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Pulmonary arterial hypertension (PAH) is characterised by remodelling of

the pulmonary vasculature leading to right ventricular hypertrophy. Here,

we show that miR-322-5p (the rodent orthologue of miR-424-5p) expres-

sion is decreased in the right ventricle of monocrotaline-treated rats, a

model of PAH, whereas a putative target insulin-like growth factor 1

(IGF-1) is increased. IGF-1 mRNA was enriched 16-fold in RNA immuno-

precipitated with Ago2, indicating binding to miR-322-5p. In cell transfec-

tion experiments, miR-322-5p suppressed the activity of a luciferase

reporter containing a section of the IGF-1 30 untranslated region (UTR) as

well as IGF-1 mRNA and protein levels. Taken together, these data sug-

gest that miR-322 targets IGF-1, a process downregulated in PAH-related

RV hypertrophy.

Pulmonary arterial hypertension (PAH) is a patho-

physiological process characterised by high, precapil-

lary pulmonary vascular resistance [1]. PAH can be

idiopathic, heritable (mainly associated with defects in

bone morphogenetic protein receptor 2) or associated

with an underlying condition [2]. The pathology of

PAH is largely consistent irrespective of aetiology and

involves significant vascular remodelling and restric-

tion causing a reduction in cross-sectional area to pul-

monary blood flow, which can lead to right ventricular

hypertrophy [3] and failure [4]. Prognosis for patients

varies, with average survival rates of 58–67% 3 years

after diagnosis for idiopathic PAH [5,6], with cause of

death normally being attributed to right ventricular

failure [7]. One widely used model of PAH is

monocrotaline (MCT) treatment of rats [8]. In this

model, following a single dose of MCT the animals

develop elevated pulmonary vascular resistance leading

to right heart hypertrophy within 4 weeks [9].

Under normal conditions, adult heart size is main-

tained but can change in response to either increased

or reduced load resulting in hypertrophy or atrophy,

respectively. As adult cardiac cells do not divide,

change in heart size is achieved by altering the size of

cardiac myocytes rather than their number. The rela-

tive rates of protein synthesis and breakdown
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contribute to the maintenance of cell size [10,11].

When these are in balance, cell size is maintained; con-

sequently, the RV cardiomyocyte hypertrophy

observed in PAH requires the rate of protein synthesis

to exceed that of protein breakdown.

Insulin-like growth factor-1 is a growth factor that

promotes synthesis and inhibits protein breakdown in

both cardiac and skeletal muscle. Following binding to

its receptor, IGF-1 activates protein kinase B (Akt) via

phosphatidylinositide 3-kinase (PI3K) stimulation [12].

This signalling system contributes to physiological car-

diac hypertrophy, with knockout animals for both Akt

and PI3K showing attenuated heart enlargement

[13,14]. Furthermore, mice that overexpress a dominant

active PI3K demonstrated increased heart size that did

not become maladaptive [15]. However, it is possible

that IGF-1 also contributes to pathological hypertrophy

in combination with other factors, as treatment of salt-

sensitive Dahl rats with IGF-1 reduced survival and

promoted left ventricular dysfunction [16]. Further-

more, IGF-1 deficiency alleviates cardiac hypertrophy

in a model of abdominal aortic constriction [17].

The signalling pathways which contribute to protein

turnover and cell maintenance are regulated in part by

microRNAs, short noncoding RNAs that downregu-

late protein expression via translational repression or

mRNA degradation [18]. The roles of many miRNAs

in the regulation of cardiac mass have previously been

studied; for instance, knockdown of miR-133, which

targets Cdc42 and RhoA, causes significant hypertro-

phy in vivo [19], whereas inhibition of miR-27b, which

targets peroxisome proliferator-activated receptor-c
(PPAR-c), attenuates cardiac hypertrophy [20]. miR-

322-5p is the rodent orthologue of miR-424-5p, a

miRNA from the 424/542 cluster located on the X

chromosome, which has been shown to target the insu-

lin-like growth factor 1 receptor (IGF-1R) in mam-

mary tissue [21] and cardiac muscle [22]. Expression of

miR-322 has previously been shown to be reduced in

the lung of monocrotaline-treated rats. Following

intranasal delivery of miR-322 to the rats, RV systolic

pressure and RV weight were shown to be significantly

reduced compared to controls, suggesting restoring

expression could ameliorate the effects of PAH on the

RV [23]. Importantly, expression of the miRNA in the

hearts of these animals was not reported.

Insulin-like growth factor-1 is a predicted target for

miR-322-5p based on database algorithms, which

match miRNA sequences to putative mRNA targets.

We therefore hypothesised that MCT treatment would

alter miR-322 expression in the right ventricle

and contribute to hypertrophy by increasing IGF-1

expression.

Materials and methods

Monocrotaline rat model

Monocrotaline or PBS was administered to 6- to 8-week-

old rats via s.c. injection (40 mg�kg�1), and 4 weeks later,

pulmonary arterial pressure was measured as previously

described before the animals were humanely sacrificed [24].

The hearts were removed, the right ventricle was dissected

free from the left ventricle and septum and both compo-

nents were weighed and then snap-frozen.

RNA extraction and RT-qPCR

Right ventricles were crushed in TRIzol for RNA extraction

as previously described [25]. Cell RNA extractions were per-

formed using the TaKaRa CellAmp Direct RNA kit (Clon-

tech Saint-Germain-en-Laye, France) as per the

manufacturer’s protocol. For miR-322-5p measurements,

RNA was reverse-transcribed (RT) using miR-322-5p and U6

Applied Biosciences TaqMan primers suspended in 1x TE

buffer as per the manufacturer’s instructions. cDNAwas used

for qPCR with TaqMan fluorescent probes for miR-322-5p

and U6 according to the manufacturer’s instructions. mRNA

was measured via Omniscript RT (Qiagen, Manchester, UK)

with random primers (Promega, Madison, WI, USA) as per

the manufacturer’s protocol. cDNA was diluted 1/10 with

deionised water and used in qPCRs with QuantiFast SYBR

Green (Qiagen) and specific primers (Sigma, Poole, Dorset,

UK) for targets of interest as previously described [26].

Cell culture and transfection

C2C12 mouse myoblasts were cultured in DMEM (Sigma)

supplemented with 10% fetal bovine serum (FBS) and 1%

Pen-Strep (Gibco, Gaithersburg, MD, USA) as previously

described [27]; LHCN-M2 human myoblasts were cultured in

human skeletal muscle medium (PromoCell, Heidelberg, Ger-

many) supplemented with 20% serum (15% FBS and 5%

manufacturer’s serum) as previously described [28]. Cells

were transfected once ~70% confluent with miRNA mimic

and/or antagomir (miRVana) and Lipofectamine 2000 (Invit-

rogen, Paisley, UK) using Opti-MEM (Gibco) as recom-

mended by the manufacturer and as previously described

[27]. Transfected miR-mimic concentrations were kept the

same in all reactions by addition of control miRNA mimic as

appropriate.

Protein isolation from cells and RISC

immunoprecipitation

Forty-eight hours after transfection, C2C12s were lysed in

1x cell lysis buffer (Cell Signalling Technologies, Hitchin,

UK) supplemented at 1/100 with protease inhibitor cocktail

(Sigma). Samples were centrifuged at 12 000 g and
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supernatant transferred to clean microcentrifuge tubes. Pro-

tein-G-bound Sepharose beads were added to the lysate,

and the tubes were rotated for 2 h at 4 °C for lysate pre-

clearing. Beads to be used for the pull-down were blocked

using 1 mg�mL�1 salmon sperm DNA (Sigma) under rota-

tion for 2 h at 4 °C. Blocked beads were washed in cell

lysis buffer and the precleared lysate added. Antibodies for

the immunoprecipitation, anti-Ago2 (Millipore, Watford,

UK) or control anti-mouse IgG (Invitrogen), were added at

matching concentrations of 1 : 100 and the samples rotated

overnight at 4 °C. Beads were then washed several times in

cell lysis buffer and PBS before TRIzol RNA extraction as

detailed above.

Secreted IGF-1 measurements (western blot and

ELISA)

Forty-eight hours after transfection, cells were placed into

serum-free medium for 24 h. The medium was collected

and cleared of cell debris by centrifugation at 12 000 g at

4 °C for 20 minutes. The supernatant was transferred to

new tubes and kept on ice. Secreted IGF-1 quantification

was performed first by ELISA (R&D Systems, Abingdon,

UK) as per the manufacturer’s instructions and secondly

via western blot following acetone precipitation (as previ-

ously described [25]). Total protein concentration in the

collected medium was determined via Bradford assay (Bio-

Rad, Watford, UK). ELISA IGF-1 values were then nor-

malised to the total secreted protein, and western blot

images were normalised to Ponceau S-stained membranes.

pMIR-REPORT luciferase assay

A section of the 30UTR of IGF-1 was TA-cloned into

pGEM-T Easy (Promega) using primers: forward (50–30)
GGGACTAGTGAGGAGCCTCCCACGGAGCA, reverse:

(50–30) CCCACTAGTGCTACGTGGGAAGAGGTGA

AG. SpeI digestion was performed and the UTR sequence

ligated into a pMIR-REPORT expression vector (Thermo-

Fisher). Final products were confirmed by sequencing. For

luciferase assays, cells were transfected with luciferase

reporter vectors (pRLTK used as a control) 24 h after

miRNA transfection using standard Lipofectamine

(Invitrogen) and the assay performed as previously

described [27].

Statistics

Animal experiments were conducted in two groups for a

total of nine MCT-treated and nine PBS-treated animals.

Differences between groups were calculated using Student’s

t-test for normally distributed data or by Mann–Whitney

U-test for nonparametric data (GraphPad PRISM, La

Jolla, CA, USA). In vitro mRNA expression data shown

were produced in three independent experiments, with each

experiment consisting of six independent transfections

assayed in duplicate. Box plots are expressed as median

with min–max bars. In vitro protein expression data shown

via western blot are three independent experiments from

six-well plates, and via ELISA are three independent exper-

iments, with each with each experiment consisting of six

independent transfections. RISC IP was performed twice.

Results

MCT rat model: miR-322 and IGF-1 are inversely

expressed in the RV

Nine MCT-treated and nine PBS-treated rats were sac-

rificed after 4 weeks and markers of disease severity

measured to determine PAH development in the two

groups. Pulmonary arterial pressure (PAP) was higher

in the MCT-treated animals compared to controls sug-

gesting increased vascular resistance (Fig. 1A). Right

heart weight (right ventricle/(left ventricle + septum))

was higher in the MCT rats compared to controls,

confirming the development of RV hypertrophy

(Fig. 1B). Quantification of miR-322-5p in the right

ventricles (RVs) showed a 2.6-fold decrease

(P = 0.0004) in miRNA expression in MCT-treated

rats compared to PBS-treated controls (Fig. 1C). Con-

versely, IGF-1 expression was significantly increased in

the RVs of MCT rats compared to PBS controls (3.5-

fold, P = 0.0028), suggesting an upregulation of IGF-1

signalling promoting growth (Fig. 1D).

miR-322 directly targets IGF-1

Bioinformatic analysis predicted IGF-1 to be a target

of both miR-424-5p and its mouse orthologue miR-

322-5p. The mouse IGF-1 gene has seven potential

binding sites for miR-322-5p in its 30UTR, shown in

Fig. 2A. Region A was used for reporter cloning as

the entire seed sequence is complimentary in this sec-

tion. The human IGF-1 gene has three potential bind-

ing sites for miR-424-5p in the UTR, and one in the

coding region, a feature more commonly found in

miRNA containing a 50 AGCAGC motif [29]

(Fig. 2A). To determine whether miR-322-5p targets

IGF-1 in myoblasts, we performed an Ago2 immuno-

precipitation followed by RT-qPCR using cells trans-

fected with a miR-322-5p mimic or a scrambled

control. This analysis showed IGF-1 mRNA was

enriched >16-fold in RNA immunoprecipitated from

miR-322-5p-transfected cells compared to controls

(Fig. 2B). To confirm targeting of IGF-1, the region

of the 30UTR of IGF-1 containing the putative

miRNA-binding site was cloned into pMIR-REPORT

341FEBS Open Bio 8 (2018) 339–348 ª 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

M. Connolly et al. miR-322-5p targets IGF-1 and is reduced in PAH



(Fig. 2A) and the effect of miR-322-5p on luciferase

activity determined in C2C12 cells. Luciferase activity

was significantly reduced in miR-322-5p-transfected

cells compared to controls (Fig. 2C), confirming miR-

322-5p binding to the 30UTR of IGF-1.

miR-322-5p reduces IGF-1 mRNA expression

To determine the effect of miR-322-5p on IGF-1

expression, we transfected mouse C2C12 cells as

described in Methods. qPCR showed a significant

reduction in IGF-1 mRNA in miR-322-5p-mimic-

transfected cells, and this effect was reversed by

cotransfection with an antagomir (Fig. 3A). To deter-

mine whether human IGF-1 was also targeted by the

miRNA, LHCN-M2 cells were transfected with miR-

424-5p mimic. Again the expression of IGF-1 was sup-

pressed by miR-424-5p, but this suppression was not

as large as that obtained in murine cells. Although

median expression was higher in the presence of the

antagomir than in the miR-mimic-only-transfected

cells, this difference did not reach statistical signifi-

cance (Fig. 3B).

miR-424-5p reduces IGF-1 protein expression

To determine the effect of the miRNA on secreted

IGF-1 protein levels, we transfected human myoblasts

with miR-424-5p. Forty-eight hours later, growth

medium was replaced with serum-free medium for

24 h. The medium was aspirated and an ELISA per-

formed for human IGF-1. Consistent with reduced

mRNA, IGF-1 protein levels were reduced in miR-

424-5p-transfected cells compared to scrambled con-

trols (Fig. 3C). A similar reduction in secreted IGF-1

was observed by western blotting of separate samples

(Fig. 3D).

Discussion

Our data show that the hypertrophied RV from

MCT-treated rats had significantly reduced levels of

miR-322-5p and elevated expression of IGF-1. Fur-

thermore, we show that miR-322-5p binds to the

30UTR of IGF-1 and suppresses IGF-1 mRNA expres-

sion leading to a reduction in both IGF-1 mRNA and

protein. Together, these data imply that suppressed

miR-322-5p in the heart of MCT rats may contribute

to hypertrophy in part by increasing the expression of

IGF-1.

Insulin-like growth factor-1 signalling is well estab-

lished as an important promoter of protein synthesis

and a repressor of protein degradation. Through the

IGF-1 receptor, IGF-1 promotes the activation of Akt

and mTOR, both of which are master regulators of

protein synthesis (reviewed in [30]). Indeed, it has been

shown that treatment of isolated cardiac cells with 50–
100 nM IGF-1 causes a 70% increase in protein
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synthesis over insulin treatment [31]. The myocardium

produces IGF-1 locally, and evidence suggests that its

activity not only promotes growth, but also has a pro-

tective effect against myocardial apoptosis as shown in

a model of myocardial ischaemia and reperfusion [32].

Thus, IGF-1 functions to prevent myocyte loss and to

increase the size of cells [33], contributing to cardiac

hypertrophy both in normal cardiac growth and in dis-

ease states.

The reduction in RV miR-322-5p expression we

observed differs from previously reported changes in

miR-322-5p in cardiac hypertrophy. For example,

following 4-week aortic banding, miR-322 was found

to be elevated in the hypertrophying left ventricles

of mice; however, this same study saw no significant

increase in miR-424-5p in humans with end-stage

hypertrophic cardiomyopathy [34]. Another study, in

which rats had left anterior descending (LAD) artery

ligations causing development of an ischaemic zone

[35], noted elevated miR-322-5p expression in cardiac

tissue compared to sham-operated controls [36].

Other studies on PAH have also measured miR-322-

5p. For example, in response to MCT, Gubrij et al.

[37] showed a reduction in miR-322-5p in the lung

3 weeks after treatment as well as a small but signif-

icant reduction in the RV. These effects were similar

to those of Schlosser et al. [38] who showed signifi-

cantly reduced lung miR-322-5p and lower mean RV

miR-322-5p, although this did not reach statistical

significance. The reductions observed were smaller
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than that which we found, but both the time point

and the dose of MCT used in those studies vary

from the ones used here. Unlike MCT treatment,

hypoxia-induced PAH appears to increase RV miR-

322-5p in mice and to not change it in rats, suggest-

ing that the changes in miRNA profile are model-

specific [38]. The actual changes in the expression of

this miRNA in the RV in humans with PH remain

to be determined. The increase in miR-322-5p

observed in the hypoxia models is consistent with

the observations that miR-322/424 is a hypoxia-

induced miRNA, which has been shown to be

upregulated in cardiomyocytes during hypoxia-

induced apoptosis, and knockdown of the miRNA

had a cytoprotective effect [39].

Taken together, the variable expression of miR-322-

5p/miR-424-5p in hypertrophy suggests that it is under

a complex control with a number of both positive and

negative inputs and the measured expression level in

the heart will be a consequence of all of these inputs.

In our model, it is possible that the reduction in miR-

322-5p is a consequence of MCT treatment, directly or

as a consequence of increased afterload, and that this

reduction contributes to the RV hypertrophy in part

by elevating IGF-1. However, as we picked a single

time point for our study (4 weeks after treatment), we
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cannot determine whether miR-322-5p expression was

suppressed prior to the increase in IGF-1 or whether

there was a transient increase in miR-322-5p. It is

therefore possible that IGF-1 itself suppresses the

expression of miR-322-5p to reduce the pro-apoptotic

effects of this miRNA on cardiomyocytes [39]. Such

an effect would cause a positive feedback as IGF-1

suppressed miR-322-5p, which then allowed greater

translation of IGF-1 sustaining elevated IGF-1.

Such an explanation gains some support from a

recent study investigating circulating levels of miR-

322-5p in response to MCT [40]. This study showed

that miR-322-5p in circulation is elevated 1 week after

treatment and then decreases at 2 weeks only to

increase again by 6 weeks. However, the source of the

miR-322-5p in circulation is not clear as miR-424

expression is not restricted to the heart with expression

also found in the skeletal muscle, a more abundant tis-

sue than cardiac muscle.

Previous studies in the heart and other tissues have

shown that miR-322 contributes to the regulation of

IGF-1 signalling. For example, miR-424 was shown to

regulate the expression of the IGF-1 receptor (IGF-

1R) in epithelial cells as part of the regulation of

mammary involution [21]. The targeting of the IGF-

1R was confirmed in a study in which miR-322 or a

miR-322 sponge was expressed using an adeno-asso-

ciated virus (AAV) in the heart of diabetic or high-fat-

diet-fed mice. In this study, overexpression of the

miRNA led to a reduction in IGF-1R and sirtuin 4,

key components of the insulin signalling pathway, as

well as a reduction in Akt phosphorylation [22]. Our

data add to this study by indicating that IGF-1 is an

additional target of the miRNA, suggesting that

reduced expression of this miRNA will help to pro-

mote cardiac hypertrophy by increasing the level of

both IGF-1 and its receptor. It remains to be seen

which of these facets of the biology of IGF-1 has the

larger effect on cardiac growth.

Changes in miR-322-5p are not the only ones that

occur in cardiac hypertrophy that are likely to affect

the IGF-1 signalling system. For example, miR-223 is

a miRNA that is suppressed by hypoxia but targets

the IGF-1R [41]. Overexpression of this miRNA atten-

uated cardiac hypertrophy and suppressed IGF-1R

expression in analogous way to the effects of miR-322-

5p in response to MCT. However, it is interesting to

note that this miRNA is regulated in the opposite

direction to miR-322-5p in response to hypoxia but

targets at least one of the same genes, highlighting the

complexity of the system and the fact that multiple

miRNAs contribute to the regulation in individual

proteins [41]. Such complexity may account for the

differences in the observed changes in miR-424-5p

expression in PAH models.

The data also raise the potential of increasing miR-

424-5p expression in the heart to reduce cardiac hyper-

trophy at least in PAH. Ideally, this would be achieved

by a selective upregulation of the miRNA in the heart.

Increasing miRNA is more difficult than suppressing

their activity due to the processes involved in incorpo-

rating the miRNA into the RISC complex. However,

mimics are currently being used in clinical trials for a

range of conditions including cancer (reviewed in [42]).

Furthermore, direct cardiac injection of miRNA mim-

ics for miR-199a-3p and miR-590-3p has been shown

to enable myocardial repair [43] An alternative to

mimics is the use of viral delivery of an expression cas-

sette for the miRNA as described above for miR-322-

5p. However, given the potential for dynamic changes

in miR-424 described previously, the development of

this as an approach to reduce hypertrophy in PAH

would require a much more detailed analysis of miR-

424-5p expression in the heart during the development

of disease. Finally, any potential reduction in RV

hypertrophy has to be balanced against reduction in

pulmonary vascular remodelling.

The miRNAs target a vast array of genes at varying

efficiencies to fine-tune the proteome and thereby regu-

late multiple processes concurrently (reviewed in [44]).

As well as targeting IGF-1 and its receptor, miR-424

has been shown to potentiate TGF-b signalling via tar-

geting of SMAD7 (a negative regulator of canonical

TGF-b signalling) in lung [45], mammary [46] and

oesophageal epithelial cells [47]. In this case, reduced

miR-424 might be expected to reduce TGF-b-induced
hypertrophy [48], an effect opposite to that produced

by regulating IGF-1. However, in rat cardiac cells it

has been shown that miR-15b (a miRNA that shares

the same seed sequence as miR-322) targets compo-

nents required for TGF-b family signalling such as

SMAD2/3 as well as SMAD7, suggesting that it may

regulate the balance of TGF-b and BMP signalling.

Consequently, the effects of miR-424 on TGF-b/BMP

signalling are likely to be cell type- and context-speci-

fic. However, the specific capacity of miR-322 to regu-

late these components is not known [34]. Other

validated targets for miR-424 include cdc25, a compo-

nent required to move through the cell cycle and apop-

tosis inhibitor [49,50], and bcl-2, an anti-apoptotic

protein upregulated in several cancers [51,52].

Recently, miR-424-5p was also shown to reduce rRNA

production by targeting components of the RNA poly-

merase I pre-initiation complex [53]. Taken together,

these data suggest miR-424 is a promoter of cell quies-

cence and death, the loss of which can result in an
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increased proliferative capacity which can lead to an

oncogenic phenotype, or in the case of the nondividing

myocardium, hypertrophy.

Conclusion

Our data suggest that reduced miR-322-5p contributes

to the cardiac hypertrophy that occurs in PAH at least

in part by increasing the expression of IGF-1. This

increase in ligand, in combination with the increase in

receptor (IGF-1R) that others have identified,

increases the activity of the IGF-1/Akt axis leading to

increased protein synthesis and myocyte hypertrophy.

These data suggest that miR-322-5p expression in nor-

mal circumstances acts to limit protein synthesis as

part of the normal homoeostatic mechanisms. Whether

this restriction on protein synthesis in normal physiol-

ogy is removed only in response to pathological stim-

uli or whether the same mechanisms contribute to

normal physiological hypertrophy in response to exer-

cise remains to be determined.
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