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Abstract—This paper outlines the base concepts, materials 

and methods used to develop an Industry 4.0 architecture focused 

on predictive maintenance, while relying on low-cost principles to 

be affordable by Small Manufacturing Enterprises. The result of 

this research work was a low-cost, easy-to-develop cyber-physical 

system architecture that measures the temperature and vibration 

variables of a machining process in a Haas CNC turning centre, 

while storing such data in the cloud where Recursive Partitioning 

and Regression Tree model technique is run for predicting the 

rejection of machined parts based on a quality threshold. 

Machining quality is predicted based on temperature and/or 

vibration machining data and evaluated against average surface 

roughness of each machined part, demonstrating promising 

predictive accuracy.  

Keywords—e-Maintenance, Predictive Maintenance, Condition 

Based Maintenance, Industry 4.0, Smart Manufacturing, Machine 

Learning, Small Manufacturing Enterprise, Low Cost, Open Source 

I. INTRODUCTION 

In recent years, maintenance activities have attained critical 
importance for manufacturing enterprises, especially due to             
the growth in complexity of the interactions between different 
production activities in increasingly extended manufacturing 
ecosystems. Meanwhile, the maintenance management 
discipline has been focusing on the role of maintenance to 
contribute to delivering business value [1]. The emerging 
perspective was that maintenance should not be viewed only at 
a narrow operational and technical level representing an 
unavoidable cost; but it could be viewed in a long-term strategic 
view. This strategic role of maintenance can therefore be viewed 
from the overall business viewpoint, and assessing effectiveness 
as a main maintenance goal [2-5]. Today, maintenance is clearly 
seen as a source of added-value, with the key role for driving 
performance improvement [1]. 

The increasing numbers of connected machines, systems, 
equipment and goods on the shop-floor is providing new 
opportunities as traditional production systems are evolving   
into so called Cyber-Physical Production Systems (CPPSs), and 
machine tools into ‘smart machining centres’ [6] [7]. 
Maintenance can take advantage to develop Smart Maintenance 
concepts and applications. Indeed, maintenance engineering is 
required to this end, as it is considered, traditionally, a lever also 
to take advantage of new systems and technologies. Certainly, 
the main goal of maintenance engineering function is to provide 

high-levels of availability of production equipment by ensuring 

its maintainability and reliability in order to support production 
objectives [6]. New systems and technologies are intended to 
enable maintenance bringing such an added-value through high-
levels of performance targets. In particular, ICT for maintenance 
– in the past, mainly acknowledged through the e-maintenance 
concept – has especially been developed to bring value through 
technological innovation for maintenance management [8]. 

Considering the advances and convergence of Information 
and Operational Technologies (ITs/OTs) at the Industrial 
Internet of Things (IIoT), traditional maintenance activities are 
changing through a transformative paradigmatic shift, having its 
roots in the e-maintenance concept [9] and now further evolving 
into smart maintenance. Therefore, in the most recent years, this 
evolution has been driven by the cognitive computing progress 
in which predictive maintenance strategies are now fostered by 
Artificial Intelligent (AI) systems that provide real-time condition 
monitoring and prognostic capabilities [10]. As a consequence, 
(smart) industries desire to improve their equipment availability 
while decreasing downtimes and increasing productivity through 
e-maintenance / smart maintenance strategies, highly grown 
with the new era of Industry 4.0. This growth is worth since 
maintenance costs can represent 15% to 40% of the overall costs 
of goods production [9] [11].  

The move from “fail-and-fix” approaches to “predict-and-
prevent” or proactively plan strategies, was greatly facilitated   
by the emergence of e-maintenance. Today, e-maintenance is 
further enabled, and transformed, by the use of smart 
manufacturing technologies [12] such as Industrial Internet of 
Things (IIoT), cloud-based infrastructure, and wireless 
communication technologies [9] [13]-[15]. The introduction of 
such technology enablers further supports the implementation of 
Condition-Based Maintenance (CBM) strategies, which reduce 
the need for unnecessary scheduled preventive operations [16]-
[18]. Hence, CBM is based on the monitoring of performance 
and operation conditions of machine components in order to 
provide maintenance activities, which can be carried out before 
a component fails [19] [20]. 

Research initiatives on e-maintenance have proposed 
architectures and frameworks which employed web-based 
information processing, as well as smart sensing and 
identification to deliver CBM solutions [21]. The added 
potential of Industry 4.0 technologies further advances the 
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technology potential to make CBM approaches feasible for 
wider range of application settings. Within such architectures/ 
frameworks, the main idea of CBM is to detect the degradation 
level of machine components by collecting periodic or 
continuous real-time data with sensor technologies whereas. 
CBM strategies may involve Predictive Maintenance (PdM), 
wherein the current state of monitored equipment, along with 
historical data and relevant domain knowledge and models is 
employed to predict through statistical or machine learning 
models trends, behaviour patterns and correlations [11] [22] 
[23], and anticipate pending failures in advance to enhance               
the decision-making process for the maintenance activity [24]-
[26]. PdM is becoming more and more a crucial approach 
among modern smart manufacturing industries, since global 
competitiveness is becoming everyday more challenging. 
Moreover, businesses efficiency benefits from PdM by reducing 
the lifecycle management costs of production assets, as well as 
by reducing their downtime. PdM is substantially supported by 
key Industry 4.0 technologies, such as internet of things and data 
analytics and is therefore a fundamental part of the Industry 4.0 
/ Smart Manufacturing landscape.  

Machine Learning (ML) methods have been applied for 
many years now for predictive maintenance systems in different 
industrial areas. For instance, [20] developed a PdM framework 
to predict flank wear by using a back propagation neural 
network, and [15] created a predictive model to forecast failure 
of a heating, ventilating and air conditioning system using 
Artificial Neural Networks and Linear Regression. However, 
the data and services integration opportunities offered in 
connected production environments make PdM a much more 
potent approach, capable of exploiting data and knowledge at a 
breadth and depth that was simply infeasible in the past. The 
objective of this paper is to present the concept of Industry 4.0 
– enabled predictive maintenance and demonstrate it on a 
machining monitoring application case study.  

This paper is organized as follow: Section II reviews the base 
concepts related to Industry 4.0 technologies and PdM in the 
context of this research work, Section III details the materials, 
methods and experimental setup used for developing a low cost 
PdM strategy based on an Industry 4.0 architecture for SMEs, 
particularly small manufacturing enterprises, Section IV presents 

the experimentation results conducted in a CNC turning centre, 
lastly, Section V summarizes the results of this work and draws 
conclusions. 

II. BASE CONCEPTS 

Industry 4.0 is the transformation of today’s factories into 
smart factories by using the smart manufacturing technologies 
such as the Industrial Internet of Things (IIoT), Cyber-Physical 
Systems (CPSs), Cloud Computing, and Machine Learning 
(ML) [6] to provide their production systems with flexibility and 
adaptability capabilities, since present production planning and 
control approaches are rigid due to the usage of traditional 
automation and control concepts. Therefore, smart devices such 
as CPSs, which monitor the production processes of the factory, 
which are embedded in an IIoT environment, provide a modular 
and flexible factory structure as well as decentralized decision-
making support. The application of an Industry 4.0 architecture 
will help to overcome current production management challenges 

such as short product lifecycles, high-customized products and 
stiff global competition [28]. 

In the reminder, a selected set of base concepts is shortly 
discussed, considering both the new systems and technologies 
proving new potential (Section from A to D) and the application 
target of such potential (Section from E to F). 

A. Industrial Internet of Things (IIoT) 

The IIoT uses the Internet of Things (IoT) technologies in   
an industrial environment such as the manufacturing sector, 
incorporating machine learning and big data technologies to 
strengthen the philosophy that “smart machines” show higher 
efficiency in comparison to humans in terms of accuracy and 
consistency for data management.  

The IIoT connects sensors to machines in order to improve 
their performance, safety, reliability and energy-efficiency by 
collecting data from sensors (things) in a cost-efficient way for 
its strategic interpretation with big data analytic tools that turn 
the data into actionable information to be delivered the right 
person and/or computer system at the right time to contribute to 
the continuous performance improvement of a production 
system [29]. 

B. Cyber-Physical Systems (CPSs) 

CPSs are integrated into computers, networks and physical 
processes to monitor and control the (production) processes   
with feedback-loops. CPSs are a new generation of systems   
with computational and physical abilities, including human 
interaction. The structure of CPSs can be described as a 5C 
architecture that consist of five levels: (1) smart Connection,          
(2) data-to-information Conversion, (3) Cyber, (4) Cognition 
and (5) Configuration [30]. 

C. Cloud Computing 

Cloud computing is a crucial element for the continuous 
development of the Fourth Industrial Revolution. Simply, cloud 
computing is the storage and access to data, programs and other 
virtual resources over the internet (e.g. Application-, Platform-, 
Infrastructure-as-a-Service). Cloud computing provides various 
benefits to manufacturing enterprises, specially SMEs, such as: 
avoid up-front ICT-infrastructure costs (e.g. servers), focus on 
core-business instead of spending time and money on computer 
infrastructure, higher applications’ speed and agility, improved 
manageability, less maintenance and rapid adjustment of ICT 
resources [31]. 

D. Machine Learning (ML) 

ML provides the ability to computers to learn without being 
explicitly programmed. ML is a tool of artificial intelligence, 
which focuses on the development of computer programs that 
can change when new data is introduced. ML shows similarities 
to data mining in which both search for patterns through the data, 
however, ML detects the pattern through the data and adjusts the 
program accordingly. Consequently, due to the massive increase 
of data, manufacturing enterprises changed their decision-making 
processes in areas such as maintenance, scheduling and quality 
control. The successful introduction and implementation of ML 
into the maintenance processes has promised to transform the 
traditional maintenance approaches to predictive maintenance 
approaches to support the decision-making processes [32] [33]. 



ML can be mainly divided into (a) supervised-learning and                     

(b) unsupervised-learning. Supervised-learning is when an input 
variable (X) and an output variable (Y) is given in which the 
system learns to map inputs and outputs to predict (Y) when new 
data (X) is inserted into the function. Contrary, unsupervised-
learning takes places if only input data (X) is given and the 
output is unknown in which the system gets knowledge about 
the data and discovers the structure and the distribution of the 
data. 

E. Condition-Based Maintenance (CBM)  

CBM is a maintenance strategy that recommends 
maintenance activities on the basis of an assessment of current 
machinery condition, inferred through condition monitoring. 
CBM follows the idea that it is more efficient to determine 
preventive actions on the basis of current conditions, so as to 
avoid consequences of any failure of assets, to avoid breakdowns 
of machines and to reduce maintenance costs by eliminating 
unnecessary scheduled preventive operations [16] [18] [19] [34] 
[35]. In early years, maintenance discipline consisted of 
reacting-only by mechanical breakdowns, which resulted 
inefficiently for productivity aims. Consequently, as smart 
manufacturing technology progressed over the time, 
maintenance activities can increasingly follow a CBM approach.  

Today, effective and intelligent CBM systems are expected 
to detect early forms of degradation, so maintenance costs 
caused by inaccurate or poor maintenance scheduling can get 
reduced [36]. Therefore, the practice of PdM strategies can 
result in an increase in global competitiveness through the 
elimination of unplanned maintenance operations, since PdM 
techniques help to identify and to determine the conditions of 
assets before they fail [22]. Further, PdM helps to monitor the 
condition of selected physical parameters within an operating 
machine by performing periodic or continuous real-time data 
collection [22] [23]. Thus, the collected data can be used to 
discover, with the help of PdM models, current or future 
deterioration of components and machines [25] [37].  

III. MATERIALS, METHODS & EXPERIMENTAL SETUP 

This section details the materials, methods and experimental 
setup used for developing a low cost PdM strategy based on                 
an Industry 4.0 architecture for SMEs, particularly small 
manufacturing enterprises. 

The experimental setup (or architecture) includes various 
steps to follow, such as: (a) production simulation, (b) quality 
management, (c) data acquisitions, (d) data storage, and (e) data 
analytics, in which each step requires various methods and          
tools to develop a PdM system – for a small manufacturing 
enterprise. Figure 1 shows the general structure of the proposed 
Industry 4.0 architecture for the PdM system of a CNC turning 
centre, using open-source and low-cost technologies.  

This paper presents a PdM system based on a simulated 
production process on a Haas ST 10 CNC turning centre.                   
The CNC machine was setup to produce simple metal parts 
using a tool holder and tool insert. As for materials, a non-alloy 
cementing steel with a diameter of 1 inch and a length of 7.87 
inch was used for the experimentation. Additionally, a quality 
control was conducted after each machined part in which                  
the following roughness variables: roughness average (Ra), root 

mean square rough-ness (Rq) and mean roughness depth (Rz) 
were manually measured by using a surface roughness tester. 

 
Fig. 1. Schematic Diagram of the Experimental Setup for an Industry 4.0-

enabled Low Cost PdM Approach for a CNC Turning Centre 

A. CPS – Raspberry Pi 3 Model B 

The Raspberry Pi 3 is a low cost third generation single-
board computer. It is employed to offer the multi-functionality 
of data acquisition, data processing and connectivity for data 
transmission 

 
Fig. 2. Raspberry Pi 3 Model B 

B. IIoT – Sense HAT 

The add-on board “Sense-HAT” selected for the Raspberry 
Pi 3 Model B includes various sensors such as gyroscope, 
accelerometer, magnetometer, temperature, barometric pressure 
and humidity. The selected Sense-HAT can sense a wide variety 
of conditions and provide output via the built-in LED matrix 
(see Figure 3). Its configuration and the access to its sensors is 
performed by using Python high-level programming language.  

 
Fig. 3. Raspberry Sense-Hat 

C. Data Management and Processing 

While any relevant cloud infrastructure can be employed in 
such a context, here Dropbox is simply employed as personal 
cloud storage service. The main purpose of the selection of 
Dropbox is due to the easy and fast connection to the Raspberry 
Pi platform. More specifically, a Dropbox uploader can be 
installed and configured on the Raspberry Pi 3 Model B via a 
Python script to provide automatized data exchange and storage. 
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One of the most attractive and common tools to develop 
predictive models is the open-source programming language R. 
A wide variety of statistical (e.g. linear and nonlinear modelling, 
classical statistical tests, time-series analysis, classification, 
clustering, etc.) and graphical techniques are supported in R. 
The choice of the open-source R programming language is 
consistent with the main idea of a low-cost and flexible solution, 
it can perform operations on entire arrays of numbers without 
writing loops and it is attractive in terms of package ecosystem. 

IV. EXPERIMENTATION 

The experimentation for the above described use case                  
was performed at Haas ST 10 CNC turning centre, and was 
divided into four main stages: (1) production simulation, (2) data 
acquisition and storage, (3) PdM framework and (4) results.  

A. Stage  1 – Production Simulation 

The first stage in the proposed data process chain is about 
the simulation of a real-life production environment, which 
requires the selection of material, tool-holder, tool-insert and the 
development of a machining process. A G-Code for the work-
piece, shown in Figure 4, was designed and developed. Position 
1 in the work-piece is described as the critical point in which the 
quality needs to be guaranteed.  

 
Fig. 4. Machined Work-piece 

The experiment is divided into three sets in which the main 
purpose is to produce work-pieces with different machining 
parameters (i.e. spindle speed and feed rate) until the insert is 
worn out or even broken. Table 1 shows three sets of selected 
machining parameters for the machining process. 

Table 1. Sets of Machining Parameters 

 
Experiment 

ONE 

Experiment 

TWO 

Experiment 

THREE 

Spindle speed 

(V) 
3600 2600 1600 

Feed rate  

(f) 
0.3 0.2 0.1 

Depth of cut 

(d) 
1.954 mm 1.954 mm 1.954 mm 

Cycle time per 

Work-piece 
80 seconds 113 seconds 210 seconds 

 
Experiment ONE 

With the machining parameters of the Experiment ONE,               
the cutting tool could produce in total 21 work-pieces until                 
it worn out. Figure 5 shows the behaviour of the measured 
roughness variables of position “1” in which after the 16th piece 
the tool wear started to accelerate, impacting on the product 
quality. 

 
  

 

 

 

 

 

 

 

 

Fig. 5. Roughness Variables Behaviour in Experiment ONE 

Experiment TWO 

Furthermore, in Experiment TWO, due to the decreased 
spindle speed and feed rate, the process could machine 32 work-
pieces in total until the cutting tool broke. Figure 5 shows,               
after the 27th piece the surface roughness started to increase 
significantly and consequently the tool wear started to 
accelerate. 

  

Fig. 6. Roughness Variables Behaviour in Experiment TWO 

Experiment THREE 

Finally, due to the decreased spindle speed and feed rate the 
process could machine 52 work-pieces in total until the cutting 
tool broke. Figure 7 shows, after the 48th piece the surface 
roughness started to increase significantly and consequently the 
tool started to accelerate.  

 

Fig. 7. Roughness Variables Behaviour in Experiment THREE 

B. Stage 2 – Data Acquisition and Storage 

Before the production process started, a Raspberry Pi 3 
Model B with a Sense-Hat was installed into the Haas ST 10 
Turning Centre to collect temperature and vibration data.                 
The Sense-Hat chip is connected to the Raspberry Pi via its 
available pins. As well, a black case is used to cover and protect 
the device. Figure 8 shows the assembled Raspberry Pi 3 Model 
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B with the Sense-Hat, and the case attached to the tool magazine 
of the CNC machine. The device software runs on an Ubuntu 
OS, which allows easy programming in Python for the Sense-
Hat and other applications. Once, the Raspberry Pi was setup, 
the temperature and accelerometer of the Sense-Hat needed                  
to be activated and accessed via Python. For teether free 
communication between the Raspberry Pi and an external 
computer, PuTTY is used, which is a free and open-source 
application that can be used to connect to serial ports and Secure 
Shell (SHH) to Raspberry Pi. PuTTY allows fast and easy 
connection to the Raspberry Pi over SSH and the IP address of 
the Pi. 

 

Fig. 8. Haas ST 10 Turning Centre with the CPS Installed 

A Dropbox BASH script uploader is employed for handling 
part of the cloud-based data management. The selection of                
the BASH script has two main advantages: it is portable, which 
means it needs only URL and it has security provisions, which 
means it is not required to provide username or password 
because it uses the official Dropbox API v2 for the authentication 
process. Finally, a second Python script was developed for an 
automatized file transfer from the Raspberry Pi to Dropbox.  

C. Stage  3 – PdM Framework 

Once the data was collected and stored successfully in                 
the Cloud, the learning part of the PdM framework was 
implemented R. Specifically the Recursive Partitioning and 
Regression Tree (rpart) technique was used. In general, 
“Decision Trees” can be used for classification or regression 
problems in which the model is presented as a tree structure. A 
decision tree can be incrementally built while the dataset is 
divided into smaller subsets. Furthermore, the result of a 
decision tree is represented with decision nodes and leaf nodes 
in which a decision node can have one or more branches and the 
leaf nodes show decisions on the numerical or categorical target. 
The root node on the top-most corresponds to the best predictor. 
The main goal is to create a model that predicts the value of a 
target variable by learning simple decision rules inferred from 
the data features. On the other hand, recursive partitioning is a 
statistical method for multivariable analysis in which a decision 
tree is created that can classify members of a population 
precisely by dividing it into subsets. It is called recursive 
because each subset can be divided into an infinite number of 
times until the dividing process finishes after certain criteria is 
reached. The tree is built by two main steps: (a) the single 
variable is found which best splits the data into two groups, (b) 
the data is separated, in which the separation process is applied 
separately to each sub-group recursively until the subgroups 
either reach a minimum size or until no improvement can be 
made. The development of the rpart required eight steps in total.  

(1) Retrieving raw data from Dropbox into RStudio. 

The first step is to retrieve the data from Dropbox and run it 
into RStudio in order to start the data analysis procedure and the 
development of the predictive model. The function read.csv () 
is used to read the data and to store it into the global environment 
of RStudio. 

(2) Performing basic statistical calculations. 

The second step is to write a function, which performs             
basic statistical calculations such as mean, standard deviation, 
maximum, mean difference and max difference.  

These statistical calculations are used to gain a basic 
understanding of the behaviour of the data, to feed the decision 
tree model and to develop a uniform data frame. 

(3) Cleaning data and creating data frame for the modelling. 

The third step involves the adjustment of the measured                
data with the roughness variable Ra since each run of the 
experimentation collected a large number of data points whereas 
the roughness variable has only one data point for each run of 
experimentation. Therefore, for each run the mean values were 
considered to have the same number of data points for each run 
and for the roughness variable. More specifically, a uniform data 
frame is developed. 

(4) Normalization of the data. 

The fourth step is about the normalization of the data since 
the data points for temperature and for acceleration (x, y and z) 
are showing significant differences e.g. a temperature data point 
might be 22 and a data point for acceleration for x axis might be 
-0.987. Therefore, to avoid the differences between the data 
points, the scale () function is used to determine standardized 
values for each element in the data-set. Simply, each element of 
the data-set is set between zero and 1. 

(5) Setting a threshold for the roughness variable (Ra). 

Since the experimentations are performed under different 
machining conditions (rpm and feed rate) the quality threshold 
for each experiment differs from each other e.g. for Experiment 
(THREE) a quality threshold for Ra of 30 µinch is set and for 
Experiment (ONE) and (TWO) a value of 100 µinch. 

(6) Splitting the data into training and test data-sets. 

Splitting the data-set into training and test data-set is 
essential in predictive modelling. Consequently, the decision 
tree model is based on the data-set of Experiment (TWO), which 
is the training set and Experiment (ONE) and (THREE) are used 
as test sets to perform the predictions. In fact, a training set is a 
set of data used to discover potential predictive relationships 
whereas a test set is a set of data used to assess the strength and 
utility of a predictive relationship. 

(7) Initializing the decision tree model. 

Once the data is setup, the decision tree model is initialized 
by applying the rpart () function. As mentioned above, the data-
set and the quality threshold from Experiment (TWO) is used to 
train the recursive partitioning and regression tree. As well, the 
mean and standard deviation values of temperature and x-axis 
are considered as predictor variables and the violate variable 



which is a binary value (1) if Ra exceeds threshold and (zero) if 
Ra is below the threshold) is used to train the model. 

(8) Performing predictions. 

The final step involves the prediction process based on                
the developed decision tree model and the test data (Experiment 
(ONE) and (THREE)). The function predict () is used in which 
two arguments are given into the function, namely, the decision 
tree model and the test data. It is important to mention that                
the input variables are continuous variables and the output 
variables categorical, in this case (1) and zero, thus the results of 
the predictions can be seen as probabilities.  

D. Stage 4 – Results 

The key result is the demonstration of the concept of 
Industry 4.0-enabled monitoring through low cost devices. 
While the main supported functionality of the presented case 
support the key constituents of a condition monitoring data 
process chain, from data acquisition and signal pre-processing, 
to detection, diagnosis, and prediction, the prime focus of this 
study has not been to develop a new approach for such data 
processing, but showcase that such processing can be delivered 
through low-cost IoT-enabled simple architecture. Furthermore, 
we present some indicative findings on the processing 
capabilities for the experimental setup, again as part of 
demonstrating the above concept. For example, a relationship 
between the x-axis vibration, temperature and surface roughness 
average variable (e.g. Ra) is identified. More specifically, with 
an increase in vibration and temperature, an increase in Ra is 
detected which triggers a lower surface quality of the machined 
parts and is a clear indicator of progressing tool-wear, which if 
not addressed, will eventually lead to breakage. The correlation 
between the three mentioned variables is performed for all of   
the experiments, which can be seen in Figures 9 to 14. 

  
Fig. 9. Vibration X-Axis vs. Roughness Average 

  
Fig.10. Temperature vs. Roughness Average 

  
Fig. 11. Vibration X-Axis vs. Roughness Average 

  
Fig. 12. Temperature vs. Roughness Average 

  
Fig. 13. Vibration X-Axis vs. Roughness Average 

  
Fig. 14. Temperature vs. Roughness Average 

Secondarily, the single-board computer (the Raspberry Pi 3 
Model B) and the IIoT device (the Sense-Hat) performed with 
high durability and stability during the experiments, even though 
the Raspberry Pi case suffered severe scratches. Thus, proved 
that they can be used under certain harsh and various machining 
conditions close to an industrial-grade enclosure. Nevertheless, 
further research about this matter is recommended. 
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Additionally, the embedded processing capability was 
demonstrated by integrating the Recursive Partitioning and 
Regression Tree model (rpart), achieving encouraging results. 
More specifically, the (rpart) model predicts with an average 
accuracy of 81% at which processing part the quality threshold 
will be exceeded. Figure 15 shows the resulting decision tree. 
As it can be seen in Figure 15, the root node, which is on the 
topmost is primarily divided by the mean values of temperature 
and further divided by mean values of X-axis and the standard 
deviation of temperature values. Consequently, the (rpart) 
model calculates the variable importance in which the mean 
value of temperature has an importance of 34%, mean value of 
X-axis of 31%, standard deviation of temperature of 30% and 
standard deviation of X-axis of 6%. 

 
Fig. 15. Recursive Partitioning and Regression Tree 

In the above tree, the target variable is a categorical value 
and the predictor variables are continuous values thus the results 
are given as probabilities. Table 2 shows the predictions and the 
actual values for Experiment in which the false predictions are 
highlighted in red and the correct ones in green. 

Table 2. Predictions for Experiment ONE 
Part No. Predictions Actual Values 

1 0.6666666667 1 

2 0.6666666667 1 

3 0.6666666667 1 

4 0.6666666667 1 

5 0.0000000000 1 

6 0.0000000000 1 

7 0.50000000000 1 

8 1 1 

9 1 1 

10 1 1 

11 1 1 

12 1 1 

13 1 1 

14 1 1 

15 1 1 

16 0 1 

17 0 1 

18 1 1 

19 1 1 

20 1 1 

21 1 1 

As it can be seen in Table 2, all the actual roughness average 
variables exceeded the set quality threshold whereas the model 
predicts 17 values correctly and four values wrongly. Naturally, 
this is just an indicative result and more advanced 
experimentation setups and data processing can be employed 
instead, within the Industry 4.0-enabled monitoring concept 
presented in this paper.  

The performed predictions for a consequent set of 
experiments had similar accuracy wherein 42 roughness values 
are identified correctly and 10 values wrongly. The model shows 
the negative trend of tool-wear after a certain number of 

machined parts for the experiments in which preventive actions 
can be taken in advance before a breakdown is reached. Real-
time data can be fed into the model in which the rejection of 
machined parts with any kind of threshold and machining 
parameters can be forecasted.  

In summary, an increase in the vibrations of X-axis and 
temperature values affect the roughness average variable 
negatively in which the model predicts the same negative trend 
with consecutive 1’s. As well, the model is able to predict with 
an average accuracy of 81% when a machined part will exceed 
a certain quality threshold, which can be correlated to the 
condition of the tool in which the maintenance department can 
be alerted in advance in order to avoid tool wearing or breakage 
and to assure constant quality standards during production. 

V. CONCLUSIONS  

Different manufacturing sectors and/or industrial areas are 
showing a growing interest in the implementation of Industry 4.0 
technologies to develop competitive advantage strategies such as 
predictive maintenance strategies. Industry 4.0 has proven to be 
a beneficial “vision” for the today’s (smart) industries and 
factories due to its high efficiency, cost reduction, digitalization, 
connectivity and dynamic decision-making processes nature. 
New potentials are available from ITs/OTs, such as CPSs, data 

analytics, as well as ML techniques, leading to introduce new 
capabilities for PdM systems, serving as powerful “tools” to 
improve production and maintenance activities, to assure high 
quality standards, to reduce costs and downtimes, and to gain 
significant insights about production processes. Nonetheless, 
many research approaches have shown that the development of 
PdM systems needs significant improvements in terms of 
reduction of costs for monitoring equipment and monitoring it 

with higher accuracy. Therefore, the development of PdM 
systems can take advantage of the introduction of Industry 4.0 
technologies. 

In conclusion, this research work presents an Industry 4.0-
enabled approach focused on predictive maintenance, which 
provides an automated and low-cost data acquisition and 
condition monitoring functionality for a turning process. In 
addition, the production process was simulated to capture the 
mentioned parameters within the machining process and a 
quality control of the machined parts was conducted to discover 
correlations between temperature, vibration and roughness 
average. While the concept presented in this paper employed a 
specific hardware setup for embedded data acquisition and 
computing more advanced features (sensors, embedded boards, 
cloud infrastructure and computing) can be used to expand the 
scope in further studies.  
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