M ×N × 1× T ), ς ∈ [0, 255].
Output : the denoised video u;
Parameters: for the primal-dual maxiter, tol; for the variational model: (σ, ρ, η).

Function TDV video denoising:

// Compute operators for the weighted derivative

[∂1, ∂2, ∂3] = compute derivative operator (M,N, T ) ;
S = compute 3D structure tensor (u�, σ, ρ);
[e1, e2, e3, e4, e5, e6,λ1,λ2,λ3,λ4,λ5,λ6] = eigendecomposition (S);
[a1,2,a1,3,a2,3] = compute anisotropy (λ1,λ2,λ3,λ4,λ5,λ6);
M = compute weights (a1,2,a1,3,a2,3, e1, e2, e3, e4, e5, e6);

// Proximal operators, adjoints and primal-dual from [8]

[K,K∗] = compute K and adjoint (M, ∂1, ∂2, ∂3);
proxf∗ = @(y) y./max{1, ‖y‖2} ;

proxg = @(u, τ) u+ (I + τη)−1τη(u� − u);

u = primal dual (u�,K,K∗, proxf∗ , proxg,maxiter, tol);

return

Any field es with s = 1, . . . , 6 and confidence a1,2, a1,3, a2,3 will be discretised in
the cell centres (i+0.5, j+0.5, k+0.5) of the discrete grid domain. The weighting
multiplication in (7) is performed via an intermediate averaging interpolation
operator W : RM×N×T×6 → R(M−1)×(N−1)×(T−1)×6 that avoids artefacts due
to the grid offset: this gives MW∇̃ : RM×N×T → R(M−1)×(N−1)×(T−1)×6.

3.2 TDV for video denoising

The TDV-based workflow consists of two steps, with pseudo-code in Alg. 1. The
first one computes the directions via the eigen-decomposition in (5) while the
second one is the primal-dual algorithm [8, Alg. 2], whose stopping criterion is
the root mean square difference between two consecutive dual variable iterates.

4 Results

In this section we discuss the numerical results for video denoising obtained with
Alg. 1. Considered videos have been taken from a benchmark video dataset3

4. Each video has values in [0, 255] corrupted with Gaussian noise. We tested
different noise levels with standard deviation ς = [10, 20, 35, 50, 70, 90] without
clipping the videos so as to conform to the observation model.

3
Videos are freely available: Salesman and Miss America at www.cs.tut.fi/∼foi/GCF-BM3D
Xylophone in MATLAB; Water (re-scaled, grey-scaled and clipped, Jay Miller, CC 3.0) at
www.videvo.net/video/water-drop/477; Franke’s function (a synthetic surface moving on fixed
trajectories: the coloured one changes with the parula colormap).

4
Results are available at http://www.simoneparisotto.com/TDV4videodenoising.

www.cs.tut.fi/~foi/GCF-BM3D
www.videvo.net/video/water-drop/477
http://www.simoneparisotto.com/TDV4videodenoising
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The quality of the denoised result u? is evaluated by the peak signal-to-noise
ratio (PSNR) value w.r.t. a ground truth video u. The model requires the param-
eters (σ, ρ, η) as input. Once provided, we solve the saddle-point minimisation

problem in (15) via the accelerated primal-dual algorithm with L2 = ‖K‖2 = 24,
see [8, Alg. 2]. Here the tolerance for the stopping criterion is fixed to 10−4 (on
average reached in 300 iterations). However, we experienced faster convergence
and similar results with L2 � 24 and bigger tolerances, e.g. 10−3.

4.1 Selection of parameters

In the model, u? is sensitive to the choice of both (σ, ρ) for the vector fields,
and the regularisation parameter η that is chosen according to the noise level.
Choosing those parameters by a trial and error approach is computationally
expensive and the best parameters may differ, even for videos with the same
noise level. In particular, the parameters (σ, ρ) depend on structure in the data,
e.g. flat regions versus motions versus small details. Therefore, a strategy for
tuning them is needed.

To estimate appropriate values for (σ, ρ, η) that render good results for a
variety of videos we compute optimal parameters via line-search for maximis-
ing the PSNR for a small selection of video denoising examples for which the
ground truth is available. The result of this optimisation is given in Table 1.
For the line-search the parameters for the maximal PSNR values are computed
iteratively, by applying Alg. 1 for two different choices of (σ, ρ, η) at a time, and
subsequently adapt this parameter-set for the next iteration towards the ones
in the neighbourhood of the one that returns a larger PSNR. In this search we
constrain σ ≤ ρ [27]. The line-search is stopped when, for the currently best
parameters (σ, ρ, η) all the other neighbours in a certain radius of distance re-
port an inferior PSNR value. In Fig. 2 we show the trajectory of the parameters
during this line-search for the Franke video corrupted with Gaussian noise with
ς = 10. We observe that there exists a range of parameters in which the PSNR
values are almost the same.

By looking at the estimated parameters from the line-search approach in
Table 1, we suggest the following rule of thumb for their selection in Alg. 1:

σ = ρ = 3.2η−0.5 and η = 255ς−1. (19)

4.2 Numerical results

For the so-found optimal parameters we compare in Table 1 the PSNR values
achieved for our approach (TDV) with patch-based filters (V-BM3D v2.0 and
V-BM4D v1.0, default parameters and normal-complexity profile).

In Figs. 3 and 4 the visual comparison is shown for selected frames of the
Franke and Water videos (corrupted by noise with ς = 70). The time-consistency
achieved by our approach is apparent in the frame-by-frame PSNR comparison.

Video denoising results that use the quasi-optimal parameters computed with
(19) are reported in Table 2: selected frames of videos corrupted with a high noise
level of ς = 90 are shown in Figs. 5 and 6, with frame-by-frame PSNR values.
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Fig. 2. Line-search (Franke, ς = 10): optimal trajectory (dashed red line); PSNR values
(coloured bullets). Optimal PSNR: 49.16, 117th iteration, (σ, ρ, η) = (1.66, 1.71, 16.27).

4.3 Discussion of results

We compared our variational TDV denoising approach with patch-based (V-
BM3D/V-BM4D) and variational (ROF 2D+t) methods. Patch-based methods
are usually computationally faster than the variational approaches (including
ours) but they tend to suffer from flickering and staircasing artefacts due to their
patch-based nature. We experienced that our MATLAB code (not optimised
for speed) is approximately 7× slower than V-BM4D (C++ code with MEX
interface) with normal-complexity profile. Both quantitative (via PSNR) and
qualitative results (visual inspection) are relevant indicators for video denoising.

From the PSNR values in Tables 1 and 2 the TDV approach is comparable
with the patch-based ones, with many single frames achieving higher PSNR value
than the patch-based methods did. Also, by changing the noise level, the PSNR
values are deteriorating less than with the patch-based methods, demonstrating
the consistency of our approach.

Visual results confirm that the TDV approach improves upon patch-based
methods producing less flickering and stair-casing artefacts, especially when the
motion is smooth due to the coherence imposed also along the time dimension.

5 Conclusions

In this paper, we proposed a variational approach with the total directional
variation (TDV) regulariser for video denoising. We extended the range of appli-
cations of TDV regularisation from image processing as demonstrated in [21] to
videos. We compared TDV with some state of the art patch-based algorithms for
video denoising and obtained comparable results especially for high level noises
while reducing artefacts in regions with smooth large motion, where the patch-
based approach shows some weakness. We expect to improve further the results
by refining the estimation of the anisotropic fields [5] and by using higher-order
derivatives in the TDV definition [21]. This is left for future research.
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Table 1. PSNR comparison (best in bold), with TDV parameters from line-search.

Name (M , N , C, T ) ς input V-BM3D V-BM4D TDV (σ, ρ, η) ROF 2D+t (η)

10 28.13 45.99 46.90 49.16 (1.66, 1.71, 16.27) 42.56 (16.27)
Franke grey-scale 20 22.11 41.64 42.67 45.23 (2.00, 2.00, 08.10) 38.18 (08.10)
(120, 120, 1, 120) 35 17.25 38.63 39.34 41.89 (2.40, 2.40, 04.70) 34.59 (04.70)

50 14.15 36.37 37.17 39.64 (2.70, 2.70, 03.30) 32.30 (03.30)
70 11.23 30.60 35.03 37.44 (3.00, 3.00, 02.45) 30.45 (02.45)

10 28.13 47.13 48.21 50.51 (1.89, 1.92, 16.59) 44.10 (16.59)
Franke coloured 20 22.11 42.96 43.97 46.46 (2.35, 2.35, 08.35) 39.93 (08.35)
(120, 120, 3, 120) 35 17.25 40.18 40.47 42.97 (2.79, 2.83, 04.74) 36.36 (04.74)

50 14.15 38.11 38.15 40.74 (3.13, 3.17, 03.45) 34.41 (03.45)
70 11.23 31.72 35.90 38.62 (3.50, 3.50, 02.45) 32.29 (02.45)

10 28.13 37.30 37.12 35.24 (0.55, 0.68, 29.25) 31.48 (29.25)
Salesman 20 22.11 34.13 33.33 31.96 (0.70, 0.75, 13.93) 28.16 (13.93)
(288, 352, 1, 050) 35 17.25 30.79 30.20 29.36 (0.89, 0.89, 07.95) 26.01 (07.95)

50 14.15 28.32 28.33 27.78 (1.05, 1.06, 05.45) 24.78 (05.45)
70 11.23 24.55 26.68 26.34 (1.27, 1.32, 03.96) 23.87 (03.96)

10 28.13 43.83 44.68 43.13 (0.93, 1.15, 25.75) 39.18 (25.75)
Water 20 22.11 40.59 41.02 39.84 (1.18, 1.35, 12.60) 35.94 (12.60)
(180, 320, 1, 120) 35 17.25 37.75 37.90 37.14 (1.40, 1.40, 06.95) 33.36 (06.95)

50 14.15 35.58 35.85 35.41 (1.61, 1.65, 04.80) 31.83 (04.80)
70 11.23 30.11 33.87 33.78 (1.80, 1.85, 03.45) 30.51 (03.45)

Table 2. PSNR comparison (best in bold), with quasi-optimal TDV parameters.

Name (M , N , C, T ) ς input V-BM3D V-BM4D TDV (σ, ρ, η) ROF 2D+t (η)

10 28.13 39.64 39.93 39.25 (0.63, 0.63, 25.50) 36.93 (25.50)
Miss America 20 22.11 37.95 37.78 37.28 (0.90, 0.90, 12.75) 34.60 (12.75)
(288, 360, 1, 150) 35 17.25 36.03 35.77 35.44 (1.19, 1.19, 07.29) 32.72 (07.29)

50 14.15 34.19 34.26 34.14 (1.42, 1.42, 05.10) 31.47 (05.10)
70 11.23 28.86 32.64 32.85 (1.68, 1.68, 03.64) 30.29 (03.64)
90 09.05 27.42 31.27 31.87 (1.90, 1.90, 02.83) 29.42 (02.83)

10 28.13 37.82 37.49 35.96 (0.63, 0.63, 25.50) 32.70 (25.50)
Xylophone coloured 20 22.11 34.70 34.13 33.06 (0.90, 0.90, 12.75) 29.57 (12.75)
(240, 320, 3, 141) 35 17.25 32.06 31.65 30.93 (1.19, 1.19, 07.29) 27.16 (07.29)

50 14.15 29.98 30.07 29.58 (1.42, 1.42, 05.10) 25.72 (05.10)
70 11.23 25.89 28.51 28.32 (1.68, 1.68, 03.64) 24.43 (03.64)
90 09.05 24.50 27.32 27.37 (1.90, 1.90, 02.83) 23.57 (02.83)
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