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Abstract: Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are the principal 7 

vectors of several notable viral pathogens infecting animal livestock. Sickness and animal 8 

deaths caused by the Culicoides-transmitted bluetongue virus as well as the recent 9 

Schmallenberg virus outbreak have threatened the livestock industry in Europe. Recent 10 

studies highlight how, in the near future, the application of ‘dry’ fungal conidia of 11 

Metarhizium anisopliae in animal shelters and microenvironment (e.g. dung, manure, leaf 12 

litter, livestock surroundings) may be used to control the Culicoides vector, thus, reducing 13 

the incidence of Culicoides-borne diseases. 14 

Keywords: bluetongue virus, biocontrol, Beauveria bassiana, Culicoides, Metarhizium 15 

anisopliae, vector control 16 
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Introduction 18 

Several microorganisms have been extensively explored for decades in order to develop 19 

environmental friendly and cost-effective pest management strategies in agriculture and 20 

livestock farming. The well-known bacterial bioinsecticides, Bacillus thuringiensis and 21 

Lysinibacillus sphaericus, are widely used to control many insect species (Jurat-Fuentes and 22 

Jackson 2012, Silva-Filha et al. 2014). Several strains of the entomopathogenic fungi such as 23 

Metarhizium anisopliae and Beauveria bassiana have been used for the biological control 24 

(e.g. ‘Green Muscle’ programme in Africa, Met52 G bioinsecticide) of crop pests (Shah et al. 25 

2007, Ansari et al. 2007, 2008, Skinner et al. 2014), insect species transmitting diseases to 26 

livestock (Mochi et al. 2010, Lpez-Snchez et al. 2012, Mishra et al. 2013, García-Munguía et 27 

al. 2015, Cruz-Vázquez et al. 2017, Holderman et al. 2017), and with Ceratopogonidae such 28 

as biting midge, Culicoides spp. (Ansari et al. 2010, 2011, de Souza et al. 2014, Nicholas and 29 

McCorkell 2014, Narladkar et al. 2015). However, their use against insect vectors of livestock 30 

disease is not fully explored.  31 

 32 

A few studies have shown the potential of entomopathogenic fungi to control Culicoides 33 

biting midges, hereafter referred to as ‘midges’, vectors of numerous important livestock 34 

diseases including bluetongue, which pose a severe economic risk to the ruminant livestock 35 

industry (van Schaik et al. 2008, Velthuis et al. 2010, Zanella et al. 2012, Pinior et al. 2018). 36 

The economic impact of the bluetongue serotype 8 (BTV8) epidemics of 2006 and 2007 in 37 

the Netherlands alone accounted for 32.4 and 164-175 million, respectively (Velthuis et al. 38 

2010). Whereas, the recent estimates indicate that a total cost of €41.9 million was invested 39 
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in the bluetongue virus vaccination and surveillance programmes in Austria and Switzerland 40 

alone (Pinior et al. 2018). 41 

 42 

There are many other fungal entomopathogens, apart from M. anisopliae and B. bassiana, 43 

which have been explored for controlling midges by many authors. For example, de Souza et 44 

al. (2014) reviewed thoroughly and gave a detailed account of fungal and oomycete 45 

parasites of chironomids, ceratopogonids and simulids. The naturally occurring Oomycete 46 

fungal pathogen, Lagenidium giganteum, was recorded as biocontrol agent of Culicoides 47 

molestus larvae, which caused mortality up to 33% in New South Wales, Australia (Wright 48 

and Easton 1996). Another dominant marine Oomycetes, Halophytophthora species was 49 

reported to colonize both living and dead pupae of C. subimmaculatus in coastal waters of 50 

Hervey Bay region in Queensland, Australia (Stephen and Kurtböke 2011). Yet another 51 

deuteromycete fungus, Culicinomyces clavisporus, was highlighted as the potential 52 

biocontrol agent against European biting midge, C. nubeculosus larvae (Unkles et al. 2004). 53 

 54 

The impact of Culicoides-transmitted viruses such as Akabane in Australia, African horse 55 

sickness in Africa, bluetongue (BTV) in North America, Africa and Europe, as well as recently 56 

emerged Schmallenberg livestock disease in Europe, highlight the worldwide importance of 57 

midges (Elbers et al. 2013). The wide distribution of infected vector species of midges 58 

contribute to the rapid spread of the virus. At least 83 species of Culicoides are found in 59 

Europe (Venail et al. 2012), however, only around 30 species have been associated with BTV 60 

transmission (EFSA 2017): In Europe, Culicoides species that have been implicated as 61 

potential vectors of BTV generally belong to the subgenera Avaritia and Culicoides. 62 
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Culicoides (Avaritia) imicola, C. (Avaritia) obsoletus and C. (Avaritia) scoticus are presently 63 

considered confirmed BTV vectors, while C. (Avaritia) chiopterus, C. (Avaritia) dewulfi, C. 64 

(Culicoides) pulicaris and C. (Culicoides) punctatus as probable vectors (Purse et al. 2015, 65 

Foxi et al. 2016). 66 

Current surveillance measures and control programmes focus on quarantine or movement 67 

restrictions of livestock during periods of insect activity as well as animal vaccination (Racloz 68 

et al. 2006, OIE 2013, Collins et al. 2016, EFSA 2017).  Where disease control by vaccines is 69 

not available, midge control by use of fungal biocontrol agents may play an important role in 70 

limiting disease outbreaks. Presently, midge control rely predominantly on synthetic 71 

pesticides, which pose a risk to humans and the environment (Carpenter et al. 2008a, Webb 72 

et al. 2010, Del Rio et al. 2014, Baker et al. 2015, De Keyser et al. 2017). Climate change 73 

models predict warmer and wetter weather, which in turn is expected to lead to larger 74 

midges densities (Guis et al. 2012, White et al. 2017). Therefore, safe and effective methods 75 

of vector control are urgently needed. The application of entomopathogenic fungi may 76 

provide potential eco-friendly alternatives for the reduction of midge numbers and 77 

consequent reduction in disease transmission.  78 

 79 

Case studies  80 

Previous research carried by our group involved several of the commercially viable strains of 81 

Metarhizium, Beauveria, Isaria and Lecanicillium (Deuteromycotina: Hyphomycetes) to test 82 

the ability of these strains in killing an indigenous C. nubeculosus (Ansari et al. 2010, 2011). 83 

Though C. nubeculosus is not a common midge, nor is it considered an important vector 84 

species for Schmallenberg or bluetongue viruses, thus it was used as a model insect in our 85 
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studies, which was sourced from a colonised line. Ansari et al. (2011) demonstrated the 86 

biocontrol potential use of fungal application to different substrates (peat, leaf litter, 87 

manure) as the representative resting sites for Culicoides midges to simulate a more 88 

accurate estimation of fungal application in livestock microenvironment. Whereas, Nicholas 89 

and McCorkell (2014) obtained 98% reduction in emergence of C. brevitarsis adults by 90 

incorporating M. anisopliae conidia to cattle dung. Superior control was achieved as cattle 91 

dung serve substrate for the growth and development of C. brevitarsis. Also, Narladkar et al. 92 

(2015) reported the use of high dose of fungal spores against unknown species of Culicoides 93 

larvae (in drainage channel) and adults (resting on cattle shed walls) and claimed LC50 values 94 

of 3837 mg and 2692 mg (108 cfu/g) for M. anisopliae and B. bassiana, respectively. 95 

 96 

Different conidial formulations aimed at improving conidial application and consequently 97 

ease of use were tested, i.e. dry conidia dusted uniformly on each substrate (‘dry’ 98 

formulation) and conidia suspended in 0.03% aq. Tween 80 (‘wet’ formulation). It was found 99 

that conidia attach to the adult midge and infect it by penetrating the cuticle or integument. 100 

Once inside the insect, the fungus grows rapidly producing toxins that kill the midges within 101 

24 h (Ansari et al. 2011). Following colonisation of the hemocoel, the fungus erupts through 102 

the intersegmental sections and produces conidiophores and conidia (Fig. 1). A 103 

commercially available strain, M. anisopliae F52 (Met52® G bioinsecticide, currently 104 

available for control of black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) 105 

in horticultural crops, killed 100% of C. nubeculosus within 24 h at 1011 conidia per m2. 106 

Furthermore, C. nubeculosus adults exposed to ‘dry’ or ‘wet’ conidia under semi-field 107 

condition showed that dry conidia were more effective than wet conidia, causing 100% 108 
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mortality after 5 days compared to 70%, respectively. Met52 granular formulation is 109 

approved in several European countries but is not available as dry spores or in a powder 110 

form for use in midge control. Irrespective of application method or substrate, all surviving 111 

adults collected from M. anisopliae-treated substrates in a greenhouse study died from 112 

fungal infection. Midges were observed directly transmitting infective conidia between 113 

males and females. Similarly, transmission of M. anisopliae between adult mosquitoes 114 

(Anopheles gambiae), has been demonstrated. Further studies in Australia demonstrated 115 

the susceptibility of another important species of biting midge (C. brevitarsis) to different 116 

strains of M. anisopliae infection (Nicholas and McCorkell 2014). The authors suggest that 117 

M. anisopliae has the potential to control C. brevitarsis through either surface treatment or 118 

topical application to cattle or through incorporation into fresh cattle dung. They found that 119 

the two strains of M. anisopliae were able to cause 70% mortality in adult C. brevitarsis after 120 

exposure for 5 days to surfaces treated with approximately 0.6 g/m2 of dry conidia. These 121 

mortalities increased to 96% and 94% after 7 days. Moreover, they showed that when M. 122 

anisopliae spores were incorporated into fresh cattle dung (between 0.25 and 1 g 123 

conidia/kg) the emergence of adult C. brevitarsis was reduced by up to 98%.  124 

 125 

Importantly, the fungal strains tested pose no obvious risk to humans or the environment 126 

(Strasser et al. 2000, Darbro and Thomas 2009). US Environmental Protection Agency 127 

conducted risk assessment and found that Metarhizium brunneum (=M. anisopliae strain 128 

F52) was not harmful to earthworms or to such beneficial insects as lady beetles, green 129 

lacewings, parasitic wasps, honey bee larvae, and honey bee adults (EPA 2011, Fischhoff et 130 

al. 2017). Their production involves relatively low cost and simple technology processes, 131 
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facilitating the potential for large-scale production. Currently, resting sites are poorly 132 

defined for Culicoides species and different vector species have different larval habitats and 133 

feeding preferences, e.g. adult C. brevitarsis prefer grass tussocks (Bishop et al. 1995) 134 

whereas C. impunctatus prefer downy birch (Carpenter et al. 2008b), therefore, it’s 135 

impractical for the widespread application of fungal spores. Zimmer et al. (2014) assessed 136 

and recorded several substrates which serve as suitable breeding sites and micro-habitats 137 

for the larval development of midges, e.g. maize silage residues, cattle dung, ground of 138 

flooded meadow, green filamentous algae and underlying substrate, silt from a pond, and 139 

ground of hollows. Whereas, Carpenter et al. (2008b) found high levels of lichen, moss and 140 

liverwort as commonly resting sites of midge adults near downy birch trees.  Breeding sites 141 

such as cattle dung could provide a means of exposing midges larvae to M. anisopliae in the 142 

field via treated dung (Nicholas and McCorkell 2014). However, targeting newly emerged 143 

adults prior to their initiation of blood feeding would be preferable to achieve significant 144 

reduction in disease transmission rates. Another factor is temperature, which is particularly 145 

important as the best time to treat the vector populations would be earlier in the season 146 

when midge density is still relatively low and few within the population are infected. The 147 

limitation of our studies is that the colonised line is adapted to higher temperatures than 148 

wild caught midges, which are cold tolerant, therefore, further studies are required to be 149 

conducted with the application testing using wild, field-caught midge populations. Thus, 150 

currently control studies has demonstrated for a colonised midges species which has a 151 

limited vector capacity in the potential use of entomopathogenic fungi for the reduction of 152 

midge-borne disease in livestock (Ansari et al. 2010, 2011, Nicholas and McCorkell 2014). 153 

The success of midge control programmes using these fungi require large-scale field trials in 154 
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different microclimate conditions to establish the most effective formulations and 155 

application methods for the fungal spores.  156 
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Fig. 1. Culicoides nubeculous midges at different periods after contact with dry conidia of 329 

the entomopathogenic fungus Metarhizium anisopliae BNL 102. (A) Healthy adults (B) An 330 

adult midge cadaver, 3 days after treatment showing fungal growth through the body wall; 331 

(C) An adult cadaver, 6 days after treatment showing fungus sporulation.  332 
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