1	Into the Andes: multiple independent colonizations drive montane diversity in the
2	Neotropical clearwing butterflies Godyridina
3	
4	Running title: Multiple colonizations into the Andes
5	
6	Nicolas Chazot ^{1,2} , Keith R. Willmott ³ , Fabien L. Condamine ^{4,5} , Donna Lisa de-Silva ¹ , André
7	V.L. Freitas ⁶ , Gerardo Lamas ⁷ , Hélène Morlon ⁸ , Carlos E. Giraldo ⁹ , Chris D. Jiggins ¹⁰ ,
8	Mathieu Joron ¹¹ , James Mallet ¹² , Sandra Uribe ⁹ , Marianne Elias ¹
9	
10	1. Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 – CNRS MNHN
11	UPMC EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier
12	CP50 F-75005, Paris, France.
13	2. Department of Biology, University of Lund, 223 62 Lund, Sweden.
14	3. McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History,
15	University of Florida, Gainesville, Florida 32611, USA.
16	4. CNRS, UMR 5554 Institut des Sciences de l'Evolution (Université de Montpellier), Place
17	Eugène Bataillon, 34095 Montpellier, France.
18	5. University of Alberta, Department of Biological Sciences, T6G 2E9, Edmonton, AB,
19	Canada.
20	6. Departamento de Zoologia and Museu de Zoologia, Instituto de Biologia,
21	Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
22	7. Museo de Historia Natural, Universidad Nacional de San Marcos, Lima, Peru.
23	8. IBENS, Ecole Normale Supérieure, UMR 8197 CNRS, Paris, France.
24	9. Universidad Nacional de Colombia, sede Medellín, Medellín, Colombia.

- 25 10. Department of Zoology, University of Cambridge, Cambridge, U.K.
- 26 11. Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, UMR 5175 CNRS EPHE -
- 27 Université de Montpellier Université Paul Valéry Montpellier, 34293 Montpellier 5, France.
- 28 12. Department of Organismic and Evolutionary Biology, Harvard University, Cambridge,
- 29 MA 02138, USA.
- 30

31 Abstract

32 Understanding why species richness peaks along the Andes is a fundamental question in the 33 study of Neotropical biodiversity. Several biogeographic and diversification scenarios have 34 been proposed in the literature, but there is confusion about the processes underlying each 35 scenario, and assessing their relative contribution is not straightforward. Here we propose to 36 refine these scenarios into a framework which evaluates four evolutionary mechanisms: 37 higher speciation rate in the Andes, lower extinction rates in the Andes, older colonization 38 times, and higher colonization rates of the Andes from adjacent areas. We apply this 39 framework to a species-rich subtribe of Neotropical butterflies whose diversity peaks in the 40 Andes, the Godyridina (Nymphalidae: Ithomiini). We generated a time-calibrated phylogeny 41 of the Godyridina, and fitted time-dependent diversification models. Using trait-dependent 42 diversification models and ancestral state reconstruction methods we then compared different biogeographic scenarios. We found strong evidence that the rates of colonization into the 43 Andes were higher than the other way round. Those colonizations and the subsequent local 44 45 diversification at equal rates in the Andes and in non-Andean regions mechanically increased 46 the species richness of Andean regions compared to that of non-Andean regions ("species-47 attractor" hypothesis). We also found support for increasing speciation rates associated with Andean lineages. Our work highlights the importance of the Andean slopes in repeatedly 48 49 attracting non-Andean lineages, most likely as a result of the diversity of habitats and/or host-50 plants. Applying this analytical framework to other clades will bring important insights into 51 the evolutionary mechanisms underlying the most species-rich biodiversity hotspot on the 52 planet.

- 54 Key-words: Andes, Ithomiini, Lepidoptera, Neotropics, trait-dependent diversification,
- 55 biogeography, Godyridina

57 Introduction

58 The Neotropical region, which extends from Central-America to southern Brazil, is the most 59 species-rich biogeographic region on Earth, and the origins of this rich biodiversity are keenly 60 debated. Within the Neotropics, species diversity often peaks along the tropical Andean 61 slopes across many groups, such as plants (Myers *et al.* 2000), vertebrates (Duellman 1999) 62 and arthropods (Mullen et al. 2011; Rosser et al. 2012; Chazot et al. 2015). Yet, the tropical 63 Andes represent a small area compared the rest of the Neotropics, and notably the Amazon 64 basin, which covers most of the region. The Andean orogeny followed a south-to-north 65 pattern of uplift, with episodic periods of intense mountain-building (Garzione et al. 2008; Hoorn et al. 2010). Geological evidence shows that the Central Andes rose by 1.5-2.5 km 66 67 during a period of rapid uplift between 10 to 6 million years ago (Garzione *et al.* 2008; Hoorn et al. 2010), which was followed by another period of accelerated uplift in the Northern 68 69 Andes between 5 and 2 million years ago (Bershaw et al. 2010). This rapid uplift is one of the 70 major events in the geological history of the South American continent and was likely 71 involved in the formation of the modern Amazon Basin (Hoorn et al. 2010). Understanding 72 the role of the Andes in generating and shaping the present-day Neotropical biota is a key 73 question that is far from being resolved.

In the literature, two hypotheses are often invoked to explain high species richness in
the tropical Andes: the so-called "species-pump" hypothesis and the "time-for-speciation"
hypothesis, also referred to as the "museum" hypothesis (e.g. Stebbins, 1974; Stephens &
Wiens 2003, Smith *et al.* 2007; Kozak & Wiens 2010; Rosser *et al.* 2012; Hutter *et al.* 2013).
However, there is confusion in the literature as to the mechanisms underlying each term.

Valentine (1967) coined the term "species-pump", referring to the hypothesis that
during warm periods mollusk species ranges increased (northward) while during colder

81 periods, species went either to extinction or contracted into small, isolated populations in the 82 remaining optimal areas ("pumps"). These populations were free to evolve independently, 83 before expanding again during the following warm period and becoming sympatric "species." 84 Later, Stebbins (1974) expanded this hypothesis to rainforest plants and Fjeldså (1994) 85 applied the "species-pump" concept to distributional patterns of tropical birds, proposing that climatically buffered Andean regions acted as a "species-pump" that would "pump" species 86 generated in the Andes out to the Amazonian region. Fieldsa's (1994) "species-pump" 87 scenario therefore involves a complex combination of extinction, range contraction, 88 89 speciation and colonization processes, which makes formal tests difficult to carry out. 90 Importantly, this scenario was originally proposed to explain the species diversity of the 91 Amazonian basin. These terms have later been used by other authors, but often with a 92 different meaning that corresponds to only one or a few aspects of Fjeldså's (1994) scenario. 93 For example, Sedano & Burns (2010) interpreted a high rate of dispersal from the Andes toward adjacent areas as a support for the "species-pump" hypothesis (see also e.g. Antonelli 94 95 & Sanmartín 2011). By contrast, Hutter et al. (2013) interpreted this hypothesis as a higher 96 net diversification rate in a study designed to investigate Andean diversity. Hutter et al. (2013) therefore ignore the "pumping out" mechanism originally proposed (see also e.g. 97 98 Smith et al. 2006). In fact, the hypothesis of higher speciation rate is also referred to as the 99 "cradle" hypothesis, often used to explain large patterns of latitudinal gradient of diversity 100 (e.g Arita & Vázquez-Domínguez 2008, Rolland et al. 2014).

101 A similar confusion occurs with the so-called "time-for-speciation" and "museum" 102 hypotheses. Stebbins (1974) proposed that the angiosperm "centers of diversity" are the result 103 of low disturbance and therefore low extinction rates that lead to museum-like areas with high 104 species diversity and 'primitive' lineages. Stephens & Wiens (2003) used the term "time-for-

speciation" when referring to a process where a specific region was colonized earlier than other ones by a clade, therefore giving more time for diversification. Confusion arose when some authors used the term "museum" to describe areas that were colonized early and had more time to accumulate species (e.g. Hutter *et al.* 2013 Smith *et al.* 2006), whereas other authors, such as Arita & Vázquez-Domínguez (2008), considered the tropics as a museum if "origination rate is constant and extinction rate is lower in the tropics" (see also e.g. Gaston & Blackburn 2000; Condamine *et al.* 2012).

112 In this paper we propose a framework of four biogeographic scenarios, which are 113 clarified in terms of mechanisms and expectations. The four scenarios rest on the four main 114 evolutionary processes proposed to explain spatial patterns of biodiversity: speciation, 115 extinction, age of colonization, and migration. These four mechanisms are not mutually 116 exclusive but each of them relies on the variation of only one of the following parameters: 117 speciation rate, extinction rate, age of first colonization and colonization rate (Figure 1). Here, 118 we apply this framework to investigate variation in diversity between Andean and non-119 Andean regions, but this framework may be used to investigate patterns of diversity among 120 any set of regions. Our hypotheses are as follows:

121 (1) Cradle. Andean lineages speciate faster than non-Andean lineages, leading to a rapid accumulation of species over time (Figure 1a). Indeed, the Andes offer conditions potentially 122 123 favorable to speciation. The uplift of the different cordilleras generated major barriers to 124 dispersal for many organisms, favoring allopatric divergence. In addition, the slopes of the 125 Andes also display a strong topological heterogeneity, with deep valleys creating further 126 opportunities for geographic divergence (Graham et al. 2004; Hughes & Eastwood 2006). 127 Ecological divergence is also favoured because high turnover of bioclimatic conditions 128 coupled with stratified vegetation types over small distances creates strong ecological

129 gradients. (2) Museum. Andean lineages have undergone lower extinction rates than non-130 Andean lineages (Figure 1b). Here we follow Stebbins' original definition of the 'museum' 131 hypothesis (Stebbins 1974). (3) Time-for-speciation. The timing of colonization events of the 132 Andes might be older than the colonization of other areas and Andean lineages have thus had 133 more time to accumulate species (Figure 1c). This is the 'time-for-speciation' hypothesis sensu Stephens & Wiens (2003). (4) Species attractor. The last hypothesis posits a higher 134 135 dispersal and colonization rate into the Andes (Figure 1d). This scenario has received less 136 attention compared to the other hypotheses (but see Beckman & Witt 2015), but with the 137 formation of the tropical Andes, the availability of newly formed ecosystems may have been 138 accompanied by many independent colonization events. Indeed, vacant ecological niches, 139 such as host-plants in the case of oligophagous herbivores, could become occupied by 140 multiple independent lineages. Under identical rates of diversification and time for speciation in Andean and non-Andean regions, multiple colonizations of the Andes could increase 141 142 species richness in this region (Figure 1d). Under this hypothesis, the Andes play the role of 143 an "attractor" for species and colonization rates toward the Andes from adjacent areas are 144 predicted to be higher than the other way around.

145 Vertebrates, especially birds, prevail in most recent studies of patterns of Neotropical 146 diversification (Weir 2006; Brumfield & Edwards 2007; McGuire et al. 2007; Sedano & 147 Burns 2010; Chaves et al. 2011; Hutter et al. 2013; Castroviejo-Fisher et al. 2014; Fouquet et 148 al. 2014; McGuire et al. 2014, Beckman & Witt 2015, Lynch Alfaro et al. 2015, Parada et al. 149 2015, Dantas et al. 2016, Rojas et al. 2016). Despite their megadiversity and abundance, 150 insects are poorly known in the Neotropics compared to vertebrates. Studies of diversification 151 are often restricted to small groups or suffer from low sampling, taxonomic uncertainty or 152 scarce distribution data. Therefore, attempts to generalise the processes explaining high

153 Andean species richness described in the literature remain rare. Yet, insect clades offer the 154 opportunity to add insights into our understanding of the macroevolutionary processes that 155 shaped Andean biodiversity over time.

156 One of the best-known and most diverse groups of Neotropical insects is the butterfly 157 tribe Ithomiini (Nymphalidae: Danainae). With ca. 47 genera and over 390 species (Lamas 158 2004) restricted to the Neotropical region, the group has diversified during the last 35 million 159 vears (Wahlberg *et al.* 2009). Ithomiini are known for their striking variety of wing patterns, 160 and many groups include species with partially or entirely transparent wings. They are a 161 major component of forest butterfly communities and interact through Müllerian mimicry 162 among themselves and with other Lepidoptera such as Heliconius butterflies and arctiid 163 moths (Beccaloni 1997). Three of the most diverse ithomiine genera, Ithomia, Napeogenes 164 and Oleria, exhibit high species richness along the Andean slopes (Jiggins et al. 2006, Chazot 165 et al. 2015). Of interest to our study, Elias et al. (2009) showed that the ithomiine genus 166 Napeogenes (25 species), which has a higher diversity in the Andes, probably originated at 167 middle elevations in the Andes and subsequently colonised the lowlands, therefore supporting 168 the "time-for-speciation" hypothesis. However, there is no indication that this pattern is 169 common to the whole tribe Ithomiini. In this study we focus on a more speciose Ithomiini 170 clade, the subtribe Godyridina. The Godyridina includes 10 genera and 77 species distributed 171 throughout the Neotropics. They also exhibit particularly high species richness in the Andes 172 (46 species) compared to other Neotropical regions (Figure 2). Here, we generated and 173 compiled DNA sequences for 206 individuals in order to infer a time-calibrated molecular 174 phylogeny that contained over 87% of species (67 out of 77 species after making taxonomic 175 changes where necessary). Combining historical biogeography, time- and trait-dependent 176 diversification analyses, we applied the above framework to test the four non-mutually

exclusive hypotheses proposed to explain Andean species richness: the "cradle" hypothesis (higher speciation rate in the Andes), the "museum" hypothesis (lower extinction rate in the Andes), the "time-for-speciation" hypothesis (older colonization time in the Andes) and the "species-attractor" hypothesis (higher rates of colonization toward the Andes from adjacent areas) (Figure 1).

182

183 Material and methods

184 Individual-level phylogenetic tree and redefinition of species boundaries

185 Defining species boundaries can be challenging, particularly in the case of mimetic butterflies 186 (Elias et al. 2007), so we included as many species and subspecies as possible to represent 187 taxonomic and geographic diversity (Supporting Information S1). We used material from our 188 own collections (Florida Museum of Natural History, Museo de Historia Natural of Lima, 189 Museu de Zoologia da Universidade of São Paulo, University College London, Muséum 190 National d'Histoire Naturel of Paris) and material kindly provided by colleagues. De novo 191 (75%) and published sequences (25%) for three mitochondrial (cytochrome oxidase I, tRNAL, 192 cytochrome oxidase II, 2356 base pairs (bp)) and two nuclear genes (elongation-factor alpha 1, 193 1260 bp and tektin, 734 bp) were compiled for 206 specimens (see Supporting Information S1 for PCR conditions and GenBank accession numbers). We could not obtain sequences for 10 194 195 species. We added 44 outgroups representing most genera of the subfamily Danainae 196 (Wahlberg et al. 2009) to our focal group sampling, for a total dataset of 250 individuals. We 197 concatenated all sequences, resulting in a total length of 4350 bp. The dataset was then 198 partitioned by gene and codon positions and the best models of substitution for optimized sets 199 of nucleotides were selected over all models implemented in MrBayes, using the 'greedy' 200 algorithm and linked rates implemented in PartitionFinder 1.1.1 (Lanfear et al. 2012). We

201 performed a Bayesian inference of the phylogeny using MrBayes 3.2.2 (Ronquist et al. 2012), 202 allowing it to run for 10 million generations, with four Monte Carlo Markov chains that 203 sampled every 10,000 generations (resulting in 1,000 posterior trees). Although the 204 monophyly of the Ithomiini was well established by previous studies (Freitas & Brown 2004; 205 Brower et al. 2006; Willmott & Freitas 2006; Brower et al. 2014), it was not recovered in 206 preliminary runs. We therefore constrained the tribe to be monophyletic in the MrBayes runs. 207 We extracted the maximum clade credibility tree using the median of posterior distribution 208 for node ages using TreeAnnotator 1.6.2 (Drummond et al. 2012) and applied a 20% burn-in. 209 The resulting tree was used to investigate the established taxonomy in the light of our 210 molecular data and to define species to be included in the species-level phylogeny and in 211 subsequent analyses (Appendix 1, Supporting Information S1-S3).

212

213 Species-level phylogeny

To generate a species-level phylogeny of the Godyridina we used the consensus of 214 215 concatenated sequences of all individuals belonging to the same species, after redefining 216 species boundaries where applicable (e.g. Condamine et al. 2012, Lewis et al. 2015, see 217 Appendix 1). We obtained a dataset of 67 species out of 77 extant Godyridina species (after 218 our revision of species boundaries), which we combined with the sequences of the 44 219 outgroups used previously. To select the best partition scheme we used PartitionFinder 220 (Lanfear et al. 2012) as before, but tested only the models implemented in BEAST 221 (Drummond et al. 2012). First, we generated a Maximum Likelihood tree using IQ-TREE 222 1.3.11 (Nguyen et al. 2015). We implemented the best partition scheme previously found and 223 performed 1000 ultra-fast bootstrap iterations to get node support (Minh et al. 2013). The ML 224 tree is available in Supporting Information S3. Second, a time-calibrated phylogeny was

225 generated using BEAST 1.6.2 (Drummond et al. 2012). Following preliminary runs we 226 implemented a uniform prior for the substitution model of the mitochondrial third position. 227 We selected nine secondary calibration points based on the shared nodes with the phylogeny 228 of Nymphalidae from Wahlberg et al. (2009) (Supporting Information S4). We used 229 conservative uniform priors for secondary calibrations, with upper and lower bounds 230 corresponding to the 95% credibility intervals inferred in Wahlberg et al. (2009). We tested 231 the effect of calibrating or not the root of the tree, and of using both Yule process and birth-232 death process as the branching process prior. This resulted in four independent runs of 233 BEAST. Each run was performed for 30 million generations, sampled every 30,000 234 generations, resulting in 1,000 trees. For each run, the maximum clade credibility tree using 235 the median of posterior distribution for node ages was extracted using TreeAnnotator 236 (Drummond et al. 2012), applying a 20% burn-in. Since differences in node ages between the 237 four independent runs were below two million years we only used the root-unconstrained and 238 Yule process as the branching process prior in subsequent analyses (Supporting Information) 239 S5-S6).

240

241 Historical biogeography

To infer the ancestral colonization events of the Andes we performed an ancestral reconstruction of biogeographic regions on the maximum clade credibility tree. We used the Dispersion-Extinction-Cladogenesis (DEC) model (Ree & Smith 2008) implemented in the R package BioGeoBEARS 0.2.1 (Matzke 2014). We did not test the effect of founder-event speciation because this method applies to island-dwelling clades. We defined ten biogeographic regions (Figure 2) based on the main geological events that occurred in the Cenozoic (Hoorn *et al.* 2010) and previous publications (Elias *et al.* 2009; Condamine *et al.*

249 2012; Lewis et al. 2015). We first ran a model constraining only the connectivity among 250 adjacent areas (see Supporting Information S7). Secondly, we specified unequal rates of 251 dispersal between areas and time stratification of dispersal rate in BioGeoBEARS: we defined 252 four time bins (0-5, 5-8, 8-14, 14-20 million years ago) and for each of them we specified 253 dispersal multipliers. The time bins and dispersal multipliers were designed to account for the 254 arguably major geological events such as the closure of the Panama Isthmus, the south to 255 north uplift of the Andes, the closure of the Western-Andean-Portal, the retreat of the Pebas 256 System and the creation of *terra firme* forest in the upper Amazon (Supporting Information 257 S7). Distributional data for Godyridina species were obtained from fieldwork, literature and 258 museum collections. Each species was assigned to biogeographic areas based on their current 259 known distribution combined with data on their altitudinal distribution. We allowed for up to 260 6 areas to form an ancestral geographic range.

261

262 Trait-dependent diversification

263 Using trait-dependent models of diversification, we tested whether (1) increased speciation 264 rates in the Andes ("cradle"), (2) lower extinction rate in the Andes ("museum"), (3) longer colonization rate ("time-for-speciation") or (4) higher rates of colonization of the Andes 265 266 ("species-attractor") explain the pattern of higher species richness in the Andes (Figure 1). 267 We classified species into either Andean or non-Andean regions, based on their current 268 known distributions. We fitted Cladogenetic State dependent Speciation and Extinction 269 models (ClaSSE, Goldberg & Igic 2012) implemented in the diversitree 0.9-7 R package 270 (FitzJohn 2012), which estimates speciation rates, extinction rates and transition rates of 271 multiple states of a trait (here, the Andean or non-Andean distribution). Specifically, this 272 model allows both cladogenetic (at nodes) and anagenetic (along branches) character changes.

273 For a two-state character, the model accounts for up to six speciation rates, two extinction 274 rates $(\mu_2 > \mu_1)$ and two anagenetic transition rates (q_{12}, q_{21}) . Two speciation rates account for 275 speciation events without character state change (λ_{222} , λ_{111}). Two other rates account for 276 speciation accompanied by character state change of one of two descendant species (λ_{112} , 277 λ_{212}) and the last two speciation rates account for cases where speciation involved character 278 state change of the two descendant species (λ_{122} , λ_{211}) (cladogenetic character changes in the 279 two latter cases (Goldberg & Igic 2012; Rolland et al. 2014). We used the ClaSSE rather than 280 the Geographic State change Speciation and Extinction model (GeoSSE, Goldberg et al. 281 2011) because Andean species are typically not present outside of the Andes (and 282 reciprocally). To avoid overparametrization of the models, we imposed several constraints on 283 the models that exclude parameters that are not meaningful in terms of biogeographic events. Similarly to Rolland et al. (2014), we constrained to zero speciation rates involving 284 simultaneous character state change in the two descendant species. We also constrained to 285 286 zero the anagenetic transition rates because we considered that transition from one region to 287 another was accompanied by a speciation event. Transitions between regions were therefore 288 modelled by the parameters λ_{112} and λ_{212} . We tested for all possible combinations of models, 289 constraining or not speciation, extinction and transition rates to be equal among states. 290 Therefore we ended up with 10 models, which were fitted on 300 trees randomly sampled 291 from the posterior distribution, accounting for incomplete sampling in each region (Andean: 292 88%, non-Andean: 90%). Models were compared using corrected Akaike Information 293 Criterion scores (AICc). The strength of the ClaSSE model is that it allows simultaneously 294 testing of the non-mutually exclusive "cradle", "museum," and "species attractor" hypotheses. 295 To test the "time-for-speciation" hypothesis, we needed to infer ancestral state for each node, 296 which is not currently implemented in ClaSSE models. Therefore we fitted the Binary State

Speciation and Extinction model (BiSSE, Fitzjohn 2012) equivalent to the best fitting ClaSSE model on the maximum clade credibility tree, i.e. fitting anagenetic instead of cladogenetic changes, and confirmed that parameter values inferred from BiSSE were consistent with those inferred from ClaSSE. This allowed us to estimate the probabilities of ancestral states at each node. Finally, we used this ancestral state reconstruction to represent the accumulation (speciation and colonisation events through time) of Andean and non-Andean lineages.

303

304 *Time-dependent diversification*

305 Following the results of the ClaSSE analysis (see results), we further explored heterogeneity 306 in diversification rates through time and across clades. We tested whether the three richest 307 subclades within the Godyridina had significantly different time-dependent diversification 308 dynamics than the rest of the subtribe following the method presented in Morlon et al. (2011). 309 The genus *Hypomenitis* (see results) contains 23 species, accounting for 30% of the subtribe; 310 the genus Godyris, with 11 species, accounts for 14%; and the clade including the 311 polyphyletic or paraphyletic genera Hypoleria, Brevioleria, Pachacutia and Mcclungia 312 (hereafter, *Brevioleria* clade) with 15 species accounts for 20% of the diversity. In total, these 313 three subclades alone account for 64% of the subtribe's diversity. Preliminary tests and 314 ancestral state reconstructions also dictated the choice of these subclades. We investigated 315 shifts of diversification rates at the root of these three clades by comparing fits of models 316 without shifts (null model), with fits of models with one, two and three shifts (all possible 317 combinations) using AICc scores.

318

319 Results

320 *Phylogenetic tree and taxonomical revisions*

The individual-level phylogeny of Godyridina was generally well supported, except for the positions of *Greta clavijoi* and for relationships within the clade containing the genera *Brevioleria, Mcclungia, Pachacutia* and some *Hypoleria* species (Supporting Information S2, S3, S6). Based on the relationships between individuals in this phylogeny, reassessment of morphological characters in some cases and distributional data, we re-evaluated the current species and genera status and propose a number of formal and informal taxonomic changes (Appendix 1, Supporting Information S1-S3).

328

329 *Estimates of divergence times and historical biogeography*

330 Based on the secondary calibrations from Wahlberg et al. (2009), the subtribe Godyridina was 331 inferred to be 17.08 million years old (95% highest posterior density: 14.99-19.16 million 332 years) (Supporting Information S5). Based on our biogeographic reconstructions, the most 333 likely ancestral areas were the Central Andes for the *Velamvsta/Veladvris* clade and the upper 334 Amazon for the remaining ingroup (Figure 3). The inference at the root was not well resolved. 335 Then diversification occurred in three main areas: Central Andes where the Veladyris, 336 Velamysta and Godyris diversified, the western cordillera of Northern Andes where the 337 Hypomenitis diversified, and the upper Amazon in which the Brevioleria, Hypoleria, 338 Mcclungia, Pachacutia and Heterosais diversified (Figure 3). The genera Velamysta and 339 Veladyris originated in the Central Andes and have slowly accumulated species in this region. 340 From 15 to 10 million years ago, four speciation events occurred in the upper Amazon, a 341 region partly covered during this period by the Pebas System, a complex semi-aquatic 342 ecosystem, which even occasionally transformed into marine environment (Hoorn et al. 2010; 343 Wesselingh et al. 2010; Blandin & Purser 2013, Boonstra et al. 2015). Since there were 344 probably emergent lowlands, especially along the eastern side of the Andes, we did not forbid

345 dispersal into this region and instead allowed a low dispersal probability. One of these early 346 lowland lineages started diversifying intensively in the upper Amazon from around 8 million 347 years ago, after the drainage of the Pebas, leading to the clade currently grouping Hypoleria 348 and the Brevioleria clade. A major colonization event of the Northern Andes occurred around 349 10 million years ago, subsequently giving birth to the entire *Hypomenitis* clade (largely 350 distributed in the Western cordillera). Around 4-5 million years ago, another colonization of the Andes occurred in the genus Godyris, followed by local diversification. We also 351 352 recovered several independent colonizations of the Andes on terminal or sub-terminal 353 branches, mainly in the Northern Andes. The clade formed by *Pseudoscada* and Genus2 had a 354 much more complex spatial diversification history. Secondary colonizations of lowlands were 355 inferred in the western part of the Andes for some species and in the eastern part for others. 356 This group now occurs from Central America to the Brazilian Atlantic forest region. 357 Generally, Central America and Brazilian Atlantic forest faunas were the result of several 358 independent colonizations, with very few within-region diversification events.

359

360 Trait-dependent diversification

361 Two models of trait-dependent diversification were found within an interval of 2 AICc scores. 362 The model with the lowest AICc score had three parameters: a unique speciation rate for 363 Andean and non-Andean lineages (λ =0.158), and two significantly different cladogenetic 364 transition rates (Table 1. Transitions from non-Andean to Andean areas (λ_{112} =0.060) were 365 ten-fold more frequent than from the Andes to non-Andean areas ($\lambda_{212}=0.005$), as expected 366 under the "species attractor" hypothesis (Table 1). The second best fitting model involved two 367 different transition rates (values similar to those of the best model, Table 1) and also two 368 different speciation rates among the two regions. Speciation rate in the Andes ($\lambda_{222}=0.176$)

369 was slightly higher than in non-Andean regions ($\lambda_{111}=0.140$). The latter result is expected 370 under the "cradle" hypothesis. For these two best models we fitted the equivalent BiSSE 371 model on the MCC tree and estimated the probabilities of character states at each node. Both 372 reconstructions gave identical results and we only represent the reconstruction based on the 373 best model (Figure 3). The root was inferred to be non-Andean (Figure 3), rejecting the "time-374 for-speciation" hypothesis. Major colonizations of the Andes followed by diversification 375 occurred three times, leading to the Veladvris/Velamvsta clade, part of the genus Godvris, and 376 the genus Hypomenitis. In addition, six colonization events on terminal branches were 377 recovered, totalling nine independent colonizations of the Andes. Conversely, we only found 378 one colonization event from the Andes toward a non-Andean region (Hypomenitis nspC in 379 Central-America, Figure 3). The ancestral state reconstruction based on a trait-dependent 380 model of diversification was very congruent with the reconstruction based on the 381 biogeographical model. Finally, lineage accumulation through time showed that speciation of 382 non-Andean lineages slowed down around 6 million years ago (Figure 4). Almost half of non-383 Andean speciation events (12 out of 27) occurred in a time frame of 3 million years (between 384 9 and 6 million years ago). By contrast, Andean lineages intensively accumulated in the last 7 385 million years (Figure 4) through either speciation or colonization.

386

387 *Time-dependent diversification*

The model with four distinct diversification dynamics (*Brevioleria* clade, *Hypomenitis*, *Godyris* and the remaining backbone) was significantly better supported than the others (Table 2). The mainly non-Andean *Brevioleria* clade followed a model of decreasing speciation rate through time with an initial rate of speciation higher than that of the backbone at the same period followed by an inflexion starting about 6 million years ago (Figure 4a).

The mainly Andean *Godyris* and *Hypomenitis* genera followed a constant speciation rate model, with a speciation rate higher than that of the backbone (*Godyris*: 0.190, *Hypomenitis*: 0.226, backbone: 0.128). Models with extinction had a significantly worse fit than models without extinction (Table 2).

397

398 Discussion

399 In this paper, we propose a revision of the systematics of the ithomiine subtribe Godyridina, 400 using a comprehensive sampling of individuals that includes new undescribed species. Based 401 on this revision, we infer the first time-calibrated species-level phylogeny of this subtribe. 402 Our time calibrations are secondary calibrations based on the time-calibrated tree of 403 Nymphalid genera (Wahlberg et al. 2009). Apart from Veladyris and Velamysta, which feed 404 on Solanum (Greeney et al. 2009) and Cuatresia (Willmott, unpubl. data), respectively, all 405 Godvridina species feed almost exclusively on *Cestrum* species (Solanaceae) (Willmott & 406 Freitas 2006), which they do not share with any other ithomiine groups. In a recent 407 phylogenetic study of the entire family Solanaceae, *Cestrum* is inferred to have diversified in 408 the last 7 million years (Särkinen et al. 2013), which is younger than our estimates for 409 Godyridina diversification (14.9 ± 2 million years ago excluding *Veladyris* and *Velamysta*). 410 Thus, we cannot exclude the hypothesis that Godyridina are younger than inferred here using 411 secondary calibration points (Garzón-Orduña et al. 2015). However, the dating of the 412 Solanaceae phylogeny was limited by the quality of available fossils, forcing the authors to 413 downgrade taxonomic assignment of the fossils. This limitation, in combination with a strong 414 prior on fossil ages, incurred a bias toward younger ages, as acknowledged by the authors of 415 the study (Särkinen et al. 2013). The actual age of Cestrum is therefore likely older than the

estimate of Särkinen *et al.* (2013), in better agreement with Wahlberg (2009)'s and our ages
for the subtribe Godyridina.

418 The time-calibrated phylogeny was used to infer the geographical and temporal patterns of 419 diversification of the butterfly subtribe Godyridina, which exhibits a higher species diversity 420 in the Andes, a common ecological pattern in the Neotropics (Luebert & Weigend 2014). To 421 evaluate historical explanations for this pattern of diversity we explicitly tested four non-422 mutually exclusive hypotheses: the "cradle" hypothesis, the "time-for-speciation" hypothesis, 423 the "museum" hypothesis, and the "species-attractor" hypothesis (Figure 1). We found a 424 strong support for the "species-attractor" hypothesis in the Godyridina, suggesting an 425 important role of multiple colonization events of the Andes. We also found moderate support 426 for a slightly higher speciation rate within the Andes, which is confirmed by the detection of a 427 shift towards higher speciation rates in two Andean genera, in agreement with the "cradle" 428 hypothesis.

429 The four hypotheses jointly tested in our study have received mixed support in the 430 literature. Very few studies explicitly tested for higher speciation rate in the Andes (here 431 referred to as the "cradle" hypothesis). Hutter et al. (2013) used trait-dependent 432 diversification models to understand mid-altitude species richness patterns in Andean 433 glassfrogs. Because they divided the Andes into altitudinal bands, interpretations may be 434 oriented toward altitude-dependent diversification processes instead of Andean versus non-435 Andean processes, but they found no support for a higher speciation rate in the Andes. 436 Conversely, Beckman & Witt (2015), who applied an approach similar to ours in a study of 437 New World goldfinches and siskins, found a higher speciation rate in the Andes. Plant groups 438 have shown more evidence of increased rates of speciation associated with the colonization of 439 the Andes, such as, for example, Lupinus (Hughes et al. 2006), Astragalus (Scherson et al.

2008), *Bromeliaceae* (Givnish *et al.* 2014), *Hedyosmum* (Antonelli & Sanmartín 2011).
However, the diversification of highland flora may differ from that of the fauna, with, for
example, an important role for long-distance dispersal and dispersal of pre-adapted temperate
plant lineages from the Nearctic region.

444 Our results showed evidence, although moderate, for increased speciation rates in the 445 Andes, consistent with the "cradle" hypothesis. One of the two best fitting models of trait-446 dependent diversification inferred a slightly, but significantly higher speciation rate in the 447 Andes than in non-Andean regions. As an illustration of this, we also detected two shifts 448 toward a higher diversification rate at the root of two Andean subclades (Hypomenitis and 449 Godyris) with the time-dependent diversification models. Host-plants are known to be strong 450 drivers of diversification in phytophagous insects (Ehrlich & Raven 1964; Janz et al. 2006). 451 Most of the Godyridina species have specialized on different plant species belonging to the 452 highly diverse genus Cestrum (Willmott and Freitas 2006). In some cases, the diversity of 453 host-plants found in the Andes may have triggered ecological speciation driven by host-plant 454 shifts for Andean lineages, which may be one of the reasons for the high Andean speciation 455 rates. However, we also found a diversification rate shift in the Brevioleria clade, which is 456 mainly a non-Andean clade, suggesting that not only the Andes can drive high diversification. 457 This may explain why although it is significant, the difference in speciation rates among 458 regions is only about 20%. The Brevioleria clade is inferred to have occupied the upper 459 Amazon region since its origin, about 8 million years ago. The diversification of the 460 Brevioleria clade may have followed the retreat of the semi-aquatic Pebas system, when 461 forest ecosystems formed in the upper Amazon, presumably providing opportunities for 462 speciation.

463 As far as we know, the role of extinction in scenarios of Andean biogeography has 464 been poorly discussed in the literature. We defined the "museum" hypothesis as lower 465 extinction rates in the Andes than in non-Andean regions (Stebbins 1974). In the Godyridina, 466 all extinction rates were close to zero and models with different extinction rates were 467 therefore not supported, as in glassfrogs (Hutter et al. 2013). Antonelli & Sanmartín (2011) 468 reported lower extinction rate (combined with higher speciation rate) in the species-rich 469 Andean Tafalla subgenus compared to the remaining non-Andean Chloranthaceae, therefore 470 supporting the "museum" hypothesis, but Beckman & Witt (2015) found a higher extinction 471 rate in the Andes for goldfinches and siskins. It is difficult to predict what might cause 472 variations in extinction rates and in which direction. For example, landscape fragmentation 473 due to Pleistocene climatic fluctuations might have led to extinction events in the Amazonian 474 ecosystems, therefore increasing extinction rates. Conversely mountain species are generally 475 considered as being more prone to extinction during climate variations, as a result of narrow 476 distribution ranges and difficulties to track habitats during climatic fluctuations (e.g. McCain 477 & Colwell 2011; Fjelsdå et al. 2012). So far the role of extinction has been poorly considered 478 compared to other scenarios, but it will likely provide new insights in our comprehension of 479 the Neotropical biogeography.

The "time-for-speciation" hypothesis, defined as a longer presence in the Andes (Stephens & Wiens 2003), has been supported in several studies (e.g. Santos *et al.* 2009). For instance, Hutter *et al.* (2013) showed that glassfrogs first originated at mid-altitudes and subsequently diversified at both higher and lower altitudes. An Andean origin followed by subsequent colonization of the lowlands was also reported in other Ithomiini lineages, such as the genera *Napeogenes* and *Ithomia* (Elias *et al.* 2009) and the subtribe Oleriina (de-Silva *et al.* 2016). In the Godyridina the ancestral range inferred using two independent methods does

487 not support an Andean origin. From our results, the subtribe likely originated in a non-488 Andean region, probably at the lowland interface between the Andes and the future upper 489 Amazon. In addition, the oldest Andean clade, formed by the two sister genera *Veladyris* and 490 *Velamysta*, underwent only moderate diversification (eight species when accounting for a new 491 species of *Veladyris* from Peru not included in the phylogeny) despite the longer time 492 available for speciation.

493 The "species-attractor" hypothesis, which posits that the Andes offer opportunities for 494 multiple independent colonization events, has rarely been tested explicitly but has been 495 discussed in the literature. Rates of biotic exchange between regions have been estimated in 496 some studies (e.g. Brumfield & Edwards 2007; Elias et al. 2009; Sedano & Burns 2010; 497 Castroviejo-Fisher et al. 2014, Beckman & Witt 2015). In Ithomiini, Elias et al. (2009) and 498 de-Silva et al. (2015) found higher rates of dispersal toward low altitudes, as did Beckman & 499 Witt (2015) for goldfinches and siskins. In contrast, other studies found that dispersal towards 500 the Andes is generally more frequent, with a limited number of reversals. For instance, in the 501 butterfly genus Ithomiola (Riodinidae: Mesosemiini), a small clade of 11 species, Hall (2005) 502 showed that diversification within the group consisted of repeated speciation events across 503 different altitudes, including several colonization events of the Andes from other areas. Hutter 504 et al. (2013) also reported that the inferred number of colonization events of each altitudinal 505 band by glassfrogs tends to correlate with species richness. Therefore, higher rates of 506 colonization from lowlands may also have contributed to higher species richness in the Andes, 507 but Hutter et al. (2013) did not explicitly test this hypothesis. In plants, Moonlight et al. 508 (2015) found that the Andean diversity of Begonia arose from multiple dispersal events into 509 the Andes, while Givnish et al. (2014) reported an important number of independent 510 colonization events of high elevations areas in Bromeliaceae.

511 In the Godyridina the inferred higher colonization rate of the Andes from non-Andean 512 regions (a pattern that we refer to as "species-attractor") was almost tenfold higher than in the 513 other direction. We identified up to ten independent events of colonization of the Andes, but 514 only one for non-Andean colonization (Figure 3). From our ancestral state reconstruction, we 515 found that the accumulation of species in the Andean region accelerated during the very late 516 Miocene, and mostly occurred during Pliocene and early Pleistocene periods through either 517 colonization or speciation events, a timeframe that corresponds to the most intense orogeny 518 phase of the Andes (Hoorn et al. 2010). By contrast, most of the diversification of non-519 Andean lineages appears to have occurred by the end of the Miocene. The Andes could drive 520 colonization and speciation in many ways, involving biotic factors, such as the availability of 521 new habitats, new predator communities, host-plant diversity, and abiotic factors such as 522 temperature, precipitation, environment heterogeneity and topography. It is also worth noting 523 that the Andes, extending all along the western side of South America, provide ample 524 opportunity for colonization on both sides of the cordilleras. Besides, from 20 to 10 million 525 years ago, the semi-aquatic Pebas System covered most of the upper Amazon region, with 526 even occasional marine incursions (Hoorn et al. 2010; Wesselingh et al. 2010; Blandin & 527 Purser 2013). During this period the Northern and Central Andes started to slowly increase in 528 elevation (Hoorn et al. 2010). Sediment deposits from the Andes towards the east 529 accompanied this uplift (Roddaz et al. 2010), and around 10 million years ago terra firme 530 forest probably started to form. The Acre System and then the Amazon River were forming, 531 and by 8 million years ago, the Amazon region was mostly emerged. This semi-aquatic Pebas 532 system probably prevented important faunal and floral exchange between the Andes and 533 Amazonia. The retreat of this system may thus have produced a broad connection between

these regions, thereby allowing colonizations both into (e.g., the Godyridina, this study) and
out of the Andes (e.g., *Napeogenes*, Elias *et al.* 2009).

Many Ithomiini species possess transparent wings although we observe a large variation in the degree of wing transparency among species. Transparency appears to dominate Ithomiini communities at high altitudes, which may indicate that transparency is a potential adaptive response to the biotic and abiotic conditions found in those habitats (e.g., light, Papageorgis 1975). Multiple colonizations into the Andes may have been facilitated by wing transparency because the Godyridina are among the most transparent Ithomiini, reaching some extreme cases of almost complete transparency over the entire wing.

543 The role of the Andes in the diversification of the biota of the Neotropical region has 544 long been debated in the literature, and several biogeographic scenarios have been tested. In 545 this study we propose a framework to evaluate the support for four evolutionary scenarios which may contribute to high Andean biodiversity, by analysing variation in speciation rates, 546 547 extinction rates, colonization times and colonization rates. Models testing the joint 548 contribution of two or more mechanisms can also be estimated and compared. Here, we 549 applied this framework to a species-rich group of Neotropical butterflies and found a strong 550 support for multiple independent colonization events, which led us to formulate the "species-551 attractor" hypothesis but we also found moderate support for the "cradle" hypothesis (higher 552 speciation rate within the Andes). Using this framework to analyse the diversification of 553 many different groups of organisms will clarify the causes of the exceptional richness of the 554 Andean region, and will provide insights into the role played by the Andes in the 555 biogeography of the Neotropical region.

556

557 Acknowledgements

558 This project was funded by an ATIP (CNRS, France) grant awarded to ME. NC was funded 559 by a doctoral fellowship from Ecole Doctorale 227 (France). CJ and MJ acknowledge funding 560 from the Royal Society (UK). We thank authorities of Peru, Ecuador and Brazil for delivering 561 research and collection permits, as well as many assistants for their help in the field. We are 562 grateful to Haydon Warren-Gash for providing specimens. Molecular work was performed at 563 the GenePool (University of Edinburgh, UK), Unicamp (Brazil) and the service de 564 Systématique Moléculaire UMS2700 of the MNHN (France). We thank Luiza Magaldi for 565 helping with sequencing of some Brazilian samples. AVLF acknowledges support from the 566 FAPESP (BIOTA-FAPESP 2011/50225-3); from the Brazilian Research Council-CNPg 567 (fellowship 302585/2011-7, and "SISBIOTA-Brasil/CNPq grant 563332/2010-7); from two 568 collaborative grants of "Dimensions US-Biota-São Paulo", US NSF, NASA, and FAPESP 569 (grants 2012/50260-6 and 2013/50297-0); and from the National Science Foundation (NSF) 570 (DEB-1256742). KRW also acknowledges support from the Florida Natural History Museum 571 Associates, the National Geographic Society, NSF (DEB-0639861), the Leverhulme Trust, 572 and the Darwin Initiative.

573

574 Authors Contributions

575 NC and ME designed the study. NC, ME, DdS, AVLF and KRW generated sequences. KRW,

576 ME, GL, MJ, JM, AVLF, CEGS, SU, NC and CDJ collected and provided specimens and

- 577 data. NC, FLC, ME and HM conducted the analyses. The manuscript was written by NC with
- 578 contributions from all co-authors.

579

580 Data Accessibility

- All sequences used this study are accessible on Genbank and accession numbers can be found
- 582 in Supporting Information.

584	Figure 1. Schematic representation of the four-hypothesis framework used to investigate the
585	role of the Andes in diversification, and the parameters expected to vary in each hypothesis.
586	Here we present simple cases were only one parameter varies at a time, but all combinations
587	of varying parameters can also be tested. a. The "cradle" hypothesis posits that speciation rate
588	of Andean lineages exceeds that of non-Andean lineages ($\lambda_{222} > \lambda_{111}$). b. The "museum"
589	hypothesis posits that extinction rates of the Andean lineages are lower than the non-Andean
590	lineages ($\mu_2 > \mu_1$). c. The "time-for-speciation" hypothesis states that the Andes were colonised
591	earlier than non-Andean regions $(t_2 > t_1)$, resulting in a longer time for diversification. d. The
592	"species-attractor" hypothesis states that the rate of colonization from non-Andean regions to
593	the Andean regions is higher than vice versa ($\lambda_{112} > \lambda_{212}$).

594 595

Figure 2. Map showing the delimitation of biogeographic areas used in the DEC model for
ancestral reconstruction and the number of species recorded in each biogeographic region.
Stars (*) indicate the Andean areas. The western and eastern cordilleras (eastern and western
slopes) constitute the Northern Andes.

603 Figure 3. Time-calibrated tree of the Godyridina. On the left, the most likely ancestral areas inferred using the DEC model implemented in BioGeoBEARS are represented. On the right, 604 the probabilities for each node of being Andean (red) or non-Andean (blue) are represented. 605 This ancestral reconstruction was obtained from the best fitting model of character state-606 dependent diversification (ClaSSE analysis, see text). Numbers on the left panel indicate the 607 608 three subclades for which we tested a shift in diversification rate: 1-Hypomenitis, 2-609 Brevioleria, Hypoleria, Mcclungia, Pachacutia, 3-Godyris. On the right panel, colonization events are represented (2←1: non-Andean toward Andean area, 1←2: Andean toward non-610 611 Andean region). *Pleist=Pleistocene*, *Pli=Pliocene*, *Mio=Miocene*.

Time (Mya)

613 614 Figure 4. a. Lineage-through-time plots of the three subclades with diversification rate shifts 615 (Hypomenitis, Godyris and Brevioleria clade) and for the remaining backbone. b. Lineage 616 through time plots of non-Andean and Andean lineages based on the ancestral reconstruction

617 of trait-dependent diversification model.

619	
620	

- 621
- 622
- 623
- 624
- 625
- 626
- 627

628	Table 1. Models and results of the ClaSSE analysis run over 300 trees randomly sampled
629	from the posterior distribution (mean values are given), ordered by increasing AICc.

- 630 Constraints of each model are indicated in the four first columns. 1=non-Andean, 2=Andean,
- 631 $\lambda_{111}/\lambda_{111}$ = within region speciation rates, $\lambda_{112}/\lambda_{212}$ =cladogenetic transition rates, μ =
- 632 extinction rates, df = degree of freedom (number of parameters), logL=log-likelihood, AICc=
- 633 Akaike information criterion score corrected for sample size, $\Delta AICc =$ difference between the
- 634 model and the best fitting model. Anagenetic transition rates and cladogenetic transition rates
- 635 involving a character state change in both descendent lineages were constrained to 0 and are 626 therefore not included in the toble. The two first we dole superstrained (we dole with 4.410 - 62)
- therefore not included in the table. The two first models are retained (models with $\Delta AICc < 2$).
- 637 638

ietic trai. h descendent m. two first models are rc.

λ ₁₁	₁ /λ ₂₂₂		$\lambda_{112}/_{\lambda 212}$	μ	df	logL	AICc	ΔΑΙC	λ ₁₁₁	Λ ₂₂₂	Λ ₁₁₂	λ ₂₁₂	μ ₁	μ ₂
λ ₁₁ .	1 =λ 222	¥	λ ₁₁₂ ≠λ ₂₁₂	$\mu_1 = \mu_2$	4	-209.175	426.996	0	0.158	0.158	0.061	0.005	2.7E-06	2.7E-06
λ ₁₁	₁≠λ ₂₂₂	¥	λ ₁₁₂ ≠λ ₂₁₂	$\mu_1 = \mu_2$	5	-208.813	428.610	1.614	0.141	0.176	0.060	0.005	6.8E-07	6.8E-07
λ ₁₁ .	1 =λ 222	¥	λ ₁₁₂ ≠λ ₂₁₂	µ₁≠µ₂	5	-209.142	429.268	2.272	0.162	0.162	0.058	0.005	0.013	4.6E-07
λ ₁₁ .	1 =λ 222	¥	$\lambda_{112} = \lambda_{212}$	$\mu_1 = \mu_2$	3	-212.167	430.715	3.720	0.155	0.155	0.035	0.035	5.3E-07	5.3E-07
λ ₁₁	₁≠λ ₂₂₂	¥	λ ₁₁₂ ≠λ ₂₁₂	µ₁≠µ₂	6	-208.813	431.026	4.030	0.141	0.176	0.060	0.005	1.6E-05	2.6E-06
λ ₁₁	₁≠λ ₂₂₂	¥	$\lambda_{112} = \lambda_{212}$	$\mu_1 = \mu_2$	4	-211.647	431.939	4.944	0.132	0.175	0.036	0.036	7.5E-07	7.5E-07
λ ₁₁ .	₁ =λ ₂₂₂	≠	$\lambda_{112} = \lambda_{212}$	µ₁≠µ₂	4	-212.039	432.723	5.727	0.165	0.035	0.165	0.035	0.032	6.7E-07
λ ₁₁	₁≠λ ₂₂₂	¥	$\lambda_{112} = \lambda_{212}$	µ₁≠µ₂	5	-211.647	434.279	7.283	0.132	0.175	0.036	0.036	6.4E-06	4.1E-06
λ ₁₁ .	₁ =λ ₂₂₂	=	$\lambda_{112} = \lambda_{212}$	µ1=µ2	2	-223.265	450.717	23.721	0.095	0.095	0.095	0.095	1.0E-06	1.0E-06
λ ₁₁	1 =λ 222	=	$\lambda_{112} = \lambda_{212}$	µ₁≠µ₂	3	-223.255	452.892	25.896	0.141	0.141	0.141	0.141	1.6E-05	2.6E-06
039														

640 Table 2. Results of time dependent diversification model comparisons (Morlon et al. 2011). 641 We tested models with 0, 1, 2, and 3 shifts. We tested 6 models of diversification for each subclade and for the remaining backbone: constant speciation, varying speciation, constant 642 643 extinction, varying speciation/constant speciation/constant extinction, constant 644 speciation/varying extinction, varying speciation/varying extinction. Here we only report the best fitting models for each subclade. The model with three shifts was significantly better 645 646 supported than the others, which was confirms using likelihood ratio tests. BCST=constant 647 speciation, BVAR=time variable speciation, logL=log-likelihood, p(LRT)=p-value of the likelihood ratio test (best model against the others), λ is the speciation rate parameter and α is 648 649 the rate of variation of λ through time.

650

Shifts	Subtree	Model	Param	logL	p(LRT)	λ	α	
	backbone	BCST	1	-46.307		0.128		
BEST MODEL:	Brevioleria	BVAR	2	-28.135		0.044	0.350	
Brevioleria +	Hypomenitis	BCST	1	-72.027		0.226		
Godvris	Godyris	BCST	1	-21.945		0.190		
Gouyns	total		5	-168.415				
	backbone	BCST	1	-70.484		0.150		
Brevioleria +	Brevioleria	BVAR	2	-28.135		0.044	0.350	
Hypomenitis	Hypomenitis	BCST	1	-72.027		0.226		
	total		4	-170.647	0.0346			
	backbone	BCST	1	-120.654		0.187		
Proviologia + Codymia	Brevioleria	BVAR	2	-28.135		0.044	0.350	
Brevioleria + Goayris	Godyris	BCST	1	-21.945		0.190		
	total		4	-170.734	0.0313			
	backbone	BCST	1	-144.247		0.190		
Brevioleria	Brevioleria	BVAR	2	-28.135		0.044	0.350	
	total		3	-172.382	0.0189			
Whole tree		BCST	1	-175.429	0.0072	0.188		
	backbone	BCST	1	-79.473		0.151		
Hypomenitis +	Hypomenitis	BCST	1	-72.027		0.226		
Godyris	Godyris	BCST	1	-21.945		0.190		
	total		3	-173.445	0.0065			
	backbone	BCST	1	-103.383		0.162		
Hypomenitis	Hypomenitis	BCST	1	-72.027		0.226		
	total		2	-175.411	0.0029			
	backbone	BCST	1	-153.325		0.188		
Godyris	Godyris	BCST	1	-21.945		0.190		
	total		2	-175.270	0.0033			

651 652

654 **References**

- Antonelli A. & Sanmartin I. (2011). Mass extinction, gradual cooling, or rapid radiation?
 Reconstructing the spatiotemporal evolution of the ancient angiosperm genus
 Hedyosmum (Chloranthaceae) using empirical and simulated approaches. Systematic
 Biology, 60(5), 596-615.
- Arita H.T., & Vázquez-Domínguez E. (2008). The tropics: cradle, museum or casino? A
 dynamic null model for latitudinal gradients of species diversity. *Ecology Letters*, *11*(7), 653-663.
- Beccaloni G.W. (1997). Ecology, natural history and behaviour of ithomiine butterflies
 and their mimics in Ecuador (Lepidoptera: Nymphalidae: Ithomiinae). *Tropical Lepidoptera*, 8, 103-124.
- Beckman E.J. & Witt C.C. (2015). Phylogeny and biogeography of the New World siskins
 and goldfinches: rapid diversification in the Central Andes. *Molecular Phylogenetics and Evolution*, 87, 28-45.
- Bell C.D. & Donoghue M.J. (2005). Phylogeny and biogeography of Valerianaceae
 (Dipsacales) with special reference to the South American valerians. *Organisms Diversity & Evolution*, 5(2), 147-159.
- Bershaw J., Garzione C.N., Higgins P., MacFadden B.J., Anaya F. & Alvarenga H. (2010).
 Spatial-temporal changes in Andean plateau climate and elevation from stable
 isotopes of mammal teeth. *Earth and Planetary Science Letters*, 289(3), 530-538.
- Blandin P. & Purser B. (2013). Evolution and diversification of neotropical butterflies:
 insights from the biogeography and phylogeny of the genus *Morpho* Fabricius,
 1807 (Nymphildae: Morphinae), with a review of the geodynamics of South
 America. *Tropical Lepidoptera Research*, 23, 62-85.
- Boonstra M., Ramos M.I.F., Lammertsma E.I., Antoine P.-O. & Hoorn C. (2015). Marine
 connections of Amazonia: Evidence from foraminifera and dinoflagellate cysts
 (early to middle Miocene, Colombia/Peru). *Palaegeography, Palaeclimatology, Palaeoecology*, 417, 176-194.
- Brower A.V., Willmott K.R., Silva-Brandão K.L., Garzón-Orduña I.J. & Freitas A.V. (2014).
 Phylogenetic relationships of ithomiine butterflies (Lepidoptera: Nymphalidae:
 Danainae) as implied by combined morphological and molecular data. *Systematics and Biodiversity*, 12, 133-147.
- Brower A.V.Z., Freitas A.V.L., Lee M.M., Silva-Brandão K.L., Whinnett A. & Willmott K.R.
 (2006). Phylogenetic relationships among the Ithomiini (Lepidoptera : Nymphalidae) inferred from one mitochondrial and two nuclear gene regions. *Systematic Entomology*, 31, 288-301.
- Brumfield R.T. & Edwards S.V. (2007). Evolution into and out of the Andes: a Bayesian
 analysis of historical diversification in *Thamnophilus* antshrikes. *Evolution*, 61,
 346-367.
- 693 Castroviejo-Fisher S., Guayasamin J.M., Gonzalez-Voyer A. & Vilà C. (2014). Neotropical
 694 diversification seen through glassfrogs. *Journal of Biogeography*, 41, 66-80.
- 695 Chaves J.A., Weir J.T. & Smith T.B. (2011). Diversification in *Adelomyia* hummingbirds
 696 follows Andean uplift. *Molecular Ecology*, 20, 4564-4576.
- 697 Chazot N., Willmott K., Freitas A.V.L., de-Silva D.L., Pellens R. & Elias M. (2015). Patterns
 698 of species, phylogenetic and mimicry diversity of clearwing butterflies in the
 699 Neotropics. In: *Biodiversity Conservation and Phylogenetic Systematics: Species*700 *Protection in an Extinction Crisis* (eds. Pellens R & Grandcolas P). Springer.
- Condamine F.L., Silva-Brandão K.L., Kergoat G.J. & Sperling F.A. (2012). Biogeographic
 and diversification patterns of Neotropical Troidini butterflies (Papilionidae)
 support a museum model of diversity dynamics for Amazonia. *BMC Evolutionary Biology*, 12, 82.
- Dantas S.M., Weckstein J.D., Bates J.M., Krabbe N.K., Cadena C.D., Robbins M.B.,
 Valderrama E. and Eleixo A. (2016). Molecular systematics of the new-word screechowls (*Megascops*: Aves, Strigidae): biogeographic and taxonomic implications.
 Molecular Phylogenetics and Evolution, 94:626-634.
- De-Silva D.L., Elias M., Willmott K., Mallet J. & Day J.J. 2016. Diversification of clearwing
 butterflies with the rise of the Andes. *Journal of Biogeography*, 43(1), 44-58.
- Drummond A.J., Suchard M.A., Xie D. & Rambaut A. (2012). Bayesian Phylogenetics with
 BEAUti and the BEAST 1.7. *Mol. Biol. Evol.*, 29, 1969-1973.
- Duellman W.E. (1999). *Patterns of distribution of Amphibians: a global perspective*. Johns
 Hopkins University Press.
- Ehrlich P.R. & Raven P.H. (1964). Butterflies and plants: a study in coevolution. *Evolution*,
 586-608.
- Filas M., Hill R.I., Willmott K.R., Dasmahapatra K.K., Brower A.V., Mallet J. & Jiggins C.D.
 (2007). Limited performance of DNA barcoding in a diverse community of
 tropical butterflies. *Proceedings of the Royal Society B: Biological Sciences*, 274,
 2881-2889.
- Elias M., Joron M., Willmott K., Silva-Brandão K.L., Kaiser V., Arias C.F., Pinerez L.M.G.,
 Uribe S., Brower A.V.Z., Freitas A.V.L. & Jiggins C.D. (2009). Out of the Andes:
 patterns of diversification in clearwing butterflies. *Molecular Ecology*, 18, 17161729.
- FitzJohn R.G. (2012). Diversitree: comparative phylogenetic analyses of diversification in
 R. *Methods in Ecology and Evolution*, 3, 1084-1092.
- Fjeldså J., Bowie R. C. & Rahbek C. (2012). The role of mountain ranges in the
 diversification of birds. Annual Review of Ecology. Evolution, and Systematics, 43,
 249-265.
- Fouquet A., Santana C.C., Haddad F.B.C., Pech N. & Trefaut R.M. (2014). Species
 delimitation, patterns of diversification and historical biogeography of the
 Neotropical frog genus *Adenomera* (Anura, Leptodactylidae). *Journal of Biogeography*, 41, 855-870.
- Freitas A.V.L. & Brown K.S. (2004). Phylogeny of the Nymphalidae (Lepidoptera).
 Systematic Biology, 53, 363-383.
- Garzione C.N., Hoke G.D., Libarkin J.C., Withers S., MacFadden B., Eiler J., Ghosh P. &
 Mulch A. (2008). Rise of the Andes. *Science*, 320, 1304-1307.
- Garzón-Orduña I. J., Silva-Brandão K. L., Willmott K. R., Freitas A. V., & Brower A. V.
 (2015). Incompatible ages for clearwing butterflies based on alternative secondary calibrations. Systematic biology, 64 (5), 752-767.
- Givnish T.J., Barfuss M.H., Van Ee B., Riina R., Schulte K., Horres R., Gonsiskaa P.A.,
 Jabailyh R.S., Craynf D.M., Smithi J. A.C., Winterj K., Brownk G.K., Evansl T.M.,
 Holstm B.K., Luthern H., Tillb W., Zizkae G., Berry P.E. & Winter K. (2014).
 Adaptive radiation, correlated and contingent evolution, and net species
 diversification in Bromeliaceae. *Molecular phylogenetics and evolution*, 71, 55-78.
- Goldberg E.E. & Igic B. (2012). Tempo and mode in plant breeding system evolution.
 Evolution, 66, 3701-3709.

- Goldberg E.E., Lancaster L.T. & Ree R.H. (2011). Phylogenetic inference of reciprocal
 effects between geographic range evolution and diversification. *Systematic Biology*,
 60(4), 451-465.
- Graham C.H., Ron S.R., Santos J.C., Schneider C.J. & Moritz C. (2004). Integrating
 phylogenetics and environmental niche models to explore speciation
 mechanisms in dendrobatid frogs. *Evolution*, 58, 1781-1793.
- Greeney H.F., Hill R.I., Simbaña W.R. & Gentry G. (2009). The immature stages and
 natural history of *Veladyris pardalis* (Salvin, 1869) in eastern Ecuador
 (Lepidoptera: Nymphalidae: Ithomiinae). *Journal of Insect Science*, 9, 6.
- Hall J.P. (2005). Montane speciation patterns in *Ithomiola* butterflies (Lepidoptera: Riodinidae): are they consistently moving up in the world? *Proceedings of the Royal Society B: Biological Sciences*, 272, 2457-2466.
- Hoorn C., Wesselingh F., Ter Steege H., Bermudez M., Mora A., Sevink J., Sanmartín I.,
 Sanchez-Meseguer A., Anderson C. & Figueiredo J. (2010). Amazonia through
 time: Andean uplift, climate change, landscape evolution, and biodiversity. *Science*, 330, 927-931.
- Hughes C. & Eastwood R. (2006). Island radiation on a continental scale: exceptional
 rates of plant diversification after uplift of the Andes. *Proceedings of the National Academy of Sciences*, 103, 10334-10339.
- Hutter C.R., Guayasamin J.M. & Wiens J.J. (2013). Explaining Andean megadiversity: the
 evolutionary and ecological causes of glassfrog elevational richness patterns. *Ecology Letters*, 16, 1135-1144.
- Janz N., Nylin S. & Wahlberg N. (2006). Diversity begets diversity: host expansions and
 the diversification of plant-feeding insects. *BMC Evolutionary Biology*, 6.
- Jiggins C.D., Mallarino R., Willmott K.R. & Bermingham E. (2006). The phylogenetic
 pattern of speciation and wing pattern change in neotropical *Ithomia* butterflies
 (Lepidoptera: Nymphalidae). *Evolution*, 60(7), 1454-1466.
- Kozak K.H. & Wiens J.J. (2010). Niche conservatism drives elevational diversity patterns
 in Appalachian salamanders. *The American Naturalist*, 176, 40-54.
- Lanfear R., Calcott B., Ho S.Y.W. & Guindon S. (2012). PartitionFinder: Combined
 Selection of Partitioning Schemes and Substitution Models for Phylogenetic
 Analyses. *Mol. Biol. Evol.*, 29, 1695-1701.
- Lewis D.S., Sperling F.A., Nakahara S., Cotton A.M., Kawahara A.Y. & Condamine F.L.
 (2015). Role of Caribbean Islands in the diversification and biogeography of
 Neotropical *Heraclides* swallowtails. *Cladistics*, 1-24.
- Luebert F. & Weigend M. (2014). Phylogenetic insights into Andean plant diversification.
 Evolutionary and Population Genetics, 2, 27.
- Lamas G. (2004). Ithomiinae in J.B. Heppner, ed. Atlas of Neotropical Lepidoptera.
 Checklist: Part 4A. Hesperioidea Papilionoidea. Association for Tropical
 Lepidoptera/Scientific Publishers, Gainsville.
- Lynch Alfaro J.W., Cortès-Ortiz L., Di Fiore A. and Boubli J.P. (2015). Special issue:
 comparative biogeography of Neotropical primates. *Molecular Phylogenetics and Evolution*, 82:518-529.
- Matzke N.J. (2014). Model selection in historical biogeography reveals that founderevent speciation is a crucial process in island clades. *Systematic Biology*, 63 (6):
 951-970.

- McCain C.M. & Colwell R.K. (2011). Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecology Letters, 14(12), 1236-1245.
- McGuire J.A., Witt C.C., Altshuler D.L. & Remsen J. (2007). Phylogenetic systematics and
 biogeography of hummingbirds: Bayesian and maximum likelihood analyses of
 partitioned data and selection of an appropriate partitioning strategy. *Systematic Biology*, 56, 837-856.
- McGuire J.A., Witt C.C., Remsen J., Corl A., Rabosky D.L., Altshuler D.L. & Dudley R. (2014).
 Molecular phylogenetics and the diversification of hummingbirds. *Current Biology*, 24, 910-916.
- 804Minh B.Q., Nguyen M.A.T. & von Haeseler A. (2013). Ultrafast approximation for805phylogenetic bootstrap. *Molecular Biology and Evolution*, 30,1188-1195.
- Moonlight P.W., Richardson J.E., Tebbitt M.C., Thomas D.C., Hollands R., Peng C.I. &
 Hughes M. (2015). Continental-scale diversification patterns in a megadiverse
 genus: the biogeography of Neotropical *Begonia. Journal of Biogeography*, 42(6),
 1137-1149.
- Morlon H., Parsons T.L. & Plotkin J.B. (2011) Reconciling molecular phylogenies with the
 fossil record. Proc. Natl. Acad. Sci. U.S.A., 108:16327-16332.
- Mullen S.P., Savage W.K., Wahlberg N. & Willmott K.R. (2011). Rapid diversification and
 not clade age explains high diversity in neotropical *Adelpha* butterflies. *Proceedings of the Royal Society B: Biological Sciences*, 278, 1777-1785.
- Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B. & Kent J. (2000).
 Biodiversity hotspots for conservation priorities. *Nature*, 403, 853-858.
- Nguyen L.-T., Schmidt H.A., von Haeseler A. & Minh B.Q. (2015). IQ-TREE: A fast and
 effective stochastic algorithm for estimating maximum likelihood phylogenies. *Molecular Biology and Evolution*, 32, 268-274.
- Papageorgis C. (1975). Mimicry in neotropical butterflies. *American Scientist*, 63, 522532.
- Parada A., D'Elía G. and Palma R.E. (2015). The influence of ecological and geographical
 context in the radiation od Neotropical sigmodontine rodents. *BMC Evolutionary Biology*, 15:172.
- Ree R.H. & Smith S.A. (2008). Maximum likelihood inference of geographic range
 evolution by dispersal, local extinction, and cladogenesis. *Systematic Biology*, 57,
 4-14.
- Roddaz M., Hermoza W., Mora A., Baby P., Parra M., Christophoul F., Brusset S., Espurt N.,
 Hoorn C. & Wesselingh F. (2010). Cenozoic sedimentary evolution of the
 Amazonian foreland basin system. *Amazonia, Landscape and Species Evolution.*Blackwell, 61-88.
- Rojas D., Warsi O.M. & Dávalos L.M. (2016). Bats (Chiroptera: Noctilionoidea) challenge
 a recent origin of extant neotropical diversity. *Systematic Biology*, 65(3):432:448.
- Rolland J., Condamine F.L., Jiguet F. & Morlon H. (2014). Faster speciation and reduced
 extinction in the tropics contribute to the mammalian latitudinal diversity
 gradient. *Plos Biology*, 12, e1001775.
- Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Hohna S., Larget B., Liu
 L., Suchard M.A. & Huelsenbeck J.P. (2012). MrBayes 3.2: Efficient Bayesian
 Phylogenetic Inference and Model Choice Across a Large Model Space. *Systematic Biology*, 61, 539-542.

- Rosser N., Phillimore A.B., Huertas B., Willmott K.R. & Mallet J. (2012). Testing historical
 explanations for gradients in species richness in heliconiine butterflies of tropical
 America. *Biological Journal of the Linnean Society*, 105, 479-497.
- Särkinen T., Bohs L., Olmstead R.G. & Knapp S. (2013). A phylogenetic framework for
 evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. *BMC Evolutionary Biology*, 13, 214.
- Scherson R.A., Vidal R. & Sanderson M.J. (2008). Phylogeny, biogeography, and rates of
 diversification of New World Astragalus (Leguminosae) with an emphasis on
 South American radiations. *American Journal of Botany*, 95(8), 1030-1039.
- Sedano R.E. & Burns K.J. (2010). Are the Northern Andes a species pump for Neotropical
 birds? Phylogenetics and biogeography of a clade of Neotropical tanagers (Aves:
 Thraupini). *Journal of Biogeography*, 37, 325-343.
- Smith S.A., De Oca A.N.M., Reeder T.W. & Wiens J.J. (2007). A phylogenetic perspective on
 elevational species richness patterns in Middle American treefrogs: why so few
 species in lowland tropical rainforests? *Evolution*, 61, 1188-1207.
- Stebbins G.L. (1974) Flowering plants: evolution above the species level. London: Arnold
 xviii, 399 pp.
- Stephens P.R. & Wiens J.J. (2003). Explaining species richness from continents to
 communities: the time-for-speciation effect in emydid turtles. *The American Naturalist*, 161, 112-128.
- Valentine J.W. (1967) The influence of climatic fluctuations on species diversity within
 the tethyan provincial system. In Aspects of Tethyan biogeography (C.G. Adams
 and D.V. Ager, eds), pp. 153-166. Systematics Ass. Publ. 7.
- Wahlberg N., Leneveu J., Kodandaramaiah U., Peña C., Nylin S., Freitas A.V.L. & Brower
 A.V.Z. (2009). Nymphalid butterflies diversify following near demise at the
 Cretaceous/Tertiary boundary. *Proceedings of the Royal Society B: Biological Sciences*, 276, 4295-4302.
- Weir J.T. (2006). Divergent timing and patterns of species accumulation in lowland and
 highland neotropical birds. *Evolution*, 60, 842-855.
- Wesselingh F.P., Hoorn C., Kroonenberg S.B., Antonelli A., Lundberg J.G., Vonhof H.B. &
 Hooghiemstra H. (2010). On the origin of Amazonian landscapes and
 biodiversity: a synthesis. *Amazonia: Landscape and Species Evolution: A look into the past*, 419-431.
- Willmott K.R. & Freitas A.V.L. (2006). Higher-level phylogeny of the Ithomiinae
 (Lepidoptera: Nymphalidae): classification, patterns of larval hostplant
 colonization and diversification. *Cladistics*, 22, 297-368.
- 877
- 878
- 879

- Appendix 1. Cases where the taxonomy adopted in this paper differ from the previous
- published taxonomic arrangement, particularly Lamas (2004). Some changes were made
- because they seem best supported by current evidence but still require further research,
- 883 whereas other formal changes were made where additional morphological and/or
- biogeographic data were consistent with a revised classification.
- 885

Classification in	Lamas (2004)	Resulting formal	Explanation
this paper	classification	classification	
Brevioleria plisthenes	Brevioleria aelia plisthenes	Brevioleria aelia plisthenes (d'Almeida, 1958)	We treat <i>Brevioleria plisthenes</i> as a distinct species in this paper, based on its quite isolated distribution from other <i>B. aelia</i> (Hewitson, 1852) taxa (where it was placed by Lamas, 2004) and its stable and distinctive wing pattern. Nevertheless, <i>Brevioleria</i> remains taxonomically highly
			complex and a thorough revision of the genus is required, so we do not make any formal changes here.
Godyris hewitsoni	Godyris nepos hewitsoni	Godyris hewitsoni (Haensch, 1903) rev. stat.	We treat <i>Godyris hewitsoni</i> as a species distinct from <i>Godyris nepos</i> (Weymer, 1875), since it differs in wing venation, having the base of vein M3 nearer the wing base than the base of vein M1 on both wings (the opposite is true in <i>nepos</i>). Since similar differences in venation separate three sympatric <i>Godyris</i> species in Ecuador (<i>G. duillia</i> (Hewitson, 1854), <i>G. hewitsoni</i> and <i>G. panthyale</i> (C. & R. Felder, 1862)), we regard such differences as likely to be significant at the species level. In addition, <i>G. nepos</i> has a distinctive wing pattern, with reddish HW markings that are more similar to those of <i>G. duillia</i> than other <i>Godyris</i> . Finally, no even slightly intermediate forms or subspecies are known between <i>G. hewitsoni</i> and <i>G. nepos</i> , and we have not found any characters that suggest that these are sister taxa.
Genus1 nsp1	<i>Greta</i> n. sp.	Greta n. sp.	An undescribed species from Peru included by Lamas (2004) in the genus <i>Greta</i> , here is hypothesized to be sister to <i>Godyris</i> . Its generic status requires confirmation with detailed morphological study, but there is no reason to suspect that the current DNA-based topology is incorrect.
Genus2 andromica	Greta andromica	Greta andromica (Hewitson, [1855])	The molecular data place <i>andromica+annette</i> as a clade sister to <i>Pseudoscada</i> , a topology consistent with morphological data (Willmott & Freitas, 2006), and they are here treated as a distinct genus, given the differences in size and habitat elevation in comparison with <i>Pseudoscada</i> . However, detailed morphological study is needed to determine whether this clade has any morphological synapomorphies and what its relationships are to other <i>Greta</i> not included in the current paper, to decide on the most appropriate taxonomic treatment.
Genus2 annette	Greta annette	<i>Greta annette</i> (Guérin- Ménéville, [1844])	See above under Greta andromica.
<i>Greta</i> is restricted to <i>G. clavijoi</i> , <i>G.</i> <i>morgane</i>		Greta clavijoi Neild, 2008, Greta morgane (Geyer, 1837)	Based on morphology (Willmott & Freitas, 2006), the type species of <i>Greta</i> Hemming, 1934, <i>G. diaphanus</i> (Drury, 1773), is sister to <i>G. morgane</i> (<i>G. clavijoi</i> was not included in Willmott & Freitas, 2006). We thus apply the name <i>Greta</i> in this paper to the clade <i>G. morgane</i> + <i>G. clavijoi</i> .
Heterosais nephele	Heterosais giulia nephele	Heterosais nephele (Bates, 1862) rev. stat. , H. nephele gedera (Hewitson, 1869) rev. stat.	Molecular data show that transandean and Amazonian <i>Heterosais</i> are strongly distinct, and possibly not even sister taxa, consistent with differences in male androconial scales between taxa from the two regions. Transandean taxa (<i>H. g. giulia</i> (Hewitson, [1855]), <i>H. g. pallidula</i> Haensch, 1903, <i>H. g. cadra</i> (Godman & Salvin, 1878)) have a much smaller distal patch of hair-like androconial scales on the dorsal hindwing, not extending basally past the base of vein Cu1, whereas in Amazonian taxa (<i>H. n.</i>

			<i>nephele</i> , <i>H. n. gedera</i>) the scale patch extends about halfway between the bases of yeins Cu2 and Cu1
Hypoleria alema	<i>Hypoleria</i> <i>lavinia</i> ssp. (east of Andes)	Hypoleria lavinia (Hewitson, [1855]) is restricted to taxa occurring west of the Andes, and Hypoleria alema (Hewitson, [1857]) becomes the oldest name for the Amazonian taxa formerly included in H. alema and H. lavinia. In addition to Hypoleria alema ina (Hewitson, [1859]), Hypoleria alema thus includes the following as subspecies, all n. stat. : H. alema asellia (Hopffer, 1874), H. a. cajona Haensch, 1905, H. a. chrysodonia (Bates, 1862), H. a. garleppi Haensch, 1905, H. a. indecora Haensch, 1905, H. a. meridana Fox, 1903, H. a. meridana Fox, 1899, H. a. proxima Weymer,	Molecular data indicate that the taxa east and west of the Andes that were included within <i>Hypoleria lavinia</i> in Lamas (2004) are strongly divergent. In addition, the east Ecuadorian Andes foothill taxon <i>ina</i> , hitherto regarded as conspecific with Colombian <i>H. alema</i> , was not differentiated from Amazonian <i>H. lavinia chrysodonia</i> . The data suggest that <i>H. lavinia</i> should be split into distinct species east and west of the Andes, and that <i>ina</i> (and presumably <i>alema</i>) should be regarded as subspecies of the eastern species. Morphological data are consistent with this hypothesis. The male genitalic valva is more elongated with a less strongly produced dorso-posterior projection in <i>H. lavinia</i> specimens dissected from Ecuador and southeastern Peru and in <i>H. alema ina</i> and <i>H. alema alema</i> , in comparison with examined H. <i>lavinia</i> specimens from western Ecuador, Panama and Mexico. A long series of highly variable specimens phenotypically intermediate between <i>H. lavinia chrysodonia</i> and east Ecuadorian <i>H. alema</i> , collected by P. Boyer (pers. comm.) at an elevational contact zone, supports the conspecificity of these taxa.
Hypoleria lavinia	<i>Hypoleria</i> <i>lavinia</i> ssp. (west of Andes)	1899. H. lavinia lavinia, H. l. cassotis (Bates, 1864), H. l. libera Godman & Salvin, 1879, H. l. rhene (Godman & Salvin, 1878), H. l. riffarthi Haensch, 1905, H. l. vanilia (Herrich-Schäffer, 1865), H.	See discussion above.
		l. vaniliana Kaye, 1919. 📃	
Hypoleria mulviana	Hypoleria lavinia mulviana	<i>Hypoleria mulviana</i> d'Almeida, 1958 rev. stat.	<i>Hypoleria mulviana</i> was treated as a subspecies of <i>H. lavinia</i> by Lamas (2004). However, there is limited evidence (potentially unreliably labeled specimens) to suggest sympatry in the central Amazon, and the male genitalia are quite distinct from other <i>H. lavinia</i> and <i>H. alema</i> (see above); the ventral posterior projection on the valva is narrow and posteriorly (rather than inwardly) directed, the aedeagus is approximately twice as long and the tegumen is raised up higher above the valvae.
Pseudoscada timna 'costarica'	Pseudoscada timna	Pseudoscada timna pusio (Godman & Salvin, 1877)	The molecular data showed that divergence between <i>P. timna</i> from Costa Rica, western Ecuador and the Amazon is similar to that between other species in this genus, and that Amazonian <i>P. timna</i> are sister to Brazilian <i>P. acilla</i> . We treat these three clades of <i>P. timna</i> as three species in the analysis here, but further molecular and morphological research is required. In particular, the relationships of northwest South American <i>P. timna</i> taxa (<i>P. t. saturata</i> (Staudinger, 1885) and <i>P. t. troetschi</i> (Staudinger, [1884])) to Costa Rican <i>P. t. pusio</i> and the undescribed west Ecuadorian taxon need to be determined before the classification can be revised.
Pseudoscada	Pseudoscada	Pseudoscada timna timna	See above.
<i>timna</i> 'eastern' <i>Pseudoscada</i>	timna Pseudoscada	(Hewitson, [1855]) Pseudoscada timna	See above
timna 'western'	timna	(Hewitson, [1855]) n. ssp.	
Veladyris cytharista	Veladyris pardalis cytharista	<i>Veladyris cytharista</i> (Salvin, 1869) rev. stat.	The Ecuadorian to north Peruvian taxa <i>Veladyris pardalis</i> <i>aurea</i> Lamas, 1980, <i>V. p. pardalis</i> (Hewitson, [1855]) and <i>V. p. totumbra</i> (Kaye, 1919) formed a clade distinct from the Peruvian <i>V. p. cytharista</i> , which clustered with

			<i>Veladyris electrea</i> (Brabant, 2004). In addition, <i>V. p. christina</i> Lamas, 1980, seems to be sympatric in north Peru (Amazonas) with an undescribed taxon which we regard as conspecific with <i>V. p. cytharista; V. p. christina</i> shares a distinctive white spot on the ventral hindwing in cell Sc+R1-Rs with the Ecuadorian <i>Veladyris pardalis</i> taxa, and we thus retain all four of these taxa in <i>V. pardalis</i> , and treat <i>V. cytharista</i> rev. stat. as a distinct species. A revision of the genus is in preparation by KRW, GL and others.
Velamysta nsp1			This is an undescribed species recently discovered in western Ecuador by T. Kell (Kell, Willmott & Lamas, unpubl. data).
<i>Hypomenitis</i> spp.	<i>Greta</i> spp.	We reinstate Hypomenitis to include the following species (and their subspecies and synonyms as listed in Lamas, 2004), all rev. stat. : H. alphesiboea (Hewitson, 1869), H. depauperata (Boisduval, 1870), H. dercetis (Doubleday, 1847), H. enigma (Haensch, 1905), H. esula (Hewitson, 1855), H. gardneri (Weeks, 1901), H. hermana (Haensch, 1903), H. libethris (C. & R. Felder, 1865), H. lojana Vitale & Bollino, 2001, H. lydia (Weymer, 1899), H. ochretis (Haensch, 1903), H. oneidodes (Kaye, 1918), H. ortygia (Weymer, 1890), H. polissena (Hewitson, 1863), H. theudelinda (Hewitson, [1861]).	The majority of the montane species treated in <i>Greta</i> by Lamas (2004) form a well-supported clade, including <i>Ithomia theudelinda</i> Hewitson, the type species for <i>Hypomenitis</i> Fox, 1945, that is significantly separated from that containing <i>G. morgane</i> (and presumably the type species of <i>Greta</i> , <i>G. diaphanus</i> , see discussion above). Although Willmott & Freitas (2006) found no morphological synapomorphy for the two representative species of <i>Hypomenitis</i> , <i>H. ortygia+H. theudelinda</i> , support for the topology of this part of the tree was very weak, and the shared mid- to high elevation cloud forest habitats of all species included here in <i>Hypomenitis</i> is consistent with the monophyly indicated by the molecular data.

886

Supporting Information

Supporting Information S1. Primers and list of species with Genbank accession numbers.

PCR conditions followed Elias et al. (2009).

Genes region	Primer	Sequence (5' to 3')
COI-tRNA-COII	LCO, F	GGTCAACAAATCATAAAGATATTGG
	Lep 3.1, R	AAATTTTAATTCCTGTTGGTACAGC
	Nancy, R	CCTGGTAAAATTAAAATATAAACTTC
	Jerry, F	CAACAYTTATTTTGATTTTTTGG
	Pat, R	ATCCATTACATATAATCTGCCATA
	Geoith, F	TAGGWTTAGCWGGAATACC
	Evaith, R	GAGACCAATACTTGCTTTCAGACATCT
FFla	EFreM4 R	ACAGCVACKGTYTGYCTCATRTC
	Efla-257F, F internal	TATCACTATTGACATCGC
Tektin	Tektin A, F	ACCAGTGGRGAYATYCTWGG
	Tektin 3, R	CGCAGTTTYTGATRCTYT

List of specimens used with Genbank accession codes.

Sequences were submitted to Genbank and codes will be added in the next version of the

supporting information.

Supporting Information S2. Phylogenetic tree of 206 individuals based on the concatenation of COI-tRNA-COII-EFI-Tektin gene fragments inferred with MrBayes.

Supporting Information S3. Maximum Likelihood tree inferred using IQ-tree software. We performed 1000 ultra-fast bootstrap iterations to get node supports (Minh *et al.* 2013).

Supporting Information S4. Secondary calibration points used with uniform distribution between the lower and upper bound, corresponding to the 95% credibility interval reported in Wahlberg *et al.* (2009).

Calibrated node	Lower bound	Upper bound
(Aeria, (Elzunia, Tithorea))	18.0	28.0
(Athesis, Patricia)	14.0	27.5
Danaini 'crown'	35.0	48.0
(Godyridina, Dircennina)	19.0	24.0
(Ithomiina, Napeogenina)	19.0	23.5
(Scada, (Mechanitis, Forbestra))	21.5	29.0
Oleriina 'crown'	22.0	27.5
(Tellervo, Ithomiini)	39.5	52.0
((Tirumala, Danaus),(Amauris, Parantica))	24.5	27.5
root	44.0	58.0

Anetia, Driarea, NW152, 6 Lycorea, halia, NW152, 6 Lycorea, halia, NW122, 19 Lycorea, Licone, NW48, 74 Tirumala, limniace, NW156, 9 Danaus, plexipous, NW108, 21 Amauris, clicone, NW48, 74 Tirumala, limniace, NW156, 9 Parantica, aspasia, NW112, 17 Telienvo, Zolius, OLS Melinaea, Isocomma, E, 39, 52 Eutresis, hyperela, limitatitx, ME10, 458 Athyrits, mechanilis, FB39 Palitila, neglecta, AW, 02, 1244 Olyras, Crathis, montagui, ME10, 415 Athesis, acrisione, acrisione, LEP, 06463 Patrica, dercvilidas, 25, 37 Thyridia, psidi, Ino, 20354 Scada, Zibo, batesi, 20236 Forbestra, olivencia, junitana, 20325 Mechanitis, mazaeus, mazaeus, 20781 Methona, contusa, contusa, 20618 Aeria, eurimedia, E, 26 Tithorea, tarricina, bonita, ME11, 179 Etzunia, humboidt, Cassandrina, LEP, 06870 Hyposcada, lilinissa, napoensis, 21750 Oliena, rubescens, 8369 Placidina, euryanassa, B, 16, 1 Pagyris, Cymothoe, cymothoe, ME11, 113 Epityches, eupompe, B, 12, 2 Aremtoxia, Ilerna, Jonita, ME11, 113 Epityches, eupompe, B, 12, 2 Aremtoxia, Ilera, Joria, G104 Napeogenes, pharo, pharo, 20226 Hypotyris, anatsa, B, 16, 1 Pagyris, Cymothoe, Cymothoe, ME11, 113 Epityches, eupompe, B, 12, 2 Aremtoxia, Ilera, Joria, G109 Certatinia, lenea, epidero, RB380 Dircenna, dero, E, 44, 3 Hypotyris, anatea, E, 30, 4 Calillitonia, lenea, epidero, RB380 Dircenna, dero, E, 44, 3 Hypotyris, anatea, E, 30, 4 Calillitonia, lenea, epidero, RB380 Dircenna, dero, E, 44, 3 Hypotentia, autisa, 20046 Heaterosta, publida Godyris, cythanista Veladyris, pardalis, two Godyris, cythanista Hypomenitis, nsp1 Breviolenta, nsp1 Breviolenta, aceta Breviolenta, coenima Breviolenta, plastineas Grodyris, caunette Godyris, caunette Godyris, caunette Breviolenta, plasteneas Grieta, caviloi Breviolenta, plastenes Grieta, caviloi Breviolenta, aceta Breviolenta, plastenes Grieta, caviloi Breviolenta, plastenes Hypomenitis, polpa 9.88 12.04 28,73 22.95 7,07 27.2 15.95 15,69 11.84 9.07 6,53 10,53 13,17 9.09 306 1,93 6,12 2,85 3,15 0 2,76 37 82 3,22 3.7 59 13 6,12 4.4 0, 9.33 1,79 2.07 1,88 1.58 Hypomenitis oneidodes 1,0²Hypomenitis_nspB 0 40,0 30,0 20,0 10,0 0,0

Supporting Information S5. Time-calibrated maximum clade credibility tree. Median of node ages are shown at the nodes. Bars show the 95% credibility interval of node ages.

Supporting Information S6. Time-calibrated maximum clade credibility tree. Bayesian posterior probabilities are shown at the nodes.

Supporting Information S7. Matrices of dispersal probabilities for four time slices as used in the Dispersal-Extinction-Cladogenesis model of BiogeoBears.

Between 20 to 14 million years ago, the uprising Northern (Western Cordillera) and Central Andes were separated from the Gondwanan proto-continent by the Pebas System. The Pebas was a complex semi-aquatic ecosystem, probably connected northward to the Atlantic Ocean, which may have lead to occasional marine incursions. Connection may have also existed westward with the Pacific Ocean through the West Andean Portal which likely separated for a time the Northern and Central Andes.

Between 14 to 8 million years ago, the Pebas system retreated northward and eastward leading to the Acre System, which was progressively replaced by *terra firme*. The uplift of Eastern Cordilleras accelerated.

Between 8 to 5 million years ago, the Acre System disappeared, while the Amazon River was established. Uplift of the Andes, especially Eastern Cordilleras continued.

Between 5 to 0 million years ago, the Panama isthmus was closed, allowing continuous connections with Central America.

CAm: Central America WL: Western Andean lowlands/Magdalena valley WWco: Western cordilleras, western slopes EWco: Western cordilleras, eastern slopes CA: Central Andes WEco: Eastern cordilleras, western slopes EEco: Eastern cordilleras, eastern slopes UA: Upper-Amazon LA: Lower-Amazon AF: Atlantic-Forest

CAm 1 0.6 0.3 0.3 0 0.06 0 0 0 WL 0.6 1 0.1 0.1 0.06 0.1 0.01 0.01 0.001 WWco 0.3 0.1 1 0.1 0.6 0.04 0.06 0.01 0.006 0.01 EWco 0.3 0.1 0.1 1 0.6 0.44 0.66 0.1 0.066 0.6 CA 0 0.06 0.6 0.6 1 0.24 0.36 0.1 0.06 0 WEco 0.06 0.1 0.04 0.4 0.24 1 0.1 0.04 0.01 EEco 0 0.01 0.06 0.6 0.36 0.1 1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
WL 0.6 1 0.1 0.1 0.06 0.1 0.01 0.01 0.001 WWco 0.3 0.1 1 0.1 0.6 0.04 0.06 0.01 0.006 EWco 0.3 0.1 0.1 1 0.6 0.4 0.6 0.1 0.06 0 CA 0 0.06 0.6 0.6 1 0.24 0.36 0.1 0.06 0 WEco 0.06 0.1 0.04 0.4 0.24 1 0.1 0.04 0.01 EEco 0 0.01 0.06 0.6 0.36 0.1 1 0.1 0.1 0.1 0.1 0.1 0.1 0 UA 0 0.01 0.01 0.1 0.1 0.04 0.1 1 0.6 0 LA 0 0.001 0.066 0.06 0.01 0.1 0.6 1 0 AF 0
WWco 0.3 0.1 1 0.1 0.6 0.04 0.06 0.01 0.006 EWco 0.3 0.1 0.1 1 0.6 0.4 0.6 0.1 0.06 0 CA 0 0.06 0.6 0.6 1 0.24 0.36 0.1 0.06 0 WEco 0.06 0.1 0.04 0.4 0.24 1 0.1 0.04 0.01 EEco 0 0.01 0.06 0.6 0.36 0.1 1 0.1 0.1 0.1 0.1 UA 0 0.01 0.06 0.6 0.36 0.1 1 0.1
EWco 0.3 0.1 0.1 1 0.6 0.4 0.6 0.1 0.06 0 CA 0 0.06 0.6 0.6 1 0.24 0.36 0.1 0.06 0 WEco 0.06 0.1 0.04 0.4 0.24 1 0.1 0.04 0.01 EEco 0 0.01 0.06 0.6 0.36 0.1 1 0.1 0.04 0.01 UA 0 0.01 0.01 0.1 0.1 0.04 0.1 1 0.6 1 LA 0 0.001 0.06 0.66 0.66 0.01 0.1 0.1 0.6 1 0.6 AF 0 0.001 0.006 0.06 0.06 0.01 0.11 0.6 1 0 S-8 Mya CAm WL WWco EWco CA WEco EEco UA LA M CAm 1
CA 0 0.06 0.6 0.6 1 0.24 0.36 0.1 0.06 0 WEco 0.06 0.1 0.04 0.4 0.24 1 0.1 0.04 0.01 EEco 0 0.01 0.06 0.6 0.36 0.1 1 0.1 0.1 0 UA 0 0.01 0.01 0.1 0.1 0.04 0.1 1 0.6 0 LA 0 0.01 0.06 0.06 0.06 0.01 0.1 0.6 1 0<
WEco 0.06 0.1 0.04 0.4 0.24 1 0.1 0.04 0.01 EEco 0 0.01 0.06 0.6 0.36 0.1 1 0.1 </td
EEco 0 0.01 0.06 0.6 0.36 0.1 1 0.1 0.1 0 UA 0 0.01 0.01 0.1 0.1 0.04 0.1 1 0.6 0 LA 0 0.001 0.006 0.06 0.06 0.01 0.1 0.6 1 0 AF 0 0 0 0.04 0.04 0 0.04 0.4 0.4 0.4 5-8 Mya CAm WL WWco EWco CA WEco EEco UA LA 0 CAm 0.2 0.1 0.1 0.1 0 0 0 0 0 WL 0.2 0.1 0.1 0 0 0 0 0 0 0 0 0 Mua 0.2 1 0.2 0.12 0.12 0.2 0.04 0.04 0.008
UA 0 0.01 0.01 0.1 0.04 0.1 1 0.6 0 LA 0 0.001 0.006 0.06 0.06 0.01 0.1 0.6 1 0 AF 0 0 0 0.04 0.04 0 0.04 0.4 0.4 0.4 5-8 Mya CAm WL WWco EWco CA WEco EEco UA LA Main CAm 1 0.2 0.1 0.1 0 0 0 0 0 WL 0.2 0.1 0.1 0.2 <th0< td=""></th0<>
LA 0 0.001 0.006 0.06 0.01 0.1 0.6 1 0 AF 0 0 0 0.04 0.04 0 0.04 0.4 0.4 0.4 0.4 5-8 Mya CAm WL WWco EWco CA WEco EEco UA LA 0 CAm 1 0.2 0.1 0.1 0 0 0 0 0 0 WL 0.2 1 0.2 0.12 0.12 0.04 0.04 0.04 0.08
AF 0 0 0 0.04 0.04 0 0.04 0.4 0.4 0.4 5-8 Mya CAm WL WWco EWco CA WEco EEco UA LA A CAm 1 0.2 0.1 0.1 0 0 0 0 0 0 WL 0.2 1 0.2 0.12 0.12 0.2 0.04 0.04 0.008
5-8 Mya CAm WL WWco EWco CA WEco EEco UA LA A CAm 1 0.2 0.1 0.1 0
5-8 Mya CAm WL WWco EWco CA WEco EEco UA LA A CAm 1 0.2 0.1 0.1 0
CAm 1 0.2 0.1 0.1 0 0 0 0 0 WL 0.2 1 0.2 0.2 0.12 0.2 0.04 0.04 0.008
WL 0.2 1 0.2 0.2 0.12 0.2 0.04 0.04 0.008
WWco 0.1 0.2 1 0.2 0.6 0.08 0.12 0.04 0.024
EWco 0.1 0.2 0.2 1 0.6 0.4 0.6 0.2 0.12 0
CA 0 0.12 0.6 0.6 1 0.24 0.36 0.2 0.12 0
WEco 0 0.2 0.08 0.4 0.24 1 0.2 0.04 0.04
EEco 0 0.04 0.12 0.6 0.36 0.2 1 0.2 0.2 0
UA 0 0.04 0.04 0.2 0.2 0.04 0.2 1 0.6 (
LA 0 0.008 0.024 0.12 0.12 0.04 0.2 0.6 1 0
AF 0 0 0 0.08 0.08 0 0.08 0.4 0.4
EWco 0 0.4 1 0.4 0.6 0.4 0.6 0.4 0.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
WEep 0 0.4 0.16 0.4 0.24 1 0.4 0.16 0.16
FECO 0 0.4 0.10 0.4 0.24 1 0.4 0.10 0.10
14-20 Mya CAm WL WWco EWco CA WEco EEco UA LA
CAm 1 0 0 0 0 0 0 0
WL 0 1 0.4 0.4 0.08 0 0 0
WWco 0 0.4 1 0.4 0.2 0 0 0 0
EWco 0 0.4 0.4 1 0.2 0 0 0.1 0.1
EWco 0 0.4 0.4 1 0.2 0 0 0.1 0.1 CA 0 0.08 0.2 0.2 1 0 0 0.1 0.08
EWco 0 0.4 0.4 1 0.2 0 0 0.1 0.1 CA 0 0.08 0.2 0.2 1 0 0 0.1 0.08 WEco 0 0 0 0 0 1 0 0 0
EWco 0 0.4 0.4 1 0.2 0 0 0.1 0.1 CA 0 0.08 0.2 0.2 1 0 0 0.1 0.08 WEco 0 0 0 0 0 1 0 0 0 EEco 0 0 0 0 0 1 0 0
EWco 0 0.4 0.4 1 0.2 0 0 0.1 0.1 CA 0 0.08 0.2 0.2 1 0 0 0.1 0.08 WEco 0 0 0 0 0 1 0 0 0 EEco 0 0 0 0 0 1 0 0 0 UA 0 0 0 0.1 0.1 0 1 0.4 0
EWco 0 0.4 0.4 1 0.2 0 0 0.1 0.1 CA 0 0.08 0.2 0.2 1 0 0 0.1 0.08 WEco 0 0 0 0 0 1 0 0 0 EEco 0 0 0 0 0 1 0 0 0 UA 0 0 0.1 0.1 0 1 0.4 0 LA 0 0 0.1 0.04 0 0.4 1 0

GENUS	SPECIES	subspecies	specimen number	comments	COI	COII	EFla
Velamysta	peninna	sspn	G115		KX362073		
Velamysta	peninna	peninna	G116		KX362055		
Velamysta	phengites		E-39-32		DQ157548	DQ157548	DQ177994
Velamysta	pupilla	greeneyi	424		KX362082		KX362004
Velamysta	pupilla	greeneyi	ME10-351		KX362095		
Velamysta	pupilla		E-43-3		DQ071864	DQ071864	DQ073021
Velamysta	nsp1		LEP-04368		KX362126		KX361968
Godyris	crinippa	nubilosa	G118		KX362066		
Godyris	dircenna	dircenna	05-1321		JX573763		JX573692
Godyris	dircenna	dircenna	05-1369		KX362093		KX361957
Godyris	dircenna		G119		KX362043		
Godyris	duillia		E-37-1		DQ157495	DQ157495	DQ177941
Godyris	duillia		ME10-130		KX362074		
Godyris	hewitsoni	sspn	21050		JX573764	JX573764	JX573693
Godyris	hewitsoni	sspn	21067		KX362107		
Godyris	kedema		BMC-1705		KX362044		KX362002
Godyris	lauta	lauta	LEP-11125		KX362088		
Godyris	lauta	lauta	9242		KX362010		
Godyris	nero		99-SRNP-12088		GU333959		
Godyris	nero		06-SRNP-4980		JQ548288		KX361997
Godyris	nero		99-SRNP-5672		GU333957		
Godyris	nero		99-SRNP-5379		GU333958		
Godyris	nero		99-SRNP-5677		GU333956		
Godyris	panthyale	panthyale	21186		JX573765	JX573765	JX573694
Godyris	panthyale	panthyale	21180		KX362108		
Godyris	sappho	sspn	05-1155		KX362024		KX361990
Godyris	sappho		ME10-402		KX362026		
Godyris	sappho		G120		KX362045		
Godyris	zavaleta		E-44-1		DQ069235	DQ069235	DQ073027
Godyris	zavaleta	matronalis	20219		EU068785		KX361967

Godyris	zavaleta	matronalis	20207	EU069042		EU069146
Godyris	zavaleta	sspn1	02-324	EU068788		
Godyris	zavaleta	matronalis	20480	EU068786		
Godyris	zavaleta	matronalis	20606	EU068787		
Godyris	zavaleta	matronalis	ME10-482	KX362033		
Godyris	zavaleta	srnkai	02_92	KX362078		KX361998
Godyris	zavaleta	sspn	02-1041	EU068789		KX361999
Godyris	zavaleta	ssp 4	04-309	KX362046		KX362000
Godyris	zavaleta	huallaga	05-1395	KX362067		
Godyris	zavaleta	ssp 4	04-328	KX362086		KX362008
Godyris	zavaleta	sosunga	KW13-6a	KX362014		
Godyris	zavaleta	sosunga	KW13-6b	KX362015		
Godyris	zavaleta	zygia	KW13-7	KX362016		
Veladvrie	pardalis		E_45_1	DO157547	DO157547	DO177003
Veladyris	pardalis	211702	ME10-38	KX362030	DQ157547	KY361055
Veladyris	pardalis	totumbra	21504	12573827		12573754
veladyns	pardans	totumbra	21304	37373027		37373734
Veladyris	cytharista		05-1038	KX362081		KX361991
Veladyris	electrea	nssp	G124	KX362025		
Pachacutia	baroni		LEP-11127	KX362089		
Pachacutia	mantura	ioroni	MC11-63	KX362127		
	mantura	joroni	WC11-05	1002127		
Hypoleria	alema	alema	ME10-517	JX573785		
Hypoleria	alema	chrysodonia	ME10-215	KX362109		
Hypoleria	alema		05-844	KX362058		KX361954
Hypoleria	alema	chrysodonia	20657	EU069045		EU069151
Hypoleria	alema	chrysodonia	20673	EU068798		
Hypoleria	alema	chrysodonia	20220	EU068796		
Hypoleria	alema	chrysodonia	LS02-98	EU068985		EU069152
Hypoleria	alema		B-16-8	DQ157504	DQ157504	DQ177949
Hypoleria	alema		BAKU-44	KX362047		KX361953
Hypoleria	alema	ssp	BAKU-52	KX362059		
Hypoleria	alema	ssp	BAKU-53	KX362060		
Hypoleria	lavinia	lavinia	LEP-00092	KX362120		
Hypoleria	lavinia	lavinia	LEP-00093	KX362121		
Hypoleria	lavinia	cassotis	08-SRNP-72597	JQ538543		
Hypoleria	lavinia	cassotis	08-SRNP-65239	JQ538447		
Hypoleria	lavinia	cassotis	05-SRNP-33790	JQ548234		
Hypoleria	lavinia	cassotis	KW13-30	KX362049		

Hypoleria Hypoleria Hypoleria	lavinia Iavinia Iavinia	vanilia	YB-BCI8137 YB-BCI2749 LEP-11339		HM416537 HM416503 KX362069		
Hypoleria Hypoleria	xenophis xenophis		05-624 G127		KX362050 KX362061		KX361952
Hypoleria	adasa		BAKU-27		KX362075		
Hypoleria Hypoleria	aureliana aureliana		02-679 MJ07-265		KX362048 KF268431		KX361956
Hypoleria	aureliana		MJ07-264		KX362092		
Hypoleria Hypoleria	ocalea ocalea	gephira	BMC-1631 LEP-11332		KX362070 KX362124		
Hypoleria	sarepta	famina	21693		KX362021		EU069245
Brevioleria Brevioleria	aelia aelia	pachiteae pachiteae	05-418 05-112		KX362076 KX362056		KX361995
Brevioleria	aelia	plisthenes	BAKU-45		KX362028	KX362028	KX361945
Brevioleria	arzalia		E-44-4	ganbank id : aelia	DQ157477	DQ157477	DQ177924
Brevioleria	arzalia	sspn2	ME-2007 LS02-14		EU068977	EU068977	EU069119
Brevioleria	arzalia	sspn	ME10-205		KX362012		
Brevioleria	arzalia	sspn	ME10-206		KX362040		
Brevioleria	arzalia	sspn	05-874		KX362039		KX361963
Brevioleria	arzalia	arzalia	02_3431		KX362083		KX362001
Brevioleria	arzalia		264		KX362077		KX361948
Brevioleria	coenina		ME10-359		JX573755		JX573684
Brevioleria	seba	oculata	20458		EU069025	EU069025	EU069120
Brevioleria	seba	oculata	ME10-212		KX362087	KX362087	
Brevioleria	seba	sspn1	02_3237		KX362057		KX361996
Brevioleria	seba		02_3477		KX362065		KX362005
Brevioleria	nsp1		G128		KX362023		
Mcclungia	cymo		B-19-3		DQ157512	DQ157512	DQ177958
Mcclungia	cymo	subtilis	06-205		KX362063		
Mcclungia	cymo	subtilis	ME11-159		JX573792		JX573720
Mcclungia	cymo		BAKU-42		KX362035	KX362035	KX361947

Mcclungia	cymo		03_74	KX362085		
Genus1	nsp1		MJ07-701	KX362128		KX361949
Genus2	andromica		E-39-29	DQ157496	DQ157496	DQ177942
Genus2	andromica		22	KX362100	KX362100	KX361970
Genus2	andromica		02-1694	KX362098	KX362098	KX361969
Genus2	andromica	andania	05-1026	KX362099	KX362099	KX361989
Genus2	andromica	andania	21054	JX573767	JX573767	JX573696
Genus2	andromica	andania	21055	KX362101	KX362101	KX361971
Genus2	andromica	andania	21627	KX362106	KX362106	KX361972
Genus2	andromica	andania	05-1037			KX361992
Genus2	andromica	andromica	LEP-11338	KX362041		
Genus2	andromica	lvra	KW13-12	KX362013		
Genus2	annette		CR-1-5	DQ157497	DQ157497.1	DQ177943
Genus2	annette	championi	05-SRNP-35673	KX362119		KX362006
Genus2	annette	championi	09-SRNP-35381	KX362042		KX362007
Greta	claviioi		LEP-01286	submitted		
	· ·) ·					
Greta	morgane	oto	NW70 9	AY090206		AY090172
Greta	morgane	oto	05 SRNP 59557	JQ548125		
Greta	morgane	oto	03 SRNP 8669	GU333965		
Greta	morgane	oto	05 SRNP 23112	GU157182		
Greta	morgane	oto	04 SRNP 49510	GU157174		
Greta	morgane	oto	05 SRNP 22989	GU157181		
	morgano	010				
Hypomenitis	alphesiboea		259	KX362125	KX362125	KX361973
Hypomenitis	alphesiboea		05-1012	JX573766	JX573766	JX573695
Hypomenitis	nspA		21006	JX573768	JX573768	JX573697
Hypomenitis	nspA		21361	KX362114	KX362114	KX361981
Hypomenitis	nspA		MJ07-704	KX362032		KX361950
	- F					
Hypomenitis	depauperata	umbrosa	LEP-06790	KX362062		KX361993
Hypomenitis	dercetis	dercetis	21040	JX573769	JX573769	JX573698
Hypomenitis	dercetis		02_2144	KX362102	KX362102	KX361974
			-			
Hypomenitis	enigma	sspn	21074	JX573770	JX573770	JX573699
Hypomenitis	enigma	sspn	21270	KX362103	KX362103	KX361976
Hypomenitis	enigma	sspn	21292	KX362112	KX362112	KX361977
Hypomenitis	enigma	sspn	21293	KX362110	KX362110	KX361978
	0					

Hypomenitis	enigma	sspn	21070	KX362022		KX361975
Hypomenitis Hypomenitis	nspB nspB	sspn	21002 MJ07-706	JX573771 KX362011	JX573771	JX573700 KX361951
Hypomenitis	esula		KW-120728-13	KX362017		
Hypomenitis	nspC		KW13-13b	KX362034		
Hypomenitis Hypomenitis	gardneri gardneri	devriesi devriesi	21121 21282	JX573772 KX362113	JX573772 KX362113	JX573701 KX361979
Hypomenitis Hypomenitis Hypomenitis Hypomenitis Hypomenitis	hermana hermana hermana hermana hermana	joiceyi sspn sspn sspn	E-39-46 400 21145 21341 21493	DQ069236 KX362105 JX573773 KX362117 KX362096	DQ069236	DQ073028 JX573702 KX361958 KX361964
Hypomenitis Hypomenitis	libethris libethris	libethris libethris	21160 21579	JX573774 KX362116	JX573774 KX362116	JX573703 KX361959
Hypomenitis Hypomenitis Hypomenitis	lojana lojana lojana		21181 21291 21468	JX573775 KX362111 KX362071	JX573775 KX362111 KX362071	JX573704 KX361980 KX361960
Hypomenitis Hypomenitis	lydia lydia		21122 21272	JX573776 KX362079	JX573776 KX362079	JX573705 KX361962
Hypomenitis Hypomenitis	ochretis ochretis	ochretis ochretis	LEP-08656 MJ07_697	submitted KX362019		
Hypomenitis Hypomenitis	oneidodes oneidodes	sspn sspn	21476 21535	JX573777 KX362052	JX573777 KX362052	JX573706 KX361982
Hypomenitis Hypomenitis Hypomenitis	ortygia ortygia ortygia	ortygia ortygia pyrczi	21203 21233 02-1693	JX573778 KX362097 KX362027	JX573778 KX362097 KX362027	JX573707 KX361983
Hypomenitis Hypomenitis	nspD nspD		MJ07_693 MJ07_694	KX362018 KX362020		
Hypomenitis Hypomenitis	polissena polissena		E-17-9 21	DQ157498 KX362104	DQ157498 KX362104	DQ177944 KX361984

Hypomenitis Hypomenitis Hypomenitis	theudelinda theudelinda theudelinda	zalmunna zalmunna	E-28-4 21000 21147		DQ157499 JX573779 KX362053	DQ157499 JX573779 KX362053	DQ177945 JX573708 KX361985
Hypomenitis Hypomenitis	nspE nspE		BMC-1704 BMC-1711		KX362072 KX362051		KX362009
Heterosais Heterosais	edessa edessa		BAKU-43 BAKU-72		KX362031 KX362068	KX362031	KX361946
Heterosais	giulia	giulia	LEP-11343		KX362129		
Heterosais Heterosais Heterosais	nephele nephele nephele	nephele nephele nephele	PE-19-1 LS03-169 20667	ID genbank:Heterosais guilia nephele	DQ157500 EU068984 EU069043	DQ157500 EU068984 EU069043	DQ177946 EU069149 EU069148
Pseudoscada Pseudoscada Pseudoscada	acilla acilla acilla		BAKU-73 BAKU-25 BLU342		KX362037 KX362029 KX362090	D0457505	D.0.477000
Pseudoscada Pseudoscada	acilla acilla	quadrifasciata	B-20-3 03-111	id genbank: P.timna id UCL: P.timna	DQ157535 KX362094	DQ157535	DQ177980 KX362003
Pseudoscada Pseudoscada	erruca erruca		B-13-3 BAKU-20		DQ157534 KX362084	DQ157534	DQ177979 KX361994
Pseudoscada Pseudoscada Pseudoscada Pseudoscada Pseudoscada Pseudoscada Pseudoscada Pseudoscada	florula florula florula florula florula florula florula	aureola gracilis gracilis areola aureola gracilis genetyllis	LS02-16 04-111 05-854 02_1914 20214 02_2086 02-423 BLU435		EU069101 KX362036 KX362054 KX362130 EU068971 DQ078319 DQ078313 KX362091	EU069101 KX362036 KX362054 KX362130 DQ078319 DQ078313	EU069247 KX361961 KX361986 EU069246
Pseudoscada Pseudoscada Pseudoscada Pseudoscada	timna timna timna timna		93 E-17-4 LEP-08654 LEP-00091		KX362118 DQ157536 KX362115 KX362123	KX362118 DQ157536	KX361966 DQ177981
Pseudoscada Pseudoscada Pseudoscada Pseudoscada Pseudoscada	timna timna timna timna timna	utilla utilla sspn	LEP_06796 20678 LS02-32 05-607 02-1355		KX362122 EU068941 EU069015 KX362080 KX362064	EU068941 EU069015	EU069249 KX361987 KX361965

Pseudoscada	timna	timna	02-762	KX362038 KX361988
Pseudoscada	timna	pusio	06_SRNP_65072	JQ544063
Pseudoscada	timna	pusio	06_SRNP_9283	JQ548418
Pseudoscada	timna	pusio	06_SRNP_31461	JQ548293
Pseudoscada	timna	pusio	05_SRNP_33463	JQ548236
Pseudoscada	timna	pusio	06_SRNP_9374	JQ548511
Pseudoscada	timna	pusio	01_SRNP_176	GU334301

SPECIES NOT INCLUDED (no sequence)		
Godyris	nepos	
Veladyris	nsp	
Pachacutia	cleomella	
Pachacutia	germaini	
Hypoleria	mulviana	
Hypomenitis	cubana	
Hypomenitis	nspD	
Hypomenitis	gabiglooris	
Hypomenitis	nsp	
Greta	diaphanus	

ゴカノレ

OUTGROUPS

Ceratinia_tutia_poecila_LS02_3 Callithomia_lenea_epidero_RB380 Dircenna_dero_E_44_3 Hyalenna_perasippa_ortygiosa_ME10_298 Episcada_ticidella_ticidella_21555 Haenschia_derama_G109 Pteronymia_alissa_20046 Placidina_euryanassa_B_16_1 Pagyris_cymothoe_cymothoe_ME11_113 Ithomia_agnosia_agnosia_8895 Methona_confusa_confusa_20618 Thyridia_psidii_ino_20354 Scada_zibia_batesi_20236 Forbestra_olivencia_juntana_20325 Mechanitis_mazaeus_mazaeus_20781 Athesis_acrisione_acrisione_LEP_06463

カル

Eutresis hypereia imitatrix ME10 458 Athyrtis mechanitis RB359 Paititia neglecta AW 02 1244 Olyras crathis montagui ME10 415 Patricia_dercyllidas_E_35_7 Melinaea_isocomma_E_39_52 Aremfoxia_ferra_ferra_G104 Epityches_eupompe_B_12_2 Hyalyris antea E 30 4 Napeogenes pharo pharo 20226 Hypothyris anastasia honesta 20507 Megoleria orestilla orestilla 05 1028 Hyposcada illinissa napoensis 21750 Oleria rubescens 8369 Elzunia humboldt cassandrina LEP 06870 Tithorea tarricina bonita ME11 179 Aeria eurimedia E 26 2 Tellervo zoilus QL5 Parantica_luzonensis_NW118_17 Parantica aspasia NW112 8 Amauris_ellioti_NW86_5 Danaus plexippus NW108 21 Tirumala limniace NW156 9 Idea_leuconoe_NW84_14 Euploea_camaralzeman_NW70_8 Lycorea_ilione_B_17_37 Lycorea_halia_NW122_19 Anetia briarea NW152 6

Tektin	Publication	Locality	Latitude
		Bolivia: La Paz, Sandillani	1612
		Peru: CU, Est. Biol. Wayquecha	1311
KX362222		Ecuador: Sucumbios, La Bonita	
KX362234		Ecuador: Napo, Yanayacu, nr Cosanga	0.6S
		Ecuador: Napo, Yanayacu	0.6S
	Whinnett 2005	Ecuador: Sucumbios, La Bonita, Tulcan Rd	
		Ecuador: Pichincha, Reserva Las Gralarias	
			017
		Peru: Amazonas, San Jose de Molinopampa	617
	Chazot et al 2014	Peru: San Martin, Taranota, Río Shileavo	
KX362182		Peru: San Martin, Tarapoto, No Shilcayo	6° 27' 07 S
KY362105		Port: San Martin, Parapolo, No Sincayo	550
KA302195		Peru. San Marun, Monoyacu	550
	Brower 2006	Ecuador: Zamora-Loia Highway km 40	
KX362232	Brower 2000	Equador: Nano, Holin	0.695
10002202			0.000
KX362244	Chazot et al 2014	Ecuador: Zamora-Chinchine, San Francisco	
		Ecuador: Zamora-Chinchipe, San Francisco	4.69 S
KX362196		Colombia: Antioquia, Amagá, Vereda La Mina	6°2'23.42" N
		Ecuador: Tungurahua, Río Ulba, nr. Baños	-1.441666667
KX362203		Ecuador	
KX362205	Janzen unpub	Costa Rica: Alajuela, Area de Conservacion Guanacaste, Sector San Cristobal, Quebrada Sucia 🥢 💊	
KX362204	Janzen unpub	Costa Rica: Area de Conservacion Guanacaste, Sector San Cristobal, Estacion San Cristobal 💋 🚽 👝	
	Janzen unpub	Costa Rica: Alajuela, Area de Conservacion Guanacaste, Sector San Cristobal, Quebrada Cementerio	
	Janzen unpub	Costa Rica: Alajuela, Area de Conservacion Guanacaste, Sector San Cristobal, Vado Rio Cucaracho	
	Janzen unpub	Costa Rica: Alajuela, Area de Conservacion Guanacaste, Sector San Cristobal, Quebrada Cementerio	
KX362248	Chazot et al 2014	Ecuador: Zamora-Chinchipe, San Francisco	
		Ecuador: Zamora-Chinchipe, San Francisco	4.69 S
KY200404		Denvi Can Martín Managarana I. Alum (Converde Daden)	F° 401 440 0
KX302131		Feru. San Marin, venceremos + 4 km (Segundo Baden)	5° 40° 142 S
KX362143		Ecuador: Napo, Cocodrilo	0° 39° 0 S
KX362198		Peru: Guzco, El Mirador	1304
۵۷848717	Whinnett 2005	Ecuador: Sucumbios, El Recodo	
KX362201	Flias 2007	Ecuador: Orellana, Rio Anangu	
11/1002201	LIId3 2007	Ecologica Chemiana, No Anangu	

	Elias 2007	Ecuador: Orellana, Rio Anangu	
	Elias 2007	Peru: San Martin, Pongo	
	Elias 2007	Ecuador: Orellana, Rio Anangu	
		Ecuador: Orellana, Rio Anangu	
KX362233		Ecuador: Napo, Mariposa	0° 54' 36 S
KX362183		Peru: San Martín, Km 30, Tarapoto - Yurimaguas	6° 24' 809 S
KX362226	Elias 2007	Peru: San Martín, Km 8, Tarapoto - Yurimaguas	6° 27' 43" S
KX362139		Peru: San Martín, Km 7.2, Pongo - Barranguita	06°17'12.3" S
KX362192		Peru: San Martín, Km 30, Tarapoto - Yurimaguas	6° 24' 588 S
		Peru: San Martín, Km 7.2. Pongo - Barranouita	06°17'12.3" S
KX362237		Guatemala: El Peten, Tikal	17°13'16"N
KX362238		Guatemala: El Peten, Tikal	17°13'16"N
KX362239		Costa Rica: Guanacaste, Santa Rosa	10°50'19"N
	Brower 2006	Ecuador: Sucumbios, La Bonita - Tulcan Road	
KX362141		Ecuador: Napo, Yanayacu	0° 36' 0 S
	Chazot et al 2014	Ecuador: Zamora-Chinchipe, San Francisco	
KX362224		Peru: San Martín, Venceremos + 4 km (Segundo Baden)	5° 40' 142 S
		Peru: Amazonas, San José de Molinopampa	617
		Ecuador: Morona-Santiago, km 19 Macas-Nueve de Octubre rd. Río Abanico	-2.255
KX362197		Peru: SM, Sauce, Limoncocha	
KX362200	Chazot et al 2014	Ecuador: Napo, Hollin	0.69S
		Ecuador: Napo, Mariposa	0° 54' 36 S
KX362227		Peru: San Martín, Camp 2 on trail from Quebrada Yanayacu to Laguna del Mundo Perdido, PNCAZ 🔵	6°46'42.06S
	Elias 2007	Ecuador: Orellana, Rio Anangu	
	Elias 2007	Ecuador: Orellana, Rio Anangu	
	Elias 2007	Ecuador: Orellana, Rio Anangu	
	Elias 2007	Ecuador: Sucumbios, Garza Cocha	
	Brower 2006	Brazil: São Paulo, Jundiai	
KX362134		Brazil: São Paulo, Monte Alegre Dosul	
KX362241		Brazil: Alagoas, Frag. Coimbra Usina Serra Grande	9°0'1"S
KX362213		Brazil: Alagoas, Frag. Coimbra Usina Serra Grande	9°0'1"S
		Ecuador: Manabí, Cerro Prieto, S Santa Lucía, km 20 Jipijapa-Guayaquil rd.	
		Ecuador: Pichincha, Río Silanche	
	ROLD	Costa Rica: Area de Conservación Guanacaste, Sector Pitilia, Manguera	
	ROLD	Costa Rica: Area de Conservación Guanacaste,Brasilia, Moga	
KX362243	BOLD	Costa Rica: Area de Conservacion Guanacaste, Sector Pitilla, Pasmompa Panama: Panama	

	BOLD BOLD	Panama: Panama Panama: Panama	
KX362214		Colombia: Antioquia	
KX362215 KX362216		Peru: San Martín, Robashca, Puesto de Control 11, PNCAZ Peru: San Martín, Yacusisa	6° 42' 38 S 646
KX362217		Brazil: São Paulo, Boracéia	
KX362230 KX362189 KX362140		Peru: San Martín, Biodiversidad USM, Km 19, Tarapoto - Yurimaguas Peru: SM, Shapaja-Chazuta Km5 Peru: SM, Shapaja-Chazuta Km5	06°27'42.6" S
KX362218 KX362242		Colombia: Antioquia, Gomez Plata, Porce Colombia: Antioquia	6°46'34" N
KX362190		Ecuador: Luis Garcia, Panayaku	
KX362191		Peru: Loreto, Cerro de Mira Culo, PNCAZ Peru: San Martín, Puente Serranoyacu	7° 27' 12 S 05°40'31.6" S
KX362132		Brazil: São Paulo, Monte Alegre Dosul	
	Brower 2006 Elias 2007	Ecuador: Sucumbios, El Recodo Ecuador: Sucumbios, Garza Cocha	
KX362229		Ecuador: Napo, Mariposa Ecuador: Napo, Mariposa	0° 54' 36 S 0° 54' 36 S
KX362138 KX362228 KX362137		Peru: San Martín, Caño Negro, Río Biabo, PNCAZ Peru: Cuzco, De Pilcopata a Santa Rosa de Huacaria Ecuador: Azuay, Communidad Shuar Mirador, 70 km E of Macas (Macas to Puyo road)	7° 45' 10.15" S
	Chazot et al 2014	Ecuador: Napo, Cocodrilo	0° 39' 0 S
KX362142 KX362202 KX362194 KX362193	Elias 2007	Ecuador: Orellana, Rio Anangu Ecuador: Napo, Mariposa Peru: Cuzco, Palma Real (otro lado del Río) Peru: Cuzco, Pilcopata	0° 54' 36 S 12°37'18.06"S
		Peru: Cuzco, Quebrada Quitacalzón	1301
KX362136 KX362135	Chazot et al 2014	Brazil: Sao Paulo, Campinas Peru: San Martín, Achinamiza, Bajo Río Huallaga Ecuador: Zamora-Chinchipe, Quebrada Chorillos Brazil: São Paulo, Monte Alegre Dosul	6° 28' 952 S

KX362176		Brazil: São Paulo, Campinas	22° 49' 34 S
KX362245		Peru: Junín, 1Km S of Mina Pichita	1105
KX362145 KX362144 KX362146	Brower 2006	Brazil: Sao Paulo, Campinas Ecuador: Pichincha, Mindo, Yellow House Trail, Hacienda de San Vicente Peru: San Martín, Río Nieva Peru: Amazonas San Martín, Km 387, Limite San Martín, Amazonas border	0° 1' 60 S 5° 41' 5.99" S 5° 39' 830 S
KX362147 KX362148		Ecuador: Zamora-Chinchipe, San Francisco Bogu: San Bodra	4.69 S
KX362149 KX362235 KX362249		Ecuador: Zamora-Chinchipe, Podocarpus National Reserve Colombia: Antioquia	4°6.80'S
KX362206 KX362225	Brower 2006	Costa Rica: Monte Verde	0.90
		Venezuela	
	BOLD BOLD Janzen unpub Janzen unpub Janzen unpub	Costa Rica: Area de Conservacion Guanacaste, Sector Mundo Nuevo, Vado Miramonte Costa Rica: Alajuela, Area de Conservacion Guanacaste, Sector San Cristobal, Sendero Palo Alto Costa Rica: Guanacaste, Area de Conservacion Guanacaste, Sector Del Oro, Quebrada Trigal Costa Rica: Guanacaste, Area de Conservacion Guanacaste, Sector Cacao, Gongora Bananal Costa Rica: Guanacaste, Area de Conservacion Guanacaste, Sector Del Oro, Quebrada Trigal	
KX362223	Chazot et al 2014	Peru: Amazonas, Jorge Chávez 1	
KX362150 KX362151	Chazot et al 2014	Ecuador: Zamora-Chinchipe, San Francisco Ecuador: Zamora-Chinchipe, San Francisco Peru: Cuzco, San Pedro	4.69 S 1303
KX362207		Ecuador: Loja nr. Amaluza Centro Admin. PN Colambo-Yacuri, km 16.5 Jimbura-San Andrés rd.	-4.711666667
KX362185 KX362152	Chazot et al 2014	Ecuador: Zamora-Chinchipe, San Francisco Peru: San Martín, La Antena, Km 16, Tarapoto - Yurimaguas	6° 27' 18 S
KX362153 KX362154 KX362155	Chazot et al 2014	Ecuador: Zamora-Chinchipe, San Francisco Ecuador: Zamora-Chinchipe, San Francisco Ecuador: Zamora-Chinchipe, San Francisco Ecuador: Zamora-Chinchipe, San Francisco	4.69 S 4.69 S 4.69 S

KX362186		Ecuador: Zamora-Chinchipe, San Francisco	4.69 S
KX362187 KX362247	Chazot et al 2014	Ecuador: Zamora-Chinchipe, San Francisco Peru: Junín, 2Km N of Mina San Vicente	1113
KX362246		Colombia	
KX362240		Costa Rica: Puntarenas, Las Alturas	8°57'0"N
KX362156 KX362157	Chazot et al 2014	Ecuador: Zamora-Chinchipe, San Francisco Ecuador: Zamora-Chinchipe, San Francisco	4.69 S
AY848718	Brower 2006	Ecuador: Sucumbios, La Bonita	
KX362158	Chazat at al 2014	Ecuador: Napo, Yanayacu, near Cosanga Ecuador: Zamora Chinchino, San Francisco	
KX362159		Ecuador: Zamora-Chinchipe, San Francisco	4 69 S
KX362161		Ecuador: Zamora-Chinchipe, San Francisco	4.60 C 4.69 S
10(002101			4.00 0
KX362162	Chazot et al 2014	Venezuela: Araqua. Rancho Grande	
KX362163		Peru: San Pedro	
KX362164	Chazot et al 2014	Ecuador: Zamora-Chinchipe, San Francisco	
KX362165		Ecuador: Zamora-Chinchipe, San Francisco	4.69 S
KX362166		Ecuador: Zamora-Chinchipe, San Francisco	4.69 S
KX362167	Chazot et al 2014	Ecuador: Zamora-Chinchipe, San Francisco	
KX362168		Ecuador: Zamora-Chinchipe, San Francisco	4.69 S
KX262200	Charat at al 2014	Faueder: Carabi Maldanada Tulaán rd	00.52.10 N
KA302200		Ecuador: Carchi Las Juntas	00 55 19 1
KX362169	Chazot et al 2014	Ecuador: Zamora-Chinchipe, San Francisco	
KX362170		Ecuador: Zamora-Chinchipe, San Francisco	4.69 S
KX362171	Chazot et al 2014	Ecuador: Zamora-Chinchipe, San Francisco	
KX362172		Ecuador: Zamora-Chinchipe, San Francisco	4.69 S
KX362188		Peru: San Martín, Río Nieva	5° 41' 5.99" S
		Denve havin differ O ef Mine Diskite	4405
KY200050		Peru: Junin, TKm S of Mina Pichita	1105
KX30225U		Peru. Junin, TKIII 5 OT MINA PICNILA	1105
	Brower 2006	Ecuador: Carchi Lita	
KX362173e		Ecuador: Caroni, Ena Ecuador: Pichincha, Mindo, Yellow House Trail, Hacienda de San Vicente	0° 1' 60 S
100021103			0 1 00 3

	Brower 2006	Ecuador: Loja, San Pedro de Vilcabamba	
KX362174 KX362175	Chazot et al 2014	Ecuador: Zamora-Chinchipe, San Francisco Ecuador: Zamora-Chinchipe, San Francisco	4.69 S
KX362199 KX362209		Colombia: Antioquia, La Estrella, Romeral Colombia: Antioquia, La Estrella, Romeral	6°8'16.46"N 6°8'16 46"N
101002200			0 0 10.40 1
KX362133		Brazil: São Paulo, Monte Alegre Dosul	
KA302210			
KX362211		Colombia: Antioquia	
	Brower 2006	Peru: Huanuco, Tingo Maria	
10/000010	Elias 2007	Ecuador: Sucumbios, Garza Cocha	
KX362212	Elias 2007	Ecuador: Orellana, Rio Anangu	
KX362219		Brazil: São Paulo, Boracéia	
	Brower 2006	Brazil: Sao Paulo, M. Guacu	
KX362177		Brazil: Bahia, Serra Bonita	15°25'17.68"S
	Brower 2006	Brazil: São Paulo, Campos do Jordao	
KX362220		Brazil: Minas Gerais, Alto Caparao, Parque Nacional de Caparao Base alto Caparao'	20°25'S
	Flias 2007	Ecuador: Sucumbios, Garza Cocha	
KX362221		Peru: Ucayali, Río Previsto suspension bridge, 8 km W of El Boquerón del Padre Abad	9° 06' 13 S
KX362178		Peru: San Martín, Laguna del Mundo Perdido, PNCAZ	6° 45' 4.54 S
HM052165	Flias 2007/Dasmahanatra2010	Peru: San Martin, Km 28, Tarapoto - Yurimaguas	6° 24' 30 S
1111002100	Whinnett 2005	Peru: San Martín, Km 26, Yurimaguas - Tarapoto (now Km 24)	5° 58' 489 S
	Whinnett 2005	Peru: San Martín, Km 28, Tarapoto - Yurimaguas	6° 24' 30 S
KX362236		Ecuador: Pichincha, Km 106.5, road along Mindo	
	Brower 2006	Ecuador: Carchi, Lita	
KX362181	Elias 2007	Ecuador: Orellana, Rio Anangu	
KV262170	Elias 2007	Ecuador: Sucumbios, Garza Cocha	6° 40' 20 0
KX362179		Peru: San Martín, Kobashca, Puesto de Control II, PinCAZ Peru: San Martín, Km 42, Tarapoto - Yurimaguas	6° 25' 29.4 S

KX362231		Peru: San Martín, Puente Serranoyacu	05°40'31.6" S
	BOLD	Costa Rica: Area de Conservacion Guanacaste, Sector Pitilla, Sendero Memos	
	BOLD	Costa Rica: Area de Conservacion Guanacaste, Sector San Cristobal, Finca San Gabriel	
	BOLD	Costa Rica: Area de Conservacion Guanacaste, Sector Pitilla, Sendero Naciente	
	BOLD	Costa Rica: Area de Conservacion Guanacaste, Sector Pitilla, Sendero Mismo	
	BOLD	Costa Rica: Area de Conservacion Guanacaste, Sector San Cristobal, Camino Brasilia	
	Janzen unpub	Costa Rica: Alajuela, Area de Conservacion Guanacaste, Sector San Cristobal, Rio Blanco Abajo	

For Review Only

6/54 77.88W 77.88W 7733 76° 20' 46 W 7701 77.73W 79.09 W 75° 41'35.42" W -78.39166667	Longitude	
77.88W 77.88W 7733 76° 20' 46 W 7701 77.73W 79.09 W 75°41'35.42" W 78.39166667	6754	
77.88W 7733 76° 20' 46 W 77.73W 77.73W 79.09 W 75° 41'35.42' W -78.39166667	7135	
77.38W 7733 76° 20' 46 W 7701 77.73W 79.09 W 75°41'35.42" W -78.39166667	77.88W	
7733 76° 20' 48 W 7701 77.73W 79.09 W 75°41'35.42" W -78.39166667	77.88W	
7733 76° 20' 46 W 77.73W 77.73W 79.09 W 75°41'35.42" W -78.39166667		
7733 76° 20' 46 W 7701 77.73W 79.09 W 75° 41'35.42" W -78.39166667		
76° 20' 46 W 7701 79.09 W 75°41'35.42" W -78.39166667	7733	
76° 20' 46 W 7701 77.73W 79.09 W 75°41'35.42" W -78.39166667		
76 20 40 W 7701 77.73W 79.09 W 75°41'35.42" W -78.39166667	76° 00' 46 W	
77.73W 79.09 W 75°41'35.42" W -78.39166667	76 20 46 W 7701	
77.73W 79.09 W 75°41'35.42" W -78.39166667		
77.73W 79.09 W 75°41'35.42" W -78.39166667		
79.09 W 75°41'35.42" W -78.39166667	77.73W	
79.09 W 75°41'35.42" W -78.39166667		
75°41'35.42" W -78.39166667	79.09 W	
-78.39166667	75°44125 40" \\	
-78.39166667	75 41 55.42 W	
	-78.39166667	

79.09 W

77° 45' 136 W 77° 47' 24 W 7133

77° 47' 24 W 76° 18' 503 W 76° 19' 23" W 76° 13'54.0" W 76° 13'54.0" W 89°37'29"W 89°37'29"W 85°37'8" W	
77° 52' 48 W	
77° 45' 136 W	
7733	
-78.2	
77.73W 77° 47' 24 W 75°53'49.44W	

35°50'25"W 35°50'25"W

75° 54' 300 W

47° 4' 4 W 7525 78° 47' 60 W 77° 46' 56.37" W 77° 45' 224 W 79.09 W 78°57.90'W -82.83333333 79.09 W 7133-4 -79.44 76° 17' 54 W 79.09 W 79.09 W 79.09 W

79.09 W	
7524	
82°50'0''W	
79.09 W	
79.09 W 79.09 W	
79.09 W 79.09 W	
79.09 W	
78 04 47 W	
79.09 W	
79.09 W 77° 46' 56.37" W	
7525 7525	
78° 47' 60 W	
Page 73 of 76

Molecular Ecology

79.09 W

75°39'30.15" W 75°39'30.15" W

39°30'12.25"W

41°50'W

75° 44' 28 W 75° 52' 8.29 W 76° 19' 30 W

76° 13' 856 W 76° 19' 30 W

76° 02' 00 W 76° 15' 01.6 W Molecular Ecology

77°40'28.7" W

