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Abstract

The prevalence of specific infections in UK prostate cancer patients was investigated. Serum from 84 patients and 62
controls was tested for neutralisation of xenotropic murine leukaemia virus-related virus (XMRV) Envelope. No reactivity was
found in the patient samples. In addition, a further 100 prostate DNA samples were tested for XMRV, BK virus, Trichomonas
vaginalis and human papilloma viruses by nucleic acid detection techniques. Despite demonstrating DNA integrity and
assay sensitivity, we failed to detect the presence of any of these agents in DNA samples, bar one sample that was weakly
positive for HPV16. Therefore we conclude that these infections are absent in this typical cohort of men with prostate
cancer.
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Introduction

Prostate cancer (PC) contributes significantly to the global

disease burden due to cancer and is the most common cancer in

men in the UK (http://info.cancerresearchuk.org/cancerstats).

Current screening methods and patient management decisions are

hindered by a fundamental lack of insight into the natural history

of the disease, which is likely to be multi-factorial. Researchers

proposed an infectious cause as early as the 1950s and since then

various pathogens have been associated with the disease

(Reviewed in [1]). Although epidemiological studies indicate that

a history of acquiring sexually transmitted diseases increases the

risk of PC, no definitive association with a specific infection has

been shown. We decided to concurrently examine the prevalence

of four different infectious agents that have each independently

been associated with PC. We aimed to increase the chances of

detection by studying samples from a well-characterised cohort of

patients with severe PC.

Firstly, we looked for the new gammaretrovirus, xenotropic

murine leukaemia virus (MLV)-related virus (XMRV), that was

isolated from familial PC patient tissue in 2006 [2]. A second,

larger, controlled study in 2009 suggested that XMRV was

associated with high-grade tumours and was not limited to familial

PC cases [3]. However, several subsequent studies have found no

link with XMRV and this association has remained controversial.

Whilst this manuscript was in preparation a study by Paprotka et

al. demonstrated the likely recombinant origin of XMRV [4];

these ancestral viruses have since been further characterised [5].

Recently, Martinez-Fierro and colleagues detected human papil-

loma viruses (HPV) in 20% of PC cases by PCR [6]. High risk

HPVs are causative agents in cervical cancer and their E6 and 7

proteins are able to immortalise prostate cells [7]. Polyomaviruses

also have the potential for carcinogenesis and BK virus (BKV) has

been frequently detected in PC specimens, most recently in tissue,

urine and plasma [8,9]. Finally, the parasite Trichomonas vaginalis

(TV) is known to cause prostatitis and showed a slightly increased

prevalence rate in PC in a recent case-control study [10].

Therefore these three pathogens were investigated in addition to

XMRV.

We examined PC tissue DNA for XMRV, BKV, TV and HPV

nucleic acids as well as testing PC patient sera for the presence of

neutralising antibodies to XMRV Env. Despite proving the assays

were highly sensitive, none of the patient samples were positive for

infection, with the exception of one HPV-positive DNA sample.

Our results therefore suggest that there is no association with any

of the agents and PC and that clinical approaches should not focus

on counteracting these infectious agents in men.

Results

Eighty-four UK PC patient and 62 control sera (from men with

low prostate-specific antigen (PSA) or high PSA with a negative

biopsy) were tested for the presence of anti-XMRV antibodies

using a neutralisation assay that has been previously described
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[11]. Despite validated monoclonal antibody controls showing

reproducible neutralising activity in this assay, none of the PC

patient sera showed any evidence of anti-XMRV antibodies. One

serum sample from a control, Q2, did show specific reactivity

against XMRV at high serum concentrations (Figure 1).

Unfortunately, DNA was not available from the same cohort of

patients tested above and so DNA was extracted from a further

one hundred prostate cancer tissue samples from another

similarly well-characterised cohort. DNA samples were tested

for integrity by hgapdh PCR and 96 showed detectable product

after a single round (a subset is shown in Figure 2A). The four

samples that failed to amplify product were included in further

tests as controls for assay contamination. Extracted DNA was

tested for XMRV using a nested PCR amplifying the viral gag

gene as previously described [2]. This PCR reliably detects single

copies of plasmid control diluted in an excess of human DNA in

every experiment (Figure 2B). This PCR is also capable of

detecting related gammaretroviruses (MLVs), including those

found as endogenous viruses in mice. Six out of 100 PC DNA

samples gave a product of the expected size (Figure 2C). As

XMRV is related to endogenous retroviruses present in mice, the

presence of contaminating murine DNA could lead to a positive

result in this PCR. To control for this, positive samples were also

tested for murine DNA using a PCR specific for the murine

endogenous retroviral element intracisternal A particles (IAP)

[12]. This PCR can detect low levels of mouse DNA due to the

high frequency of IAPs in mouse genomes (Figure 3A). All six

samples that were positive for XMRV gag were also positive using

the IAP PCR (Figure 3B, Tables 1 and S1). To clarify the origin

of these bands more precisely, the amplicons were cloned and

sequenced. Phylogenetic analysis of sequenced ‘‘gag’’ amplicons

supported the assertion that they were derived from contaminat-

ing murine nucleic acid (Figure S1).

DNA samples were also tested for the presence of BKV by

nested PCR. Despite reliable detection of one molecule of BKV

plasmid in repeated attempts (pBR322-Dunlop, Figure 4A), none

of the patient samples gave a band of the appropriate size (subset

shown in Figure 4B). Similarly, patient samples were negative for

TV using a commercially available real-time PCR testing kit

(Figure 4C). This assay was capable of reliably detecting ten

copies of TV (Figure 4C+D). These negative results were not due

to a failure of the extraction procedure as an internal extraction

control was successfully amplified. All DNA samples were then

tested for HPV and all samples but one, which had weak

hybridisation to HPV16, were found to be negative, despite the

successful amplification of human DNA using the kit control

probe in all but one sample (Samples 1–3 shown in Figure 5). A

summary of these results for all 100 PC DNA samples is given in

Tables 1 and S1.

Discussion

An extensive and controversial literature exists linking infectious

agents to PC, particularly XMRV and HPV [1,13]. As we had

access to a large, well-characterised cohort of PC patients and

experience using molecular techniques to detect viruses, we felt it

would be useful to investigate the presence of four agents; XMRV,

BKV, TV and HPV, in the same PC samples.

In recent years there has been much interest and controversy

in the association of XMRV with PC. In an assay developed to

detect an immune response to XMRV, one serum sample in our

study was able to neutralise the virus (Q2, Figure 1). However,

this serum was from a low PSA control individual and therefore

there was no association with PC. This neutralisation assay was

similar to that used by Arnold et al., except that the pseudotyped

virus-like particles used were based on MLV rather than HIV

[14]. This conceivably represents a false positive result due to

epitope cross-reactivity. Regrettably, neither further serum for

testing reactivity by western blot nor DNA for testing by PCR

were available for this individual. Furthermore, we did not find

any evidence for the canonical XMRV [2] in PC DNA samples

by PCR. Six samples amplified a product in the gag PCR but

were also positive for murine DNA, suggesting that this PCR had

amplified endogenous murine retroviral sequences that are

present in high copy numbers in mice (Figures 2 and 3).

Phylogenetic analysis of amplicons supports this hypothesis

(Figure S1). Additionally, one gag negative sample was positive

in the IAP PCR, showing that the IAP PCR is capable of

amplifying contaminating murine DNA that was not detected by

the gag PCR.

Figure 1. Detection of XMRV neutralising antibodies in human sera. Infectivity of XMRV after incubation with patient serum or monoclonal
suspension. Infectivity (measured as relative b-galactosidase units) is plotted against the reciprocal of the serum dilution (black symbols) or
monoclonal suspension (blue data points, monoclonal 603, negative control; red data points, 83A259, positive control). Dashed line indicates level of
infectivity in the absence of serum/monoclonal. Q1–10 are patient designations. Q2 exhibits neutralisation.
doi:10.1371/journal.pone.0034221.g001
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Together, our serological and PCR data show no association of

gammaretroviruses and PC. This agrees with recent genetic

evidence determining the origin of XMRV that indicates that

XMRV-related viruses are not actually human pathogens [4],

reviewed in [15]. Despite making every effort to isolate DNA and

perform assays in mouse-free facilities using new equipment

bought for this study, our IAP PCR results highlight the problem

of contamination of samples with murine DNA. Indeed, it has

recently been reported that previously positive samples may be due

to contamination [16,17,18]. Contamination is an issue widely

discussed in the XMRV literature [13]. Researchers using

extremely sensitive nucleic acid techniques to detect pathogens

in patient samples should be wary of misinterpreting apparent

positive results [19]. In the case of XMRV, several methods of

contamination are possible. Sequencing of PCR products is

essential, together with checking for the presence of murine DNA

that could give rise to products in PCR due to the high level of

endogenous retroviruses. However, highly related endogenous

sequences or contaminating plasmid DNA might not be flagged by

this method. Specific PCR assays designed to detect these

contaminants must be used [20]. Viral contaminants or contam-

ination with laboratory-derived infected human cells are impos-

sible to differentiate from bona fide human infection. The only way

to confirm an apparently positive result is by independently

Figure 2. DNA integrity and detection of XMRV sequences in prostate cancer tissue DNA. Panels A-C show 1% agarose gels stained with
ethidium bromide. For all, M indicates marker, W indicates water, numbers on the left indicate size of markers in base pairs, arrows indicate expected
band size for each PCR. A) Detection of hgapdh in DNA isolated from PC tissue DNA samples 1–24 using single round PCR. Expected PCR product size,
225 base pairs. B) Standard curve to determine the detection limit of XMRV gag nested PCR. Ten-fold serial dilutions from 106 to 1 molecule per ml of
XMRV plasmid (pcDNA3.1/VP62) were made in a background of an excess of human genomic DNA. Second round amplification products of the gag
nested PCR are shown. Numbers above lanes indicate input number of molecules. Expected PCR product size 413 base pairs. Sequencing the slower
migrating faint band in the ‘‘0’’ lane (human genomic DNA alone) showed this to be non-specific amplification of human genes (data not shown). C)
Detection of XMRV gag sequences in DNA isolated from prostate cancer tissue samples. Second round amplification products from a subset of
patients are shown as in (B). Samples 4, 8 23, 60, 62 and 72 are positive.
doi:10.1371/journal.pone.0034221.g002
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reproducing it, which is why it is important for several groups to

conduct their own studies. Whilst this manuscript was in

preparation two key papers citing detection of XMRV in chronic

fatigue syndrome patient samples were retracted in the light of

evidence for contamination [21,22,23,24].

We also utilised PCR assays to screen our patient samples for

three pathogens previously linked to PC. We used published

primers reported to detect BKV in PC samples [25], and two

commercial kits to look for TV and HPV. The TV kit is designed

to have the broadest detection profile possible whilst remaining

specific to the TV genome. The HPV assay is already used to

monitor cervical tissue samples and can identify 28 types of HPV,

including all currently known high-risk and probable high-risk

genotypes as well as a number of low-risk types. If an association

was found with PC and any of these pathogens then these assays

would provide a rapid, simple way to screen patients and identify

those for whom anti-pathogen treatments may be beneficial. All

the assays were validated using positive controls (Figure 4A, C and

D) and the quality of DNA extracted from PC samples was

assessed by amplification of human genes (Figures 2 and 5,

Tables 1 and S1). However, none of the samples tested positive for

BKV or TV and only one sample tested positive for HPV (type

16). This suggests that these pathogens are not common in PC

tissue and thus treatment for infections is unlikely to assist patients

in general.

Although a negative result is difficult to prove conclusively, we

would argue that our DNA samples were of sufficient quality to

amplify human control genes and that amplification of the

internal control indicated that the extraction procedure did not

inhibit PCR. It is possible that the process of formalin-fixing and

paraffin embedding led to fragmentation of the DNA. If this were

the case then the hgapdh control could only confirm the possible

detection of amplicons shorter than 225 bp (HPV and TV).

However, if the prevalence of XMRV or BKV were high, one

would still expect to detect the viral sequences in some of the

samples, despite random fragmentation. Additionally, the

XMRV, BKV and TV assays were capable of detecting one-to-

ten genome equivalents implying the assays used were exceed-

ingly sensitive. These detection limits were reliably observed on

repeated attempts. Our data support the conclusions of Sfanos et

al. who examined the prevalence of these agents in PC material as

part of a larger study focussed on the detection of bacterial

infection of the prostate [26]. These authors were also unable to

detect any of these pathogens in PC patients with the exception of

one positive BKV result.

Studies that found pathogen DNA in prostate tissue may reflect

contamination of the prostate with pathogens associated with the

proximal tissues or even non-human sources. The historical

association of PC with sexually transmitted infection could reflect

increased inflammation due to infection but may not require

infection with a particular pathogen. Alternatively, this study may

not have included the most relevant pathogen or be large enough

to reveal the small contribution of each of the agents investigated.

A generally reduced exposure to sexually-transmitted infections in

recent times, in combination with the relatively small numbers in

our study, may preclude detection of infected individuals.

However, the cohort examined is a group of well characterised

patients with severe disease and if any of the above infections were

strongly associated with PC, and therefore clinically relevant, one

would expect to have detected them in this study. We therefore

conclude that XMRV, BKV, TV and HPV are not prevalent in

this PC cohort and suggest that alternative aetiologies be

considered for PC.

Materials and Methods

Ethics statement
Patient samples were collected through the ProMPT study with

ethical approval from the Trent Multi-centre Research Ethics

Committee and with informed, written consent.

Plasmids
HG1 is a replication incompetent derivative of pcDNA3.1/

VP62 with deletions in the promoter region and packaging signal

[27]. pLTR-LacZ is an MLV-based retroviral vector encoding b-

galactosidase [27]. The pBR322-Dunlop plasmid (ATCC

#45025) was received from Mike Imperiale (Ann Arbor) and

has been previously described [28].

Sample collection and processing
Serum samples from four groups of patients were analysed: 30

low PSA controls, 32 high PSA but negative biopsy controls and

84 PC patients. DNA was isolated from 100 formalin-fixed

paraffin-embedded PC slices using the QIAamp DNA FFPE

Tissue Kit (Qiagen) according to the manufacturer’s instructions,

except samples were incubated in lysis buffer overnight to ensure

complete lysis. DNA was eluted in 50 ml elution buffer and the

concentration determined using a NanoDrop spectrophotometer.

Detection of neutralising XMRV antibodies in serum
Neutralisation assays using XMRV have been previously

described [11]. Monoclonal antibodies 83A259 and 603 were

Figure 3. Detection of murine DNA contamination in prostate
cancer tissue DNA. Panels A and B show 1% agarose gels stained
with ethidium bromide. For all, M indicates marker, numbers on the left
indicate size of markers in base pairs, W indicates water, arrows indicate
expected band size for each PCR. Products appear as a smear due to
varying amplicon lengths. For reference, there are approximately one
thousand IAP copies per mouse genome. A) Intra-cisternal A-type
particle DNA was amplified from serial dilutions of mouse DNA (0.001 to
103 genome equivalents, either C56BL/6 or Mus Spretus). Products from
single round amplification are shown. Numbers above lanes indicate
number of mouse genome equivalents in the PCR reaction. B) Products
from PCR amplification of intra-cisternal A-type particle DNA from
selected PC tissue DNA samples. Numbers above lanes indicate patient
designations. Samples 4, 8, 23, 60, 62, 70 and 72 are positive. +/2
indicate positive or negative result in gag PCR (Figure 2).
doi:10.1371/journal.pone.0034221.g003
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used as positive and negative controls respectively, and cells were

monitored for viability by visual inspection at the time of

harvesting.

PCR
Sequences of all primers have been previously described as cited

and are given in Table 2. Single round PCR detection of hgapdh

and nested PCR for XMRV gag were carried out as described in

[2] using primers hGAPDH-66F and hGAPDH-291R and GAG-

O-F, GAG-O-R, GAG-I-F and GAG-I-R. IAP DNA single round

PCRs were carried out described in [12] and detection of BKV

was carried out by nested PCR as previously described [25] using

primers BKVfor, BKVrev, BKVnesfor and BKVnesrev. To deter-

mine sensitivity, 10-fold serial dilutions from 1 to 106 molecules of

pcDNA3.1/VP62 for XMRV, C56BL/6 or Mus Spretus DNA for

IAP or pBR322-Dunlop for BKV, were tested using the above

PCRs. The products of all single round/nested PCRs were

analysed by gel electrophoresis. For the detection of Trichomonas

vaginalis, samples were tested using the Quantification of

Trichomonas vaginalis Advanced Kit (PrimerDesign Ltd) accord-

ing to the manufacturer’s instructions using the Mini Precision

Low-Rox mastermix (PrimerDesign) and the ABI 7500 Real-Time

PCR System (Applied Biosystems). Internal DNA extraction

controls were used for all detection methods alongside a positive

control standard curve and negative controls appropriate for each

assay. Amplification of HPV DNA for typing was carried out using

the INNO-LiPA HPV genotyping Extra Amp kit according to the

manufacturer’s instructions. Typing was then carried out using the

INNO-LiPA HPV genotyping Extra kit on an Auto-LiPA

instrument according to the manufacturer’s instructions (all

INNOgenetics).

Amplicon analysis
PCR products were cloned into the pSMARTH HCKan

vector using the CloneSmart HCKan Blunt Cloning Kit

(Lucigen) according to the manufacturer’s instructions. Ligated

pSMART vectors were sequenced using primers shown in

Table 2. Sequences were aligned to the appropriate region of gag

in XMRV sequences available on PubMed and relevant MLV

sequences using MegAlign (DNASTAR LaserGene 8). Sequenc-

es have been deposited in GenBank (JQ048948–JQ048955).

Further details of sequences and accession numbers are given in

the figure legend. Model selection for phylogenetic analysis was

carried out using Modelgenerator v8.5 [29] and Bayesian

Table 1. Summary of nucleic acid detection results.

Nucleic acid detected (amplicon size, bp)

Sample Hgapdh control (225) XMRV gag (413) IAP (approx. 280) BKV (453) TV (108) hDNA control (na) HPV (65)

4 + + + 2 2 + 2

8 + + + 2 2 + 2

18 2 2 nd 2 2 2 2

23 + + + 2 2 + 2

25 2 2 nd 2 2 2 2

26 2 2 nd 2 2 2 2

58 + 2 2 2 2 + 2

59 + 2 nd 2 2 2 2

60 + + + 2 2 + 2

62 + + + 2 2 + 2

63 + 2 nd 2 2 2 2

65 2 2 nd 2 2 + 2

68 + 2 nd 2 2 2 2

69 + 2 nd 2 2 2 2

70 + 2 + 2 2 + 2

72 + + + 2 2 + 2

73 + 2 nd 2 2 2 2

74 + 2 nd 2 2 2 2

75 + 2 nd 2 2 + +

84 + 2 nd 2 2 2 2

87 + 2 nd 2 2 2 2

92 + 2 nd 2 2 2 2

95 + 2 nd 2 2 2 2

Modal results + 2 nd 2 2 + 2

TOTAL 96/100 6/100 6/6 ( gag +) 0/100 0/100 87/100 1/100

1/2 (gag 2)

Individual samples with results differing from the mode result set are shown. Modal results are shown in the penultimate row. Totals are given at the end of each
column. +, positive result, 2, negative result, nd, not determined. Hgapdh, human glyceraldehyde 3-phosphate dehydrogenase, XMRV, xenotropic murine leukaemia
virus-related virus, IAP, intra-cisternal A particle, BKV, BK virus, TV, Trichomonas vaginalis, hDNA, human DNA, HPV, human papilloma virus.
doi:10.1371/journal.pone.0034221.t001
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phylogenies were predicted using the general time reversible

model of nucleotide substitution and a gamma-distributed rate

heterogeneity using the program MrBayes [30]. The MCMC

algorithm was run for 4,000,000 generations, sampling trees

every 100 generations. ESS values were calculated using Tracer

(http://beast.bio.ed.ac.uk/Tracer). The consensus tree with

branch lengths and posterior probability support values for the

internal nodes was visualised in FigTree (http://tree.bio.ed.ac.

uk/software/figtree), rooting on MoMLV as an outgroup and

edited using Adobe Illustrator.

Figure 4. Detection of BKV and TV in prostate cancer tissue
DNA. Panels A and B show 1% agarose gels stained with ethidium
bromide. For both, M indicates marker, numbers on the left indicate size
of markers in base pairs, arrows indicate bands of the expected size for
the second round (453 bp). A) Serial dilutions of BKV plasmid (pBR322-
Dunlop) were made from 106 to 1 molecule(s) and amplified by nested
PCR. Products of the second round of amplification are shown.
Numbers above lanes indicate number of molecules in the PCR
reaction. B) Products from the second round of nested PCR
amplification of BKV from a subset of PC tissue DNA samples. Numbers
above lanes indicate patient designations. C) Amplification plot
showing curves for quantitative PCR reactions detecting TV using
Quantification of Trichomonas vaginalis Advanced Kit. Serial dilutions of
positive control are shown as well as lack of amplification for PC tissue
DNA samples 1–50 (no amplification and thus all below the threshold
line). Inputs were as follows: int, internal extraction control (detected on
a separate filter), a, 106 TV molecules, b, 105 TV molecules, c, 104 TV
molecules, d, 103 TV molecules, e, 102 TV molecules, f, 10 TV molecules.
Plot shows delta Rn against cycle number. D) Plot of Ct values against
log of positive control input concentration demonstrating linearity,
R2.0.99.
doi:10.1371/journal.pone.0034221.g004

Figure 5. Detection of HPV in prostate cancer tissue DNA. HPV
DNA in PC tissue DNA samples was detected using INNO-LiPA HPV
Genotyping Extra. HPV DNA was amplified from samples using primers
to conserved sequences generating biotinylated products. Biotinylated
amplicons were then hybridised to strips bearing conserved and type-
specific HPV probes. Bands indicate binding of the biotinylated sample
DNA to the target indicated. Marker is for aligning strips, conjugate
control confirms the kit reagents are functioning correctly, hDNA
control indicates the presence of human DNA in the sample, HPV
(broad) indicates binding of HPV DNA to probes that bind conserved
regions. All other dotted lines show areas bound by specific HPVs e.g.
HPV16 (shown). Numbers above strips are patient designations (only 3
sample strips are shown for clarity), 2, negative control (water), +,
positive control (supplied with kit). Result for the single HPV positive is
not shown as it was too faint to appear on a scanned image.
doi:10.1371/journal.pone.0034221.g005
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Supporting Information

Figure S1 Phylogenetic analysis of gag sequence ampli-
cons. Amplicons from gag nested PCR (Figure 2) were cloned,

sequenced and compared to the same region from known XMRV

and MLV sequences. Identical sequences in the initial panel were

removed from the phylogenetic analysis to prevent bias. Accession

numbers are as follows: PreXMRV1 (Likely XMRV ancestral

sequence, NC_007815.2), murine C-type retrovirus (X94150),

AKV (endogenous ecotropic MLV, J01998), DG-75 (xenoptropic

Moloney MLV variant, AF221065), murine AIDS virus (S80082),

22Rv1 (XMRV derived from 22Rv1 cells, FN692043.2), VP62

(original XMRV isolate from a PC patient, DQ399707). Xmv,

Mpmv and Pmv (xenoptropic, modified polytropic and polytropic

endogenous MLV) sequences were obtained from Jern et al. PLoS

Genet, 2007. FB579966 and FJ907198 are reported isolates from a

patient and 22Rv1 cells respectively. Bayesian phylogenies were

predicted using the general time reversible model of nucleotide

substitution and a gamma-distributed rate heterogeneity using the

program MrBayes. The MCMC algorithm was run for 4,000,000

generations for two simultaneous independent analyses, sampling

trees every 100 generations. At the end of the analysis

PSRF = 1.000 and standard deviation = 0. ESS values were 899

and 959 for the two analyses (determined using Tracer v1.5). The

consensus tree is shown with branch lengths and posterior

probability support values for the internal nodes visualised in

FigTree v1.3.1, rooting on Moloney MLV as an outgroup.

Sequenced amplicons are shown in blue. These sequences have

been deposited in GenBank (JQ048948–JQ048955). The origi-

nally described XMRV sequence, VP62, is shown in red. Support

values, and therefore confidence, is limited by lack of divergence in

gag, however clustering of amplicons with endogenous retroviral

sequences is supportive of their being derived from contaminating

murine DNA.

(TIF)

Table S1 Full nucleic acid detection results.

(DOC)
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