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Abstract. We study the effective theory of decoupling of a charm quark at low energies.
We do this by simulating a model, QCD with two mass-degenerate charm quarks. At
leading order the effective theory is a pure gauge theory. By computing ratios of hadronic
scales we have direct access to the power corrections in the effective theory. We show that
these corrections follow the expected leading behavior, which is quadratic in the inverse
charm quark mass.

1 Introduction

Several lattice groups are performing simulations of QCD3 with up, down and strange quarks. They
are cheaper and simpler than simulations of QCD4 which includes a dynamical charm quark. The
motivation to neglect the charm quark at low energies E � Mcharm ≡ Mc is decoupling. QCD4 can be
described by an effective theory which at leading order is QCD3 without the charm quark. Neglecting
the light quark masses, the effects of decoupling of the charm at low energies are incorporated in
the matching of the gauge couplings and in the power corrections stemming from higher order terms
in the effective theory. Matching of the gauge couplings of QCD4 and QCD3 can be performed in
perturbation theory. This is used in the determination of αs from QCD3 simulations by the ALPHA
collaboration [1, 2]. Non-perturbative tests of decoupling are important. On one hand to confirm the
applicability of perturbation theory, on the other hand to know the size of the power corrections and
whether they can be neglected. We address the latter issue here.

In order to avoid a multi-scale problem and control the continuum limit we study a model, QCD2
with Nf = 2 degenerate quarks of mass M. In this case the effective theory for E � M is a Yang–Mills
theory (Nf = 0, M = ∞) at leading order. Beyond leading order there are power corrections starting
at M−2. In a previous work [3] simulation of masses up to M ≈ Mc/2 allowed to estimate that the
size of the power corrections is at the permille level for M = Mc. These estimates were based on
interpolations with the pure gauge theory at M = ∞. However a behaviour of the power corrections
∝ M−2 was not seen. In this contribution, which is based on [4], we extend the mass range of the
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simulations to M � Mc thus allowing a direct determination of the power corrections for a charm
quark and a more stringent test of the behavior expected from the effective theory.

2 Effective theory of decoupling

In this work we consider only virtual effects of a heavy quark with mass M. We exclude states with
explicit heavy quarks from the discussion. The decoupling of the heavy quark at low energies can be
described in terms of an effective Lagrangian [5]. In the case of decoupling of Nf = 2 mass-degenerate
heavy quarks it reads

Ldec = LYM +
1

M2L6 + O
(
Λ4

M4

)
, (1)

L6 = ω1 tr{DµFνρDµFνρ} + ω2 tr{DµFµρDνFνρ} . (2)

In eq. (1) LYM is the Yang–Mills Lagrangian which describes the leading order in an expansion in
inverse powers of M. Due to gauge invariance there are no dimension 5 operators. Therefore the first
correction starts at M−2 with the dimension 6 Lagrangian L6 defined in eq. (2) which contains two
independent terms [6, 7].

The Yang–Mills Lagrangian LYM has one free parameter, the gauge coupling. Matching the Nf =

2 and Yang–Mills theories means specifying a value of the Yang–Mills coupling at some scale or
equivalently its Λ parameter. Matching can be described by the relation

ΛYM(M,Λ) = P(M/Λ)Λ (3)

which expresses the effective Lambda parameter ΛYM of the Yang–Mills theory after matching as a
function of the heavy quark mass and the Lambda parameter of the Nf = 2 theory Λ ≡ Λ(Nf=2).1 For
dimensional reasons this function is a dimensionless factor P(M/Λ) times Λ.

Consider a low energy hadronic observable mhad. It can be a hadronic scale such as 1/
√

t0 [8] or
1/r0 [9]. After matching it takes the same value in both theories up to power corrections:

mhad(M) = mhad
YM + O(Λ2/M2) (4)

Note that the value mhad
YM of the observable in the Yang–Mills theory depends on M through the match-

ing eq. (4). This mass dependence is described by the factor P in eq. (3) since c = mhad
YM/ΛYM is a pure

number. Consider now two hadronic scales, mhad,1(M) and mhad,2(M), whose values in the Yang–Mills
theory are denoted by mhad,1

YM and mhad,2
YM respectively. A consequence of the matching relation eq. (4)

for the ratio of two hadronic scales is

R(M) =
mhad,1(M)
mhad,2(M)

=
mhad,1

YM

mhad,2
YM

+ O(Λ2/M2) (5)

Note that the ratio of scales in the Yang–Mills theory

mhad,1
YM

mhad,2
YM

=
mhad,1

YM /ΛYM

mhad,2
YM /ΛYM

=
c1

c2
(6)

1 We use the MS scheme for the Λ parameters. The heavy quark mass M is taken to be the renormalization group invariant
quark mass which is the same in all mass-independent renormalization schemes.
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is given by the ratio of two pure numbers and is independent of the Lambda parameter ΛYM (or of the
gauge coupling). The matching of the couplings is therefore irrelevant for the ratios in eq. (5). An
immediate consequence of eq. (5) is

R(M) = R(∞) + kΛ2/M2 + O(Λ4/M4) , (7)

where k is a number which depends on the ratio R.

3 Model calculations with two heavy quarks

The data of Ref. [3] were generated from simulations of Nf = 2 O(a) improved Wilson quarks with
plaquette gauge action. In this work we use Nf = 2 twisted mass [10] Wilson quarks at maximal
twist with clover term [11] and plaquette gauge action. We simulated larger masses corresponding
to Mc/Λ = 4.8700 (charm) and M/Λ = 5.7781. We also simulated the pure gauge theory (Nf = 0,
M = ∞). The parameters of the new simulations are summarized in Table 1. We use open bound-
ary conditions and the publicly available openQCD simulation package [12].2 More details on the
simulations can be found in Ref. [4].

Table 1. List of ensembles generated with a doublet of twisted mass Wilson quarks at maximal twist for masses
M = Mc (Mc/Λ = 4.8700) and M = 1.2Mc (M/Λ = 5.7781). Also listed are the pure gauge ensembles (Nf = 0,

M = ∞). Open (“o”) boundary conditions (BC) are used.

β a [fm] A BC T × L3 M/ΛMS t0/a2 kMDU τexp [kMDU]

5.6 ≈ 0.042 tm o 192 × 483 4.8700 6.609(15) 2.0 0.08
192 × 483 5.7781 6.181(11) 2.1 0.08

5.7 ≈ 0.036 tm o 120 × 323 4.8703 9.104(36) 17.2 0.14
192 × 483 5.7781 8.565(31) 2.7 0.12

5.88 ≈ 0.028 tm o 192 × 483 4.8700 14.622(62) 23.1 0.24
120 × 323 5.7781 14.916(93) 59.9 0.23

6.0 ≈ 0.023 tm o 192 × 483 4.8700 22.39(12) 22.4 0.36

6.100 0.0778 – o 120 × 323 ∞ 4.4329(32) 64.0 0.05
6.340 0.0545 – o 120 × 323 ∞ 9.034(29) 20.1 0.13
6.340∗ 0.0545 – o 120 × 243 ∞ 9.002(31) 60.9 0.13
6.672 0.0350 – o 192 × 483 ∞ 21.924(81) 73.9 0.35
6.900 0.0261 – o 192 × 643 ∞ 39.41(15) 160.2 0.65

The lattice spacing for the Nf = 2 theory is determined from the scale L1/a [13, 14]. For the
Nf = 0 theory we use the scale r0/a. Our spatial box sizes L are such that LmPS � 4 and L/

√
t0 ≥ 8.

In the simulation marked by ∗ we explicitley checked that finite volume effects are negligible.
Figure 1 shows the autocorrelation function of t0 (in units of 16 MDU) for the simulation Nf = 2,

β = 6.0, M = Mc. The autocorrelation function for a derived quantity like t0 is defined as in Eq. (33)
of Ref. [15]. A fit of the form [16] A exp(−t/τexp) to the tail between t = 15 und t = 42 (represented
by the red line in Fig. 1) gives an estimate of the exponential autocorrelation time τexp = 477(101)
MDU. Considering all our ensembles we find a behaviour which can be parametrized by τexp =

−32(23) + 17.4(2.8) t0/a2. The scaling τexp ∝ t0/a2 is expected with open boundary conditions [17].

2 http://luscher.web.cern.ch/luscher/openQCD/
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Figure 1. Autocorrelation function of t0 for Nf = 2, β = 6.0, M = Mc. The units on the x-axis correspond to 16
Molecular Dynamics Units (MDU). The red line is an exponential fit to estimate the exponential autocorrelation
time.

4 Results from lattice simulations
On the Nf = 2 and Nf = 0 ensembles we measure the following ratios of hadronic scales (cf. eq. (5))

R =
√

tc/t0 ,
√

t0/w0 , r0/
√

t0 . (8)

The scale t0 is defined through [8]

E(t0) = 0.3 , E(t) = t2 〈E(x, t)〉 . (9)

where E = 1
4Ga
µνG

a
µν is the action density of the gauge field smoothed by the Wilson flow [18–20] and

t is the flow time whose mass dimension is −2. Similarly, the scale tc is defined by the condition

E(tc) = 0.2 . (10)

The scale w0 is defined as [21]

w2
0E′(w2

0) = 0.3 , E′(t) = d
dt
E(t) . (11)

The scale r0 is determined through the condition [9]

r2
0F(r0) = 1.65 , (12)

where the static force F(r) = V ′(r) is the derivative of the static potential V .
For a given value of M/Λ and action A (twisted mass, standard Wilson or for M = ∞ pure gauge)

we perform continuum extrapolations of the ratios. From Symanzik’s theory we expect O(a2) cut-off
effects. We fit our data to

R(a,M/Λ,A) = Rcont(M/Λ) +
a2

t0
c(M/Λ,A) , (13)
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Figure 2. Left: continuum extrapolations of the ratio R =
√

tc/t0. Data are from twisted mass, standard Wilson
and pure gauge simulations and are represented by pentragrams, squares and circles respectively. The lines show
the fits eq. (13). Dashed lines are for twisted mass data and continued lines for Wilson and pure gauge data. The
continuum extrapolated ratios are shown by the asterisks. Right: the continuum values plotted against Λ/M. The
dashed line in the blue band represents the effective theory prediction eq. (7) fitted through points from M = ∞
down to M/Λ ≥ 2.5000. The dashed line in the green band is a linear fit in M−1.

where the fit parameters are the continuum values Rcont(M/Λ) and the slopes c(M/Λ,A). In the case
where simulations at the same mass were performed with two different actions we take a combined
continuum limit. We apply a cut, a2/t0(M) < 0.32, to the data being fitted. The fits of the ratio
R =

√
tc/t0 are shown in the left plot of Fig. 2 and the continuum extrapolated values are listed in

Table 2. In the right plot of Fig. 2 the continuum values Rcont(M/Λ) are plotted against Λ/M. The
dashed line in the blue band represents the effective theory prediction eq. (7) fitted through data points
from M = ∞ down to M/Λ ≥ 2.5000. It has a good χ2/dof = 1.75/2. A linear fit in M−1 is shown
by the dashed line in the green band and has a far worse χ2/dof = 9.55/2. More fits are discussed in
Ref. [4]. They clearly support the onset of the effective theory behavior eq. (7) once data for M � Mc
are included in the analysis.

For a check we also perform a global fit

R(a,M/Λ,A) = Rcont(M/Λ) +
a2

8t0

[
c(A) + α(A)

M
Λ
+ β(A)

M2

Λ2

]
, (14)

where the slopes are parametrized by the mass-independent coefficient c(A) and by the parameters
α(A), β(A) which model the mass dependence. The coefficient c(A) is the same for twisted mass
and standard Wilson since these two actions are equivalent for massless quarks. The global fit of the
ratio R =

√
tc/t0 is shown in the left plot of Fig. 3. It yields consistent continuum values with the

non-global fit as can be seen from Table 2. In the right plot of Fig. 3 we show the continuum values
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Figure 3. Left: continuum extrapolations of the ratio R =
√

tc/t0 using a global fit eq. (14). The symbols and
lines are like in Fig. 2. Right: the continuum values plotted against Λ/M. The lines in the bands are like in Fig. 2.
Note that the continuum data are correlated unlike in Fig. 2.

with the quadratic (dashed line in the blue band) and linear (dashed line in the green band) fits in
M−1. Note that the errors of the continuum values are now correlated and this correlation is taken into
account in the fits. The quadratic fit eq. (7) has a correlated χ2/dof = 16.0/2 and the linear fit has
χ2/dof = 7.6/2. None of the fits work well although it seems that the quadratic fit describes better the
curvature in the data.

Table 2. Continuum extrapolated values of the ratios
√

tc/t0 and
√

t0/w0. The non-global extrapolations are
performed using the fit eq. (13) and the global extrapolations using the fit eq. (14).

M/Λ ∞ 5.7781 4.87 2.50 1.28 0.59

non-global continuum limit√
tc/t0 0.7919(3) 0.7894(9) 0.7888(5) 0.7826(6) 0.7751(9) 0.7643(6)√
t0/w0 0.9803(6) 0.9774(21) 0.9765(10) 0.9661(13) 0.9532(18) 0.9311(15)

global continuum limit√
tc/t0 0.7919(3) 0.7902(7) 0.7884(4) 0.7830(5) 0.7753(4) 0.7642(6)√
t0/w0 0.9803(6) 0.9793(17) 0.9757(9) 0.9669(11) 0.9533(9) 0.9308(14)

The continuum extrapolated values of the ratios R =
√

t0/w0 (left plot) and R = r0/
√

t0 (right
plot) are plotted against Λ/M in Fig. 4. They are obtained using the fit eq. (13). The ratio R =√

t0/w0 strongly favors the M−2 behavior as it is the case for R =
√

tc/t0. Although a state of the art
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Figure 4. Left: the continuum values of the ratio R =
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t0/w0 determined from the fit eq. (13) plotted against
Λ/M. The lines in the bands are like in the right plot of Fig. 2. Right: same for the ratio R = r0/

√
t0.

determination for r0 has been used [22], the precision of the ratio R = r0/
√

t0 is not enough to resolve
the power corrections.

5 Conclusions and outlook

We studied the decoupling of a charm quark non-perturbatively in QCD with two heavy quarks of
mass M. By comparing ratios of hadronic flow scales to their values in the Yang–Mills theory we are
able to measure the effects of a dynamical charm quark which are of 2 permille size. Our data can be
very well fitted by the effective theory prediction for the power corrections ∝ M−2 down to masses
Mc/2.

As an outlook, we are computing the effects of a dynamical charm in other observables such as
the charm quark mass and charmonium [23] and the strong coupling from the static force [24].
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