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We provide an in-depth investigation of parameter estimation in Nested Mach-Zehnder interfer-
ometers (NMZIs) using two information measures: the Fisher information and the Shannon mutual
information. Protocols for counterfactual communition (CFC) have, so far, been based on two
different definitions of counterfactuality. In particular, some schemes are been based on NMZI de-
vices, and have recently been subject to criticism. We provide a methodology for evaluating the
counterfactuality of these protocols, based on an information theoretical framework. More specifi-
cally, we make the assumption that any realistic quantum channel in MZI structures will have some
weak uncontrolled interaction. We then use the Fisher information of this interaction to measure
counterfactual violations. The measure is used to evaluate the suggested counterfactual communi-
cation protocol of Salih et al. [1]. The protocol of Arvidsson-Shukur and Barnes [2], based on a
different definition, is evaluated with a probability measure. Our results show that the definition of
Arvidsson-Shukur and Barnes is satisfied by their scheme, whilst that of Salih et al. is only satisfied
by perfect quantum channels. For realistic devices the latter protocol does not achieve its objective.

PACS numbers: 03.65.Ta, 03.67.Hk, 03.67.Ac

I. INTRODUCTION

During the past one and a half centuries, the study
of interferometers has resulted in some of the most pro-
found discoveries in physics. From the Michelson–Morley
experiment [3], which established the speed of light as
a constant, to Hardy’s Paradox [4], which elegantly
demonstrates the non-local behaviour of the fundamen-
tals of quantum physics, interferometers have played a
pivotal role. This is perhaps more evident today than
ever before, considering the recent discoveries of gravi-
tational waves made with two power-recycled Michelson
interferometers.[5]

Studies with optical quantum interferometers have
shown great promise, not only for the detection of novel
physics, but also for external field detection and external
parameter estimation.[6–16] A common example of this
is phase estimation. By letting optical quantum states
interfere with a medium inside an interferometer it can
be easier to establish the nature of a phase-shift caused
by the medium, than with a direct interaction.[10, 17–19]

A framework for studying phase estimation in interfer-
ometers has been developed by Bahder et al. [13, 18, 19].
This framework uses the Shannon mutual information
and the classical Fisher information as measures of the
phase estimating capacity of different interferometers and
input states. The Shannon mutual information provides
a measure of the suitability of a specific experiment for
the estimation of a phase given some known or unknown
phase probability distribution. The classical Fisher in-
formation, on the other hand, provides a measure of how
well a specific—but unknown—phase-shift in the inter-
ferometer can be estimated from the outcome events of
the specific interferometry experiment.

Another area of physics that has been developed en-

tirely via the study of interferometers, is that of counter-
factual phenomena:

Counterfactuals – that is, things that might
have happened, although they did not in fact
happen.

– Roger Penrose in ‘Shadows of the Mind’ [20]

The counterfactual phenomenon of interaction-free
measurements was originally discovered by Elitzur and
Vaidman in their seminal paper on quantum bomb
diffusal.[21] They showed how a Mach-Zehnder interfer-
ometer (MZI) could be used in order to query whether
or not an absorbing object (e.g. a bomb) was or was not
present in the lower interferometer arm. The novelty of
their setup was that the photons propagating through the
interferometer sometimes allowed for the answering of the
query without interacting with the object in question, i.e.
counterfactually.[20] Kwiat et al. then showed how the
efficiency of this scheme could be taken arbitrarily close
to unity by utilising a chain of several MZIs.[22, 23]

During the last decade there has been further investi-
gations of counterfactual schemes. Many of these are
based on the use of so called “nested” Mach-Zehnder
interferometers (NMZIs). There have been suggestions
that quantum computation [24], direct communication
[1, 25] or transmission of quantum states [26] can be
conducted without the interrogating particle ever enter-
ing the quantum computer in the former case or inter-
acting with the information transmitter in the two lat-
ter. However, these schemes have been under intense
debate.[1, 26–34] The criticism resulted in the develop-
ment of another counterfactual communication (CFC)
scheme.[2] The definition of counterfactuality in the for-
mer schemes does not allow any particles to travel be-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/190349448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

tween receiver and transmitter. Alternatively, the defini-
tion in the latter allows particles to travel from receiver
to transmitter but not vice versa (i.e. particles are only
allowed to propagate in the opposite direction to the mes-
sage). The essence of the criticism of the former schemes
is based on an investigation of the weak trace [27] that
the interrogating particle leaves within the inner part of
a NMZI. Essentially, the inner part of the NMZIs have
to be inaccessible to the interrogating particle. However,
if a weak interaction is present in those parts, the effect
of that is of the same order or stronger than if the parti-
cle had freely propagated through the interaction.[29, 30]
The common rebuttal is that this criticism is invalid as
a weak interaction alters the perfect interference of the
interferometer used in the suggested schemes.

Whilst the weak trace is an interesting concept, we
feel that an argument based on information theoretical
principles is desirable to bring clarity to the subtleties
of the counterfactual protocols. Furthermore, owing to
the intense discussion regarding NMZIs, we also see the
need of a thorough investigation of parameter estimation
in these structures.

In this paper we adapt the information measures of
phase estimation such that they can be used for param-
eter estimations in Mach-Zehnder interferometer struc-
tures. We firstly give an outline of the theoretical frame-
work of the paper. Secondly, we provide a detailed anal-
ysis of the wavefunction evolution through the NMZI de-
vices. We observe how the classical Fisher information
and Shannon mutual information changes between ex-
periments with NMZIs depending on where in the in-
terferometer an interacting medium is placed. Further-
more, we evaluate the two different definitions of CFC,
with suitable operational (and interpretation indepen-
dent) measures of their respective violations. The un-
derlying argument of our work, is that absolutely lossless
and pure spatial transmission of quantum particles is not
attainable. Thus, a theory that relies on such perfect
quantum channels is as valid (read: invalid) as a thermo-
dynamic proof only valid at 0 K. We provide a model of
realistic devices that contain a weak un-controlled polar-
ization rotation. This serves the purpose of mimicking
real quantum evolutions. Based on this, we can evalu-
ate the counterfactuality of the communication schemes
according to their respective definitions. We see that
some “counterfactual” protocols violate their definition
of counterfactuality more than a free-space propagation
from a transmitter to a receiver. We can thus rule out
the counterfactuality of these schemes.

II. INFORMATION MEASURES

The basis of this work is the knowledge of how the sin-
gle particle wavefunction (and thus the probability den-
sity distribution) evolves through the devices we wish
to investigate. The wavefunction evolution is provided
by the calculation of unitary operations on some ini-

tial quantum state: |ψin〉 → Û |ψin〉. Throughout the
evolution, information will be encoded in the probabil-
ity density distribution via the interactions that act on
the wavefunction. Whilst the extension to multi-photon
states is straightforward, we wish to keep this study in
line with suggested counterfactual schemes [1, 2, 24, 26],
and restrict our work to single-photon inputs.

It is often nonsensical to ask where a quantum parti-
cle has been present between two observations. However,
along the evolution of the quantum state, from input to
output, one can introduce an interaction that results in
parts of the wavefunction occupying a quantum state that
only is made available via this interaction. The wave-
function will carry some information about the nature of
that interaction and it is possible to interpret parts of the
probability density—that occupy states only made avail-
able via this interaction—as having had a presence at the
area where the interaction was located. The probability
outputs, at the end of the quantum evolution, allow for
the estimation of the interaction parameters. The effec-
tiveness of such an estimation, for a given quantum de-
vice, can be evaluated with the two information measures
outlined in the following subsection.

II.I. Shannon Mutual Information & Fisher
Information

Consider an experiment, given an input state, ψin, and
a parameter, θ, that sets some interaction. We can cal-
culate the Shannon mutual information, H(θ : M), be-
tween the parameter θ and the measurement outcomes
M = {Mi}, where Mi represents an event that occurred
in the ith detector location of the total spatial Hilbert
space, H:

H(θ : M) =
∑
i∈H

∫ θmax

θmin

dθP (Mi|θ, ψin)p(θ)

× log2

[
P (Mi|θ, ψin)

P (Mi|ψin)

]
, (1)

where P (Mi|ψin) =
∫ θmax
θmin

dθ′P (Mi|θ′, ψin)p(θ′),

P (Mi|θ, ψin) is the probability of Mi for some specific θ
and ψin, and p(θ) is the a priori probability distribution
of the parameter θ [18, 35]. The Shannon mutual in-
formation provides a measure of how much information
about θ that can be obtained through knowledge of the
measurement outcomes of a specific experiment. A large
value of H(θ : M) indicates a good device for parameter
estimations of an unknown parameter θ.

The Shannon mutual information takes into account a
prior distribution of θ: p(θ). However, if the value of θ
is fixed but unknown, one might ask oneself how much
information, on average, a single use of a specific inter-
ferometer yields about θ. This quantity of information is
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given by the classical Fisher information [13, 35]:

F (θ) =
∑
i∈H

1

P (Mi|θ, ψin)

[
∂

∂θ
P (Mi|θ, ψin)

]2
. (2)

In the Cramér-Rao inequality F (θ) sets a lower bound
on the variance of the estimator of θ, θe, obtained in a
specific experiment:

Var(θe) ≥
1

F(θ)
. (3)

II.II. Fisher Information as a Measure of Presence
in Optical Circuits

Many optical quantum interferometers do not involve
polarization operations. However, any “real” experiment
with single photons will naturally include some polariza-
tion operations—owing to, for example, material impuri-
ties and systematic errors in the experimental setup. We
mimic the inevitable imperfect nature of real quantum
channels by introducing single polarization interactions
somewhere in the optical circuits.1 This represents an
interaction with Bob’s laboratory rather than a generic
noise model. We call this interaction the “tagging” of the
wavefunction. By introducing the polarization degree of
freedom, we can use the Fisher information to estimate
the parameters associated with the interaction. As has
been described above, a tagged part of the wavefunction
can be considered to have previously existed at the loca-
tion of the polarization interaction. In this subsection we
show that, given access to all the outcome possibilities,
the classical Fisher information, in the interferometers
studied in this work, is always proportional to the inte-
grated probability density distribution that has evolved
through the interaction in the Schrödinger picture.

Firstly, we define an optical input vector, a, of length
2n, which evolves into an output vector, b. The 2n levels
correspond to the n different optical paths of the device,
each of which can exist in one of the two polarization
states. We choose the order of the vector elements so that
the first n entries have the polarization of the initial input
state, and so that the following n entries have orthogonal
polarization.

We can describe the evolution of the input state, a,
through the interferometer by a scattering matrix, S, in
terms of three operations:

Sa ≡
(
V̂ · f̂ (k)(θ) · Û

)
a ≡ b(k), (4)

1 Weak unwanted polarization interactions can occur in all parts
of a realistic device. However, our setup can be considered as
one where the experimentalist, Alice, is allowed to correct for
unwanted polarization rotations from all parts of the device, ex-
cept for those that occur in a location controlled by Bob (central
rectangle in Fig. 1). Hence, we consider one unwanted polariza-
tion rotation, due to Bob’s laboratory.

FIG. 1. (color online) Sketch of an optical circuit of the form
of Eq. 4, which is described in the text.

where Û and V̂ are the unitary operators of the evo-
lution up to and after the tagging polarization rotation

respectively, and f̂ (k)(θ) is the unitary operator that de-
scribes the single polarization rotation at the specific spa-
tial path of k (where 1 ≤ k ≤ n) by an angle θ. A sketch
of the optical circuit of S is given in Fig. 1. Note that
Û and V̂ acts solely on the spatial degree of freedom and
do not manipulate the polarization of the wavefunction.

We can define the wavefunction after Û has been ap-
plied as c ≡ Ûa, with:

ci =

2n∑
j=1

Ui,jaj . (5)

The rotation matrix is then applied to this state. It
rotates the quantum state between two of the vector lev-
els, k and k′. It can be represented by the following real
matrix:

f̂ (k)(θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · fk,k(θ) · · · fk,k′(θ) · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · fk′,k(θ) · · · fk′,k′(θ) · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 · · · 0 · · · 1


, (6)

where fk,k(θ) =

√
1−

(
fk,k′(θ)

)2
, fk′,k(θ) = −fk,k′(θ)

and fk′,k′(θ) = fk,k(θ).
We further arrange the vector entries such that l and

l+ n correspond to the same spatial location for 1 ≤ l ≤
n. This means that k′ = k + n in Eq. 6 and ci = 0 for
i > n in Eq. 5. We express the quantum state after the

polarization interaction as d(k)(θ) ≡ f̂ (k)(θ)c, with:

d
(k)
i (θ) =

2n∑
j=1

f
(k)
i,j (θ)cj . (7)
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We note that the only components of d(k) that depend

on θ are d
(k)
i=k = fk,k(θ)ck and d

(k)
i=k+n = fk+n,k(θ)ck.

Finally, we can apply the last unitary evolution V̂ . Fol-
lowing the steps above, we express the output vector as
b(k)(θ) ≡ V̂ d(k)(θ), with:

b
(k)
i (θ) ≡ β(k)

i + b
(k)
i,θ (θ) =

2n∑
j=1

Vi,jd
(k)
j (θ), (8)

where the θ-dependence of b
(k)
i (θ) is encapsulated in

b
(k)
i,θ (θ) and a corresponding term, independent of θ, is

defined as β
(k)
i .

The probability of measuring the single-photon in the
ith output port, is then given by:

P
(k)
i (θ) = |β(k)

i + b
(k)
i,θ (θ)|2. (9)

This can be re-expressed as

P
(k)
i (θ) ≡ |β(k)

i + b
′(k)
i f

(k)
j,k (θ)|2, (10)

where j = k if i ≤ n and j = k + n if i > n. For
convenience we now drop the (k) superscript.

Using Eq. 2, the individual Fisher information com-
ponents can be expressed as:

Fi =
1∣∣βi + b′ifj,k(θ)

∣∣2 [ ∂∂θ ∣∣βi + b′ifj,k(θ)
∣∣2]2

=
1(

βi + b′ifj,k(θ)
)(
β∗i + b′∗i fj,k(θ)

)
×
[ ∂
∂θ

(
βi + b′ifj,k(θ)

)(
β∗i + b′∗i fj,k(θ)

)]2
(11)

This expression can be simplified by expressing the co-
efficients as βi ≡ |βi|eiφi and b′i ≡ |b′i|eiφi,θ and defining
Φi ≡ φi − φi,θ:

Fi =

(
cos (Φi)|βi|+ |b′i|fj,k(θ)

)2(
|βi|2 + |b′i|2f2j,k(θ) + 2 cos (Φi)|βi||b′i|fj,k(θ)

)
×4|b′i|2

( ∂
∂θ
fj,k(θ)

)2
.

(12)

We notice that if the phase difference Φi is a multiple
of π, the expression simplifies to:

Fi =4|b′i|2
( ∂
∂θ
fj,k(θ)

)2
.

(13)

This phase criterion is satisfied for all i if the phases of all
the spatial comontents, i ≤ n, of the input state are the
same and S is real (e.g. the optical setup only contains
beam-splitters that can be represented by real operators).

It is also satisfied by all the optical setups considered in
Refs. [1, 2, 21–23, 27].

For the quantum optical setups of interest in this pa-
per, we can thus express the classical Fisher information
(Eq. 2) as:

F (θ) =

2n∑
i=1

4
[ ∂
∂θ

∣∣bi,θ(θ)∣∣]2. (14)

This can be re-expressed as:

F (θ) =

n∑
i=1

4
[ ∂
∂θ

∣∣Vi,kdk(θ)
∣∣]2

+

2n∑
i=n+1

4
[ ∂
∂θ

∣∣Vi,k+ndk+n(θ)
∣∣]2

=

n∑
i=1

4
∣∣Vi,k∣∣2[ ∂

∂θ

∣∣dk(θ)
∣∣]2

+

2n∑
i=n+1

4
∣∣Vi,k+n∣∣2[ ∂

∂θ

∣∣dk+n(θ)
∣∣]2 (15)

As Û and V̂ do not manipulate the polarization of the
wavefunction, the symmetry of the matrix V̂ is such that
Vi,k = Vi+n,k+n. It also implies that Vi,k = 0 for i > n
and Vi,k+n = 0 for i ≤ n . By assuming a real S and
defining a suitable reference-point for the global input
phase we simplify our expression further:

F (θ) =

2n∑
i=1

4|Vi,k|2
[ ∂
∂θ
|dk(θ)|

]2
+

2n∑
i=1

4|Vi,k|2
[ ∂
∂θ
|dk+n(θ)|

]2
. (16)

We sum the squared entries in the column of our unitary
matrix to unity, and the expression simplifies to:

F (θ) =4
[ ∂
∂θ
|dk(θ)|

]2
+ 4
[ ∂
∂θ
|dk+n(θ)|

]2
. (17)

At this stage we note that the total Fisher information
of the device does not contain any dependence on the
unitary operation V̂ .

We continue by substituting the expressions of dk and
dk+n from above (Eq. 7) to obtain a final expression of
the Fisher information:

F (k)(θ) =4|ck|2
([ ∂
∂θ

(
fk,k(θ)

)]2
+
[ ∂
∂θ

(
fk+n,k(θ)

)]2)
=4|ck|2

(
∂
∂θfk+n,k(θ)

)2
(
fk,k(θ)

)2 , (18)

where we briefly re-introduce the (k) superscript.
To conclude this section, we make the observation that

the Fisher information, Eq. 18, is proportional to |ck|2.
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|ck|2 is the probability of observing the photon in the kth

spatial state if a detector had been placed at the location
of the tagging interaction. Näıvely the extent to which
the wavefunction spreads into a spatial location, accord-
ing to the time-dependent Schrödinger equation, could
be interpreted as a measure of how much the particle
has been present there. However, owing to the nature
of quantum mechanics, it is philosophically problematic
to specify what the physical meaning of the wavefunc-
tion between measurements is.2 Nevertheless, in the cir-
cuits studied above, the tagging mechanism, which ro-
tates the initial polarization of the photon into a super-
position state, is the only polarization component of the
interferometer. Hence, it is arguably less näıve to con-
sider an output photon in an altered polarization state to
have had a past that has included the passage through
the tagging part of the interferometer. Even if the in-
troduced tagging polarization rotations are vanishingly
small and do not affect the specific interferometer sig-
nificantly, Eq. 18 shows that the information content,
which travels from the polarization rotator to the output
ports, is weighted by the square of the integrated wave-
function at the location of the interaction. Hence, the
Fisher information is arguably a good measure of the ex-
tent to which a particle can be considered to previously
have had a presence at the tagging location.

We finish this section with a note regarding an ex-
tension of the above theory, to include other degrees of
freedom. If an interferometer contains polarization rota-
tions (such as the Michelson-based device in Ref. [1]),

these rotations can simply be included in Û and V̂ . The
single rotation, that we calculate the Fisher information
with respect to, should then be changed to an alternative
degree of freedom. With the corresponding alterations of

the measure, f̂ (k)(θ) can, for example, be taken to be
a weak rotation of the photon’s internal orbital angular
momentum. The beauty of this analysis is that Eq. 18
will still be valid. However, as the interferometers con-
sidered in this paper are all ideally non-polarizing, we
conduct our analysis using a weak disturbances on the
polarization.

III. MEASURES OF COUNTERFACTUAL
VIOLATION

In this section we develop measures for the extent a
process violates counterfactuality. These measures will
be used in Section V and VI to investigate counterfactual
violations of the CFC protocols proposed by Salih et al.
[1] and Arvidsson-Shukur and Barnes [2].

2 This is discussed at length in Wheeler’s “The ‘Past’ and the
‘Delayed-Choice’ Double-Slit Experiment”, which has been re-
produced in ref. [36]

FIG. 2. (color online) The chained nested Mach-Zehnder in-
terferometer suggested for CFC in Ref. [1]. Alice inputs a
photon in the upper left path and Bob has the choice of intro-
ducing detectors in his part of the device. His choice governs
the statistics of the final output detections at D1 and D2.

III.I. Two CFC Definitions

There are two main schemes for CFC, based on differ-
ent definitions of the concept. One was developed in 2013
by Salih et al.[1] (See Fig. 2). We refer to the definition
of CFC in that protocol as the Type I definition. Another
scheme was developed by Arvidsson-Shukur and Barnes
in 2016 [2] (see Fig. 3) and we refer to its definitions as
the Type II definition.

In both schemes Bob transmits a message to Alice.
The schemes respective bit-transmissions are initiated by
Alice sending a single particle into the upper left input
path of the devices. Bob can then choose to transmit a 0
bit or a 1 bit by keeping his laboratory free or inserting
absorbing detectors respectively. In the Type I protocol
(Fig. 2), the quantum Zeno effect [37, 38] is used for
both bit-processes, such that the particle ends up at Al-
ice’s detectors D1 (0 bit) or D2 (1 bit) without ever hav-
ing crossed the transmission line between Alice and Bob.
The Type II protocol (Fig. 3), on the other hand, only
utilise the quantum Zeno effect for the 1 bit process. In
this process the particle enters the transmission line and
returns to Alice, but it never enters Bob’s laboratory. In
the 0 bit process the particle travels from Alice’s labora-
tory into the transmission line. It then evolves into Bob’s
laboratory. The protocols are described in further detail
in Section V and VI of this paper. The differences in the
counterfactuality definitions are summarised in Table I.

The counterfactuality of an interaction-free process,
naturally depends on the boundaries of the spatial extent
of the respective “laboratories” of the participants in the
protocol. Both the Type I and II definitions state that
for a process in Bob’s laboratory to be counterfactual
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FIG. 3. (color online) The chained Mach-Zehnder interfer-
ometer as used in the CFC scheme of Ref. [2]. As in Fig. 2,
Alice inputs a photon in the upper left path and Bob governs
the statistics of the final output detections at D1 and D2 by
inserting or not inserting detectors respectively.

TABLE I. The counterfactual nature of the Type I [1] and
the Type II [2] communication schemes. In both schemes a
message is transmitted from a transmitter, Bob, to a receiver,
Alice.

Scheme \ Bit Logical 0: Logical 1:

Type I: No particles cross the transmission line
between Alice and Bob.

Type II: Particles propagate
from Alice to Bob
via the transmission
line.

Particles propagate
from Alice to the
transmission line
and back again.

with respect to Alice, it is essential that particles should
never propagate from Bob to Alice (such that parts of
a wavefunction that interacts with Bob’s laboratory will
have a vanishing probability to end up in Alice’s).

As mentioned above, the Type I and II schemes utilise
the quantum Zeno effect, triggered by absorbing detec-
tors in Bob’s laboratory, to produce their respective log-
ical 1 bit-values in a counterfactual manner. We are not
aware of any works disputing the counterfactual nature
of these processes. That leaves us with the task of eval-
uating the Type I and II logical 0 processes.

III.II. The Measures

The Type I definition should forbid particles to prop-
agate from Alice to Bob and vice versa. Following the
discussion in the section above, a good measure of the
violation of such a process could be based on the Fisher
information encoded at Bob’s laboratory, in a particle
originating from Alice.

In order to evaluate the “strength” of a violation of
a Type I logical 0 process (caused by a tagging interac-

tion as discussed above) we need a Fisher information
benchmark. In this work we benchmark with respect to
the Fisher information of a free-space evolution, Ffree,
subject to the same tagging interaction as the circuits
of interest. This can, for example, be the scenario of
Bob directly sending a photon to Alice (see Fig. 4)—a
clearly non-counterfactual scenario. We can now define
our new measure for the violation of Type I counterfac-
tuality. We call the measure the Type I counterfactual
violation strength:

D :=
F

Ffree
. (19)

This quantity can effectively be thought of as the Fisher
information encoded in a particle originating from Alice,
owing to an interaction at Bob’s laboratory, as a frac-
tion of the Fisher information of a free-space interaction.
A value of D = 0 corresponds to no wavefunction in-
teracting with Bob’s laboratory; and a value of D ≥ 1
corresponds to an interaction stronger than or equal to
that of a free-space interaction. Values of the order of
unity or bigger are convicted of fully violating Type I
counterfactuality.

When it comes to evaluating the logical 0 in Type II
protocols, we need a different measure than Eq. 19. This
is because this scheme allows Alice’s particles to be en-
coded by Bob, as long as they do not return to Alice.[2]
The probability of detection in Alice’s laboratory in this
process is null for perfect quantum channels (θ = 0).
Thus, a reasonable measure of a counterfactual viola-
tion would be the total probability of a particle return-
ing to Alice as a result of a non-collapsing interaction
(i.e. θ 6= 0) in Bob’s laboratory. Let Mj∈HA

denote the
measurement outcomes triggered in the Hilbert space of
states within the spatial extent of A. Additionally, let
Mj′ /∈HA

denote the negative measurement that indicate
all outcome states outside the spatial extent of A. Our
new Type II measure can then be expressed as:

PA :=
∑
j∈HA

P (Mj |θ, ψin) = 1−P (Mj′ /∈HA
|θ, ψin). (20)

This measure can be interpreted in a way such that PA =
1 corresponds to a full counterfactual violation of the
Type II logical 0 and PA = 0 corresponds to perfect
counterfactuality.

Moreover, even though the probability to trigger a de-
tection in Alice’s laboratory can be very small (PA ≈ 0),
small probabilities can generate large Fisher informa-
tions. We thus introduce the spatially restricted Fisher
information, FA. FA is a measure of the sum of the in-
dividual components of the classical Fisher information
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FIG. 4. (color online) A single-photon state is incident on a
weak polarization rotator. The photon is then measured in
its number state and polarization state.

(Eq. 2), as experienced by an observer A. We define:

FA(θ) :=
∑
j∈HA

1

P (Mj |θ, ψin)

[
∂

∂θ
P (Mj |θ, ψin)

]2

+
1

1− PA

[
∂

∂θ
PA

]2
. (21)

The first term corresponds to the summation of the
Fisher information components of particle detections by
A, whilst the second term corresponds to the Fisher in-
formation component of negative measurements by A,
i.e. when no particle is detected by A. Interestingly, in
a Type II scheme, Alice can still obtain a large Fisher
information of Bob’s θ, even if counterfactuality is only
violated weakly by θ.

We are now in the position to evaluate Type I and
Type II CFC protocols. However, first we conduct an
elaborate study of parameter estimation in NMZIs. This
is done in the next section, where we utilise the informa-
tion measures from Section II.I and extend the works of
Bahder et al. [13, 18] to NMZI structures. In Section V
and VI, we then expand the analysis in order to evaluate
the counterfactuality of Type I and II CFC protocols.

IV. INFORMATION IN NESTED MZIS

IV.I. Free Space Interaction

As a reference scenario for the optical circuits discussed
in following sections of this paper, we provide the sim-
plest of examples of perturbations caused by a polariza-
tion rotator. We consider a single-photon state. It has
a polarization degree of freedom, and propagates in a
straight line. It interacts with a polarizing medium—the
rotator—shortly after which it is measured. (See Fig. 4).

The quantum interaction of the wavepacket with the
rotator results in a rotation of the polarization set by
the parameter θ = θw. We can calculate the Fisher in-
formation, F (θw), and the Shannon mutual information,
H(θw : M), of the parameter θw and the measurement
outcomes.

We introduce the creation operators â†H and â†V , which
create a single photon in a horizontal and vertical state
respectively. Our polarization axes are defined such that

the input state can be written as:

â†H |0〉 ≡
(

1
0

)
. (22)

For the case of a single polarizing rotator, the scattering
matrix (Eq. 4) takes the form:

S = f̂ (1)(θw) =

(√
1− θ2w θw
−θw

√
1− θ2w

)
. (23)

The polarization rotations of the different optical circuits
studied in this paper will all be in the form of Eq. 23.

The detector in Fig. 4 measures in the basis: |nH , nV 〉,
where nH and nV are the respective photon numbers of
horizontal and vertical polarization at the output. The
output probabilities are given by:

P (nH = 1|θw) = 1− θ2w, (24)

P (nV = 1|θw) = θ2w, (25)

where we have adopted a notation such that the state-
ment ns = 1 implicitly assumes that all other possible
measurement outcomes, t 6= s, satisfy

∑
t 6=s nt = 0. As

we continue to work with single-photon input states, we
keep this notation throughout the paper.

If θw is fixed, the classical Fisher information of the
free-space rotation is given by Eq. 2 or Eq. 18:

Ffree =
4

1− θ2w
. (26)

Eq. 26 will be used as the free-space benchmarking
Fisher information in Eq. 19 when calculating counter-
factual violation strengths further on in this paper.

If we instead assume no prior knowledge of θw such
that θmin = −1, θmax = 1 and p(θ) = 1/2 in Eq. 1, the
mutual information is given by:

H(θw : M) =
ln(108)− 4

3 ln(2)
≈ 0.328. (27)

IV.II. Nested MZI Interaction

We now investigate how the position of a polarization
rotator in the nested Mach-Zehnder interferometer (see
Fig. 5) changes the output probabilities, the Fisher in-
formation and the Shannon mutual information .

In general one can describe the normalised input and
output vectors, a and b, of the NMZIs by:

a =
1√
La



na1,H
na2,H
na3,H
na1,V
na2,V
na3,V

 , b =
1√
Lb



nb1,H
nb2,H
nb3,H
nb1,V
nb2,V
nb3,V

 , (28)
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FIG. 5. (color online) A single-photon state is sent as the
input to one of the ports of a NMZI. There are six possible
detection outcomes (three spatial outcomes, each having a
polarization degree of freedom). The green barred lines and
blue arrowed lines represent mirrors and non-polarizing beam-
splitters respectively.

where La and Lb are some normalisation constants. The
corresponding input creation operators are given by â†i .
These are transformed into the output operators via the

scattering matrix (see Eq. 4) b̂†j = Si,j â†i . In the fol-
lowing sections we restrict our input states to horizontal
single-photon states, initially occupying the first spatial

input port, such that |ψin〉 = â†1,H |0〉. We drop the su-
perscripts of the vector elements.

The beam-splitters, BSi, have reflection and transmis-
sion coefficients ri and ti respectively. In the NMZI de-
vice r2 = t2 = r3 = t3 = 1√

2
, such that the scattering

matrix of the NMZI device, without polarization rotators

(i.e. f̂ (k)(θ) = 1̂ in Eq. 4), is given by:

S =


r1r4 t1r4 t4 0 0 0
−r1t4 −t1t4 r4 0 0 0
t1 −r1 0 0 0 0
0 0 0 r1r4 t1r4 t4
0 0 0 −r1t4 −t1t4 r4
0 0 0 t1 −r1 0

 . (29)

We proceed by evaluating the NMZI device for parame-
ter estimation by considering five different scenarios with
a polarization rotator placed in one out of five locations
in the NMZI device. (See Fig. 6).

1. One

In our first scenario, we introduce a rotator in the lower
arm of the Nested MZI. See position (1) in Fig. 6.

FIG. 6. (color online) A polarization rotation is added to
one, but only one, of the positions, 1 - 5, in the Nested Mach-
Zehnder interferometer from Fig. 5.

The scattering matrix of this device is given by:

S1 =


r1r42θw t1r42θw t4 r1r4θw t1r4θw 0
−r1t42θw −t1t42θw r4 −r1t4θw −t1t4θw 0

t1 −r1 0 0 0 0
−r1r4θw −t1r4θw 0 r1r42θw t1r42θw t4
r1t4θw t1t4θw 0 −r1t42θw −t1t42θw r4

0 0 0 t1 −r1 0

 ,

(30)

where θw ≡
√

1− θ2w/2.
Assuming the single-photon input state from above,
|ψin〉, we get the following conditional probabilities for
the possible output detections:

P (n1,H = 1|θw) = r21r
2
4

(
1− θ2w

)
, (31)

P (n1,V = 1|θw) = r21r
2
4θ

2
w, (32)

P (n2,H = 1|θw) = r21t
2
4

(
1− θ2w

)
, (33)

P (n2,V = 1|θw) = r21t
2
4θ

2
w, (34)

P (n3,H = 1|θw) = t21, (35)

P (n3,V = 1|θw) = 0. (36)

The Fisher information of this device is given by:

F =
4

1− θ2w
r21. (37)

Furthermore, the Shannon mutual information is given
by:

H(θw : M) =
ln(108)− 4

3 ln(2)
r21. (38)

We see that the information content obtained from the
measurement outcomes, as compared to the free-space
scenario, is scaled by the square of the reflection coeffi-
cient of the first beam-splitter (BS1). The information is
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reduced exactly by the square of the norm of the wave-
function that is scattered through parts of the interfer-
ometer not passing through the polarization rotator in
the Schrödinger picture.

2. Two

In our next scenario, we consider the rotator to be
placed in the upper interferometer path, before the sec-
ond beam-splitter. The scattering matrix then takes the
form of:

S2 =


r1r4 t1r4 t4 0 0 0
−r1t4 −t1t4 r4 0 0 0
t12θw −r12θw 0 t1θw −r1θw 0

0 0 0 r1r4 t1r4 t4
0 0 0 −r1t4 −t1t4 r4

−t1θw r1θw 0 t12θw −r12θw 0

 . (39)

The conditional probabilities of this example are sim-
ilar to those in Scenario One. However, the dependence
on θw is transferred to the third output port, from the
first and second in the example above. The conditional
probabilities are now given by:

P (nH1 = 1|θw) = r21r
2
4, (40)

P (nV1 = 1|θw) = 0, (41)

P (nH2 = 1|θw) = r21t
2
4, (42)

P (nV2 = 1|θw) = 0, (43)

P (nH3 = 1|θw) = t21
(
1− θ2w

)
, (44)

P (nV3 = 1|θw) = t21θ
2
w. (45)

The Fisher information is given by the expression:

F =
4

1− θ2w
t21. (46)

Additionally, the Shannon mutual information is
scaled similarly, such that it is given by:

H(θw : M) =
ln(108)− 4

3 ln(2)
t21. (47)

The r1 dependency of the previous scenario has, natu-
rally, been transformed into a t1 dependency. Owing to
the design of the NMZI device, the beam-splitters of the
inner MZI have no effect on the information of θw if the
rotator is placed just after the first beam-splitter.

3. Three

In this scenario we investigate how the above stud-
ied properties change if the polarizing rotator is instead
placed after the third—but before the fourth—beam-
splitter. The scattering matrix is then given by:

S3 =


r1r4 t1r4 t42θw 0 0 t4θw
−r1t4 −t1t4 r42θw 0 0 r4θw
t1 −r1 0 0 0 0
0 0 −t4θw r1r4 t1r4 t42θw
0 0 −r4θw −r1t4 −t1t4 r42θw
0 0 0 t1 −r1 0

 .

(48)

The conditional probabilities are given by:

P (nH1 = 1|θw) = r21r
2
4, (49)

P (nV1 = 1|θw) = 0, (50)

P (nH2 = 1|θw) = r21t
2
4, (51)

P (nV2 = 1|θw) = 0, (52)

P (nH3 = 1|θw) = t21, (53)

P (nV3 = 1|θw) = 0. (54)

The lack of dependence on θw can simply be explained
by the fact that the interference effects of the device pro-
hibits any part of the wavepacket to evolve into the spa-
tial location where the rotator is placed in this scenario.

The Fisher information is given by:

F = 0. (55)

The absence of θw in the conditional probabilities leads
to a vanishing Fisher information. The same applies to
the Shannon mutual information:

H(θw : M) = 0. (56)

In the investigation of this scenario, we make the obser-
vation of how the introduction of a polarizing rotator, (3)
in Fig. 6, does not alter the output probabilities from the
original device in Fig. 5. There is never any part of the
wavefunction moving from the third to the fourth beam-
splitter. Hence, an interaction in this region should not
yield any information encoded in the particle.

4. Four & Five

In Scenario Four and Five we place the polarizing rota-
tor in the upper and lower path of the inner MZI respec-
tively. The scattering matrices of these cases are given
by:

S4 =


r1r4 − t1t4ϑ−w t1r4 + r1t4ϑ

−
w t4ϑ

+
w t1t4ϑw −r1t4ϑw t4ϑ

2

w

−r1t4 − t1r4ϑ−w −t1t4 + r1r4ϑ
−
w r4ϑ

+
w t1r4ϑw −r1r4ϑw r4ϑw

t1ϑ
+
w −r1ϑ+w −ϑ−w t1ϑw −r1ϑw ϑw

−t1t4ϑw r1t4ϑw −t4ϑw r1r4 − t1t4ϑ−w t1r4 + r1t4ϑ
−
w t4ϑ

+
w

−t1r4ϑw r1r4ϑw −r4ϑw −r1t4 − t1r4ϑ−w −t1t4 + r1r4ϑ
−
w r4ϑ

+
w

−t1ϑw r1ϑw −ϑw t1ϑ
+
w −r1ϑ+w −ϑ−w

 ,

(57)
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S5 =


r1r4 − t1t4ϑ−w t1r4 + r1t4ϑ

−
w −t4ϑ+w −t1t4ϑw r1t4ϑw t4ϑw

−r1t4 − t1r4ϑ−w −t1t4 + r1r4ϑ
−
w −r4ϑ+w −t1r4ϑw r1r4ϑw r4ϑw

t1ϑ
+
w −r1ϑ+w ϑ−w −t1ϑw r1ϑw ϑw

−t1t4ϑw r1t4ϑw t4ϑw r1r4 − t1t4ϑ+w t1r4 + r1t4ϑ
+
w −t4ϑ−w

−t1r4ϑw r1r4ϑw r4ϑw −r1t4 − t1r4ϑ+w −t1t4 + r1r4ϑ
+
w −r4ϑ−w

−t1ϑw r1ϑw ϑw t1ϑ
−
w −r1ϑ−w ϑ+w

 .

(58)

where ϑ±w ≡ (1±ϑw)/2 and where we temporarily make

a superficial change of variables such that ϑw ≡
√

1− θ2w.
For the two scenarios of introducing the polarization

rotator inside the nested part of the interferometer, the
conditional probabilities take more complicated forms:

P (nH1 = 1|ϑw) =
1

4
(2r1r4 − t1t4(1− ϑw))2, (59)

P (nV1 = 1|ϑw) =
1

4
t21t

2
4(1− ϑ2w), (60)

P (nH2 = 1|ϑw) =
1

4
(2r1t4 + t1r4(1− ϑw))2, (61)

P (nV2 = 1|ϑw) =
1

4
t21r

2
4(1− ϑ2w), (62)

P (nH3 = 1|ϑw) =
1

4
t21(1 + ϑw)2, (63)

P (nV3 = 1|ϑw) =
1

4
t21(1− ϑ2w). (64)

The corresponding Fisher information of the device in
Fig. 6, with a polarization rotator in the nested part ((4)
or (5)), is given by:

F (θw) =
2

1− θ2w
t21. (65)

In accordance with Eq. 18, we see that the Fisher in-
formation is proportional to how much of the wavepacket
that—in the Schrödinger picture—has passed through
the rotator in the device. In the scenarios of this subsec-
tion, the part of the wavefunction that travelled through
the rotator in Scenario Two, is halved by the second
beam-splitter before it is allowed to interact with the
rotator. Hence, F (in Eq. 65) is halved as compared to
its value in Scenario Two (Eq. 46).

Whilst the Fisher information preserves the simple
form of Eq. 18, the corresponding Shannon mutual in-
formation for these devices is complicated and not very
informative. However, by making the assumption that
t4 = r1 and r4 = t1, we can simplify the expression of
the mutual information such that:

TABLE II. Numerical constants in [6/4] Padé approximation
of Eq. 66.

i ai bi

2 −3+ln (2)+3 ln (3)
3 ln (2)

−1

4 25−6 ln (2)+25 ln (3)
18 ln (2)

−1
10(−7+3 ln (3))

6 254−3 ln (2)−429 ln (3)+180 ln (3)2

90(−7+3 ln (3)) ln (3)

FIG. 7. (color online) The mutual information between the
polarization rotation, ϑw, and the measurement outcomes,
{Mi}, as a function of beam-splitter transmission, t1, as de-
scribed in the text. The solid black line shows the true curve
of Eq. 66, the thick grey line shows the Padé approximation
(virtually indistinguishable from the true curve) and the red
dashed line shows the second order Taylor expansion.

H(ϑw : M) =
1

3 ln (2)t21

[
− 2r31 ln (r21)

+t21

(
3 ln (3) + t21

(
ln (2)− 1

)
−2−

(
3r21 + t41

)
ln
(
3r21 + t41

))]
. (66)

Furthermore, we can approximate this expression. For
scenarios where t1 ≈ 0, the Shannon mutual information
is successfully modelled by a second order term:

H(ϑw : M) ≈ −3 + ln (2) + 3 ln (3)

3 ln (2)
t21. (67)

To obtain an even better model (for 0 ≤ t1 ≤ 1) we can
use a Padé approximant [39] of order [6/4]:

H(ϑw : M) ≈ a2t
2
1 + a4t

4
1 + a6t

6
1

1 + b2t21 + b4t41
, (68)

with constants ai and bj for i ∈ {2, 4, 6} and j ∈ {2, 4}
given in Table II. Fig. 7 shows the mutual information
from Eq. 66 and the two approximations as functions
of t1. The second order Taylor expansion (for t1 ≤ 0.4)
and the full Padé approximation, model the true curve
within mean squared errors of 3.1× 10−8 and 2.8× 10−9

respectively.
After having established the bounds on parameter es-

timation with NMZI structures, we proceed to evaluate
the counterfactuality of the Type I protocols, which are
based on such devices.
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FIG. 8. (color online) Probability of detection at D1 (a) and
D2 (b) if Bob unblocks and blocks his path in Fig. 2 respec-
tively.

V. EVALUATION OF TYPE I
COUNTERFACTUAL COMMUNICATION

Fig. 2 shows a chained nested Mach-Zehnder interfer-
ometer. The first proposal of direct CFC [1] is based on
such a device. The chained NMZI is divided such that the
top right part of the individual NMZIs are in Bob’s labo-
ratory. The communication scheme allows Alice to input
a photon in the top left path (solid black line). If Bob
wishes to transmit a logical 0, he leaves all paths open.
If he, instead, wishes to transmit a logical 1, he blocks all
paths with his detectors, DB . Bob’s action, together with
the number of inner and outer beam-splitters (M and N
respectively), sets the output statistics in Alice’s labora-
tory (detections atD1 orD2). The outer and inner beam-
splitters have their transmission coefficients set such that
tn=1,...,N = sin (π/2N) and tm=1,...,M = sin (π/2M) re-
spectively. In theory, for an infinitely large number of
beam-splitters, the photon can be made to end up at D2

with PD2
= 1 (logical 1), or D1 with PD1

= 1 (logical
0), if Bob inserts or does not insert DB in his laboratory,
respectively [1].

Ref. [1] assumes that the evolution of the interrogating
particle in the above described scheme can be modeled
by perfectly unitary rotation matrices. For reference, we
numerically calculate the detection probabilities of D1

and D2 detections in the scenarios of Bob keeping his
laboratory open and blocked respectively. These proba-
bilities are shown in Fig. 8 and are in accordance with
those calculated in Ref. [1].

Fig. 8 suggests that for a communication scheme with
low logical bit errors we need M � N . We see that
success rates of 95% for the logical 0 (Fig. 8(a)) re-
quires large N ≈ 50. For such values of N we need
M ≈ 1200 to keep the same success rates for the logical
1 (Fig. 8(b)). Hence, as discussed in Ref. [2], a suc-
cess rate of about 95% requires a total of approximately
60000 beam-splitters to be used.

FIG. 9. (color online) The Nested Mach-Zehnder interferom-
eter as used in the communication scheme presented in the
text.

V.I. Single NMZI

Ref. [30, 31, 40] suggests that the conceptual problem
of the chained NMZI in Ref. [1] can be reduced to a study
of a single NMZI device by considering pre- and post-
selected events. Following this reduction, the mentioned
references analytically analyse Type I “counterfactual”
schemes based on single NMZI structures. However, to
our knowledge there exist no rigorous proof that this re-
duction is an adequate representation of Salih’s scheme.
Crucially, the single evaluation of the protocol that they
consider does not allow for the transmission of logical
bits. In this section we take an alternative approach.

1. Analytical Analysis

Instead of treating the single NMZI device as a repre-
sentation of Salih’s scheme, we evaluate a post-selected
Type I protocol that actually allows for communication.
Consider Fig. 9. We pre-select our states such that the

input is the usual |ψin〉 = a†1,H |0〉 from before. Bob has
the option of introducing some absorbing object in his
laboratory. Furthermore, we include a weak polarization
rotation in Bob’s laboratory to mimic some disturbance
in the device. We also post-select our states such that
we exclude the events of absorption in Bob’s laboratory,
by DB or D3.

If Bob wishes to transmit a logical 1 to Alice, he intro-
duces the absorbing object in his laboratory. The renor-
malized output probabilities are then given by:
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P1(nH1 = 1|nH,V3,B = 0) = N1

(
r1r4 − r2t1t2t4

)2
, (69)

P1(nV1 = 1|nH,V3,B = 0) = 0, (70)

P1(nH2 = 1|nH,V3,B = 0) = N1

(
r1t4 + r2r4t1t2

)2
, (71)

P1(nV2 = 1|nH,V3,B = 0) = 0, (72)

with N1 ≡
(

1− t21
(
r42 + t22

))−1
.

We set the beam-splitter parameters according to Fig.
9, with r2 = t2 = 1/

√
2. This simplifies our expression

such that:

P1(nH1 = 1|nH,V3,B = 0) =
r21t

2
1

3r21 + 1
, (73)

P1(nV1 = 1|nH,V3,B = 0) = 0, (74)

P1(nH2 = 1|nH,V3,B = 0) =

(
r21 + 1

)2
3r21 + 1

, (75)

P1(nV2 = 1|nH,V3,B = 0) = 0. (76)

The corresponding value for the conditioned Fisher in-
formation of this 1-bit protocol is:

F 1 = 0. (77)

This is expected, as any part of the wavefunction that
interacts with the rotator is then absorbed by DB and
can thus not reach Alice.

Now, consider the process in which Bob instead wishes
to transmit a logical 0 to Alice. He then leaves his labora-
tory free, without any absorbing objects. The renormal-
ized probabilities of detecting the particle in the following
states are given by:

P0(nH1 = 1|θw, nH,V3,B = 0) =N0

(
r1r4 + r2t1t2t4

×
(
2θw − 1

))2
, (78)

P0(nV1 = 1|θw, nH,V3,B = 0) =N0

(
r22t

2
1t

2
2t

2
4θ

2
w

)
, (79)

P0(nH2 = 1|θw, nH,V3,B = 0) =N0

(
r1t4 − r2r4t1t2

×
(
2θw − 1

))2
, (80)

P0(nV2 = 1|θw, nH,V3,B = 0) =N0

(
r22r

2
4t

2
1t

2
2θ

2
w

)
, (81)

with N0 ≡
(

1− t21
(
r42 + t42 + 4r22t

2
2θw

))−1
. Again, we set

the beam-splitter parameters according to Fig. 9, with
r2 = t2 = 1/

√
2. The probabilities then simplify to:

P0(nH1 = 1|θw, nH,V3,B = 0) = N ′0r21t21
(
1 + 2θw

)2
, (82)

P0(nV1 = 1|θw, nH,V3,B = 0) = N ′0r21t21θ2w, (83)

P0(nH2 = 1|θw, nH,V3,B = 0) = N ′0
(
1 + r21 − 2t21θw

)2
, (84)

P0(nV2 = 1|θw, nH,V3,B = 0) = N ′0t41θ2w, (85)

where N ′0 ≡
(

4− 2t21
(
1 + 2θw

))−1
.

For the 0-bit scheme considered above, we then obtain:

F 0 =
t21

1− θ2w
. (86)

This can be compared to the 1-bit scheme, where the
value is F 1 = 0, such that there is no information about
the angle θw given to Alice.

The two processes described in this section can be used
in order to transmit information from Bob to Alice in a
scenario where Bob only has access to the inner part of
the NMZI (see Fig. 9). However, in order for our setup to
be representative of the behaviour of the chained NMZI
structure from the section above, we set θw � t1 �
r1. Hence, the polarization rotation will have a minute
impact on the probability outputs. For t1 � r1, the
probability distributions for the 0- and 1-bit processes are
very similar. We see that in both processes of the scheme,
Alice will detect the state |nH2 = 1〉 with high probability.
Thus, in order for Alice to obtain Bob’s choice of bit-
value, with high probability, each logical bit has to be
decoded from a larger bit string.

The communication scheme is as follows: Alice sends
a number, nγ , of single photons (excluding the particles
that do not fulfil the post-selection criterion and are ab-
sorbed by either DB or D3) into the device of Fig. 9, one
after another. Depending on what logical bit Bob wishes
to transmit, he either inserts detector DB or leaves his
laboratory open, for all the nγ particles. Alice makes sub-
sequent particle detections of the nγ events: |nH1 = 1〉,
|nH2 = 1〉, |nV1 = 1〉 or |nV2 = 1〉. If she measures any
event in |nV1 = 1〉 or |nV2 = 1〉, she knows with certainty
that a logical 0 was sent. However, owing to the fact that
θw is very small, the accumulative probability of these
events is also small. Hence, Alice will, with high proba-
bility, have to use the statistics of |nH1 = 1〉 and |nH2 = 1〉
detections to infer the logical bit. From the number of
particles, q, that Alice measure in the |nH1 = 1〉 state, she
decides whether Bob sent a logical 0 or a logical 1.

The question of interest is: what number, nγ , of single-
photon evaluations of the device, allows for an effective
communication scheme with a limited number of errors?

We re-define P1 ≡ P1(nH1 = 1|nH,V3,B = 0) and P0 ≡
P0(nH1 = 1|θw, nH,V3,B = 0). For small t1 and θw � t1, we
see that P1 < P0. Alice will thus note down a 1 every
time q < q′. In the limit of long message strings, Bob
will produce logical 0s and 1s at the same rates, and the
exact value of q′ is given by:

q′ =

 nγ ln
(

1−P1

1−P0

)
ln
(
P0

P1

)
− ln

(
1−P0

1−P1

)
. (87)

The probability for a non-faulty logical bit-transmission
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is thus:

Psucc. =
1

2

q′∑
q=0

nγ !P q1 (1− P1)nγ−q

q!(nγ − q)!

+
1

2

nγ∑
q=q′+1

nγ !P q0 (1− P0)nγ−q

q!(nγ − q)!
. (88)

Eq. 88 can be used to numerically find an acceptable
value of nγ , given the parameters of the setup. However,
in order to evaluate the setup discussed in Ref. [1, 27,
29–32], we need the transmission coefficient to be small
(t1 = sin (π/2N) � 1, with N � 1). As t1 is small, we
can, by the central limit theorem, assume that nγ has
to be large and that the two bit-processes will generate
normally distributed events. The two processes will each
have a mean situated at P1 and P0 respectively. Their
respective standard deviations will be given by:

σi =

√
Pi(1− Pi)

nγ
, (89)

where i = 0, 1, which decreases reciprocally with the
square-root of nγ . For Alice to be able to distinguish
between the logical 0 and 1 bits correctly with probabil-
ity 1− ε, we require that:

nγ ≥

(
Φ−1(ε)

√
P0(1− P0) +

√
P1(1− P1)

P0 − P1

)2

, (90)

where Φ−1(ε) is the inverse of the standard normal cu-
mulative distribution function.

We can Taylor expand nγ for small values of t1 such
that:

nγ ≥
(
Φ−1(ε)

)2 4

t21
+O(t−11 ). (91)

As the Fisher information scales linearly with the num-
ber of evaluations of the channel, nγ , our counterfactual
violation strength for a Type I logical 0-bit is given by:

D = nγ
F 0

Ffree
&
(
Φ−1(ε)

)2
. (92)

For a success rate of roughly 95%, we thus obtain a value
of D ≈ 2.7, and we conclude that the CFC scheme de-
scribed in this subsection is no more counterfactual than
a free space evolution of particles between Alice and Bob.

2. Simulation of Quantum Evolution

In order to illustrate the origin of a counterfactual vio-
lation inside a NMZI device, we provide a numerical sim-
ulation of the time-dependent Schrödinger equation. We
simulate a massive Gaussian spin- 12 particle that prop-
agates through a NMZI, which we have mapped onto a

linear 1D structure. The Hamiltonian to implement such
an evolution can be tailored as in Ref. [2]. This allows
us to design a toy model for the wavefunction evolution
in a NMZI. The solution is calculated by a GPU-boosted
version of the Staggered Leapfrog algorithm as in Refs.
[41, 42]. Fig. V V.I 2 shows the evolution of the wave-
function.

The Hamiltonian has been tailored such that the beam-
splitter parameters are given by: t2 = r2 = t3 = r3 = 1√

2
,

t1 = t4 = 1
2 and r1 = r4 =

√
3
2 .
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(color online) This figure shows the quantum evolution
(time steps (a) to (f)) of the probability density distribu-
tion of a spin- 12 particle in a nested Mach-Zehnder inter-
ferometer with and without a weak spin-rotation interac-
tion (exaggerated for visibility) in Bob’s laboratory. The
dotted red and solid blue curves indicate spin up and spin
down components of the wavefunction respectively. The
dashed green curves show the potentials. Beam-splitters

FIG. 10. (color online) The logical 0 process for the chained
nested Mach-Zehnder interferometer suggested for CFC in
Ref. [1]. The weak polarization interactions mimic realistic
systematic errors in the quantum channels of Bob’s labora-
tory.

are denoted with vertical yellow lines. The spatial com-
ponents are indicated with the vertical dashed grey lines.

As can be seen from Fig. V V.I 2, the effect of the
weak interaction in Bob’s laboratory (right frame in Fig.
V V.I 2(d)) is to distort the interaction on the beam-
splitter (between Fig. V V.I 2(d) and V V.I 2(f)). In the
scenario of no interaction, the second passage through the
right beam-splitter causes the middle and right parts of
the wavepacket to interfere constructively and propagate
to Bob’s laboratory, never to return to Alice. However,
a weak interaction in Bob’s laboratory allows for a frac-
tion of the wavepacket (right frame in Fig. V V.I 2(e)) to
propagate back towards Alice’s laboratory and interfere
on the left beam-splitter. Hence, the probability density
distributions around x = 0.5 and x = 2.5 in Alice’s labo-
ratory are different depending on whether or not a weak
interaction took place. This is why the Type I counter-
factuality is satisfied, only if absolutely pure quantum
channels are present in the NMZI device.

V.II. Chained NMZIs

In the previous subsection, we analysed a reduced
NMZI CFC scheme. However, an extension of the anal-
ysis to the originally proposed chained NMZI protocol of
Ref. [1] is not straightforward. (Previous attempts have
been heavily criticised [1, 26–34, 40]). In general, compli-
cations arise from the multiple paths ((N−1)×(M−1) in
Fig. 2) in and out of Bob’s laboratory. In terms of our ap-
proach, this complicates the concept of “presence”. Nev-
ertheless, the Fisher information with respect to the weak
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FIG. 11. (color online) The spatially conditioned Type I coun-
terfactual violation strength as a function of the beam-splitter
numbers N and M for the scenario of Bob not introducing his
detectors in Fig. 2 or 10.

disturbance in Bob’s laboratory can still be calculated—
and generally have significantly larger values than those
calculated with Eq. 18. An analytical analysis of the
Fisher information in the chained NMZI devices yields
a complicated non-informative expression, even for small
numbers of M and N . Instead, a numerical finite differ-
ence method allows for a comprehensive approximation
of the Fisher information. This allows us to calculate the
counterfactual violation strength (Eq. 19).

We now calculate the quantum evolution of the Type
I logical 0 process (no DB), with a polarization rota-
tion of θw in every inner MZI in Bob’s laboratory. (See
Fig. 10). In accordance with the previous sections of
this paper, the weak rotations mimic disturbances of re-
alistic quantum channels. Fig. 11 shows the spatially
conditioned (i.e. F → FA in Eq. 19) Type I counter-
factual violation strength, DA, as a function of N and
M , assuming that Bob leaves his path open and that
the polarization rotations are carried out with a weak
polarization parameter: θw = 10−6 � M−1. A simple
calculation shows that D ≥ DA, such that Fig. 11 can
be used as a lower bound on the Type I counterfactual
violation strength in the device of Fig. 10.

As stated before, large values of M and N are needed
to carry out the direct communication scheme with high
success probability. For such values, the counterfactual
violation strength of the chained NMZI communication
scheme is many orders of magnitude larger than unity.
For realistic quantum channels, we can thus, based on
our counterfactuality measure, conclude that the sug-
gested communication scheme of Ref. [1] is, de facto,
not counterfactual.

VI. EVALUATION OF TYPE II
COUNTERFACTUAL COMMUNICATION

We now consider the Type II protocol suggested by
Arvidsson-Shukur and Barnes [2], which relies on a
chained MZI (CMZI) device. Such a device is shown in
Fig. 3.

In this protocol, Alice sends a single-photon state into
the upper left input path of the device (solid black line).
The photon then enters the transmission line, which
shares a CMZI device with Bob’s laboratory. Bob has the
possibility of inputting detectors in his path or leaving it
open. If Bob leaves his path open, the quantum evolution
of the photon in the device will lead it to emerge onto
detector D2 in Bob’s laboratory, without the wavepacket
ever spreading into Alice’s laboratory after it first left it.
However, if Bob instead inputs detectors, DB , after each
beam-splitter, the wavepacket will either be absorbed by
one of them or collapse onto a state in the lower part of
the CMZI device that can re-enter Alice’s laboratory to
be detected by detector D1. In the limit of large N and
inserted detectors, the quantum Zeno effect can make the
probability of re-entering in Alice’s laboratory arbitrar-
ily close to unity. Hence, Bob’s action of either leaving
his path free or inserting detectors affects the detection
probabilities in Alice’s laboratory and—in the limit of
large N—allows her to deduce Bob’s action with high
probability of success.3

This protocol is conceptually different from the one
presented in Ref. [1]. That protocol suggests a scenario
where the photon would never travel from Bob to Alice
or vice versa. The protocol described in Ref. [2] indeed
never sees the photon wavefunction travel from Bob to
Alice. It does, however, allow for the wavefunction to
propagate from Alice to Bob. The protocol is, neverthe-
less, counterfactual according to the Type II definition,
which allows particles to travel in the opposite direction
to the message.

We simulate the Type II counterfactual violation
strength (PA from Eq. 20) per photon transport through
the CMZI with Bob’s path open, as a function of N . The
weak polarization rotators are again inserted in each sep-
arate MZI of Bob’s laboratory. (See Fig. 12). PA is de-
pendent of θw and we present results for various values
of θw in Fig. 13.

The CMZI CFC protocol can be carried out with a high
success rate with less than 100 beam-splitters (the success
rate of the 1-bit process when Bob inserts his detectors
is above 95% if N ≥ 50). Hence, Fig. 13 validifies the
counterfactuality of the CMZI scheme for the values of
θw that we have considered. We see that for small values
of θw the value of PA is kept well below the free-space
interaction value of 1. Regardless of the small values

3 The protocol presented in Ref. [2] shows how a clever logical
bit-encoding scheme can take the probability of success close to
unity, even for imperfect beam-splitters and N ≤ 7.
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FIG. 12. (color online) The logical 0 process of the chained
Mach-Zehnder interferometer CFC scheme of Ref. [2]. Again,
the weak polarization interactions mimic realistic systematic
errors in the quantum channels of Bob’s laboratory.

FIG. 13. (color online) The Type II logical 0 (see Ref. [2])
counterfactual violation strength, PA (dashed lines read on
the left y-axis), and the spatially conditioned Fisher informa-
tion, FA (solid line read on the right y-axis), as functions of
the beam-splitter number, N .

of PA, Fig. 13 shows that Alice obtains a large amount
of Fisher information FA(θw) about Bob’s parameter θw.
The value of FA(θ) is independent of changes in the value
of θ for small θ = θw ≈ 0. The value of PA is not.

VII. CONCLUDING REMARKS

In this paper we have carried out a thorough study of
the classical Fisher information and the Shannon mutual
information in nested Mach-Zehnder interferometers. We
have calculated these information measures with respect
to the measurement outcomes caused by polarization ro-

tations in different parts of the structure. We find that
in an otherwise non-polarizing optical circuit with real
beam-splitter matrices, the Fisher information caused
by a single polarization rotation is always proportional
to the integrated probability density distribution at the
location of the interaction in the Schrödinger picture.
The Fisher information—in such a scenario—can thus
be thought of as a measure of inter-measurement “pres-
ence” at the rotator. Furthermore, we have developed
interpretation independent measures for the strength of
counterfactual violations in two different types of CFC
schemes. Type I schemes do not allow particles to cross
the transmission line between transmitter and receiver,
whilst the Type II schemes allow particles to travel in
to opposite direction to the message. The rudimentary
assumption made in this paper, is that any real quantum
channel will naturally have unwanted components associ-
ated with it. We introduce a small polarization rotation
as a simple model of an unwanted quantum evolution in
the devices. We find that a suitable measure of Type I
counterfactual violations is based on the classical Fisher
information of the parameter θw that set the polarization
rotation. It is scaled by the reciprocal Fisher informa-
tion from a free-space interaction of the same strength as
the one used in the device of interest. Hence, a value
of D = 1 corresponds to the counterfactual violation
strength of a free-space interaction inside the laboratory
of study, and any value between 0 and 1 corresponds to a
weaker-than-free-space counterfactual violation. For ex-
ample, we can show that the suggested scheme of Salih et
al. [1] strongly violates counterfactuality. Moreover, we
provide an analytical study as well as a numerical sim-
ulation of the quantum evolution of a Gaussian particle
in a single NMZI. The numerics show how the evolution
of the quantum wavefunction leads to Fisher information
of the interaction parameter (and ultimately the coun-
terfactual violations) in NMZIs communication schemes.
The analytical study supports the claim of the invalidity
of counterfactual schemes based on NMZIs. The Type
II scheme developed by Arvidsson-Shukur and Barnes [2]
should be measured with another counterfactual viola-
tion measure. This measure, PA, is based on how much
probability density that weak non-collapsing interactions
in Bob’s laboratory generate in Alice’s. We find that the
Type II scheme of Ref. [2] keeps the value of PA to a frac-
tion of a percent for weak interactions, and thus satisfies
its counterfactuality definition.
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