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Pancreatic ductal adenocarcinoma (PDAC) is the most common malignancy of the pancreas and has one of the highest mortality

rates of any cancer type with a 5-year survival rate of <5%. Recent studies of PDAC have provided several transcriptomic

classifications based on separate analyses of individual patient cohorts. There is a need to provide a unified transcriptomic PDAC

classification driven by therapeutically relevant biologic rationale to inform future treatment strategies. Here, we used an integrative

meta-analysis of 353 patients from four different studies to derive a PDAC classification based on immunologic parameters. This

consensus clustering approach indicated transcriptomic signatures based on immune infiltrate classified as adaptive, innate and

immune-exclusion subtypes. This reveals the existence of microenvironmental interpatient heterogeneity within PDAC and could

serve to drive novel therapeutic strategies in PDAC including immune modulation approaches to treating this disease.

Introduction
Despite on going improved understanding of the genetics and
molecular biology of Pancreatic Ductal Adenocarcinoma (PDAC),
prognosis remains strikingly poor with five-year survival rate
<5%.1 Improving outcomes may be achieved through accurate
subtyping upon detection to better tailor therapeutic strategies.

Using transcriptomics is an attractive option to sub classify
cancers. For example, most notably researchers in colorectal can-
cer have developed a consensus classification has four subtypes
with biological and therapeutic relevance.2 Gene expression pro-
files of tumours are a combined readout of the tumour’s genetic
and epigenetic status, as well as the composition of other cells in

the microenvironment that are sampled in the biopsy. Themicro-

environment includes tumour stroma, host connective tissue cells

that change in response to signals from the tumour cells, and
innate and adaptive immune system cells.3,4

Several recent studies have described the transcriptomic land-
scape of PDAC and identified different subtypes with different
clinical outcomes and drug sensitivities.5–8 Table 1 summarises
several notable studies. Collisson et al. proposed the first classifi-
cation in 2011 by using unsupervised clusteringmethods on tran-
scriptomic data.5 This had identified three subtypes: classical,
quasimesenchymal and exocrine-like, which have different prog-
noses and different responses to treatment. This classification has
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subsequently been challenged and revised, with newer classifica-
tions being put forward.6–8 Moffitt et al. identified 4 groups:
2 stroma and 2 non-stroma tumour groups.6 Moffitt subtyped
PDAC ‘classical’ and ‘basal-like’ based on the pancreatic tumour
cells and ‘normal stroma’ and ‘activated stroma’ based on the vir-
tuallymicro-dissected stroma cell population. Bailey et al. demon-
strated 4 subtypes with different characterisations and different
prognoses: ‘squamous’, ‘pancreatic progenitor’, ‘immunogenic’ and
‘aberrantly differentiated endocrine exocrine’ (ADEX).7 Sivakumar
et al. used a master regulator approach based on the transcriptional
effects of oncogenic KRAS to determine 3 subtypes that showed dif-
ferent prognoses, characteristics and treatment strategies.8

Other studies that have derived prognostically significant
transcriptional classifiers include Birnbaum et al. who per-
formed a previous meta-analysis of the Collisson, Moffitt and
Bailey classifications showing concordance between the Collis-
son and Moffitt tumour gene lists and concordance between
the Moffitt stroma gene lists and Bailey classification.9 Further
transcriptome analysis from Mao et al. in a small cohort of
10 patients has shown there is a differential transcriptome in
pancreatic cancer.10 A smaller gene expression study showed
there were three subtypes using a gene expression microarray

that has prognostically significant groups.11 Another smaller
master regulator study by Janky et al. demonstrates there are
four prognostically significant subtypes.12 Further studies by
Haider et al.,13 Kirby et al.14 and Stratford et al.15 all eluci-
dated prognostic transcriptomic signatures of 36, 19 and
6 genes, respectively. Donahue et al. using various cohorts
performed an integrative analysis that identified 171 genes
that elicited another prognostic signature.16 A study by Con-
nor et al. used mutational signatures to derive four subtypes:
age related, double-strand break repair, mismatch repair, and
one with unknown aetiology with the double-strand break
repair and mismatch repair groups were associated with CD8
T cells activation and increased T regs.17 In two papers by
Witkiewicz and colleagues, a relationship between the immune
status and genomics was described and classified PDAC into
four subtypes: mutationally cold, hot, mutationally active and
cold with cold having the best prognosis.18,19

These studies suggest that it is possible to categorise PDAC
through transcriptomics, mutational signatures or immunologi-
cal status. However, this has not become the accepted clinical
approach because of problems inherent with the approach – too
many non-overlapping signatures, inadequate clinical relevance

Table 1. Pancreatic ductal carcinoma and cancer subtyping signatures and studies used in this study

Technique of discovery Sub-type Prognosis Composition Therapeutics

Collisson Non-negative matrix
factorization (NMF)
analysis with
consensus clustering

Classical Good N/A Erlotinib

Exocrine Average N/A Non-proposed

Quasi-mesenchymal Poor N/A Gemcitabine

Moffitt Non-negative matrix
factorization (NMF)
and digital separation

Tumour: classical Average (median
survival 19 months)

N/A N/A

Tumour: basal-like Poor (median survival
11 months)

N/A Better response to
adjuvant therapy

Stroma: normal Good (median survival
20 months)

Stellate cells N/A

Stroma: activated Poor (median survival
15 months)

Macrophages N/A

Bailey Unsupervised
clustering

Squamous Poor Macrophages N/A

Pancreatic Progenitor N/A N/A N/A

Immunogenic N/A B cells and T cells Checkpoint
blockade

ADEX N/A

Sivakumar Master regulator
Analysis

Notch Good T cell infiltration Immunotherapy

Cell cycle Average N/A Adjuvant therapy

Hedgehog Poor Macrophages N/A

What’s new?
While several transcriptomic classifications of pancreatic adenocarcinoma (PDAC) have been proposed, a unified classification

would be valuable to inform future treatment strategies. Through an integrative meta-analysis of 353 patients from four

different studies, the authors found that the greatest prognostic value in independent cohorts could be achieved through

stratification by gene expression signatures associated with tumour-infiltrating immune cells across different pancreatic cancer

subtypes. Recognising the existence of different tumour escape mechanisms (and indeed phenotypes) in pancreatic cancer may

guide immunotherapeutic treatment plans and improve patient stratification for maximization of therapeutics.

2 Immunophenotypes of PDAC
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and poor mechanistic underpinning. It would thus be valuable
to consolidate different stratification schemes into a novel classi-
fication of pancreatic cancer and develop reliable and robust
biomarkers to better predict outcomes and rationalise therapeu-
tic strategies.

In response to this unmet need, we have developed an immu-
nological classification scheme from four notable transcriptomic
PDAC sub typing studies (Table 1).5–8 PDAC has previously
been shown to have different immune populations in its
microenvironment.20 In light of the tumour having a complex
immune composition, the tumour microenvironment can be
immunosuppressive or tolerant and this can be due to immune
dysfunction.21,22 However, immunotherapy approaches have
not yet had an impact on pancreatic cancer survival.23,24 Our
meta-analysis reveals that the greatest prognostic value in inde-
pendent cohorts could be achieved through stratification by gene
expression signatures associated with tumour infiltrating
immune cells across different PDAC subtypes. Recognising the
existence of different tumour escape mechanisms (and indeed
phenotypes) in PDAC may guide distinct immunotherapeutic
treatment plans and improve patient stratification for maximisa-
tion of therapeutic effect.

Methods
Data download: gene expression profiles, clinical and
mutations datasets
The PACA-AU gene expression data (n = 269) plus clinical and
mutational profiles were obtained from ICGC data portal (https://
dcc.icgc.org/releases/release_24/Projects/PACA-AU). TCGA raw
counts files for RNA-seq data (n = 177) were obtained from the
GDC portal (https://portal.gdc.cancer.gov/). Clinical metadata
and Mutation annotation files (MAF) for the TCGA cohort was
obtained from the GDC legacy archive (https://portal.gdc.cancer.
gov/legacy-archive/) with the UUIDs: a9f29dc4-6a6a-42f3-b06d-
9e6ded926b55 (clinical metadata) and faf50bd9-bfc8-4dfa-b0ca-
9184e44fb07f (MAF file). The UNC gene expression data (n = 132)
plus clinical profiles were obtained from gene expression omnibus
(GEO) archive under the accession number GSE21501. Out of
132, in the UNC cohort, 30 were excluded due to unavailability of
survival time in the clinical table.

Processing of gene expression data
Batch effects were removed by applying the ComBat algorithm.25

TCGA RNA-seq data was transformed with the variance-
stabilising transformation method26 prior to removing batch
effects. Batch IDs for the TCGA cohorts were obtained from the
sample barcode, namely the ‘plate’ id as described in https://wiki.
nci.nih.gov/display/TCGA/TCGA+Barcode.

Classification of PACA-AU and TCGA cohorts according to
five previous classification schemes
The R package ConsensusClusterPlus27 was employed to subtype
PDAC samples according to the expression signatures defined in

Moffitt et al.6 and Collisson et al.5 (Supporting Information Fig. S1).
The number of clusters was confirmed by examining cumulative dis-
tribution function (CDF). We confirmed the existence of well-
separated clusters forMoffitt et al. classification based on tumour (two
clusters: basal-like and classical) and stroma signatures (2 clusters:
stroma and activated stroma). For the Collison et al. classification we
confirmed the existence of evident 3 clusters (classical, exocrine-line
andquasimesenchymal). Bailey et al. cluster labelswere directly down-
loaded from (PACA-AU cohort)7 and TCGA cohort).28 Sivakumar
et al. cluster labels were directly downloaded from.8

Identification of immunophenotypes
To identify a meaningful agreement of the multiple clustering
labels we used consensus clustering and the partition around
medoids (PAM) algorithm to cluster the PACA-AU and TCGA
cohorts according the similarity of their labels. For the PACA-
AU cohort, we only included tumours that were classified as
‘Pancreatic Ductal Adenocarcinoma’ according to the tumour
histological type classifications and were also labelled by all 5 clas-
sification schemes, which corresponded to 204 PDAC tumours.
For the TCGA cohort we included only the filtered PDAC cases
according to Raphael et al., this corresponded to 149 TCGA
tumours.28 The Hamming distance was used as a measure of sim-
ilarity between PDAC tumours. The robustness of sample classifi-
cation was analysed by examining cumulative distribution
function (CDF) of the proportion of times in which 2 samples are
clustered together across the resampling iterations (1,000×).29

For varying number of clusters (K = 2 to K = 7), we examined
the area under the curve of the consensus distribution function
(CDF) plot (Supporting Information Figs. S2 and S3) and identi-
fied three robust novel subtypes in both cohorts.

Survival analysis
Multivariate Cox regression, log-rank test and Kaplan–Meier
estimators were implemented using the R package survival.
For the PACA-AU cohort (Fig. 2c), we adjusted the survival
differences for age, gender, and tumour stage and tumour
grade. For the TCGA cohort (Fig. 2e), we adjusted for age,
gender, tumour stage, tumour grade and targeted therapy
indicator (yes/no). Tumour stage refers to the TNM Staging
System based on the extent of the tumour (T). The targeted
therapy indicator refers to whether the patient had adjuvant
and/or postoperative pharmaceutical therapy. More specific
information about the treatment regime was not available. The
correlation between immune cell scores and survival (Fig. 3c)
was performed using a multivariate cox regression model adjust-
ing for age, gender, tumour grade and stage (PACA-AU and
TCGA cohorts) and adjusting for tumour stage (TMN T stage)
for the UNC cohort. For the TCGA cohort we only included
cases with no targeted therapy.

Analysis of immune infiltrates and tumour purity
Two main methodologies were used to identify immune cell
types enriched in the tumour microenvironment. For three
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of the gene signatures30–32 we used single-sample gene set
enrichment analysis (ssGSEA) method implemented in the
GSVA R package.33 For the Aran gene signatures we used the
xCell method implemented in R.34 The xCell method also
relies on ssGSEA analysis but contains an additional step,
which uses a reference matrix of ‘spillovers’ between cell types.
The ‘spillover’ step is thought to better eliminate dependencies
between closely related cell types (e.g. such as between CD8+
T-cells and NK cells). Log2(TPM + 1) gene expression levels
from the TCGA cohort were used to estimate the enrichment
with the ssGSEA method, and TPM levels were used with the
xCell method. Normalised microarray gene expression levels
(Illumina Expression BeadChIPs) from the PACA-AU cohort
were used directly in both methods.

ESTIMATE was used to gauge the degree of leukocyte
infiltration, stromal content and tumour purity.3 Data was
summarised per PDAC subtypes in the PACA-AU and TCGA
cohorts (Fig. 5e; Supporting Information Fig. S5).

Histopathology analysis
TCGA H&E Slides were viewed on the NCI data portal
https://portal.gdc.cancer.gov/. Two pathologists reviewed the
slides and assessment of tumour cellularity and dominant
immune cell type (lymphocyte versus neutrophils) were made.

Mutation analysis
Mutational signature analysis was performed using the Decon-
structSigsR Package.35 We determined the contribution of
30signatures defined in COSMIC (http://cancer.sanger.ac.uk/
signatures/)to explain each pancreatic cancer mutational pro-
file. Normalisation was relative to the number of times each
trinucleotide context is observed in the exome. The output
was aset of weights specifying the estimated contribution of
each of the 30known signatures to the mutation profile. MAF
files were parsed with maftools36 (Supporting Information
Fig. S7). Number of neoantigens per tumour in the TCGA
cohort was retrieved from The Cancer Immunome Atlas data-
base (https://tcia.at/home).31

Statistical analysis
All statistical analyses: Fisher’s exact test, Chi-square test, Wil-
coxon rank sum test, hypergeometric test, and hierarchical
clustering, were performed using R.37 Multiple test correction
was performed using the R function p.adjust and the Benjamini
and Hochberg (FDR) method. Jaccard coefficients were com-
puted using the R package rules. Differential expression analysis
between the groups was carried out using the Welch’s test
implementation in R and by comparing each group against all
others. Welch’s test is a variant of the classical Student test,
whose goal is to test the equality between two means taking
assuming different variances between two groups. When neces-
sary, Ensembl or Entrez IDs were mapped to human HUGO
identifiers using Ensembl version 89 biomart (http://www.
ensembl.org/biomart). R code, sample IDs and final sample cluster

memberships for the TCGA and PACA-AU cohorts are provided
as a Supporting Information file (Additional File 1) and in Sup-
porting Information Table S1.

Results
PDAC meta-analysis
We used published exemplar gene signature for data from
Collison et al. and Moffitt et al. to cluster 242 PDAC primary
tumour cases from the PACA-AU cohort (Supporting Infor-
mation Fig. S1). We further obtained and applied clustering
labels identified by Bailey et al. and Sivakumar et al. also from
the PACA-AU cohort. Figure 1a summarises the workflow of
our analysis.

To identify a meaningful accordance of the multiple clus-
tering labels we used consensus clustering and the partition
around medoids (PAM) algorithm to cluster the 204 PDAC
tumours according to the similarity of their labels and identi-
fied three robust novel subtypes (Fig. 1b; Supporting Informa-
tion Fig. S2). Visualisation of the similarity network between
tumour labels revealed that consensus samples remained
grouped between the three large primary network hubs
(Fig. 1b). We used 150 TCGA samples that were previously
classified to perform the same classification using the PAM
algorithm in an independent cohort (Supporting Information
Fig. S3). Notably, the same three subtypes were identified in
the TCGA cohort (Fig. 1c) with the three main subtypes
showing a stable and consistent pattern of co-associated labels
(Fig. 1d; Supporting Information Fig. S4). The subtype 1 clus-
ter overlapped between Moffitt basal-like, Bailey squamous,
Collisson QM-PDA and Moffitt activated stroma subtypes
(Fig. 1d). The subtype 2 cluster consisted of a statistically signifi-
cant overlap between the Bailey ADEX, Collisson exocrine-like,
Sivakumar Notch and Moffitt normal-stroma subtypes. Finally,
the subtype 3 cluster overlapped with the classical subtypes
identified by Moffitt and Collison studies and cell-cycle group
identified by Sivakumar et al. (overlaps were considered signifi-
cant at hypergeometric FDR adjusted p ≤ 0.05 in both cohorts;
Fig. 1d).

Clinicopathological characteristics of PDAC subtypes
Clinical features, including age, gender, tumour grade and TNM,
were statistically compared between the three clusters. Two-way
contingency table analysis showed significant association between
grade and cluster subtype, with subtype 1 tumours more likely to
be grade 3 (Chi-square test p = 0.002 PACA-AU cohort; Fig. 2a)
and subtype 2 tumours more likely to be grade 1 (Chi-square
test p = 0.033 for the TCGA cohort; Fig. 2b). Tumour stage and
gender did not correlate with the subtypes in any of the cohorts.
Similarly, the average age of diagnosis was not significantly asso-
ciated to any cluster subtype (Figs. 2a and 2b; Supporting Infor-
mation Table S2).

To determine whether patients belonging to a certain
PDAC cluster have different outcomes, we performed a Cox
proportional hazards analysis. We observed differences in

4 Immunophenotypes of PDAC
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prognosis of different PDAC subtypes, with subtype 1 tumours
associated to worst overall survival and higher HR (Figs. 2c–2f;
Supporting Information Table S3) in multivariable analyses,
after adjustment for several clinicopathological features,
including age, gender, tumour stage and grade. This difference
was only statistically significant in the PACA-AU cohort (sub-
type 1 vs. subtype 2: p = 1.3 × 10−2 HR = 1.9; 95%
CI = [1.1–3.0]) and not in the TCGA cohort (subtype 1 vs.

subtype 2: p = 0.2; HR = 1.6; CI = [0.8–3.2]). However, we
noticed a strong influence (p = 5.35 × 10−7; HR = 4.8;
CI = [2.6–9.0]) of ‘targeted therapy’ variable in overall survival
(Fig. 2e) and this might explain our inability to completely repro-
duce survival results observed in the PACA-AU cohort. Differen-
tial prognosis associated with the stroma type were also evident,
as Moffitt classical tumour subtypes with normal stroma
(enriched in subtype 2) had the best prognosis, while Moffitt

Figure 1. Identification of the consensus subtypes of PDAC. (a) Analytical workflow of the PDAC subtyping: (1) subtype classification using
methodology from five different classification schemes; (2) concordance analysis of the five subtyping labels and application of PAM
clustering algorithm to identify consensus clusters; (3) analysis of clinicopathological and immunophenotypes of PDAC consensus subtypes
and identification of immune cell signatures with prognostic value in independent PDAC cohorts. (b) Patient similarity network. Each node
represents a single patient sample in the PACA-AU cohort (n = 204). Network edges correspond to highly concordant (at least 5 of 6)
subtyping calls between samples. Nodes are coloured according to the three clusters identified from the PAM consensus clustering algorithm.
(c) Circular heatmap representing sample overlap for consensus PDAC subtypes and mRNA subtypes from Bailey et al., Sivakumar et al.,
Collisson et al., or Moffitt et al. (from inside to outside, respectively). Significance of sample overlap was assessed with the hypergeometric
test, adjusted p values for each pairwise comparison are depicted in Supporting Information Figure S4. (d) Association of consensus PDAC
subtypes identified by PAM clustering (red refers to this study: Type 1, Type 2, Type 3) with tumour labels across five classification systems.
Each node corresponds to a single subtype (circles are coloured according to classification study; red diamonds correspond to the consensus
subtypes). Edge width corresponds to the overlap between labels assessed by the Jaccard coefficient in the PACA-AU cohort, only significant
edges are depicted (hypergeometric P ≤ 0.05. The three grey rectangles delineate clusters of tumour labels that overlap the three PDAC
consensus groups (Type 1–3) with FDR adjusted P ≤ 0.05. [Color figure can be viewed at wileyonlinelibrary.com]
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basal-like tumour subtypes with activated stroma (enriched in
subtype 1) had the worse prognosis. Patients in the Sivakumar
Notch group (enriched in subtype 2) also displayed the best
overall survival rates.8

Immuno-phenotypes of pancreatic adenocarcinoma
Analysis of the tumour microenvironment has revealed that
populations of tumour infiltrating immune cells have signifi-
cant prognostic value in a variety of solid tumours.3,38,39

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3

(a)

(b)

(c) (d)

(e) (f)

Figure 2. Legend on next page.
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Analysis in melanoma, breast cancer and colorectal cancer has
shown that tumour progression is characterised by distinct
immune patterns40–43 and that assessment of this ‘immuno-
phenotype’ may predict patients prognosis better than beyond
that predicted by traditional staging.44

To further explore the composition of different immune
infiltrates in the different tumour microenvironments of PDAC
cancers, we used single sample gene set enrichment analysis
(ssGSEA) to score each tumour based on gene signatures repre-
sentative of different cell types.45 To test the consistency of the
results, we performed the analysis in the PACA-AU and the
TCGA cohorts. We used four published signatures from indepen-
dent studies30–32,34 and focused on 7 immune cell types (NK cells,
Neutrophils, Macrophages, Dendritic cells, CD4+ T-cells, CD8+
T-cells and B-cells). We observed that immune signatures are dif-
ferentially enriched in the tumour microenvironment of PDAC
subtypes (Fig. 3a).

Subtype 1: ‘innate immune’. Our subtype 1 PDAC group
showed an enrichment of Natural Killer (NK) cells and neu-
trophils, and an exclusion of other tumour infiltrated lympho-
cytes such as activated CD4+ T cells, CD8+ T cells and
activated B-cells. Activation of primary drivers of EMT such
as transforming growth factor-β (TGFβ)7 and the Twist1 gene
and de-regulation of developmental signalling pathways such
as Hedgehog (Hh) and Wnt–β-catenin signalling6,8 have also
been associated to tumours in this category by previous stud-
ies. We confirm such findings by showing marked up-
regulation of Twist1 (EMT markers), and down-regulation of
Ptch1 in samples of this subgroup (Fig. 3b; Welch’s t-test FDR
adjusted p = 1.73 × 10−6 and 5.47 × 10−10 for Ptch1 and
Twist1, respectively). Ptch1 is a receptor for Hedgehog
(Hh) ligands and a tumour suppressor in the Hh pathway.
Differential gene expression analysis also showed several
de-regulated pathways related to ‘extracellular matrix organi-
zation’, ‘cell adhesion’ and ‘developmental processes’ (Supporting
Information Table S3). The Wnt–β-catenin developmental
pathway signalling, which was found to be up-regulated this
PDAC group,8 is known to correlate with T-cell exclusion
across solid tumours.46,47 This relationship was then validated
recently in a clinical setting making the therapeutic strategy of
beta-catenin inhibitors with immunotherapy a potential strat-
egy for T-cell deficient tumours.48 Bailey et al. also identified

gene programmes that included inflammation, hypoxia response
and autophagy, and associated to the ‘squamous’ tumours, which
are enriched in this group.

Type 1 tumours were associated with the worse survival
(Figs. 2d and 2f). Therefore, the desmoplastic stromal compartment
and its interactions with tumour cells have clearly important roles
in the poor outcomes for this group of PDAC tumours. This is a
very difficult topic to dissect though as there is evidence to demon-
strate that the stroma can both restrain and promote the tumour.49

We performed multivariable survival analysis adjusting for
clinicopathological features, including age, gender and tumour
stage when available, and identified a negative relationship
between neutrophil enrichment scores and survival in PDAC
(Fig. 3c). We validate this prediction using three cohorts:
PACA-AU, TCGA and an additional cohort of 102 PDAC
tumour samples obtained from the University of North Caro-
lina (UNC). The results of the enrichment of the immune
infiltrates showed associations of neutrophils with survival in
independent cohorts (Fig. 3c) highlighting their potential as
clinical biomarkers and therapeutic targets.

Subtype 2: ‘T cell dominant’. The second PDAC cluster is
characterised by PDAC tumours that displayed enrichment of
many tumour infiltrating immune subpopulations related to adap-
tive immunity including activated CD8+ and CD4+ T-cells, and
B-cells (Fig. 3a). Subtype 2 samples exhibited a gene expression
profile compatible with increased expression of genes associated
with an ‘immune response’, ‘positive regulation of immune system
process’ and ‘cell activation’ (Supporting Information Table S4).
This immune subtype of PDAC is characterised by marked upre-
gulation of genes known to play roles in immune checkpoint inhi-
bitions (e.g. CTLA4 and BTLA)50; B-cell receptor and T-cell
receptor genes (e.g. CD3D, CD79A and CD79B) (Fig. 3b and Sup-
porting Information Fig. S5;Welch’s t-test FDR adjusted p << 0.01
in both cohorts). ‘Normal stroma’, ‘Exocrine-like’, ‘ADEX’ and
‘Notch’ PDAC tumour samples are also over-represented in this
cluster (Fig. 1b). Sivakumar et al. also observed enrichment for T
cell–related pathways, such as those pertaining to T cell activation,
proliferation, and differentiation, adaptive immune response and
a significant prevalence of infiltrating CD8+ T cells in tumour
samples enriched in this group.

Subtype 2 is the most immunogenic subtype with signifi-
cantly better survival when compared to samples of subtype

Figure 2. Clinicopathological and prognostic associations of consensus PDAC subtype groups. (a, b) Clinicopathological and prognostic
associations of consensus PDAC subtype groups in the PACA-AU (a) and TCGA (b) cohorts. Distribution of histopathological grade;, TNM
system tumour stage at diagnosis, gender, and age at diagnosis, across the three consensus subtypes, represented by the coloured violin
plots subtype 1 (green); subtype 2, (orange); subtype 3 (violet). Red asterisks represent significant codes for Chi-square test p values:
p < 0.01 ‘**’; p < 0.05 ‘*’. (c, e) Multivariate Cox proportional hazards regression analysis for the PACA-AU (c) and TCGA (e) cohorts, with
covariates including patient age at diagnosis, tumour stage (TMN system) and tumour grade. Squares represent the hazard ratio (HR) and the
horizontal bars extend from the lower limit to the upper limit of the 95% confidence interval of the estimate of the hazard ratio. The plot also
shows the number of considered events (N) and p values (p) for the interaction between survival and any covariate. Detailed statistics are in
Supporting Information Tables S1 and S2. CI, confidence interval; HR, hazards ratio; p, Wald test p value. (d, f ) Prognostic value of subtype
1, 2 and 3 PDAC groups in the PACA-AU (d) and the TCGA (f ) cohorts with Kaplan–Meier overall survival analysis. [Color figure can be viewed
at wileyonlinelibrary.com]
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1. It has been shown before that higher levels of CD8+ T cell
infiltration correlate with a better survival with Tumeh et al.
showing that CD8 T cell infiltration is needed for PD-1 ther-
apy to work.20,51,52 Together these findings indicate that this
subtype is potentially amenable to therapy based on immune-
check point inhibitors.

Subtype 3: ‘tumour dominant’. Subtype 3 tumours exhibit
lower enrichment scores for immune signatures, which suggests a
lack of tumour-infiltrating lymphocytes in themicroenvironment
(Fig. 3a). This group is enriched for PDAC tumours that have
been characterised by high expression of adhesion-associated and
epithelial genes5 and genes with distinct roles in the control of
cell-cycle, essential mitotic checkpoint functions, chromosomal
stability, and DNA repair.8 We confirmed that GATA6 gene
expression is high in the subtype 3 group and low expression in
subtype 1 (Fig. 3b and Supporting Information Fig. S5; Welch’s
t-test FDR adjusted p = 1.54 × 10−6 and p = 2.71 × 10−4 for

PACA-AU and TCGA cohorts, respectively), which is expected
given the overlap between subtype 3 and classical subgroups
defined by Collison et al. and Moffitt et al. Similarly, it has been
recently shown that GATA6 expression inhibits the epithelial–
mesenchymal transition (EMT) in vitro and cell dissemination
in vivo and is associated to suppression of basal-like (like the one
activated in subtype 1)molecular phenotype in PDAC tumours.53

Collison et al. compared PDA cell lines representative of the clas-
sical and QM-PDA subtypes and described that the classical PDA
cell lines are enriched in a KRAS-addiction gene expression sig-
nature and more dependent on KRAS than QM-PDA lines.5 We
found a strong enrichment for multiple metabolism signatures
(Supporting Information Table S3) in this group indicating
prominent metabolic adaptation.

Histopathology analysis of immunophenotypes
We have established clear transcriptional immunophenotypes
though this analysis cannot be provided routinely in the clinic.

Figure 3. Tumour-infiltrating subpopulations of immune cells are associated with distinct PDAC subtypes. (a) Heat map of row scaled immune
infiltrated scores per immune cell type. Angelova, Charoentong and Tirosh represent single-sample GSEA scores of signatures for cell types from
the corresponding manuscripts. Aran is the inferences produced using xCell algorithm.21 (b) Boxplots showing markers of special interest in
PDAC subtypes differentially expressed between groups from the PACA-AU cohort. Similar trends were observed in the TCGA cohort (Supporting
Information Fig. S5). EMT – Epithelial-mesenchymal transition; Eh – Hedgehog; CAF – Cancer Associated Fibroblasts; TCR – T-cell receptor; BCR
– B-cell receptor. Asterisks represent significant codes for Welch’s t-test FDR adjusted p values: p < 0.01 ‘**’; p < 0.001 ‘***’. Welch’s t-test was
used to test for differential expression of a particular gene in a given subtype compared to all other subtypes. (c) Correlation of tumour
infiltrating immune cells with patient overall survival. For three independent cohorts (PACA-AU, TCGA and UNC), a multivariate Cox proportional
hazards regression analysis was performed, with covariates including the enrichment scores of six immune cell types, and when available,
patient gender, age at diagnosis, tumour stage and tumour grade. Squares represent the hazard ratio (HR) and the horizontal bars extend from
the lower limit to the upper limit of the 95% confidence interval of the estimated of the hazard ratio. The colour scale reflects –log10(p value)
and is shown in blue for HR < 1 (good prognosis) and in red for HR > 1 (bad prognosis). [Color figure can be viewed at wileyonlinelibrary.com]
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(a) (b)

Figure 4. Histopathology in the TCGA cohort. (a) Pathologist assessment of dominant immune cell presence and (b) tumour surface area
across the three PDAC consensus subtypes. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 5. Mutation analysis. (a) Heatmap showing the relative contribution of mutation signatures 1, 6 and 15. (b) Tumour mutational burden
and neoantigen load for different tumour subtypes of the TCGA cohort (c) OncoPrint displaying frequency of mutated genes in different PDAC
subtypes of the TCGA cohort (d) Distribution of activating KRAS mutations across the three PDAC subtypes in the TCGA and PACA-AU cohorts
(e) Tumour purity (ESTIMATE scores) across subtypes of the TCGA cohort. [Color figure can be viewed at wileyonlinelibrary.com]
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Haematoxylin and Eosin (H&E) staining of the pathology of the
specimen can provide a robust and quick assessment of the tran-
scriptional status of the tumour. H&E sections of the cases in the
TCGAwere provided by TCGA so we were able to assess the rela-
tionship of transcriptional immunophenotype to the pathology.
We were able to classify each PDAC sample from the TCGA
cohort according to their predominant cell type. 149 H&E slides
were reviewed in relation to the 149 transcriptomes we analysed
from TCGA. We considered three classes: lymphocytes (T cells);
neutrophils; or ‘none’ for when no particular immune cell was
found. We found that there was no significant difference in the
number of neutrophil-predominant cases in the three immuno-
phenotypes (27% in subtype 1, 18% in subtype 2, and 18% in sub-
type 3; Fisher test p = 0.15). In the first immunophenotype, there
was a larger proportion of cases classified as ‘none’ (21% in sub-
type 1 vs. 4% and 10% in subtype 2 and subtype 3; Fisher test
p = 0.03; Fig. 4a) and a smaller proportion of samples with lym-
phocytes as their predominant immune cell type (51% in subtype
1, 77% in subtype 2, 78% in subtype 3; Fisher test p = 0.01;
Fig. 4a). Subtype 1 is the innate subtype so even though on
pathology, assessment of macrophages could not be provided, it
was clear that there was a smaller proportion of lymphocyte-
predominant samples on histopathology, while in both subtypes
2 and 3, there was an association with lymphocytes.

While reviewing all 149 available TCGA slides to classify
the immunophenotypes; the area percentage of tumour in the
slide was estimated concurrently. Furthermore, tumour cellu-
larity was significantly different between subtype 2 and sub-
type 3; median tumour cellularity was 0.2 (range: 0.05–0.8)
and 0.35 (range: 0.05–0.9) in subtype 2 and subtype 3, respectively
(Wilcoxon rank sum test p = 9.3 × 10−3, Fig. 4b). Similarly, the
number of cases classified as lymphocyte-predominant was dif-
ferent between subtype 2 (40 out of 52; 77% in subtype 2) and
subtype 3 (47 out of 60; 78% in subtype 3). The ‘type 3’ tumours
which we originally called ‘immune exclusion’ has a much higher
tumour cellularity compared to ‘type 2’. This could be due to the
exact number of immune cells present and one of the limitations
of the study is that we do not have a ratio of immune cells to
tumour.

Mutational signature analysis
Multiple mutation signatures have been established through
pan-cancer analysis of cancer genomes.54 These have established
mutational signatures for pancreatic cancer including a signature
associated with failure of double strand break repair by homolo-
gous recombination (Signature 3).54 Using a panel of thirty muta-
tional signatures from COSMIC, we established the contribution
of each signature to the cohort of pancreatic cancers and sought
to identify if any signature that is enriched for the immunophe-
notypes we have described in this manuscript. We found three
major contributory signatures in these pancreatic cancers (Fig. 5a
and Supporting Information Fig. S6) but none of these were
enriched for a particular subtype. These were signatures 1, 6 and

15.54 Signature 1 correlates with the ageing process and 6 and
15 are tied to DNA repair. The signature analysis does not help
explain the difference in subtypes but does reinforce that certain
cases of pancreatic cancermay benefit from treatment with thera-
peutics against DNA repair.

Mutational burden
Evidence suggests that the degree ofmutagenesis within a tumour
may represent a biomarker for response to immunotherapy. It is
thought that highly mutated tumours are more likely to harbour
neo-antigens, which make them targets for adaptive immunity.
Tumour mutation burden has been shown, in several tumour
types, to correlate with patient response to both CTLA-4 and PD-
1 inhibition.55,56 We did not find any difference in tumour muta-
tional burden (number of mutations / Mb) and neoantigens
between the three subtypes (Fig. 5b). The most frequently
mutated pancreatic cancer genes (KRAS, CDKN2A, SMAD4 and
TP53) are equally distributed across the three subtypes (Fig. 5c),
except for KRAS and SMAD4, which are observed in lower fre-
quency in subtype 2 (73 and 17%, respectively) when compared
to subtype 1 (KRAS: 97%; Fisher exact test p = 0.003) and sub-
type 3 (SMAD4: 32%; Fisher exact test p = 0.03). We also ana-
lysed the status of the activating KRAS mutation, namely
G12D, G12R, G12 V and other (A11T, G12A, G12C, G12 L,
G12S, G13C, G13P, GQ60GK, Q61H and Q61R) and verified
that KRAS mutations are spread out equally over the three
subtypes in both cohorts (Fisher exact test p = 0.76 and
p = 0.65 for PACA-AU and TCGA, respectively; Fig. 5d). In
summary, smaller frequency of mutations of key pancreatic
cancer driver mutations are observed in the subtype 2 PDAC
subtypes. However these results are inconclusive because it is
highly possible that the level of purity across tumour samples
affects the interpretation of genomic analyses.57 In fact, in agreement
with the tumour cellularity observations in Figure 4b, we observed
striking differences in estimated promotion of tumour cells in the
samples between PDAC subtypes (ANOVA p = 5.4 × 10−6), in
particular subtype 2 displayed the lowest purity (Fig. 5e; Sup-
porting Information Fig. S8). This variability confounds the
interpretation of genomic analysis results when comparing
between PDAC subtypes.

Discussion
In this study, we propose a novel immune clustering of PDAC
into three major subtypes that have different molecular and
clinical characteristics and may respond differently to selected
therapies. We suggest that PDAC subtypes should be consid-
ered when stroma and immune modulating therapies are
studied in the future. The identified immunophenotypes
applies to tumour samples from four independent cohorts,
demonstrating the robust nature of this new subtype classifi-
cation in PDAC. It is important to notice the strong presence
of stromal components in subtypes 1 and 2, but also distinct
prognosis for each group. However, while the subtype 1 group of
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tumours is characterised by a reactive desmoplastic stroma and
an inflammatory microenvironment with possible epithelial-to-
mesenchymal transition (EMT) events; the stromal compart-
ment in subtype 2 is enriched in infiltrated CD8+ and CD4+ T-
cells.

Subtype 1 suggests that the functional role of EMT regulators
and innate immune cells in immune evasion is complex. The
biological link between the inflamed immune subtype and EMT
is consistent with the finding that the stroma of subtype
1 tumours is infiltrated not only with innate immune cells, but
also markers typically found in activated cancer-associated-
fibroblasts such as FAP which is significantly over-expressed in
subtype 1 tumours in both cohorts (Welch’s t-test FDR adjusted
pPACA-AU = 1.04 × 10−5 and pTCGA = 6.65 × 10−8; Fig. 3b) and
ACTA2 in the TCGA cohort (Welch’s t-test FDR adjusted
p = 7.3 × 10−4; Supporting Information Fig. S5). In addition, it
suggests that the worse outcomes seen in the subtype 1 may be
partially linked to a pro-metastatic immune evasive microenvi-
ronment. Tumour samples in this group have been characterised
by infiltration of desmoplastic stroma (‘activated-stroma’ such as
in Moffitt et al.) and high expression of mesenchyme associated
genes (‘basal-like’ such as in Collison et al.). These results cor-
roborate initial findings by Guerra et al., and others that inflam-
mation increases both EMT and cancer cell invasion21,22 and
that the presence of IL-6 pro-inflammatory marker in the serum
of patients with pancreatic cancer has been associated with
worse survival.23 A better definition of the tumour-expressed
ligands recognised by these myeloid cell subsets and their role in
driving tumour progression and anti-tumour immunity will
facilitate more detailed functional analyses and identify possibili-
ties for therapeutic intervention. We had demonstrated on
H&Es provided to us that the presence of lymphocytes is the
major phenotypic feature, if there are no T cells in the tumour
the patient does poorly.

Another challenge that arises is the definition of better pre-
clinical models that recapitulate these subtypes. The interplay
between the stroma and the immune components are difficult
to model. Previous research suggests that traditional pancreatic
cancer cell lines from the Broad Institute Cancer Cell Line
Encyclopaedia only recapitulate the two of the three subtypes
and do not represent the immunogenic lines5,8 and PDX
models are not able to recapitulate the ‘normal-like’ subtype.6

Current tumour models such as the KPC mice do not accu-
rately reflect variations in sub-types of pancreatic cancer and
there is generally difficulty at obtaining high quality primary
samples. Less then 20% of patients undergo a resection and
most of the tumour is infiltrated with a desmoplastic stromal
reaction that is composed of collagen, fibroblasts and immune
cells. Studies so far have tried to enrich as best as possible the
tumour compartment including the ones we have used.

Several lines of evidence suggest differential drug response
sensitivity between the different subtypes. Moffitt et al. has
shown that patients with ‘basal-like’ (subtype 1) tumours
showed a strong trend toward better response to adjuvant

therapy when compared to patients from the ‘classical’ (sub-
type 3) subtype group6 and that QM-PDA cell lines were, on
average, more sensitive to gemcitabine and less sensitive to
erlotinib than the classical cell lines.6 Additionally, it has been
shown that patients with GATA6high PDAC tumours have
better response to 5-FU when compared to ‘basal-like’
GATA6low patients.53 Together these results suggest that
KRAS-directed therapies or therapies targeting growth path-
ways such as EGFR-targeted therapy might be best deployed in
this subtype 3 classical PDAC subtype when compared to the
other PDAC subtypes. The regulatory contribution of the
immune system should be assessed more thoroughly in human
PDAC cancer to guide new therapeutic interventions tailored
to patients with different tumour subtypes.

We think that the pancreatic cancer subtypes identified in
our study provide further insights necessary for the under-
standing of the immunogenicity of PDAC. Being able to deter-
mine which PDAC cases are immunogenic or not and what
other characteristics they may have, could facilitate develop-
ment of potential strategies to remove immune suppression.
Following on from our current analysis, future work should
characterise the immune cell populations in these tumours
including their activation status and spatial relationship with
the tumour cells. Such investigations required prospective col-
lection of appropriate material from a sufficiently large
patients cohort using techniques such as single cell sequencing,
CyTOF and multiplexed immunofluorescence imaging with
advanced image analysis technology.

Additional work needs to be performed to assess the
degree of responsiveness of those infiltrating lymphocytes
when the suppression is removed. Our work has already
alluded to suppression with macrophages and neutrophils
and it will be worth characterising the nature of Tregs in the
tumour in subsequent studies as a further immunosuppressive
mechanism. An additional issue is that even if we removed the
immunosuppression with therapeutics; as the mutational bur-
den of the tumour is low, there is a lower chance a neoantigen
will be created that will be recognised by T-cells. Further strate-
gies will have to be investigated in creating neoantigens such as
using radiation therapy or using chemotherapy or to use adop-
tive T cell strategies to help fight the cancer. Understanding
PDAC subtypes could be used improve better patient stratifi-
cation for clinical drug trial enrichment schemes to better
select patients to make detection of a treatment effect more
likely. However, more detailed immune characterisation of
PDAC tumours is needed before instigating novel therapeu-
tic strategies.
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