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Protein Shape Description and its
Application to Shape Comparison

Michal Tykač

There are currently over 138, 000 known macromolecular structures deposited in the wwPDB

(Worldwide Protein Data Bank) database. While all the macromolecular structure files con-

tain information about a particular structure, the collection of these files also allows combining

the macromolecular structures to obtain statistical information about macromolecules in gen-

eral. This fact has been the basis for many structural biology methods including the molecular

replacement method used in X-ray crystallography or homologous structure restraints in the

refinement methods. With the success of methods based on prior information, it is feasible that

novel methods could be developed and current methods improved using further prior informa-

tion; more specifically, by using the structure density-map shape similarity instead of sequence

or model similarity. Therefore, this project introduces a mathematical framework for computing

three different measures of macromolecular three-dimensional shape similarity and demonstrates

how these descriptors can be applied in symmetry detection and protein-domain clustering. The

ability to detect cyclic (C), dihedral (D), tetrahedral (T ), octahedral (O) and icosahedral (I)

symmetry groups as well as computing all associated symmetry elements has direct applica-

tions in map averaging and reducing the storage requirements by storing only the asymmetric

information. Moreover, by having the capacity to find structures with similar shape, it was

possible to reduce the size of the BALBES protein domain database by more than 18.7% and

thus achieve proportional speed-up in the searching parts of its applications. Finally, the de-

velopment of the method described in this project has many possible applications throughout

structural biology. The method could, for example, facilitate matching and fitting of protein

domains into the density maps produced by the electron-microscopy techniques, or it could allow

for molecular-replacement candidate search using shape instead of sequence similarity. To allow

for the development of any further applications, software for applying the methods described

here is also presented and released for the community.
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Chapter 1

Introduction

1.1 Brief introduction to structural biology methods

Structural biology is the field of study of the structures of biological macro-

molecules, typically proteins, DNA and RNA. Structural biology comprises of

methods for determining the atomic models of molecules, as well as methods for

exploring the atomic model structure and function. The prominent methods for

determining atomic models of biological macromolecules include X-ray crystal-

lography, nuclear magnetic resonance (NMR) and electron microscopy. This in-

troduction will, however, cover only basics of X-ray crystallography and electron

microscopy, as the results of these two methods will be the basis of this work.

For more detailed introduction to the field of molecular biology, see for example

Banaszak (2000), Frank (2006), Rupp (2010) or Alberts (2014).

1.1.1 X-ray crystallography

X-ray crystallography is an experimental method using the packing of molecules in

a crystal and the diffraction of X-rays by a crystal to determine the electron density

of such molecules. When applied in structural biology, the standard procedure

starts with obtaining a molecule of interest in high concentration and subsequently

reducing the concentration of other solvents in order to cause the molecule of
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interest to form ordered crystals - a process called crystallisation. The particular

crystallisation conditions required to obtain crystals of a molecule of interest do

vary considerably and many molecules were not successfully crystallised as of yet.

For detailed review of protein crystallisation, see for example McPherson (2004).

Once a crystal of a molecule of interest is obtained, it is subjected to an

incident beam of monochromatic (single wavelength) X-rays. This results in the

incident X-rays being diffracted by the crystal in all directions. While in most

directions the diffracted X-rays cancel out through destructive interference, in

directions given by the Bragg’s law (Bragg, 1913), the diffracted X-rays combine

through constructive interference. Bragg’s law can be stated as follows:

2d sin(θ) = nλ (1.1)

where:

d is the distance between neighbouring crystal lattice planes.

θ is the scattering angle (i.e. the angle at which the beam hits the

θ iscrystal lattice plane).

λ is the wavelength of the incident X-ray.

n is a positive integer.

The result of this physical phenomenon is a set of measurable diffraction

spots called reflections, with each reflection having particular intensity given by

the crystal contents and a position on the detector determined by the crystal

lattice. The set of reflections produced by a single crystal in a particular orientation

is called an image; all the reflections in an image can be recorded on a film,

using image sensors, or using the modern detectors such as the Pilatus (Kraft

et al., 2009) and Eiger (Johnson et al., 2012) detectors, which use the photoelectric

effect in silicon to detect X-rays. However, one such image represents only a slice

of the Fourier coefficients space (also called the reciprocal space) of the crystal.

Therefore, the crystal needs to be rotated and diffraction image recorded along

the full 180° rotation, unless the crystal symmetry allows for smaller rotation.

2
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Once all data are recorded, the reflections need to be indexed; that is the

reflections need to have their reciprocal space positions assigned and the cell pa-

rameters and space group need to be determined. This is typically done using the

autoindexing algorithms described by, for example, Kabsch (1988), Kabsch (1993),

Steller et al. (1997) or Powell (1999). These algorithms typically use 1D Fourier

methods for this task, for example as employed by LABELIT (Sauter et al., 2004)

and MOSFLM (Leslie, 2006), or a combination of 1D and 3D Fourier methods such

as described by Gildea et al. (2014) and used in DIALS (Parkhurst et al., 2016)

software. Subsequently, the individual diffraction intensities can be merged to-

gether by identifying which reflections appear in multiple diffraction images and

scaling the intensities derived from them accordingly. Once the reflections are

indexed, integrated, scaled and merged, it is possible to obtain the amplitudes of

individual reflections.

With the intensities computed, an issue arises: The computed intensities

are related to the squared modulus of the structure factors, that is, the complex

numbers describing the reciprocal (Fourier) space of the X-ray diffraction. How-

ever, since it is not possible to reconstruct the structure factors from the measured

intensities, the diffraction theory equations for computing density from structure

factors cannot be directly applied. This issue is known as the phase problem.

There are several possible approaches to solving the phase problem. One

possibility is using the computational approaches known as direct methods, which

use statistical information to derive initial set of phases (Hauptman, 1986); how-

ever, these approaches are computationally expensive and better suited for small

molecules rather than macromolecules. Alternative computational approach is

based on a known homologous structure of similar shape - this approach is called

molecular replacement and the initial phase information is derived from an already

known structure. When neither computational approach can be used, it is pos-

sible to use experimental approaches based on using the knowledge about heavy

atoms (atoms with high atomic number, e.g. metals) either already present in

3



1.1. BRIEF INTRODUCTION TO STRUCTURAL BIOLOGY METHODS

the structure or introduced experimentally. Methods based on isomorphous re-

placement such as SIR (Blow and Rossmann, 1961) and MIR (Blow, 1958) are

based on introducing the heavy metals into the crystal and using the resulting

structure-factors differences to solve the sub-structure. Similarly, methods such as

SAD (Yang et al., 2003) and MAD (Hendrickson and Ogata, 1997) are also based

on using heavy atoms (either already present or introduced into the crystal) and

their ability to break the Friedel’s law (which states that pairs of Bragg reflections

related by inversion through the origin have equal amplitude and opposite phase;

i.e. |Fhkl| = |Fhkl| and ϕhkl = −ϕhkl as explained, for example, in Merritt (2011))

and become anomalous scatterers. The anomalous scatterers cause changes in the

reflection intensities and this fact is used to determine the initial phases of the

structure. The combination of anomalous scattering methods (SAD, MAD) and

isomorphous replacement (MIR, SIR) are currently also used; for a review of the

experimental methods, see for example Taylor (2010) or Hendrickson (2014).

With the initial phases present, atomic model can be build into the result-

ing density map either automatically or manually. Examples of automatic model

building software include ARP/wARP (Perrakis et al., 1997), TEXTAL (Ioerger and

Sacchettini, 2003), RESOLVE (Terwilliger, 2004), Bucanneer (Cowtan, 2006) or

AutoSol (Terwilliger et al., 2009), while interactive manual model building soft-

ware examples include O (Jones et al., 1991) and Coot (Emsley et al., 2010). Once

atomic model has been built into the electron density map, its fit can be improved

by the refinement process as done by, for example, phenix.refine (Afonine

et al., 2012) or REFMAC5 (Kovalevskiy et al., 2018). Typically, the procedures of

model building and refinement are done iteratively.

1.1.2 Electron microscopy

Electron microscopy is a microscopy technique based on using electrons as the

light source instead of the visible light. This approach has the potential advantage

of higher resolution, as the wavelength of electrons is approximately 0.02 Å at 300
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keV (Milne et al., 2013), while the visible light photon wavelength is approximately

4, 000 to 7, 000 Å at around 2 keV; however, the resolution is currently limited by

radiation damage, which restrains the dose of electrons that can be shot at the

sample. Therefore, electron microscopes use electron guns to produce a steady

stream of electrons of the required voltage instead of a mirror reflecting photons

from a bulb that the standard light microscopes employ.

However, with different light source, the electron microscope also requires a

different focusing approach as optical lenses do not focus electrons. Instead, elec-

trostatic lenses using several cylinders with differing voltage to create an electric

field to focus the electrons proportionally to their speed can be used to act as a

lens. Another possibility is using electromagnetic lenses, which are based on an

isolated coil wrapped around the electron path; as current flows through the coil,

it produces magnetic field perpendicular to the axis of the lens and this magnetic

field then acts as an electron lens. For detailed information about electron lenses,

see for example El-Kareh and El-Kareh (1970).

Moreover, as the high voltage required for the electron gun cathode could

produce an arc with the ground, high vacuum is required in the electron microscope

to avoid this; typically, a vacuum of 10−4 to 10−9 Pascals is required to avoid an

arc, depending on the voltage of the electron gun cathode. The vacuum also

serves another purpose - to reduce the interaction between the electrons and any

gas present in the microscope as this interaction would affect the focusing and

ultimately the resolution observed by the microscope. Therefore, the electron

microscopes are usually operated in a vacuum.

While all the previous features are present in all electron microscopes, it is

worth noting that there are several different types of electron microscopy. The

transmission electron microscope (TEM) uses the electron beam to illuminate the

sample and detects the electrons exiting the sample to produce an image; this

however requires the sample to be partially transparent to electrons. In order for

the sample to have this property, it typically needs to be very thin (approximately
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1, 000 Å). Different images are produced by the scanning electron microscope

(SEM), which focuses the electron beam to a section of the sample and records

the particles emitted as a result of the electron interaction with the sample. These

include the low energy secondary electrons, X-rays or even visible light. This

information is then associated with the part of the sample which the beam was

focused on and the process is repeated in a raster over the whole sample. The image

is then reconstructed from the recorded particles resulting from the interaction

instead of the primary electrons. Advantage of the SEM approach is that the

sample does not need to be transparent to electrons, while the disadvantage rests

in the resolution of SEM being much lower than TEM as the electron beam focusing

cannot be done perfectly. For more information about SEM and TEM approaches,

see for example the reviews of Vernon-Parry (2000), Muscariello et al. (2005),

Kourkoutis et al. (2012), Winey et al. (2014) or Borrajo-Pelaez and Hedstrom

(2017)

Generally, when biological samples are subjected to direct stream of elec-

trons, the covalent bonds may be broken and free radicals can be introduced as

described, for example, in Glaeser et al. (1971), Henderson (1990) and Egerton

et al. (2004). One possible solution to reduce the radiation damage of the sam-

ple is to image it under the cryogenic temperatures (typically the liquid nitrogen

temperatures around −180◦ C or 93.15 K (Kuhlbrandt, 2014)) as suggested by

Glaeser et al. (1971). Furthermore, when the sample is rapidly frozen to cryogenic

temperatures as described by Dubochet et al. (1988), the sample is effectively fixed

in place, as molecular movement is proportional to the temperature and therefore

the cryogenic temperatures remove the need for sample fixation (Adrian et al.,

1984) as well as reducing radiation damage.

One possible approach using electron microscopy to determine macromolecu-

lar structures is the use of EM tomography. This method is based on the TEM ap-

proach with the sample being rapidly frozen and then tilted as it is being recorded.

This method has typical resolution of between 50 and 100 Å (Milne et al., 2013); a
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resolution generally not sufficient for determination of macromolecular structures.

However, when multiple copies of the structure are imaged, the resolution can be

improved by averaging the tomograms of individual particles as described by, for

example, Robinson et al. (2007), Bartesaghi et al. (2008) and Briggs (2013). While

averaging is not sufficient for structure determination of individual small proteins,

it has been used to determine structures of viral envelope proteins, for example

by White et al. (2010). For more detailed description of EM tomography, see for

example, Hoenger and Bouchet-Marquis (2011).

Another fast evolving application of electron microscopy in the structural

biology field is the cryo-electron microscopy (cryo-EM) method based on TEM.

This method requires the sample to be placed on a (typically carbon) grid and

rapidly frozen to cryogenic temperatures. The sample is then imaged in different

locations of the grid, creating multitude of images each with hundreds of particles.

These particles are then picked (located) either by hand or automatically using

software such as AutoPicker (Langlois et al., 2014) or FastParticlePicker

(Xiao and Yang, 2017), or similar functionality offered by the EM software suites

such as EMAN1 (Ludtke et al., 1999), Cyclops (Plaisier and Abrahams, 2007),

EMAN2 (Tang et al., 2007), IMAGIC (van Heel, 2012) or RELION (Scheres, 2012).

Subsequently, the 2D particle images need to be aligned and classified into 2D

classes; this can be done either by stand-alone software, such as ISAC (Yang

et al., 2012) or FREALIGN (Lyumkis et al., 2013); or by one of the aforementioned

software suites for EM map reconstruction.

Once classified, the 2D classes can be averaged to obtain 2D projections

of the 3D shape of the structure with higher signal-to-noise ratio and resolution

than available in the individual images. The 3D map of the structure can then

be reconstructed from these 2D projections using the central projection theorem.

This theorem states that Fourier transform of a 2D projection is a central slice of

the Fourier transform of the 3D structure and thereby allows finding the relative

orientations of the 2D projections required for the 3D reconstruction. Details

7



1.1. BRIEF INTRODUCTION TO STRUCTURAL BIOLOGY METHODS

of this procedure are discussed, for example, by Crowther et al. (1970) and van

Heel (1987) and the procedure is available in EM software suites such as EMAN1

(Ludtke et al., 1999), Cyclops (Plaisier and Abrahams, 2007), EMAN2 (Tang

et al., 2007), IMAGIC (van Heel, 2012) or RELION (Scheres, 2012). Finally, if

the map resolution is high enough, atomic model fitting into the EM map can be

attempted manually using for example Chimera (Pettersen et al., 2004) or Coot

(Emsley et al., 2010). This atomic model can also be refined to optimise its fit to

the map by using, for example, phenix.real space refine (Afonine et al.,

2012) or REFMAC5 (Kovalevskiy et al., 2018). The model building and refinement

can be repeated iteratively to improve the model.

1.1.3 Available structures

The Worldwide Protein Data Bank (wwPDB; Berman et al. (2000)) is the main

repository for submitting and retrieving known atomic models of proteins and

nucleic acids. It currently contains over 138, 000 structures (RCSB PDB, 2018a);

approximately 89% of which were determined by X-ray crystallography, 10% by

nuclear magnetic resonance (NMR) and over 1% were determined by electron

microscopy. Figure 1.1 shows the total number of structures deposited to the

PDB database in the last four decades.

However, not all the deposited structures are unique and therefore the total

number of unique structures is lower than the 138, 000 mentioned above. Specifi-

cally, if the structure sequences are used to remove sequence redundancy, the total

number of unique sequence structures drops considerably as shown in table 1.1,

which lists the total number of unique sequence structures as a function of the

sequence identity threshold.

It is also worth noting that while the annual increase in new structures in the

wwPDB is steadily increasing, the relative composition of experimental methods

used to obtain the new structures is changing. This can be seen from figure

1.2, which shows the annual number of new structures submitted to the wwPDB
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Figure 1.1: Growth of the wwPDB since 1972

This figure shows

the growth of the

PDB database

between 1972 and

2017. The total

number of struc-

tures deposited to

the PDB database

is shown in blue,

while the annual

change in the total

number is shown

in red. The data

were obtained

from RCSB PDB

(2018b).

Table 1.1: Total number of unique sequences in the wwPDB

Sequence identity threshold Number of unique sequences

100 % 75, 984
95 % 53, 121
90 % 50, 368
70 % 44, 097
50 % 37, 686
40 % 33, 289
30 % 28, 326

This table shows the total number of PDB database entries with unique sequence for different
values of the sequence identity threshold. The sequence clustering was done using the blast
software (Altschul et al., 1990). The data were obtained from RCSB PDB (2018c).

for the X-ray crystallography and the electron microscopy methods. From this

figure, it is clear that the number of structures solved by X-ray crystallography

increases linearly, while the number of structures solved by electron microscopy

increases exponentially, at least in the past two decades. This fact, among other

considerations, suggests a promising future for the cryo-EM method as discussed,

for example, by Callaway (2015).

1.2 Project motivation

Given the amount of known protein structures available to the researchers, it

is possible to use these data to derive empirical information about the protein
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Figure 1.2: Growth of new structures by experimental method

This figure shows the annual number of structures solved by the X-ray crystallography (blue) and

electron microscopy (red) methods in the past two decades. Note that the y-axes are different in

the two graphs. The data were obtained from RCSB PDB (2018d) and RCSB PDB (2018e).

structures in general, beyond the information available in any structure on its

own. Furthermore, multiple research projects have focused on this task, such as

the PIDD database of protein inter-atomic distances (Wu et al., 2007), the CATH

(Sillitoe et al., 2013) and the SCOP (Andreeva et al., 2008) databases of protein

classification or the BALBES pipeline for molecular replacement (Long et al., 2008)

to name just a few. Given the success of this approach so far, it is feasible that

novel approaches and methods can be developed to further the determination of

new structures using the already available prior information.

1.2.1 Project aims

The first step required to obtain the prior information from previously determined

macromolecular structures is to be able to determine which structures are actually

similar, so that the commonalities of these similar structures could be used as

prior knowledge. To address this similarity detection problem, this project aims

to develop a mathematical framework for comparing three-dimensional objects in

a reliable and fully automated manner. The framework should be general enough

to allow comparisons between any three-dimensional objects including co-ordinate

files as well as density map files, while allowing for missing phase information (such

as in the case of the Patterson maps), various resolutions of the structures and

other typical macromolecular data features.
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Moreover, the project aims to implement the developed mathematical frame-

work into a stand-alone software tool, which will be made available to the com-

munity. This software tool needs to be sufficiently fast to allow finding similarities

between macromolecular structures without the need for a large dedicated com-

putational system. It also should be optimised for standard macromolecular data,

both in terms of the algorithms as well as in terms of automatically making as

many decisions as possible in order to minimise the amount of information the

user needs to supply.

Once the mathematical framework and the software tool implementing it are

developed, it will be possible to obtain distances between entries of any structural

database. Furthermore, a clustering algorithm can be implemented to cluster the

entries of any such database and therefore remove (or at least reduce) the redun-

dancies in the database. As an example, the BALBES protein-domain database

(Long et al., 2008), which is used in the BALBES molecular replacement pipeline,

will be used (see section 1.3.2 for explanation why this database). If shape re-

dundancies can be removed, then the molecular replacement pipeline would have

decreased computational cost of searching routines in proportion to the number of

removed redundancies, thus making the BALBES molecular replacement pipeline

faster.

1.2.2 Possible applications

There are many other possible applications for a software tool capable of auto-

matic shape-similarity detection in structural biology; however, they will not be

developed as part of this project. One such possible application is that if a whole

protein-domain database were to be searched against the whole wwPDB database

of all known protein structures, then all parts of any of the wwPDB database en-

tries not associated with a protein domain would be a novel protein domain from

the point of view of the protein-domain database. Therefore, if an algorithm for

deciding whether a fragment of a structure with no match in the protein-domain
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database is a domain or just a small fragment (or domain linker) were developed,

then automated domain detection could be achieved.

Another possible application for this project’s outcome is finding possible

co-ordinate-data matches in EM maps. This application stems from the project

aims, as a software tool capable of comparing density maps and co-ordinate data

could be used to search a density map, or its fragments, against a database of co-

ordinate models and any matches could then be used as initial models for EM map

model fitting. While it is true that there is already available software for fitting

domains (or any other co-ordinate or density map data) into EM maps - such

as ESSENS (Kleywegt and Read, 1997), MOLREP (Vagin and Teplyakov, 1997),

FFFEAR (Cowtan, 1998), FOLDHUNTER (Jiang et al., 2001), Situs (Wriggers and

Birmanns, 2001), Modeller (Eswar et al., 2006), FOLD-EM (Saha and Morais,

2012) - there is no software the author is aware of which would not require the

user to supply the structural data that are to be fitted to the map.

Another possible application of the proposed software tool is searching for

molecular replacement candidates using the shape information, either on its own,

or in combination with the currently used sequence similarity approach. This

application could also be developed almost immediately by using the intended

software tool, assuming the tool could search for shape similarity in the Patterson

maps space (i.e. Patterson maps (Patterson, 1934) are maps obtained from in-

tensities instead of structure factors and their peaks correspond with interatomic

vectors). This application could be especially useful in the case of protein domains

with homologous structures but divergent sequence. While it is yet unclear how

frequent such cases are, given that cases where similar sequences lead to different

structures were reported by Kosloff and Kolodny (2008) as well as cases where

similar structure is obtained using dissimilar sequences were reported by Lesk and

Chothia (1980), it is reasonable to assume such cases do exist.
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1.3 Protein domains

With the project defined, it is clear that both the development of the mathemat-

ical framework and its implementation as a software tool will require testing on

biological macromolecular structure data. Given that some of the direct appli-

cations of this project can be accomplished by using a protein domain database,

it seems appropriate to use a protein-domain database for the testing of the tool

throughout its development. It is, therefore, worth looking into the definitions of

protein domains and how they have been used in the field so far. In general, the

term protein domain has been used in several different contexts; in the structural

context for example by Richardson (1981), in the functional context for exam-

ple by Rentzsch and Orengo (2013) and in the folding context for example by

Wetlaufer (1973). In this thesis, the term protein domain will be used in the struc-

tural context, that is as an independent part of a protein with conserved tertiary

structure.

1.3.1 Finding a definition of a protein domain

Regarding a more detailed definition, there has been a little consensus between the

authors in the field. For example, the two well known protein domain databases,

CATH (Orengo et al., 2002) and SCOP (Andreeva et al., 2008) were both created

using a combination of manual approach with application of automated tools (al-

though CATH has been created with more emphasis on the automated approach).

Nonetheless, Csaba et al. (2009) reports that ”out of the 27, 553 proteins which are

classified in both hierarchies, for only 19, 266 (about 70%) the domain definitions

are similar enough”. This means that about 30% of the domain definitions are not

comparable between the two databases.

The issue of different protein domain definitions becomes even clearer when

the total number of domains is compared between different databases. Table 1.2

shows the total number of protein domains reported by different databases. From
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this table it is clear that the numbers of reported protein domains vary wildly

between different protein domain databases and by extension, so do the protein

domain definitions.

Table 1.2: Total number of protein domains in different databases

Database name Reference Last update
Number of

protein domains

ADDA Heger and Holm (2003) January 2006 1, 181, 071
BALBES Long et al. (2008) August 2017 13, 719

CATH Orengo et al. (2002) January 2018 461, 130
CDD Marchler-Bauer et al. (2017) March 2017 56, 066

Dali Domain
Dictionary

Holm and Sander (1998) January 2001 3, 724

ECOD Cheng et al. (2014) November 2017 578, 136
PDBeFOLD Krissinel and Henrick (2014) April 2014 131, 362

Pfam Finn et al. (2014) March 2017 16, 712
SCOP Andreeva et al. (2008) June 2009 110, 800
SCOPe Fox et al. (2014) December 2017 274, 253

This table shows the total number of protein domains as reported by the different protein domain
databases using their definition of protein domains.

The conclusion to draw from this discussion is that there is no single clear

definition of protein domains even in the structural context. In terms of this

project and more specifically in terms of the intention of testing the software

tool on protein domain data, it seems reasonable to use the same protein domain

definition as the database which will be used for this purpose. Therefore, such

starting point now needs to be decided.

1.3.2 Selecting the protein-domain database

In order to decide the starting point database for this project, the databases listed

in table 1.2 were considered. Given that the project database should be based on

purely structural similarity, it seems reasonable that the starting point database

should give priority to the structural information over the sequence alignments

and functional considerations. Therefore, the BALBES database of Long et al.

(2008) was selected as the starting point of this project.
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1.3.3 BALBES protein-domain database

The BALBES molecular replacement database was created as follows: All wwPDB

entries available in 2008, which were determined using X-ray crystallography, re-

fined against resolution better than 3.5 Å and had length of at least 15 amino acids

were obtained and manually analysed for domains. Specifically, Long et al. (2008)

describe the protein domain detection as follows: ”All domains were analysed and

checked manually. The main criteria for domain definition were three-dimensional

compactness and separability from other parts of the subunit”.

Consequently, the redundancy of protein domains obtained was reduced

using both the sequence information and the structural information. This was

achieved by using the Kabsch algorithm (Kabsch, 1976) to determine the mini-

mal relative root-mean-square deviation (RMSD) and the Needleman & Wunsch

algorithm (Needleman and Wunsch, 1970) to align the domain sequences. Two

domains were then considered identical if their minimal relative RMSD (of Cα

atoms) was ≤ 1.0 Å and the two domains had sequence identity of 80% or more.

The resulting database of protein domains contains 13, 719 domains; however,

there is still some structural redundancy in the database.

1.4 Shape-similarity detection methods

Now, the final part of this introductory chapter will be dedicated to a brief discus-

sion of the available shape-similarity detection methods. Although not all of the

discussed methods will be used in the final software, the decision should include

understanding of the alternatives that could have been explored instead.

1.4.1 Root-mean-square deviation (RMSD)

One of the best known approaches to finding structural similarity, at least in the

field of structural biology, is the root-mean-square deviation (RMSD) distance.
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RMSD measure is based on one-to-one correspondence between points defining the

two compared 3D objects and it is a prime example of a landmark-based shape-

comparison method. Assuming that the one-to-one correspondence holds, the

Kabsch algorithm (Kabsch, 1976) - also known as the procrustes superimposition

- can be used to find the optimal superimposition in terms of the minimal squared

distance between the corresponding points. In other words, the Kabsch algorithm

finds the rotation and translation which places one structure so that the RMSD

distance to the other structure is minimised; then, the RMSD distance is computed

by the following equation:

RMSD(A,B) = RMSD(B,A) =

√√√√ 1

N

N∑
i=1

|δAiBi |
2 (1.2)

where:

N : is the total number of compared points.

δAiBi : is the distance measure, typically the Euclidean distance

δAiBi : (for Cartesian co-ordinates) from point Ai to point Bi.

The one-to-one correspondence assumption

One of the issues with this measure of similarity is the assumption of one-to-one

correspondence, as this clearly does not hold for most protein domain pairs (or pro-

tein pairs in general). To extend the RMSD measure to pairs of structures which

differ in the number of points and therefore do not comply with the one-to-one

correspondence requirement, a typical approach is to obtain structural alignment

of smaller fragments and calculate the RMSD for aligned fragments only. Dif-

ferent authors who implemented such measures use varied techniques to obtain

structural alignment; however, all of these introduce new parameters to determine

the mismatch and gap penalties.

For example, the CE structural aligner (Shindyalov and Bourne, 1998) re-

quires determining the number of allowed gaps, two fragment similarity thresholds
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and the length of aligned fragments, while FATCAT (Ye and Godzik, 2003) required

the length of aligned fragments, as well as three different thresholds (the twist

penalty, mismatch penalty and gap penalty). Similarly, the Dali Z-score (Holm

and Rosenstrom, 2010) requires a similarity threshold, envelope function (which

down-weights long distance pairs) and ”strong match” threshold, and ProSMART

(Nicholls et al., 2014) uses fragment length and gap penalty. For further review of

protein structural aligners, see for example Hasegawa and Holm (2009).

RMSD Size Dependence

Another issue with using the RMSD as general shape similarity measure is its

dependence on the number of points that are used in the comparison (i.e. the

size of the compared objects). Figure 1.3 demonstrates one such case using two

medium sized BALBES database domains and two small sized domains. The

RMSD distance between the pair of the medium sized domains is approximately

3.53 Å (Figure 1.3 part a)), while the RMSD distance between the small domains

is approximately 3.48 Å (Figure 1.3 part b)). This example demonstrates that two

small and rather different shapes can have a smaller RMSD value than two similar,

but larger shapes; therefore, the RMSD value needs to be normalised using the

size of the compared shapes if it is to be used as general shape descriptor.

Nonetheless, the issue of size-dependence of the RMSD measure has been

known for some time now and as a result, many authors have attempted to modify

the measure to account for the size difference. There are multiple reasons for

the RMSD dependence on the size of the compared structures as discussed, for

example, by Carugo (2007); perhaps the main cause of the size dependence is

that due to RMSD using rigid structures, any bends in the protein backbone will

cause large difference in the RMSD value and the larger the size of the compared

structures, the more bends are likely to occur, as suggested by Carugo (2007).
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Figure 1.3: Medium and small domain pairs with very similar RMSD value

Part a) shows the SSM

(Krissinel and Henrick, 2004)

superposition of the Cα traces

of two medium size BALBES

domains (1KFS A dom 2 with

867 atoms and 3PY8 A dom 2

with 929 atoms) as visualised

by Coot (Emsley et al.,

2010). Part b) shows the same

superposition and visualisa-

tion for two small domains

(2VS1 A dom 1 with 442

atoms and 3KNH Q dom 1

with 565 atoms). The RMSD

value for both these pairs is

rather similar, with the small

domains distance being 3.48 Å,

while the medium sized domain

distance being 3.53 Å.

RMSD Normalisation

The RMSD normalisation approaches include, for example, the SARF2 normalised

S score (Alexandrov and Fischer, 1996) calculated as per equation 1.3, theRMSD 100

score (Carugo and Pongor, 2001) obtained by using equation 1.4 or the rf score

(Carugo, 2007) defined in equation 1.5.

S(A,B) = S(B,A) =
3×N

1 +RMSD(A,B)
(1.3)

RMSD 100(A,B) = RMSD 100(B,A) =
RMSD(A,B)

1 + ln
(√

N
100

) (1.4)

rf (A,B) = rf (B,A) = 0.148 + 4.233e( −0.179 × RMSD 100(A,B) ) (1.5)

where:

N : is the total number of compared points.

RMSD(A,B) is defined as per equation 1.2.
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In order to determine the effects of these RMSD normalisation approaches,

1, 441, 838 RMSD comparisons were computed between the BALBES database

domains. Note that these are not all possible combinations, but rather a random

selection of these. Consequently, the total length of the aligned fragments was

plotted against the RMSD value, RMSD value normalised by the alignment length

and the three aforementioned RMSD normalisation approaches. The resulting

plots are shown in figure 1.4.

If there was no relationship between the total length of the aligned fragments

and the distance measure, the sliding window average would be expected to be

close to a flat line. Nonetheless, part a) of figure 1.4 shows that this is not the

case for the RMSD measure on its own. Furthermore, part b) of the same figure

demonstrates, that this relationship is not simply proportional to the total number

of aligned residues, as there is still a relationship when the RMSD is normalised by

the alignment length. On the other hand, parts c), d) and e) show that the RMSD

normalisation approaches of Alexandrov and Fischer (1996), Carugo and Pongor

(2001) and Carugo (2007) (respectively) do mostly remove this relationship, at

least for the test dataset.

Further features of the RMSD measure

The previous discussion of the RMSD measure shows that with normalisation

and proper structural alignment, the RMSD distances can be used to compute

shape similarity. However, computing the RMSD distances for the test dataset of

approximately 1.5 million pairs has shown that the computational cost of these

calculations is rather high. This is caused by the impossibility of pre-computing

the structural alignments; in other words, the structural alignments need to be

computed for each pair of structures anew.

The result of these facts is that if all BALBES domains were to be compared

against each other, this would require 13, 719× 13, 718/2 = 94, 098, 621 comparisons.

Assuming one comparison (including the structural alignment) can be optimised
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Figure 1.4: Effect of different RMSD normalisation techniques

All five plots show the effect of changing the number of aligned residues (representing the total

structural pair size) on the magnitude of the similarity score. The plots were produced using the

RMSD values obtained by random selection of 1, 441, 838 unique pairs of BALBES domains. Plot

a) shows the unaltered RMSD measure, plot b) shows the simple per residue normalisation, plot

c) shows the SARF2 S-score measure (Alexandrov and Fischer, 1996) as per equation 1.3, plot d)

shows the RMSD 100 measure (Carugo and Pongor, 2001) and equation 1.4 and plot e) shows the

rf -score (Carugo, 2007) defined in equation 1.5. Note that different similarity measures do not

have the same scale and therefore the plots have different y-axis scales. The red lines in all plots

show the sliding window average values.

to take 0.2 second, the total required time would be ≈ 217.8 days. While it is true

that these calculations can be done in parallel, this is still a rather computationally

costly computation. Therefore, it seems worth exploring alternative approaches to

shape similarity detection.
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1.4.2 Interatomic distances

One possible alternative approach to finding shape similarity is to compute all

the interatomic distances in a structure. The resulting distribution of interatomic

distances then can serve as a general descriptor of the shape. In order to compare

two such distributions and obtain a structure similarity distance, it is possible to

use, for example, the central-moments distribution descriptors; these are computed

as shown:

nth central moment =
1

N − n

N∑
i=1

|xi − µ|n (1.6)

where:

N is the number of values.

µ is the mean value.

There are several advantages of using the interatomic distances distribution

as shape similarity measure; one such advantage is that no one-to-one correspon-

dence is required to produce comparison of a structure pair. Furthermore, the

interatomic distances distribution can be pre-computed for each structure sepa-

rately, as well as the distribution moments. This feature means that once the

interatomic distance distribution are computed, comparison of any pair of struc-

tures should be possible in a very short time. Moreover, there even already exists

a database of interatomic distances computed for protein structures - PIDD (Wu

et al., 2007).

Another advantage of this shape descriptor is that it is intrinsically rotation

invariant as well as translation invariant. These features stem from the fact that

vector lengths are rotation and translation invariant and therefore so is their distri-

bution and its descriptors. It is worth noting that the same advantage does apply

to the RMSD measure as well. Finally, it is interesting to consider the possibility

of weighting the interatomic distances according to their length; such approach

could emphasise the overall shape similarity if the longer interatomic distances
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were weighted more than the short distances, while the detailed shape similarity

would be the focus of a descriptor up-weighting the short interatomic distances.

Regarding the disadvantages, the interatomic distances are, by definition,

based on the positions of atoms. Therefore, it would be difficult to apply them to

density maps; an issue that could be addressed by peak detection in the maps in

order to find atoms or by using all map grid points and weighting the distances

based on the density value. However, both these suggested solutions would greatly

increase the computational cost of the comparison.

1.4.3 Voxelisation

Voxelisation method for shape description comes from the computer graphics field,

where objects are rendered using lower number of voxels (three-dimensional pixels)

when far from camera to save rendering time. From this idea, it can be seen

that objects shape can be described by the change the object undergoes as its

voxelisation (i.e. the number of voxels it is divided into) changes. In other words,

distribution of the object co-ordinates (or density) within a given voxelisation grid

can be computed, for example using the distribution central moments (equation

1.6). This can be repeated for different voxelisation grids to obtain matrix A.



1st Moment 2nd Moment . . . nth Moment

V oxelisation 1 a11 a12 . . . a1n

V oxelisation 2 a21 a22 . . . a2n

...
...

...
. . .

...

V oxelisation x ax1 ax2 . . . axn


= A (1.7)

Once the matrix A is computed, it is possible to calculate the change in the

distribution of central moments. This change is direct function of the shape of the

described object; and therefore, by calculating descriptor matrix AD, a numerical

description of shape is obtained.
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

1st Moment 2nd Moment . . . nth Moment

V ox. 1− V ox. 2 a11 − a21 a12 − a22 . . . a1n − a2n

V ox. 2− V ox. 3 a21 − a31 a22 − a32 . . . a2n − a3n

...
...

...
. . .

...

V ox. (x− 1)− V ox. x a(x−1)1 − ax1 a(x−1)2 − ax2 . . . a(x−1)n − axn


= AD (1.8)

It is worth noting that while the method is typically used with cubical vox-

els, there is the possibility to use differently shaped voxels as well. One interesting

possibility, therefore, is to use spherical voxels (that is defining a voxel as space

between two concentric spheres with different radii); such definition leads to intrin-

sically rotation invariant description of objects. The voxelisation method seems

not to be frequently used for macromolecular structures, although Tsukamoto et al.

(2009) have used it for protein cavity detection.

Regarding the advantages of this method, theAmatrices can be pre-computed

for any structure in advance and therefore the distance computation of a pair of

structures becomes simply computation of the AD matrix from two A matrices.

Also, this method is directly amenable to be applied to map data as well as the

co-ordinate data; and furthermore, as mentioned in the previous paragraph, by us-

ing the spherical voxels, the descriptor can be made rotation invariant - assuming

that the centre of the structures is used to place the spherical voxels around.

Nonetheless, there are also some disadvantages to this method; firstly, it is

not translation invariant and presumably can be sensitive to the grid placement

(i.e. differently placed grids could lead to different numerical descriptors). Also,

its rotation invariance is based on spherical voxels, usage of which may lead to loss

of information about the shape.
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1.4.4 Spherical-harmonics expansion

Spherical harmonics are an infinite set of orthonormal functions defined on the

surface of a unit sphere. The infinite set is parametrised by two integer arguments,

l (the band) and m (the order). The arguments are constrained by l ≥ 0 and

m ∈ [−l, l]. Generally, as the band of the spherical harmonic function increases,

the more detailed the function becomes; this is demonstrated in figure 1.5.

Figure 1.5: First few real spherical harmonic functions

The first five real-valued spherical harmonic bands are shown with all their orders. Note that

although spherical harmonics are defined on sphere surface, here they are depicted as the normals

of the surface value and therefore as being defined in 3D. Red colour signifies negative values, while

green mean positive. The little spheres in the right hand corners show the spherical harmonics

values on the unit sphere surface. Figure adapted from Schonefeld (2005).

Formally, spherical harmonic functions are defined as:

Y m
l (θ, φ) = Nm

l × Pm
l (cos (θ))× eimφ (1.9)

where:

Y m
l (θ, φ) is the spherical harmonics function for band l, order m

Y m
l (θ, φ) inclination angle θ and azimuthal angle φ.

Nm
l is the normalisation coefficient defined in equation 1.10.

Pm
l is the associated Legendre polynomial, defined in equation 1.11.
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with the normalisation coefficient N and the associated Legendre polynomi-

als P being defined by the following equations:

Nm
l =

√
2l + 1

4π
× (l −m)!

(l +m)!
(1.10)

Pm
l (cos (θ)) =

(−1)m

2ll!
×
√

(1− x2)m
dl+m

dxl+m
(
x2 − 1

)l
(1.11)

Regarding the shape similarity detection, the spherical harmonics expansion

can be thought of as a Fourier transformation done on the surface of a sphere.

In other words, the spherical harmonics coefficients obtained as per equation 1.12

signify the weight with which the particular spherical harmonics function needs

to be applied to sphere surface in order to reproduce the original (i.e. expanded)

function.

cl,m =

∫ 2π

θ=0

∫ π

φ=0

(Y m
l (θ, φ)× A(φ, θ)) dφ dθ (1.12)

where:

A(φ, θ) is the unit sphere mapping of the object to be expanded into

A(φ, θ) spherical harmonics coefficients.

cl,m is the spherical harmonics coefficient for band l and order m.

Regarding the advantages of spherical harmonics expansion, since the method

expands a function defined on a sphere surface, it should be directly applicable to

density maps, as these are functions defined in three-dimensional space. Also, the

spherical harmonics expansion can be pre-computed for each structure separately

and the computation of distance between two shapes should then be limited to

comparison of several matrices, a relatively inexpensive computational task.

In terms of the rotational invariance, the spherical harmonics coefficients are

not intrinsically rotationally invariant. Nonetheless, Kazhdan et al. (2003) have

shown that the so called energy levels (descriptors derived from the spherical har-
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monics coefficients by summing over the order values for each band) computed as

per equation 1.13 do become rotationally invariant; this follows from the fact that

the sum of frequencies in any band l does not change under rotation. Therefore,

the spherical harmonics expansion can be made rotationally-invariant at the cost

of to the loss of information caused by summing over the orders.

πl =

√√√√ l∑
m=−l

|cl,m|2 (1.13)

The main disadvantages of the spherical harmonics expansion include trans-

lation variance and the resulting need to centre the structures before comparing

them. Also, since the spherical harmonics functions are defined on the surface of a

sphere and not for the volume of a sphere, the three-dimensional data need to be

mapped onto a sphere surface. This process is bound to lead to loss of information,

although it can be minimised by using multitude of differently placed spheres.

Finally, it is worth noting that the spherical harmonic expansion is exten-

sively used in the image analysis field (presumably due to its predisposition to

deal with 2D data), for example by Yotter et al. (2011) for correcting topological

artefacts on cortical surfaces of human brain images. It has, furthermore, been

used for several different purposes in the bioinformatics field, for example, by Cai

et al. (2001) to filter high throughput screening for protein-ligand interactions, by

Morris et al. (2005) for binding pocket and ligand comparisons or by DiMaio et al.

(2009) for molecular recognition in density maps.

1.4.5 3D Zernike Moments

The 3D Zernike moments expansion is similar to the spherical harmonic expansion

described in the previous section (1.4.4), except that the basis functions (known as

3D Zernike polynomials) are now a combination of spherical harmonics functions
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defined in equation 1.9 and radial function R defined in equation 1.15. The formal

definition of 3D Zernike polynomials, as derived in Canterakis (1996), is as follows:

Zl,m,n (r, θ, φ) = Rm
n (r)× Y l

m (θ, φ) (1.14)

where:

l is a non-negative integer l ≥ 0.

m is an integer m ∈ [−l, l].

n is an integer n ∈ [−m,m].

Zl,m,n is the 3D Zernike polynomial.

r is the radial distance from centre of sphere.

θ is the inclination angle.

φ is the azimuthal angle.

Rm
l is the radial polynomial defined in equation 1.15.

Y n
m is the spherical harmonic function defined in equation 1.9.

Rm
n (r) =

n−m
2∑

k=0

(
(−1)k × (n− k)!

k!×
(
n+m

2
− k
)
!×
(
n−m

2
− k
)
!
× rn−2k

)
(1.15)

The radial function comes from the 2D Zernike polynomials (Zernike, 1934),

which are parametrised exactly as the spherical harmonics discussed above, that is

l ≥ 0 and m ∈ [−l, l]; although they are defined on a unit disk as shown in figure

1.6.

The difference between the spherical harmonics expansion and the 3D Zernike

moments expansion is in the presence of the radial function, which allows 3D

Zernike moments expansion to encompass the whole unit sphere and not only its

surface (in other words, the 3D Zernike polynomials are defined in unit sphere as

well as on its surface). Consequently, equation 1.16 can be used to expand any

function defined in three-dimensional Cartesian space onto its 3D Zernike moments
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Figure 1.6: First five 2D Zernike polynomial bands

All orders for first five bands of the 2D Zernike polynomials are shown. Red colour means negative

value, while blue signifies positive values. Figure adapted from Prakash and Jhanji (2016).

coefficients (cZernikel,m,n ); which similarly to the spherical harmonics coefficients can

be seen as the weights which need to be applied to the particular 3D Zernike poly-

nomial functions in order to reproduce the expanded three-dimensional function

from a unit sphere.

cZernikel,m,n =

∫ 1

r=0

∫ 2π

θ=0

∫ π

φ=0

(Zl,m,n (r, θ, φ)× A(r, φ, θ)) dr dθ dφ (1.16)

where:

A(r, φ, θ) is the spherical co-ordinates mapping of the object to be

A(r, φ, θ) expanded.

The shape similarity detection features of the 3D Zernike moments expansion

are very similar to the spherical harmonics expansion; specifically, due to the

inherent expansion of a function defined in three-dimensional space, the 3D Zernike

moments expansion is well suited for expanding density maps. Furthermore, it

is also well suited for pre-computing the cZernikel,m,n coefficients for each structure
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separately and consequently computing distances between pairs of structures by

comparing two three-dimensional arrays of coefficients.

Identically to the spherical harmonics coefficients, the 3D Zernike moments

coefficients are not rotation invariant. Nonetheless, intrinsically rotation invari-

ant representation can be obtained by using the following formula discussed, for

example, by Grandison et al. (2009).

πZernikel,n =

√√√√ l∑
m=−l

∣∣cZernikel,m,n

∣∣2 (1.17)

where the sum is taken over all defined values of m for given

combination of l and n.

The main disadvantage of the 3D Zernike moments expansion is its trans-

lation variance. Also, similarly to the spherical harmonics expansion, it needs to

be seen how much information is lost when the equation 1.17 is applied to obtain

rotation invariance, as information about one dimension is lost in the process.

Examples of structural biology application of 3D Zernike moments include

protein tertiary structure description using molecular surface by Sael et al. (2008),

ligand density reconstruction by Gunasekaran et al. (2009), description of func-

tional movement in macromolecular structures by Grandison et al. (2009) or de-

termination of fluctuation scattering profiles for free-electron laser crystallography

by Liu et al. (2011). It is also worth noting that the 2D Zernike moment expansion

was shown by Teh and Chin (1988) to outperform other moments based methods

in signal to noise ratio recovered when applied to 2D images.

1.4.6 Further shape-similarity detection methods and software

It should be noted that while all the methods described in the previous sections are

described in terms of their mathematical basis, this list is not complete and there

are many other methods that could have been explored as well. Furthermore,
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there are many applied computational methods described in the literature for

similar tasks as described in the project aims section (1.2.1).

In terms of describing the 3D protein shapes, there are several already pub-

lished methods; for example, Rogen and Bohr (2003) described a method based

on integral formulas of the Vassiliev knot invariants or Daras et al. (2006) have

presented a method based on spherical-trace transform of atomic co-ordinates. Al-

though both these methods are not applicable to density maps and in this sense

are different from the aims of this thesis, they demonstrate the fact that protein

classification is an ongoing and important problem in the field.

Similarly, there are multiple methods and associated software for matching

co-ordinate data and density maps to each other; examples of such methods in-

clude ESSENS (Kleywegt and Read, 1997), MOLREP (Vagin and Teplyakov, 1997),

FFFEAR (Cowtan, 1998), FOLDHUNTER (Jiang et al., 2001), Situs (Wriggers and

Birmanns, 2001), Modeller (Eswar et al., 2006), FOLD-EM (Saha and Morais,

2012). Moreover, most of the aforementioned software does have some measure

of similarity (albeit maybe not defined as such); however, the structure matching

software is typically optimised for direct matching of two structures and not for

multiple comparisons. This means that the computational cost of using any of the

aforementioned software is much higher than just using the RMSD and therefore

none of this software is really suited for the purposes of this project.

1.4.7 Selecting a shape-similarity detection method

The previous sections (1.4.1 to 1.4.5) have discussed the backgrounds, advantages

and disadvantages of different methods for similarity detection between pairs of

shapes. This list is, however, not exhaustive and other methods do exist. Nonethe-

less, the decision as to which of these (if any) methods should be used to implement

the shape similarity measure upon which this project is to be based, needs to be

taken.
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To help with the decision, a procedure was implemented to modify any PDB

file containing a macromolecular structure in one of the following ways: a) ran-

dom movement of a given percentage of the residues, b) random movement of a

given percentage of the secondary structures as determined by the SSM software

of Krissinel and Henrick (2004) and c) random deletion of a given percentage of

secondary structures as determined by the SSM.

Next, four structures were randomly selected from the BALBES database

(1E9Y B dom 1, 1FI2 A dom 1, 1J8H E dom 1 and 1Z7W A dom 1) and the pro-

cedures a), b) and c) were repeatedly (as the residue and secondary structure se-

lection is stochastic) applied on their own as well as in combination. The resulting

modified structures were then idealised using the REFMAC5 (Kovalevskiy et al.,

2018) idealisation procedure to resolve any modifications breaking the biochemical

prior knowledge.

Finally, the following shape-similarity measures were computed for the four

structures and all their modifications: interatomic-distances distribution differ-

ences, cubical-voxelisation distribution differences, spherical-voxelisation distribu-

tion differences, spherical-harmonics expansion differences and 3D-Zernike-moments

expansion differences. The relative change in the descriptor value with respect to

the percentage of the structure elements affected was then calculated. The RMSD

measure was not used as its disadvantages (difficult extension to density maps and

impossibility of pre-computation of results) were considered too constrictive for

the purpose of this project. The resulting plots are shown in figure 1.7.

By examining the plots in figure 1.7, several interesting conclusions can be

drawn about the robustness of the descriptors. Firstly, the spherical-voxelisation

distribution-difference descriptor is very sensitive to all three different structure

modifications for all four different structures. In the extreme case of deleting 20%

of the secondary structures of the 1J8H E dom 1 domain, the descriptor value have

on average more than doubled. It can therefore be concluded that the spherical-
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Figure 1.7: The effect of various structure modification on the relative change in descriptor values

a

This figure is composed

of 12 plots. The top

4 plots contain the ef-

fect of randomly moving

a given percentage (x -axis)

of the structure residues

up to 3 Å and conse-

quently comparing the de-

scriptor values between the

original and modified struc-

tures for the 4 different and

randomly selected struc-

tures. The 5 different

lines show the development

of relative descriptor value

change for the 5 differ-

ent descriptors - the inter-

atomic distances distribu-

tion central moments differ-

ence (in bright green), the

cubic voxelisation distribu-

tion central moments differ-

ence (in mossy green), the

spherical voxelisation distri-

bution central moments dif-

ference (in pink), the spher-

ical harmonics expansion

coefficients difference (in

blue) and the 3D Zernike

moments expansion coeffi-

cients difference (in red);

while the error bars repre-

sent a single standard de-

viation in both directions.

Similarly, the middle 4 plots

show the descriptor relative

value change in response to

random percentage of sec-

ondary structures (for sec-

ondary structures as de-

tected by the SSM (Krissinel

and Henrick, 2004)) being

moved up to 3 Å. The error

bars represent a single stan-

dard deviation in both di-

rections. Finally, the last 4

plots show the effect of ran-

domly deleting a given per-

centage of secondary struc-

tures as determined by the

SSM. The error bars repre-

sent a single standard devi-

ation in both directions.
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voxelisation descriptor would not be appropriate method for this project, as it is

too sensitive to small changes in the shape.

Furthermore, the cubic-voxelisation distribution-difference shape-descriptor

also appears to be quite sensitive, especially to random residue movement and

secondary structure deletions, where for structure 1E9Y B dom 1 the relative de-

scriptor value changed more than 50% when 20% of the residues were moved up

to 3 Å, or when 20% of secondary structures were removed. This leads to the

conclusion that the cubic-voxelisation descriptor is too sensitive to small changes

in the shape and therefore not optimal for the purposes of this project.

Regarding the interatomic-distances distribution-difference descriptor, it seems

quite robust to the secondary structure deletions for all four structures. However,

it also appears almost as sensitive to secondary structure movement as the cubic-

voxelisation descriptor just discussed. This is demonstrated by the plot for struc-

ture 1Z7W A dom 1, where simple movement of only 5% of secondary structures

caused change in the relative descriptor value by almost 10% on average. There-

fore, it is concluded that this descriptor may not be optimal for the purposes of

this project.

Finally, regarding the spherical-harmonics and the 3D-Zernike-moments ex-

pansion descriptors, they both seem quite robust to small structural changes and

figure 1.7 does not offer much ground to distinguish between the two methods, at

least with this limited sample. Therefore, in order to decide with which method

the project should be continued, the availability of computational libraries for

implementing and using the method was considered.

In terms of this criterion, the author could not find a freely available imple-

mentation of 3D Zernike moments expansion aside from the SASTBX (Liu et al.,

2012) software which uses a combination of C++ and Python languages to im-

plement the expansion. On the other hand, for spherical harmonics expansion

calculations, there is the SOFT2.0 library written by Kostelec and Rockmore

(2007) in the C language as well as several other libraries. Since the implementa-
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tion of a software tool is one of the outcomes of this project and it is intended to be

done in the C/C++ programming language and given that it is more convenient

for the author to link together C and C++ code that it is to link together C++

and Python code, the spherical harmonics expansion shape descriptor was selected

as the basis of this project.
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Spherical harmonics expansion

This chapter discusses the spherical harmonics functions in greater details in order

to provide the background required to explain details of the mathematical frame-

work for computing distances between pairs of shapes. Given that the spherical

harmonics functions are to be used as basis functions for expansion, it is worth

exploring how are they derived.

2.1 Spherical harmonics derivation

The problem that is being addressed by the spherical harmonics functions can be

defined as follows: given that the discrete Fourier transform method in Carte-

sian space uses the sin (2πik/N) and cos (2πik/N) basis functions, (where 2πi

is a constant, k is the wavelength and N is the dimensionality of the discrete

Fourier transform), what are the basis functions for the discrete Fourier transform

in spherical co-ordinate space?

To answer this question, one of the tenets of the Sturm-Liouville theory

offers a good starting point; specifically, that the normalised eigenfunctions form

an orthonormal basis in a Hilbert space (i.e. any finite or infinite vector space

where calculus and inner products of vectors can be computed) - for detailed

discussion of the Sturm-Liouville theory see, for example, Zettl (2005). With
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this information, it is interesting to also note that basis functions of the Fourier

transform in Cartesian space (i.e. sin (2πik/N) and cos (2πik/N) or by Euler’s

identity also written as e2πik/N) are actually the solution to the Laplacian operator

in Cartesian space.

∇2 = ∇2
x +∇2

y +∇2
z =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.1)

where:

∇2 is the Laplacian operator vector.

∇2
x is the Laplacian operator along the x-axis .

∂ is the partial derivative (and ∂2 is the second partial derivative).

Therefore, in order to construct an orthonormal set of basis functions in

the spherical co-ordinate system, the same approach could be used, that is, the

eigenvectors of the Laplacian operator in the spherical co-ordinate space need to be

computed and normalised. Now, using the mapping from Cartesian to spherical

co-ordinates f : (x, y, z) 7→ (r, θ, φ) and its reverse, the co-ordinate conversion

equations can be stated as follows:

r =
√
x2 + y2 + z2

θ = sin−1
(z
r

)
φ = tan−1

(y
x

)
x = r × cos(φ)× cos(θ)

y = r × sin(φ)× cos(θ)

z = r × sin(θ)

(2.2)

where:

r is the radial distance from the centre of co-ordinates.

θ is the inclination angle.

φ is the azimuthal angle.
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With the mapping specified, the Laplacian operator in spherical co-ordinates

can now be written as:

∇2
spherical = ∇2

r +
1

r2
∇2

Ω (2.3)

where:

∇2
spherical is the Laplacian operator vector in spherical co-ordinate space.

∇2
r is the Laplacian operator along the radial axis.

∇2
Ω is the Laplacian operator along the angular axis.

and the radial Laplacian operator and the angular Laplacian operator being:

∇2
r =

1

r2

∂

∂r

(
r2 ∂

∂r

)
∇2

Ω =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

(2.4)

The eigenvectors can therefore be computed by solving the following equa-

tion:

∇2
rΨ (r, θ, φ) +

1

r2
∇2

ΩΨ (r, θ, φ) + k2Ψ (r, θ, φ) = 0 (2.5)

where:

Ψ (r, θ, φ) is a function defined in spherical co-ordinates.

Here, it can be realised that the equation 2.5 is a Helmholtz equation in

spherical co-ordinates. This realisation allows this equation to be approached by

separation of variables, that is:
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Ψ (r, θ, φ) = R (r) Ω (θ, φ) = R (r) Θ (θ) Φ (φ) (2.6)

where:

R(r) is a function of the radial variables.

Ω(θ, φ) is a function of angular variables.

Θ(θ) is a function of the inclination angle variables.

Φ(φ) is a function of the azimuthal angle variables.

For more details about the derivation of spherical harmonics and the Lapla-

cian operator in spherical co-ordinates, see for example Freeden and Gutting

(2013).

2.1.1 Solving for the angular part

From here, it can be proven (for complete proof, see for example Young (2009))

that the solutions to the separation of variables (equation 2.6) are:

Θ (θ) = Pm
l (cos θ)

Φ (φ) = eimφ
(2.7)

where:

Pm
l are the associated Legendre polynomials defined in equation 1.11.

l is an integer constrained to range (0,∞).

m is an integer constrained to range (−l, l).

Now, by setting the radial value to 1 for all such solutions, a set of functions

defined on the surface of a unit sphere (as the radial part is 1) orthogonal to

each other are obtained for each value of l. However, these functions are not

orthonormal, i.e. the functions are orthogonal, but not normalised so that their

product contains only Dirac delta functions. It can, nonetheless, be proven (for
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example in Schonefeld (2005)) that these functions can be normalised by adding

the normalisation function (also known as weighting function) Nm
l :

Nm
l =

√
2l + 1

4π

(l −m)!

(l +m)!
(2.8)

With this, a set of orthonormal functions defined on a surface of a sphere

can be defined as per equation 2.9, which is identical to the equation 1.9. These

functions are known as spherical harmonics. It also follows that using the spherical

harmonics as basis functions for Fourier transform is identical to performing the

Fourier transform in spherical co-ordinate space with radial part equal to 1 - i.e.

on the surface of a unit sphere.

Y m
l (θ, φ) = Nm

l × Pm
l (cos (θ))× eimφ (2.9)

where:

Nm
l is the normalisation function defined in equation 2.8.

Pm
l is the associated Legendre polynomial defined in equation 1.11.

The figure 2.1 shows how the imaginary part of the spherical harmonics func-

tion with band four, order two (i.e. Y 2
4 (θ, φ)) is constructed from the combination

of the eigenvector solutions (equation 2.7) along the two angular dimensions. The

left part of the figure shows the result of applying the imaginary part of the spher-

ical harmonics function (sin (mφ)) along the azimuthal dimension of a unit sphere,

while the centre part of the figure shows the result of applying the associated

Legendre polynomial of appropriate band and order to the inclination dimension

of a unit sphere. The result obtained by of combining the two dimensions is the

imaginary part of the spherical harmonics function Y 2
4 (θ, φ) shown in the right

part of the figure.
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2.1. SPHERICAL HARMONICS DERIVATION

Figure 2.1: Construction of Im
(
Y 2
4

)
from the angular dimensions components

The figure shows the result of applying the angular solutions of the Helmholtz equation in spherical

co-ordinates to an unit sphere. The left part shows the imaginary part of the solution for azimuthal

angle being applied along the azimuthal dimension. The centre part shows the result of applying the

inclination angle solution along the inclination dimension. The right part of the figure then shows

the result of combining the two solutions into a single function. Figure adapted from Schonefeld

(2005).

2.1.2 Solving for the radial part

Regarding the radial part of equation 2.6, it can be proven (for example in Young

(2009)) that one solution to the radial part of the spherical-co-ordinate-space

Laplacian-operator eigenvector-problem are the spherical Bessel functions jl (r).

These functions are related to the Bessel functions as follows:

jl (r) =

√
π

2r
Jl+1/2 (r) (2.10)

where:

jl (r) is the spherical Bessel function of order l.

Jl (r) is the Bessel function of order l defined as per equation 2.11.

Where the Bessel functions are defined as in equation 2.11 - for detailed

discussion of the Bessel functions, see for example Korenev (2002).
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Jl (r) =
∞∑
m=0

(
(−1)m

m! Γ (m+ l + 1)

(r
2

)2m+l
)

(2.11)

where:

Jl (r) is the Bessel function of order l.

Γ (r) is the Gamma function defined as in equation 2.12.

Γ (z) =

∫ ∞
x=0

(
xz−1e−x

)
dx (2.12)

2.1.3 Spherical harmonics coefficients

Equipped with equation 2.9 to be used as a set of basis functions for spherical

harmonics expansion and keeping in mind that the spherical harmonics expansion

is a realisation of the Fourier transform on the surface of an unit sphere, it becomes

clear that a function defined on the surface of an unit sphere can be expanded onto

spherical harmonics coefficients by using the following equation:

f (θ, φ) =
∞∑
l=0

(
l∑

m=−l

(cml × Y m
l (θ, φ))

)

∴ cml =

∫ 2π

θ=0

(∫ π

φ=0

(
f (θ, φ)× Y ∗l,m (θ, φ)

)
sinφ dφ

)
dθ

(2.13)

where:

f (θ, φ) is a function defined on the surface of a unit sphere to be

f (θ, φ) expanded.

cml is the spherical harmonics expansion coefficient for band l and

cml order m.

Y ∗l,m (θ, φ) is the complex conjugate of the Yl,m (θ, φ) spherical

Y ∗l,m (θ, φ) harmonics function.
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In terms of numerical computation, it is obvious that it is not possible to

compute the infinitely many coefficients as the band goes to infinity. However, it

can be noted that as the band and order increases, the frequency of associated

Legendre polynomials increases proportionally. Similarly, the frequency of the

azimuthal angle solution eimφ is directly related to the order value m; and therefore,

by limiting the number of bands for which the numerical computation is done,

only high frequency signals are lost. It then follows that by applying a cap on

the number of bands computed, the result of this limitation on the equation 2.13

is equivalent to applying a low-pass filter to the function before the spherical

harmonics expansion. Therefore, the numerical computation is still useful, even

when a cap on the number of bands used is applied.

2.2 Radial information in spherical harmonics expansion

With the spherical harmonics derived and their background shown, the question of

how the information from the radial dimension should be included in the spherical

harmonics transform needs to be addressed. This question arises from the three-

dimensional property of the data; when the spherical harmonics are used on two-

dimensional data, this question does not apply as the data can be mapped onto

a sphere surface, a feature that cannot be done for the three-dimensional data

without considerable information loss.

2.2.1 Spherical Bessel expansion

One possible solution is to use the spherical Bessel expansion briefly discussed in

the section 2.1.2 above. To do this, the solution for the radial part of the Helmholtz

equation in spherical co-ordinate space (i.e. spherical Bessel functions defined in

equation 2.10) can be plugged into the separation of variables equation 2.6 along

with the angular solutions (equation 2.7), leading to:
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Ψk,l,m (r, θ, φ) = Rk,l (r) Θl,m (θ) Φl,m (φ) = N̂ l
k jl (kr) Y m

l (θ, φ) (2.14)

where:

k is the radial limit.

N̂ l
k is the normalisation function.

jl (kr) is the spherical Bessel function defined in equation 2.10.

Note that the normalisation function is different to the normalisation func-

tion used in spherical harmonics. Moreover, its particular form depends on the

formulation of the boundary conditions; for more details about the function and

its derivation see, for example, Wang et al. (2008a).

With the basis function defined by the equation 2.14, a Fourier transform

can now be done not on the surface of an unit sphere, but rather in spherical

co-ordinate space as a whole and so removing the radial information limitation

of the spherical harmonics expansion. The resulting spherical Bessel expansion

coefficients can then be computed as follows:

f (r, θ, φ) =
∞∑
k=0

(
∞∑
l=0

(
l∑

m=−l

(sk,l,m ×Ψk,l,m (r, θ, φ))

))

∴ sk,l,m =

∫ ∞
r=0

(∫ 2π

θ=0

(∫ π

φ=0

(
f (r, θ, φ)×Ψ∗k,l,m (r, θ, φ)

)))
sinφ dr dθ dφ

(2.15)

where:

f (r, θ, φ) is a function defined in spherical co-ordinates.

sk,l,m is the spherical Bessel expansion coefficient.

This approach to inclusion of the radial information to the spherical har-

monics expansion is used, for example, in the molecular replacement software such

as Phaser (McCoy et al., 2007) or MOLREP (Vagin and Teplyakov, 2010).
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2.2.2 Using multiple concentric spheres

While the spherical Bessel transform solves the issue of adding radial informa-

tion to the spherical harmonics expansion, it could also considerably increase the

computational cost of the computation. Therefore, an alternative solution was ex-

plored instead; this solution is based on using multiple concentric spheres centred

at the origin of the spherical co-ordinate system and consequently mapping only

a fraction (shell) of the three-dimensional object onto the closest sphere.

The advantage of this approach is that it does not require the computation

of spherical Bessel functions and their normalisation, which are computationally

costly. It is also worth noting that this approach does not require multiple com-

putation of the spherical harmonics functions as they can be computed once and

then stored and re-used for all spheres. Therefore, the increase in computational

cost is only linear with the number of shells, as each shell needs to be mapped onto

a surface of a sphere and expanded using the pre-computed spherical harmonics

functions.

The disadvantage of this approach is that there still is some loss of infor-

mation, albeit smaller than if no radial information was to be used. In order to

minimise the information loss, the placement of the concentric spheres and their

angular resolution needs to be done with regard to the resolution of the three-

dimensional object.

Sphere placement and resolution

Now, assuming a three-dimensional object defined in a rectangular grid of dimen-

sions a× b× c with each grid point having a single value and defining the object

through it, the centre is clearly at the co-ordinates a/2; b/2; c/2. In order to make

sure each object grid point is used in the expansion (and therefore minimising

the information loss), all the concentric spheres can have a maximum of 1 grid

point along the radial axis on either side of the sphere. Given that the smallest
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distance between grid points is 1, the concentric spheres should have their radii

differ by 2 grid distances in between the grid points, starting at a distance 1.5

grid distances up to the maximum concentric sphere distance given by applying

the Pythagoras theorem on the largest and second largest dimension in order to

obtain the maximum grid point distance from the centre of the grid.

By applying this approach, any point on the surface of any of the concentric

spheres can be approximated by using the trilinear interpolation, that is, by esti-

mating a value at given non-grid co-ordinate by considering the eight surrounding

grid co-ordinates at which values are known. Moreover, by considering that the

values on the surfaces of the concentric spheres also need to be placed into a grid

and further assuming this grid being a square grid, the maximum attainable reso-

lution for these angular grids (angular resolution) can be obtained by considering

the number of object grid points available to the largest concentric sphere. Specif-

ically, the maximum angular resolution is max(2a+ 2b, 2a+ 2c, 2b+ 2c), as this

is the maximum circumference of the box and therefore the maximum number of

available points for interpolation on the surface of a sphere, thus giving a limit on

the resolution the sphere grid.

At this point, it is also worth noting that Kostelec and Rockmore (2007)

suggests using the angular resolution of 2B, where B is the maximum band for

which the spherical harmonics coefficients are computed (also known as band-

width). Therefore, by determining the maximum angular resolution as per the

previous paragraph, it is possible to obtain bandwidth for the computations as

well by simply dividing the maximum angular resolution by two. Given all these

features of the concentric spheres alternative to the spherical Bessel expansion, it

was decided that priority should be given to the concentric spheres approach in

terms of implementation of this project.
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Spherical harmonics expansion with radial information

With the radial information added to the spherical harmonics expansion, it should

be noted that the equation 2.13 showing the spherical harmonics coefficient calcu-

lation needs to be modified to reflect these changes. The modified version of the

equation can be written as:

f (θ, φ) =
∞∑
l=0

(
l∑

m=−l

(∫ rmax

r=0

cml (r)× Y m
l (θ, φ) r2dr

))

∴ cml (r) =

∫ 2π

θ=0

(∫ π

φ=0

(
fr (θ, φ)× Y ∗l,m (θ, φ)

)
sinφ dφ

)
dθ

(2.16)

where:

f (θ, φ) is a function defined in three-dimensional co-ordinates..

fr (θ, φ) is the mapping of function f (θ, φ) to sphere with radius r.

cml (r) is the spherical harmonics coefficient for band l, order m and

cml (r) radius r.

Yl,m (θ, φ) is the spherical harmonics function of band l and order m.

2.3 Translation variance of spherical harmonics expansion

With the radial information inclusion approach decided, the translation variance

property of the spherical harmonics expansion should be discussed. The translation

variance means that translation of the expanded object in any direction causes

change in the resulting expansion coefficients. This is not the preferred property

for a shape descriptor, as it requires both shapes between which the distance is

to be computed to be centred optimally in order to obtain the minimal distance

between them.
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2.3.1 Centre of density

One possible approach to remove or at least reduce the effect of this property of

the spherical harmonics expansion is to centre all objects so that their centre of

density (COD) is at the co-ordinate origin. The centre of density can be calculated

using the equation 2.17, or in other words, it is the sum of all positions weighted

by their map density.

rCOD =
1

D

n∑
i=1

(di × ri) (2.17)

where:

rCOD is a vector of co-ordinates of the centre of density.

ri is a vector of co-ordinates for point i.

n is the total number of grid points.

di is the density at point i.

D is the total density in the map.

This approach has the advantage of solving the problem of translation vari-

ance in the optimal case of two identical, but differently positioned shapes. How-

ever, the robustness of this approach can be questioned, as any change in the

number of points or small positional changes will lead to slightly different centre

of density. This issue can easily be demonstrated by considering two shapes, for

example globular protein domains. Assuming the two domains to be identical,

except for having different length in a loop connecting them to the other domains

in the protein, it is clear that the domain with longer linker region will have its

COD shifted towards the linker region. The amount of this positional difference

will be proportional to the size of the protein domains as all points in the equation

2.17 are weighted by the density, but otherwise equally. This theoretical example

demonstrates that while the COD approach to translational variance can be used

to reduce the translational variance, it cannot fully remove it.
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2.3.2 Using Patterson maps

An alternative approach to removing the translation variance would be to remove

the phase information from the density maps (or for co-ordinate files, to compute

the theoretical density maps and subsequently remove the phase information from

these) and use the resulting Patterson maps, which are intrinsically translation

invariant. The Patterson maps are given by the Patterson function described in

Patterson (1935) as follows:

P (u, v, w) = Re

(∑
h,k,l

|Fh,k,l|2 e−2πi(hu+kv+lw)

)
(2.18)

where:

P (u, v, w) is the Patterson function.

Fh,k,l is the structure factor at Miller index position h, k and l.

h, k and l are the the Miller indices.

Re (...) means the real part of ... .

and the sum is taken over all space defined by the h, k and l indices.

The advantage of using this approach is that it is intrinsically translation

invariant; this is because the Patterson map peaks are given by the interatomic

vectors and the translation invariance then follows. This property of the Patterson

maps has been used to solve small molecule crystals. However, by removing the

phase information to obtain the property of translational invariance, a considerable

amount of information about the shape is lost; this is basically re-introduction of

the phase problem discussed in section 1.1.1.

Therefore, this method is not advisable for general usage, as the Patterson

map does intrinsically centre the map, but also causes considerable loss of in-

formation. Nonetheless, the reason for discussing this approach to removing the

translation variance of the spherical harmonics expansion is its possible applica-

tion to searching for molecular replacement candidates. In this particular case, the

query shape will not be in the state of solved structure (if this was the case, there
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would be no need for molecular replacement), but instead will be in the Patterson

map state. Therefore, it is useful for this project to implement both approaches to

removing the translation variance of the spherical harmonics expansion method;

one based on the Patterson function to be potentially used for molecular replace-

ment candidate search and one to be based on the centre of density approach to

be used when the phase information is available.

2.4 Rotation variance of spherical harmonics expansion

As well as being translation sensitive, the spherical harmonics expansion is also not

rotation invariant, that is, two identical shapes with different rotation operators

applied to them will have different spherical harmonics expansion coefficients. This

is not the preferred property for this project, as using rotation invariant shape

distance measure would be considerably easier and computationally cheaper than

using rotation sensitive shape distance measure and having to try various rotations

(i.e. three dimensional search) to find the rotation which minimises the shape

similarity measure.

2.4.1 Eigenvectors-based approach

The rotation variance of the spherical harmonics expansion could be reduced by

firstly making sure that all the object have optimal rotational orientation before

starting the spherical harmonics expansion. This approach is similar to the COD

approach for translation invariance in the sense that it does not remove the prop-

erty of the spherical harmonics expansion as such, but rather changes the input

objects so that the property does not have an effect on them.

A possible approach would be to obtain the eigenvectors for both the com-

pared objects and consequently rotating the objects so that the largest eigenvector

lies on the x axis, the second largest on the y axis and the smallest eigenvector on

the z axis (or in any other, but constant, order of the axes). This approach should
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not be too computationally expensive and would be a solution for the optimal case

of two identical, but differentially rotated shapes. However, this approach could

be very sensitive to small changes in the shapes.

To demonstrate the sensitivity of this approach to reducing rotational vari-

ance, it is worth noting that if the shape were a perfect sphere, then the three

eigenvectors would be degenerate (i.e. not uniquely defined). Now, if a protein

shape were to be mostly spherical with some minor differences (which may be the

case for globular proteins, albeit not as much for protein domains), then it would

have three rather similarly sized eigenvectors. It is easy to imagine that a copy of

this protein structure with one of the surface loops being longer or having extra

few residues in the linker region could have its eigenvector lengths order swapped

and therefore would end up being rotated by 90◦ (or π/2 radians) differently than

the other structure, even though the two structures could be very similar. Given

that this approach has a sensitivity to the surface regions, it seems not to be the

optimal approach to employ in this projects and that other solutions to rotational

invariance need to be explored.
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Shape similarity descriptors

With the spherical harmonics derivation and properties discussed and explained,

it is now possible to focus on how shape similarity could be recognised and enu-

merated in a fashion allowing comparisons between different shapes. Furthermore,

the question of how the accuracy and efficiency of the proposed solutions should

be measured needs to be addressed, as decisions regarding different approaches to

shape similarity measures will have to be taken in a comprehensive and reliable

manner.

3.1 Creating a test set

In order to facilitate the development of the shape similarity measures, a test

dataset is required. As the intended purpose of the test set is to aid decisions about

shape descriptors for detecting similarity in protein domain shapes, it became clear

that none of the available gold standard object-similarity test-sets, such as those

of Viksten et al. (2009) (industrial objects with different rotations) or Rodola

et al. (2014) (human shapes undergoing transformation) are really applicable to

this project. The reason is that while these datasets are useful for applications in

their respective fields, testing different approaches for shape-similarity detection on

them would not lead to optimisation for protein-domain shape-similarity detection.



3.1. CREATING A TEST SET

Another possibility would be to use any of the protein domain databases

discussed in section 1.3.1. All of these databases could be adapted to form a

test set with examples of protein domain shapes being classified as similar or

different. However, in order to avoid using any criteria other than the shape

itself to determine similarity, only databases which cluster protein domains based

purely on their shape should be considered. This realisation leads to a very similar

question as briefly discussed in section 1.3.2 and it seems reasonable to answer

similarly. Therefore, the BALBES database was selected to be used to create a

test set for protein domain shape descriptors.

3.1.1 Generation of the test set from the BALBES database

To generate a test dataset, two different versions of the BALBES database were

kindly supplied by Dr. Fei Long, the current version with 13, 719 entries and an

earlier version with 43, 468 entries. Subsequently, the domain similarity tables used

to generate the current version of the BALBES database, also kindly supplied by

Dr. Fei Long were used and simple name matching algorithm was developed to

extract domains which were clustered together based on similar crystallographic

cell parameters, low RMSD value and sequence similarity during the creation of the

BALBES database. The BALBES database creation is discussed in more details in

section 1.3.3. This procedure resulted in a dataset containing 402 protein-domain

co-ordinate files clustered in 104 groups.

3.1.2 Test-set properties

The test set comprises of 104 groups with mean group size 3.87 domains (median

is 2 domains), minimal size of 2 domains and maximum of 19 domains. In terms

of the number of atoms, the smallest domain contains 301 atoms, while the largest

domain consists of 5, 415 atoms with the mean being 1, 118 and the median 843

atoms.
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Regarding the secondary structure composition of the test set, the test set

was analysed using the DSSP (Touw et al., 2015) software. Then, four different

types of structures were defined by the secondary-structure content - if less than

40% of the structure consisted of α-helices and β-sheets as predicted by DSSP, then

the structure was assigned as not having secondary structure; if more that 80%

of the secondary structures detected were α-helices, the structure was assigned

as α-helical structre; if more than 80% of the secondary structures detected were

β-sheets, then the structure was assigned as being β-sheets and if none of the

above conditions was met, the structure was assigned as being mixed secondary

structure. Table 3.1 shows the results of the analysis of the dataset.

Table 3.1: Secondary structure content of the test dataset

Secondary structure content class Number of dataset entries

α-helical domains 110
β-sheet domains 53
Mixed domains 233

No secondary structure 6

This table shows the total number of the test dataset domains with given secondary structure
content. The secondary structure was predicted using DSSP (Touw et al., 2015). The secondary
structure classes are defined as described above.

In order to visually confirm that the groups defined in the test dataset ac-

tually contain protein domains with very similar shape, the three largest groups

(with group sizes 19, 17 and 17 domains) are visualised in figure 3.1.

3.2 Energy-levels-based shape-similarity descriptor

With the test dataset defined and available to facilitate decisions about the protein-

domain shape-descriptor accuracy, the focus can now be aimed at developing

suitable shape descriptors. Starting with the spherical-harmonics energy-level-

descriptors discussed previously (section 1.4.4), it should be recalled that while

they provide the preferred property of being rotation invariant, they do lead to a

loss of information. This fact is clearly seen as the spherical harmonics expansion

coefficients form an array organised by the sphere, band and order parameters,
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Figure 3.1: Visualisation of the three largest groups in the test dataset

This figure shows the three largest groups in the test dataset in its three parts a), b) and c). The

structures in each group were structurally aligned using the SSM (Krissinel and Henrick, 2004)

software and visualised using the Coot (Emsley et al., 2010).

while the spherical-harmonics energy-level-descriptor forms an array organised by

only two parameters, sphere and band. Therefore, in order to decrease the loss

of information caused by using the energy levels instead of full spherical harmon-

ics coefficients, the order parameter information needs to be, at least partially,

retained.
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3.2.1 Cross-correlation and spherical harmonics coefficients

In order to retain some of the information held by the individual frequencies of the

spherical-harmonics band orders, while still introducing the rotation invariance of

the energy level descriptors, the following idea was developed: Instead of using

the spherical harmonics coefficients sum over the order parameter to obtain the

energy levels descriptor, the sum could be made over the cross-correlation values

(i.e. the correlation in the frequency domain of Fourier transform) of the spherical

harmonics coefficients bands with no displacement; thus leading to the following

definition:

τl (r, r
′) =

l∑
m=−l

(
c∗l,m (r)× cl,m (r′)

)
(3.1)

where:

r and r′ denote two spheres from the concentric spheres set. Note: r = r′ is

r and r′ not permissible.

τl (r, r
′) is the shape descriptor for band l and spheres r and r′.

cl,m (r′) is the spherical harmonics coefficient for band l, order m and

cl,m (r) sphere r′.

c∗l,m (r) is the spherical harmonics coefficient complex conjugate for band l,

c∗l,m (r) order m and sphere r.

The equation 3.1 can therefore be interpreted as computing the cross-corre-

lation coefficient between the same bands of the spherical harmonics, but from

different spheres and with the displacement constant being zero. The advantage

of this descriptor τ is that while it does not retain any of the order informa-

tion directly, it re-introduces some of the order information through having the

cross-correlation between different spheres. It is also worth noting that the dimen-

sionality of the coefficient arrays stays three when the τ descriptor is used, as now

the results array is parametrised by band (l), sphere 1 (r) and sphere 2 (r′). A

very interesting feature of the τ descriptor is that it is rotation invariant. This
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property will be proven in section 3.2.3, but firstly the Wigner matrices (D) need

to be briefly introduced.

3.2.2 Brief introduction to Wigner D matrices

The Wigner D matrices were described by Wigner (1931) and they are an irre-

ducible representations of the SU(2) and SO(3) groups. In other words, the Wigner

D matrices represent rotations in the spherical-harmonics frequency-domain, so

that if the spherical harmonics coefficients cl,m are multiplied by the Wigner

D l
m,m′ (α, β, γ) matrices as per equation 3.2, the resulting new set of crotatedl,m co-

efficients are identical to applying a rotation of α, β, γ Euler angles prior to the

spherical harmonics expansion. For more details about the Euler angles, see the

section 3.4.1.

crotatedl,m (r) =
l∑

m′=−l

(
D l
m,m′ (α, β, γ) cl,m′ (r)

)
(3.2)

Given that the Wigner D matrices are rotation matrices, they do have the

standard rotation matrix properties shown in equation 3.3. Note that the order

m and m′ iterators were removed from the equation 3.3; this is to signify that the

matrix Dl of dimensions m×m′ and vector cl of length m are used in linear algebra

sense.

D∗Tl (α, β, γ) = D−1
l (α, β, γ)

D∗Tl (α, β, γ)×Dl (α, β, γ) = I

(Dl (α, β, γ)× cl (r))∗T = c∗l ×D∗Tl (α, β, γ)

(3.3)

where:

∗ denotes a complex conjugate.

T denotes matrix transpose.

−1 denotes matrix inverse.

I is the Identity matrix.
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The Wigner D matrices will be discussed in greater detail in a later section,

but the knowledge of them being the representations of rotations in spherical har-

monics space will be sufficient to prove that the τ descriptor is rotation invariant.

3.2.3 Cross-correlation τ descriptor is rotation invariant

Rotation invariance has been shown to be true for spherical Bessel cross-correlation

measure by Wang et al. (2008b); using a similar approach to prove this feature is

also true for the τ descriptor, start by considering the equation 2.13 (for conve-

nience repeated as the first part of equation 3.4 below) and the effect of applying

a rotation R (α, β, γ) along the Euler angles α, β and γ to the original function.

By definition, the equation for the rotation effect is:

f (θ, φ) =

∞∑
l=0

(
l∑

m=−l

(∫ rmax

r=0

cml (r)× Y ml (θ, φ) r2dr

))

∴ R (α, β, γ) f (θ, φ) =

∞∑
l=0

 l∑
m=−l

∫ rmax

r=0

 l∑
m′=−l

(
D l
m,m′ (α, β, γ) cl,m′ (r)

)
Y ml (θ, φ) r2dr

 (3.4)

Which can be written in the matrix form as:

R (α, β, γ) fr (θ, φ) =
∞∑
l=0

(∫ rmax

r=0

(
Dl (α, β, γ) cl (r)× Yl (θ, φ) r2dr

))
(3.5)

From equation 3.5, it is clear that the rotation is applied directly to the

spherical harmonics coefficients vector cl. Applying the rotation to the shape

descriptor τ in the same way, it follows that:
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Dl (α, β, γ)× τl (r, r′) = (Dl (α, β, γ) cl (r))
∗T ×Dl (α, β, γ) cl (r

′)

= c∗l (r) D∗Tl (α, β, γ) Dl (α, β, γ) cl (r
′)

= c∗l (r)× I × cl (r′)

= c∗l (r) cl (r
′)

= τl (r, r
′)

(3.6)

Where the bracket expansion from line 1 to line 2 was done using the last

part of equation 3.3, then the middle part of the equation 3.3 was used to combine

the Wigner D matrix and its transposed conjugate into a single identity matrix.

The identity matrix can then be removed as it has no effect on vector multipli-

cation (resulting in line 4 of equation 3.6) and finally, using the definition of the

τ descriptor (equation 3.1), line 5 of equation 3.6 is obtained. Therefore, it can

be concluded that any rotation applied to the descriptor τ is irrelevant and thus

that the descriptor τ is intrinsically rotation invariant as required. This proof is

based on the proof used by Wang et al. (2008b) to show that the spherical Bessel

cross-correlation is rotation invariant.

3.2.4 Cross-correlation τ descriptor and Patterson maps

With the rotation invariance feature proven for the τ descriptor, it is very interest-

ing to consider the spherical harmonics feature stemming from Condon-Shortley

phase element (Condon and Shortley, 1951) of the spherical harmonics functions

(the Condon-Shortley phase is used to treat angular momenta in quantum me-

chanics), specifically:

Yl,−m (θ, φ) = (−1)m Y ∗l,m (θ, φ) (3.7)
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Now, this relationship between the spherical harmonics function and its com-

plex conjugate is not generally valid for spherical harmonics coefficients as is evi-

dent from the following equation.

cml (r) =

∫ 2π

θ=0

(∫ π

φ=0

(
fr (θ, φ)× Y ∗l,m (θ, φ)

)
sinφ dφ

)
dθ

= (−1)m
∫ 2π

θ=0

(∫ π

φ=0

(fr (θ, φ)× Yl,−m (θ, φ)) sinφ dφ

)
dθ

∴ c∗l,m (r) = (−1)m
∫ 2π

θ=0

(∫ π

φ=0

(
f ∗r (θ, φ)× Y ∗l,−m (θ, φ)

)
sinφ dφ

)
dθ

(3.8)

Where the relationship shown in equation 3.7 cannot be applied to the spher-

ical harmonics coefficients, because it does not hold for them as shown in the last

part of equation 3.8. The reason is that the expanded function f also requires

the complex conjugate of its expansion to be taken. However, in the specific case

where the expanded function f expansion does have no phase (i.e. its imaginary

parts are all zero), it is possible to use equation 3.7, as the complex conjugate of

a real number is the same real number. Noting that this is exactly the case for

Patterson maps, it holds for any function f which has real-valued expansion, that:

c∗l,m (r) =

∫ 2π

θ=0

(∫ π

φ=0

(fr (θ, φ)× Yl,m (θ, φ)) sinφ dφ

)
dθ

= (−1)m
∫ 2π

θ=0

(∫ π

φ=0

(
fr (θ, φ)× Y ∗l,−m (θ, φ)

)
sinφ dφ

)
dθ

= (−1)m cl,−m (r)

(3.9)

Using the result from equation 3.9, it is easy to show that:
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τl (r, r
′) ≡

l∑
m=−l

(
c∗l,m (r) cl,m (r′)

)
=

l∑
m=−l

((−1)m cl,−m (r) cl,m (r′))

=
−l∑
m=l

((−1)m cl,m (r) cl,−m (r′))

=
−l∑
m=l

(
cl,m (r) c∗l,m (r′)

)
(3.10)

Where the result of equation 3.9 was used to obtain line 2 of equation 3.10,

then the summation order was reversed to obtain line 3 of equation 3.10 and

finally the result of equation 3.9 was used again to obtain line 4 of the equation

3.10. Therefore, the spherical harmonics coefficients cl,m are equal to their complex

conjugates; as this property can only be true for real numbers, it follows that the

spherical harmonics expansion of real valued Patterson functions is also real valued.

3.2.5 The spherical harmonics band zero

At this point, it is important to note the meaning of the spherical harmonics coef-

ficient Y 0
0 . Specifically, it can be seen from figure 1.5 that the spherical harmonics

band zero is a constant function (with value 1/2
√

1/π ≈ 0.2821). The effect of this

fact is that this band does not distinguish shapes, but only takes into account the

total density of the function defined on the surface of the sphere. In other words,

as spherical harmonics are equivalent to the Fourier transform in the spherical

co-ordinates, the spherical harmonics band zero can be seen as the first element of

the Fourier series, which also gives the average density of the expanded function

but no frequency information.

Given this, it seems unnecessary to compute and use the spherical harmonics

band zero when comparing two shapes. The advantage of not using the band

zero is in increasing the accuracy of the shape description, as shape-invariant
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descriptor with relatively high absolute value is removed from the shape distance

computation. Furthermore, there is a decrease in the computational cost, albeit it

is rather small in the context of all other costs of the computation. Therefore, the

spherical harmonics band zero (Y 0
0 ) and the related cross-correlation descriptor

(τ0) will not be used in any further shape distance computations.

3.2.6 Cross-correlation distance

With the properties of the cross-correlation descriptor τ discussed, it now needs to

be seen how the τ descriptor can be used to obtain a numerical distance between

two objects shapes. Assuming that the two objects are mapped onto concentric

spheres placed as discussed in the previous section (2.2.2), then expanded onto

their respective spherical harmonics coefficients and that the τ descriptor has been

computed, both objects are now described by three-dimensional arrays ordered by

their band (l), sphere 1 (r) and sphere 2 (r′).

Dimensionality of the descriptor arrays

In order to compare two such arrays, their dimensionality needs to be made equal.

Consequently, if the two arrays have differing number of bands, the bands missing

from one object and present in the other object are the high frequency bands

supported by the resolution of one object, but not by the resolution of the other.

It therefore seems appropriate to use only the bands present in both objects, as

the extra bands should not be compared to zeroes - the missing bands are not

zeroes, they are simply not supported by the resolution.

Similarly, if the two arrays have different number of concentric spheres, it

is possible to assume the missing spheres to have values zero. However, by using

only the spheres which are present in both objects, the descriptor would be able to

detect similarity in the protein domain core, even when the surface (outer spheres)

are different or not existent. Therefore, the optimal approach for the project seems

to be using only the shells which are present in both objects.
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Distance between two matrices

Now, to obtain a numerical distance between the descriptor arrays, the distance

between the same sized matrices of τl (with dimensions r×r′) need to be computed.

Nonetheless, there are many different approaches to obtain distances between ma-

trices, each with its advantages and disadvantages. Therefore it was decided that

the approaches listed in table 3.2 will all be used to compute the distances between

the τl matrices from different objects and consequently their respective accuracy

in detecting similar and distinguishing different shapes will serve as the basis for

selecting the optimal approach for this project.

Table 3.2: Matrix distances used in search for optimal protein domain shape descriptor

Matrix Distance Definition where:

Sum of
differences

Ds.o.d. (A,B) =
∑r
i=0

(∑r′

j=i+1 (abs (ai,j − bi,j))
) ai,j and bi,j are values

of matrices A and B

Root square
distance (Frobe-
nius norm )

Dr.s.d. (A,B) =

√∑r
i=0

(∑r′

j=i+1

(
(ai,j − bi,j)2

)) ai,j and bi,j are values
of matrices A and B

Singular values
distance Ds.v.d. (A,B) =

√∑r
i=0 (SAi − SBi )

2

SA are singular values
of matrix A.
SB are singular values
of matrix B.

Pearson’s corre-
lation coefficient

Dp.c.c. (A,B) =

∑r
i=1

∑r′
j=1((ai,j−µa)(bi,j−µb))√∑r

i=1(
∑r′

j=1(ai,j−µa))
2
√∑r

i=1(
∑r′

j=1(bi,j−µb))
2

ai,j and bi,j are values
of matrices A and B
µa is the mean value
of matrix A
µb is the mean value
of matrix B

Spearman’s rank
correlation coeff. Ds.c.c. (A,B) = 1−

6
∑r

i=1

(∑r′
j=1

(
(rg(ai,j−rg(bi,j)))

2
))

(rr′)((rr′)2−1)

ai,j and bi,j are values
of matrices A and B
rg(ai,j) is integer
rank in matrix A
rg(bi,j) is integer rank
in matrix B

This table shows different approaches to computing distances (D(A,B)) between two matrices
A and B and their mathematical definition.

Single distance from a distance vector

Given that the matrix distance approaches listed in table 3.2 can be computed for

each pair of matrices, applying any of them will result in a vector T with length l,

which will contain the distances between all l matrix pairs present in both objects.
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Nonetheless, in order to obtain a single numeric distance between the two objects,

the vector T will have to be reduced to a single number.

Similarly to the matrix distance, there are many possible approaches for

reducing a vector to a single number; these approaches are generally known as

vector norms. In an attempt to discover which of the available vector norms

works best with the protein domain shapes and the cross-correlation-based shape-

descriptor τ , a selection of frequently used vector norms, listed in table 3.3 along

with their mathematical definitions, was chosen. These selected vector norms were

then all used in combination with all matrix distance approaches listed above, so

that the most accurate combination could be selected.

Table 3.3: Vector norms used in search for optimal protein domain shape descriptor

Matrix Distance Definition where:

Vector
mean

‖T‖mean = 1
n

∑n
i=1 (ti)

n is the length of vector T

ti is the ith element of vector T

Absolute value
(L1) norm

‖T‖abs = ‖T‖1 =
∑n
i=1 (|ti|)

n is the length of vector T
|...| is the absolute value of ...

ti is the ith element of vector T

Euclidean
(L2) norm

‖T‖Eucl = ‖T‖2 =
√∑n

i=1 (t2i )
n is the length of vector T

ti is the ith element of vector T

Max
norm

‖T‖max = ‖T‖∞ = max (t1, t2, ..., tn)
n is the length of vector T

ti is the ith element of vector T

This table shows different approaches to reducing a vector of descriptors T onto a single distance
number.

Comparison of matrix distances and vector norm combinations

With the ability to compute a single distance value for any pair of protein do-

mains, the test dataset can now be used to decide which of the matrix-distance

approaches and the vector-norm combination is the most appropriate for this ap-

plication. Therefore, all combinations of matrix distances and vector norms were

used to compute the descriptor distance between any two structures belonging to

the same group of the test dataset. Also, the distances were computed between

one representative structure of a group to all representative structures of all the

other groups. These calculations lead to two distance distributions per combi-

nation of matrix distance and vector norm methods, the within groups distances

distribution and the between groups distances distribution.
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Figure 3.2: Distributions of τ descriptor distances within and between the test dataset groups
using different matrix-distance approaches and vector norms

a

This figure shows the re-

sults of computing the cross-

correlation based descriptor

τ distances between similarly

shaped protein domains (de-

fined by being in the same

group of the test dataset) and

differently shaped protein do-

mains (defined by being in

different groups of the test

dataset). The resulting two

distributions of the descrip-

tor values are shown always

with the similar shapes dis-

tribution in turquoise colour

and different shapes distri-

bution in red colour. The

five parts of this figure show

these shape descriptor distri-

butions with different matrix

distance metric being used

for the shape distance com-

putation (see table 3.2); in

part a), the Sum of differ-

ences measure was used, part

b) was produced using the

Root square distance method,

part c) is based on the Singu-

lar values distance approach,

part d) uses the Pearson’s

correlation coefficient, while

part e) was produced using

the Spearman’s rank correla-

tion coefficient. Furthermore,

each plot in parts a) to e)

is divided into four pairs of

distances; each distance pair

(distance pair constitutes a

similar shape distances and

different shape distances dis-

tributions) was produced us-

ing the same matrix distance

method, but using different

vector norm - for list of vector

norms tested, see table 3.3.

All distribution pairs (similar

and different shape distribu-

tions produced using the same

methods) were normalised to

have the joint maxima of 1

and minima of 0.
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Figure 3.2 shows how the cross-correlation-based shape-similarity descrip-

tor is distributed among the similar protein domains (the turquoise coloured box

plots) and dissimilar structures (the red coloured box plots) and more importantly,

how these distributions differ when different combinations of the matrix distances

and vector norms are applied. In general, it is visible from figure 3.2 that all

of the proposed matrix distance approaches do indeed lead to a descriptor which

distinguishes between the similar and dissimilar shapes; this can be seen from the

fact that the distributions have minimal overlap.

Weighting by the shell distance

However, before making the decision as to which of the matrix-distance and vector-

norm methods combination should be implemented into the cross-correlation shape

descriptor, it is interesting to consider the possibility of weighting the matrices by

the shell distance. The rationale behind this idea is that the different spheres

may have slightly different meaning depending on their position; for example,

by increasing the weight on the internal spheres, the descriptor would increase

the importance of similarity in the core of the protein domain, while being more

relaxed about differences in the surface regions. Similarly, by increasing the weight

of the shells furthest from the centre, less false positives could be discovered as

much closer similarity in the, presumably, most differing regions would be required.

In order to explore this idea, a weighting function was implemented to mul-

tiply each element of the τl matrices by its shell 1 and shell 2 positions (in other

words by the row and column number) raised to the power of the weighting argu-

ment or the inverse of this number, that is:
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τweightedl =
r∑
i=1

(
r′∑
j=1

(
τl
(
ri, r

′
j

)
× iw × jw

))

τweightedl =
r∑
i=1

(
r′∑
j=1

(
τl
(
ri, r

′
j

)
× 1/iw × 1/jw

)) (3.11)

where:

τl is the matrix of τl (r, r
′) descriptors.

w is the weighting factor.

The resulting distributions of the shape descriptor for similar (within group

distances) and different structures (between group distances) are shown in figure

3.3.

AUROC distribution difference measure

The figures 3.2 and 3.3 are useful for visually inspecting the distributions of the

shape descriptor values; however, it would be difficult to determine which of the

possible matrix distance method and vector norm combinations, as well as possible

weighting approaches should be used to maximise the shape descriptor ability to

distinguish between similar and different shapes.

Therefore, the area under receiver operating characteristic (AUROC) mea-

sure of predictive power was used to enumerate how efficient the various approaches

are. The AUROC measure is based on selecting a numerical threshold (typically

just under the lowest measured descriptor value) and computing the false posi-

tive rate (FPR =
∑
False Positives/

∑
Condition negative) as well as the true positive

rate (TPR =
∑
True Positives/

∑
Condition positive). Subsequently, the threshold is in-

creased slightly and the computation of FPR and TPR is repeated. This is done

until the threshold value is larger than the highest measured value.

The result of this calculation is a set of FPR and TPR values, which can be

plotted against each other (typically, FPR on x axis and TPR on y axis). This
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Figure 3.3: Distributions of τ cross-correlation distance measure within and between the test
dataset using different matrix-distance approaches and vector norms, as well as using sphere
number weighting

This figure shows the same plots as the figure 3.2 for the five different matrix distance methods

and four different vector norms. However, in the parts a) to e), the weighting function based on

the sphere number (top line of equation 3.11) with weighting parameter 2.0 has been applied, while

the parts f) to j) have been computed using the weighting function with inverse sphere position

distance weight (the bottom line of equation 3.11) and weight parameter 2.0. All distribution pairs

(similar and different shape distributions produced using the same methods) were normalised to

have the joint maxima of 1 and minima of 0.

plot is known as the receiver operating characteristic (ROC) and the area under

the curve given by the FPR and TPR pairs is then the value of the AUROC

measure. The AUROC measure is the same quantity as the Wilcoxon statistic
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and is therefore related to the Mann-Whitney U test through it, as discussed in

detail by Hanley and McNeil (1982). Moreover, contrary to the statistical tests,

the AUROC has easily interpretable value of 0.5 when the two distribution are

identical and 1 (or 0) when the two distribution are completely different and can

be completely separated by a single threshold value.

Deciding the shape descriptor final implementation

Finally, in order to decide which of the proposed methods for obtaining a single

numerical distance for shape similarity using the τ descriptor should be used, the

AUROC measure was computed for all methods and weighting combination shown

in figures 3.2 and 3.3 as well as some other weighting parameter values. The results

are available in table 3.4.

From table 3.4, it is clear that the highest AUROC measure value and con-

sequently the strongest distinguishing power between similar and dissimilar struc-

tures is achieved by using the Pearson’s correlation coefficient as a distance measure

between two matrices, the vector average to reduce it into a single number and not

applying any weighting to the sphere positions. It is also worth noting that almost

as high value was reached with the Singular Values matrix distance, average as

vector reduction and weighting with parameter of 2.0, as well as some other com-

binations. Nonetheless, the shape descriptor was implemented with the Pearson’s

correlation coefficient as the matrix distance measure, the vector average as the

vector reduction method and with no weighting applied.

Finally, it is also worth noting that while figures 3.2 and 3.3 do show the

shape distributions to be in range between 0 and 1, this is not the natural range

for most of the matrix distance methods and the pairs of distributions needed to

be scaled into this range. Nonetheless, the Pearson correlation coefficient distance

does range from -1 to +1 naturally; this feature is not required as scaling can be

applied, but it is mathematically pleasing and makes the interpretation of results

easier.
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Table 3.4: AUROC measure for different matrix distances, vector norms and weighting combi-
nations

Matrix distance
method

Vector norm
w = 2.0
(inverse)

w = 0.5
(inverse)

No
weighting

w = 0.5 w = 2.0

Sum of
differences

Average 0.874 0.948 0.970 0.966 0.962

Sum of
differences

Absolute 0.876 0.946 0.971 0.968 0.942

Sum of
differences

Euclidean 0.871 0.941 0.971 0.974 0.972

Sum of
differences

Maximum 0.869 0.939 0.970 0.974 0.971

Root square
distance

Average 0.571 0.882 0.964 0.956 0.918

Root square
distance

Absolute 0.829 0.872 0.968 0.972 0.973

Root square
distance

Euclidean 0.828 0.871 0.966 0.970 0.964

Root square
distance

Maximum 0.828 0.812 0.966 0.973 0.974

Singular values
distance

Average 0.820 0.816 0.923 0.959 0.976

Singular values
distance

Absolute 0.822 0.846 0.928 0.966 0.970

Singular values
distance

Euclidean 0.821 0.817 0.903 0.965 0.967

Singular values
distance

Maximum 0.821 0.951 0.892 0.953 0.966

Pearson’s
corr. coefficient

Average 0.621 0.865 0.977 0.976 0.970

Pearson’s
corr. coefficient

Absolute 0.535 0.700 0.785 0.802 0.806

Pearson’s
corr. coefficient

Euclidean 0.573 0.781 0.882 0.901 0.895

Pearson’s
corr. coefficient

Maximum 0.779 0.856 0.935 0.969 0.974

Spearman’s
rank corr. coeff.

Average 0.960 0.965 0.950 0.972 0.973

Spearman’s
rank corr. coeff.

Absolute 0.918 0.900 0.892 0.884 0.885

Spearman’s
rank corr. coeff.

Euclidean 0.963 0.960 0.963 0.959 0.961

Spearman’s
rank corr. coeff.

Maximum 0.962 0.962 0.883 0.961 0.966

This table shows the AUROC measure of descriptor predictive use for five different methods
for computing distance between two matrices (defined in table 3.2), four different approaches to
vector norms (as shown in table 3.3) as well as four different weights (see equation 3.11) and
without any weighting. The bold number is the highest found AUROC value in the table.

3.3 Trace-sigma-based shape descriptor

The best measured value of the AUROC measure for the cross-correlation shape

descriptor is 0.977 (table 3.4); a value showing high distinguishing power of the

descriptor to separate the similar and dissimilar shapes. Nonetheless, since the
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value is not 1.0, it also means that no single threshold can distinguish the similar

and different protein domain shapes without introducing at least one false-positive

or false-negative result. As this is the case, it seems reasonable to introduce another

shape descriptor in an attempt to increase the accuracy, be it on its own or in

combination with the cross-correlation shape descriptor.

3.3.1 Derivation of the trace-sigma descriptor

The motivation behind this new descriptor is to find the minimal distance between

two three-dimensional objects. There are, however, many different methods for

defining distance between three-dimensional objects; nonetheless, it is interesting

to consider the distance in terms of their respective spherical harmonics coefficients.

Such distance between two objects (f1 and f2) can be defined using the spherical

harmonics coefficients definition from equation 2.16, to be:

d (f1, f2) =
lmax∑
l=1

{
l∑

m=−l

[∫ rmax

r=0

(
c1
l,m (r)− c2

l,m (r)
)2
r2dr

]}
(3.12)

where:

f1 and f2 are the two objects between which the distance is to be

f1 and f2 computed.

d (f1, f2) is the distance between the objects.

c1
l,m (r) and c2

l,m (r) are the respective spherical harmonics coefficients

c1
l,m (r) and c2

l,m (r) for objects 1 and 2.

Furthermore, assuming that one of the objects (in this case, let it be object

f2) has been rotated from the position of optimal overlay with object f1 by some

unknown rotation R (α, β, γ) defined by the three Euler angles α, β and γ, thus

leading to:
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d (f1,R (α, β, γ)f2) =

lmax∑
l=1


l∑

m=−l

∫ rmax

r=0

c1l,m (r)−
l∑

m′=−l

(
Dm,m′

l (α, β, γ) c2l,m′ (r)
)2

r2dr

 (3.13)

where:

R (α, β, γ) is a rotation about the Euler angles α, β and γ.

Dm,m′

l (α, β, γ) is the Wigner D matrix used as discussed in section 3.2.2.

And by expanding the square of the difference, this can be re-written as:

d (f1,R (α, β, γ)f2) =

lmax∑
l=1

{
l∑

m=−l

[ ∫ rmax

r=0

(
c1l,m (r)

)2
r2dr

+

∫ rmax

r=0

( lmax∑
m′=−l

(
Dm,m′

l (α, β, γ) c2l,m′ (r)
))2

r2dr

− 2

∫ rmax

r=0

(
c1l,m

lmax∑
m′=−l

(
Dm,m′

l (α, β, γ) c2l,m′ (r)
))
r2dr

]}
(3.14)

From equation 3.14, it is clear that the first two terms (lines 1 and 2) are

rotation invariant as mentioned in section 1.4.4. Nonetheless, the cross-term (line

3) depends on rotation and therefore can be minimised by finding the rotation

which makes the spherical harmonics coefficients of the two compared objects

most similar in terms of their numerical values.

Now, in order to find the minimal distance between two objects, the equation

3.14 needs to be minimised; therefore, focusing on the cross-term of the spheri-

cal harmonics distance equation, it can be noted that the Wigner D matrices are

invariant to the radius r and therefore can be moved outside the integral. Also,

the factor of −2 can be omitted as it is a constant and therefore does not af-

fect minimisation (except for changing it into maximisation due to sign change).

Therefore:

arg min
α,β,γ

(
d
(
f1,R (α, β, γ)f2

))
=

arg max
α,β,γ

{
lmax∑
l=1

{ l∑
m=−l

[ l∑
m′=−l

(
Dm,m′

l (α, β, γ)

∫ rmax

r=0

(
c1l,m × c2∗l,m′

)
r2dr

)]}} (3.15)
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Where the complex conjugate on the spherical harmonics coefficient c2∗
l,m′

comes from the Hermitian inner product definition. Now, the integral can be

denoted as:

el,m,m′ =

∫ rmax

r=0

(
c1
l,m × c2∗

l,m′

)
r2dr (3.16)

Thus allowing the equation 3.15 to be written in matrix form as

arg min
α,β,γ

(
d
(
f1,R (α, β, γ)f2

))
= arg max

α,β,γ

{
lmax∑
l=1

[
tr
(
Dl (α, β, γ)ET

l

)]}
(3.17)

where:

Dl (α, β, γ) is the Wigner D matrix with dimensions m and m′.

El is a matrix consisting of the integral results with dimensions m and m′.

tr (...) is the trace of matrix given in ... .

The reason for the trace to be used comes from the definition of the trace

operator on matrix product (i.e.
∑

i

[∑
j

(
Ai,jBj,i

)]
= tr (AB) ), which is clearly

satisfied when equation 3.15 is written in matrix form. Consequently, it is inter-

esting to consider the result of computing the singular value decomposition (SVD)

of the E matrices, that is:

ET
l = UT

l ΣT
l Vl

∴ arg min
α,β,γ

(
d
(
f1,R (α, β, γ)f2

))
= arg max

α,β,γ

{
lmax∑
l=1

[
tr
(
Dl (α, β, γ)UT

l ΣT
l Vl

)]} (3.18)

Now, using the fact that matrix multiplication order is irrelevant under the

trace operator, the matrix order can be changed to

arg min
α,β,γ

(
d
(
f1,R (α, β, γ)f2

))
= arg max

α,β,γ

{
lmax∑
l=1

[
tr
(
V T
l Dl (α, β, γ)UlΣ

T
l

)]}
(3.19)
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Then, by realising that the matrices Ul, Vl and Dl in equation 3.19 are all

rotation matrices, it becomes clear that the maximum of the right hand side of the

equation 3.19 is when they collapse into the identity matrix I (this is because the

diagonal elements of any rotation matrix have maximum of one), and therefore:

V T
l Dl (α, β, γ)Ul = I

∴ Dl (α, β, γ) = V T
l Ul

(3.20)

What then leads to the following equation:

arg min
α,β,γ

(
d
(
f1,R (α, β, γ)f2

))
≤

lmax∑
l=1

[
tr
(

ΣT
l

)]
(3.21)

It should be noted that the maximisation as per equation 3.20 is done in

equation 3.21 for each band l separately. Since it is not possible for the opti-

mal rotation Euler angles α, β and γ to be different for each band of spherical

harmonics, it follows that this is not the absolute minima of the shape distance

d (f1,R (α, β, γ)f2), but rather its approximation under the assumption that over-

lay of each band l between the two objects is optimal with the same Euler angles

α, β and γ. For this reason, the right-hand part of equation 3.21 is stated as larger

or equal to the minimal distance instead of being equal to it.

3.3.2 Accuracy of the trace-sigma descriptor

In order to evaluate how accurate the trace-sigma shape-distance is in separating

the similar and different shapes, it was implemented and used to compute the

shape distances within and between the test dataset groups (in identical fashion

as in section 3.2.6). The resulting box plot showing the distributions of the trace-

sigma shape-descriptor values for similar and different shapes is shown in figure

3.4.
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Figure 3.4: The distributions of the trace sigma descriptor for protein domains with similar and
different shapes

This figure shows the distribution of the trace sigma descriptor (defined as per the equation 3.21)

values for the test dataset. The red box plot on the left describes the distribution of the distances

between similar shapes (i.e. shapes within a single group), whereas the turquoise box plot on the

right shows the distribution between shapes in different groups.

Consequently, to enumerate how much the two distributions differ and there-

fore how much distinguishing power the trace-sigma descriptor has, the AUROC

measure was computed. The value for the trace-sigma descriptor is 0.984; this is

a higher number than the cross-correlation-based descriptor discussed in the previ-

ous chapter, but on the other hand it still does not lead to a perfect separation. In

order to explore how well the two descriptors agree with each other and therefore

whether any extra information can be obtained by their combination, the relative

pair ordering needed to be explored.
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3.3.3 Comparison of trace-sigma and cross-correlation results

In order to answer this question, is it interesting to calculate the x lowest scor-

ing pairs with similar shape (in other words, taking the lowest x values from the

within-group distances distribution) for both shape descriptors. Then, it is possi-

ble to compute the intersection of these two vectors and consider the size of the

intersection as a fraction of the maximum possible intersection size, x. Similarly,

the highest scoring pairs with different shapes can be taken from the between-

group distributions of the two descriptors and the same metric of the intersection

size as a fraction of maximum possible intersection size can be obtained.

The reason for selecting the lowest scoring pairs with similar shape and the

highest scoring pairs with different shape is that these are the most likely false

negatives and false positives based on any threshold. Therefore, by selecting these

two sets of values, it is possible to see if the two shape descriptors struggle with the

same protein domain pairs, or if they struggle with different pairs and therefore

that their combination does increase the information content over using just one

of them.

The fraction metric devised in the previous paragraph has the property of

being one when there is no difference between the two descriptors, while it would

have a value of zero if the two shape descriptors would provide completely different

information (in terms of failing for different structures). Now, the fraction metric

has been implemented and applied to various values of x and the resulting plot is

shown in figure 3.5.

As the figure 3.5 shows, only about 10% of the top 25 scoring protein domain

pairs with different shapes are shared by the two shape descriptors, while approx-

imately 40% of the lowest scoring protein domains with similar shapes are shared

between the two shape descriptors. These results suggest that by combining the

results of the two descriptors, better separation of similar and dissimilar shapes

could be reached. It is worth noting that by combining the two descriptors, it

is not necessarily meant combining their values, but rather combination of their
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Figure 3.5: The intersection of the false-positive and false-negative region between the two shape
descriptors

This figure was produced by computing the intersection between the cross-correlation and the trace-

sigma descriptors for the top x scoring pairs with different shapes (shown in turquoise colour).

Similarly, the intersection between the two descriptors was computed for the x lowest scoring pairs

with similar shapes (shown in red colour). The value of x used was varied in the range from 3 to

100.

predictions (i.e. something akin ”if cross-correlation value is higher than x or if

trace-sigma value is higher than y...”). For this very reason, it is not possible to

compute the AUROC value to demonstrate whether this is indeed the case.

3.3.4 Features of the trace-sigma descriptor

With the trace-sigma descriptor defined and its usefulness discussed, it is worth

exploring the mathematical features that the descriptor intrinsically has. Firstly,

the trace sigma descriptor is rotation invariant as the singular values matrix Σ

and its trace are rotation invariant by definition. This fact can also be seen from
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equation 3.19, which shows that the maximum (and therefore the final descriptor

value) is reached when all the rotation matrices collapse into a single identity

matrix; the only situation when this is true is when the rotation introduced by the

singular value expansion matrices U and V reverse the rotation introduced by the

Wigner D matrix, as shown in equation 3.20 (line 2).

On the other hand, the trace sigma descriptor is sensitive to translation.

This property of the descriptor is not preferred and its effects need to be reduced

or removed completely; this can be done using the centre of density approach

as discussed in section 2.3.1; however, there are drawbacks associated with this

method as discussed in the same section. Alternatively, the intrinsically centred

Patterson maps could be used as input instead of the full density maps, as discussed

in section 2.3.2 along with the disadvantages of this approach.

Interestingly, the trace-sigma descriptor does not require any matrix-distance

or vector-norm computations, as the reduction of the three-dimensional array of de-

scriptors is done intrinsically and follows from the spherical-harmonics-coefficients

distance equation (as shown in section 3.3.1). Nonetheless, the descriptor values

can range dramatically and their absolute values can be hard to interpret. To re-

duce this issue, it is possible to introduce a normalisation procedure based on the

Pearson’s correlation coefficient equation (shown in table 3.2 and for convenience

repeated in equation 3.22), where the numerator is the correlation formula and

the denominator is normalisation factor.

p =

∑n
i=1 ((ai − µa) (bi − µb))√(∑n

i=1 (ai − µa)2)√(∑n
i=1 (bi − µb)2) (3.22)

where:

n is the length of vectors A and B between which the correlation is

n to be computed.

ai and bi are ith elements of the vectors A and B, respectively.

µa and µb are the mean values of the vectors A and B, respectively.
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Therefore, by modifying the equation 3.16 as shown in equation 3.23, the

E matrix now does not express the cross-term of the distance equation (3.14)

in absolute terms, but rather in relative terms with respect to the total sum of

frequencies in the given band l. Consequently, the equations following from the

modified E matrices to the descriptor are identical to the original equations (3.16 to

3.21), but the resulting normalised trace sigma descriptor now has values between

-1.0 for completely opposite shapes and 1.0 for identical shapes.

el,m,m′ =

∫ rmax
r=0

(
c1
l,m × c2∗

l,m′

)
r2dr√∫ rmax

r=0

(
c1
l,m

)2
r2dr

√∫ rmax
r=0

(
c2∗
l,m

)2
r2dr

(3.23)

Finally, it is worth noting that the normalised trace-sigma descriptor does

require the E matrices to be computed for each pair of compared shapes inde-

pendently. This feature of the descriptor causes a rather high computational cost

when compared to the cross-correlation descriptor. The reason for the difference

in computational cost is that the cross-correlation descriptor is based on cross-

correlation between different spheres of the same structure and therefore these

can be pre-computed for each structure; consequently, comparison of two struc-

tures only requires the comparison of the τ matrices and a vector norm.

On the other hand, the normalised trace-sigma descriptor allows only the

spherical harmonics coefficients to be pre-computed, as the calculation of the E

matrices does require information from two different structures to be completed;

i.e. it needs to be done for each pair independently. Furthermore, multiple matrix

singular value decompositions are required after the computation of the E matrices

and this further increases the computational cost of each distance calculation.

3.4 Rotation-function descriptor

While the normalised trace-sigma descriptor is able to differentiate the similar and

different shapes well, it cannot distinguish them perfectly. This finding therefore
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warrants exploring yet another possible approach to shape-similarity detection,

presumably with higher shape-similarity distinguishing power. One possible ap-

proach to this task is to re-consider the equation 3.15 (for convenience repeated

here).

arg min
α,β,γ

(
d
(
f1,R (α, β, γ)f2

))
=

arg max
α,β,γ

{
lmax∑
l=1

{ l∑
m=−l

[ l∑
m′=−l

(
Dm,m′

l (α, β, γ)

∫ rmax

r=0

(
c1l,m × c2∗l,m′

)
r2dr

)]}} (3.24)

The equation shows that the minimal distance between two objects is ob-

tained by finding the Euler angles α, β and γ which maximise the right hand side

of the equation. By finding the optimal α, β and γ values, it is therefore possible

to obtain a shape descriptor without the limitation discussed in section 3.3.1 and

presumably with higher distinguishing power between the similar and different

shapes.

In order to find the optimal α, β and γ values, the näıve approach of com-

puting the distance from equation 3.24 for multiple α, β and γ values and con-

sequently selecting the highest value (a form of three-dimensional search) could

be used. However, should simply the increments of 5◦ angles be tried for the al-

lowed ranges of α, β and γ, this approach would require 72 × 72 × 36 = 186, 624

computations of both the Wigner D matrices and the integral; the computational

cost of this approach is prohibitive for this project even if the algorithm could be

optimised. Therefore, another approach is required.

3.4.1 The SO(3) Fourier transform approach

One approach which provides an answer to the required maximisation problem

in a shorter time is based on the SO(3) group Fourier transform. However, in

order to explain how this is done and why it solves the maximisation problem,

the mathematical concepts behind it need to be explored, starting with the Euler

angles.
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The Euler angles

The Euler angles were introduced by Euler (1776) and they represent three ro-

tations around the axes of the three-dimensional Cartesian co-ordinate system,

so that rotation of any object can be unambiguously determined with respect to

the co-ordinate system. There are various conventions on the order and the axes

to which the rotations are applied; throughout this project, the convention ZYZ

(that is α and γ are rotations along the z axis and β is rotation along the y axis)

with intrinsic rotations (that is, the axes of the co-ordinate system are attached

to the moving system as opposed by using fixed axes for extrinsic rotations) shall

be used.

Given that the three Euler angles are rotations along at least two axes of

the co-ordinate system, it follows from the Euler’s rotation theorem (Euler, 1776)

that their combination is a single rotation along some axis passing through the

co-ordinate origin - in other words, the Euler angles represent any rotation about

the co-ordinate origin. Now, the group of all rotations about the co-ordinate origin

in the three-dimensional Cartesian space is known as the SO(3) group (also the

3D Rotation group).

The SO(3) Group

Typically, the SO(3) group is defined as the group of all 3× 3 orthogonal matrices

(M) with the property that MTM = MMT = I and determinant of one - such

matrices are known as the rotation matrices or special orthogonal matrices (thus

giving name to the group). From the definitions of the SO(3) group and the Euler

angles, it is clear that every matrix in the SO(3) group has associated Euler angles,

as noted, for example, by Kostelec and Rockmore (2008). The following equations

show the formulae for converting the Euler angles onto the special orthogonal

matrix M and the reverse.
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Sa = sin(α) ; Sb = sin(β) ; Sc = sin(γ)

Ca = cos(α) ; Cb = cos(β) ; Cc = cos(γ)

M =


Ca ∗ Cb ∗ Cc− Sa ∗ Sc Sa ∗ Cb ∗ Cc + Ca ∗ Sc −Sb ∗ Cc

−Ca ∗ Cb ∗ Sc− Sa ∗ Cc −Sa ∗ Cb ∗ Sc + Ca ∗ Cc Sb ∗ Sc

Ca ∗ Sb Sa ∗ Sb Cb



(3.25)

α = atan2 (M3,2,M3,1)

β = cos−1 (M3,3)

γ = atan2 (M2,3,−M1,3)

(3.26)

where:

Mi,j is the rotation matrix M element row i and column j.

i and j are in range (1, 3).

atan2 is defined as in Organick (1966).

Moreover, it can be shown that any function f defined on the SO(3) group

(i.e. f ∈ SO (3)) can be expanded onto the Euler angles as shown in the following

equation. The proof can be found in Kostelec and Rockmore (2008), who further

argue that ”the Euler angle expansion provides a natural co-ordinate system for

working with functions on SO(3), allowing us to write a function f(g) for g ∈

SO (3) as f (α, β, γ), where 0 ≤ α, γ < 2π and 0 ≤ β ≤ π”.

f = f (α, β, γ) = z (α) y (β) z (α) (3.27)

where:

z (δ) corresponds to a rotation of δ radians along the z axis.

y (δ) corresponds to a rotation of δ radians along the y axis.

f is a function defined in SO(3).
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Wigner D matrices

At this point, it is worth to return to the Wigner D matrices, already briefly

discussed in the section 3.2.2, as they have interesting properties in regard to the

SO(3) group. They form an irreducible representation of the SO(3) group with

the formal definition being:

D l
m,m′ (α, β, γ) = e−imαdlm,m′ (β) e−im

′γ (3.28)

where:

dlm,m′ (β) is the Wigner d matrix defined in equation 3.29.

dlm,m′ (β) =

√[
(l +m′)! (l −m′)! (l +m)! (l −m)!

]
×∑

s

[
(−1)s

(l +m− s)!s! (m′ −m+ s)! (l −m′ − s)!

(
cos

β

2

)2l+m−m′−2s(
sin

β

2

)m′−m+2s
] (3.29)

where:

the sum is take over all integer values of s that make the factorials non-

negative.

this is the formal definition given by Wigner (1931).

Furthermore, as discussed by Kostelec and Rockmore (2008), application of

the Peter-Weyl theorem (Peter and Weyl, 1927) to the Wigner D matrices leads

to the following orthogonality relationship:

∫ 2π

α=0

{∫ π

β=0

[∫ 2π

γ=0

(
D l1
m1,m

′
1

(α, β, γ) D l2∗
m2,m

′
2

(α, β, γ)
)
dγ

]
sinβ dβ

}
dα =

8π2

2l1 + 1
δl1,l2δm1,m2δm′

1,m
′
2

(3.30)

where:

δa,b is the Dirac delta function centred at point a, b.

This orthogonal relationship means that the Wigner D matrices could be

used as the basis function for Fourier transform on the SO(3) group (in a similar

82



CHAPTER 3. SHAPE SIMILARITY DESCRIPTORS

way the spherical harmonics functions are used as the basis functions for the

Fourier transform on the surface of a sphere).

The SO(3) Fourier transform

And indeed, such Fourier transform is discussed, for example, by Kostelec and

Rockmore (2008), who show that any square integrable function (function which

satisfies
∫∞
−∞ |f(x)|2dx < ∞) defined on SO(3) group can be expanded onto its

SO(3) Fourier transform coefficients as follows:

f (α, β, γ) =
lmax∑
l=0

{
l∑

m=−l

[
m∑

m′=−l

(
alm,m′D

l
m,m′ (α, β, γ)

)]}
(3.31)

where:

alm,m′ is the SO(3) Fourier transform coefficient for band l and

alm,m′ orders m and m′.

With the alm,m′ coefficients given by the following equation:

alm,m′ =
2l + 1

8π2

∫ 2π

α=0

{∫ π

β=0

[∫ 2π

γ=0

(
f (α, β, γ) D l∗

m,m′ (α, β, γ)
)
dγ

]
sinβ dβ

}
dα (3.32)

Finding the maximum correlation

Equipped with the Fourier transform on the SO(3) group, Kostelec and Rockmore

(2008) show that if two functions f and g are defined on the surface of a sphere

and have the spherical harmonics coefficients c1
l,m and c2

l,m respectively, then by

combining the coefficients as per the following equation, a correlation measure

is obtained (in other words, a measure of the overlap for a particular rotation

represented by Euler angles α, β and γ).
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C (α, β, γ) =
lmax∑
l=1

{
l∑

m=−l

[
l∑

m′=−l

(
c1
l,mc

2∗
l,m′ (−1)m−m

′
D l
m,m′ (α, β, γ)

)]}
(3.33)

Moreover, Kostelec and Rockmore (2008) also show that by taking the in-

verse SO(3) Fourier transform of the function C (α, β, γ) as defined in the equation

3.33, the overlap (or correlation) of the two functions f and g can be evaluated for

all Euler angle values in a single step. Clearly, not all feasible values of the Euler

angles are evaluated, but rather all values on a grid given by the sampling of the

functions f and g - for more details, see Kostelec and Rockmore (2008).

Now, by noting that the equation 3.24 does combine the spherical harmonics

coefficients almost identically to the equation 3.33, this suggests how the SO(3)

Fourier transform approach can lead to finding the Euler angles which minimise the

distance between two objects in their spherical harmonics coefficients space. More

specifically, the only difference between equations 3.24 and 3.33 is the integral over

the radial dimension and the (−1)m−m
′

element; however, it can be seen that once

the integral is evaluated, the two equations become identical up to the sign, which

can be accommodated easily as well.

Therefore, it follows that the already implemented computations for the E

matrix can be simply used to obtain the function C. Consequently, function C

could be used to find the Euler angles α, β and γ which maximise the correlation of

the two structures and thus minimise the spherical harmonics coefficients distance,

leading to a more accurate shape descriptor. This approach has the advantage

of finding the minimal distance for all the shells and bands values at the same

time and therefore should have increased accuracy as compared to the trace-sigma

descriptor discussed above.
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The Rotation function

It is worth noting that the rotation function of molecular replacement procedure

in crystallography is based on the very same approach as just described, albeit it

is typically applied to matching Patterson maps. The rotation function was intro-

duced by Rossmann and Blow (1962) and improved upon in terms of computation

cost and accuracy by Crowther (1972).

The rotation function has been implemented by the major molecular replace-

ment software, such as the ROTING part of the AMoRe software package (Navaza,

1994), the Phaser software (McCoy et al., 2007) or the MOLREP software (Vagin

and Teplyakov, 2010). Nonetheless, all of the aforementioned molecular replace-

ment software uses the spherical Bessel expansion (discussed in section 2.2.1) rather

than just the spherical harmonics expansion.

3.4.2 Definition of the rotation-function descriptor

With the approach to finding the minimal distance between two three-dimensional

objects in their spherical harmonics coefficients now described, the rotation-function

descriptor can be obtained. In order to do this, the Euler angles which minimise

the distance between the two three-dimensional objects need to be computed.

Finding the optimal overlay angles

As discussed in the previous section, by taking the inverse SO(3) Fourier transform

of the E matrix computed as per equation 3.16, a three-dimensional map with the

three Euler angles as its grid co-ordinates and the correlation function C (α, β, γ)

from equation 3.33 as the grid values is obtained. This map is known as the

rotation function.

Therefore, by finding the highest value in this map and its co-ordinates,

the three Euler angles which lead to highest correlation between the two three-

dimensional objects are found. This is exactly the information required by the
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right hand side of equation 3.24, so the three resulting Euler angles can now be

substituted into the maximisation.

Computing the rotation-function descriptor

The result of this substitution is the equation 3.34, which is the formal definition

of the rotation-function descriptor.

arg min
α,β,γ

(
d
(
f1,R (α, β, γ)f2

))
=

lmax∑
l=1

{ l∑
m=−l

[ l∑
m′=−l

(
Dm,m′

l (αo, βo, γo)E
l T
m,m′

)]}
(3.34)

where:

αo, βo and γo are the Euler angles of the highest peak of the inverse

αo, βo and γo SO(3) Fourier transform map of the E matrix.

Normalisation of the rotation-function descriptor

Similarly to the trace-sigma descriptor (see section 3.3.4), when the rotation-

function descriptor is computed using the equation 3.34, the resulting distance

is the absolute value of this distance. As such, its magnitude will be affected by

the total sum of the frequencies, making direct comparison between different pairs

of three-dimensional objects difficult.

In order to normalise the rotation-function descriptor value to the same range

and make direct comparisons straightforward, the same normalisation as devised

for the trace-sigma descriptor can be used; specifically, by applying the Pearson’s

correlation coefficient normalisation approach to the E matrix (as per equation

3.23), the effect of the total sum of frequencies of each three-dimensional object

is removed and the resulting distance between the objects is now in range from

-1 to +1. The interpretation of this range is similar to the Pearson’s correlation

coefficient, that is -1 means that the two shapes are completely opposite, 0 means

that the two shapes are not related and 1 means that the two shapes are identical.
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3.4.3 Accuracy of the rotation-function descriptor

With the definition of the rotation-function descriptor available in equation 3.34,

it was implemented using the SOFT library written by Kostelec and Rockmore

(2003) in the C language. Then, in order to evaluate the accuracy of the rotation-

function-based descriptor, it was used to compute the distances between all pairs

of protein domains with similar shape (i.e. in the same groups in the test dataset)

as well as the distances between pairs of protein domains with different shapes

(that is, in different groups of the test dataset), using the same approach as for

the cross-correlation and trace-sigma descriptors in the above sections. The box

plots of the two resulting distributions of distances (distribution of similar shape

distances and distribution of different shape distances) are shown in figure 3.6.

The AUROC measure of shape-similarity distinguishing power was conse-

quently computed for these two distribution, yielding the value of 0.985. This

value is higher than the values computed for the trace-sigma descriptor (0.984)

and the cross-correlation descriptor (0.977). This result is as expected, that is,

the descriptor with least assumptions and simplifications (and costing the most

computational resources) is the most accurate one.

3.4.4 Comparing the results of the three shape descriptors

Similarly to the trace-sigma descriptor, it is interesting to consider whether the

three shape descriptors have issues with the same structure pairs, or whether they

have different strengths and weaknesses and therefore their combination could

improve the overall ability to detect similar and dissimilar shapes. Therefore, as

discussed in section 3.3.3, it is possible to obtain the similar shape pairs with the

lowest distance for the three shape descriptors; the intersection of these pairs from

different descriptors shows whether the three descriptors found the same pairs

as being ’most dissimilar’, or whether the three descriptors differed. The same

method can be applied to the highest scoring pairs of structures with different

shapes.
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Figure 3.6: The distributions of the rotation-function descriptor for protein domains with similar
and different shapes

This figure shows the distribution of the rotation function descriptor values computed by using the

inverse SO(3) Fourier transform to find the minimal distance between three-dimensional objects as

per equation 3.34. The red box plot on the left describes the distribution of the distances between

similar shapes, whereas the turquoise box plot on the right shows the distribution of distances for

pairs with different shapes.

From the figure 3.7, it can be seen that while the rotation-function descriptor

overlaps both the trace-sigma and the cross-correlation descriptors in relatively

high percentage for the low-scoring similar-shape pairs (around 65% overlap for the

lowest scoring 25 pairs), there is little overlap (approximately 10% for the highest

scoring 25 pairs) for the high-scoring different-shape pairs. This result shows that

all the descriptors can be useful in combination with the other descriptors in an

attempt to reduce the number of false positives and false negatives.
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Figure 3.7: The intersection of the false-positive and false-negative regions between the rotation-
function, trace-sigma and cross-correlation shape descriptors

This figure was produced by computing the intersection between the rotation-function, the trace-

sigma and the cross-correlation descriptors for the lowest x scoring pairs with similar shapes (shown

in turquoise colour for rotation-function versus cross-correlation descriptor and in purple colour

for rotation-function versus trace-sigma descriptors). Similarly, the intersection between the de-

scriptors was computed for the x top scoring pairs with different shapes (shown in green colour

for rotation-function versus trace-sigma and in orange colour for rotation-function versus cross-

correlation descriptors). The value of x used was in the range from 3 to 100.

3.4.5 Features of the rotation-function descriptor

Regarding the mathematical features of the rotation-function descriptor, it should

firstly be noted that it is translation sensitive and therefore its accuracy will be

affected by the accuracy of the centring technique. This is not a preferred feature,

but its effects can be reduced using the approaches discussed in section 2.3.

On the other hand, the rotation-function descriptor is rotation invariant; this

follows from the fact that the optimal rotation detection is intrinsically part of the

descriptor. Moreover, the ability to compute the optimal rotation angles is rather

89



3.5. FURTHER CONSIDERATIONS

useful for the further applications of the protein domain shape descriptors, as it

allows overlaying the two compared structures in real space directly. This ability

is useful in, for example, the scenario where one of the structures is a fragment of

a density map and the other is a domain database entry - in this case, the protein

domain database entry can be placed and rotated in the full density map correctly,

thus simplifying the task of automatically fitting domains into density maps.

Similarly to the trace-sigma descriptor, the rotation-function descriptor re-

quires the E matrices (defined in equation 3.23) to be computed for each pair

of structures independently. This means that only the spherical harmonics co-

efficients, but not the E matrices can be pre-computed for multiple structure

comparisons. This fact in combination with the required SO(3) Fourier transform

computation for each structure pair makes the rotation-function descriptor the

most computationally costly descriptor discussed here.

Nonetheless, given that the normalised E matrices are required for the trace-

sigma descriptor as well, the increase in the computational cost is only the SO(3)

Fourier transform. Regarding the transform, Kostelec and Rockmore (2008) show

that their algorithm implemented in the SOFT library (which is being used to

implement the SO(3) Fourier Transform) requires O(l4max) computations; an ac-

ceptable computational cost for this project.

3.5 Further considerations

With the three shape descriptors discussed and implemented, there are several

factors which were not discussed so far, but which do have an effect on the shape

descriptor computation and accuracy. These factors are considered separately from

the other factors discussed in sections 3.2, 3.3 and 3.4, as they are common to all

three descriptors.
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3.5.1 Co-ordinate data and map data

First factor that should be considered is the difference between the two input data

types, the co-ordinate data in PDB format and the density map data in the CCP4

MAP format. As these two input types contain different information, they need to

be processed differently in order to arrive to a common data representation, which

could subsequently be processed to compute the descriptors.

Co-ordinate data input

When the co-ordinate input type is to be used, the data are read in using the

MMDB library (Krissinel et al., 2004) and the co-ordinates are translated so that

the minimum x, y and z axes co-ordinates are placed at a positive distance (default

value is 8 Å) from the co-ordinate origin. The translation is required to make sure

the resulting theoretical density map is centred in the grid, while the extra space is

added so that any interactions between asymmetric cells are reduced or removed.

Also, it is possible to change the B factors of all atoms to a particular value; the

rationale behind this option will be discussed more in section 3.5.3.

Consequently, the translated co-ordinate data are submitted to the Clipper

library (Cowtan, 2002) for computation of a theoretical density map. At this point,

the resolution of the map has to be decided; as this decision will be discussed in

the section 3.5.3, it will not be discussed further here. Given the resolution up to

which the theoretical density map should be computed and sampled, automatic

determination of the angular resolution of the spheres on which the spherical har-

monics expansion will be performed, as well as the sphere placement can be done

as discussed in section 2.2.2.

Once the theoretical map is computed, its COD is moved to the origin of the

co-ordinate system. A set of concentric spheres is then placed and grids are com-

puted for each sphere as discussed above. Finally, each angular grid point on each

sphere has its value interpolated using the closest eight density map grid points by
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applying the trilinear interpolation method. Therefore, a set of concentric spheres

with mapped density data are obtained.

Density map data input

A somewhat different approach is required when the input data are density-map

values. The input file is initially read in using the cmap library (which is part

of the CCP4 suite (Winn et al., 2011)) and is immediately checked for containing

rectangular cell, as only rectangular (P1) cells are currently supported. Then, the

map is centred in the middle of the grid and checked for having the majority of the

density in the middle of the grid instead of in the corners (as this is the case for

some maps and the centre of density cannot be used to distinguish these cases).

Once the majority of map density is in the centre of the grid, the resolution

can be determined from the map sampling and cell sizes, as discussed in section

3.5.3. However, since the experimental maps may differ in the amount of processing

that has been done, many issues may arise at this point. These differences between

the map processing include potential sharpening/blurring or masking with different

values for the masked out region.

In order to allow uniform processing of the experimental maps, a procedure

has been developed to first compute a map mask by increasing the B-factor (or

blurring) by 250. From the resulting map, a threshold of 4 interquartile ranges

from the third quartile is used to set all values under this threshold to 0. Con-

sequently, the number of independent islands in the mask are detected by the

Watershed algorithm (Lindeberg, 1991) and only large islands with high compact-

ness are retained. Once a masked structure is computed, the sphere placement

and angular resolution of the spheres can be done automatically as per section

2.2.2. Alternatively, the map masking procedure can be skipped and the original

map can be used by supplying a single command line option.

Finally, the map sampling grid is re-indexed so that the map COD is moved

to the origin of the co-ordinate system and the concentric spheres are drawn around
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it. Then, each of the grid points on the surfaces of all the concentric spheres

have their value interpolated using the trilinear interpolation method based on

the surrounding eight closest map sampling grid points. Therefore, this procedure

results in a set of concentric spheres with mapped density data; the same data

representation as is reached for the co-ordinate data; consequently, from this point,

both input data types can be processed identically.

3.5.2 Density maps and Patterson maps

When the descriptors computation is applied to co-ordinates or density maps, the

phase information is intrinsically known. Nonetheless, it should be considered

that the methods could be applied to molecular replacement candidate search and

consequently phase information may not be available. Therefore, the methods were

developed in such a way to allow for both types of computation, with and without

phases. Moreover, in order to allow the methods to be applied to comparisons

of structural data with and without phases against each other, Fourier transform

followed by removal of phase information and inverse Fourier transform method

was implemented. This approach was used to calculate the phaseless results in the

following sections.

Furthermore, to determine how accurate the descriptors are without using

the phase information, the AUROC values for the test dataset were computed with

the phase information removed - the results are shown in tables 3.5, 3.6 and 3.7

and discussed in section 3.5.5. Finally, it is worth noting that both the Fourier

transform and the inverse Fourier transforms are done using the FFTW library of

Frigo (1999).

3.5.3 Map resolution limit

As mentioned in the previous sections, the resolution limit to which the map

data should be processed is an important parameter which needs to be addressed.

From the perspective of the input data, the map resolution limit is a function of
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the map sampling, with the higher the resolution limit, the finer the sampling.

Now, the extent to which the resolution-limit value can be varied differs between

the theoretical maps computed from co-ordinate data and the experimental maps

read directly.

Co-ordinate data and resolution limit

In the case of the theoretical maps, these can be computed to an arbitrary resolu-

tion limit. However, there is one more factor which should be considered alongside

the resolution value - the atomic displacement parameter (ofter referred to as B).

The B-factor is proportional to the variance of the Gaussian used to represent any

particular atom in the density map; in other words, the smaller the B-factors, the

narrower the approximating Gaussian distributions and the closer it resembles a

single Dirac δ function.

Therefore, the resolution-limit value (which determines the map sampling

for theoretical maps) needs to be proportional to the variance of the Gaussian

function approximating the individual atoms (B-factor). This fact can be seen by

considering the case of an atom located midway between two sampling grid points;

if the B-factor value is too small, the contribution of this atom to the values of

the two grid points will be weak and possibly hidden by the background.

Considering this relationship, it seems appropriate to leave the users the

freedom of selecting any values they may like. Nonetheless, in order to keep the

software as simple and automated as possible, a default value to be used when no

resolution limit and B-factor values are supplied by the user need to be determined.

To address this issue, the AUROC measure was computed for the test dataset using

different values for resolution limit and B-factor; the results are shown in table

3.5, 3.6 and 3.7 and discussed in section 3.5.5.
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Map data and resolution limit

A different situation can be seen for the experimental maps, which have the res-

olution limit and B-factors determined. Clearly, the experimental map resolution

limit can be changed by re-sampling the sampling grid, but the ”true” resolution

(i.e. the clarity of map features) cannot be truly improved (although, the num-

ber of grid points can be increased, but no extra information can be extracted).

Given that the finer the sampling grid, the larger the map and the higher the

computational cost of processing it, the software was implemented so that while

the user is free to decrease the resolution limit, when higher resolution limit value

than that measured from the map data is supplied by the user, such input will be

overridden by the maximum resolution limit allowed by the map. Nonetheless, in

case the user would not supply a required resolution limit, a suitable default value

is determined as per section 3.5.5.

Similarly, the B-factor is already incorporated in the experimental map.

While it is possible to blur or sharpen the map by changing the B-factor value

globally, it is not possible to set the B-factor to an universal value for the whole

map. Therefore, there is no need for B-factor manipulation by the software, unless

the user requires sharpening/blurring through a specific parameter.

3.5.4 Computation time

It is also interesting to consider the time required to compute distance in between

a single pair of protein domains. The reason for this value being of interest is

that while increased accuracy may be available by increasing the computational

complexity, it may not be feasible to use very high accuracy settings for multiple

comparisons.

In order to obtain an approximation of the range in which the execution time

is, a single pair of structures with different shape was selected and submitted to the

current shape descriptor implementation 100 times for each settings combination.
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The resulting times were then averaged and are reported in tables 3.5, 3.6 and 3.7.

While these times may vary on different computers and for different structure pairs,

they give a good overview of the order of magnitude in which the computation can

be done. The computer used to run all these shape comparisons was a MacBook

Pro computer with macOS 10.13.4, 3.1 GHz processor (four cores) and 16 GB

RAM.

3.5.5 Varying settings for resolution, B-factor and phase

With the major factors affecting all the three descriptors discussed, their individual

effect on the accuracy and time of execution can be seen from the tables 3.5, 3.6

and 3.7. It is worth noting that the AUROC values in the previous sections were

computed using the phase information, with resolution 8.0 Å and B-factor value

of 80.

Deciding default values

With the information in the tables 3.5, 3.6 and 3.7, the decision as to the default

values for the resolution, B-factor and phase information option can be made.

However, when deciding the optimal default values for the execution of the code,

it should be pointed out that if these default parameters were to be different for

the three descriptors, the structure spherical harmonics expansion would have to

be repeated for each unique set of options. Therefore, it would be preferable to

find default values suitable for all three descriptors.

Firstly, it is worth noting that all the three tables show sharp decrease in

the execution time when the phase information is included and the resolution is

changed from 7.0 Å to 8.0 Å; in most such cases the execution time is almost

halved. This observation by itself does not lead to any particular value which

should be set as the default; however, it suggests that if a resolution lower than

7.0 Å could be selected without strongly affecting the accuracy (as measured by

the AUROC measure), the execution time could be decreased considerably.

96



CHAPTER 3. SHAPE SIMILARITY DESCRIPTORS

Table 3.5: The AUROC results for the cross-correlation descriptor with different resolution,
B-factor and phase usage values

Resolution
limit (Å)

B-factor
value

AUROC
with
phase

Average time
with phase

(ms)

AUROC
without
phase

Average time
without phase

(ms)

2.0 40 0.959 78, 793.0 0.665 56, 179.2

2.0 80 0.953 75, 257.9 0.659 57, 077.4

2.0 120 0.935 75, 508.7 0.688 51, 084.3

3.0 40 0.968 12, 102.2 0.640 9, 490.9

3.0 80 0.969 12, 063.1 0.673 11, 372.2

3.0 120 0.966 13, 314.4 0.718 10, 398.6

4.0 40 0.976 3, 792.5 0.612 3, 534.3

4.0 80 0.970 3, 769.6 0.618 4, 126.1

4.0 120 0.969 4, 107.7 0.621 3, 770.8

5.0 40 0.978 2, 123.7 0.661 1, 992.8

5.0 80 0.974 2, 198.4 0.680 2, 403.9

5.0 120 0.971 2, 272.4 0.609 2, 217.1

6.0 40 0.976 1, 538.4 0.608 1, 544.3

6.0 80 0.972 1, 517.5 0.679 1, 654.0

6.0 120 0.968 1, 624.6 0.705 1, 552.5

7.0 40 0.982 1, 316.6 0.630 1, 298.9

7.0 80 0.974 1, 293.0 0.632 1, 431.9

7.0 120 0.976 1, 305.3 0.608 1, 345.3

8.0 40 0.978 626.1 0.576 597.3

8.0 80 0.977 630.6 0.635 720.2

8.0 120 0.974 657.2 0.687 656.5

9.0 40 0.965 560.8 0.637 531.2

9.0 80 0.977 544.5 0.661 606.6

9.0 120 0.973 544.1 0.678 552.9

10.0 40 0.922 478.5 0.670 476.1

10.0 80 0.938 481.1 0.673 539.6

10.0 120 0.940 502.5 0.611 508.5

11.0 40 0.908 447.4 0.702 446.9

11.0 80 0.922 457.1 0.591 490.3

11.0 120 0.950 467.3 0.584 455.9

12.0 40 0.845 433.5 0.579 429.4

12.0 80 0.933 437.7 0.542 474.9

12.0 120 0.960 449.2 0.647 448.0

13.0 40 0.847 425.6 0.590 418.3

13.0 80 0.946 415.7 0.668 451.9

13.0 120 0.946 439.4 0.708 431.4

14.0 40 0.866 428.2 0.619 418.3

14.0 80 0.924 415.0 0.642 456.1

14.0 120 0.932 424.6 0.640 416.1

15.0 40 0.842 426.2 0.716 413.4

15.0 80 0.894 407.3 0.753 456.4

15.0 120 0.910 424.9 0.753 426.0

This table shows the cross-correlation descriptor AUROC values computed using the test dataset
for different settings of the resolution, B-factor and phase values. The average time was not
computed for the whole dataset, but rather only for a single pair; the pair distance was computed
100 times and the execution time was then averaged. The bold values are the default parameters
for distance computation with and without phases.
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Table 3.6: The AUROC results for the trace-sigma descriptor with different resolution, B-factor
and phase usage values

Resolution
limit (Å)

B-factor
value

AUROC
with
phase

Average time
with phase

(ms)

AUROC
without
phase

Average time
without phase

(ms)

2.0 40 0.989 355, 384.8 0.813 206, 296.8

2.0 80 0.987 373, 392.0 0.801 202, 364.7

2.0 120 0.986 384, 791.5 0.842 202, 696.7

3.0 40 0.989 54, 029.8 0.780 32, 605.8

3.0 80 0.988 54, 997.9 0.840 31, 797.7

3.0 120 0.986 55, 802.4 0.852 31, 680.5

4.0 40 0.987 14, 519.4 0.833 9, 185.0

4.0 80 0.986 14, 395.2 0.816 9, 499.4

4.0 120 0.985 15, 739.3 0.809 9, 636.6

5.0 40 0.989 6, 142.1 0.788 4, 214.9

5.0 80 0.986 6, 112.0 0.812 4, 426.3

5.0 120 0.983 6, 462.0 0.808 4, 243.5

6.0 40 0.987 3, 391.2 0.785 2, 563.9

6.0 80 0.983 3, 357.3 0.809 2, 507.0

6.0 120 0.982 3, 462.4 0.836 2, 478.4

7.0 40 0.988 2, 291.0 0.821 1, 860.5

7.0 80 0.983 2, 262.0 0.838 1, 826.0

7.0 120 0.984 2, 283.5 0.789 1, 855.6

8.0 40 0.983 1, 182.2 0.739 905.8

8.0 80 0.984 1, 189.3 0.815 971.6

8.0 120 0.983 1, 307.2 0.802 996.4

9.0 40 0.982 913.2 0.818 737.6

9.0 80 0.980 898.0 0.839 731.2

9.0 120 0.978 907.5 0.854 750.9

10.0 40 0.969 670.3 0.771 610.1

10.0 80 0.972 678.6 0.801 600.8

10.0 120 0.953 695.5 0.734 593.7

11.0 40 0.946 588.0 0.794 535.3

11.0 80 0.914 610.0 0.756 535.4

11.0 120 0.971 633.2 0.762 552.6

12.0 40 0.934 548.7 0.740 497.9

12.0 80 0.947 548.5 0.740 497.4

12.0 120 0.970 555.2 0.808 495.7

13.0 40 0.934 500.8 0.722 474.0

13.0 80 0.971 496.3 0.783 462.4

13.0 120 0.972 512.5 0.827 467.5

14.0 40 0.927 470.0 0.708 460.9

14.0 80 0.955 459.3 0.765 443.1

14.0 120 0.955 463.5 0.784 442.3

15.0 40 0.921 452.7 0.798 456.7

15.0 80 0.939 443.5 0.838 439.9

15.0 120 0.944 458.9 0.853 444.7

This table shows the trace sigma descriptor AUROC values computed using the test dataset
for different settings of the resolution, B-factor and phase values. The average time was not
computed for the whole dataset, but rather only for a single pair; the pair distance was computed
100 times and the execution time was then averaged. The bold values are the default parameters
for distance computation with and without phases.
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Table 3.7: The AUROC results for the rotation-function descriptor with different resolution,
B-factor and phase usage values

Resolution
limit (Å)

B-factor
value

AUROC
with
phase

Average time
with phase

(ms)

AUROC
without
phase

Average time
without phase

(ms)

2.0 40 0.992 358, 636.2 0.761 205, 978.6

2.0 80 0.990 370, 748.0 0.758 212, 515.3

2.0 120 0.989 374, 093.8 0.780 207, 474.3

3.0 40 0.994 55, 395.9 0.744 33, 589.3

3.0 80 0.993 54, 051.4 0.804 34, 930.6

3.0 120 0.992 54, 854.1 0.801 32, 451.4

4.0 40 0.991 14, 617.4 0.786 9, 660.0

4.0 80 0.990 14, 186.6 0.771 10, 295.8

4.0 120 0.989 15, 529.6 0.761 10, 080.1

5.0 40 0.993 6, 106.6 0.756 4, 342.4

5.0 80 0.992 6, 145.1 0.770 4, 706.7

5.0 120 0.992 6, 263.1 0.753 4, 301.8

6.0 40 0.987 3, 476.2 0.752 2, 636.2

6.0 80 0.985 3, 354.1 0.757 2, 728.0

6.0 120 0.985 3, 413.6 0.775 2, 605.5

7.0 40 0.985 2, 359.7 0.782 1, 934.1

7.0 80 0.985 2, 287.1 0.799 2, 003.1

7.0 120 0.984 2, 304.1 0.737 1, 893.8

8.0 40 0.980 1, 221.7 0.712 952.5

8.0 80 0.985 1, 221.0 0.769 1, 073.6

8.0 120 0.987 1, 346.6 0.744 1, 011.5

9.0 40 0.978 924.8 0.783 780.4

9.0 80 0.986 918.2 0.798 804.6

9.0 120 0.986 922.0 0.805 760.5

10.0 40 0.973 681.6 0.730 626.7

10.0 80 0.979 687.6 0.756 641.8

10.0 120 0.973 703.6 0.686 606.2

11.0 40 0.951 598.1 0.771 544.0

11.0 80 0.943 647.8 0.750 589.2

11.0 120 0.965 652.4 0.727 563.9

12.0 40 0.937 555.1 0.719 519.5

12.0 80 0.944 556.7 0.716 525.6

12.0 120 0.967 572.3 0.775 502.8

13.0 40 0.907 499.2 0.685 476.1

13.0 80 0.954 499.2 0.741 483.8

13.0 120 0.963 506.5 0.766 450.9

14.0 40 0.899 478.0 0.687 476.5

14.0 80 0.943 465.9 0.742 468.1

14.0 120 0.957 468.6 0.752 451.3

15.0 40 0.912 461.4 0.781 444.6

15.0 80 0.932 444.8 0.811 463.2

15.0 120 0.944 446.2 0.816 446.2

This table shows the rotation function descriptor AUROC values computed using the test dataset
for different settings of the resolution, B-factor and phase values. The average time was not
computed for the whole dataset, but rather only for a single pair; the pair distance was computed
100 times and the execution time was then averaged. The bold values are the default parameters
for distance computation with and without phases.
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Considering the results shown in table 3.5, the highest accuracy with phase

is obtained for resolution 7.0 Å and B-factor value 40, however, the difference be-

tween the highest AUROC score and the remainder of the scores is rather minimal,

even when the resolution is decreased below 7.0 Å. Similarly, the highest AUROC

score without the phase information is reached for resolution 3.0 Å and B-factor

value 120, but the difference to the AUROC scores with resolution below 7.0 Å is

marginal.

Similar results can be seen in tables 3.6 and 3.7, where the highest AUROC

scores with phase are at resolution 5.0 Å with B-factor value 40 and resolution 3.0

Å and B-factor value 40, respectively; nonetheless, other parameter combinations

have very similar scores. The results for the computation without phase are even

more interesting, as the highest AUROC values are not reached for high resolution

computations, but rather with resolution 9.0 Å and B-factor value 120.

Therefore, given the marginal differences in the with phase AUROC score

for all three descriptors, while having sharp decrease in the execution time with

resolution reaching 8.0 Å, the decision was reached to implement the default values

for all three shape descriptors when using the phase information to resolution 8.0

Å and B-factor value 120; the corresponding rows are shown in bold in the tables

3.5, 3.6 and 3.7. The reason for this decision is that this combination of values

keeps the execution time shorter than higher resolution-limit values, while being

the best available combination for the most accurate descriptor (the rotation-

function-based descriptor) and being only minimally sub-optimal for the other

two descriptors.

On the other hand, considering the phaseless AUROC scores, there are sev-

eral considerations worth discussing. Firstly, it is clear that the phaseless AUROC

scores are lower than with phase and this should not be surprising, as the phase in-

formation is missing from them. However, comparing the phaseless AUROC values

for the three descriptors, it can be observed that the normalised-trace-sigma and

normalised-rotation-function descriptors perform better than the cross-correlation
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descriptor. This is an interesting realisation and it (somewhat ad hoc) furthers

the argument that these descriptors are valuable additions which should be used

in combination with the cross-correlation descriptor, even though they are more

computationally expensive.

Considering these observations from the tables 3.5, 3.6 and 3.7, higher weight

needs to be attributed to the trace sigma and rotation function descriptors, which

are more accurate when phase information is not available. Since both these de-

scriptors have highest accuracy for resolution of 9.0 Å, this resolution will be used

as the default value. This resolution limit also leads to relatively high accuracy

for the cross-correlation descriptor, allowing for usage of single resolution settings

for all three descriptors. Regarding the B-factor value, the default will be set to

120, as it leads to slightly higher accuracy for all three descriptors in the already

decided resolution limit bracket.

101



102



Chapter 4

Symmetry detection

As the three-dimensional shape-similarity-distance descriptors were discussed in

the previous chapter, the SO(3) Fourier transform and its inverse transform were

also explored. The implementation of this method now allows considering the

following case: A single structure can be expanded onto its spherical harmonics

coefficients and the inverse SO(3) Fourier transform of the E matrix resulting from

combining a single-structure’s spherical-harmonics coefficients can be obtained. It

will then be a three-dimensional map with the Euler angle α, β and γ values

as its indices and the self-correlation scores for the single structure as its values.

Consequently, it is interesting to consider how such result can be used to derive

information about the single structure’s symmetry.

This approach is similar to the crystallographic self-rotation function as sug-

gested by Rossmann and Blow (1962) and expanded upon by Tong and Ross-

mann (1972) and which is typically used to detect non-crystallographic symme-

tries (NCS) in a crystal and provide constraints on molecular replacement (Tong,

2001). Nonetheless, the crystallographic self-rotation function is typically applied

to the Patterson maps, while the approach described here is focused on phased

maps obtained by either X-ray crystallography or EM methods.



4.1. THE SYMMETRY TEST DATASET

4.1 The symmetry test dataset

Nonetheless, before the possibility of using the inverse SO(3) Fourier transform

map for detecting symmetries in structures can be discussed further, the approach

to testing any results and setting of any parameters needs to be explored. Similarly

to the discussion of the shape-similarity descriptors in previous chapter, a test set

is required to allow fast, consistent and reliable empirical determination of any

parameters. The test set should contain examples of all symmetries currently

known in the protein shapes as well as both types of the input data, co-ordinates

and density maps.

Therefore, the PDB database (Berman et al., 2000) was queried for proteins

with particular symmetries and from each symmetry defined by the database, a

single example was obtained (except for tetrahedral, octahedral and icosahedral

symmetries, for which more examples were obtained). This approach was done for

both co-ordinate data and density maps and the PDB accession codes of all the

samples, along with the reported symmetry are shown in table 4.1.

After the test-set structures were all obtained from the PDB database, a

manual check was done for each of the structures to make sure that the reported

symmetry is actually present in the data. The co-ordinate data were reviewed

using the PyMOL (Schrodinger LLC, 2015) software, while the density map-data

were checked using the Chimera (Pettersen et al., 2004) software. With the test-

data set now available, the possibility of detecting symmetries using the already

implemented inverse SO(3) Fourier transform map can be fully explored.

4.2 Finding symmetry peaks in the inverse SO(3) map

The inverse SO(3) Fourier transform map produced by computing a single struc-

ture overlay against itself will contain peaks located at any co-ordinates where the

Euler angles forming these co-ordinates lead to highly correlated overlay of the

structure with itself. One obvious peak must be at co-ordinates 0; 0; 0, as the
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Table 4.1: The wwPDB entries forming a test set for symmetry detection method development

Co-ordinate file
symmetry

PDB accession
code

Map file
symmetry

PDB accession
code

C2 5NL2 C2 5TV4
C3 5VN3 C3 5UJZ
C4 5VKQ C4 5VKQ
C5 3JCF C5 5MCY
C6 5UVN C6 5LI2
C7 4AAQ C7 5JZH
C8 5H1Q C8 5H1Q
C9 5GAQ C9 5GAQ
C11 3JBL C11 3JBL
C12 5NBZ C12 4AV2
C13 4V2T C13 4V2T
C14 3ZBI C14 2YPW
C15 5WQ7 C15 5WQ7
C22 5FMW C24 2Y9J
C24 5TCP C30 5WC3

D2 5GRS D2 5VY5
D3 3JBB D3 5K12
D4 5NV3 D4 5NV3
D5 4AJ5 D5 4BED
D6 5LDF D6 2J9I
D7 4S0R D7 4AAR
D8 3J1B D8 5JUL
D9 3J1F D9 3J1C
D12 2WCD

TET 5MQ3
TET 5JM9
TET 4CI0

OCTA 6EZM
OCTA 5TRE

ICOS 6B9Q
ICOS 5VLY
ICOS 5XS4
ICOS 5NED
ICOS 5UF6

This table shows the complete set of PDB structures selected as a test set for symmetry detection
algorithm development. The grey cells are empty and the colour is used to signify this,

correlation of any object with itself (without any rotation being applied) must be

1.0. However, any other high-valued peaks would indicate rotations for which the

object shape does not change much, if at all.

By considering that symmetry operations are defined as ”isometric trans-

forms that leave the shape globally unchanged” (Martinet et al., 2006), it is easy

to see that the rotations described by the high-valued peaks in the inverse SO(3)

Fourier transform map do conform to this definition and therefore that any struc-
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ture with a symmetry group would have to have a set of appropriate peaks in the

inverse SO(3) Fourier transform map. Consequently, by using the co-ordinates of

these peaks, it should be possible to use the reverse logic and detect all symmetries

present in the single structure from which the inverse SO(3) Fourier transform map

was computed.

More specifically, the three Euler angles can describe any proper rotation

of a three-dimensional object, but not its improper rotations (Morawiec (2004);

improper rotations include reflections and are also known as rotoreflections or

rotoinversions). Therefore, by using the inverse SO(3) Fourier transform to find

rotations which do not change the shape of the object, improper rotations cannot

be detected. This is generally a preferred feature for protein domains, as any

particular protein domain should be considered separately from its mirror image,

because chirality of molecules is generally of interest.

In view of these facts, it seems feasible to develop an algorithm for detecting

symmetries present in a single input structure, be it defined by its atomic model

co-ordinates or density map. From the previous sections (especially section 3.4),

it can be seen that with only minor changes, all the required calculations have

already been implemented up to the point of having the results of the inverse

SO(3) Fourier transform for a single structure against itself. Therefore, the next

step to be discussed is how the high-valued peaks can be reliably found.

4.2.1 Initial peak searching

The first task for the symmetry detection algorithm is to find all the peaks with

high enough value; that is, peaks for which the original and rotated structures are

similar enough. In order to do so, first, all the peaks need to be located along

with their value (thereafter referred to as peak height). To this end, a simple

algorithm for checking each co-ordinate in the inverse SO(3) Fourier transform

map for having higher peak height than all its neighbouring co-ordinates is used;

the only complication of this algorithm being the map edges, where periodicity of
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the map is assumed and neighbouring co-ordinates are therefore drawn from the

opposite map edge.

With all the peaks detected, it was observed that there are between few

hundreds and several thousands peaks conforming to the above algorithm for each

of the test set structures. However, most of these peaks are expected to be back-

ground noise and as such need to be removed from the peak set. Therefore, the

peak distribution needs to be considered, so that background could be determined

and removed before subjecting the peak set to further analysis. Figure 4.1 shows

the peak height distribution histograms for three selected structures.

Figure 4.1: Peak height distribution histograms for three selected protein structures

a

This figure shows the his-

tograms of the peak height

distributions for the three

selected structures; the co-

ordinate file with C2 symme-

try peak height distribution

histogram is shown in blue,

the co-ordinate file with C3

symmetry peak height distri-

bution histogram is shown in

green and the density map

file with C5 symmetry peak

height distribution histogram

is shown in red. All his-

tograms have the bin width

parameter set to 0.01. Note

that the three plots do have

different y-axis as the differ-

ent structures do have differ-

ent number of peaks.

The figure 4.1 shows that the peak height distribution tends to have many

peaks with heights close to zero with several outliers having much larger heights.

Therefore, by detecting the outliers, the possible symmetry peaks could be kept,

while most of the background peaks could be removed, thus reducing the compu-

tational cost and possibility of false positives.
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More specifically, the main outlier detection methods are based on comput-

ing the distribution statistics and using these to determine the threshold beyond

which all values are considered outliers. One possibility is to use the mean and

standard deviation statistics, while another option is to compute the interquar-

tile range and distribution median. Given that the mean and standard deviation

are more affected by outliers than the median and interquartile range, it seems

appropriate to use the latter for outlier detection. Tukey (1977) suggests using

1.5 interquartile range from the median to detect outliers; however, by empirical

testing of different number of interquartile ranges from the median, all structures

in the test dataset had the outlier peaks still detectable with 3.0 interquartile

ranges, while the number of background peaks was decreased as compared to the

1.5 interquartile ranges results. Therefore, the default value for the peak height

outlier detection was set to 3.0 interquartile ranges with the option for the user to

change which value if they so wish.

4.2.2 Local peak optimisation

With the peak detection now complete and the peak set reduced to the highest

valued outliers, the resolution of the inverse SO(3) Fourier transform map needed

to be considered. Each dimension of the inverse SO(3) Fourier transform map has

2lmax grid points, where lmax is the maximum bandwidth of the spherical harmonics

expansion. However, the peak maximum is not likely to lie on any particular grid

point, but rather in between the grid points and therefore, local optimisation of

the peak position could improve the symmetry detection in general. To address

this issue, a local optimisation procedure was developed.

Starting from the realisation that direct optimisation of the Euler angles is

non-trivial, as the relationship between any one of the Euler angles and the rest is

complex, the optimisation in terms of the rotation matrices was considered instead.

Regarding the rotation matrices, their individual elements are related to rotations

along the x, y and z axes by the trigonometric functions of the angle of the rotation
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along that axis. Therefore, if a required rotation is known to be in between two

rotation matrices with similar rotation angles along the axes, linear averaging of all

the elements of the two rotation matrices and consequent normalisation produces

orthogonal matrix with determinant one and the required rotation approximation.

This method is described in more details by, for example Curtis et al. (1993) and

Sharf et al. (2010).

Applying this method, the grid point with the maximum peak height and all

of its immediate neighbours can have their Euler angle co-ordinates converted to

rotation matrices (as per equation 3.25). Consequently, a new 3× 3 matrix (MA)

can be constructed with each element being the sum of the same elements of each

of the highest peak and its neighbours rotation matrices, weighted by the peak

height of each of the grid points and divided by the sum length that was used to

produce the rotation matrix. In other words, each element of this new matrix MA

is the weighted sum of the same elements of all the rotation matrices divided by

the number of these elements.

Nonetheless, the MA matrix is not necessarily a rotation matrix, as it needs

to be normalised to become orthogonal and have determinant one. To achieve this,

the MA matrix can be expanded using the singular value expansion; this results

in two rotation matrices (U and V ) and the singular values matrix (Σ) as per the

following equation. Consequently, by assuming all the singular values to be one,

the determinant of the resulting matrix will be normalised to one and the matrix

will be orthogonal. This can be seen from the fact that in the case that Σ = I,

two rotation matrices are multiplied and the result must be a rotation matrix as

well. Therefore, it follows that:
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MA = UΣV T (4.1)

MN = UIV T = UV T (4.2)

where:

MN is the normalised version of the matrix MA.

Finally, the matrix MN can be converted back to the Euler angles using

equation 3.26, with the new Euler angles now being optimised for the peak height.

4.3 Cyclic symmetry detection

With the peaks of the inverse SO(3) Fourier transform map now located and lo-

cally optimised, an algorithm is required to check for presence of any symmetries

in the peak list. Firstly, the cyclic symmetries are considered; the cyclic symme-

tries are defined as point groups for which any number of rotations by an angle of

360
n

degrees along the symmetry axis does not change the shape of the rotated ob-

ject. These symmetries are denoted as Cn in the Schoenflies notation (Schoenflies,

1891) or simply by n in the Hermann-Mauguin notation (Hermann (1928) and

Mauguin (1931)), where n is the number of identical orientations the symmetry

group has, also often called the symmetry fold. Therefore, in order to demonstrate

the presence of this type of point group in the inverse SO(3) Fourier map, a set

of peaks with identical symmetry axis and n different, consecutive rotations with

their angle being an integer multiple of 360
n

need to be detected.

4.3.1 Angle-axis representation

The task of finding peaks representing the fold n rotations with the same symmetry

axis could be facilitated if the peaks could be grouped by their respective axes
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of rotation. Nonetheless, both the Euler angles and the rotation matrices do

not have their rotation axis trivially available, as they are both combinations

of three rotations along the co-ordinate axes. However, both rotation matrices

and the Euler angles representations of rotation can be converted to the angle-

axis representation of rotation. The angle-axis representation parametrises any

rotation in the three-dimensional space by a vector from the co-ordinate origin,

which serves as the rotation axis and an angle, which states how much the object

should be rotated along such a rotation axis. The angle-axis representation can be

obtained from the rotation matrix M by using the following conversion equations.

Angle = cos−1
(tr (M)− 1

2

)
x =

M3,2 −M2,3

N

y =
M1,3 −M3,1

N

z =
M2,1 −M1,2

N

N =

√
(M3,2 −M2,3)2 + (M1,3 −M3,1)2 + (M2,1 −M1,2)2

(4.3)

where:

tr (M) is the trace of matrix M .

Mi,j is the rotation matrix M element row i and column j.

i and j are in range (1, 3).

The conversion described by equations 4.3 is generally valid, but care must

be taken when dealing with the singularities at angle values 0 and 180 degrees. In

the case of 0 angle rotation, the appropriate rotation matrix would be the identity

matrix, which would make the normalisation of the axis (N) 0 and thus cause

division by 0 issue. Similarly, rotation by 180 degrees would have the rotation

matrix with the non-diagonal elements 0, two diagonal element with -1 and one

diagonal element with 1 (depending on along which axis the 180 degrees rotation

is to be done). Again, the normalisation (N) would be 0 and division by 0 would

ensue.
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4.3.2 Finding all rotations for Cn symmetry

By converting all the symmetry peaks to the angle-axis representation, it becomes

easy to group the peaks with similar axes of rotation. The algorithm needs to take

into account two considerations; firstly, the axis can be present in either direction

and yet these cases should be grouped together into a single group. And secondly,

there may be slight numerical inaccuracies in the axis determination and therefore

small error (denoted ε0) needs to be accommodated when comparisons for axis

similarity are made.

With both these issues cleared, each group of peaks with the same symmetry

axis needs to have the possible symmetry fold n estimated. In the optimal case

where only the n peaks with consecutive integer multiples of the angle 360
n

are in

a single group, the fold n could be determined as the average distance between

the consecutive sorted group member angles. However, the situation may be com-

plicated by several issues: a) some of the angles could be repeated (with small

difference) multiple times. This situation arises with high enough resolution of the

inverse SO(3) Fourier transform map, where two peaks could be separated by a

single grid point. Both such peaks could have similar enough axis to be grouped

together (within the small error ε0) and similar angle (increasingly more similar

with higher map resolution). And b), a false-positive peak passing the outlier

detection could have similar enough axis to be grouped with other peaks just by

chance, thus introducing a random angle into the group.

In order to detect any possible Cn symmetry while avoiding the two issues

mentioned in the previous paragraph, the possible fold n of the group is sought by

firstly finding all the differences between the angles in the groups and taking the

smallest angle difference (η) within the symmetry axis group. Then, the smallest

angle difference is checked for having the remainder of the division 360/η close to 0

or 1, again allowing for numerical inaccuracies by accommodating for small error

ε1. If such check is not passed, the next smallest angle in the list is considered

and checked. This step is repeated until either a passing angle-difference-value η
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is found or all distances have been tried. If all angle differences fail, it can be

concluded that the symmetry axis group does not contain any Cn symmetry.

On the other hand, if any η passes, the Cn symmetry corresponding to the η

value can be searched for. In order to do this, all consecutive integer multiples of

the optimal angle given by 360/n degrees are computed in the range of −180 to 180

degrees and saved in a vector Vn. Then, the presence of these angles in the group

is sought and the longest continuous streak of matches between the group and the

vector Vn is recorded. The comparison of the angles in Vn and the group does

take into account the possible numerical inaccuracies by, again, accommodating

for small error ε1. Finally, if the longest continuous streak of matches is shorter

than n, the angle difference η is removed from the list of distances between angles

in the group and the next smallest value is tried; however, if the longest continuous

streak of matches has the length of at least n, the Cn symmetry has been found.

This result follows the fact that the group has the same axis, which is the

symmetry axis of the Cn symmetry, and rotation by any integer multiple of 360/n

degrees along this axis produces a highly correlated structure (i.e. a peak with

high height in the inverse SO(3) Fourier transform map); in other words, rotation

by any integer multiple of 360/n degrees does not change the shape. This is the

definition of a Cn symmetry. Furthermore, it is worth noting that this approach

does identify the highest n symmetries first, as they will (by definition) have smaller

angles and therefore the η value required for their detection will be smaller and

thus attempted first. Nonetheless, this approach has two weaknesses which now

need to be discussed in some detail.

Small η values and accuracy

The first issue that needs to be addressed is that while small values of n have dis-

tinct 360/n degree angles, which are easily separated from each other, for the large

values of n, the difference can become rather small and when numerical inaccu-

racies are present, it may be difficult to distinguish which n should be associated
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with what value of the smallest angle difference η. This can be shown on example

of C15 symmetry, where 360/15 = 24◦, but 360/14 ≈ 25.71◦ and 360/16 = 22.5◦. In this

case, the difference between the perfect symmetry angles is 1.5 degrees.

Given that the smallest angle difference η is used to estimate the appropriate

value of n for the symmetry, it is easy to see that if the numerical inaccuracies

would be as small as 0.75 degree, the wrong n could be estimated in this case. To

avoid this issue, the angle error of misplacing the inverse SO(3) Fourier transform

map peak by a single grid point is computed (equation 4.4) as well as the optimal

angle difference (εA) between the initially assumed n value and the next (n + 1)

value; i.e. εA = 360/n− 360/(n+ 1).

εP =
360

2lmax
(4.4)

where:

εP is the angle difference between two grid points on the inverse

εP SO(3) Fourier transform map.

Consequently, if the ratio between the map grid point angle difference εP and

the next symmetry angle difference εA is more or equal to 0.5, or in other words,

if the map grid difference is less than double the next symmetry angle difference,

the values of n − 1, n and n + 1 are all tested instead of just the value n. With

this simple test implemented, one more possible source of error in the previously

discussed algorithm for detection of the cyclic symmetries needs to be discussed.

Missing peaks

Another possible issue with the algorithm is that some proportion of the angles

required for the symmetry (and by extension the peaks defining them) may be

missing in the data. This can happen as a result of the interactions between

the Euler angles not being linear; for example, if the β angle is 0.0, then the

114



CHAPTER 4. SYMMETRY DETECTION

angles α and γ are not independent as they are both rotations along the same axis

(this assumes the ZY Z convention). Therefore, in this particular case, the three

dimensional space is reduced to one dimensional space with the dimension being

α + γ.

Now, if the symmetry axis of a group is on the y axis of the co-ordinate

system, then exactly this case arises and any particular peak given by such sym-

metry will be present in all co-ordinates where α + γ is equal to the peak angle.

It is then easy to imagine that, especially for cyclic symmetries with large fold n,

the number of peaks will be large and unless the inverse SO(3) Fourier transform

map sampling is very fine, the peaks will merge together. In this case, the peak

detection algorithm described above will not find some of the symmetry related

peaks due to them having neighbouring peak heights with higher value than the

symmetry-related peak position.

To accommodate for this issue, the cyclic symmetry detection algorithm was

updated so that if for a particular value of η the number of Vn vector matches

is at least 70% of n (the percentage can be changed when the software is used, it

is just the default value), a search for missing peaks is initiated. Once initiated,

the missing peak search takes the Vn vector values which were not matched in the

same-symmetry-axis peaks group and searches for their existence in the inverse

SO(3) Fourier map. This is done by searching the inverse SO(3) Fourier transform

map for grid points which have co-ordinate Euler angles corresponding to the

required group symmetry axis and the missing angle. The highest value among

all the grid points conforming to these conditions is then compared to the original

threshold and if larger, it is added to the same symmetry axis group. It is worth

noting that this modification of the algorithm does not decrease the original outlier

detection threshold for the peak distribution and therefore it only locates peaks

which should have been detected originally.
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4.4 Dihedral and polyhedral symmetries

With the ability to detect cyclic symmetries just discussed, the possibility of detect-

ing other symmetries should be considered. In particular, the dihedral symmetries

are the second type of point groups that can be detected using the inverse SO(3)

Fourier transform map. Moreover, the polyhedral symmetry groups, which are the

rotation groups of Platonic solids such as tetrahedron, octahedron and icosahedron

should also be amenable to detection using the inverse SO(3) Fourier transform

approach.

4.4.1 Dihedral symmetry detection

There are three different types of dihedral symmetry groups, the chiral dihedral

symmetry, the achiral prismatic and achiral anti-prismatic dihedral symmetry.

However, since both the achiral dihedral symmetry groups do require reflection as

well as rotation, they will not be considered further as they cannot be detected

using the inverse SO(3) Fourier transform method. Nonetheless, the chiral dihedral

symmetries are point groups with a single cyclic symmetry Cn along one symmetry

axis and another C2 symmetry along a symmetry axis perpendicular to the first

symmetry axis. They are denoted by Dn in the Schoenflies notation, where the

n is the same number as for the Cn symmetry that forms the Dn symmetry, or

simply by n2 in the Hermann-Mauguin notation.

Following from the definition of the chiral dihedral symmetry, a simple al-

gorithm can be devised to detect them from the already available list of detected

cyclic symmetries. Specifically, the list of the cyclic symmetries detected by the

algorithm described in the section 4.3 can be searched for any pairs of symmetries

with symmetry axes perpendicular to each other. The resulting list of symme-

try pairs then, by definition, is the list of all detected chiral dihedral symmetries

present in the structure. It should be noted that this approach will detect not only
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the dihedral symmetry groups, but also the hexahedron (cube) symmetry, which

is composed of three perpendicular C4 symmetries.

4.4.2 Polyhedral symmetry detection

The polyhedral symmetries are point groups defined as combinations of multiple

Cn symmetries which can be found in Platonic solids. Generally, there are five

Platonic solids, each associated with its own polyhedral symmetry: tetrahedron,

hexahedron (cube), octahedron, dodecahedron and icosahedron. Nonetheless, only

three of these symmetries have been observed in the wwPDB database, namely

the tetrahedral symmetry, the octahedral symmetry and the icosahedral symme-

try. It is worth noting that there are wwPDB entries which state other symmetries

- for example the entry 2WQT (Montgomery et al., 2010) named ”Dodecahedral

assembly of MhpD”; however, the wwPDB still designates this entry as icosahe-

dral. Nonetheless, this project will only consider symmetry groups defined in the

wwPDB at this stage.

Regarding the detection of the polyhedral symmetry, it is worth mentioning

the Schlafli symbols, which describe regular polytopes. In three dimensions, the

Schlafli symbols for Platonic solids are written in curly brackets and consist of

two numbers, the first number signifies the number of edges that each face has,

while the second number is the number of polygons that surround each vertex -

for example, the octahedron has Schlafli symbol of {3, 4}. Regarding the quasi-

regular polyhedra, their Schlafli symbols are written as
{
p
q

}
=
{
q
p

}
where the p

and q signify that the quasi-regular polyhedron contains faces from the regular

polyhedron {p, q} and the double regular polyhedron {q, p}. For more details on

the notation, see for example Coxeter (1973).

The dihedral angle of a regular or quasi-regular polyhedra is the angle be-

tween any two adjoining faces of the polyhedra. Moreover, it can also be seen

as the angle between the two lines which each connects the centroid (centre) of

the polyhedron and the centre of one face of the polyhedron, assuming the two
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polyhedron faces are adjoining. By realising that the regular and quasi-regular

polyhedra have symmetry axes which go from the centroid to the centre of their

faces, it can be seen that the dihedral angles are also the angles between these

axes of symmetry, albeit other symmetry axes may not have these angles. Table

4.2 shows the dihedral angles and the Schlafli symbols for all five Platonic solids

and the cuboctahedron.

Table 4.2: The dihedral angles for Platonic solids and selected quasi-regular polyhedra

Name Schlafli symbols
Dihedral angle

(radians)
Dihedral angle

(degrees)

Tetrahedron {3, 3} cos−1 (1/3) ≈ 70.53
Hexahedron {4, 3} π/2 90
Octahedron {3, 4} π − cos−1 (1/3) ≈ 109.47

Cuboctahedron
{

3
4

}
π − cos−1 (1/

√
3) ≈ 125.26

Dodecahedron {5, 3} π − tan−1 (2) ≈ 116.56
Icosahedron {3, 5} π − cos−1 (

√
5/3) ≈ 138.19

This table shows the Schlafli symbols and dihedral angles for the five Platonic solids and cuboc-
tahedron. The table is adapted from Table 1 of Coxeter (1973).

The reason for including the cuboctahedron in table 4.2 along with the Pla-

tonic solids is that while it is a different shape than the octahedron, they do share

the same symmetry group. This fact can be explained by exploring the conjugacy

classes of polyhedral symmetries; the conjugacy classes are groups of group ele-

ments (in the case of symmetry groups, the symmetry elements - i.e. all rotations

which do not change the shape of the object) which share similar features. Math-

ematically speaking, group elements a and b are conjugate if there is an element g

for which it is true that gag−1 = b. In other words, if one element of the conjugacy

class (a) can be changed into another element of the same conjugacy class (b),

then the two elements are in the same class. It therefore follows, that if any two

Cn elements of the same symmetry group with the same value for n exist, they

must be in the same conjugacy class, as Euler’s theorem guarantees the existence

of a rotation g which rotates a to b.

Now, the polyhedral symmetry groups are defined by their conjugacy classes,

but not by the angles between them. Therefore, since the octahedron and cuboc-

tahedron do have the same composition of the conjugacy classes, they do have
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the same symmetry group. However, since the dihedral angles do differ between

the two shapes with octahedral symmetry group (see table 4.2), it is necessary to

know for which of the two shapes the octahedral symmetry group is being searched

for (at least when the inverse SO(3) Fourier transform approach is used). To this

end, several of the wwPDB database entries with reported octahedral symmetry

were obtained (see section 4.1) and the dihedral angles were detected by firstly

using the aforementioned algorithm for detecting cyclic symmetries and then find-

ing the angles between appropriate C4 and C3 symmetry axes. This approach has

shown that the octahedral symmetry group in macromolecules has the cubocta-

hedral rather than the octahedral dihedral angles. To demonstrate the difference

between the octahedron and cuboctahedron shapes, they are both visualised in

figure 4.2.

Figure 4.2: The difference between the octahedron and cuboctahedron

This figure shows example of the Platonic solid octahedron and the quasi-regular polyhedra cuboc-

tahedron. Octahedron picture was adapted from Wikipedia (2018b), while the Cuboctahedron

picture was adapted from Wikipedia (2018a).

It then follows that if an object has any of the regular polyhedra symmetry

group, the appropriate dihedral angles must be measurable between the symmetry

axes of the Cn symmetries which are present for each face of the polyhedra. Conse-

quently, this fact can be used to detect the tetrahedral, octahedral and icosahedral

symmetries simply by testing for presence of two Cn symmetry axes of appropriate
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n values and correct dihedral angle between them; specifically, two C3 symmetry

axes with angle ≈ 70.53 degrees for tetrahedral symmetry, one C3 and one C4

symmetry axes with angle ≈ 125.26 degrees for octahedral symmetry and one

C3 and one C5 symmetry axes with angle between them of ≈ 138.19 degrees for

icosahedral symmetry. For more details about polyhedra, see for example Coxeter

(1973).

While detecting a symmetry is understood as finding evidence for the claim

that the symmetry exists for a given structure, finding all the individual elements

is a slightly different task. The algorithms discussed above are aimed to detect

symmetry, that is to find the evidence for the symmetry existence; however, they

are not sufficient to obtain all the elements of the polyhedral symmetry groups.

Therefore, the algorithms introduced so far are sufficient to determine all the sym-

metry elements for the cyclic and dihedral symmetry groups, but only a detection

of existence is done for the polyhedral symmetry groups.

4.4.3 Polyhedral symmetry elements generation

Assuming that the previously discussed algorithm detects the presence of a poly-

hedral symmetry in the structure of interest, the list of all the symmetry elements

could be obtained. In order to do so, the knowledge of conjugacy classes constitut-

ing the polyhedral symmetry group could be used, as the conjugacy classes of any

polyhedral symmetry specify the list of all Cn symmetries which need to be found

in order for the full polyhedral symmetry group to be described; in turn, each such

symmetry axis defines a portion of the symmetry elements of the symmetry group

it forms. Nonetheless, the conjugacy classes do not include the angles between

the symmetry axes, which are required to fully determine the symmetry group

elements. Therefore, the symmetry axes of the regular polyhedra specifying the

symmetry need to be determined first.
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Tetrahedral symmetry elements

The tetrahedron shape has 7 unique symmetry axes, which need to be identified

in order to obtain all the 12 symmetry elements. The 7 axes are composed of 4 C3

axes, each connecting a single vertex with the centre of the opposing face, as well

as 3 C2 axes, each connecting the centre of an edge with the centre of the opposing

edge. For visualisation of these two symmetry axes types, see figure 4.3

Figure 4.3: The symmetry axes of regular tetrahedron

This figure shows the two different types of symmetry axes present in the regular tetrahedron. Part

a) shows a C3 symmetry axis connecting a vertex with the centre of the opposing face, while part

b) shows a C2 symmetry axis connecting the centre of an edge with the centre of an opposing edge.

Figure adapted from Wikipedia (2007).

In order to locate these seven axes in the shape, the two already known

C3 symmetry axes with the dihedral angle of cos−1 (1/3) radians can be used as a

start. An algorithm can be written to search the list of cyclic symmetries already

available for the structure for the other two C3 symmetries which do have the angle

to each other and the already known two C3 symmetries equal to the absolute value

of the dihedral angle with some small error ε1 being allowed for.

Subsequently, the three C2 symmetries can be located by testing all C2 sym-

metries already located in the shape for having the angle of ± cos−1 (1/2) radians

to all four C3 symmetries, while being perpendicular to any already found C2

symmetries (i.e. having the angle of ± cos−1 (0) radians to any C2 symmetry axis

already associated with the shape).
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Now, for the tetrahedral symmetry group, the set of conjugacy classes differs

on whether the group is chiral or achiral; that is whether it includes reflections

or not. Given that the discussed inverse SO(3) Fourier transform map approach

cannot detect reflections, only the chiral tetrahedral symmetry group will be con-

sidered here. The list of conjugacy classes of the chiral tetrahedral symmetry group

is shown in table 4.3 and it can easily be seen that each symmetry group element is

associated with some of the already detected axes, except for the identity element.

Table 4.3: The conjugacy classes of the chiral tetrahedral symmetry group

Description
Symmetry

element type
Number of
occurrences

Identity C1 1
Rotation by ±120◦

at each of the vertices
C3 8

Rotation by 180◦

along the line connecting the
centres of opposing edges

C2 3

This table shows the conjugacy classes for the chiral tetrahedral symmetry group along with number

of symmetry elements each of these classes has. Note that the number of occurrences of the symmetry

elements is double the number of symmetry axes for axes with two angles (denoted by the ± symbol).

Therefore, the twelve chiral tetrahedral symmetry group elements can now

be generated by combining the appropriate axis with angle, except for the identity

element, where the axis is irrelevant as the angle is zero radians.

Octahedral symmetry elements

The octahedron and cuboctahedron shapes do have the same symmetry axes as

discussed above, albeit the angles between the axes do differ. The list of axes that

need to be determined in order to obtain all the octahedral symmetry conjugacy

classes includes four C3 symmetry axes, each of which connects two opposing

vertices, three C4 symmetry axes with each of these connecting two opposing

centres of faces and also 6 C2 symmetry axes, each of which connects the opposing

centres of edges. For visualisation of where some examples of these axes are located

in the regular octahedron, see figure 4.4.
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Figure 4.4: The symmetry axes of regular octahedron

This figure shows the three different types of symme-

try axes present in the regular octahedron. The C3

symmetry axis connects two opposing vertices, the C4

symmetry axis connects the centre of face with oppos-

ing centre of face, while the C2 symmetry axis con-

nects a centre of an edge with the opposing edge’s

of centre. The figure was adapted from International

Union of Crystallography (1962).

Therefore, to locate the thirteen symmetry axes present in the octahedral

symmetry group with angles between the axes given for the cuboctahedron shape,

the algorithm needs to locate two C4 symmetries perpendicular (i.e. with angle of

cos−1 (0) radians) to the already detected C4 symmetry axis and each other. Next,

the algorithm searches the list of already known cyclic symmetries (produced by

the symmetry detection algorithm discussed above) for four C3 symmetries with

absolute value angles to all the C4 symmetry axes equal to the dihedral angle of

cuboctahedron, that is π − cos−1 (1/
√

3) radians. Finally, the algorithm needs to

search for the six C2 symmetries, four of which will have the angle of cos−1 (1/
√

2)

radians to each of the C4 already found symmetry axes and two of which will have

the angle of cos−1 (1/
√

2) radians to two of the C4 axes and angle of cos−1 (0) radians

to the last C4 symmetry axis.

With all the thirteen unique symmetry axes detected for the octahedral

symmetry, the knowledge of the conjugacy classes can be used to determine the

symmetry group elements for the octahedral symmetry group. Although there are

two types of the octahedral symmetry, the chiral and achiral types, the achiral

octahedral symmetry requires reflections as well as rotations and therefore cannot

be detected by the inverse SO(3) Fourier transform based approach. Consequently,

only the chiral version of the octahedral symmetry will be considered, similarly to
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the dihedral and tetrahedral cases. The conjugacy classes of the chiral octahedral

symmetry group are listed in the table 4.4.

Table 4.4: The conjugacy classes of the chiral octahedral symmetry group

Description
Symmetry

element type
Number of
occurrences

Identity C1 1
Rotation by 180◦

at each of the vertices
C4 3

Rotation by ±90◦

at each of the vertices
C4 6

Rotation by ±120◦

along the line connecting the
centres of opposing faces

C3 8

Rotation by 180◦

along the line connecting the
centres of opposing edges

C2 6

This table shows the conjugacy classes for the chiral octahedral symmetry group along with number of

symmetry elements each of these classes has. Note that the number of occurrences of the symmetry

elements is double the number of symmetry axes for axes with two angles (denoted by the ± symbol).

Therefore, the 24 chiral octahedral symmetry group elements can now be

generated by combining the appropriate axis with angle, except for the identity

element, where the axis is irrelevant as the angle is zero radians.

Icosahedral symmetry elements

The icosahedron shape does have 31 unique symmetry axes, distributed as follows:

6 C5 symmetries with their axes always connecting two opposing vertices, 10 C3

symmetries with their axes connecting the centres of two opposing faces and 15 C2

symmetries with their axes connecting the centre of any edge with the opposing

edge’s centre. The positions of one example of each of these three axis types is

shown in the figure 4.5.

To detect all of these 31 axes, the algorithm first takes the already known

C5 symmetry and searches the list of already detected cyclic symmetries in the

structure. It attempts to locate five C5 symmetries, whose axes have angle of

±cos−1 (1/2) radians to each other and the already known C5 symmetry. Next, the

algorithm searches for the 10 C3 symmetries by requiring any potential candidate

C3 symmetry to have the dihedral angle of ±cos−1 (
√

5/3) radians to the three closer
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Figure 4.5: The symmetry axes of a regular icosahedron

This figure shows the three differ-

ent types of symmetry axes present

in the regular icosahedron. The

top inset shows the view from a

C5 symmetry axis, the middle inset

shows the location and view from

the C3 symmetry axis and the bot-

tom inset shows the view for a sin-

gle C2 axis. Figure adapted from

Ziegler (2003).

C5 symmetry axes and the angle of ±cos−1 (1.0−
√

5/3) radians to the three further

C5 symmetry axes. Finally, to detect the 15 C2 symmetries, the algorithm requires

all candidate C2 symmetry axes to be perpendicular to two of the C5 axes (i.e.

have the angle of cos−1 (0) radians to them), to have the angle of ±cos−1 (1/2)

radians to another two C5 symmetry axes and to have the angle of ±cos−1 (
√

3/2)

radians to the last two C5 symmetry axes.

With the 31 unique axes now determined, the conjugacy classes of the icosa-

hedral symmetry group can be used to obtain the symmetry elements of the sym-

metry group. As with the tetrahedral and octahedral symmetry groups, there are

two icosahedral symmetry groups, the chiral and achiral one; again, as the achiral

icosahedral symmetry groups requires reflections, it cannot be considered here.

Table 4.5 shows the conjugacy classes for the chiral icosahedral symmetry group.

Therefore, the 60 chiral icosahedral symmetry group elements can now be

generated by combining the appropriate axis with angle, except for the identity

element, where the axis is irrelevant as the angle is zero radians.

Missing symmetry axes

The approach described above for determining the symmetry elements of the poly-

hedral symmetry groups has one issue, which should be discussed before proceeding

further. As mentioned in the beginning of section 4.3.2, the Cn symmetry searching
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Table 4.5: The conjugacy classes of the chiral icosahedral symmetry group

Description
Symmetry

element type
Number of
occurrences

Identity C1 1
Rotation by ±72◦

at each of the vertices
C5 12

Rotation by ±144◦

at each of the vertices
C5 12

Rotation by ±120◦

along the line connecting the
centres of opposing faces

C3 20

Rotation by 180◦

along the line connecting the
centres of opposing edges

C2 15

This table shows the conjugacy classes for the chiral icosahedral symmetry group along with number

of symmetry elements each of these classes has. Note that the number of occurrences of the symmetry

elements is double the number of symmetry axes for axes with two angles (denoted by the ± symbol).

algorithm starts by grouping all the detected similarity peaks according to their

axis of symmetry and making sure two peaks with axes in opposite directions are

grouped together by switching the direction of one of the axes. The result of this

operation is simpler cyclic symmetry detection, but also a possibility of not finding

an axis required by one of the polyhedral symmetries, as the axis with opposite

direction could have been used instead. Consequently, the axis with the opposite

direction, while being identical to the required axis, may not have the same angles

to the other axes as required by the angle tests discussed above.

To remedy this situation, an algorithm was developed to search for a Cn

symmetry with given axis (or its opposite) in the inverse SO(3) Fourier transform

map. This is done by firstly obtaining a list of all map values which produce

the required axis, sorting these by the angle they represent and then finding the

combination of n angles separated by distance of 360/n (accommodating for small

error ε1) which has the largest average peak height. If this average peak height is

larger than the minimum peak threshold, the Cn symmetry with the required axis

is considered to exist.

With this new ability to search for symmetries which should be present in

the shape, but are not either for the aforementioned reason or any other, the algo-

rithms for detecting the tetrahedral, octahedral and icosahedral chiral symmetry
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groups were updated to also search for missing axes whenever required. Therefore,

the symmetry detection algorithm can now detect cyclic, dihedral, tetrahedral,

octahedral and icosahedral symmetries as well as their respective symmetry ele-

ments. Finally, it is worth noting that the algorithm as well as the software tool

available for applying it has recently been published by the author in Nicholls et al.

(2018).
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Chapter 5

Clustering of BALBES protein

domain database

The chapter 3 concluded with defining three shape similarity measures and dis-

cussion of their implementation. It is now interesting to consider how these shape

descriptors can be used to reduce the shape redundancy of any set of shapes and

particularly a protein domain database. The purpose of doing so is twofold, firstly

it allows a large scale testing of the shape descriptors and possible detection of

any issues with the implementation or parametrisation of the shape descriptors.

And secondly, by reducing the size of the BALBES (Long et al., 2008) protein

domain database, any future usage of the database will not be as computationally

expensive.

In order to reduce the shape redundancies of the BALBES protein domain

database, such redundancies needs to be detected. This task can be seen as finding

similar objects given their distance, or in other words, as a clustering problem.

More generally, the task of finding clusters in any dimensional data has been

studied for some time now and there are many available algorithms to perform it.

These algorithms differ on the definition of a cluster and the consequent approach

to comparing two clusters, as well as the ”strictness” of the clustering, that is,

whether a single object can belong to only one cluster, or whether it can belong
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to multiple or no cluster at all. Table 5.1 provides an overview of the common

clustering algorithms as well as their brief description and references for more

information.

Table 5.1: Overview of commonly used clustering algorithms

Name Cluster definition and comparison approach Reference

Hierarchical clustering

Uses connectivity models (e.g. dendro-
grams) to detect clusters. It assumes
numerical distance measure and may
be dependent on the selected method

for obtaining distances between clusters.

Rokach and
Maimon (2005)

Equivalent classes

Two set members are classified together
if they both conform to a pre-

defined equivalence relation - for
example have distance more

than x.

Avelsgaard
(1989)

k-means clustering

Using k centroids, each centroid
being the average of the closest objects
to it, the algorithm iteratively moves
the centroids to minimise the square
distance between the centroid and

the objects associated to it.

MacQueen
(1967)

Maximum-likelihood
clustering

Starting with a random model, the
likelihood of the model is computed
and maximised using the real data.

These steps are repeated until
convergence.

Dempster et al.
(1977)

Density-based
clustering

Using the number of neighbours as
a measure of compactness, these

approaches assign regions with high
compactness as clusters and all other

regions as outliers.

Ester et al.
(1996)

Graph-based
clustering

By firstly computing the graph
connecting the objects, the algorithm

then searches for highly connected
subgraphs, assigning these as clusters.

Hartuv and
Shamir (2000)

Self-organising
maps

This approach is based on artificial neural
networks, but instead of using the back-

propagation as a learning method, an
evolutionary algorithm combining values of

high-scoring nodes and their neighbours
is used, thus growing better networks.

Kohonen (1982)

This table shows the common clustering algorithms as well as brief description as to how they
achieve clustering of a given set of objects. References are given for sources of more information
about each of the mentioned algorithms.

When considering the approaches listed in table 5.1 with regards to the in-

tention of clustering the BALBES protein domain database, it seems reasonable

to start by considering the nature of the features by which the clustering is to be

done. More specifically, the shape descriptors described in chapter 3 should be

used as the basis for clustering. However, given that the BALBES database con-

tains 13, 719 protein domains, computing the descriptor values for each unique pair
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would require 13,719×13,718
2

= 94, 098, 621 distance computations. As the computa-

tional cost of computing distances between all unique pairs of domains is rather

high, methods for reducing the number of distances need to be considered.

5.1 Reducing number of distances

In order to decrease the computational cost of obtaining the distances between pro-

tein domains of the BALBES database, reduction of the number of comparisons

is required. In other words, by applying rules specifying which protein domain

pairs need to have their distances determined and which pairs can be safely ig-

nored, the total number of distances to be computed will be reduced and thus the

computational cost of the distances calculation will decrease proportionally.

5.1.1 Pre-filtering using domain sizes

The first pre-filtering approach to be considered is using the size information of

the protein domains. The size information is readily available in the form of

the number of atoms, while other related measures, such as volume or maximum

distances from centre of density could be easily obtained. Given that the intention

of clustering the BALBES database protein-domains is to reduce redundancy in

shape, it follows that only protein domains with similar number of atoms should be

clustered together; although, there needs be some allowance for minor differences

in otherwise similar shapes.

An example of similar shapes with minor differences would be protein do-

mains with differently sized loops connecting the secondary-structure elements,

or possibly protein domains with identical secondary-structure elements positions,

but slightly different lengths of some of the secondary-structure elements. On the

other hand, if a pair of protein domains has considerably different sizes, even in

the case that the smaller protein domain is a subset of the larger domain, they
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should not be clustered together, as this would result in loss of information and

not simply removal of redundancies.

Therefore, by selecting a relatively conservative requirement that the smaller

domain of the pair should have at least 90% of the number of atoms of the larger

protein domain, the number of comparisons could be reduced. Specifically, by

finding the number of atoms present in each domain and then, for each domain

finding all other domains conforming to the size requirement, the number of pairs

for which the distances need to be computed can be reduced to 21, 340, 790 or

approximately 22.7 % of the original number of distances. Moreover, no domain

has more than 2, 200 other domains conforming to the size requirement and 2, 840

domains have less than 1, 000 other domains conforming to the size requirement.

The histogram of frequencies of the number of other domains conforming to the

size requirement is shown in figure 5.1.

Figure 5.1: The histogram of the number of other domains passing the size requirement

a

This figure shows the his-

togram obtained by find-

ing the number of domains

which conform to the 90%

size similarity requirement

in a pair with another do-

main, for each domain.

The histogram was pro-

duced using the bin width

parameter value of 50. The

average number of protein

domains passing the 90%

size similarity requirement

is 1, 555.

5.1.2 Hierarchical distance computation

While the protein-domain size-similarity requirement did decrease the number of

required pair distance calculations considerably, there is another option which

132



CHAPTER 5. CLUSTERING OF BALBES PROTEIN DOMAIN DATABASE

could be explored. By considering that there are three different shape distances

that are to be computed for each pair of structures passing the size requirement just

discussed and, furthermore, noting that the three distance measures have different

execution times for the same settings (see tables 3.5, 3.6 and 3.7), it is possible to

use the fastest descriptor value (the cross-correlation shape descriptor) as a pre-

filter deciding whether the rest of the shape descriptors need to be computed or

not. Similarly, if the second-fastest shape-distance is to be computed (the trace-

sigma descriptor), its value could be used to decide whether the rotation-function

shape-distance needs to be computed.

By using the distances computation in this hierarchical way, the time re-

quired for each pair distance calculation could be reduced considerably; for exam-

ple, it can be seen from the tables 3.5, 3.6 and 3.7 that each pair not passing the

cross-correlation distance threshold would have its computation time decreased

approximately by 1/2, assuming the default values of resolution 8.0 Å and B-factor

value of 80. Nonetheless, to estimate to how many of the distances computa-

tions this speed-up would apply, the threshold for the cross-correlation-descriptor

distances as well as for the trace-sigma-descriptor distances need to be determined.

Hierarchical distance thresholds

Clearly, the thresholds for the hierarchical distance computation will be dependent

on the resolution and B-factors used; however, since the default parameters for

the distance computation algorithms were determined in section 3.5.5, it seems

logical to start with these values. Now, by observing the distributions of the cross-

correlation descriptor with the default settings for similarly shaped and differently

shaped pairs of structures in the test dataset, a threshold could be decided. This

threshold will, inevitably, be arbitrary as there is no perfect way to determine

it. Nonetheless, by requiring the threshold to have minimum (optimally zero)

false positives and being conservative about placing such a threshold, that is, not

placing the threshold just below the lowest measured distance between similar
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structures, but leaving some extra space for any similar structures which may be

found later to have yet smaller distance. As shown in figure 5.2, a threshold value

conforming to the conservative requirement would be 0.55, albeit it is an arbitrary

value and there is no particular reason why slightly different value could not have

been chosen.

Figure 5.2: The distributions of the cross-correlation descriptor distances for similarly shaped
and differently shaped pairs of structures using the default distance computation settings

a

This figure shows the

box plot of distributions

of the cross-correlation

shape descriptor dis-

tances for pairs of sim-

ilar shapes (in red) and

of different shapes (in

turquoise) as defined in

the test set (see sec-

tion 3.1). The blue

dashed line shows how

the threshold value 0.55

cuts both of the distri-

butions.

The threshold for the trace sigma descriptor can be selected using the same

criteria and as shown in figure 5.3, one such threshold value is 0.70.

Figure 5.3: The distributions of the trace-sigma descriptor distances for similarly shaped and
differently shaped pairs of structures using the default distance computation settings

a

This figure shows the

box plot of distributions

of the trace sigma shape

descriptor distances for

pairs of similar shapes

(in red) and of different

shapes (in turquoise) as

defined in the test set

(see section 3.1). The

blue dashed line shows

how the threshold value

0.70 cuts both of the

distributions.
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Finally, the idea of hierarchical shape distance computation introduced here

was implemented for the previously discussed shape descriptors calculation routine

and with this change, it became possible to compute the distances between pairs

of protein domains in the BALBES database which passed the size criteria.

5.2 BALBES protein domain clustering approach

With the distances between BALBES protein domains now computed for all pairs

of domains which conform to the size criteria and with only having all three de-

scriptor distances for the pairs which conform to the two conservative thresholds,

decision on clustering algorithm needs to be made. From the algorithms listed in

table 5.1, several can be excluded by not being optimal given the input-data type.

5.2.1 Selection of clustering algorithm

The self-organising maps algorithm requires knowing the targets (i.e. the correct

answers) in order to optimise the neural network best suited to cluster the inputs.

While it would be possible to train a self-organising map on the test dataset used

previously, there is no guarantee that the test dataset contains sufficient amount

of data to produce a reliable self-organising map and therefore it seems that the

self-organising maps algorithm is not easily applicable to the clustering problem

addressed here.

Moreover, the maximum-likelihood clustering algorithm cannot easily be ap-

plied to the distance data, as it requires the knowledge of the number of clusters

that the data contain and this information is not available at the start of the

clustering. The algorithm could be applied row-wise to the sparse distance-matrix

(that is, to each domain to see which other domains cluster with it) with search-

ing for two clusters, but this would lead to various cluster thresholds for various

domains and therefore to non-optimal clustering. Similarly, the k-mean clustering

method requires the number of clusters to be known in advance and since this is
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not the case for the clustering of protein domains, the method cannot be easily

applied.

Regarding the graph-based clustering methods, it is non-trivial to build a

graph from a sparse distance-matrix, although it would be possible to build a

graph from the complete distance-matrix. Nonetheless, it seems worth exploring

the alternative clustering algorithms before deciding to compute all distances in

order to build the graph. Similarly, the density based clustering approaches would

require converting the distances to a n-dimensional space where each domain has a

given co-ordinate position and therefore would also require computing the complete

instead of the sparse distance-matrix.

The hierarchical clustering algorithm can be used on sparse matrices, how-

ever, it is then non-trivial to decide how the dendrogram should be ”cut” in order

to obtain clusters. Moreover, it is non-trivial to combine the three different shape-

distance values produced by the three shape descriptors in a single hierarchical

clustering algorithm, while building three different dendrograms would then re-

quire a method for joining the results into a single clustering result, thus raising

another host of issues.

Finally, the equivalent-classes clustering approach is a rather general ap-

proach, as any equivalence relation can be used for clustering and therefore com-

bining the three results can be done directly by defining an equivalence relation

using all three descriptors at once. Furthermore, the equivalence-classes clustering

approach does support sparse distance-matrices and does not require deconstruct-

ing the distance matrices to co-ordinates. Therefore, the equivalent-classes cluster-

ing appears as the most applicable method for the intended purpose of clustering

the BALBES protein domain database.

5.2.2 Deciding thresholds

With the clustering algorithm decided, the first step in applying the equivalent

classes algorithm is to determine the equivalence relation, that is, the rule by
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which the algorithm decides whether two protein domains should be clustered

together or not. Given that for each pair of domains passing the size requirement,

there may be distances available for one, two or all three shape descriptors, the

decision rule should include this information. Moreover, the algorithm should be

based on some thresholds for the three descriptors, presumably universal to all the

domain pairs.

Furthermore, it should be noted that the thresholds decided previously for

the cross-correlation descriptor and the trace-sigma descriptor were conservative

threshold reducing the number of false negatives (i.e. pairs which are similar,

but the threshold judges them different); however, for the clustering outcome,

the expected behaviour would be exactly opposite, that is the algorithm should

conservatively reduce the number of false positives (i.e. domain pairs which are

different, but the algorithm clusters them together). This requirement comes from

the fact that the relative effect of false positives and false negatives is not identical,

as not clustering two similar shapes together will only keep the redundancy in the

database, while clustering together different shapes will cause issues when the

clustered database is used in any further applications.

Therefore, new thresholds need to be decided for each of the shape descrip-

tors; these new thresholds should conservatively reduce the number of false posi-

tives as just discussed. To this end, it is still the case that there is no absolute way

to determine these thresholds and therefore they will necessarily be somewhat arbi-

trary. Nonetheless, the thresholds for the clustering were decided using the results

from the test set (as discussed in section 3.1) to be 0.85 for the cross-correlation de-

scriptor, 0.9 for the trace-sigma descriptor and 0.6 for the rotation-function-based

descriptor. The placement of all of the three thresholds relative to the similar

and different-shape-distance distributions is shown in figure 5.4. It is worth noting

that the figure also includes the false-negatives reducing thresholds determined

previously for the cross-correlation and trace-sigma descriptors as well as newly
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determined for the rotation-function-based descriptor. The reason for including

these thresholds will become apparent in the following section.

Figure 5.4: The false-positive and false-negative reducing thresholds for the cross-correlation,
trace-sigma and rotation-function-based descriptors computed with default settings.

a

This figure shows the distri-

butions of distances between

the similar-shape pairs (in red)

and different-shape pairs (in

turquoise) of the BALBES

protein domains as determined

in the test dataset for the

cross-correlation descriptor in

part a), for the trace-sigma

descriptor in part b) and for

the rotation-function-based de-

scriptor in part c). The blue

dashed lines show how the con-

servative false-positives reducing

threshold relates to these two

distributions for each descriptor

(the values are 0.85 for the cross-

correlation descriptor, 0.9 for the

trace-sigma descriptor and 0.6

for the rotation-function-based

descriptor), while the red dashed

lines show how the conservative

false-negatives reducing threshold

relates to the two distributions

(the values are 0.55 for the cross-

correlation descriptor, 0.7 for the

trace-sigma descriptor and 0.15

for the rotation-function-based

descriptor).

a

5.2.3 Equivalence relation

As the decision thresholds have been determined, the equivalence relation can

now be addressed. The equivalence relation is the basis of the equivalence-classes

clustering as this is the rule which is used to decide whether any pair of the

clustered objects is to be placed in the same cluster or not. In the case of clustering
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BALBES protein domain database, there are several considerations to be discussed

before deriving the equivalence relation rule.

The first requirement is that the equivalence relation should reduce the num-

ber of false positives, optimally to zero. This is the reason why the conservative

false-positive reducing thresholds (shown in blue dashed lines in figure 5.4) should

be used. The second requirement is that the equivalence relation should determine

how the three descriptor distances should be combined to decide whether to cluster

the two domains together or not.

Regarding the second requirement, if there was a single descriptor distance,

the conservative false-positives-reducing threshold would be sufficient to formulate

the equivalence relation and in the simple case where the pair of domains surpasses

the false positives reducing threshold for all three descriptor distances, this remains

true. However, in the cases where the domain-pair distances surpass zero, one or

two thresholds, but not all three thresholds, there needs to be a clear rule to decide

whether to cluster the two domains together or not. Considering that the false-

positives are more problematic than the false-negatives, it seems that requiring

at least two of the descriptors to be higher than their respective false-positives-

reducing thresholds is appropriate.

Considering the case where a domain pair has two descriptor distances higher

than the false-positives-reducing threshold and the third descriptor distance does

not, it seems that this third descriptor distance should at least be higher than the

false-negatives-reducing threshold. The reason for this additional rule is that if a

descriptor determines that two domains are different, this information should be

considered as much as if the descriptor determined that they are similar. It is akin

to the reasoning behind the hierarchical descriptor distance computation approach

discussed in section 5.1.2.

Finally, the equivalence relation can be stated as follows: Two domains are

clustered together if at least two of their shape descriptor distances surpass their re-

spective conservative false-positives-reducing thresholds, while the third descriptor
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distance is greater than its respective conservative false-negatives-reducing thresh-

old.

5.2.4 Equivalence classes clustering

Finally, with the equivalence relation determined, the equivalence-classes cluster-

ing algorithm can be applied to the computed distances. In order to do so, a simple

algorithm was implemented to take iteratively each row of the sparse distance ma-

trix and apply the equivalence rule to each of the matrix entries. Recalling that

each row of the sparse matrix are the distances from a single domain to all other

domains, this means finding all other domains which should be clustered together

with the domain of the particular row according to the equivalence rule.

Consequently, if no other domains passing the equivalence rule are found,

the algorithm places the row domain as a singleton (cluster with a single entry)

into a list of resulting clusters. However, if there are domains which cluster with

the row domain, the algorithm will firstly check the list of already found clusters

for containing any of the domains now clustered to the row domain, or the row

domain itself. For ease of expression, the domains clustering with the row domain

itself together with the row domain will be called prospective cluster.

There are three possible outcomes of comparing a prospective cluster to the

list of already found clusters: a) no match between the prospective cluster and the

list of already found clusters is found and in this case, a new entry in the list of

resulting clusters is created to contain the prospective cluster; b) one or multiple

matches are found to a single entry in the list of already found domains. In this

case, all entries of the prospective cluster are checked by the equivalence relation

against each entry of the matching cluster. If all matches pass the equivalence

relation, the prospective cluster is added to the existing cluster, while otherwise

the prospective cluster is added to the list of resulting clusters as a new entry,

creating duplication of the entries which matched between the two clusters. And

c), if the prospective cluster matches to multiple different clusters in the list of
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resulting clusters. In this case, the solution to outcome b) is applied iteratively

to all the matching clusters, that is, if the whole prospective cluster passes the

equivalence relation against all members of any of the already found clusters, the

clusters are joined together, if no such joining is done, the prospective cluster is

added to the list of existing clusters as a new entry, creating a duplication of any

matches.

Regarding the duplicate entries in the resulting list of clusters, these are

protein domains which pass the equivalence relation to at least two different other

domains, but where these two different other domains do not pass the equivalence

relation between themselves. This situation can be demonstrated on the following,

hypothetical, example: Assuming that there are two different states (A and B)

of the same domain in two different physiological conditions, each represented

as a different structure in the BALBES protein domain database. Furthermore,

assuming that there is a domain representing the intermediate state (I) of the

transition from state A to state B. Given this, the equivalent-classes algorithm

described here could find domain I clustered with domain A and domain B, but

not find domains A and B clustered together. Therefore, in order not to cluster

together structures A and B, which could be very different, the algorithm rather

allows for some duplication.

5.3 BALBES clustering results

Finally, by firstly computing the distances between BALBES protein domains and

then applying the equivalent-classes clustering algorithm, a list of protein domain

clusters can be obtained.

5.3.1 First iteration

As mentioned previously in section 5.1.2, the distances between the BALBES

protein domain database entries were computed using the default parameters of
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resolution 8.0 Å and B-factors 80. The resulting list of clusters contains 13, 392

clusters, with the cluster size frequencies as shown in figure 5.5. Moreover, figure

5.6 shows a visualisation of the overlay of the domains clustered together by the

algorithm for selected clusters; the reason for visualising these overlays is to allow

visually checking that the clustered domains do actually have similar shape.

Figure 5.5: The frequencies of the cluster sizes after first iteration of clustering

This figure shows the frequencies of clusters with given cluster size in the list of clusters resulting

from the equivalent classes clustering of the BALBES protein domain database. Note that the

singletons (clusters containing a single domain) are not shown.

Given that the new clusters contain domains with similar shape, by repre-

senting each cluster with a single domain, the BALBES database could be reduced

to contain only 13, 392 domain, leading to a reduction of ≈ 2.4 %. This is not a

large difference, nonetheless, it is a decrease in the database size and therefore in

the number of calculations required when any structure is being compared against

the whole database.

One feasible explanation for why the reduction in BALBES database was not

larger is that the resolution settings used for computing the distances between the

protein domains did not provide sufficient distinguishing power and consequently,

when conservative thresholds were used to cluster the domain using the domain

distances, only the clearest cases could be recognised as similar using the distances.
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Figure 5.6: Overlay of domains clustered together for selected clusters

This figure shows two different clusters resulting from the equivalent classes clustering of

the BALBES protein domain database. The left cluster a) consists of three domains

(3O18 A dom 1, 1CPC A dom 1 and 3KVS A dom 1), while the right cluster consists of seven

domains (1Z1E A dom 1, 3A5Q A dom 1, 2D3M A dom 1, 3AWJ A dom 1, 1BI5 A dom 1,

3OV2 A dom 1 and 1EE0 A dom 1). For all structures, only the traces of their backbone atoms

are shown. The domains were aligned using ProSMART (Nicholls et al., 2014) and visualised using

PyMoL (Schrodinger LLC, 2015).

Clearly, there are other possible explanations, such as the descriptors not being

powerful enough in general or the BALBES domain database not having any more

shape redundancies; however, the explanation suggested here can be easily tested

by increasing the resolution settings and computing new distances.

Nonetheless, before the change in resolution is attempted, the current progress

should be considered. More specifically, computing the distances for the reduced

version of the BALBES database does not only reduce the computational cost,

but also allows iteratively reducing the redundancy of the database by increasing

the resolution of the descriptors. Therefore, if all clusters can be represented by

a single domain, then the iterative increase in resolution can be used to improve

the redundancy removal.

Typically, clusters of objects in clustering scenarios are represented by the

average of the clusters (for example k-means clustering or average linkage hier-

archical clustering approach). Nonetheless, in the case of protein domains (and

any molecules for that matter), taking an average is not really meaningful, as the

average of two chemical states would likely be unstable and possibly not even valid

in the sense of chemistry. Therefore, the clusters of protein domains will be repre-
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sented by a single domain which has the highest average similarity (as measured

by the shape descriptors) to the rest of the domains in the cluster. With this deci-

sion made, a simple script can be written to convert the list of clusters onto a list

of protein domains, where singleton clusters are represented by the only domain

present in the cluster, clusters with two domains are represented by randomly se-

lected one of the two domains, as they have the same distance to each other and

any larger clusters are represented by the domain with highest average similarity

to the rest. The resulting list of protein domains can now be used instead of the

complete BALBES protein domain database entries list for the next iteration of

domain clustering.

5.3.2 Second iteration

The first step of the second iteration of the clustering algorithm is to decide the

values for resolution and B-factors to be used for computing the new distances be-

tween the reduced set of BALBES protein domains database. Given that the first

iteration of the clustering algorithm used the default parameters, the second iter-

ation could use higher resolution in an attempt to improve the clustering accuracy

and therefore to cluster more similar shape structures together. Consequently, by

consulting the tables 3.5, 3.6 and 3.7, it is clear that by increasing the resolution

to 6.0 Å and changing the B-factor values to 40, the accuracy (as measured by

the AUROC measure on the test dataset) can be slightly increased for the trace

sigma and rotation function descriptors, albeit at the expense of almost tripling

the computation time. Therefore, these values will be used to compute the new

distances between the reduced BALBES domain database entries.

It should be noted that the same size requirements and hierarchical distance

computation approaches should be used to reduce the computation cost. There-

fore, new set of thresholds for the conservative false-negatives reduction will be

required to be used in the hierarchical distance computation. Since the clustering

using these new distances will be done using the same algorithm as before, which
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will require the conservative false-positives-reduction threshold, figure 5.7 shows

both of these threshold in terms of their relation to the distributions of the similar

shape pairs and different shape pairs as defined in the test dataset and computed

using the resolution of 6.0 Å and B-factor value 40.

Figure 5.7: The false-positives and false-negatives-reducing thresholds for the cross-correlation,
trace-sigma and rotation-function-based descriptors for the second iteration of the clustering
algorithm

a

This figure shows the distri-

butions of distances between

the similar-shape pairs (in red)

and different-shape pairs (in

turquoise) of the test dataset

of protein-domains computed

using the resolution of 6.0

Å and B-factor of 40. The

cross-correlation descriptor is

shown in part a), the trace-sigma

descriptor is shown in part b)

and the rotation-function-based

descriptor is shown in part c).

The blue dashed lines show how

the conservative false-positives-

reducing threshold relates to

these two distributions for each

descriptor (the values are 0.8 for

the cross-correlation descriptor,

0.9 for the trace-sigma descriptor

and 0.5 for the rotation-function-

based descriptor), while the red

dashed lines show how the con-

servative false-negatives-reducing

threshold relates to the two

distributions (the values are

0.55 for the cross-correlation

descriptor, 0.75 for the trace-

sigma descriptor and 0.1 for

the rotation-function-based

descriptor).

a

With the thresholds for hierarchical distances computation determined as

0.55 for the cross-correlation descriptor distance, 0.75 for the trace-sigma descrip-

tor distance and 0.1 for the rotation-function-based descriptor distance, the sparse

matrix was computed. Consequently, the same equivalent classes clustering algo-

rithm with the same definition of the equivalence relation as discussed in section
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5.2.3, except now using the new thresholds and distances, was used to cluster the

reduced BALBES database.

The resulting list of clusters contains 11, 868 clusters, thus providing reduc-

tion of ≈ 11.4% from the results of the first iteration of the algorithm (or reduction

of ≈ 13.5 % of the original BALBES database). The distribution of the cluster

size frequencies is shown in figure 5.8, while figure 5.9 shows a visualisation of the

overlays of structures in the same cluster for two selected clusters.

Figure 5.8: The frequencies of the cluster sizes after the second iteration of clustering

This figure shows the frequencies of clusters with given cluster size in the list of clusters result-

ing from the second iteration of the equivalent classes clustering of the BALBES protein domain

database. Note that the singletons (clusters containing a single domain) are not shown in the main

plot, while the inset does not show frequencies of clusters with size less than 5 domains.

Considering that the change of resolution did lead to further reduction of the

number of clusters in the BALBES protein domain database, this finding suggests

that further iterations of the algorithm with higher resolution could further the

clustering accuracy.

5.3.3 Third iteration

The third iteration of the clustering algorithm is, similarly to the second iteration,

based on increasing the resolution of the distances computation. Therefore, by
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Figure 5.9: Overlay of domains clustered together in the second clustering iteration for selected
clusters

This figure shows two different clusters resulting from the second iteration of the equivalent classes

clustering of the BALBES protein domain database. The left cluster a) consists of three do-

mains (1FW1 A dom 2, 3N5O A dom 2 and 2V6K A dom 2), while the right cluster consists of

eight domains (3GSL A dom 2, 2BYG A dom 1, 3I4W A dom 1, 2HE2 A dom 1, 2FE5 A dom 1,

3GSL A dom 1, 1W9E A dom 2 and 3QE1 A dom 1). For all structures, only the traces of their

backbone atoms are shown. The domains were aligned using ProSMART (Nicholls et al., 2014) and

visualised using PyMoL (Schrodinger LLC, 2015).

consulting the tables 3.5, 3.6 and 3.7, it is clear that increasing the resolution

from the previous 6.0 Å to 5.0 Å leads to higher accuracy (as measured by the

AUROC measure on the test dataset) when the B-factors are set to 40. Similarly

to the previous iterations, the size requirement is applied to the reduced set of

domains resulting from the second iteration of the clustering algorithm. Moreover,

in order to apply the hierarchical distance computation and later for the use in the

equivalent-classes clustering, the conservative false positive and negative thresholds

were decided and their relative positions to the distributions of the similar shape

pair distances and different shape pair distances for the new settings are shown in

figure 5.10.

The hierarchical distances thresholds for computation of the sparse distance

matrix were determined as 0.55 for the cross-correlation-descriptor distance, 0.70

for the trace-sigma-descriptor distance and 0.1 for the rotation-function-based-

descriptor distance and used to obtain the matrix. Then, the sparse distance

matrix was computed using these values and clustered using the same equivalent-

classes algorithm with the same equivalent relation as defined in section 5.2.3.

The conservative false-positives-reducing thresholds were determined as 0.83 for
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Figure 5.10: The false-positives and false-negatives-reducing thresholds for the cross-correlation,
trace-sigma and rotation-function-based descriptors for the third iteration of the clustering al-
gorithm

a

This figure shows the distri-

butions of distances between

the similar-shape pairs (in red)

and different-shape pairs (in

turquoise) of the test dataset

structures as computed using the

resolution of 5.0 Å and B-factor

values 40. The cross-correlation

descriptor is shown in part

a), the trace-sigma descriptor

is shown in part b) and the

rotation-function-based descrip-

tor is shown in part c). The blue

dashed lines show how the con-

servative false-positives-reducing

threshold relates to these two

distributions for each descriptor

(the values are 0.83 for the cross-

correlation descriptor, 0.93 for

the trace-sigma descriptor and

0.55 for the rotation-function-

based descriptor), while the red

dashed lines show how the con-

servative false-negatives-reducing

threshold relates to the two

distributions (the values are

0.55 for the cross-correlation

descriptor, 0.70 for the trace-

sigma descriptor and 0.1 for

the rotation-function-based

descriptor).

a

the cross-correlation descriptor, 0.93 for the trace-sigma shape-descriptor and 0.55

for the rotation-function-based shape-descriptor.

The resulting list of clusters contains 11, 595 clusters and therefore reduces

the BALBES database by further ≈ 2.3 % from the second iteration results (or

by total of ≈ 15.5 % reduction of the original BALBES database size). The

frequencies of clusters with different sizes in the new list of clusters is shown in

figure 5.11, while a visualisation of two of the newly found clusters is shown in

figure 5.12.

Finally, it is worth noting that several domains clustered together in this
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Figure 5.11: The frequencies of the cluster sizes after the third iteration of clustering

This figure shows the frequencies of clusters with given cluster size in the list of clusters resulting

from the third iteration of the equivalent classes clustering of the BALBES protein domain database.

Note that the singletons (clusters containing a single domain) are not shown.

Figure 5.12: Overlay of domains clustered together in the third clustering iteration for selected
clusters

This figure shows two different clusters resulting from the third iteration of the equivalent classes

clustering of the BALBES protein domain database. The left cluster a) consists of four domains

(1BFO A dom 1, 1H8N A dom 1, 3D9A L dom 1 and 1ZAN L dom 1), while the right cluster con-

sists of three domains (3IGU A dom 1, 1KTB A dom 1 and 3HG3 A dom 1). For all structures,

only the traces of their backbone atoms are shown. The domains were aligned using ProSMART

(Nicholls et al., 2014) and visualised using PyMoL (Schrodinger LLC, 2015).

iteration were found to be the same domain. This has happened as a result of the

redundancies in domains discussed in section 5.2.4; generally, when two domain

clusters have some identical entries, but the rest of entries differ and not all entries

of one cluster do pass the equivalence relation with all entries of the other cluster,

149



5.3. BALBES CLUSTERING RESULTS

the clusters are kept separate with some entries being present in both clusters.

In some cases, it seems that these redundant domains became the representative

structures for both clusters and therefore these two clusters are now represented by

the same structure (and consequently are clustered together in the next iteration

of the algotithm).

5.3.4 Fourth iteration

In order to increase the resolution further for the fourth iteration, tables 3.5, 3.6

and 3.7 show that the resolution of 4.0 Å and B-factor value 40 do have lower

accuracy as measured by the AUROC measure on the test dataset for all three

descriptors. However, since the differences in the AUROC values are rather small

and produced from a test set two orders of magnitude smaller than the size of

the reduced BALBES protein domain database, it may be worth attempting this

resolution as the settings for this iteration of the clustering algorithm.

Therefore, the conservative false-positives and false-negatives-reducing thresh-

olds now need to be determined for the new settings. The selected values for the

false-positives-reducing threshold are 0.85 for the cross-correlation descriptor, 0.92

for the trace-sigma descriptor and 0.55 for the rotation-function-based descriptor,

while the false-negatives-reducing threshold value are 0.55 for the cross-correlation

descriptor, 0.70 for the trace-sigma descriptor and 0.07 for the rotation-function-

based descriptor. The relative position of these thresholds to the distributions of

the similar and different shapes pair distances for the settings are shown in figure

5.13.

The thresholds shown in figure 5.13 were used to compute the sparse dis-

tance matrix for all against all protein domains in the reduced BALBES protein

domain database resulting from the previous iteration of the clustering algorithm.

Subsequently, the equivalence-classes clustering algorithm was used to cluster the

resulting distances using the same equivalence relation as before, except using the

new thresholds for the descriptor distances. This resulted in a list of 11, 210 clus-
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Figure 5.13: The false-positives and false-negatives-reducing thresholds for the cross-correlation,
trace-sigma and rotation-function descriptors for the fourth iteration of the clustering algorithm

a

This figure shows the distri-

butions of distances between

the similar-shape pairs (in red)

and different-shape pairs (in

turquoise) of the test dataset

domains as determined using the

resolution of 4.0 Å and B-factor

value of 40. The cross-correlation

descriptor is in part a), the

trace-sigma descriptor is shown

in part b) and the rotation-

function descriptor is shown

in part c). The blue dashed

lines show how the conservative

false-positives-reducing threshold

relates to these two distributions

for each descriptor (the values

are 0.85 for the cross-correlation

descriptor, 0.92 for the trace-

sigma descriptor and 0.55 for the

rotation-function-based descrip-

tor), while the red dashed lines

show how the conservative false-

negatives-reducing threshold

relates to the two distributions

(the values are 0.55 for the cross-

correlation descriptor, 0.70 for the

trace-sigma descriptor and 0.07

for the rotation-function-based

descriptor).

a

ters, thus reducing the BALBES protein domain database by further ≈ 3.3 % or

a total combined reduction from the original size of ≈ 18.7 %.

There were no clusters resulting from previous clustering iteration clusters

being represented by the same structure and, furthermore, there were no duplica-

tions (i.e. clusters sharing the same domain) in the results of this iteration. The

distribution of cluster sizes in this iteration of the clustering algorithm is shown

in figure 5.14 and shows that most of the new clusters now rarely consist of more

that two structures. Finally, two selected new cluster overlays are shown in figure

5.15 to allow the visual comparison of the clustered shapes. With these results,
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the iterative clustering approach was stopped; this decision was reached partly

because the goal of the algorithm has been reached - it has demonstrated that the

shape descriptor distance can be used to reduce shape redundancy in a dataset of

structure; and and partly because increasing the resolution further would increase

the computational costs considerably.

Figure 5.14: The frequencies of the cluster sizes after the fourth iteration of clustering

This figure shows the frequencies of clusters with given cluster size in the list of clusters result-

ing from the fourth iteration of the equivalent classes clustering of the BALBES protein domain

database. Note that the singletons (clusters containing a single domain) are not shown.

5.4 Reduced database organisation

By applying the four iterations of the equivalent-classes algorithm with differ-

ent resolutions, the BALBES protein domain database has now been reduced to

11, 210 protein domains. Recalling that the intention behind the clustering of the

BALBES database was partly to allow faster comparisons against the database, it

is interesting to consider whether the database could be organised is such a way

as to allow faster comparisons.

152



CHAPTER 5. CLUSTERING OF BALBES PROTEIN DOMAIN DATABASE

Figure 5.15: Overlay of domains clustered together in the fourth clustering iteration for selected
clusters

This figure shows two different clusters resulting from the fourth iteration of the equivalent classes

clustering of the BALBES protein domain database. The left cluster a) consists of four domains

(3ED7 A dom 1, 3IKO A dom 1, 3BGX A dom 1 and 3EDW X dom 1), while the right cluster

consists of three domains (3HU3 A dom 1, 3TIW A dom 1 and 3CF2 A dom 1). For all structures,

only the traces of their backbone atoms are shown. The domains were aligned using ProSMART

(Nicholls et al., 2014) and visualised using PyMoL (Schrodinger LLC, 2015).

5.4.1 Pre-computation of the database

The first idea to consider is that when all the distances between the database and

a single structure of interest are to be computed, the whole database needs to be

read in, one file at a time. Each such file, be it a map file or a PDB file, is then

converted onto a centred density map, mapped onto a set of concentric spheres and

has its spherical harmonics computed. This makes sense for a single comparison

against the database, but when the case of multiple comparisons against the same

database is considered, it becomes clear that all the aforementioned steps are

repeated many times and are therefore redundant.

Therefore, it would be beneficial to convert the database from a list of PDB

files to a list of spherical harmonics coefficients, which can be read in and used

directly, bypassing the need for the redundant computations. Moreover, by saving

the list of database domains spherical harmonics coefficients in a single binary file

with a given structure, the speed of reading the structure files from the hard drive

could be increased. Nonetheless, by converting the list of protein domain files to

a single binary file with the protein domain spherical harmonics coefficients, there
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would be a limit on many of the parameters used for computing the distances

between structures.

More specifically, if a binary database of spherical harmonics coefficients

were to be built with the default resolution of 8.0 Å, then other structures could

only be compared to this database using this value. The other settings, such as

the bandwidth (the maximum band to which the spherical harmonics coefficients

are computed) could allow for comparisons against a database with lower or equal

bandwidth than the database was computed with, but it would again not be pos-

sible to compute the distances using higher bandwidth than that which has been

used to compute the database. This realisation leads to the need of saving the

settings used to produce the database in the binary database file as well as all the

spherical harmonics coefficients.

On the other hand, as long as the database was built using the same settings

as those used to compare against it, there is considerable computational cost de-

crease that can be gained. Therefore, the functionality required for saving any list

of protein domains into a binary file as well as the settings was written. Further-

more, the functionality required to compare a single structure against the database

was developed and a test database containing a random selection of 1, 000 protein

domains from the reduced BALBES database was built using the default settings

as discussed in section 3.5.5.

The time required to compile the database file was ≈ 21.59 seconds (mean

of 100 runs, standard deviation of ≈ 0.59 seconds) on a single core (of the 3.1 GHz

Intel Core i7 processor) of a MacBook Pro laptop with 16GB of RAM memory.

Subsequently, searching this test database against a single structure took ≈ 15.72

seconds (mean of 100 runs, standard deviation is ≈ 0.58 seconds) on the same

machine. This compares with the ≈ 26.31 seconds (mean of 100 runs, standard

deviation of ≈ 0.93 seconds) that were required for computing the same 1, 000

distances between the single structure and the other 1, 000 structures which were

used to create the database, but this time without pre-computing the database
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first and rather using the PDB files directly. These results suggest that using the

database functionality reduces the computational cost when at least three or more

comparisons against such database are made, although it should be noted that

this was a single set of 1, 000 structures and results may vary if differently sized

structures were to be used.

5.4.2 Using volume to reduce the number of comparisons

Another idea how the number of comparisons against a database could be reduced

is that structures with very different volumes may not need to have their distances

computed as the purpose for computing the distances against the whole database

is presumably to find similar structures. Therefore, by computing the volume of

the structure compared against the database and then only considering database

entries with similar volume should provide all required results while reducing the

computational cost of comparison against the whole database.

Considering that different amount of dissimilarity in the volume may need to

be allowed for different purposes of comparisons against the database, the database

reading functionality was implemented as follows: The structure to be compared

against the database is loaded and its dimensions are computed. Then, each of the

dimensions is reduced by a factor of 1.0−d, where the parameter d has default value

of 0.1, but this value can simply be changed by the user; the minimum volume is

then computed as the volume enclosed by the reduced dimensions. Similarly, the

maximum volume is computed as the volume enclosed by the dimensions enlarged

by a factor of 1.0 + d. Finally, all database entries are required to have their

volume in the range defined by the minimum and maximum volumes and only those

database domains passing this requirement have the distances to the structure of

interest computed and reported.

With the volume checking applied to the comparison of a structure against a

database, it is now also interesting to consider organising the database by sorting

the domains by their respective volume and saving them in this order. While such
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approach would increase the time required to build the database, the database

searching could then be done only until the database entries have volume higher

than the maximum allowed for comparing to the query structure. This approach

reduces the need to read some portion of the structures from the database at all

and therefore should allow faster comparisons against the database.

To test these approaches, the database binary file creation was changed

to first sort the structures based on their volume and then save their spherical

harmonics coefficients into the file. This new approach took ≈ 31.19 seconds

on the aforementioned machine (mean of 100 runs with standard deviation of

≈ 1.67 seconds) for the test case of 1, 000 structures database. However, when a

single structure was searched against the sorted database with the volume check

implemented, it only required ≈ 8.07 seconds (mean of 100 runs with standard

deviation of ≈ 0.33 seconds) to search this structure against the database; it

should be noted that in the case of this structure, 374 of the database entries did

pass the volume check.

5.4.3 File size of the binary database file

Finally, it is worth considering the file sizes of the binary file as well as the original

PDB files and consider how the new database may be made available to anyone

interested. The final reduced database contains 11, 210 domains, each in its own

PDB file; the total disk space required to store these files is 1, 570 MB and these

files can be compressed to a single tar container with size of 302.7 MB. However,

the binary database file storing the spherical harmonics coefficients and using the

default settings requires 7, 670 MB and can be compressed to a tar container with

size of 2, 290 MB. These facts show that distributing the binary database would

require considerably more space than distributing the PDB files. Furthermore,

given that any user of the software can build the database using any preferred

settings they may require in the order of minutes, it seems much simpler to build
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the binary database on any computer which the users may want to use anew,

instead of copying it from any available repository.
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Chapter 6

The ProSHADE software tool

The previous chapters have described the methods used to derive the three shape

descriptors and their use in re-clustering the BALBES protein domain database,

as well as how symmetry can be detected and described using the inverse SO(3)

Fourier transform approach intrinsic to the rotation-function-based descriptor.

Throughout these chapters, all results were obtained using code developed specifi-

cally to compute the required information and as a result, this code was developed

from simple test scripts to a software tool, which can now be introduced.

6.1 Technical information

The protein shape descriptors and symmetry detection tool named ProSHADE

(Protein SHApe DEscriptors and symmetry detection) is written in the C++ lan-

guage and conforms to the ISO C++11 standard (International Organization for

Standardization, 2011). The tool is used through a single binary executable, instal-

lation of which is currently limited to Unix based system including standard Linux

distributions and MacOS. ProSHADE is accessed and used through the command

line console and does not have any user interface at the current version. More-

over, there is a dynamic library containing the same functionality as the binary
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executable, which can be linked to any other projects and allows programmatic

access to the results.

6.1.1 Dependencies

The ProSHADE tool makes use of the already developed and well tested computer

libraries to accomplish particular tasks required for its proper execution. While

these libraries do need to be installed before the ProSHADE tool itself can be com-

piled and linked on any computer, they provide numerical stability and standardi-

sation, as well as allow this project to focus on its aims instead of re-implementing

already available functionality. The complete list of ProSHADE dependencies and

their purpose follows:

• cmap, Clipper and MMDB libraries

ProSHADE uses the cmap library available from CCP4 (Winn et al., 2011),

the Clipper library of Cowtan (2002) and the MMDB library of Krissinel

et al. (2004) to read in and manipulate both the input types (i.e. the PDB

files as well as the MAP files). All of these libraries are part of the CCP4

suite (Winn et al., 2011).

• FFTW library

In order to execute fast and numerically stable Fourier transforms, ProSHADE

uses the FFTW library of Frigo and Johnson (2005) to provide this function-

ality in the Cartesian co-ordinates as well as the basis for computation of the

Fourier transform in spherical co-ordinates and on the SO(3) group.

• LAPACK library

The LAPACK library of Dongarra et al. (1992) is used to compute singu-

lar value expansions for complex matrices in reliable and numerically stable

manner.

• SOFT2.0 library

Finally, the SOFT2.0 library of Kostelec and Rockmore (2008) is used to
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compute the spherical harmonics expansion and SO(3) Fourier transforms by

extending the aforementioned FFTW library.

6.1.2 Installation

The current version of the ProSHADE tool is freely available from the FusionForge;

the project website is http://fg.oisin.rc-harwell.ac.uk/projects/

proshade/ and the stable version source codes can be obtained anonymously us-

ing the Bazaar revision control system (http://wiki.bazaar.canonical.

com/Bzr) using the online checkout command shown below, from the command

line of any Unix based operating system.

bzr checkout http :// fg . o i s i n . rc−harwe l l . ac . uk/anonscm/ bzr / proshade / trunk

Automatic installation using CMake

The trunk (i.e. the stable version) folder obtained by executing the aforemen-

tioned command contains the source codes as well as the CMake (Martin and Hoff-

man, 2007) configuration files. Therefore, by invoking the following commands,

automatic installation of the ProSHADE executable, library and examples will be

attempted by CMake:

cmake CMakeLists . txt

make

make i n s t a l l

Upon successful completion, the executable will be installed in the ./bin

folder, the library will be installed in the ./lib folder with the required include

header file in the ./include folder. It is worth noting that except for the FFTW

library, the automatic installation scripts will attempt to install all of the depen-

dencies anew. The reason for this approach is that specific compilation options

(e.g. -fPID) are required to be used in the dependency compilation so that it

could be used to compile the ProSHADE dynamic library and as a result, it is
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non-trivial to be sure that these options were used when the dependencies were

installed originally.

Manual installation from source codes

It is also possible to install ProSHADE using manual compilation from source

codes; however, this approach is non-trivial. The ProSHADE documentation avail-

able in the ./documentation folder in the trunk directory does provide the

details as to how this can be done, although at the current version it only supports

static library linking.

6.1.3 Documentation

The trunk directory also contains a folder called documentation, which con-

tains a complete HTML documentation for the ProSHADE tool. The user can

easily visualise the documentation by opening the index.html file in any web

browser. The documentation is automatically generated using the Doxygen soft-

ware of van Heesch (2016) and it includes a full manual installation guide with

the URLs to all dependencies project websites and all command line commands

required to install the ProSHADE tool. Moreover, the documentation includes

a manual for using the ProSHADE tool as well as examples and their expected

output, complete description of all functions and classes used in the code and the

code itself.

6.1.4 Testing

Upon successful installation, the user should test the ProSHADE executable on

their computer to make sure it works properly. For this purpose, there are over

40 simple tests available in the tests folder of the trunk directory. Each of

these tests attempts one simple run of the ProSHADE tool focused on a particular

functionality and has hardcoded correct output, which it compares to the real
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output on the users computer. In order to run all the tests and see the text

overview results, the user can type make testProshade after navigating to the

ProSHADE folder in the command line, assuming the ProSHADE has been installed

using the automated CMake approach; if ProSHADE was installed manually, the

user needs to type make test instead. A typical view of the tests results screen

is shown in figure 6.1.

Figure 6.1: Testing procedure output

6.2 Using the ProSHADE tool

The ProSHADE tool was developed in a modular fashion and so the usage slightly

changes depending on the functionality that is required. Nonetheless, care has
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been taken to make sure that identical or closely related features are controlled

by the same command line arguments in all cases. Moreover, the GNU command

line options standard (as described by the GNU Organisaiton (2018)) have been

adhered to and therefore the users familiar with other command line tools should

find the entering of command line arguments simple. The standard command line

options such as -h or --help for help dialogue, -v or --version for version

number and --verbose are all defined and can be used. Figure 6.2 shows the

general flow of the tool and selection of the parameters that the user can use to

modify its behaviour.

6.2.1 Detecting symmetry using ProSHADE

In order to detect symmetry in either a co-ordinate input file, or in a map in-

put file, the ProSHADE executable needs to be supplied with the option -S or

--symmetry and it will also require a single input file to be supplied using the

-f option. These two options are the only mandatory options, although there

are many additional values that the user can supply to supersede the default val-

ues and therefore modify the operation of the ProSHADE executable to fit the

particular purpose of the user.

One specific option regarding the symmetry detection mode should be noted;

the --sym (or -u) option allows the user to state which symmetry they believe

to exist in the structure. The allowed values for this command line argument are

Cx for a cyclic symmetry of fold x, Dx for a dihedral symmetry of fold x, T for

a tetrahedral symmetry, O for an octahedral symmetry and I for an icosahedral

symmetry. When this option is used, it removes the default behaviour of returning

the highest detected symmetry and instead the symmetry requested by the user is

returned, if it can be found in the structure.

To demonstrate how the tool can be run and the standard output for the

symmetry mode of operation, the current version of the ProSHADE executable

was used to detect the symmetry of a density map of the bacteriophage T4 portal
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Figure 6.2: The flowchart of ProSHADE execution

a a

This figure shows the flow of the ProSHADE tool execution for all available functionality. The

different layers or modules are shown as grey headings, various computational tasks are shown

as blue bubbles and the main command line options used to control their execution are given in

the white bubbles. The green arrows show the how the execution of the ProSHADE software tool

progresses, while the purple arrows connect the final steps of each mode to the output printing

layer.

protein with the PDB accession code 3JA7 (Sun et al., 2015), which has the C12

symmetry. The visualisation of the structure is shown in figure 6.3, while the
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output of the ProSHADE tool follows. It is worth noting that this example, albeit

in less details, has been recently published by the author in Nicholls et al. (2018)

along with the algorithm used in ProSHADE software tool.

Figure 6.3: A visualisation of the 3JA7 density map

a a

This figure shows the density map for the bacteriophage T4 portal protein structure with PDB

accession code of 3JA7 (Sun et al., 2015) as visualised by Chimera (Pettersen et al., 2004).

user$ : . / proshade −S −f . /3 JA7 .map

ProSHADE 0 . 6 . 1 (JUN 2018) :

==========================

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| MODE: Symmetry |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Struc ture loaded .

C symmetries detec ted .

D symmetries detec ted .

T, O and I symmetries detec ted .

>> Generation o f T, O and I symmetry group elements complete .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| COMPLETED |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| RESULTS |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Detected Cyc l i c symmetry

Symmetry axes t a b l e :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Symmetry Fold x y z Angle Peak

Type he ight

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

C 12 +0.02 +0.02 +1.00 2 p i / 12 +0.443

Symmetry e lements t a b l e :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Symmetry x y z Angle

Type ( deg )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

E +1.00 +0.00 +0.00 +0.0

C12 +0.02 +0.02 +1.00 −150.0

C12 +0.02 +0.02 +1.00 −120.0

C12 +0.02 +0.02 +1.00 −90.0

C12 +0.02 +0.02 +1.00 −60.0

C12 +0.02 +0.02 +1.00 −30.0

C12 +0.02 +0.02 +1.00 +30.0

C12 +0.02 +0.02 +1.00 +60.0

C12 +0.02 +0.02 +1.00 +90.0

C12 +0.02 +0.02 +1.00 +120.0

C12 +0.02 +0.02 +1.00 +150.0

C12 +0.02 +0.02 +1.00 +180.0

A l t e r n a t i v e s :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Symmetry Fold x y z Angle Peak

Type he ight

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

C 4 +0.01 +0.01 +1.00 2 p i / 4 +0.581

C 2 +0.01 +0.01 +1.00 2 p i / 2 +0.443

C 12 +0.02 +0.02 +1.00 2 p i / 12 +0.443

C 6 +0.02 +0.01 +1.00 2 p i / 6 +0.399

C 3 +0.01 +0.01 +1.00 2 p i / 3 +0.340

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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6.2.2 Computing shape distances using ProSHADE

The distances computation mode is signalled to the ProSHADE executable by the

command line argument -D or --distances. This mode requires two or more

structures to be supplied either using the -f command line option, or using the

batch option -i, which precedes a text file with a single structure path per line for

any number of lines. Note that the results are calculated only for the first structure

against all the remaining structures, not for all against all distance matrix.

There are multiple command line options that the user has available to spec-

ify the particulars of how the distances between the structures should be computed;

the main command line options include the -s option for entering the required

resolution to which the structures should be described. The -a option allows

specifying the maximum spherical harmonics bandwidth, the -n option allows de-

termining the maximum Gauss-Legendre integration limit, while the -g option

allows determining maximal angular resolution. The hierarchical distances cal-

culation (discussed in section 5.1.2) are controlled by the --CCThres and the

--TSThres options for supplying the cross-correlation and trace sigma thresh-

olds. The user should consult the help dialogue available through the -h option

for a full list of command line parameters and their description.

To demonstrate the output of the ProSHADE software tool for computing

distances between structure shapes, the distances between the BALBES protein

domains 1BFO A dom 1 and 1H8N A dom 1 (which have similar shape) and the

3IGU A dom 1 domain which has a different shape, as can be seen from the figure

5.12 (the first two domains are both in cluster a), while the last domain is from

the cluster b)). The output is the ProSHADE software tool is shown below:
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user$ : . / proshade −D −f . /1 BFO A dom 1 . pdb −f . /1 H8N A dom 1 . pdb

−f . /3 IGU A dom 1 . pdb −s 4

ProSHADE 0 . 6 . 1 (JUN 2018) :

==========================

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| MODE: Dis tances |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Finding d i s t a n c e s between the s t r u c t u r e . /1 BFO A dom 1 . pdb aga in s t a l l o ther

s t r u c t u r e s .

Computing the cros s−c o r r e l a t i o n d i s t a n c e s .

Computing the t r a c e sigma d i s t a n c e s .

Computing the r o t a t i o n func t i on d i s t a n c e s .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| COMPLETED |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| RESULTS |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Energy Leve l Desc r ip to r d i s t a n c e s : +0.85959 +0.4909

Trace Sigma Desc r ip to r d i s t a n c e s : +0.94150 +0.6537

Rotation Function Desc r ip to r d i s t a n c e s : +0.72780 −0.1663

Matching s t r u c t u r e names : . /1 H8N A dom 1 . pdb

Matching s t r u c t u r e names : . /3 IGU A dom 1 . pdb

6.2.3 Building structure database using ProSHADE

In order to build a database using the ProSHADE tool, the command line option

-B needs to be supplied as well as a list of structures to be saved into the database

(given by either the -f or the -i options as discussed above) and the name for

the database file preceded by the --dbFile command line option. These three

elements are mandatory for ProSHADE execution in the database building mode,

but the same list of command line options as in the section 6.2.2 can be used to

modify how the spherical harmonics coefficients are computed before saving.
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It should also be noted that once the database is created, all structures

which the user wants to search for in the database will be processed using the

same settings as the settings used to build the database; the reason is that once

the database is computed, its settings cannot be changed unless a new database is

computed again. Furthermore, the database is saved in an sorted order according

to the total volume enclosed by the domain and this information is later used when

searching against such a database, so that only domains with similar volume would

be considered. The --dbSizeLim option can be used to specify the threshold

for what ”similar volume” means when searching against the database.

To demonstrate the database building and searching functionalities, the

BALBES protein domain cluster produced by the second iteration of the clus-

tering algorithm in the previous chapter and shown in figure 5.9 part b) will be

used to build a database and, subsequently, one of the cluster structures will be

searched for in the database. The database can be built as follows (including the

ProSHADE tool output):

user$ : . / proshade −B −f . /3 GSL A dom 2 . pdb −f . /2 BYG A dom 1 . pdb

−f . /3 I4W A dom 1 . pdb −f . /2 HE2 A dom 1 . pdb −f . /2 FE5 A dom 1 . pdb

−f . /3 GSL A dom 1 . pdb −f . /1 W9E A dom 1 . pdb −f . /3 QE1 A dom 1 . pdb

−−dbFi le ”testDB . bin ”

ProSHADE 0 . 6 . 1 (JUN 2018) :

==========================

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| MODE: BuildDB |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Now d e t e c t i n g s i z e s o f s t r u c t u r e s f o r database s o r t i n g .

Saving f i l e s in so r t ed volume order .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| COMPLETED |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Database saved to : testDB . bin

and a particular structure can then be queried against the database:
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user$ : . / proshade −D −f . /1 W9E A dom 1 . pdb

−−dbFi le . / testDB . bin −−dbSizeLim 0 .5

ProSHADE 0 . 6 . 1 (JUN 2018) :

==========================

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| MODE: Dis tances |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Struc ture 0 loaded .

St ruc ture 1 read from the database .

S t ruc ture 2 read from the database .

S t ruc ture 3 read from the database .

S t ruc ture 4 read from the database .

S t ruc ture 5 read from the database .

S t ruc ture 6 read from the database .

S t ruc ture 7 read from the database .

S t ruc ture 8 read from the database .

Computing the cros s−c o r r e l a t i o n d i s t a n c e s .

Computing the t r a c e sigma d i s t a n c e s .

Computing the r o t a t i o n func t i on d i s t a n c e s .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| COMPLETED |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

| RESULTS |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Energy Leve l Desc r ip to r d i s t a n c e s : +0.76005 +0.7434 +0.7112

+0.6794 +0.7559 +0.6811 +0.6975 +1.0000

Trace Sigma Desc r ip to r d i s t a n c e s : +0.88031 +0.8885 +0.8580

+0.8734 +0.9085 +0.8301 +0.8753 +1.0000

Rotation Function Desc r ip to r d i s t a n c e s : +0.37403 +0.3777 +0.3014

+0.2518 +0.3886 +0.2208 +0.3160 +1.0000

Matching s t r u c t u r e names : . /3 GSL A dom 1 . pdb

Matching s t r u c t u r e names : . /3 QE1 A dom 1 . pdb

Matching s t r u c t u r e names : . /2 BYG A dom 1 . pdb

Matching s t r u c t u r e names : . /3 GSL A dom 2 . pdb

Matching s t r u c t u r e names : . /2 HE2 A dom 1 . pdb

Matching s t r u c t u r e names : . /3 I4W A dom 1 . pdb

Matching s t r u c t u r e names : . /2 FE5 A dom 1 . pdb

Matching s t r u c t u r e names : . /1 W9E A dom 1 . pdb
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6.3 Final remarks

It should be noted that while the development of the ProSHADE software tool has

reached a stage where it is available to the community and can be used, it still does

require further development. The future steps intended at this point include, for

example, an overlay mode capable of finding the optimal translation and rotation

for fitting PDB and MAP files into each other and rotation group optimisation

capable of optimising the symmetry group elements positions (i.e. the symmetry

axis and angle) to better fit the discovered symmetry group. Moreover, while

ProSHADE can currently be installed as a standalone software tool, it is in the

process of becoming part of the CCP-EM software suite (Burnley et al., 2017); this

step will, hopefully, make the software tool more easily available to the community

in general. Finally, to further the ease of use of the ProSHADE tool, a development

is currently underway to use the Swig (Swig Development Team, 2018) software

to create a Python language module from the dynamic library already available.
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Chapter 7

Summary, conclusions and future

direction

The previous chapters have introduced the mathematical framework for computing

the three three-dimensional shape distances with particular focus on protein do-

main shapes. The usage of this mathematical framework for symmetry detection

has been explored as the possibility emerged, along with the limitations of this

approach. Furthermore, the direct application of the shape descriptors in cluster-

ing of the BALBES protein domain database has been shown and a software tool

capable of performing all the discussed tasks was developed and demonstrated. Fi-

nally, this chapter discusses these results in a wider context as well as their further

applications and possible research directions.

The initial aim of the project was to develop methods and tools for finding

macromolecular structures with similar shape in any given dataset, as discussed

in section 1.2. To reach this goal, five different shape description approaches were

briefly explored with regards to the macromolecular data features that needed to be

accommodated for by the descriptors. Moreover, the robustness of these descrip-

tors was considered in terms of the relative descriptor value changes in response

to displacement or deletion of a percentage of the residues. This initial analysis

has suggested that the spherical harmonics expansion method is well suited for the



7.1. SHAPE DESCRIPTORS

purpose of finding shape similarities in macromolecular structures and therefore

became the basis of this project.

7.1 Shape descriptors

Consequently, the background of the spherical harmonics expansion method was

explored as well as the features it contains. More specifically, the spherical harmon-

ics expansion is not rotationally and translationally invariant, meaning that any

shape descriptor based on it needs to introduce these features in itself and several

suggestions as to how these features can be obtained in general were mentioned.

With this information in mind, three different shape descriptors were developed.

7.1.1 Cross-correlation descriptor

The first shape descriptor is based on the energy level descriptors introduced by

Kazhdan et al. (2003), but instead of summing over the individual spherical har-

monics frequencies in each band and thus having its dimensionality reduced, it

uses the cross-correlation of the identical spherical harmonics bands from various

shells. This approach conserves the dimensionality of the data, while introducing

the preferred rotation invariance feature. Moreover, the cross-correlation descrip-

tor can be used to show that the imaginary parts of spherical harmonics expansion

have to be zero for Patterson maps. This result is general and applies to all func-

tions with real valued Fourier coefficients, although it can be easily shown using

the descriptor.

Multiple approaches were explored as to how two three-dimensional arrays

of cross-correlation values could be reduced to a single number representing the

distance between them. The approach of using Pearson’s correlation coefficient

to compare two matrices and consequently using arithmetic average to reduce the

vector of Pearson’s correlation coefficients into a single number has been shown to
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be the most accurate on a test dataset with accuracy measured by the AUROC

measure.

7.1.2 Trace-sigma descriptor

The second shape descriptor is based on the idea of using the sum of differences in

spherical harmonics values as a distance between two structures in the spherical

harmonics coefficient space. By attempting to minimise this distance, the problem

can be simplified to finding the Wigner D (α, β, γ) matrix which maximises the

trace of the matrix multiplication of the Wigner matrix and the E matrix (matrix

of different spherical harmonics coefficient multiplied and integrated over the ra-

dius of their respective shells). Under the assumption that the maximisation for

each spherical harmonics band is equal to maximisation for all spherical harmonics

at the same time, a faster solution can be found by using the singular value de-

composition of the E matrix; the trace-sigma descriptor then becomes the sum of

the trace elements of the singular-value matrix Σ. This also makes the descriptor

rotation invariant.

Nonetheless, it should be noted that the assumption used above to calculate

the trace-sigma descriptor is known not to hold completely. Therefore, the trace-

sigma descriptor is not the absolute minimal distance between the two objects in

the spherical harmonics coefficients space, but rather its approximation. On the

other hand, this approximation is shown to have increased accuracy as compared

to the cross-correlation descriptor, suggesting that, at least for the test dataset,

the approximation is acceptable.

7.1.3 Rotation-function-based descriptor

The rotation-function-based descriptor returns to the approximation used by the

trace-sigma descriptor and finds the complete maximisation solution without any

simplifying assumptions. To do this, the descriptor computation requires expan-

sion of the E matrix by the inverse Fourier transform on the SO(3) rotation group
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and detection of the largest peak in the resulting rotation-function map. While

this descriptor is the most computationally costly from the three descriptors dis-

cussed here, it is the most accurate one as measured by the AUROC measure on

the test dataset. It should also be noted that by finding the optimal overlay ro-

tation, the rotation invariance is guaranteed up to numerical inaccuracies of the

computations.

7.2 Detection of similar shapes

The application of the three shape-distance descriptors will dictate the relative

importance of the false-positive results, i.e. results where the descriptors claim

similar shape when in reality the shape is different, and the false-negative results,

that is, results where the descriptors claim different shape, but the shape is in

reality similar. This difference can be demonstrated by recalling the plots showing

the distributions of distances of similarly and differently shaped pairs obtained

for a particular descriptor, for example the one shown in figure 5.13 part a) - for

convenience replicated here in figure 7.1 with some colouring differences.

It can be seen from the figure 7.1 that any pair of structures scoring above the

false-positives-reducing threshold (light blue area) can be considered as having sim-

ilar shape, while any pair of structures scoring under the false-negatives-reducing

threshold (light red area) can be considered to have different shape. Depending on

how the twilight zone in between the thresholds (shown in light green) is treated,

the shape distances can have different applications.

It is worth noting that the thresholds shown in figure 7.1 are arbitrary and

there is no perfect way of determining them. The position of the false-positives-

reducing threshold needs to be above the highest distance for pairs with different

shape, but just how much above is an arbitrary decision. Similarly, the position of

the false-negatives-reducing threshold needs to be just below the smallest distance

found in the similarly shaped pair distances distribution, but the exact position
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Figure 7.1: Cross-correlation distance distributions for similarly and differently shaped datasets

This figure shows the distribution of the cross-correlation-descriptor distances obtained using the

resolution of 4.0 Å and 40 B-factor settings for similarly-shaped pairs in blue and for differently-

shaped pairs in red. The blue dashed line is a false-positives-reducing threshold, while the red

dashed line is the false-negatives-reducing threshold. The area above the false-positives-reducing

threshold is shaded light blue, the area under the false-negatives-reducing threshold is shaded light

red and the area in between the thresholds is shaded light green

is also arbitrary. Nonetheless, it is clear that these two threshold will be different

as long as there is overlap between the two distributions and therefore the specific

positions of the thresholds are not relevant for this discussion.

7.2.1 Detection of only similar shapes

The first application of the shape descriptors is in the case where only the pairs of

structures with high probability of having similar shape are required, that is, where

the false-positives removal has higher importance than false-negatives removal. In

this case, all pairs with distance score in the twilight zone is treated as differ-

ent shapes; an example of such an application is the clustering of the BALBES

database, where it is more important that the clusters only have similar shapes
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than the possibility of not clustering some similar shapes together and instead

keeping them as separate clusters.

This type of shape descriptor applications would be expected when a dataset

is clustered with intention to reduce the shape redundancies of the dataset or where

the resulting clusters will be the basis of further analysis. In the case of removing

shape redundancies, this project has shown that the BALBES database can be

reduced by over 18.7 % and as a result, any searches against the reduced database

are proportionally faster while the diversity of the shapes is mostly conserved.

One possible future application of this approach to the shape descriptors is

in the case when automated detection of all protein domains in the whole PDB

database would be attempted. Such project could start by first splitting all PDB

structures into (presumably overlapping) fragments based on an automated algo-

rithm. This algorithm would only save fragments with high enough number of

atoms (to remove empty or almost empty fragments) and fragments with high

compactness, definition of which would have to be explored. Then, considering

each of the resulting fragments as a potential protein domain, these could be

searched against a database of already known protein domains, possibly the re-

duced BALBES protein domain database. In the case of high probability match

(that is, giving higher importance to the false-positives removal), the fragment

would be added to the already known protein domain class and its volume com-

pletely removed from the local copy of the PDB structure. Consequently, any

remaining fragments could be considered as novel protein domains. Clearly, the

suggested application would need to be explored in much more details and it is

mentioned here only as an example of future application of the shape descriptors

method. On the other hand, such an approach seems feasible and would benefit

from not being based on manual curation, as well as being amenable to application

to any new structures that may be solved in the future.

Another example where clustering similar shapes could lead to very interest-

ing results would be to retrieve all known structures (either as density map or as
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co-ordinate file) containing atoms of various metals and then cutting out all frag-

ments with given radius around the metal atom in the centre. By subsequently

clustering all such fragments for all metals using the shape-descriptor distances,

the resulting clustering classes should be related to the metal coordination number

and by extension to the metal co-ordination type. Presumably, a database of the

clustering classes for various metals could then be used to predict which metal is

present in density map without model or to validate metal types in co-ordinate

data files. Again, it should be noted that this suggested application would need to

be explored more and would presumably require more work than suggested here.

For example, Zheng et al. (2017) suggests that any tools for metal analysis based

on the PDB structures need to account for errors in the structures and this element

would have to be considered before the suggested application could be successfully

developed.

7.2.2 Detection of possibly similar shapes

A very different approach to the shape descriptors applications occurs when re-

moval of false negatives is more important than the removal of false positives; or

in other words, when being able to detect all possibly similar structures is more

important than allowing some of these to actually have different shape. This

approach was used in the hierarchical distance computation when the distances

between BALBES protein domain structures were computed. In this case, the

computationally cheaper descriptor values were used to determine if the compu-

tationally more expensive descriptors need to be computed or not. This approach

treats the twilight zone as similar shapes instead of as different shapes and would

be expected in applications where the shape descriptors serve as pre-filters for

more accurate, but also considerably more computationally expensive method.

One possible application of the shape descriptors based on this principle

would be attempting to find molecular replacement candidates using the similar-

ity in shape (more precisely, in the Patterson map shape) between a candidate
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database and the structure to be solved instead of the currently used sequence

similarity. It is clear that searching for sequence similarity is faster and com-

putationally cheaper than searching for shape similarity, and furthermore, if two

structures do not share sequence similarity, the amino acid side chains will differ

by definition and this may cause failure of molecular replacement. On the other

hand, Lesk and Chothia (1980) have shown that dissimilar sequences can lead to

similar structures, while Kosloff and Kolodny (2008) have shown examples where

similar sequences lead to different structures. These two results combine to show

that sequence is not a perfect predictor of shape similarity and therefore suggest

that using shape similarity information, possibly in concert with sequence sim-

ilarity information may allow for molecular replacement solutions for structures

previously inaccessible by this method.

Another possible application of the shape descriptors where the twilight zone

is treated as similar rather than different shapes would be automated fitting of pro-

tein domain atomic models into (presumably EM) density maps. This application

would require splitting of a single density map into fragments, either defined by a

sliding box or by some combination of compactness and density detection (possibly

using the density-based clustering methods). Nonetheless, the specific approach

to fragmenting a map would have to be explored by such a project, but assuming

an automated approach to finding clusters of density and cutting these out of the

density map can be developed, it would then be possible to search each of the

potential domain fragment against a database of protein domains, possibly the

reduced BALBES protein domain database. Consequently, any strong match be-

tween any fragment and a protein domain would allow placing the protein domain

atomic model into the density map in the location of the fragment. Moreover,

the inverse SO(3) Fourier transform method discussed in this thesis could be used

to determine, at least approximately, the rotation of the atomic model to fit the

fragment density; this could be accomplished, for example, by minor modification

to the ProSHADE software tool introduced in this thesis - it is worth noting that

an experimental version of this feature is currently being implemented. The fit
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could then be improved by either using the molecular refinement software, such as

phenix.refine (Afonine et al., 2012) or REFMAC5 (Kovalevskiy et al., 2018), or

by using the available tools such as ESSENS (Kleywegt and Read, 1997), MOLREP

(Vagin and Teplyakov, 1997), FFFEAR (Cowtan, 1998), FOLDHUNTER (Jiang et al.,

2001), Situs (Wriggers and Birmanns, 2001), Modeller (Eswar et al., 2006),

FOLD-EM (Saha and Morais, 2012) or the automated approach available in the

Chimera software (Pettersen et al., 2004).

7.3 Detection of symmetry

The possibility of the symmetry detection became apparent when the rotation-

function-based descriptor was being developed and the inverse SO(3) Fourier trans-

form was implemented. The intention for exploring this method was to find the

Euler rotation angles which result in the highest structure overlay cross-correlation

score so that the optimal rotation can be used in the minimisation problem faced

by the descriptor. Nonetheless, it became evident that the overlay of a single

structure against itself results in high cross-correlation values in the data when

the rotated and original structures have similar shape, or in other words when a

symmetry within the structure exists.

Building on this fact, it was possible to develop algorithms capable of con-

firming the existence of any cyclic (C), dihedral (D), tetrahedral (T ), octahedral

(O) or icosahedral (I) symmetry groups in the data. However, it needs to be

stressed that the algorithms can only detect the chiral variants of the symmetry

groups; the achiral variants, which include reflections as well as rotations cannot

be detected using this method. While this may be the preferred state, as molecules

with different chirality should be treated separately in the case of protein domains,

there may be cases where this is not the optimal approach. Moreover, the method

was then further extended by adding the ability to report the symmetry axis (or

axes) of the detected symmetry group as well as reporting all the symmetry group

elements, i.e. individual rotations of the asymmetric part of the structure required
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to reconstruct the complete structure from it. On the other hand, the detection

of helical symmetry has not yet been explored for the inverse SO(3) Fourier trans-

form approach and this is one of the limitations of the current implementation.

This limitation should be explored in the future work on this project.

In terms of the applications of this method, the ability to directly determine

symmetry in any macromolecule is a useful application on its own. While it is

true that most PDB files do contain the symmetry in the header and that the EM

software suites such as EMAN1 (Ludtke et al., 1999), EMAN2 (Tang et al., 2007)

or RELION (Scheres, 2012) do detect symmetry in the EM data, the symmetry

information is not, for example, available for all EMDB database (Lawson et al.,

2015) structures. Therefore, anyone obtaining the structure may not have the

symmetry information readily available, a situation remedied by the ProSHADE

symmetry detection tool. Furthermore, researchers may be interested in knowing

the symmetry present in the intermediate maps before their further processing

by the EM software suites, at which point the symmetry may not have been

determined yet.

Moreover, there are several possible applications for the symmetry determi-

nation part of ProSHADE tool which would, however, require some extra work

to be done before being completely possible. One such application would be to

use the symmetry computation to determine the asymmetric parts of both density

maps and co-ordinate files. With this information available, it would be possible

to save only the asymmetric parts of the structures and a set of the symmetry

group elements required to reproduce the complete molecule from the asymmetric

part, instead of storing the complete macromolecular structures, thus decreasing

the storage requirements for databases such as the wwPDB (Berman et al., 2000)

or the EMDB (Lawson et al., 2015). Regarding this application, it should be

noted that wwPDB reports 80, 643 structures without any assigned symmetry out

of the total 138, 678 structures [as of 19 March 2018 ], meaning that ≈ 41.8 %

of wwPDB structures do have some kind of symmetry. Furthermore, it should
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also be noted that some structures in the wwPDB have already been deposited

as asymmetric fragments only, with the SCALEn and MTRIXn fields (where n is

the transformation parameter) being used to describe the transformations required

to produce the full structure. Examples of such structures include the structures

with accession codes 2QZV (Anderson et al., 2007), 4HL8 (Casanas et al., 2013) or

5OSN (Roeding et al., 2017). These examples demonstrate that storing only the

asymmetric fragments of structures is possible, although it is not yet the standard.

7.4 Further method development

There are several possible improvements in terms of the methods developed as

part of this project and the ProSHADE software tool in general. One possible

improvement would be to implement the translation function search using phased

data; an approach similar to the crystallographic translation function described

by Crowther and Blow (1967) but using the phase information to find the opti-

mal centring (as described in, for example, Cowtan (1998)). This would allow

reducing the inaccuracies resulting from the centre of density centring approach.

Furthermore, implementing this functionality would also make matching two input

structures simpler as the optimal translation could be found using this approach.

Another possible improvement would be to make ProSHADE part of the

CCP-EM suite (Burnley et al., 2017). This would be advantageous to users as

it would allow development of a simple and user-friendly interface. Moreover, if

ProSHADE was distributed as part of the CCP-EM suite, the users could simply

obtain a ProSHADE binary for their system and avoid the complexities of installing

dependencies and linking them properly. Furthermore, by completing the SWIG

process for converting the ProSHADE library into a Python language module, this

would make the usage much simpler for many developers who use the Python

language.
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Finally, while the aforementioned possible applications and further method

developments do require more exploration and thought before any of them can be

attempted, they suggest multiple interesting potential applications for the algo-

rithms and the ProSHADE software tool in general.
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