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Abstract

This work presents a hybrid particle-number and particle model to improve

efficiency in solving population balance equations for type spaces spanning

spherical and aggregate particles. The particle-number model tracks sim-

pler, spherical particles cheaply by storing only the number of particles with

a given one-dimensional internal coordinate, while the particle model allows

resolution of the detailed aggregate structure that occurs due to collision

and coagulation between particles by storing distinct computational entries

for each particle. This approach is exact if primary particles are defined

by their monomer count and the particle-number model increments in sin-

gle monomers. A stochastic method is used to solve the population balance

equations for the combined type space. The hybrid method works well for

large ensembles (> 212 particles) with a detailed particle model, where per-
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forming a finite number of particle-number updates is demonstrated to be

40–50% cheaper than updating an equivalent ensemble of discrete particles.

These savings can be traded for a larger sample volume to increase the reso-

lution in the particle size distribution or more repeat runs to reduce the total

error. Run time improvements are curtailed at very high surface growth and

coagulation rates due to the fixed cost of growth updates on the large aggre-

gates formed; however, the hybrid method is still attractive in this case as its

primary purpose is to reduce error by preventing saturation of the ensemble

with simple particles at high inception rates.

Keywords: hybrid method, particle model, particle-number model, high

rate, particle processes, population balance

1. Introduction1

The dynamics of particle formation and growth are of interest across2

a wide range of systems from flame synthesis of nanoparticles [1, 2] and3

crystallisation [3] to large scale systems such as atmospheric [4, 5] and as-4

trophysical [6, 7] studies. The evolution of a particle system through time5

and space can be described by its population balance equation (PBE), an6

integro-differential equation which describes changes in the internal coordi-7

nates of the particles (e.g. mass, surface area, chemical composition and8

structure) due to processes such as inception, collision, surface reaction or9

condensation, and fragmentation. The complexity of real systems precludes10

analytical solutions; thus numerical methods have been developed. Numer-11

ical solutions require a model for the particle type space and a method for12

solving the PBE.13
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The particle type space is typically high dimensional, with each particle14

described by up to thousands of internal coordinates which correspond to15

the diversity of morphologies and surface chemistries that can be formed [8].16

The simplest type space model is a spherical particle model, which repre-17

sents particles as spheres of constant composition and density; thus only a18

one dimensional type space is required. This assumes that lasting collision19

(i.e. coagulation) events are followed by instantaneous coalescence to a larger20

spherical particle [9]. More detail is incorporated into surface area and vol-21

ume models [10], where these properties are added for coagulating particles.22

This allows more structural information to be tracked; however, these mod-23

els require adaptations to deal with processes such as surface reaction and24

sintering (e.g. a fractal dimension is assumed).25

The most detailed particle models are primary particle models. These26

resolve the connectivity of “primary particles” (particles formed by incep-27

tion) following coagulation events and describe particle structure e.g. shared28

surface area and centre-to-centre distance between particles [11]. Detailed29

particle models have been used to study synthesis of soot [12, 13, 14], SiO230

[15, 16], silicon [17] and TiO2 [18, 19, 11]. Detailed particle models have been31

shown to provide important additional information when the particle system32

is polydisperse or the coagulation and sintering timescales are similar [20].33

The numerical solution of the PBE becomes more challenging with in-34

creasing type space complexity. Low dimensional type spaces allow direct35

integration of the ordinary differential equations (ODE) through transport36

of the moments of the particle size distribution (PSD) or discretization. Stad-37

nichuk et al. [21] and Smith et al. [22] describe iterative schemes for efficient38
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steady state solutions and H-matrices are used as low rank, separable ap-39

proximations to the coagulation and fragmentation kernels in Koch et al. [23]40

to reduce computational cost and memory requirements.41

The method of moments (MOM) approach solves finitely many moments42

of the particle size distribution by multiplying the PBE by kth powers of43

a property and integrating over the type space. This approach is compu-44

tationally efficient, although closure problems exist for coagulation kernels45

involving fractional or negative moments and processes requiring the point-46

wise particle concentrations (shrinkage). Closure issues are treated by inter-47

polation e.g. MOMIC [24, 25, 26, 27] or quadrature e.g. QMOM [28, 29],48

DQMOM [30, 31]. The moment projection method has been proposed to49

handle shrinkage problems [32].50

Sectional methods are a popular choice of ODE-based method. These51

discretize the PSD into sections/bins within which the PSD is modelled ei-52

ther with step functions or polynomials. A number of adaptations have been53

proposed to e.g. conserve mass and particle number [33], handle disconti-54

nuities in the number distribution and numerical diffusion due to surface55

reaction [34, 35, 36], and treat sintering [37]. However, sectional methods56

must approximate properties of the PSD within the discretized sections, are57

expensive compared with MOM, and higher order variants can suffer from58

stability issues [8].59

Discretization-based solvers applying finite difference [38], finite volume60

[39] and finite element [40] methods are widely used for low dimensional type61

spaces. Matveev et al. [38] propose low rank skeleton approximations for62

the kernel matrix to exploit fast convolutions and reduce complexity. Such63
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techniques can accommodate multidimensional problems with several inter-64

nal coordinates in the particle model (e.g. 2–5 coordinates in Matveev et al.65

[41]). These methods become prohibitively expensive for higher dimensional66

type spaces for example, the thousands of dimensions required to describe67

aggregate particle structure including all possible configurations and sizes of68

the constituent primary particles.69

Stochastic (Monte Carlo) methods solve the PBE by performing events70

probabilistically on a finite ensemble of computational particles which can71

have arbitrarily many internal coordinates. Monte Carlo methods are cur-72

rently the only viable method for using very high dimensional particle type73

spaces. The accuracy of these methods is controlled by the number of compu-74

tational particles used and the number of repeat runs with different random75

seeds. This can be computationally taxing under high rate conditions, such76

as those used in our recent study of industrial TiO2 synthesis [19] because77

a large particle ensemble is required to resolve the polydisperse PSD and78

the surface structure of the particles evolves rapidly. In Monte Carlo meth-79

ods, convergence to the exact solution is expected with increasing sample80

size. This can be demonstrated numerically [16, 42], and has been shown81

theoretically in several studies [43, 44, 45].82

In previous work, the stochastic approach has been refined with several83

techniques to reduce variance e.g. doubling [46] and mass flow algorithms84

[43] and weighted particle methods [47, 48, 49], and improve efficiency e.g.85

fictitious jumps and majorant kernels [50], linear process deferment algorithm86

[51]. A split solution method has been proposed for studying gelation pro-87

cesses, to reduce the chance of stochastic effects forming metastable states88
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[52]: the ODEs for particles smaller than size N1 are treated deterministi-89

cally, those for particles of sizes between N1 and N2 are treated stochastically,90

and larger particles are removed (the gelled mass).91

The purpose of this paper is to introduce a hybrid particle-number/particle92

(PN/P) model to handle broad particle size distributions where aggregate93

morphology is important. In the case of high particle inception rates, it94

becomes computationally challenging to resolve the less abundant, larger95

particle aggregates, especially when particle surface processes such as het-96

erogeneous reaction are also significant. The proposed PN/P model exploits97

the simpler morphology of particles in some regions of the type space; small98

particles are treated using a particle-number method, while large particles99

and aggregates are resolved with a detailed type space model. If the detailed100

model employs a one dimensional description of primary particles, the PN/P101

approach is exact.The algorithm presented here adapts the standard direct102

simulation algorithm (DSA), including majorant techniques and LPDA. The103

extension to weighted particle methods could be considered in future work.104

This paper is structured as follows: The PBE is stated in Section 2.105

Two particle systems are defined using particle-number and detailed particle106

models in Section 3. The processes that transfer mass between the particle107

systems are then described in general terms. The stochastic method used is108

outlined in Section 4. Section 5 presents numerical studies of the convergence109

and performance of the hybrid model compared to a single particle model.110

Various configurations of a simplified TiO2 test are used and the relevant111

rate forms are provided explicitly.112
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2. Population balance equation113

The concentration of particles of a given multivariate type x ∈ E , where E114

is called the type space and describes all possible particles, can be evolved by115

the Smoluchowski coagulation equation [47], extended to include inception,116

surface changes and flow. Here, we consider flow in an ideal, constant volume,117

continuously stirred tank reactor (CSTR) (Eq. (1)).118

dn (t, x)

dt
=I (x) +

1

2

∑
y,z∈E:
y+z=x

K (y, z)n (t, y)n (t, z)

−
∑
y∈E

K (x, y)n (t, x)n (t, y)

+
∑
y∈E:

gSG(y)=x

βSG (y)n (t, y)− βSG (x)n (t, x)

+
1

τCSTR

Nin∑
j=1

f [j]
(
n
[j]
in (t, x)− n (t, x)

)
(1)

n (t, x) is the concentration of particles of type x at time t, I (x) is the119

rate of inception of particles of type x, K (x, y) is the rate at which particles120

of type x coagulate – that is collide and remain in point contact – with121

particles of type y, βSG (y) is the rate at which particles of type y undergo122

surface changes and gSG (y) is the particle type that is produced, and τCSTR123

is the residence time in the CSTR. In the case of Nin inflow streams, f [j] is124

the volumetric feed fraction of the jth stream.125
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Figure 1: Mass transfer from the gas phase to the particle systems by inception and
surface reaction, and mass transfer from the particle-number model to the particle model
by coagulation and surface growth beyond the threshold size (Nthresh).

3. Particle systems126

Monte Carlo methods employ a finite ensemble of computational parti-127

cles to model the diverse assortment of particles in the physical system. A128

computational particle Pi has a distinct, possibly multivariate type, xi.129

In this work, a hybrid particle-number/particle model is proposed wherein130

the particle type space is split such that E = (M∪X ). This allows different131

levels of detail to be used to describe particles in the spacesM and X (Fig. 1).132

3.1. Space of small, spherical particles, M133

Let the particle type space consisting of small, spherical particles (primary134

particles) be defined as M. Particles in this space have a single internal135

coordinate for number of monomers, with different sizes i ∈ [1, Nthresh] where136

i = 1 is a single molecular unit and Nthresh is the size of the largest particle137

that is tracked by the particle-number model before transfer to the space of138
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aggregate particles, X . The particle-number (PN) system is written:139

zM (t) = (x1, . . . , xNthresh
) ,

where140

xi (t) ∈M, i = 1, . . . , Nthresh, t ≥ 0

and Ni = N (xi) is the number of particles that have type xi. For contin-141

uous functions φ, the following convergence property can be maintained as142

the sample volume, Vsmp, increases:143

∫
M
φ (x)n (t, dx) = lim

Vsmp→∞

1

Vsmp

Nthresh∑
i=1

Niφ (xi (t)) .

Here, we use the concentration measure n (t, dx) in place of the density144

n (t, x) to allow for particle type spaces with continuous and discrete compo-145

nents [47]. The concentration of particles with type xi ∈M is Ni ·V −1smp. The146

type space M can be represented efficiently as it requires only a vector in147

R
Nthresh to produce the PSD from the number of particles in each size class.148

3.2. Space of large particles and aggregates, X149

Let X be the type space for spherical particles containing more than150

Nthresh monomers and all aggregate particles containing more than one pri-151

mary particle. Particles in X need to be defined by both morphology and152
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composition. A particle Pi is made up of an unordered list of primary par-153

ticles, pj, each of which is described by its chemical composition (Figs. 2(a)154

and 2(b)), and a record of the connectivity of the primary particles:155

Pi = (p1, . . . , pni
,C) .

In this work, the data structure of each particle stores a connectivity156

matrix C to track adjacent primary particles and their shared surface area157

(Figs. 2(b) and 2(c)). The particle model has been comprehensively described158

by Sander et al. [15] and Shekar et al. [16]. The shared surface area Ca,b must159

be updated if connected primary particles pa, pb undergo surface processes.160

Sintering is not considered in the studies presented here. Sander et al. [15]161

and Lindberg et al. [11] describe treatment of sintering for the current type162

space, assuming grain boundary diffusion to define the characteristic sintering163

time. It would be simple to extend this detailed particle model to track the164

relative positions of primary particles in each aggregate in order to resolve165

collisions and surface changes in more detail, as presented by our co-workers166

in Lindberg et al. [53].167

The particle system is comprised of N (t) ≤ Nmax such particles (at time168

t):169

zX (t) =
(
x1, . . . , xN(t)

)
,

where170
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pj=(number of units)

(a) Primary particle model

Pi=(p1,...,pn,C)
pj

pa
pb

Ca,b

(b) Particle model

Ca,b=(shared surface)

ra,b

(c) Primary connectivity

Figure 2: Detailed particle type space showing a TiO2 primary particle pj , primary particle
connectivity for aggregate particle Pi and shared surface area Ca,b between primaries pa
and pb connected by neck of radius ra,b.

xi (t) ∈ X , i = 1, . . . , N (t) , t ≥ 0.

For continuous functions φ, the following convergence property is main-171

tained where particles of type xi ∈ X have concentration V −1smp:172

∫
X
φ (x)n (t, dx) = lim

Vsmp→∞

1

Vsmp

N(t)∑
i=1

φ (xi (t)) .

The description of multivariate particle types xi requires much more infor-173

mation for each particle; thus, a more sophisticated data structure is required174

to store each distinct particle separately.175

3.3. Mass transfer between the particle systems176

Eq. (1) describes the change in the PSD with time. In this work, the177

PSD spans two type spaces; thus, it is necessary to define how the particle178
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processes affect both particle systems zM (t), zX (t).179

Interaction with a gas phase system180

The systems of interest in this work (i.e. flame synthesis) typically in-181

volve a gas phase precursor as well as several intermediate species, and for-182

mation and reaction processes in the gas phase must be described by a chem-183

ical mechanism. Particle synthesis follows from collision between gas phase184

species that results in a stable configuration of molecular units (inception).185

Particle growth also occurs due to the reaction of gas phase species on the186

particle surface (surface growth) and this creates a polydisperse primary par-187

ticle size distribution.188

Inception189

Particle inception from the gas phase intermediates occurs at a rate, I,190

that depends on the gas phase concentrations and the temperature. The191

inception process only acts on the space of spherical primaries, M, and not192

on the space of large particles, X . In this work, we assume that a dimer193

unit is the only incepting size; however, the description is transferable to194

any monomer index corresponding to a stable particle composition. Primary195

particles of type xi ∈ M are created and this is modelled by incrementing196

the count at index i in the particle-number model (Fig. 3).197

Surface growth198

All particles in the two type spaces can experience surface growth, at a199

rate, βSG, that is dependent on the gas phase reactant concentrations and200

temperature, and the particle surface area. Surface growth results in a change201
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Figure 3: Interaction between the gas phase and the particle-number system by inception
of primary particles following gas phase collisions.

in particle type according to the surface growth function, gSG, with the fol-202

lowing effects:203

1. A particle described by the particle-number model with type xi ∈ M204

is transformed to type xj = gSG (xi), i < j. If the new size is still in205

M, i.e. j ≤ Nthresh, the indices i and j are altered accordingly (Fig. 4,206

solid horizontal arrows).207

2. If the new size exceeds the threshold size, i.e. j > Nthresh, the particle208

is transferred to the detailed particle model, by creation of a new par-209

ticle consisting of a single primary, with type xj ∈ X (Fig. 4, curved210

horizontal arrow).211

3. Particles of type x ∈ X , are transformed to larger type y = gSG (x),212

y ∈ X (Fig. 4, dashed arrows).213
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Figure 4: Interaction between the gas phase and both particle systems by surface reaction
(surface reaction beyond the threshold size Nthresh in the particle-number model causes
transfer of particles to the particle model).

Coagulation214

Coagulation events can occur between any two particles across both type215

spaces (M∪X ). This transfers particles from the particle-number model216

(space M) to the detailed particle model (space X ) (Fig. 5). Coagulation217

between two particle-number model particles forms a new aggregate in the218

particle model (this process acts as a source term for the particle model)219

and reduces the number of particle-number particles by two. Coagulation220

between two particle model particles reduces by one the number of particles221

in the particle model system. Coagulation between one particle from each222

space reduces the number of particles in the particle-number model by one.223

The PN particle can be attached to the coagulating particle model particle,224

conserving the count in the particle model.225

The coagulation operator K acts on (M∪X )2 and produces particles in226

X . The symmetric coagulation kernel for each particle pair is K (x, y) where227

14



x, y ∈ (M∪X ). The rate K (x, y) is defined by the type of coagulation228

process considered. The constant rate kernel and transition regime kernel229

used in this work are presented in more detail alongside the relevant numerical230

study. Because the primary particle model in X is one dimensional, there is231

no difference between the description of single primary particles in M and232

X . Thus, the rate is derived in the same manner for particles in either space.233

The total rate, Rcoag, is:234

Rcoag =
1

2

∫∫
(M∪X )2

K (x, y)n (dx)n (dy)

=
1

2

[∫
X

∫
X
K (x, y)n (dx)n (dy) +

∫
M

∫
M
K (x, y)n (dx)n (dy)

]
+

[∫
X

∫
M
K (x, y)n (dx)n (dy)

] (2)

For the discrete particle systems:235

xi ∈ zX (t), i = 1, . . . , N (t)

yi ∈ zM (t), i = 1, . . . , Nthresh

the rate can be written:236
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Figure 5: Interaction between the particle systems by coagulation.

Rcoag =
1

2Vsmp

N(t)∑
i=1

N(t)∑
j=1

j 6=i

K (xi, xj) +

Nthresh∑
i=1

Nthresh∑
j=1:

j 6=i⇐⇒ N(yi)<2

K (yi, yj)N (yi)N (yj)


+

1

Vsmp

N(t)∑
i=1

Nthresh∑
j=1

K (xi, yj)N (yj) .

(3)

The requirement j 6= i ⇐⇒ N (yi) < 2 in Eq. (3) excludes self-237

coagulation from the particle-number list if there is only one particle of a238

given size.239

Inflow240

In a CSTR with particles in the inflow streams, particle inflow occurs241

with rate τ−1CSTR and particles can be added to both spaces with the following242

effects:243
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1. If xin = xi ∈M, the number of particles at the ith index of the particle-244

number model is incremented: Ni ← Ni + 1, i ∈ [1, Nthresh].245

2. If xin ∈ X , a new particle with type xin is added to the detailed particle246

system i.e. zX (t)← {zX (t) , P (xin)}.247

Outflow248

In a CSTR, particle outflow occurs with rate τ−1CSTR and particles can be249

removed from either particle system.250

1. If xout = xi ∈ M, the number of particles at the ith index of the251

particle-number model is decremented: Ni ← Ni − 1, i ∈ [1, Nthresh].252

2. If xout ∈ X , the particle P (xout) is removed from the detailed particle253

system i.e. zX (t)← {zX (t) \ P (xout)}.254

4. Stochastic numerical method255

Strang operator splitting is used to couple the solution of the gas phase256

chemistry using an ODE solver and the solution of the particle population257

balance equations using a stochastic method in which the different events258

are performed probabilistically. This approach has been described elsewhere259

[54, 16] but is adapted here to handle the interaction between the two type260

space models (Algorithm B.1).261

In M, the properties (mass, diameter etc.) corresponding to each size262

index in the particle-number space are stored at the simulation outset and263

just the total particle numbers at each index i.e.264
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Ni, i = 1, . . . , Nthresh

and the property sums i.e.265

ξ (zM) =

Nthresh∑
i=1

Niξi

are updated at runtime.266

The gas phase chemistry is first updated for half a time step, after which a267

direct simulation algorithm (DSA) is used to advance the particle population268

balance equations for a full time step, over a number of smaller splitting269

steps. Each splitting step involves repeatedly sampling a waiting time from270

an exponential distribution defined by the total process rate, choosing an271

inception or coagulation event according to their relative rates and updating272

the relevant particle system to reflect this event (Algorithm B.2).273

If the selected process is inception, the particle-number model is adjusted274

by incrementing the count of particles at the index corresponding to the275

number of monomers in the incepting particle i.e.276

N1 ← N1 + 1,

and the cached property sums for the particle-number system are updated277

i.e.278
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ξ (zM (t))← ξ (zM (t)) + ξ1.

If the selected process is coagulation, a particle pair (Pi, Pj) is selected279

using kernel-specific selection criteria. Majorant kernels are used in this work280

to simplify computation of the total coagulation rate. Fictitious jumps are281

used to recover the correct distribution of coagulation events, i.e. particles282

selected for coagulation are only updated with probability:283

Pi,j = K (Pi, Pj) · K̂ (Pi, Pj)
−1

. (4)

If a particle is selected from the particle-number class (Pi ∈ M), the284

index corresponding to its monomer count is decremented i.e.285

Ni ← Ni − 1,

and the cached property sums are updated i.e.286

ξ (zM (t))← ξ (zM (t))− ξi.

A new particle is created by cloning the ith particle from the pre-initialised287

particle-number list. If both particles are selected from the particle-number288

system, the first is added to the ensemble at this stage:289
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zX (t)← {zX (t) , Pi}

and the second coagulates with it. Coagulation events join the colliding290

particles, combining their list of primaries and creating one new connection291

point [15].292

The surface growth and sintering of adjacent primary particles is per-293

formed using a linear process deferment algorithm (LPDA). This is also a294

form of operator splitting which defers the particle processes that occur inde-295

pendently for each particle and performs them either at the end of a splitting296

step tsplit, or during the step if the particle is selected for coagulation. This297

algorithm was introduced by Patterson et al. [51] to improve computational298

efficiency by reducing the number of times per step the algorithm halts to299

perform stochastic events. The splitting step is chosen to control the num-300

ber of deferred particle surface updates that occur relative to the stochastic301

inception and coagulation events. Suitable step sizes and more details are302

given in the original paper [51].303

The particle-number counts are updated for surface growth in a second304

LPDA-type sub-scheme (Algorithm B.4). This loops over all particle indices305

and computes the surface area dependent growth rate, samples the number306

of monomers to add from a Poisson distribution using this rate parameter,307

and uses this to determine a new index, which is incremented accordingly.308
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nadd,index ∼ Poi (βSG (Aindex))

newIndex← (index + nadd,index) .

If the new index is larger than the threshold size, a new particle is created309

by cloning the template particle, P tmp
thresh, which is a primary particle of size310

Nthresh monomers, from the pre-initialised particle-number list and adding311

(newIndex−Nthresh) monomers, and transferred to the detailed particle sys-312

tem.313

Particle inflow, and outflow are performed after each splitting step. The314

number of particles expected to enter or leave the system over this time is315

sampled from a Poisson distribution with rate parameter 1/τCSTR. Parti-316

cles are added by uniform selection from the list of particles in the inflow317

stream(s) followed by increasing the particle-number count (xin ∈ M) or318

adding a particle to the ensemble (xin ∈ X ). For each chosen particle xin,319

on average Vsmp/V
in
smp copies are added. Particles are removed by uniform320

selection followed by decreasing the particle-number count (xout ∈ M) or321

deletion (xout ∈ X ).322

4.1. Selecting particles according to their properties323

Two particle selection processes are of interest. Uniform selection is used324

to choose particles to remove in outflow events, and a pair of particles to325

collide with a constant coagulation kernel. For more realistic coagulation326

kernels, selection of a pair of particles might depend on properties of the327

respective particles for example in the majorant proposed for the transition328
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regime coagulation kernel (Table A.4), coagulation between small particles329

and large particles is often favoured. The selection algorithm is outlined in330

more detail in Algorithm B.5.331

Random uniform selection332

For the particle-number model with xi ∈ M, the index i of the selected333

particle is selected such that:334

P (index = i) =
Ni∑Nthresh

i=1 Ni

∀i ∈ {1, . . . , Nthresh}. (5)

For the detailed particle model with xi ∈ X , particles P (xi) are selected335

such that:336

P (Pi) =
1

N (t)
∀i ∈ {1, . . . , N (t)}. (6)

Selection according to particle properties337

Let ξ be a property of the particles that is defined for both type spaces e.g.338

mass or diameter. For the particle-number model with xi ∈ M, the index339

i of the selected particle is determined using the property ξ as a weighting340

such that:341

P (index = i) =
Niξi∑Nthresh

j=1 Njξj
∀i ∈ {1, . . . , Nthresh}. (7)
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For the detailed particle model with xi ∈ X , particles P (xi) are selected342

using the property ξ as a weighting such that:343

P (Pi) =
ξ (Pi)∑N(t)
j=1 ξ (Pj)

∀i ∈ {1, . . . , N (t)}. (8)

5. Numerical studies344

5.1. Comparison with single particle type space model345

The performance of the hybrid approach is compared with a single particle346

type space model in which the discrete ensemble describes the full type space,347

and primary particles are represented by stochastic entities in the ensemble348

alongside aggregate particles. The latter has been the standard approach349

for detailed population balance models to date and is well documented in350

the existing literature [19, 55, 17]. Because the detailed particle model de-351

scribes primary particles as spheres, the two approaches are expected to be352

equivalent for the same particle processes. This gives a means to validate353

the algorithm for the hybrid approach against the DSA. The DSA has al-354

ready been compared to deterministic methods in the literature for example355

Maisels et al. [46], Menz et al. [42]; thus comparison is not discussed here.356

Titanium dioxide (TiO2) is taken as the particulate species and the gas357

phase mechanism of West et al. [56, 57] is used, although simplified artificial358

rates are used for easier analysis of the model behaviour. The TiO2 system is359

of industrial interest; however modelling efforts are hindered by the compu-360

tational cost of high process rates under industrially relevant conditions. The361

performance is assessed by comparative convergence behaviour (the double362
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type space should not affect the solution since the particle-number indices363

fully encode the particle space at the level of primary particles defined by364

monomer count), solver time savings, and reduction in required ensemble365

size.366

Test cases367

Two test cases are considered, a batch reactor and a continuously stirred368

tank reactor (CSTR) with no particles in the inflow. A spherical particle369

model is used in the first case and a detailed model is used in the second370

case. Both reactors are constant volume, at 1200 K and 4 bar (absolute).371

Their residence times are 6 ms and 10 ms respectively. Time steps of 0.01 ms372

and 0.1 ms are used respectively, with 10 splitting steps per step (convergence373

with decreasing splitting step was studied by Shekar et al. [16]).374

A constant inception rate is used, with the inception particle size taken to375

be 0.49 nm (2 TiO2 units). Thus the particle-number model will always have376

zero particles at index 1. In the first case, the coagulation rate is constant377

K = K̃, and in the second case, a transition regime coagulation kernel K =378

Ktr is used (Appendix A). In both cases, sintering of neighbouring primary379

particles is not considered – note that the particle-number model does not380

introduce an an assumption of instantaneous sintering because in the current381

studies all coagulation events involving the particle-number particles transfer382

them to the discrete particle ensemble. The surface growth reaction adds383

TiO2 units to the particle surface and the rate depends on surface area only,384
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βSG (Pi) =
β̃

NA

· A (Pi) , ∀ (Pi) ∈M∪X .

Convergence tests385

For given property ξ, a simulation with M timesteps, L repeat runs and386

a maximum ensemble size of Nmax has mean value µ
(Nmax,L)
ξ (tk) at time tk,387

k ∈ [1,M ](9)388

µ
(Nmax,L)
ξ (tk) =

1

L

L∑
l=1

ξ(Nmax,l) (tk) , (9)

and standard deviation σ
(Nmax,L)
ξ (tk) at time tk, k ∈ [1,M ] (10)389

σ
(Nmax,L)
ξ (tk) =

√√√√ 1

L− 1

L∑
l=1

(ξ(Nmax,l) (tk))
2 −

(
µ
(Nmax,L)
ξ (tk)

)2
. (10)

The relative statistical error (Eq. (11)) is used to assess the random error390

in repeat simulations at a given confidence level (99% used here, with α0.99391

from the t-distribution).392

ε
(Nmax,L)
stat,ξ (tk) =

α0.99√
L− 1

·
σ
(Nmax,L)
ξ (tk)

µ
(Nmax,L)
ξ (tk)

(11)

The average relative total error (Eq. (12)) is used to assess the relative393
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difference compared to a true solution ξ∗. Here, the ‘true’ solution is approx-394

imated by the solution with Nmax = 218 and L = 10 and the convergence395

study is performed for Nmax ∈ {25, 26, 27, . . . , 217}, with Nmax × L = 218.396

ε
(Nmax,L)
total,ξ =

1

M

M∑
k=1

∣∣∣µ(Nmax,L)
ξ (tk)− ξ∗ (tk)

∣∣∣
ξ∗ (tk)

(12)

The properties used to illustrate convergence behaviour in this work in-397

clude particle number concentration, M0 (t) (Eq. (13)) and the average par-398

ticle collision diameter, dc (Eq. (14)) which is a measure of average particle399

size and is an example of a property that is of importance in applications.400

M0 (t) =
N (zM (t)) +N (zX (t))

Vsmp

(13)

dc (Pi) =
6Vi
Ai

(Npri,i)
1
1.8 (14)

Solver time401

Tests were run on one Intel Xeon E5-2640 CPU (2.40 GHz) of a 40 proces-402

sor node with 200 GB RAM, running Red Hat Enterprise Linux version 7.2.403

Case 1: constant rates batch reactor with spherical particle model404

The constant rates case with spherical particle model is used to demon-405

strate proof of concept – under trivial constant rate conditions, the particle-406
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number/particle model matches the convergence behaviour of the particle407

model (Figs. 6 and 7). The convergence tests were performed with I =408

1016 cm−3 · s−1, β̃ = 1024 cm−5 · s−1 and K̃ = 1.5× 10−15 cm−3 · s−1. A con-409

stant majorant kernel is used for coagulation and this has value K̂ = 1.5K̃.410

The spherical particle model assumes each coagulation event is followed411

by instant coalescence to form a larger, spherical particle, so both type spaces412

hold the same information; however it should be possible to store/update413

this information more efficiently in a vector than a discrete ensemble. Sur-414

face growth events are performed once per particle since particles are not415

comprised of distinct primaries and choice of particles for coagulation and416

outflow is done by random selection (uniform selection criterion for Algo-417

rithm B.5). Thus the opportunities for improving run time with the PN/P418

model are limited; however, as expected it is more economical, especially for419

large ensembles (Table 1).420

Case 2: transition kernel CSTR with detailed particle model421

The transition coagulation kernel (Eq. (15)) is chosen because it is rel-422

evant to real synthesis conditions and depends on the properties of each423

particle which makes its evaluation more costly.424

Ktr (Pi, Pj) =
Ksf (Pi, Pj)K

fm (Pi, Pj)

Ksf (Pi, Pj) +K fm (Pi, Pj)
, ∀ (Pi, Pj) ∈M∪X (15)

The transition regime coagulation kernel is found using the harmonic425

mean of the slipflow and free molecular kernels (Ksf, K fm). The slipflow426

kernel is sufficiently simple not to require a majorant kernel (Eq. (A.4)).427
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Figure 6: Transient properties in convergence study maintaining Nmax × L = 218 – the
solid black line is the high fidelity solution and one standard deviation above and below
the mean are shown as dotted lines for odd (particle model) and dashed lines for even
(particle-number/particle model with Nthresh = 102) powers of 2 (case 1).
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Figure 7: Convergence study maintaining Nmax × L = 218 – average relative total er-
ror (Eq. (12)) of the particle model and particle-number/particle model (Nthresh = 102)
compared to the high fidelity solution (case 1 conditions).
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Table 1: Single run times for particle (P) and particle-number/particle (PN/P) models
with Nthresh = 102 in the convergence study with case 1 conditions.

Particles Repeats Single run time Single run time
Nmax L P (min) PN/P (min)

27 2048 0.118 0.117
28 1024 0.130 0.126
29 512 0.154 0.143
210 256 0.201 0.176
211 128 0.336 0.265
212 64 0.583 0.425
213 32 1.18 0.797
214 16 1.76 1.15
215 8 3.06 1.94
216 4 5.79 3.68
217 2 12.3 7.99
218 1 26.1 16.5

A majorant for the free molecular kernel can be formed using inequalities428

for the nonlinear terms (Eq. (A.2)). This expression is useful because it429

does not require computation of the nonlinear terms for each particle pair430

to find the total rate. The rates for each kernel are split into several terms,431

computed as the sum of different particle properties across both type spaces,432

and these terms define particle selection rules used to choose a pair of particles433

(rates and selection rules in terms of particle properties are given in detail in434

Appendix A).435

Surface growth is performed on every primary particle in each aggregate.436

The average relative error is compared with ten runs of the particle model437

with Nmax = 218. The convergence tests were performed with I = 1012 cm−3 ·438

s−1 and β̃ = 1024 cm−5 · s−1.439

Here, the rates are more complicated, yet the simulation with the two440
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Figure 9: Kernel density estimates (bandwidth 0.07) for primary particle size distributions
from particle model and particle-number/particle model with Nthresh = 104 compared with
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Figure 10: Convergence study maintaining Nmax × L = 218 – average relative total error
(Eq. (12)) of the particle model, particle-number/particle model (Nthresh = 104), and
PN/P model with time equivalent runs (TER) compared to the high fidelity solution (case
2 conditions).
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type space models converges on the same properties as the single type space441

approach (Figs. 8–10); slight discrepancies between the PN/P model and the442

‘true’ solution with the particle model may exist due to differences in the443

ordering of particles (i.e. a list in increasing size order vs. an unordered444

list of particles as formed could influence which particle is selected in Al-445

gorithm B.5); however, it is clear from the comparison of the steady-state446

particle size distributions (Fig. 9) that the algorithm for the PN/P model447

finds the same solution.448

Differences in run time (Fig. 11) are more significant than in the study449

with the spherical particle model. This is especially noticeable for large450

ensembles where updates to the particle-number list are much more efficient451

than updates to distinct particles and a speed up of approximately 50%452

is observed for the ensembles with greater than 105 particles. For small453

ensembles, the PN/P model is more efficient in a narrower range of threshold454

values. In general, a threshold of Nthresh = 104 was found to work well for455

the current conditions.456

The reduced solver time is advantageous if CPU time is constrained;457

however the main benefit is that this allows an increase in the sample volume458

in the PN/P model, i.e. use of a time equivalent sample volume (TESV,459

Table 2 column 5), or an increase in the number of repeat runs in the PN/P460

model, i.e. use of time equivalent runs (TER, Table 2 column 6), to gain461

additional accuracy for comparable CPU cost (Fig. 10, solid vertical lines462

illustrate reduced error with additional repeats for same computational cost).463

The TESV is found by simulation: it is the sample volume for which the464

average run time of the PN/P model matches that of the particle model.465
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Figure 11: Relative time difference maintaining Nmax×L = 218 for pure particle model and
particle-number(PN)/particle model with inset showing effect of threshold value Nthresh

(case 2 conditions).

The number of time equivalent runs (LTER) is computed using the ratio466

of the average solver times (t) for the particle and particle-number/particle467

simulations (Eq. (16)).468

LTER =
tP

tPN/P

· L (16)

The PN/P model removes most of the solo primary particles from the469

discrete particle ensemble, which allows the discrete ensemble to be used470

almost exclusively to resolve more complicated aggregate particles for the471

same computational cost and ensemble memory overhead by using a larger472

sample volume, as shown in the simulated imaging pictures in Fig. 12. This473
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Table 2: Single run times, sample volume increase and additional repeats that can be
achieved with solver time savings gained from PN/P model with Nthresh = 104 (case 2
conditions).

Particles Repeats Single run time Single run time TESV ratio TER
Nmax L P (min) PN/P (min) V TESV

smp · V −1smp LTER

27 2048 0.339 0.316 1.67 2196
28 1024 0.436 0.369 1.67 1209
29 512 0.636 0.484 1.70 672
210 256 1.05 0.717 1.74 375
211 128 1.96 1.21 1.81 207
212 64 3.46 2.07 1.88 107
213 32 6.46 3.55 1.90 58
214 16 9.23 4.93 1.95 30
215 8 16.6 8.83 1.97 15
216 4 31.3 16.1 2.00 8
217 2 62.2 31.9 2.00 4
218 1 124 64.6 2.03 2

ensures that maximum utility is obtained from the detailed particle model474

without ‘wasting’ ensemble space and time on structurally simple particles.475

Increasing the sample volume increases the rate of numerical inceptions. The476

sample volume was chosen to ensure that the discrete ensemble never reached477

its maximum capacity in these studies, preventing random removals in all478

cases so that the statistical noise did not increase.479

An alternative approach is to maintain a more economical memory foot-480

print by initialising a smaller ensemble for tracking fewer distinct particles.481

This could be useful for systems that have an initial burst of particle inception482

due to high concentration of the gas phase precursor yielding a high initial483

number density. In such a system, doubling and contraction algorithms are484

often necessary with a discrete ensemble since demand for capacity varies485
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with time. The particle-number list can store arbitrarily many incepting486

particles so the ensemble can be customized to the size required to store487

aggregates only.488

The effect of exceeding the ensemble capacity is illustrated further in489

Fig. 13. With a single discrete particle model, increasing the sample volume490

by a factor of three from the previous conditions results in contractions in the491

interval t ∈ [4.8, 20] ms (shown in Fig. 13(a) with a horizontal arrow) because492

there is no space for new particles in the discrete ensemble so inceptions are493

accommodated by randomly removing an existing particle from the ensemble494

and scaling the sample volume to preserve the particle number density. With495
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the hybrid type space model, particle inceptions contribute to the particle-496

number space, M, instead of being added to the ensemble space, X . This497

list storage (shown in Fig. 13(a) with a vertical arrow) prevents the ensemble498

from flooding; thus no particles are removed.499

Particle removal randomizes the system when the particles are polydis-500

perse. This can be seen in Fig. 13(b): tripling the sample volume signif-501

icantly increases the total error for the particle model (cf. packed circle502

pattern labelled “P: Vsmp” and checkerboard pattern labelled “P: 3Vsmp”)503

whereas it reduces the total error for the hybrid model (cf. wave pattern504

labelled “PN/P: Vsmp” and stripe pattern labelled “PN/P: 3Vsmp”) due to505

the increased statistical significance of events in the larger sample volume.506

CSTR with particle inflow507

A second CSTR is added in series with the first using the conditions508

from case 2. The residence times are both 10 ms, and the outflow from509

CSTR 1 is the only inflow stream to CSTR 2. This case demonstrates the510

use of the particle-number/particle inflow algorithm (Alg. B.3) as there are511

particles in the outflow from CSTR 1. The primary PSD shifts towards larger512

particles in CSTR 2 due to further surface growth (Fig. 14). This study also513

provides insight into the transient statistical error behaviour (Eq. (11)) in514

a flow reactor. As shown in previous work [42], the error increases before515

reaching a plateau as the system reaches steady state. The same sample516

volume was used for both reactors. For the second CSTR with the particle517

model, random removal events occurred from ca. τCSTR2, reducing the sample518

volume (shown as a dashed black line in 15(b)). The sample volume in the519

second CSTR was constant for the particle-number model, due to use of the520
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Table 3: Inception and surface reaction rate constants used in rate study.

Process Units Rate constants

Inception [cm−3 · s−1] 1× 106 1× 109 1× 1012 1× 1013

Surface reaction [cm−5 · s−1] 1× 1018 1× 1021 1× 1024

particle-number list to store inflowing and incepting particles. Thus, the521

steady statistical error in the second CSTR was slightly lower (Fig. 15(b)).522

5.2. Performance of PN/P model in different rate regimes523

Performance of the PN/P model is assessed in different rate regimes using524

the conditions in Table 3, for the CSTR from case 2 with a transition regime525

coagulation kernel and a detailed particle model for the aggregate type space.526

The process rates are coupled since the coagulation rate increases quadrat-527
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ically with number density and depends on properties of the particles such528

as diameter. To simplify the analysis, the average ratio of the rates is used529

in Figs. 16 and 18:530

Mean rate ratio (inception:coagulation) =
1

M

M∑
m=1

Rinception (tm)

Rcoagulation (tm)

Mean rate ratio (surface reaction:coagulation) =
1

M

M∑
m=1

Rsurface reaction (tm)

Rcoagulation (tm)
.

The mean count ratio is used to assess the utility of the particle-number531

list for storing particles and refers to the average particle-number count di-532

vided by the average ensemble count:533

Mean count ratio =
1

M

M∑
m=1

N (zM (tm))

N (zX (tm))
.

The combined particle-number/(detailed)particle model offers consider-534

able performance advantages over the use of a single detailed particle model535

for conditions that result in a large number of solo primary particles (when536

inception dominates coagulation). In these cases, most of the particles in the537

system can be stored in the particle-number list, significantly reducing the538

ensemble size requirements (Fig. 16). Conditions with high surface growth539

and similar coagulation and inception rates do not see significant solver time540

advantage with the PN/P model (Fig. 17) because the coagulation processes541

produce large aggregates and the surface updates for these complex structures542

dominate the solver time; however, there are still significantly many primary543
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the PN/P model for different ratios of inception rate to coagulation rate (using threshold
Nthresh = 217).
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Figure 17: Solver time difference for different ratios of inception rate to coagulation rate
(using threshold Nthresh = 217).

particles in the particle-number list under these conditions and the option544

to use a smaller particle ensemble could still be attractive due to improved545

memory efficiency. Future work should consider methods for mitigating the546

aggregate update cost.547

When the surface growth rate is very high, primary particles grow rapidly548

and are pulled out of the particle-number system into the particle system549

unless a large threshold value is used to store the primaries in the particle-550

number system for as long as possible (Fig. 18). The number density of very551

large primaries becomes lower with increasing index (Fig. 19), so use of a high552

threshold (e.g. Nthresh = 104) achieves limited additional particle storage;553

however, since the updates to the particle-number model are comparatively554

cheap even for large thresholds, it is reasonable to use a large threshold to555
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Figure 18: Largest occupied particle-number (PN) size for different ratios of surface reac-
tion rate to coagulation rate (using threshold Nthresh = 217).

avoid wasting ensemble space on single primary particles.556

6. Conclusion557

This work proposes a stochastic population balance algorithm using a558

detailed particle model to resolve complex particles and a particle-number559

model for simple particles. This improves computational resolution of parti-560

cles when the PSD is broad and aggregate particle morphology is important561

because arbitrarily many primary particles can be stored in the number list.562

We show that a larger sample volume can be tolerated for a given ensemble563

size, without causing random removal of particles. Because updating parti-564

cles in the list only requires updating a counter, this approach is also more565

efficient in general. The improved efficiency is expected to be particularly566
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reaction rate to coagulation rate (using threshold Nthresh = 217).

important under high concentration conditions, such as modelling industrial567

particle synthesis.568

Under low surface growth conditions, the required threshold to store all569

primaries is small because the range of primary sizes is narrow; however,570

under high surface growth conditions, it could be advantageous to use a571

larger threshold in order to accommodate the wider range of primary sizes572

and benefit from the more efficient update structure of the particle-number573

list. The proposed hybrid model is less effective when the coagulation rate is574

very high, because the computational complexity associated with very large575

aggregate particles dominates the solver time. The hybrid scheme offers two576

main benefits.577

1. It can be up to 50% faster than a single detailed particle type space578
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model when the surface growth rate is high and the surface updates579

to ensemble particles are expensive. This speed-up can be traded for580

a larger sample volume to achieve a greater statistical accuracy for581

comparable cost and memory. One possible application where this582

would make a really significant improvement is if particle-particle heat583

transfer effects were included and the surface updates for each particle584

were even more costly.585

2. When the inception/coagulation ratio is large, most particles can be586

stored in the particle-number list, reducing the size of particle ensem-587

ble required to resolve the aggregate particles. This smaller ensemble588

has a lower memory footprint. One possible application would be in589

coupling to computational fluid dynamics simulations where the mem-590

ory and computational cost associated with large ensembles would be591

prohibitive. This also assists tailoring the ensemble to the size needed592

to store aggregate particles, by avoiding initial periods of high incep-593

tion when the precursor concentration is high, without resorting to594

contraction and doubling algorithms.595

A number of adaptations are possible for different systems.596

1. If the internal co-ordinate is not ‘quantized’ (multiples of a monomer597

subunit), the indexing can be converted to sections of larger width at598

the cost of introducing some approximation error within the sections.599

2. For more efficiency, it might be assumed that collisions between small600

particles result in instant coalescence, allowing these collisions to be601

performed in the particle-number model. This could be controlled using602
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the sintering rate to determine where this assumption is near to the603

actual behaviour.604

3. Weighted particle methods such as described by Patterson et al. [47]605

could be employed to reduce the number of particles injected to the606

ensemble by surface growth beyond the threshold.607
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Nomenclature613

Upper-case Roman

A Surface area [m2]

C Concentration [mol ·m−3]

F Ratio

I Inception rate [mol ·m−3 · s−1]

K General coagulation kernel [m−3 · s−1]

K̃ Coagulation constant

K̂ Majorant coagulation kernel

Kn Knudsen number

L Number of repeat runs

M Number of time steps

M0 0th number moment [m−3]

N Number

NA Avogadro’s constant [mol−1]

P Particle

Poi Poisson distribution

R Rate [process specific]

T Temperature [K]

U Uniform distribution

V Volume [m3]

614
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Lower-case Roman

c Constant

d Diameter [nm]

f Volumetric feed fraction

g Surface growth type-change function

kB Boltzmann constant [J ·K−1]

m Mass [kg]

n Particle number concentration [m−3]

p Primary particle

t Time [s]

x Particle type variable

y Particle type variable

z Particle system

Lower-case Greek

α Random variable

β Surface growth rate [m2 ·m−3 · s−1]

β̃ Surface growth constant

γ Weighted random variable

ε̄ Average relative error

µ Viscosity [Pa · s]

615
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µξ Mean value of property ξ

ξ Property

ρ Mass density [kg ·m−3]

σξ Standard deviation of property ξ

τ Residence time [s]

φ Arbitrary continuous function

Superscripts

fm Free molecular

in inflow

out Outflow

sf Slip flow

tr Transition

∗ Denotes reference solution

Subscripts

c Collision

coag Coagulation

i Index variable

in inflow

inc inception

j Index variable

616
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k Index variable

max Maximum

out Outflow

pri Primary particle

SG Surface growth

smp Sample

split Splitting time

stat Statistical

thresh Threshold

tmp Template

1 Denotes monomer size (first) index

Symbols

E Generic particle type space

F Flow operator

K Coagulation operator

I Inception operator

M Small particle type space

P Pressure [Pa]

P Mathematical probability

S Surface growth operator

X Large particle type space

617
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1 Indicator function

∀ For all

Abbreviations

CFD Computational fluid dynamics

CSTR Continuous stirred tank reactor

DSA Direct simulation algorithm

DQMOM Direct quadrature method of moments

LPDA Linear process deferment algorithm

MOMIC Method of moments with interpolative closure

ODE Ordinary differential equation

PBE Population balance equation

PN/P Particle-number/particle

PSD Particle size distribution

DQMOM Direct quadrature method of moments

QMOM Quadrature method of moments

SWA Stochastic weighted algorithm

SEM Scanning electron microscopy

TER Time-equivalent repeats

TESV Time-equivalent sample volume

618
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Appendix A. Transition regime coagulation kernel619

The transition kernel has the form620

Ktr (Pi, Pj) =
Ksf (Pi, Pj)K

fm (Pi, Pj)

Ksf (Pi, Pj) +K fm (Pi, Pj)
, ∀ (Pi, Pj) ∈M∪X , (A.1)

where Ksf and K fm are the slip-flow and free-molecular kernels defined621

below in which in which m is the particle mass, kB is the Boltzmann constant,622

P is the pressure, and Kn is the Knudsen number [16].623

Ksf (Pi, Pj) =
2kBT

3µ

(
1 + 1.257Kn (Pi)

dc (Pi)
+

1 + 1.257Kn (Pj)

dc (Pj)

)
(dc (Pi) + dc (Pj))

Kfm (Pi, Pj) = 2.2

√
πkBT

2

(
1

m (Pi)
+

1

m (Pj)

)
(dc (Pi) + dc (Pj))

2

Kn (Pi) = 4.74× 10−8
T

Pdc (Pi)

Majorant kernel techniques are used to reduce the computational com-624

plexity of evaluating the double summation over the particle space for the625

non-linear coagulation kernel. The technique used here is described by Pat-626

terson et al. [47] and Menz et al. [58]. The kernel K is bounded by a larger627

kernel K̂ which is easier to evaluate. In order to achieve the correct coagu-628

lation behaviour, the majorant rate is used to compute the total coagulation629

rate Rcoag (2); however individual coagulation events between particles Pi630

and Pj are only performed with probability Kij · K̂−1ij .631

The majorant used for the free-molecular kernel is632
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K̂fm (Pi, Pj) = 4.4

√
πkBT

2

(
1√
m (Pi)

+
1√

m (Pj)

)(
dc (Pi)

2 + dc (Pj)
2).
(A.2)

Define633

β1 = 4.4

√
πkBT

2
.

Then634

K̂fm (Pi, Pj) = β1

(
dc (Pi)

2√
m (Pi)

+
dc (Pi)

2√
m (Pj)

+
dc (Pj)

2√
m (Pi)

+
dc (Pj)

2√
m (Pj)

)
. (A.3)

The slip-flow kernel does not require a majorant. Define635

β2 =
2kBT

3µ

β3 = 1.257× 4.74× 10−8
T

P
.

Then636

Ksf (Pi, Pj) = β2

(
2 +

dc (Pi)

dc (Pj)
+
dc (Pj)

dc (Pi)
+ β3

(
1

dc (Pi)
+

dc (Pi)

dc (Pj)
2 +

dc (Pj)

dc (Pi)
2 +

1

dc (Pj)

))
.

(A.4)
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Table A.4: Particle properties used to choose coagulation pair (Pi, Pj) based on transition
regime majorant kernel terms.

Term Equation Pi Pj

Free-molecular 1 (N (t)− 1)
∑
d2im

−1/2
i Uniform dc (Pj)

2 ·m (Pj)
−0.5

Free-molecular 2
∑
d2i
∑
m
−1/2
i −

∑
d2im

−1/2
i dc (Pi)

2 m (Pj)
−0.5

Slip-flow 1 N (t) (N (t)− 1) Uniform Uniform

Slip-flow 2
∑
di
∑
d−1i −N (t) dc (Pi) dc (Pj)

−1

Slip-flow 3 (N (t)− 1)
∑
d−1i Uniform dc (Pj)

−1

Slip-flow 4
∑
di
∑
d−2i −

∑
d−1i dc (Pi) dc (Pj)

−2

By the techniques described in Patterson et al. [47], this yields the equa-637

tions and selection properties given in Table A.4 for coagulation rate terms638

and particle pairs respectively. Particles are chosen for coagulation events639

according to individual property-dependent rates (Table A.4). The six selec-640

tion probabilities in the third and fourth columns of Table A.4 are specified641

by the corresponding coagulation rate terms in the second column. The rate642

terms arise from summation of the majorant kernel over all particles. These643

are used to define probabilities of each selection process being chosen for a644

coagulation event. Once a process is selected, the corresponding selection645

probabilities are used to choose a particle pair (that is, the particle property646

ξ in the selection algorithm, B.5, is specified by the relevant row and column647

of Table A.4). Thus, the particle particle pairs with higher majorant rates648

are selected more often than the ones with lower rates. The real coagulation649

rate for the coagulating particle pair is compared to its majorant rate and650

this defines the probability of a real/fictitious event (Eq. (4)).651
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Appendix B. Algorithms652

Algorithm B.1: Operator-splitting algorithm using particle-
number/particle model

Input: C (t0), T (t0), zX (t0), zM (t0), z
[in]
X (t0), z

[in]
M (t0), Nthresh, Nmax, Vsmp

a, t0, tf .
Output: C (tf ), T (tf ), zX (tf ), zM (tf ), N (zM (tf )).
Set t← t0, C ← C (t0), T ← T (t0), zX ← zX (t0), zM ← zM (t0), ∆t = tf − t0.
Solve gas phase ODEs for

[
t, t+ ∆t

2

]
: C← C

(
t+ ∆t

2

)
, T ← T

(
t+ ∆t

2

)
.

while t < tf do
Calculate overall rates of non-deferred processes:

Rinception = I; Rcoagulation = K
(

(X ∪M)
2
)

; Rtotal = Rinception +Rcoagulation.

Calculate the maximum splitting time tsplit given Rtotal.
Set tflow ← t, ∆tsplit ← tsplit − t.
while t < tsplit do

Alg. B.2 is used to treat the inception and coagulation and increase the time.
Alg. B.3 is used to treat particle inflow and outflow over the time

∆tflow ← (t− tflow).
Set tflow ← t.

end
for i = 1, . . . , N (t) do

Do surface growth and sintering updates on Pi over ∆tsplit and update C, T .
end
Update particle-number list zM for surface growth over ∆tsplit (Alg. B.4).

end

Solve gas phase ODEs for
[
t+ ∆t

2 , t+ ∆t
]
: C← C (t+ ∆t), T ← T (t+ ∆t).

aInitially Vsmp = Nmax/M
max
0 where Mmax

0 is an estimate of the maximum number density.
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Algorithm B.2: Waiting time algorithm using particle-
number/particle model

Input: C (t0), T (t0), zX (t0), zM (t0), Nthresh, Nmax, Vsmp, t0, tsplit.
Output: C (tf ), T (tf ), zX (tf ), zM (tf ), tf .
Set t← t0, C ← C (t0), T ← T (t0), zX ← zX (t0), zM ← zM (t0).
Calculate overall rates of non-deferred processes:

Rinception = I; Rcoagulation = K
(

(X ∪M)
2
)

; Rtotal = Rinception +Rcoagulation.

Select a waiting time τ ∼ exp (Rtotal).
if t+ τ < tsplit then

Choose process ∈ {inception, coagulation} using:

P (process) = Rprocess ·Rtotal
−1.

if process = inception then
Update property sums for change in number of particles at index 1.

N1 ← (N1 + 1) ; N (zM)← (N (zM) + 1) .

Update gas phase C, T .
else if process = coagulation then

Pick (Pi, Pj) ∈ (zX , zM) (Alg. B.5), update for surface growth and allow
coagulation with probability:

Pi,j = Ktr (Pi, Pj) · K̂tr (Pi, Pj)
−1

.

if Coagulation allowed then
if (Pk ∈M, k = {i, j}) then

Update property sums for change in number of particles at index k.

Nk ← (Nk − 1) ; N (zM)← N (zM)− 1.

end
if (Pi ∈M, Pj ∈M) then

if N (zX ) = Nmax then
Uniformly choose a particle Pj ∈ zX and set

zX ← zX \ Pj ; Vsmp ← Vsmp ·
N (zX ) +N (zM)

N (zX ) +N (zM) + 1
.

end
Add Pi to the ensemble:

zX ← {zX , Pi}; N (zX )← (N (zX ) + 1) .

end
Perform coagulation Pi ← (Pi + Pj).

end

end
Set t← (t+ τ).

else
Set t← (t+ tsplit).

end
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Algorithm B.3: Particle flow algorithm using particle-number/particle
model

Input: zX (t0), zM (t0), z
[in]
X (t0), z

[in]
M (t0), Nthresh, Nmax, ∆tflow, Vsmp, V in

smp.
Output: zX (tf ), zM (tf ).

Set zX ← zX (t0), zM ← zM (t0), z
[in]
X ← z

[in]
X (t0), z

[in]
M ← z

[in]
M (t0),

Fsmp = Vsmp/V
in
smp, ncopies = bFsmpc.

Select number, n, of particles for inflow:

n ∼ Poi
(

∆tflow · τ−1 ·
(
N
(
z

[in]
M

)
+N

(
z

[in]
X

)))
.

while n > 0 do
Uniformly select a particle Pi (Alg. B.5) and set n← (n− 1).
if bFsmpc 6= Fsmp then

γ ∼ BernoulliDistribution (Fsmp)
ncopies ← ncopies + γ

end
if Pi ∈M then

Ni ← (Ni + ncopies) .

else
while ncopies > 0 do

if N (zX ) = Nmax then
Uniformly choose a particle Pj ∈ zX and set

zX ← zX \ Pj ; Vsmp ← Vsmp ·
N (zX ) +N (zM)

N (zX ) +N (zM) + 1
.

end
Add Pi to the ensemble:

zX ← (zX , Pi) ; ncopies ← ncopies − 1.

end

end

end
Select number, n, of particles for outflow:

n ∼ Poi
(
∆tflow · τ−1 · (N (zM) +N (zX ))

)
.

while n > 0 do
Uniformly select a particle Pi (Alg. B.5) and set n← (n− 1).
if Pi ∈M then

Ni ← (Ni − 1) .

else
Remove Pi from the ensemble:

zX ← zX \ Pi.

end

end
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Algorithm B.4: Update particle-number lists

Input: C (t0), T (t0), zX (t0), zM (t0), Nthresh, Nmax, Vsmp, ∆tsplit, template particle
of size Nthresh: P tmp

thresh.
Output: C (tf ), T (tf ), zM (tf ).
Set nadd,total ← 0.
Compute expected surface growth factor:

β̃ ← β̃ (C, T ) ∆tsplit.

for index = Nthresh, . . . , 1 do
if Nindex > 0 then

Choose number of units to add from:

nadd,index ∼ Poi
(
β̃A (Pindex)

)
.

Set newIndex← (index + nadd,index).
if newIndex > index then

Update nadd,total ← (nadd,total + nadd,index).
if newIndex ≤ Nthresh then

Update property sums for change in number at index, newIndex.
Set NnewIndex ← (NnewIndex +Nindex).
Set Nindex ← 0.

else
Update property sums for change in number at index.
Update total particle number:

N (zM)← (N (zM)−Nindex) .

Set Nindex ← 0.
Copy template particle:

Pnew ← P tmp
thresh.

Add (newIndex−Nthresh) monomers to Pnew.
for j = 1, . . . , Nindex do

if N (zX ) = Nmax then
Uniformly choose a particle Pj ∈ zX and set

zX ← zX \ Pj ; Vsmp ← Vsmp ·
N (zX ) +N (zM)

N (zX ) +N (zM) + 1
.

end
Add Pnew to the ensemble:

zX ← {zX , Pnew}.

end

end

end

end

end

Update gas phase C, T for nadd,total surface growth events.
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Algorithm B.5: Particle selection algorithm using particle-
number/particle model

Input: zX (t), zM (t), selection criterion ‘choose according to property ξ’.
Output: Selected particle Pi.
Define the sums of properties in each space (note these properties are cached):

ΣM ←
Nthresh∑
i=1

Niξi; ΣX ←
N(t)∑
i=1

ξ (Pi) ; Σtotal ← ΣM + ΣX .

Choose a uniform random number: α ∼ U (0, 1).
Set γ ← αΣtotal.
if γ ≤ ΣM then

/* Select index i from particle-number list zM */

j ← 1.
while j ≤ Nthresh do

if γ ≤ (Njξj) then
i← j.

end
else

γ ← (γ −Njξj).
j ← (j + 1).

end

end
Create the new particle Pi

a.
else

/* Select particle Pi from particle ensemble zX */

γ ← αΣtotal − ΣM.
j ← 1.
while j ≤ N (t) do

if γ ≤ ξ (Pj) then
i← j.

end
else

γ ← (γ − ξ (Pj)).
j ← (j + 1).

end

end
Use the ensemble particle Pi.

end

aClone the particle with index i from reference particle list
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