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Abstract— To match the ever increasing standards of fresh
products, and the need to reduce waste, we devise an alternative
to the destructive and highly variable fruit ripeness estimation
by a penetrometer. We propose a fully automatic method to
assess the ripeness of mango which is non-destructive, allows
the user to test multiple surface areas with a single touch and
is capable of dissociating between ripe and non-ripe fruits. A
custom-made gripper equipped with a capacitive tactile sensor
array is used to palpate the fruit. The ripeness is estimated as
mango stiffness extracted through a simplified spring model.
We test the framework on a set of 25 mangoes of the Keitt
variety, and compare the results to penetrometer measurements.
We show it is possible to correctly classify 88% of the mango
without removing the skin of the fruit. The method can be
a valuable substitute for non-destructive fruit ripeness testing.
To the authors knowledge, this is the first robotics ripeness
estimation system based on capacitive tactile sensing technology.

I. INTRODUCTION

With ever increasing demand for high quality horticultural
products, and an increase in their acceptable marketing stan-
dards, there is a need to find fast, reliable and autonomous
processes which can provide these guarantees [1]. The qual-
ity of crop is dependent on several pre-harvest factors, among
which weather conditions, growing land, irrigation patters,
chemical treatments and others still [2]. After harvesting, an
important characteristic determining quality, and which has a
direct impact in the marketability of the produce, is ripeness
[3]. Besides appropriate harvesting time, determining the
ripeness of horticultural produce is useful for classification,
transportation, handling and the security of its quality.

In crop such as bananas, strawberry, watermelons and
tomato, visual cues have been shown to be sufficient in
assessing ripeness and classifying produce accordingly [4]–
[6]. Other fruits like kiwis, blueberry or mango, however, do
not provide useful visual diversity between ripe and unripe
units. In this paper we focus on ripeness assessment of
mango, a high value agricultural and food product, which
shows different ripeness visual cues depending on its variety.
Given the large variety of mangoes (over a 1000 only in
India), assessing ripeness by machine vision is discouraged.

The current approach for ripeness assessment of mango
and similar fruits is by measuring their firmness through
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Fig. 1: Mango ripeness assessment robotic setup.

a penetrometer instrument [7], [8]. A penetrometer is a
pressure tester with a cylindrical head, which is usually
inserted in the pulp of test fruit at a set depth, and a speed
approximately controlled by an operator. The firmness values
of fruit tested by a penetrometer may largely vary depending
on the instrument’s user [9]. Moreover, penetrometer testing
is a destructive procedure, as the post-measurement fruit
damage is irreversible, and the tested fruit must therefore
be discarded. Finally, the firmness distribution of the pulp of
fruit across its surface may largely vary, and only successive
single penetrometer tests in different locations can insure a
thorough firmness assessment.

In this paper, we propose a method for testing the ripeness
of mango by means of touch. The proposed method is non-
destructive, and allows the user to test multiple surface areas
with a single touch. The method designed is possible given
the use of capacitive tactile sensing technology, endowing
end-effectors with the ability to retrieve multiple contact
pressure readings in relatively small areas. We make use
of a custom-made probe equipped with a capacitive tactile
sensor array in order to palpate the fruit and thereby assess
its ripeness. We model the mango’s pulp and skin behavior
when deformed through a simple spring system and thus



Fig. 2: Stiffness model.

retrieve fruit firmness as a stiffness measure.
This paper is structured as follows. Section I-A presents

a brief review of the current technologies available for
ripeness assessment of horticultural produce. In Section II the
methods are explained, including the theoretical framework
for ripeness assessment. In Section II-A, the gripper design
in Section II-B, and the tactile sensor technology used in
Section II-C. In Section III the results are reported and finally
a conclusion in given in Section IV.

A. Approaches for ripeness Assessment

In the past few decades, with advancements of machine
learning and vision, systems have been made showing it is
possible to assess the ripeness of horticultural produce by
visual cues [4]–[6]. These systems, however, are limited to
produce which show differences in chromacity at various
ripeness stages. For mangoes specifically, systems using
machine vision have previously been explored [10]. Given
the large variety of mango types, however, these solutions
were only limited to specific families.

Recently, spectral techniques have been used to as-
sess the quality of post-harvested produce [11]–[13]. More
specifically, Raman imaging, Fluorescence imaging, Laser
backscattering imaging, Hyperspectral imaging and Nuclear
magnetic techniques have been shown to be able to classify
produce lacking chromaticity differences into various stages
of ripeness. The equipment required for said methods, how-
ever, is usually bulky and the information processing often
computationally intensive, making it hard to create solutions
which can be exported in the field, or do not require the
transportation of produce to appropriately equipped areas.

When assessing ripeness, consumers use a combination
of tactile sensing and visual cues. The physical probing of
produce is indeed one of the oldest modalities for ripeness
assessment, and brought the advent of penetrometer mea-
surements [7], non the least because of the instrument’s
ease of use and transportability. Recent years have seen a
rapid development of robotics technology in the context of
agriculture, mainly related to transport and harvesting [14]–
[17]. Moreover, technological advances in tactile sensing and
perception [18], [19] have changed the landscape for tactile
based inference procedures [20], [21]. In this context, how-
ever, robotics solutions for post-harvest quality assessment
remain a largely unexplored area.
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Fig. 3: (a) The CySkin technology architecture. (b) The
CySkin patch used for the experiments.

II. METHODS

A. Stiffness Model

We propose a palpation procedure to assess the ripeness
of mango, and devise a simplified system to model the fruit’s
pulp and skin behavior throughout palpation. In the model we
exemplify the scenario where a finger, equipped with a force
sensor, is in contact with the surface of a mango. The finger
is actuated by a motor, and its displacement is known by
means of a motor encoder. Fig. 2 shows the modeled elastic
response of the probing finger, and the object’s surface, as
system of springs. We choose a linear model as the simplest
mechanical model of the fruit, and make the simplifying
assumption that each spring is constant. The probing finger
has a spring stiffness constant of Kr, while the mango
can be seen as a two layered structure, the first layer of
which consists of the spring response of the skin, with a
spring constant of Ks, and the second the spring response
of the pulp, with a spring constant of Kp. The lengths of
each are also respectively Xr, Xs and Xp. The estimation
of the produce’s stiffness is equivalent to retrieving the
elastic constant Ke. The motor generates a torque capable of
directly influencing the distance between the finger and the
produce. At equilibrium, the forces generated by the probing
fingers Fr equate the reacting forces from the produce’s
surface Fe, thus Fr = Fe, i.e.:

Fr = (
1

Ks
+

1

Kp
)�1(∆Xp +∆Xs) . (1)

As the skin of mango is much stiffer than its pulp, when
applying a small displacement though the motor, it is useful
to make the simplifying assumption that Ks ≈ ∞, therefore
∆Xs = 0 and

Fe = KpXp . (2)

Finally, the motor displacement as computed by the en-
coder corresponds to ∆Xm = ∆Xr + ∆Xp. So from
equation 2, and the simplifying assumption we have:

Ke(1 + ε) =
Fr

∆Xr +∆Xp
(3)

where, ε =
∆Xr

∆Xr +∆Xp
(4)

i.e. when the motor displacement is large and/or the com-
pression of the sensor ∆Xr is much smaller than that of the
mango ∆Xp, ε can be neglected.
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Fig. 4: Gripper, and force calibration set-up.

B. Probing Gripper Mechanism

Fig. 4 shows the gripper used for the experiments. The
gripper is composed by a main rectangular case containing
a lead screw and two metallic rods. The chamber contains
two opposite fingers, which remain parallel to each other
throughout the gripper’s actuation. We designed two fingers
with flat surfaces at the extremities, capable of holding the
referenced tactile sensor. A central actuation unit reduces the
distance between the fingers by actuating one finger thorough
a Micro Metal Gearmotor motor, with a 6:1 gear ratio and
equipped with a rotary encoder. The rotational actuation
movement is then transfered into a linear displacement by
the lead screw and metallic rod. We control the motor via
a TB6612FNG Dual Motor Driver Carrier controller. Each
gripper component was 3D-printed, for fast prototyping.

C. Tactile Sensor Technology and Data Acquisition

The tactile sensor (CySkin) used for the experiments is
described in [22]. The adopted sensing mode is based on
the capacitive transduction principle. A capacitive transducer
(i.e., a tactile element, or taxel) is organized in a layered
structure: the lower layer consists of the positive electrode,
which is mounted on a Flexible Printed Circuit Board
(FPCB). The dielectric for the sensor is here fundamental.
The deformation of a too soft dielectric layer, like air, may
reach its saturation before inducing any deformation in the
pulp of a mango. From equation 4 it is clear how the
deformation of the mango surface must be grater than that
of the sensor, for the assumptions to hold. Knowing typical
mango firmness ranges4, we choose a 3D-printed dielectric
layer of 2mm, composed of VeroBlack rubber with A-27
Shore coefficient.

In the experiments we use 2 hexagonal shaped modules,
each placed in the inner flat extremity of a finger in the
gripper (Fig. 4). Each module hosts 6 taxels (Fig. 3b), as
well as the Capacitance to Digital Converter (CDC) chip
(namely, the AD7147 from Analog Devices) for converting
capacitance values to digital. The CDC chip can measure

4https://www.mango.org/wp-content/uploads/2017/10/Mango Maturity
And Ripeness Guide.pdf
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Fig. 5: Flowchart of the touch experiment for a mango.

variations in capacitance values with 16 bits of resolution.
All the modules are interconnected and communicate through
an SPI bus to a read-out board which performs a preliminary
processing of the tactile sensor data and send them to the PC
through CAN bus (Fig. 3a) with a sensitivity of 0.32 pF. In
this context, the normal forces exerted on the sensor produce
variations in capacitance values reflecting the varied pressure
over the taxel positions. A sensor reading, or tactile image,
from the tactile sensors described is produced at 20Hz, and
corresponds to two 6-dimensional arrays, where each element
contains the capacitance variation value of the corresponding
taxel within each finger in the gripper. Here and for the
remainder of the experiments, each taxel is considered a
separate tactile sensing unit.

D. Robot and Experimental Set-Up

To perform the mango experiments the end-effector, cou-
pled with the tactile sensor, was mounted onto an ST-
Robotics R12/5 arm3. The R12/5 robotic arm was controlled
open-loop in Cartesian coordinates. A teach-pendant was
used to manually teach the robot the starting position with
the arm and end-effector facing forward (Fig. 1).

After the robot arm reaches the starting position, and a
test produce is placed within the end-effector’s reach, the
probing experiment consists of three stages: a reaching, a
probing and a release stage (Fig. 5).

In the first phase, the gripper’s moving finger is driven
towards its immobile counterpart at 1mm/s. When any taxel,
in both fingers, reads values above 5% of their maximum
calibration, a touch is detected and the gripper is stopped.

In the second phase, the mobile finger is further actuated
to close the gripper until either of two conditions are met:
first, the last touching taxel has moved of at least 1mm
into the flesh of the fruit; second, the encoders do not
change value over two consecutive readings (i.e. the motor
is at equilibrium at its maximal gripping force).The slow
motion induce quasi-static interaction validating the model’s

3http://www.robotshop.com/uk/st-robotics-r12-5-axis-articulated-robot-
arm.html



Fig. 6: Raw taxel value to force logarithmic fit on taxel 3.

static assumptions. The depth of 1mm was chosen to induce
enough deformation in the mango, while working within the
linear range of the sensor (Fig. 6, force range [0, 5.5]N ).

In the third phase, the gripper mobile finger is reversed at
1mm/s to the gripper’s fully opened state (Fig. 5).

The system has been implemented in MATLAB, synchro-
nizing the gripper control and the sensors acquisition. The
tactile images are thus recorded at ≈ 15Hz throughout the
run of the second stage and later used to retrieve the stiffness
of the touched produce.

III. RESULTS

A. Sensor Force Calibration

To make use of the theoretical spring model we converted
the tactile sensor pressure response, of each taxel, in force.
To achieve accurate conversions, the end-effector coupled
with the tactile sensor was made to close onto a stiff metal
cuboidal object. The opposite surface areas of the cuboid,
in contact with the end-effector’s fingers, were covered by
two force sensitive resistors FSR 174 sensors, previously
calibrated to measure forces in 0 − 10N range with an
accuracy of 0.01N (Fig. 4). In the experiment, the gripper
was actuated to close at 1mm/s until motor torque limit.
The force sensor response and corresponding taxel values
were sampled at ≈ 15Hz. Given prior knowledge of the
dielectric layer deformation behavior [?], we fit a logarithmic
curve of the form f(x) = a log(bx − 1) + c, mapping the
pressure response to the punctual forces registered during the
calibration. The a, b, and c parameters were optimized by
least squares. Fig. 6 shows an example force fit for taxel 3,
all other taxels were similarly calibrated.

B. Mango Penetrometer Testing

A set of 25 mangoes of the Keitt variety were used for
testing. The mango were divided in three subsets and made
to ripen at room temperature for 1, 3 and 5 days, increasing
the ripeness differences amongst subsets (Fig. 7a).

We use a penetrometer instrument to retrieve ground truth
mango firmness measurements. Penetrometer tests were done
following industrial standards. The skin of each mango
was removed before the measurement, and pressure was

(a)

(b)

Fig. 7: (a) Mangoes used for the experiments at purchase
time. (b) Penetrometer measurements of each mango when
tested at a distance of 1, 3 and 5 days from purchase.

applied to reach the penetrometer’s head full insertion in
approximately 2s. A total of 10 measurements were done on
each mango. Fig. 7b shows the penetrometer measurement
values for each fruit in the test set. Mangoes 1-9 were tested
on day one, mangoes 10-18 were tested on day two and
mangoes 19-25 were tested on day five. Comparing the
measured values to standard ripeness levels4 20 mangoes
were found to be at ripeness stage 6 (very ripe), 2 mangoes
at ripeness stage 5 (ripe) and 3 mangoes at ripeness stage 4
(non-ripe). Fig. 7b shows how penetrometer tests, even when
the instrument is operated by the same user, are somewhat
variable (average standard deviation of penetrometer mea-
sures ≈ 0.287Kg/cm2), and do not always clearly collocate
a mango in a ripeness stage.

C. Stiffness Measurement Analysis

We analyze whether from the raw tactile information is
possible to dissociate between ripe and unripe mangoes. Fig.
8 shows the raw tactile sensor response, when touching fruits
at ripeness stage 4, and 6 (as determined by penetrome-
ter testing). In Fig. 8a it is clear how the ripeness stage
information is captured by the sensor response. Moreover,
we observe how different taxels activate at different times
and with different intensity depending on the mango. The
variability is mainly due to the curvature of the fruit against
the sensor’s flat surface.
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(b) Mango no. 7, ripeness stage 6.

(c) Mango no. 4, ripeness stage 4.

Fig. 8: (a) Mean and error of all raw tactile sensing units, (b) raw tactile sensor response, when performing the touching
experiment on mango number 7, at ripeness stage 6, and (c) a mango number 4, at ripeness stage 4.
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Fig. 9: Flowchart of the stiffness extraction processing.

During the experiments with each sample, the recorded
sequential sensor response was used, together with equation
3, to retrieve the stiffness Ke of the mango’s pulp (Fig. 9)
We compare the computed stiffness of each mango against
average penetrometer measurements in two scenarios: one,
as an average of the stiffnesses computed by all sensing units
(Fig. 10a), and two, as an average of the four taxels regis-
tering the highest change in pressure over the course of each
touch experiment (Fig. 10b). Fig. 10 shows how it is only
possible for the sensor (y-axis in figure) to separate between
ripe and non-ripe mangoes when given the opportunity to
choose reliable tactile sensing units, depending on the touch
experiment. The result emphasizes the need of sensors capa-
ble of drawing multiple measurements at once, as any one
measurement might be unreliable in its ripeness estimation.
Moreover, the sparse sensor response for mango at ripeness
stage 6 (Fig. 10b), suggests that the skin of mangoes has a
non-linear influence on the measured pressures. Given typical
mango skin thicknesses, such influence is negligible for non-
ripe mangoes, where the stiffness of the pulp dominates the

sensor readings. For ripe and very ripe mangoes, however,
the stiffness of the skin, at times, induces the stiffness of the
whole fruit to be much higher than its pulp.

For the final estimation of mango stiffness after contact,
we thus limit the computation on an average of the four taxels
measuring the highest change in pressure over the course
of the touch experiment’s second stage. In this context, the
use of multiple taxels for stiffness estimations allows for
the dismissal of outliers generated by the curvature of the
fruit. We consider non-ripe the mangoes whose stiffnesses is
in the range Ke > 9.7, and ripe the mangoes those where
Ke < 9.7. The ripeness threshold was chosen to maximize
accuracy over the tested fruit. Table I reports the thresholding
results. In particular, we find we can classify 88% of the
tested fruit correctly, and accurately detect all the non-ripe
samples in the tested mangoes.

IV. CONCLUSIONS

Given the lack of standard, non destructive and non-
chemical tests for assessing the ripeness of fruit, we devise
a ripeness testing method based on capacitive tactile sensing
technology. We devise a custom made gripper, supplied with
12 capacitive tactile sensing units distributed homogeneously
over two fingertips. We perform experiments by which the
gripper close onto the flesh of test fruit until a pre-set depth is
reached, while recording tactile image sequences. The tactile
image sequences, together with a spring stiffness model,
are used to retrieve the stiffness of the palpated fruit and
assess its ripeness. We test the proposed method on a set
of 25 mango fruit of the Keitt variety. We compare the
whole fruit stiffness computations to pulp ripeness measure-
ments based on a standard penetrometer instrument. Results
show that the tactile based ripeness assessment method
is capable of classifying mangoes into ripe or non-ripe,
with accuracies increasing with the stiffness of the pulp.
Moreover, since the proposed method, based on capacitive
tactile technology, hinges on the relationship between flesh
stiffness and ripeness of target produce, we argue the method
is valid for other types of horticultural produce showing such
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Fig. 10: (a) Computed stiffness averages from all sensing
units and (b) stiffness averages of the 4 taxels recording
the highest change in pressure throughout the experiment,
against average penetrometer measurements. Each point in
the plot is a different mango in the dataset.

relationship, e.g. tomatoes, grapes, apricot, cherries, kiwis
and others besides, some of which may present difficulties
for visual based ripeness assessment.

A non-linear effect to the stiffness estimation, due to the
intact skin of the mango, was observed. The effect makes the
distinction between stage 5 and 6 mangoes hard, in general.
Future work should allow the differentiation between skin
and pulp stiffness, increasing the comparability of the results
with standard measurements.

Finally, as the scale of penetrometer measurements may
vary depending on the user, the proposed method presents
clear transferability advantages for testing ripe over non-
ripe mangoes. Moreover, the method is non-destructive, the
sensor technology utilized can test several surface locations
at once, the gripping technology is light thus can be mobile,
and its usage does not require any specialized expertise.
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