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Abstract 

Purpose – Fused deposition modelling (FDM) is one of the most popular additive 

manufacturing (AM) processes, and is widely used for prototyping and fabricating low cost 

customised parts. Current FDM machines have limited techniques to monitor process 

conditions in order to minimise process errors, such as nozzle clogging. Nozzle clogging is one 

of the most significant process errors in current FDM machines, and may cause serious 

consequences such as print failure. This paper presents a physics-based dynamic model suitable 

for monitoring nozzle clogging in FDM machines. 

Design/Methodology/Approach – Liquefier mount of FDM extruder is analysed as a beam 

excited by a uniform loading distributed over a partial length. Boundary conditions and applied 

loads for direct type FDM extruder are identified and discussed. Simulation of nozzle clogging 

was performed by using  nozzles of different diameter from 0.5 mm to 0.2 mm, in step change 

of 0.1 mm. Sets of experiments were carried out by measuring vibrations of the liquefier block 

mount during FDM extrusion. 

Findings – The mount of a liquefier block in FDM extruder can be used to place a vibration 

sensor in order to monitor process errors such as nozzle clogging. Liquefier block mount’s 

transverse vibration amplitudes increase non-linearly when nozzle starts to block. 

Practical implications – The proposed model can be effectively used for monitoring nozzle 

clogging in FDM machines, as it is based on the physics relating the FDM process parameters 

and the nozzle blockage.   

Originality/value – The novelty of this paper is the unique method of modelling the FDM 

process dynamics that can be used for monitoring nozzle clogging. 
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1. Introduction 

The development of additive manufacturing (AM) processes will probably lead to 

technological improvements in various engineering areas, including bioengineering (Murphy 

& Atala, 2014), (Geng, et al., 2005), electronics (Lewis & Ahn, 2015), (Joe Lopes, et al., 2012), 

and robotics (Tlegenov, et al., 2014), (Telegenov, et al., 2015). One of the most popular AM 

processes is fused deposition modelling (FDM) (Crump, 1992). Parts manufactured via FDM 

machine are created as computer-aided design (CAD) files, converted into a format which 

includes only surface geometry (for example, .stl format), and sent to a FDM machine for 3D 

printing. During 3D printing, the filament is fed into liquefier, where it melts and extrudes 

through a nozzle onto a build table via a computer-controlled three-axis stage, by forming a 

thin cross-section layer of a part. After completion of one layer the table is lowered (or the 

extruder is moved upwards), and the next cross-sectional layer of a part is formed. This process 

repeats for all cross sectional layers (or slices), until the part is fully manufactured in three 

dimensions. The commonly used material for FDM is thermoplastics, such as acrylonitrile 

butadiene styrene (ABS), polyactic acid (PLA), polycarbonate (PC), polyamide (PA), 

polystyrene (PS), rubber, and others. FDM is commonly used for prototyping, testing, 

manufacturing low cost detailed parts and customized manufacturing tools. However, there are 

number of quality problems of the parts fabricated using FDM, such as geometry deviations 

(Huang & Singamneni, 2015), (Melenka, et al., 2015), (Weiss, et al., 2015), (Wesley Machado 

Cunico & de Carvalho, 2013), (Singh, 2014), surface roughness defects (Boschetto, et al., 

2013), (Armillotta, 2006), (Rojas Arciniegas & Esterman, 2015), and mechanical strength 

issues (Ahn, et al., 2002), (Rodríguez, et al., 2003), (Bellini & Güçeri, 2003), (Sun, et al., 2008), 

(Durgun & Ertan, 2014), (Agarwala, et al., 1996). These and other quality issues of the 

fabricated parts are resulted from number of FDM process errors. In order to minimize the 

process errors, there are various guidelines developed for each FDM machine settings, such as 

extrusion and feed velocity, liquefier and chamber temperature, extrusion and table calibration, 

etc. However, the FDM process conditions are not monitored online, and may vary during 

operation, resulting in process errors. Thus, there is a need in analysing the fundamental 

principles of how the process parameters are related to the process errors for developing 

effective FDM condition monitoring technique. In addition, FDM condition monitoring may 

be very significant for increasing the quality of fabricated parts. To sum up, the FDM process 

is one of the most popular and promising 3D printing technique, but has serious issues with 

quality problems of parts and print failure. These problems need to be resolved via fundamental 

process analysis and FDM condition monitoring.   
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 There are several studies reported on condition monitoring of extrusion based layered 

fabrication processes, which are discussed as follows. To start with, vision-based monitoring 

in layered manufacturing was reported by Fang et al. (Fang, et al., 1998), (Fang, et al., 2003), 

where optical image of each layer was examined and compared with the ideal layer morphology 

using machine vision techniques. Secondly, Rao et al. (Rao, et al., 2015) proposed online 

condition monitoring in fused filament fabrication (FFF) based on non-parametric Bayesian 

Dirichlet Process mixture model using multiple sensors, such as thermocouples, 

accelerometers, an infrared temperature sensor, and video borescope. They experimentally 

investigated the relationship effect of input parameters (feed/flow rate ratio, layer height, and 

extruder temperature) on the surface roughness of the fabricated part. Thirdly, Wu et al. (Wu, 

et al., 2015) presented FDM condition monitoring technique using acoustic emission for 

identification abnormal states during fabrication process. They experimentally identified three 

abnormal states of the FDM machine, such as run out of material, semi-blocked extruder, and 

completely blocked extruder. Although the above mentioned reports investigate layered AM 

condition monitoring using various sensors such as vision, thermal, acoustic emission and 

others, it can be noted that these studies have not addressed the fundamental physics of the 

process, and thus were limited to fully interpret the resulting errors during operation. Fourthly, 

Bukkapatnam et al. (Bukkapatnam & Clark, 2007) developed physics-based dynamic model of 

contour crafting (CC) layered manufacturing process. They modelled the CC machine as 

nonlinear two degrees of freedom lumped mass system which was excited by forces such as 

filament feeding force, drive mechanism force, backpressure force, and others. Their model 

captured vibration signals gathered from four accelerometers, which were placed on the 

extruder head and machine frame. The monitoring system based on this dynamic model 

identified such process errors as overflow, underflow, fast feed, and slow feed. However, it can 

be noted that less attention has been paid to the force arising from flow through the nozzle and 

the boundary conditions. To summarize, researchers reported a number of monitoring 

techniques for layered manufacturing processes. Several studies have tended to focus on 

empirical process error detection using multiple sensors, rather than on the physics of that 

process. Another study was based on physics-based dynamic model and captured vibrations 

during operation, but did not fully consider one of the main process forces and boundary 

conditions, and hence were limited in the representation of the full dynamics of the system.  

 From the above mentioned literature review there are no known studies reported on 

physics-based dynamic modelling and monitoring of nozzle clogging in FDM, and the current  



This is a pre-print of an article Yedige Tlegenov, Yoke San Wong, Geok Soon Hong, (2017) "A dynamic model for 
nozzle clog monitoring in fused deposition modelling", Rapid Prototyping Journal, Vol. 23 Issue: 2, pp.391-400. The 
final authenticated version is available online at: https://doi.org/10.1108/RPJ-04-2016-0054 

4 

study attempts to fill this research gap. Nozzle clogging is one of the most significant process 

errors in AM, and may cause several problems such as geometrical misalignments or failure 

during printing (Kim, et al., 2015). There are three main reasons of the nozzle clogging 

phenomenon, namely, presence of external particles on the filament, filament burn inside of 

the nozzle, and the absence of place for extrusion (Bellini, 2002). Currently nozzle clogging 

problems cannot be handled automatically on FDM machines (Heller, 2015), and only the FDM 

machine operator can identify it visually, after which it is required to manually stop the 

operation, clean the nozzle, and reprint the whole part from the scratch.  

 The objectives of the present research are to: a) propose a physics-based theoretical 

model of the FDM process dynamics that represents fundamental relationships between process 

parameters and nozzle clogging phenomenon; (b) simulate the blocked nozzle based on the 

developed model; and (c) compare these findings with the actual experiments. The novelty of 

the present research is the unique method of modelling the FDM process dynamics with respect 

to the nozzle clogging phenomenon.  In particular, the extruder’s bar mount is analysed as a 

pinned-pinned beam excited by a uniform loading distributed over a partial length. The model 

includes a crucial process parameter, which is the flow-through-nozzle force, which was not 

considered in previous studies (Bukkapatnam & Clark, 2007), (Rao, et al., 2015), (Wu, et al., 

2015). In addition, the boundary conditions of the system are identified and discussed, such 

that the model can be easily adjusted for other types of FDM extruders. The location of the 

accelerometer placement on the FDM machine was carefully chosen and relies on the proposed 

physics-based model, unlike in the earlier studies (Rao, et al., 2015), (Bukkapatnam & Clark, 

2007) where the sensors were placed on the surface of the extruder block assembly. 

 The rest of the paper is organized as follows. Section 2 presents the theoretical process 

model of nozzle clogging in FDM, simulation and experimental methods. Section 3 illustrates 

the theoretical and experimental results. Section 4 discusses the significance which is followed 

by the conclusion. 

 

2. Methods 

The methodology includes theoretical modelling of the FDM process with respect to nozzle 

clogging phenomenon, simulation of the nozzle clogging based on the developed theoretical 

model, and experimental verification, discussed in the following section. 
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2.1. Dynamic process modelling 

Consider the FDM extruder shown in Figure 1. Generally it consists of a stepper motor, drive 

gear, drive block, bar mount, heated liquefier, and nozzle. The heated liquefier is connected to 

the bar mount by a thermal tube and supported by a nut at the top. The working principle of 

FDM extruder is as follows. First, a stepper motor powers the drive gear, which feeds the 

filament into the heated liquefier. Next, the solid filament acts as a piston and pushes the molten 

filament into the liquefier, which results in the extrusion of the melted filament through a 

nozzle. The dynamic process modelling methodology includes several main parts, namely, 

problem statement, boundary conditions, beam analysis, and identification of applied loads. 

 
2.1.1. Problem statement, boundary conditions, and beam analysis 

As can be seen from Figure 1, the liquefier and nozzle are connected via a thermal tube, which 

is fixed to the bar mount by a nut at the top. Consequently, any disturbances affecting the 

liquefier and nozzle along the z-axis are also affecting the thermal tube in the longitudinal 

direction. Thus, the longitudinal disturbances of the thermal tube directly affect the nut, and 

the nut distributes the applied forces uniformly over its contact area with the bar mount. 

Therefore it can be noted that any forces affecting the liquefier and nozzle along the z-axis 

directly affect the bar mount in the same direction.  

Based on the above mentioned, the bar mount is modelled as a beam with known geometry and 

material parameters. In addition, the excitations affecting the extruder along the z-axis are 

 
Figure 1. 3D layout of FDM extruder 
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modelled to be distributed over a contact area of the nut with the bar mount. As a result, the 

FDM extruder’s bar mount can be modelled as a pinned-pinned beam, as shown in Figure 2. 

The partial length of the beam is excited by a uniform loading, which depend on the size of the 

nut. 

 
 Thus, the FDM extruder analysed in this study is a direct extruder type, where the 

extruder motor is directly above the liquefier. Apart from the direct extruder type, there are 

several other types of FDM extruders available on commercial market. For example, the 

Bowden extruder type is widely used in FDM printers, where the extruder motor is placed 

relatively far away from the filament entry to the liquefier. However, it can be noted that the 

dynamic modelling of the Bowden extruder can be performed in a similar manner as direct 

extruder, by adjusting filament feeding force. Furthermore, there are plenty of heater block 

(also referred as hot end) types available for FDM extruders, with various range of materials 

and sizes. Nevertheless nearly all of them are mounted in a similar way, i.e. liquefier and nozzle 

are connected to the mount, which can be modelled as a beam. Thus, it can be noted that the 

modelling of other types of heater blocks can be done in the same way with proper adjustments 

of the boundary conditions. To sum up, the FDM extruder model introduced in current study 

can be treated as novel dynamic model that can be applied near to all structural types of FDM 

extruders. 

 
Figure 2. 2D layout of FDM extruder and projected beam model 
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The forced lateral response of a pinned-pinned beam excited by a uniform loading over 

a partial length of the beam is shown in Figure 3. 

 
The beam is assumed to have uniform cross section and material properties. The governing 

equation of the model can be written as (Barnoski, 1965) 

𝑚(𝑥)𝑧̈(𝑥, 𝑡) + 𝑐(𝑥)𝑧̇(𝑥, 𝑡) + 𝐷(𝑥)𝑧(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) (1) 

where 𝑚(𝑥) is beam mass per unit length, 𝑐(𝑥) is beam viscous damping coefficient per unit 

length, 𝑧(𝑥, 𝑡) is lateral displacement of beam, 𝐷(𝑥) is spatial differential operator, 𝑓(𝑥, 𝑡) is 

force function acting on the structure (will be discussed in section 2.1.2). The modal solution 

for the lateral displacement 𝑧(𝑥, 𝑡) from (1) can be written as 

𝑧(𝑥, 𝑡) = ∑ 𝜙1(𝑥)𝑞1(𝑡)1 ,         for 𝑗 = 1,2,… (2) 

where 𝜙1(𝑥) is jth normal mode of the system, 𝑞1(𝑡) is the generalized coordinate. For the 

Euler-Bernoulli beam the differential operator can be expressed as 

𝐷(𝑥) = 𝐸𝐼
𝜕:

𝜕𝑥: (3) 

where 𝐸 is the modulus of elasticity and 𝐼 is the second moment of area of the beam cross 

section. Hence, the governing equation (1) for the current problem can be rewritten as 

(Barnoski, 1965) 

𝑚(𝑥)𝑧̈(𝑥, 𝑡) + 𝑐(𝑥)𝑧̇(𝑥, 𝑡) + 𝐸𝐼
𝜕:𝑧(𝑥, 𝑡)
𝜕𝑥: = 𝑓(𝑥, 𝑡) (4) 

In order to solve (4) there is a need to determine the mode shape and generalized coordinate. 

The detailed calculation in terms of generalized coordinates is provided in Appendix A.  

 To sum up, the dynamic process modelling of FDM extruder with respect to nozzle 

clogging is performed by assuming the bar mount as Euler-Bernoulli beam excited by a 

uniform loading distributed over a partial length. The beam boundary conditions are identified 

as pinned at both ends, and the modal solution for the lateral displacement of the beam can then 

be appropriately obtained with appropriately defined boundary conditions. 

2.1.2. Identification of applied loads 

 
Figure 3. Pinned-pinned elastic beam subjected to a partially distributed uniform loading 
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The applied loading consists of two main opposite forces, namely, feed force and flow-through-

nozzle force. To start with, the feed force acts downwards along the z-axis and depends on 

filament parameters, stepper motor characteristics and the distance between locations where 

filament feeds and where the filament enters into liquefier (also referred as unsupported 

filament length). On the other hand, the flow-through-nozzle force depends mainly on the 

pressure drop in the liquefier. The vector summation of these two main forces plus the gravity 

force represents the partially distributed uniform loading acting on a pinned-pinned beam. 

Filament feeding force acting along the z-axis is a function of the stepper motor torque 

and the roller radius. For the system with two feeding rollers the filament feeding force can be 

derived as (N. Turner, et al., 2014) 

𝐹<==> =
2𝑇@
𝑅BCDD=B

 (12) 

where 𝑇@ is torque of filament feeding motor along z-axis, 𝑅BCDD=B  is radius of the filament 

feeding roller. However, there exists the upper limit to the torque that the feed roller motor can 

provide, because when compression of filament reaches a critical limit, the feedstock filament 

can buckle. The critical force that can be placed on the filament can be obtained from an Euler 

buckling analysis for pin-ended boundary condition (Venkataraman, et al., 2000)  

𝐹<==>EF =
𝜋H𝐸<ID𝐼<ID
𝐿KD<H  (13) 

where 𝐹<==>EF  is critical feeding force, 𝐸<ID  is Young’s modulus of the filament, 𝐼<ID  area 

moment of inertia of cross section of the filament, 𝐿KD< is unsupported length of the filament. 

The flow-through-nozzle force depends on the pressure drop in the nozzle, where the 

solid filament is melted and pushed through the liquefier. The pressure drop (isothermal) of the 

nozzle can be derived as the sum of all pressure drops in three zones of the nozzle, as shown 

in Figure 4 (Michaeli, 2003), (Bellini, et al., 2004), (N. Turner, et al., 2014): 

Δ𝑝N = 2𝐿N O
𝑣
𝜒R

N
S
∙ U
𝑞 + 3
𝑅N
SWN X

N
S
 (14) 

Δ𝑝H =
2𝑞

3 tan(𝛼 2⁄ )	
_

1

𝑅N
` Sa

+
1

𝑅H
` Sa
b ∙ U

𝑣𝑅HH(𝑞 + 3)
𝜒 X

N
S
	 (15) 

Δ𝑝` = 2𝐿` O
𝑣
𝜒R

N
S
∙ U
(𝑞 + 3)𝑅NH

𝑅H
SWN X

N
S
	 (16) 



This is a pre-print of an article Yedige Tlegenov, Yoke San Wong, Geok Soon Hong, (2017) "A dynamic model for 
nozzle clog monitoring in fused deposition modelling", Rapid Prototyping Journal, Vol. 23 Issue: 2, pp.391-400. The 
final authenticated version is available online at: https://doi.org/10.1108/RPJ-04-2016-0054 

9 

where Δ𝑝 is pressure drop, 𝑣 is flow mean velocity, 𝜒  is flow consistency index, 𝑞 is flow 

behaviour index, 𝑅N, 𝑅H are nozzle radius values at the entry and at the outer regions 

respectively, 𝐿N, 𝐿` are nozzle length values in the zone 1 and 3 respectively, 𝛼 is an inside 

angle of the nozzle.  

 
The total pressure drop is then calculate as (Michaeli, 2003), (Bellini, et al., 2004), (N. Turner, 

et al., 2014) 

∆𝑝 = ∆𝑝N + ∆𝑝H + ∆𝑝` (17) 

The Arrhenius Law is taken into consideration for the temperature dependence (Bellini, et al., 

2004), (N. Turner, et al., 2014) 

𝐻(𝑇) = 𝑒fg
N
hi

N
hj
k (18) 

where 𝑇 is operation temperature and 𝑇lis absolute temperature. The temperature dependent 

pressure drop can be calculated by (Bellini, et al., 2004), (N. Turner, et al., 2014) 

Δ𝑝h = Δ𝑝 ∙ 𝑒fg
N
hi

N
hj
k (19) 

Thus the flow-through-nozzle force can now be derived as (Bellini, et al., 2004), (N. Turner, 

et al., 2014) 

𝐹<DCm = ∆𝑝h ∙ 𝐴<ID (20) 

where 𝐴<ID is cross sectional area of the filament.  

 After calculation of the feeding force and flow-through-nozzle force the total force 

acting on a beam can be obtained from 

𝑊p = 𝐹q<==> + 𝐹q<DCm + 𝐺̅=tuB (21) 

 
Figure 4. Nozzle layout with three zones 
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where 𝑊 is a total uniform force acting on a simply supported beam over a partial length, 𝐺=tuB  

is gravity force of extruder system. 

 

2.2. Numerical simulation of nozzle clogging 

Numerical simulation of the nozzle clogging was performed by calculating the natural 

frequency of the system and derivation the of the Fourier amplitude spectrum of acceleration 

when the nozzle is blocked. The process parameters used in the current study are based on 

MakerBot Stepstruder MK7 commercial extruder (MakerBot Replicator 2, 2016), (MakerBot 

Stepstruder, 2016), (Melenka, et al., 2015) and listed in Table I. The numerical simulation 

involves the following steps: 

• The clogging phenomenon was simulated by setting the initial nozzle diameter to 0.5 

mm, and the clogged nozzle diameters at 0.4, 0.3, and 0.2 mm. 

• The natural frequency of the system was obtained from equation (9) using parameters 

listed in Table I.  

• The Fourier amplitude spectrum of acceleration was calculated from equation (10) 

using characteristics presented in Table I. 

After investigating the frequency response to a load distributed over partial length of a beam, 

the data were saved and imported to MATLAB software for building the resultant graphs. 

 

 

Table I. Process parameters  

Parameter Description/Value 
Bar mount material Aluminium 
Bar mount size, length x width x height 30 x 13 x 16 mm 
Stepper motor torque 0.285 Nm 
Drive gear diameter 10.8 mm 
Filament type ABS plastic 
Filament diameter 1.75 mm 
Extrusion temperature 230 Celsius 
Extrusion speed 50 mm/sec 
Internal angle of nozzle 110 degrees 
Nozzle diameters 0.5 mm - 0.2 mm 
Chamber temperature 32 Celsius 
Young’s modulus of Aluminium 70 GPa 
Young’s modulus of ABS plastic 1.5 GPa 
ABS melt viscosity 155 Pa·s 
Flow consistency index 633 Pa·sn 
Flow behaviour index 0.6 
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2.3. Experimental setup 

The experimental setup based on MakerBot Stepstruder MK7 commercial extruder (MakerBot 

Replicator 2, 2016), (MakerBot Stepstruder, 2016), (Melenka, et al., 2015) to verify the 

proposed dynamic model is shown in Figures 5 and 6. 

 
The test parameters were set as follows: 

• Extruder: MakerBot MK7 Stepstruder (MakerBot Replicator 2, 2016), (MakerBot 

Stepstruder, 2016), (Melenka, et al., 2015). 

• Controller board: RepRap Arduino Mega Pololu Shield (RAMPS) 1.4 (RepRap 

Arduino Mega Pololu Shield, 2016) and an Arduino Mega 2560 board (Arduino, 2016). 

• Accelerometer: Bruel and Kjaer 4393 Piezoelectric charge accelerometer (Brüel & 

Kjær, 2016) with mass of 2.4 gram, and sensitivity of 3.1 pC/g. The accelerometer was 

placed on the bottom side of the bar mount. 

• Charge amplifier: Bruel and Kjaer Charge Amplifier type 2635 (Brüel & Kjær Sound 

& Vibration Measurement A/S, 2016) with output unit set as acceleration in m/s2. 

• Signal analyser: Hewlett Packard 35670a Dynamic Signal Analyser (Keysight 

Technologies , 2016). 

• Nozzles: 0.5 mm, 0.4 mm, 0.3 mm, and 0.2 mm in diameter made of brass. 

 
Figure 5. FDM extruder with accelerometer attached to the bar mount 
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The experimental process parameters are listed in Table I. The FDM extruder’s clogging 

phenomenon was simulated during experiment by reducing the diameter of the nozzle. In 

particular, the initial nozzle diameter used was 0.5 mm, and then subsequent nozzles have 

diameter of 0.4, 0.3, and 0.2 mm, and the vibrations of the bar mount were measured during 

filament extrusion for each nozzle size. The vibration signals were analysed in time and 

frequency domain.  

 

3. Results 

Natural Frequency.  The simulated and experimental results of the natural frequency 

and acceleration amplitudes are shown in Table II. The theoretical natural frequency was 

calculated to be 198 Hz and found experimentally to be 200 Hz. The theoretical and 

experimental Fourier amplitude spectra of acceleration about the natural frequency were 

obtained for each nozzle size (from 0.5 mm to 0.2 mm), and the differences were found to be 

in the range of 10%. Hence, the theoretical model is relatively accurate for determining the 

natural frequency and the corresponding Fourier acceleration amplitude of the bar mount 

transverse vibration during filament extrusion.  

 

 
Figure 6. Placement of the accelerometer 

Table II. Comparison of simulated and experimental results 

Results Simulated Experimental 
Natural frequency, Hz 198 200 

Natural frequency amplitudes of 
acceleration for each nozzle 
diameter 

0.5 mm 
value percentage value percentage 
0.6990 100% 0.7776 100% 

0.4 mm 0.9114 130.386% 1.0128 130.246% 
0.3 mm 1.1035 157.868% 1.2261 157.677% 
0.2 mm 1.6141 230.915% 1.7934 230.632% 
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Frequency Spectrum. The simulated and experimental Fourier acceleration amplitude 

spectra for each nozzle size are presented in Figures 7-10. As can be seen from Table II and 

Figures 6-9, the Fourier amplitude spectrum of acceleration sharply increases with the decrease 

in nozzle diameter. In particular, for the decrease in nozzle diameter from 0.5 mm to 0.2 mm 

the amplitude of acceleration near the natural frequency value increases from 0.6990 to 1.6141 

during simulation, and from 0.7776 to 1.7934 during experiments, or 230.915% and 230.632% 

respectively. Thus, it can be noted that the theoretical predictions on the relative increase in bar 

mount’s transverse vibrations when the nozzle becomes clogged are essentially accurate.  

Amplitude of Natural Frequency. The simulated and experimental peaks of the 

acceleration amplitudes at around the natural frequency value are shown in Figures 7-11. 

Figure 11 show the comparison between theoretical and experimental peaks obtained against 

the four different nozzle diameters. There were five data sets of experimental vibration signals 

collected for each nozzle size. As can be seen, both theoretical and experimental results of 

acceleration amplitudes increase non-linearly with decrease of the nozzle diameter. Therefore, 

the theoretical prediction that the vibration increase is non-linear during nozzle clogging is 

likely to be correct. Hence, the results show that the proposed theoretical model adequately 

represents the nozzle clogging phenomenon in FDM as confirmed by the high correlation with 

the experimental natural frequency, relative change in the natural frequency amplitude with 

nozzle diameter, and trend of the vibration change. 

 

 
Figure 7. Simulated and experimental values of acceleration amplitudes, 0.5 mm nozzle 
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Figure 8. Simulated and experimental values of acceleration amplitudes, 0.4 mm nozzle 

 
Figure 9. Simulated and experimental values of acceleration amplitudes, 0.3 mm nozzle 
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4. Discussion 

The objective of the current study is to propose physics-based theoretical model of the FDM 

process dynamics that can predict nozzle clogging phenomenon. In order to achieve this, the 

extruder’s bar mount was analysed as a pinned-pinned beam excited by a uniform loading 

distributed over a partial length.  

 
Figure 10. Simulated and experimental values of acceleration amplitudes, 0.2 mm nozzle 

 
Figure 11. Simulated and experimental values of acceleration amplitudes at natural frequency 

vs nozzle diameter 
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There are several findings from theoretical and experimental results, which showed that 

the proposed model can relatively accurately predict the nozzle clogging phenomenon in FDM 

machine. First, the calculated natural frequency of the modelled system was very close to the 

values obtained from the conducted experiments. Second, the theoretical acceleration 

amplitudes were comparatively near to the values gathered from vibration sensor during the 

experiment. Third, the proposed model claimed that the FDM extruder’s bar mount transverse 

vibration amplitudes increase with the decrease in nozzle diameter (i.e. nozzle clogging), which 

was verified with the set of experiments. Fourth, the theoretical model calculations of bar 

mount transverse vibrations showed non-linear trend during simulated clogging, which was 

very close to the trend of experimental results. Hence, the proposed dynamic model is relatively 

adequate for prediction of nozzle blockage in FDM machine. 

All of these findings can be significant for monitoring nozzle clogging in FDM 

machines, as they are based on the fundamental relationships between FDM process parameters 

and the nozzle blockage.  It can be noted that present findings are in contrast to the studies 

reported by Fang et al. (Fang, et al., 1998), (Fang, et al., 2003), Rao et al. (Rao, et al., 2015), 

Wu et al. (Wu, et al., 2015) on layer based AM condition monitoring using various sensors 

such as vision, thermal, acoustic emission and others, which have not addressed the 

fundamental physics of the process, and thus were limited to fully interpret the resulting errors 

during operation. Furthermore, findings of the current study are relatively close to the one 

proposed earlier by Bukkapatnam et al. (Bukkapatnam & Clark, 2007) which was based on 

dynamic model of FDM machine and captured vibrations during prototyping, but it can be 

noted that less attention has been paid to the flow-through-nozzle force and the boundary 

conditions.  Another important aspect of the present paper can be clear interpretation of the 

vibration sensor placement (on the liquefier block mount of FDM extruder), which is in contrast 

to the previous studies reported on layer based AM condition monitoring (Rao, et al., 2015), 

(Wu, et al., 2015), (Bukkapatnam & Clark, 2007) where placement of the sensors was not fully 

addressed.  

There are several limitations of the current study. Firstly, theoretical calculation of the 

forces affecting the bar mount may slightly differ from the real values. This due to the fact that 

proposed theoretical model includes such process parameters as radius of the filament or 

liquefier temperature. The radius of the filament and the liquefier temperature mostly vary 

during operation, and depend on a number of factors, such as filament quality, built 

environment, heater controller, and others. Secondly, the masses of the wires that are connected 
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to the heater block were not included in the current study, and thus the theoretical acceleration 

amplitude results were slightly lower than the experimental values.  

Future research may include usage of the proposed model for real time monitoring of 

nozzle clogging during actual 3D printing using FDM machine using different process 

parameters and filament materials.  

 

5. Conclusion 

Nozzle clogging is one of the most significant process errors in current FDM machines, and 

may cause serious consequences such as print failure. This paper proposed physics based 

dynamic model for monitoring nozzle clogging in FDM machines. Moreover, the proposed 

theoretical model was used to simulate the clogged nozzle during 3D printing, and the results 

were verified by the set of experiments. Considering this, the following conclusions and 

recommendations can be suggested. 

• The mount of a liquefier block in FDM extruder can be used to place a vibration sensor 

in order to monitor process errors such as nozzle clogging. 

• Depending on the type of the mount, the boundary conditions need to be set 

appropriately. For example, the bar mount of a direct extruder considered in present 

study can be modelled as a pinned-pinned beam excited by a uniform loading 

distributed over a partial length. 

• Flow-through-nozzle force is one of the most important parameters to consider for 

monitoring nozzle clogging. This is due to the fact that flow-through-nozzle force 

depend on the radius of the nozzle, which decreases when the nozzle becomes clogged. 

• The decrease in nozzle radius (can be considered as clogging) increases flow-through-

nozzle force, which affects the liquefier block and its mount to the FDM extruder. 

• Disturbances on the liquefier block causes its mount to vibrate in transverse direction, 

which can be tracked via vibration sensors. 

• Theoretical and experimental results obtained in present paper show that the transverse 

acceleration amplitudes of the liquefier block mount increase non-linearly when the 

nozzle becomes clogged.  

In conclusion, the findings of present study can be one step towards developing monitoring 

nozzle clogging in FDM machines, as they are based on the fundamental relationships between 

FDM process parameters and the nozzle blockage. 
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Appendix A 

The governing equation in terms of generalized coordinated can be written as (Barnoski, 1965) 

𝑀p1𝑞̈1(𝑡) + 𝐶1̅𝑞̇1(𝑡) + 𝐾p1𝑞1(𝑡) = 𝐹q1 (A.1) 

where 𝑀p1 the generalized mass and calculated as 

𝑀p1 = y𝜙1(𝑥)
D

l

𝜙z(𝑥)𝑚(𝑥)𝑑𝑥 (A.2) 

𝐶1̅ the generalized viscous damping and calculated as 

𝐶1̅ = y𝜙1(𝑥)
D

l

𝜙z(𝑥)𝑐(𝑥)𝑑𝑥 (A.3) 

𝐾p1 the generalized stiffness and calculated as 

𝐾p1 = 𝜔1H𝑀p1 (A.4) 

𝐹q1 the generalized force and calculated as 

𝐹q1 = y𝜙1(𝑥)
D

l

𝑓(𝑥, 𝑡)𝑑𝑥 (A.5) 

and 𝜔1 is modal frequency and 𝑓(𝑥, 𝑡) = 𝑊 sin𝜔𝑡.  

In order to solve (4) there is a need in calculating mode shape and generalized coordinate, 

which is elaborated as follows. Firstly, by taking into consideration the modal solution the 

mode shape 𝜙1(𝑥) from (2) need to be identified as (Barnoski, 1965) 

𝜙1(𝑥) = 𝐶 cos 𝜆1 + 𝐷 sin 𝜆1 + 𝐸 cosh 𝜆1𝑥 + 𝐹 sinh 𝜆1𝑥 (A.6) 

where 𝐶,𝐷, 𝐸, 𝐹 are constants which can be identified from boundary conditions, 𝜆 is an 

argument of beam characteristic equation. The boundary conditions for the current pinned-

pinned beam are as follows: 

for 𝑥 = 0;           𝑥(0, 𝑡) = 0; 𝐸𝐼 �
�@(l,u)
�t�

= 0; 

for 𝑥 = 𝑙;           𝑧(𝑙, 𝑡) = 0; 𝐸𝐼 �
�@(D,u)
�t�

= 0, 

(A.7) 
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which means that deflection and the moment at the beam ends are equal to zero. By applying 

boundary conditions (A.7) into (A.6) we obtain the mode shapes as (Barnoski, 1965) 

𝜙1 = √2 sin 𝜆1𝑥 = √2 sin
𝑗𝜋𝑥
𝑙  (A.8) 

where 𝑙 is length of the beam. The multiplication of the amplitude of mode shapes to √2 is 

done for simplicity in solving the generalized mass (Barnoski, 1965). The resonant frequencies 

can be written as 

�𝜆1𝑙�
:
=
𝑚𝑙:

𝐸𝐼 𝜔1
H (A.9) 

where 𝜆1𝑙 = 𝑗𝜋, for 𝑗 = 1,2,… . Secondly, the generalized coordinate 𝑞1(𝑡) can be found from 

the following equation (Barnoski, 1965) 

𝑞̈1(𝑡) + 2𝜁1𝜔1𝑞̇1(𝑡) + 𝜔1H𝑞1(𝑡) =
𝐹q1
𝑀p1

 (A.10) 

where 𝜁1 is damping ratio. The equation (A.10) is second order linear differential equation with 

constants, which can be solved as (Barnoski, 1965) 

𝑞1(𝑡) =
1

𝜔1	H − 𝜔H + 𝑖2𝜁1𝜔1𝜔
∙
𝐹q1(𝑥)
𝑀p1

 (A.11) 

or in absolute magnitude form as 

�𝑞1(𝑡)� =
1

𝜔1	H��U1 −
𝜔H

𝜔1H
X
H

+ O2𝜁1
𝜔
𝜔1
R
H
�

∙
𝐹q1(𝑥)
𝑀p1

 

(A.12) 

Now by substituting (A.8) into (A.2) we obtain generalized mass as (Barnoski, 1965) 

𝑀p1 = 2𝑚ysin 𝜆1 sin 𝜆z

D

l

𝑑𝑥 = � 𝑚𝑙,					𝑗 = 𝑘
		0,								𝑗 ≠ 𝑘	 (A.13) 

and by substituting (A.8) into (A.5) the generalized force can be calculated as (Barnoski, 1965) 
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𝐹q1 = 𝑊√2y sin 𝜆1 𝑥
�

�

sin 𝜔𝑡 𝑑𝑥 =
2√2𝑊
𝜆1

Usin(𝑏 + 𝑎)
𝜆1
2 ∙ sin

(𝑏 − 𝑎)
𝜆1
2X sin 𝜔𝑡 

(A.14) 

After calculating generalized mass and force (A.13) and (A.14) can be substituted into (A.11) 

and (A.12) in order to find the generalized coordinate (Barnoski, 1965).  

𝑞1(𝑡) =
1

𝜔1	H − 𝜔H + 𝑖2𝜁1𝜔1𝜔
∙ U
2√2𝑊
𝜆1𝑚𝑙

Usin(𝑏 + 𝑎)
𝜆1
2 ∙ sin

(𝑏 − 𝑎)
𝜆1
2X sin 𝜔𝑡X (A.15) 

Furthermore, the generalized coordinate from (A.15) and the mode shape from (A.8) can be 

placed into (2), thus the lateral displacement of pinned-pinned beam excited by uniform loading 

distributed over a partial length can be in general form written as (Barnoski, 1965):  

𝑧(𝑥, 𝑡) =
4𝑊
𝑚𝑙 �

sin 𝜆1𝑥
𝜆1�𝜔1	H − 𝜔H + 𝑖2𝜁1𝜔1𝜔�

�

1

∙ �Usin(𝑏 + 𝑎)
𝜆1
2 ∙ sin

(𝑏 − 𝑎)
𝜆1
2X sin 𝜔𝑡

� 

(A.16) 

and the absolute magnitude can be written as 

|𝑧(𝑥)| =
4𝑊
𝑚𝑙 �

sin 𝜆1𝑥

𝜆1 _𝜔1	H��U1 −
𝜔H

𝜔1H
X
H

+ O2𝜁1
𝜔
𝜔1
R
H
�b

�

1

∙ �Usin(𝑏 + 𝑎)
𝜆1
2 ∙ sin

(𝑏 − 𝑎)
𝜆1
2X sin 𝜔𝑡

� 

(A.17) 

 


