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Abstract

The use of genetically encoded ‘self-labeling tags’ with chemical fluorophore ligands

enables rapid labeling of specific cells in neural tissue. To improve the chemical tagging of

neurons, we synthesized and evaluated new fluorophore ligands based on Cy, Janelia

Fluor, Alexa Fluor, and ATTO dyes and tested these with recently improved Drosophila mel-

anogaster transgenes. We found that tissue clearing and mounting in DPX substantially

improves signal quality when combined with specific non-cyanine fluorophores. We com-

pared and combined this labeling technique with standard immunohistochemistry in the Dro-

sophila brain.

Introduction

Immunohistochemistry (IHC) allows the visualization of specific antigens in tissue using the

binding of fluorophore-labeled antibodies. Although IHC is a relatively simple technique and

has been widely used for decades [1,2], this method has well-known limitations [3,4] including

poor tissue penetrance of the antibodies, high background staining (e.g. [5]), and cross-reactiv-

ity between antibodies (e.g. [6]). Poor tissue penetrance of antibodies often lengthens the time

required for IHC protocols. Non-specific binding of antibodies causes high background stain-

ing that masks the detection of the target antigen. Cross-reactivity can occur when antibodies

developed against a protein in one species bind to related proteins in another species. Collec-

tively, these issues make IHC time consuming and difficult to optimize.

The self-labeling tag concept offers an alternative method to label structures of interest in

tissue. Instead of a relatively large antibody binding to an epitope, a small molecule ligand

covalently binds to a genetically encoded enzyme-based “tag” (e.g., HaloTag, SNAP-tag)

expressed in a specific cellular location [7–9]. Originally developed as a complement to fluores-

cent proteins in live cell fluorescence microscopy, chemical tags have been adapted for use in
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fixed tissue. The small size of the chemical tag ligand allows rapid labeling in tissue as well as

lower background staining and cross-reactivity [10]. However, although the initial chemical

tag reporters established the viability of chemical labeling of Drosophila fixed tissue, their

labeling intensity was low. The second-generation reporters substantially increased labeling

intensity, as well as expanding the range of expression systems that could be used with chemi-

cal tags [11]. Therefore, these new reporters offer a more potent method for rapid fixed tissue

labeling while avoiding the limitations of the traditional IHC approach mentioned above.

Despite the utility of chemical tagging in tissue, the existing collection of commercial fluor-

ophore ligands was not developed explicitly for fixed tissue labeling. Here, we evaluate chemi-

cal tagging to replace or complement IHC labeling of neurons in the Drosophila melanogaster
central nervous system. We used the recently developed expression systems for genetically

encoded tags [10,11], as well as designed and synthesized four new chemical tag ligands: Cy2

SNAP-tag, JF549 CLIP-tag, Alexa Fluor 594 HaloTag, and ATTO 647N HaloTag (Fig 1; [12]).

In particular, we investigated the performance of these dyes in conjunction with xylene tissue

clearing and DPX (Distyrene, Plasticizer, and Xylene) mounting medium to match the refrac-

tive index of glass [13].

Methods

Chemical synthesis

Commercial reagents and solvents were obtained from Sigma-Aldrich or Fisher Scientific

unless otherwise noted. BG-NH2 and BC-NH2 were acquired from New England Biolabs

(NEB), and HaloTag amine (O2) ligand was purchased from Promega. ATTO 674N NHS

ester, Alexa Fluor 594 NHS ester, and Cy2 bis-NHS ester were obtained from Sigma-Aldrich,

Life Technologies, and GE Healthcare Life Sciences, respectively. All solvents were purchased

Fig 1. Chemical tag ligands. (A) JF549–CLIP-tag ligand. (B) ATTO 647N–HaloTag ligand. (C) Alexa Fluor 594–

HaloTag ligand. (D) Cy2(Gly)–SNAP-tag ligand.

https://doi.org/10.1371/journal.pone.0200759.g001
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in septum-sealed bottles stored under an inert atmosphere. Reactions were monitored by LC/

MS (Phenomenex Kinetex 2.1 mm × 30 mm 2.6 μm C18 100 Å column; 5 μL injection; 5–98%

MeCN/H2O, linear gradient, with constant 0.1% v/v formic acid additive; 6 min run; 0.5 mL/

min flow; ESI; positive ion mode). Reaction products were purified by preparative reverse

phase HPLC (Phenomenex Gemini–NX 30 mm × 150 mm 5 μm C18 column). Analytical

HPLC analysis was performed with an Agilent Eclipse XDB 4.6 mm × 150 mm 5 μm C18 col-

umn under the indicated conditions.

JF549–CLIP-tag ligand

6-Carboxy-JF549 [12] (20 mg, 35.2 μmol) was combined with DSC (19.8 mg, 77.4 μmol, 2.2 eq)

in DMF (1.5 mL). After adding Et3N (14.7 μL, 106 μmol, 3 eq) and DMAP (0.4 mg, 3.52 μmol,

0.1 eq), the reaction was stirred at room temperature for 2 h. Purification of the crude reaction

mixture by reverse phase HPLC (10–95% MeCN/H2O, linear gradient, with constant 0.1% v/v

TFA additive) afforded 18.3 mg (78%, TFA salt) of JF549-6-NHS as a dark purple solid. JF549-

6-NHS (TFA salt, 5.3 mg, 8.0 μmol) and BC-NH2 (2.0 mg, 8.8 μmol, 1.1 eq) were combined in

DMF (700 μL), and triethylamine (2.8 μL, 20.0 μmol, 2.5 eq) was added. The reaction was stir-

red at room temperature for 18 h while being shielded from light. It was subsequently purified

by reverse phase HPLC (10–95% MeCN/H2O, linear gradient, with constant 0.1% v/v TFA

additive) to provide 4.9 mg (79%, TFA salt) of the title compound as a dark red solid. Analyti-

cal HPLC: tR = 9.9 min, 98.3% purity (10–95% MeCN/H2O, linear gradient, with constant

0.1% v/v TFA additive; 20 min run; 1 mL/min flow; ESI; positive ion mode; detection at 550

nm); MS (ESI) calculated for C39H35N6O5 [M+H]+ 667.3, found 666.9.

ATTO 647N–HaloTag ligand

ATTO 647N NHS ester (5 mg, 5.9 μmol) and HaloTag amine (O2) ligand (2.0 mg, 8.9 μmol,

1.5 eq) were combined in DMF (1 mL), and DIEA (5.2 μL, 29.7 μmol, 5 eq) was added. The

reaction was stirred at room temperature for 18 h while being shielded from light. It was subse-

quently purified by reverse phase HPLC (30–95% MeCN/H2O, linear gradient, with constant

0.1% v/v TFA additive) to provide 4.8 mg (84%, TFA salt) of the title compound as a dark blue

gum. Analytical HPLC: tR = 14.6/14.9 min (mixture of diastereomers), >99% purity (30–95%

MeCN/H2O, linear gradient, with constant 0.1% v/v TFA additive; 20 min run; 1 mL/min

flow; ESI; positive ion mode; detection at 650 nm); MS (ESI) calculated for C52H72ClN4O4

[M]+ 851.5, found 851.1.

Alexa Fluor 594–HaloTag ligand

Alexa Fluor 594 NHS ester (5 mg, 6.1 μmol) and HaloTag amine (O2) ligand (2.0 mg, 9.2 μmol,

1.5 eq) were combined in DMF (1 mL), and DIEA (5.3 μL, 30.5 μmol, 5 eq) was added. The

reaction was stirred at room temperature for 18 h while being shielded from light. It was subse-

quently purified by reverse phase HPLC (10–75% MeCN/H2O, linear gradient, with constant

0.1% v/v TFA additive) to provide 2.6 mg (41%, TFA salt) of the title compound as a violet

solid. Analytical HPLC: tR = 11.1 min, 98.7% purity (10–95% MeCN/H2O, linear gradient, with

constant 0.1% v/v TFA additive; 20 min run; 1 mL/min flow; ESI; positive ion mode; detection

at 600 nm); MS (ESI) calculated for C45H55ClN3O12S2 [M]+ 928.3, found 927.8.

Cy2(Gly)–SNAP-tag ligand

Cy2 bis-NHS ester (5 mg, 5.8 μmol) was taken up in DMF (1 mL); DIEA (5.1 μL, 29.1 μmol, 5

eq) was added, followed by a solution of BG-NH2 (5 mg/mL in DMF, 160 μL, 3.0 μmol, 0.5
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eq). After stirring for 1 h at room temperature, additional BG-NH2 (5 mg/mL in DMF, 123 μL,

2.3 μmol, 0.4 eq) was added. The reaction was stirred at room temperature for 1 h, concen-

trated in vacuo, and purified by reverse phase HPLC (10–50% MeCN/H2O, linear gradient,

with constant 0.1% v/v TFA additive) to provide 2.5 mg of the Cy2(mono-NHS)-SNAP-tag

ligand as an orange solid. This intermediate was combined with glycine (3 mg, 40.0 μmol, 20

eq) and DIEA (1.8 μL, 10.1 μmol, 5 eq) in DMF (1 mL). The reaction was stirred at room tem-

perature for 18 h, concentrated in vacuo, and purified by reverse phase HPLC (10–40%

MeCN/H2O, linear gradient, with constant 0.1% v/v TFA additive) to provide 0.5 mg (8%,

TFA salt) of the title compound as an orange solid. Analytical HPLC: tR = 8.6 min, >99%

purity (10–50% MeCN/H2O, linear gradient, with constant 0.1% v/v TFA additive; 20 min

run; 1 mL/min flow; ESI; positive ion mode; detection at 500 nm); MS (ESI) calculated for

C44H48N9O13S2 [M]+ 974.3, found 974.1.

Fly stocks

Flies were raised on standard corn meal molasses food. The stocks used in this paper included

the following: SS02565: Stable split GAL4 stock 02565 consists of 55C09-p65ADZp in VK00027
and VT040566-ZpGDBDin attP2 (BJD_111C02_AV_01; [14–16]); SS00313: Stable split GAL4

stock 00313 consists of 38C11-p65ADZp in attP40 and 59C10-ZpGdbd in attP2 [14,16]; 5XUA-
S-IVS-myr::smFLAG in VK00005, pJFRC51-3XUAS-IVS-Syt::smHA in su(Hw)attP1 [17]; brp-
SNAP [10]; UAS-myr::4xCLIPf in VK00005 [11]; UAS-Syt::Halo7 in VK0027 [11]; 57C10-Flp2 in
attp18;; pJFRC201-10XUAS>STOP>myr::smGFP-HA in VK00005, pJFRC240-10XUAS>
STOP>myr::smGFP-V5-THS-10XUAS>STOP>myr::smGFP-FLAG in su(Hw)attP1 [13];

20XUAS-Cs-Chrimson-mVenus trafficked in attP18 [17]; UAS-7xHalo7::CAAX in VK00005
[11]; and UAS-myr-Halo2 in attP2 [10].

Dissection & fixation

For a detailed protocol, see S1 Protocol. One- to five-day old female flies were anesthetized

with CO2, briefly submerged in cold 70% ethanol, briefly submerged in cold S2 medium

(Schneider’s Insect Medium, S01416, Sigma Aldrich, St. Louis, MO), then held in additional

cold S2 medium for up to 20 minutes until dissection. Brains and ventral nerve cords were dis-

sected in cold S2 medium, then fixed in room temperature 2% paraformaldehyde in S2

medium for 55 minutes while rotating on a nutator. Samples were washed 1–4 times (fewer for

chemical tags, four times for IHC) in phosphate-buffered saline plus 0.5% Triton X-100 (PBT)

for 10–20 minutes each.

Immunohistochemistry

IHC samples were held for up to two days at 4˚C in PBT after dissection. Polarity labeling fol-

lowed [17], with a detailed protocol in S2 Protocol. MCFO labeling followed [13], with a

detailed protocol in S3 Protocol. Both protocols were modified by the replacement of Cy5 goat

anti-rat or Alexa Fluor 647 goat anti-rat with ATTO 647N goat anti-rat (RRID: AB_10893386,

polyclonal targeting Rat IgG (H&L) antibody, Rockland Immunochemicals Inc. 612-156-120,

Limerick, PA) at their original concentrations.

Chemical tagging

Samples were tagged following 1–4 post-fixation washes plus in some cases being held up to

two hours in PBT, otherwise following the approach of [10]. Chemical tag ligands were applied

in a 200 μL volume for 15 minutes at room temperature on a nutator, followed by two 10
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minute washes. All ligands were used at 2 μM except CLIP-tag ligands, which were used at

3 μM. If both SNAP- and CLIP-tag ligands were used, the SNAP-tag ligands were applied first

followed by CLIP-tag ligands, to minimize cross-reactivity. In addition to the novel chemical

tag ligands described here, we used CLIP-Cell TMR-Star (S9219S, New England Biolabs, Ips-

wich, MA) and JF549 SNAP-tag ligand [12].

Hybrid IHC & chemical tag

The hybrid IHC/chemical tag protocol combined Cy2 SNAP-tag ligand labeling of the brp-

SNAP reference with antibody labeling of specific neurons. The procedure followed the full

chemical tag procedure and then an IHC protocol modified to remove nc82 reference labeling

(Polarity hybrid protocol https://dx.doi.org/10.17504/protocols.io.nycdfsw; MCFO hybrid

protocol https://dx.doi.org/10.17504/protocols.io.nyhdft6). The processing required for IHC

appeared to diminish the chemical tag signal somewhat when compared to pure chemical

tagging.

Dehydration, clearing & mounting

Most samples were fixed for four hours in room temperature 4% paraformaldehyde in PBS fol-

lowing labeling and before dehydration, in order to make the shrinkage during dehydration more

uniform. They were then dehydrated in an ethanol series, cleared in xylene, and mounted in

DPX, as described in [17], with a detailed protocol in S4 Protocol.

Imaging

Samples were imaged on several Zeiss LSM 710 and 700 confocal scanning microscopes with

either a Plan-Apochromat 20x/0.8 M27 or Plan-Apochromat 63x/1.40 oil immersion objective.

All images are maximum intensity projections of captured confocal stacks. Imaging was per-

formed using Zeiss ZEN software with a custom Multitime macro. Except as described below,

the Multitime macro was allowed to automatically select appropriate laser power and gain for

each sample. As a result, each image is independently scaled for intensity and was evaluated

based on laser power and gain required in addition to image quality, with limited weight

placed on raw intensity.

Intensity quantification

After initial imaging, samples were re-imaged with fixed laser and gain settings for quantifica-

tion of fluorescence intensity. Laser and detection settings were as follows:

Cy2: 488 nm laser, 498–543 nm detection range, 20% laser power, 560 gain

TMR & JF549: 561 nm laser, 561–620 nm detection range, 20% laser power, 340 gain.

Intensity was quantified for neuropil reference by opening 20X stacks in Fiji, moving in z to

where the fan-shaped body comes together just beyond the ellipsoid body, drawing a 30-pixel

diameter circle on the center of the fan-shaped body, and using Fiji’s histogram function (sin-

gle slice) to measure the mean intensity inside the circle. Without changing depth, 30-pixel

diameter mean intensities were measured from the brightest part of each medial optic lobe.

The three measurements were averaged together for each sample. Intensity values were mea-

sured in arbitrary units of intensity between 0 and 4095.

Intensity values for SS02565neurons were measured similarly to the neuropil reference, but

moving to the brightest z slice of expression in prominent projections to the anterior optic

tubercle for each hemisphere. Mean intensity for a 30-pixel diameter region around each was

measured and the two measurements were averaged together.

Fluorophores for chemical tagging and immunohistochemistry of Drosophila neurons
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Samples that had been initially imaged with both 20X and 63X objectives had approxi-

mately 50% lower average intensity than those imaged only at 20X, presumably due to photo-

bleaching, and were excluded from the reported averages. Raw intensity comparisons between

fluorophores imaged with different lasers and detectors, e.g. Cy2 SNAP-tag ligand and JF549

SNAP-tag ligand, unfortunately could not be meaningfully quantitatively performed.

Results and discussion

We first investigated chemical tagging to label the Drosophila neuropil as a reference for ner-

vous system morphology. We evaluated two different dye ligands for the Brp-SNAP-tag neuro-

pil marker: a novel 488 nm-excited Cy2 SNAP-tag and the known 560 nm-excited JF549

SNAP-tag ligands [10,11]. Although not as bright as anti-Brp nc82 antibody and Cy2 anti-

mouse secondary (422.9 ± 76.6 arbitrary intensity units (a.u.), standard deviation, n = 12), the

chemical tagging protocol was substantially faster and both dyes showed bright specific stain-

ing of fly neuropil in DPX (Cy2: 188.6 ± 27.2 a.u., standard deviation, n = 21; Fig 2). The

higher brightness of the IHC protocol likely stems from the inherent amplification at both the

tag and primary-to-secondary antibody stages (see methods; [11,18]). We selected Cy2 SNAP-

tag ligand for further work due to its direct replacement of the Cy2 antibody in current use

(https://www.janelia.org/project-team/flylight/protocols).

We tested the new Cy2 SNAP-tag ligand in combination with previously described chemi-

cal tag and antibody reagents to determine the optimal approach for two labeling schemes: (1)

‘Polarity’, to label neuronal membrane and presynaptic sites (Fig 3); and (2) ‘MultiColor

FlpOut’ (MCFO), to characterize the morphology of individual neurons by stochastic labeling

([13]; Fig 4). The current Polarity scheme consists of neuropil reference, a myristoylated

reporter for neuronal membrane, and a Synaptotagmin-fused reporter for presynaptic termi-

nals: 5XUAS-IVS-myr::smFLAG in VK00005, pJFRC51-3XUAS-IVS-Syt::smHA in su(Hw)attP1
[17]. The MCFO scheme consists of neuropil reference plus three stochastically activated

membrane reporters: pJFRC201-10XUAS>STOP>myr::smGFP-HA in VK00005, pJFRC240-
10XUAS>STOP>myr::smGFP-V5-THS-10XUAS>STOP>myr::smGFP-FLAG in su(Hw)attP1
[13].

For the Polarity protocol, we compared three different labeling strategies: (1) the existing

pure IHC approach (Fig 3A); (2) a hybrid approach where the neuropil reference was labeled

with brp-SNAP/Cy2-SNAP-tag ligand and specific neurons labeled with antibodies (Fig 3B);

Fig 2. Comparison of brp-SNAP with JF549 or Cy2 SNAP-tag ligands. brp-SNAP flies had brains removed, fixed, and

incubated for 15 minutes with (A) Cy2 SNAP-tag ligand, or (B) JF549 SNAP-tag ligand. Cy2 samples had additional 4

hour 4% post-fixation, improving their morphology during dehydration and DPX mounting.

https://doi.org/10.1371/journal.pone.0200759.g002
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and (3) a pure chemical tag approach using brp-SNAP, UAS-myr::4xCLIPf in VK00005, and
UAS-Syt::Halo7 in VK0027 transgenes (Fig 3C). As in the case of neuropil labeling alone, the

Polarity protocol signal quality of the chemical tagging systems was worse than for pure IHC.

Fig 3. Comparison of Polarity IHC and chemical tag labeling methods. All samples show the Drosophila left optic

lobe imaged at 63X. Each image is independently scaled for optimal intensity. (A). Polarity pure IHC: Split GAL4

SS02565was crossed to w;; 5XUAS-IVS-myr::smFLAG in VK00005, pJFRC51-3XUAS-IVS-Syt::smHA in su(Hw)attP1
and was labeled over a period of 13 days with nc82 mouse anti-Brp/Cy2 anti-mouse, rabbit anti-HA/Cy3 anti-rabbit,

and rat anti-FLAG/Cy5 anti-rat. (B). Polarity hybrid IHC: SS02565was crossed to w; brp-SNAP; 5XUAS-IVS-myr::
smFLAG in VK00005, pJFRC51-3XUAS-IVS-Syt::smHA in su(Hw)attP1 and labeled with Cy2 SNAP-tag ligand for 15

minutes, followed by rabbit anti-HA/Cy3 anti-rabbit, and rat anti-FLAG/Cy5 anti-rat over 6 days. Arrowheads

indicate bleed-through of Cy5 into Cy2 channel. (C). Polarity pure chemical tag: SS02565was crossed to w; brp-
SNAP; UAS-myr::4xCLIPf in VK00005, UAS-Syt::Halo7 in VK0027 and labeled for 15 minutes with Cy2 SNAP-tag

ligand, TMR CLIP-tag ligand, and ATTO 647N HaloTag ligand. (D). Polarity ATTO 647N pure IHC: As in (A) but

with ATTO 647N instead of Cy5. (E). Polarity ATTO 647N hybrid IHC: As in (B) but with ATTO 647N instead of

Cy5.

https://doi.org/10.1371/journal.pone.0200759.g003
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Moreover, in the hybrid protocol, the Cy2 chemical tag reference labeling exhibited an average

intensity of 114.0 ± 20.0 a.u., standard deviation, n = 11, suggesting that the requisite process-

ing steps for IHC lowered the chemical tag signal quality (see below). The results for the

MCFO hybrid protocol were similar, with lower signal levels than the pure IHC MCFO proto-

col (Fig 4A and 4B).

In the pure IHC Polarity & MCFO protocols, and especially in the hybrid approaches, we

observed signal from Cy5 (Polarity) or Alexa Fluor 647 (MCFO) in the 488 reference channel

(Fig 3A and 3B and Fig 4A and 4B). This ‘bleed-through’ may be due to reported impurities

in these cyanine-based dyes and/or due to fluorescence changes when embedded in DPX [19].

When we replaced both dyes with the rhodamine-based ATTO 647N we saw an elimination of

bleed-through with the hybrid protocol and a strong reduction in bleed-through with pure

IHC (Fig 3D and 3E, Fig 4C and 4D).

Closer examination of the pure chemical tag Polarity protocol showed that membrane-

labeling was suboptimal at high resolution (Fig 5). To enhance the signal, we replaced tetra-

methylrhodamine (TMR) CLIP-tag ligand (33.1 ± 7.1 a.u., standard deviation, n = 11) with

Fig 4. Comparison of MCFO IHC and chemical tag labeling methods. All samples show the Drosophila left optic lobe

imaged at 63X. Each image is independently scaled for optimal intensity. Arrowheads indicate bleed-through into Cy2/

AF488 channel. (A). MCFO pure IHC: Split GAL4 SS00313was crossed to 57C10-Flp2 in attp18;; pJFRC201-10XUAS>
STOP>myr::smGFP-HA in VK00005, pJFRC240-10XUAS>STOP>myr::smGFP-V5-THS-10XUAS>STOP>myr::
smGFP-FLAG in su(Hw)attP1, and was labeled with nc82 mouse anti-Brp/Alexa Fluor 488 anti-mouse, rat anti-FLAG/

Alexa Fluor 647 anti-rat, rabbit anti-HA/Alexa Fluor 594 anti-rabbit, and DyLight 550 mouse anti-V5 over a period of 7

days. (B). MCFO hybrid IHC: SS00313 was crossed to 57C10-Flp2 in attp18; brp-SNAP; pJFRC201-10XUAS>STOP>myr::
smGFP-HA in VK00005, pJFRC240-10XUAS>STOP>myr::smGFP-V5-THS-10XUAS>STOP>myr::smGFP-FLAG in su
(Hw)attP1 and labeled for 15 minutes with Cy2 SNAP-tag ligand, followed by rat anti-FLAG/Alexa Fluor 647 anti-rat,

rabbit anti-HA/Alexa Fluor 594 anti-rabbit, and DyLight 550 mouse anti-V5 over a period of 6 days. (C). MCFO ATTO

647N pure IHC: As in (A) but with ATTO 647N instead of Alexa Fluor 647. (D). MCFO ATTO 647N hybrid IHC: As in

(B) but with ATTO 647N instead of Alexa Fluor 647.

https://doi.org/10.1371/journal.pone.0200759.g004
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newly synthesized JF549 CLIP-tag ligand (60.2 ± 2.4 a.u., standard deviation, n = 5), which

improved signal substantially, but still was not as bright as IHC. We also compared the effec-

tiveness of Alexa Fluor 594 HaloTag, and ATTO 647N HaloTag ligands in a two-color refer-

ence plus membrane label protocol (Fig 6). Both performed similarly well when paired with

brp-SNAP and Cy2 SNAP-tag ligand.

In general, we observed that the processing speed improvements of chemical tag labeling

are substantial—the time required to label tissue is greatly reduced from 1–2 weeks for IHC to

an hour for chemical tags. However, despite recent improvements in transgenes and the new

ligands reported here, the signal strength for chemical tagging was still lower than for the opti-

mized IHC protocol. We expect both strategies to be useful depending on the experimental

needs: while screening efforts benefit from the fast turnaround of chemical tagging, more

detailed anatomical mapping efforts require the higher signal of IHC. In addition, the chemical

tags method enables an alternative approach in cases of IHC antibody cross-reactivity. Finally,

these data highlight the value of continuing development of new, brighter fluorophores for use

with emerging labeling strategies in tissue.

Fig 5. Detail comparison of SS02565neuronal membrane labeling. All samples show the same region of projections

crossing from the left optic lobe to the central brain. Only the neuronal membrane channel is shown, and is labeled via

antibodies in (A-B) and CLIP-tag in (C-D). (A) SS02565was crossed to w;; 5XUAS-IVS-myr::smFLAG in VK00005,

pJFRC51-3XUAS-IVS-Syt::smHA in su(Hw)attP1 and brains were labeled with pure IHC, including rat anti-FLAG and

ATTO 647N goat anti-rat antibodies over a period of 13 days. (B) SS02565was crossed to w; brp-SNAP; 5XUAS-IVS-
myr::smFLAG in VK00005, pJFRC51-3XUAS-IVS-Syt::smHA in su(Hw)attP1 and brains were labeled with hybrid IHC,

including rat anti-FLAG and ATTO 647N goat anti-rat antibodies over a period of 6 days. (C) SS02565was crossed to

w; brp-SNAP; UAS-myr::4xCLIPf in VK00005,UAS-Syt::Halo7 in VK0027 and brains were labeled for 15 minutes with

pure chemical tags, including TMR CLIP-tag ligand. (D) SS02565was crossed to w; brp-SNAP; UAS-myr::4xCLIPf in
VK00005,UAS-Syt::Halo7 in VK0027 and brains were labeled for 15 minutes with pure chemical tags, including JF549

CLIP-tag ligand.

https://doi.org/10.1371/journal.pone.0200759.g005
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Supporting information

S1 Protocol. Dissection and 2% fixation for Adult CNS.

(PDF)

S2 Protocol. Polarity sequential IHC for Adult CNS.

(PDF)

S3 Protocol. MCFO IHC for Adult CNS.

(PDF)

Fig 6. Comparison of reference and SS02565neuronal membrane labeling. (A) SS02565was crossed to 20XUAS-Cs-
Chrimson-mVenus trafficked in attP18 and brains were labeled with pure IHC over a period of 7 days.(B) SS02565was

crossed to 20XUAS-Cs-Chrimson-mVenus trafficked in attP18; brp-SNAP and brains were labeled with hybrid IHC over

a period of 7 days.(C) SS02565was crossed to brp-SNAP;UAS-7xHalo7::CAAX in VK0005 and brains were labeled for

15 minutes with pure chemical tags, including ATTO 647N HaloTag ligand. (D) SS02565was crossed to brp-SNAP;
UAS-myr-Halo2 in attP2 and brains were labeled for 15 minutes with pure chemical tags, including Alexa Fluor 594

HaloTag ligand.

https://doi.org/10.1371/journal.pone.0200759.g006
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S4 Protocol. DPX mounting of Adult CNS.

(PDF)
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