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Abstract: In the current literature, model-predictive (MP) algorithm is widely applied in autonomous vehicle trajectory 

planning and control but most of current studies only apply the linear tyre model which cannot accurately present the tyre 

non-linear characteristic. Furthermore, most of these studies separately consider the trajectory planning and trajectory 

control of autonomous vehicle and few of them have integrated the trajectory planning and trajectory control together. To 

fill in above research gaps, this study proposes the integrated trajectory planning and trajectory control method using non-

linear vehicle MP algorithm. In order to fully utilise the advantages of four-wheel-independent-steering (4WIS) and four-

wheel-independent-driving (4WID) vehicle, the MP algorithm is proposed based on four wheel dynamics model and non-

linear Dugoff tyre model. This study also proposes the mathematic modelling of the static obstacle and dynamic obstacle for 

the obstacle avoidance manoeuvre of the autonomous vehicle. Finally, simulation results have been presented to show the 

effectiveness of proposed control method. 

1. Introduction 

The trajectory planning of the autonomous vehicle has 

become a popular research area due to the emergence of the 
intelligent transportation technology. Many of the studies in 
the current literature assumed the desired vehicle path was 

already known or the desired path has been planned by the 
off-line trajectory planner. Specifically, the autonomous 

vehicle was planned to follow the given trajectory which was 
assumed to be collision free and can be achieved by the 
vehicle [1] [2]. In [3], the combined lateral and longitudinal 

controller was used to follow the pre-calculated sigmoidal 
trajectories for the evasive manoeuvre, and a model 

predictive approach with a combined lateral and longitudinal 
dynamics model was also proposed in [4] to achieve the pre-

calculated path. Rather than simply following a pre-defined 
path determined by an off-line planner, the practical 
application of autonomous vehicle requires to move 

autonomously to explore and determine the trajectory in real-
time.   

Model-predictive (MP) algorithm has been 
extensively applied in various control systems including 

industrial systems [5]. In the unmanned aerial vehicle control, 
MP algorithm was also applied to generate the desired safety 
path [6] [7]. In the area of on-road autonomous vehicle with 

more cluttered environment, the model-predictive algorithm 
was widely applied in the real-time trajectory planning and 

tracking control [8, 9, 10, 11]. Most of these studies only used 
the single point mass model and linear bicycle model. In [12], 
the desired vehicle trajectory could be planned by a single 

point mass model. In addition, a single track vehicle model 
was implemented as the representative of the actual vehicle 

dynamics performance and generated the feedback control 
inputs to achieve the trajectory control. The non-linear 

vehicle dynamics was not considered in the trajectory planner 
and controller. Although the computational efficiency is 
improved, the single mass model and linear bicycle model can 

hardly describe the actual vehicle non-linear dynamics. Thus, 
the planned trajectory sometimes cannot be achieved by the 

autonomous vehicle or the vehicle dynamics performance is 
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seriously compromised when following the planned 

trajectory. Yoon et al. proposed a MP algorithm to achieve 
the local path generation. This MP algorithm was based on 2-

degree-of-freedom (2-DOF) non-linear bicycle model with 
the non-linear Magic formula tyre model and the steering 

angle and driving input of this lumped bicycle model were 
predicted [13]. Similarly, the 2-DOF bicycle model including 
the non-linear Magic Formula tyre model was applied in the 

MP algorithm to only predict the control input of steering rate 
and the velocity was assumed as the constant value in [14]. 

Although a non-linear tyre model is included in the trajectory 
planning in these studies, the applied two-wheel model can 
hardly present the non-linear dynamics performance of the 

innovative electric vehicle – four-wheel-independent-
steering (4WIS) and four-wheel-independent-driving (4WID) 

electric vehicle equipped with four in-wheel motors. The 
individual wheel of the 4WIS-4WID electric vehicle can be 

independently steered and driven, and the non-linear four-
wheel dynamics model is required to be included in the MP 
algorithm. 

It was also argued that there is a compromise between 

the linear computational efficiency model and non-linear 
computational complex model when MP based algorithm was 

applied for the trajectory planning and control [15]. The linear 
simplified model is usually utilised as the high level path 
planner for the long prediction horizon, while the non-linear 

complex model is implemented as the low level path follower 
or trajectory tracking controller for the short prediction 

horizon. For example, a path planner chose a group of pre-
defined paths from the lookup table in the high level and a 6-

DOF non-linear bicycle model was applied for the trajectory 
tracking in the low level [16]. Similarly, a point-mass vehicle 
model was used to model the non-linear MP path planner and 

a more detailed vehicle dynamics model was applied for the 
trajectory tracking controller [17]. Few of the studies in the 

literature have considered integrating the trajectory planner 
and trajectory controller together based on MP algorithm. The 
computational efficiency can be improved due to the 

simplified and integrated control structure.  

In this study, the non-linear Dugoff tyre model is 
integrated into the MP algorithm to predict the vehicle 

trajectory by considering the non-linear tyre characteristic. 
The four-wheel non-linear model is implemented in the MP 

algorithm, and the steering angle and driving or braking 
torque of individual wheel can be individually controlled and 
optimised in the real-time to fully utilise the advantage of 

4WIS-4WID electric vehicle. In order to improve the 
computational efficiency of the non-linear MP algorithm, the 

non-linear vehicle model is implemented as the discrete-time 
model with fixed time step, and the steering angle and traction 
or brake torque can be optimised numerically. Instead of 

using the separated control structure of traditional trajectory 
planning and trajectory control method, this study proposes 

the MP algorithm based method which integrates the 
trajectory planner and trajectory controller together and the 

computational efficiency can be improved by this integrated 

structure. The steering angle and traction or brake torque of 
individual wheel can be directly optimised and the local 

trajectory in real-time can be predicted simultaneously in this 
integrated MP based algorithm based on the real-time 

feedback vehicle states measured from the actual vehicle. The 
additional trajectory tracking controller is no longer required 
and the four predicted steering angles and four predicted 

driving or braking torques can be directly input into the 
4WIS-4WID electric vehicle.  

Furthermore, in the optimisation cost function in the 

proposed MP algorithm in this study, the predict trajectory is 
optimised by a potential field method to minimise the 

distance from the road centreline and maximise the distance 
from the road boundary and obstacle. The obstacle on the 
road can be classified as the static obstacle and dynamic 

obstacle and the proposed integrated method can predict the 
trajectory and control the vehicle to avoid the obstacle 

simultaneously in a fast and efficient manner.  

This paper is organised as follows. The vehicle 
dynamics model of a 4WIS and 4WID electric vehicle is 
introduced in section 2. Then the MP based integrated 

trajectory planning and control algorithm is introduced. The 
bicycle model is first implemented in the proposed integrated 

control algorithm in section 3 and then the four-wheel model 
is implemented in section 4. In section 5, the mathematical 

modelling of the static obstacle and dynamic obstacle is built 
and incorporated into the MP control algorithm. Finally, 
simulation examples are used to validate the effectiveness of 

the proposed control method. 

2. Vehicle dynamics model  

2.1 Vehicle dynamics model 

In this paper, a 4WIS and 4WID vehicle model is 
utilised to describe the dynamics motion of the electric 
vehicle with in-wheel steering and driving motors (Figure 1) 

[18] [19]. Based on this vehicle dynamics model, the steering 
angle and driving or braking torque of individual wheel can 

be predicted and optimised in real-time. The equations of 
motion of this model are described as follows: 

��̇� = ���� + � ���
����,��,��,��

(1a) 

��̇� = −���� + � ���
����,��,��,��

(1b) 

���̇ = ������� + ����� − ������� + ����� +
��

2
����� − �����

+
��
2

(���� − ����)
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(1c) 

where �� , �� , � are the vehicle longitudinal velocity, lateral 

velocity, and yaw rate, respectively. � = ��, ��, ��, ��, which 
represents the front left, front right, rear left and rear right 

wheel, respectively. ���  and ���  are longitudinal tyre force 

and lateral tyre force, respectively. ��  and ��  are the front and 

rear wheel base lengths, while �� and �� are the front and rear 

track widths. �� and � are the moment of vehicle inertia in 

terms of yaw axis and vehicle mass.  

Figure 1. 4WIS-4WID vehicle dynamics model, where IRC 

represents the instantaneous centre of rotation. 

The tyre traction or brake force and side force are 

defined as ��� and ���, respectively, which can be related to 

the longitudinal and the lateral tyre forces by the steering 

angle �� as follows: 

��� = ��� cos �� − ��� sin ��                        (2a) 

��� = ��� sin �� + ��� cos ��                       (2b) 

where �� represents the steering angle of each vehicle wheel. 

It should be noted that all the steering angles mentioned in the 
paper indicate the steering angles of the vehicle wheels.  

2.2 Vehicle tyre model 

Although the non-linear Magic Formula tyre model is 
widely applied in the non-linear MP algorithm, the Magic 
Formula tyre model is mainly based on the curve fitting 

results of a particular group of experimental data and this kind 
of model is hard to describe the general physical meaning of 

tyre. The non-linear Dugoff tyre model, on the other hand, is 
the mathematical simplification of the analytical Fiala tyre 
model under some reasonable simplifying assumptions in the 

analysis of the tyre mechanics, which can accurately present 
the non-linear tyre property with simplified formulation [20]. 

The mathematic presentation of the non-linear Dugoff tyre 
model can be described as follows [20]:  

�� =
����(����)

����
���
����

� ���� ��

                             (3a) 

�(��) = �
��(2 − ��) (�� < 1)

1                  (�� > 1)
                   (3b) 

��� =
�� �����

����
�(��)                            (3c) 

��� =
����

����
�(��)                                (3d) 

According to equation (3), the Dugoff tyre model can 

be classified as two stages according to the defined value �: 

when � > 1, the tyre has not reached the sliding boundary 

point and  when � < 1, the tyre reaches the sliding boundary 

point and starts to slide away. The defined value � can clearly 

divide the whole tyre region into the linear tyre region and 

non-linear tyre region. � is the tyre-road friction coefficient. 

��  is the longitudinal slip stiffness and ��  is the lateral 

cornering stiffness. The physical meaning of �� and ��  can 
be represented by the following equations [20]:   

�� = 2�����                               (4a) 

�� = 2�����                              (4b) 

where � is the half-length of the contact patch and � is the 

width of the contact patch. �� and �� are the tyre longitudinal 

deflection constant and lateral deflection constant related to 

the tyre property. �� is the longitudinal slip ratio, and �� is the 

lateral slip angle. Longitudinal slip angle and can be 
calculated by the following equations: 

�� =
�������

����
          during acceleration          (5a) 

�� =
�������

��
            during braking             (5b) 

Lateral side-slip angle can be calculated as followings: 

��� = ��� − tan�� �
������

����.����
�                (6a) 

��� = ��� − tan�� �
������

����.����
�                (6b) 

��� = ��� + tan�� �
������

����.����
�                (6c) 

��� = ��� + tan�� �
������

����.����
�                (6d) 

���  is the vertical load of each wheel, which can be 

calculated as follows [21]: 

���� =
�

�����
�
�

�
��� −

�

�
��̇� − ����ℎ −

��

��
��̇� + ����ℎ�

(7a) 
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���� =
�

�����
�
�

�
��� −

�

�
��̇� − ����ℎ +

��

��
��̇� + ����ℎ�

(7b) 

���� =
�

�����
�
�

�
��� +

�

�
��̇� − ����ℎ −

��

��
��̇� + ����ℎ�

(7c) 

���� =
�

�����
�
�

�
��� +

�

�
��̇� − ����ℎ +

��

��
��̇� + ����ℎ�

(7d) 

where ℎ is the height of the vehicle CG above the ground, and 

� is the acceleration of gravity.  

2.3 Traction or brake dynamics model 

Since one important feature of 4WIS-4WID electric 

vehicles is the ability to perform independent traction or 
brake motion for each wheel. The wheel rotation dynamics is 

described by the following equation: 

���̇� = −����� + ���          during traction         (8a) 

���̇� = −����� − ���          during braking         (8b) 

where �� is the wheel moment of inertia and �� is the angular 

velocity of each wheel. �� is the wheel radius and ���  is the 

traction torque of each wheel and ��� is the brake torque of 
each wheel. 

3. MP algorithm based on 2-DOF vehicle model  

In this section, the proposed MP method based on 2-
DOF model is presented to compare with the proposed MP 

algorithm based on four-wheel non-linear vehicle model to 
show the advantage of applied four-wheel model. The non-

linear Dugoff tyre model is applied here to reflect the actual 
physical meaning and different types of the tyre. Based on the 
vehicle dynamics model (1), the two front wheels and two 

rear wheels can be lumped into one front wheel and one rear 
wheel: 

��̇� = ���� − ��� sin �� + ���

(9a) 

��̇� = −���� + ��� cos �� + ���

(9b) 

�� �̇ = ����� cos �� − �����

(9c) 

where ��� and ��� are tyre side force of lumped front wheel 

and rear wheel and ��� is the tyre traction or brake force of 
rear wheel. It is assumed the 2-DOF vehicle model represents 
the front wheel steering and rear wheel driving vehicle. Thus, 

the rear wheel steering angle �� and traction or brake force of 

front wheel ��� can be assumed as zero. 

Based on the Dugoff tyre model (3), the tyre forces 

can be calculated as follows: 

��� =
�� �����

����
�����                            (10a) 

��� =
�� �����

����
�(��)                            (10b) 

��� =
����

����
�(��)                                 (10c) 

where �� and �� are side-slip angle of lumped front and left 

wheel; ��  and ��  are the slip ratio of lumped front and left 

wheel. �� and �� can be calculated as followings: 

�� = �� − tan�� �
������

��
�                  (11a) 

�� = tan�� �
������

��
�                        (11b) 

�� is the lumped value of front wheel steering angle. �� is the 

lumped value of ��� and ��� and �� is the lumped value of ���
and ���, which can be presented as follows: 

�� =
����������

����
���
����

� ���� ��

                       (12a) 

�� =
����(����)

����
���
����

� ���� ��

                       (12b) 

where ��� = ���� + ���� and ��� = ���� + ����. 

Assumptions: It is assumed that the vehicle states of 

longitudinal velocity, lateral velocity and yaw rate can be 
successfully estimated and is available in the proposed MP 
algorithm. The vehicle vertical load and tyre-road friction 

coefficient are also assumed to be available. These 
assumptions are reasonable since a number of studies have 

successfully proposed the tyre-road friction estimator, lateral 
and longitudinal velocity estimator [22] [23] [24].  

Based on the 2 DOF tyre model (9)-(12), the cost 
function of MP optimisation algorithm can be presented as 

followings based on the attractive and repulsive potential 
fields suggested in [25]: 

min
��,��

�� = ��[(��� − ��)� + (��� − ��)�] +

�� �
�

�����(�����)�
�� + �� �

�

�����(�����)�
��

(13a) 

s.t.                   −|����| ≤ ��(�) ≤ |����|      (13b) 

−|�����| ≤ ��(�) ≤ |�����|        (13c) 
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−|����| ≤ ��(�) − tan�� �
��(���)����(���)

��(���)
� ≤ |����|

(13d) 

where �� is scaling factor of attractive potential and ��,�� are 

scaling factors of repulsive potential. �� is related to the term 
of minimising the distance between the current vehicle 

position and road centerline. �� and �� are related to the term 
of maximising the distance between the current vehicle 
position and road boundaries. The values of these scaling 

factors can be adjusted according to the priority of different 
scenarios. The optimization variables are lumped front wheel 

steering angle ��(�) and lumped rear wheel traction or brake 

torque ��(�) . ��  and ��  are the longitudinal and lateral 

position of road centreline. �� and ��  are lateral positions of 

road upper boundary and lower boundary. It is noted that the 
size of ego vehicle is also considered to make sure the edge 

of vehicle body (not the C.G. of vehicle body) will not collide 
with the upper or lower road boundary. The safety distance 
between the C.G. of ego vehicle and the road boundary can 

be determined by the following equation: 

�� = max��� , �� , �� , ��� + ��� + ���

(14) 

where max��� , �� , �� , ���  presents the geometry of vehicle 

body edge. ��� =
�

�
��  presents the circular safety gap 

extended from the vehicle body edge when considering the 

wheel turning and wheel side-slip. ��� is the constant value 
which presents the safety gap between the vehicle circular 

safety edge and road boundary. ��� and ��� are the predicted 

trajectory optimised by this MP algorithm, which can be 
presented by the following discrete dynamics model:

���(�) = ��(� − 1) + ����(�)��(�) − �(� − 1)�        (15a) 

���(�) = ��(� − 1) + ����(�)��(�) − �(� − 1)�       (15b) 

where ��(� − 1)  and ��(� − 1)  are feedback values of 

vehicle longitudinal and lateral position in the global 

coordinate system in the previous time step. �� is the time of 

current time step and ���� is the time of previous time step. 

����(�)  and ����(�)  are predicted vehicle longitudinal and 

lateral velocities in the global coordinate system in the current 
time step, which can be presented as following: 

����(�) = ���(�) cos���(�)� − ���(�) sin���(�)�      (16a) 

����(�) = ���(�) sin���(�)� + ���(�) cos���(�)�      (16b) 

where ���(�) and ���(�) are predicted longitudinal and lateral 

velocity in the body-fixed coordinate system in the current 

time step and ��(�) is the predicted vehicle yaw angle in the 

current time step. According to equation (9), ���(�), ���(�)

and �̂(�) can be predicted as followings:    

���(�)

= ��(� − 1)

+ ���(� − 1)�(� − 1)

−
����(� − 1) sin ��(� − 1) − ����(� − 1)

�
���(�)

− �(� − 1)�

(17a) 

���(�)

= ��(� − 1)

+ �−��(� − 1)�(� − 1)

+
����(� − 1) cos ��(� − 1) + ����(� − 1)

�
���(�)

− �(� − 1)�

(17b) 

�̂(�)

= �(� − 1)

+ �
������(� − 1) cos��(� − 1) − ������(� − 1)

��
� ��(�)

− �(� − 1)�

(17c) 

where ��(� − 1) , ��(� − 1)  and �(� − 1)  are feedback 

values from actual vehicle in previous time step. ����(� − 1), 

����(� − 1) and ����(� − 1) are predicted tyre front wheel side 

force, rear wheel side force and rear wheel traction or brake 
force in the previous time step. Based on equations (10)(11), 

the tyre force  ���(� − 1), ���(� − 1) and ���(� − 1) can be 

predicted as followings: 

����(� − 1) =  

⎩
⎨

⎧
�� ������(���)�

����(���)
�� > 1

�� ������(���)�

����(���)
���2 − ��� �� < 1 

(18a) 

����(� − 1) = �

�����(���)

����(���)
�� > 1

�����(���)

����(���)
��(2 − ��) �� < 1 

(18b) 

����(� − 1) =
��(���)

��
                            (18c) 

where ��(� − 1) = ��(� − 1) − tan�� �
��(���)����(���)

��(���)
�

and ��(� − 1) = −
���(���)���(���)

��(���)
. 
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The lumped values of �� and �� can be calculated by 

equation (12). The longitudinal slip ratio ��(� − 1)  and 

��(� − 1) can be determined if the longitudinal velocity is 
assumed to be available. It is noted from (18) that the 

optimization variables of ��(� − 1)  and ��(� − 1)  are 

determined and can be input into the actual vehicle dynamics 

model.     

The inequalities (13b) and (13c) show the constraints 
of the steering angle and driving or braking torque. For the 
electric vehicle, the practical limitation of the steering angle 

is considered between -90 degrees and 90 degrees (���� =

90), which is larger than the traditional vehicle [26]. It has 

been also suggested [27] that the maximum driving torque of 

the single wheel �����  is 100 N.m and the maximum 

regenerated brake torque �����  is 80 N.m. Thus, it is 
assumed that the total maximum driving torque of lumped 

rear wheel of two DOF model �����  is 200 N.m and the total 

braking torque �����  is 160 N.m. In (13d), the maximum 

value of side-slip angle ����  is constrained within a certain 

value to prevent the vehicle unstable motion. It is noted that 
only the side-slip angle of lumped front wheel is controllable, 

while the side slip angle of rear wheel is not controllable due 
to the front wheel steering characteristic. In the following 
section, the proposed optimisation algorithm based on four-

wheel model can control the steering angle of individual 
wheel of the 4WIS-4WID electric vehicle to satisfy the side-

slip angle constraint of individual wheel.     

In this section, the vehicle trajectory in real-time can 
be predicted and optimised by equations (13)-(18) with the 
real-time feedback values from actual vehicle. The 

optimisation variables of steering angle and driving torque 
can be determined and input into the actual vehicle model.   

4. MP algorithm based on four wheel non-linear 
vehicle model 

The traditional two wheel model is hard to describe 
the dynamics performance and advantages of 4WIS-4WID 

electric vehicle. When the four wheel non-linear model is 
included in the MP algorithm, the individual wheel steering 

angle ��  and traction or brake toque of individual wheel ��
can be optimised to better achieve the desired trajectory. The 

cost function of the MP algorithm is similar to equation (13): 

min
��,��

�� = ��[(��� − ��)� + (��� − ��)�]

+ �� �
1

���� − (�� − ��)�
��

+ �� �
1

���� − (�� + ��)�
��

(19a) 

s.t.                           −|����| ≤ ��(�) ≤ |����|             (19b) 

−|�����| ≤ ��(�) ≤ |�����|             (19c) 

−|����| ≤ ���(�) − tan�� �
��(���)����(���)

��(���)��.�∗���(���)
� ≤ |����|

(19d) 

−|����| ≤ ���(�) − tan�� �
��(���)����(���)

��(���)��.�∗���(���)
� ≤ |����|

(19e) 

−|����| ≤ ���(�) + tan�� �
���(���)���(���)

��(���)��.�∗���(���)
� ≤ |����|

(19f) 

−|����| ≤ ���(�) + tan�� �
���(���)���(���)

��(���)��.�∗���(���)
� ≤ |����|

(19g) 

Similar to the bicycle model in the previous section, 

the vehicle predicted trajectory ��� and ��� in the current time 
step can be predicted and calculated from the vehicle velocity 

and yaw rate in the current time step based on equations 
(15)(16). The vehicle velocity and yaw rate can be predicted 

by the following equations based on non-linear four-wheel 
model (1)-(3): 

��� = ���� + ������(�) − �(� − 1)�              (20) 

where ���  is the predicted vehicle state ��� = �

���(�)

���(�)

�̂(�)

�  and 

���� is the feedback vehicle state from the actual vehicle in 

the previous time step ���� = �

��(� − 1)

��(� − 1)

�(� − 1)

� , ���� =

�
�

��(� − 1)�(� − 1) +
���(���)

�

−��(� − 1)�(� − 1) +
���(���)

�

��(���)

��

�
�
. 

It can be noticed in (20) that in order to predict the 
vehicle state in the current time step, the vehicle estimated 

total longitudinal tyre force ���, total lateral tyre force ���(� −

1) and yaw moment ��(� − 1) in the previous time step are 
required, which can be presented as follows: 

���(� − 1) = cos� (� − 1)���(� − 1)

− sin � (� − 1)���(� − 1)

 (21a) 

���(� − 1) = sin� (� − 1)���(� − 1)

+ cos� (� − 1)���(� − 1)

(21b) 

��(� − 1) = �����(� − 1) + �����(� − 1)

 (21c) 
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where ���(� − 1) =

⎣
⎢
⎢
⎢
⎡
�����(� − 1)

�����(� − 1)

�����(� − 1)

�����(� − 1)⎦
⎥
⎥
⎥
⎤

, ���(� − 1) =

⎣
⎢
⎢
⎢
⎡
�����(� − 1)

�����(� − 1)

�����(� − 1)

�����(� − 1)⎦
⎥
⎥
⎥
⎤

, cos� (� − 1) =

⎣
⎢
⎢
⎢
⎡
cos��� (� − 1)

cos��� (� − 1)

cos ��� (� − 1)

cos ��� (� − 1)⎦
⎥
⎥
⎥
⎤
�

,  

sin� (� − 1) =

⎣
⎢
⎢
⎢
⎡
sin ��� (� − 1)

sin ��� (� − 1)

sin ��� (� − 1)

sin ��� (� − 1)⎦
⎥
⎥
⎥
⎤
�

�� =

⎣
⎢
⎢
⎢
⎡
�� cos���(� − 1) − 0.5�� sin ���(� − 1)

�� cos ���(� − 1) + 0.5�� sin ���(� − 1)

−�� cos ���(� − 1) − 0.5�� sin ���(� − 1)

−�� cos ���(� − 1) + 0.5�� sin ���(� − 1)⎦
⎥
⎥
⎥
⎤
�

�� =

⎣
⎢
⎢
⎢
⎡
�� sin���(�− 1) + 0.5�� cos���(�− 1)

�� sin���(�− 1)− 0.5�� cos���(�− 1)

−�� sin���(�−1) + 0.5�� cos���(�− 1)

−�� sin���(�−1)− 0.5�� cos���(�− 1)⎦
⎥
⎥
⎥
⎤
�

According to the non-linear Dugoff tyre model (3), 

����(� − 1) and ����(� − 1) can be determined as follows: 

����(� − 1) = �� tan��(� − 1) �(��(� − 1) )

(22a) 

����(� − 1) =
��(���)

��
                        (22b) 

where ��(� − 1)  and ��(� − 1)  can be determined by 

equations (6) and (3a).  

Constraints (19b) and (19c) suggest the maximum 
steering angle and traction or brake torque of individual 
wheel. Constraints (19d)-(19g) show the limit value of side-

slip angle of individual wheel.  

The further stability analysis of the proposed MP 
algorithm based trajectory controller is required. It can be 

assumed that the error may exist in the predicted non-linear 

tyre force ���(� − 1)  and ���(� − 1)  due to the parameter 

uncertainty (such as the estimation error of tyre-road friction 
coefficient) of the non-linear Dugoff tyre model: 

����(� − 1) = ���(� − 1) + ∆���(� − 1)          (23a) 

����(� − 1) = ���(� − 1) + ∆���(� − 1)          (23b) 

where ����(� − 1) and ����(� − 1) show the predicted values 

of lateral tyre force and longitudinal tyre force of each wheel. 

∆���(� − 1)  and ∆���(� − 1)  present the tyre force 

prediction error caused by the tyre model parameter 
uncertainty, which is bounded.  

|∆���(� − 1)| ≤ ��                                   (24a) 

|∆���(� − 1)| ≤ ��                                   (24b) 

where �� and �� are constant values. 

The total longitudinal tyre force, total lateral tyre force 
and total yaw moment considering the parameter uncertainty 

can be presented as follows: 

���(� − 1) = ��(� − 1) + ��                    (25a) 

���(� − 1) = ��(� − 1) + ��                   (25b) 

��(� − 1) = �(� − 1) + ��                    (25c) 

where �� = ∑ �∆��� cos�� − ∆��� sin ���,����,��,��,�� �� =

∑ �∆��� sin �� + ∆��� cos �������,��,��,��  and �� =

��� cos ���(� − 1) − 0.5�� sin ���(� − 1)�∆����(� − 1) +

��� cos ���(� − 1) + 0.5�� sin ���(� − 1)�∆����(� − 1) +

[−�� cos ���(� − 1) − 0.5�� sin ���(� − 1)]∆����(� − 1) +
[−�� cos ���(� − 1) + 0.5�� sin ���(� − 1)]∆����(� − 1) +

��� sin ���(� − 1) + 0.5�� cos ���(� − 1)�∆����(� − 1) +

��� sin ���(� − 1) − 0.5�� cos ���(� − 1)�∆����(� − 1) +

[−�� sin ���(� − 1) + 0.5�� cos ���(� − 1)]∆����(� − 1) +
[−�� sin ���(� − 1) − 0.5�� cos���(� − 1)]∆����(� − 1). It 

is noted that the terms ��,��,�� are bounded if the inequality 

(24) is satisfied. ��(� − 1),��(� − 1),�(� − 1)  are actual 

total longitudinal tyre force, total lateral tyre force and total 

yaw moment in (� − 1)  time step. The predicted vehicle 
states can be presented as the following equation: 

���
= ����

+

�

�
��(� − 1)�(� − 1) +

��(� − 1) + ��
�

−��(� − 1)�(� − 1) +
��(� − 1) + ��

�
�(� − 1) + ��

��

�

�

��(�)

− �(� − 1)�

(26) 

Equation (26) suggests that the estimation error of 
vehicle states are bounded if ��,��,��  are bounded. 
Therefore, if the error caused by tyre model parameter 
uncertainty is constrained within a certain value, the 
estimation errors of vehicle states are also bounded and the 
MP based controller is stable. It is noted that from equation 
(26) that the predicted vehicle states in current time step rely 
on actual feedback state values from previous time step. If the 
estimation error �� , ��  and ��  are bounded, the estimation 
performance in the whole time range would not be greatly 
affected since the current estimated vehicle states can be real-
time adjusted by the actual feedback values.    
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5. Definition and representation of static and 
dynamic obstacle  

Collision avoidance is an important issue for the safety 

of the autonomous vehicle. In order to identify both the static 
and dynamic obstacles, several sensors are applied in the 

literature, such as Lidar [28], radar [29], stereo cameras [30] 
and the combination of those [31]. Alexander et al. can 
identify the potential collision with the dynamic obstacle only 

based on the image data from a monocular camera [32]. It is 
also argued in [33] that the technique of dedicated short-range 

communication (DSRC) has been applied in the vehicle 
industry by providing real-time and high-speed data links. 
Through the wireless network such as DSRC, the information 

of the nearby vehicles is available to the host vehicle for 
trajectory planning and control. Therefore, it can be assumed 

that the real-time position, velocity and heading angle of the 
obstacle nearby are assumed to be known in this study. 

The on-road obstacles can be mainly classified as the 

static obstacle and dynamic obstacle. The static obstacle can 

be easily determined as the fixed coordinate values (��� ,���)

in the global coordinate system. It is noted that the size of ego 

vehicle and size of static obstacle should be considered in the 
obstacle avoidance control and a relative safety distance 

between the ego vehicle and obstacle should be maintained. 
This safety distance can be determined by the following 
equation: 

�� = �� + ���                                 (27) 

where �� (� = 1,2, … �) present the safety distances between 

vehicle and various obstacles. ��� presents the geometry size 

of obstacles.  

The major disadvantage of proposed MPC based on 

attractive and repulsive potential field method is the obstacle 
trajectory can be generated only after the ego vehicle is too 

close to the obstacle and it is hard to maintain the safety 
distance. In order to tackle this issue and make sure the 

proposed MPC can achieve good obstacle avoidance 
performance, this study proposed a two-point repulsive 
potential to generate the real-time obstacle avoidance 

trajectory, which is presented in Figure 2. The two points 
refer to ‘the boundary point’ and ‘obstacle point’. When the 

repulsive potential of the boundary point is considered, the 
MPC can generate the avoid trajectory in advance and keep 
the required safety distance between the ego vehicle and 

obstacle, which is advantageous over the method which only 
considers the repulsive potential of the obstacle point. The 

radius of the safety circle ��� can be determined as follows: 

��� > ��                                   (28) 

Figure 2. Diagram description of the two-point repulsive 
potential avoidance trajectory planning method for one 

particular static obstacle. 

When the static obstacle is considered, the cost 
function of MP algorithm (19) can be rewritten as followings:      

min
��,��

��

= ��[(��� − ��)� + (��� − ��)�]

+ �� �
1

���� − (�� − ��)�
�� + �� �

1

���� − (�� + ��)�
�� +

+ ������

�

���

�
1

(��� − ������)
� + (��� − ������)

�

+
1

(��� − ����)
� + (��� − ����)

�
�

(29) 

where (������ ,������)  and (���� ,����) are longitudinal and 
lateral coordinates of boundary point and obstacle point, 

respectively. The term ��� is suggested here to maximise the 
distance between the ego vehicle position and the positions of 

various static obstacles. The other actuator constraints and 
vehicle dynamics constraints in (19b)-(19g) are still applied 

in cost function as (29b)-(29g). �� can be considered as the 

trigger factor of the obstacle avoidance term ��� . If the 
vehicle is far away from the static obstacle, the obstacle 

avoidance term ��� is not trigged (�� = 0).  Otherwise, if the 
vehicle is close to the obstacle point, the obstacle avoidance 

term is trigged (�� = 1). The mathematical presentation of 
this condition can be shown as follows: 

If         (��� − ����)
� + (��� − ����)

� ≥ ���
� , �� = 0

(30a) 

If         (��� − ����)
� + (��� − ����)

� < ���
� , �� = 1

(30b) 

where ���  is the trigger distance between the ego vehicle 
position and obstacle position, which can be determined by 

the following equation: 

��� = ����                                     (31) 
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where ��  is the trigger time in advanced of the collision 

happen. 

On the other hand, the situation when the moving 
obstacles are considered is discussed here. The single point 

mass model is usually applied to describe the moving obstacle, 
which can be presented as followings: 

�̇�� = ��� cos �                            (32a) 

�̇�� = ��� sin�                            (32b) 

where ���� = �̇�� . ��� , ����  and �  are the longitudinal 
velocity, longitudinal acceleration and heading angle of 

moving obstacles, respectively. When the real-time position 
of the obstacle is already available in (32), the cost function 

of the MP algorithm when the moving obstacle is considered 
can be presented the same as the cost function in equation 
(29).  

6. Simulation results 

In this section, three sets of simulations are carried out 

by the software of Matlab Simulink to verify the 
advantageous of the proposed integrated trajectory planner 

and controller based on the MP algorithm and 4WIS-4WID 
vehicle model over the MP algorithm based on two-wheel 
model. In addition, in order to clearly show the improved 

performance of proposed method, the simulation results of 
traditional two-level trajectory tracking method [25] is also 

presented. In the simulation implementation of this section, 
the optimisation solver ‘active-set’ is applied to obtain the 
optimisation results, which is more time-efficiency than the 

default solver ‘interior-point’.The vehicle parameters are 
listed in Table 1 and the scaling factors in the optimisation 

algorithm of all the compared methods are presented in Table 
2.    

Table 1. Vehicle parameters used in simulations [19]. 

� Mass 1298.9 kg 

�� Distance of c.g. from the 
front axle 

1 m 

�� Distance of c.g. from the 
rear axle 

1.454 m 

�� Front track width 1.436 m 

�� Rear track width 1.436 m 

�� Longitudinal stiffness of 
the tyre 

50000 N/unit slip 

�� Vehicle moment of 
inertial about yaw axle 

1627 kgm2

�� Wheel radius 0.35 m 

�� Wheel moment of inertial 2.1 kgm2

�� Road adhesion reduction 
factor 

0.015 s/m 

�� Cornering stiffness of the 
tyre 

30000 N/unit slip 

ℎ height of the vehicle 
centre of gravity 

0.533 m 

��� Safety gap 0.25 m 

�� Trigger time in advance 
of the collision 

2.5 s 

���� Maximum lateral side-
slip angle 

0.2 rad  

Table 2. Scaling factors in the optimization algorithm in 

each set of simulations. 

Simula
tion 

Algorith
m 

�� �� �� �� ��� ���

1 Two-
level 
method 

N/A N/A N/A N/A N/A N/A 

Four-
wheel 
MPC 

1000 1000 0 0 0 0 

Two-
wheel 
MPC 

1000 1000 0 0 0 0 

2 Two-
level 
method 

100 75 5000 5000 5750 5750 

Four-
wheel 
MPC 

100 75 5000 5000 5750 5750 

Two-
wheel 
MPC 

100 75 5000 5000 5750 5750 

3 Two-
level 
method 

100 75 5000 5000 5750 N/A 

Four-
wheel 
MPC 

100 75 5000 5000 5750 N/A 

Two-
wheel 
MPC 

100 75 5000 5000 5750 N/A 

In the first set of simulations, the autonomous vehicle 
is implementing a simple lane change task on the highway. 
The road centreline and road boundary are depicted in Figure 

3. It is noted that this road boundary has considered the safety 
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gap and is constrained between [�� − �� ,�� + ��]. The initial 

velocity of the autonomous vehicle is 10 m/s and the tyre–
road friction coefficient is assumed as 0.9. Furthermore, the 

actual trajectories of the 4WIS-4WID autonomous vehicle 
controlled by the proposed MP algorithm based on the four-

wheel model, the MP algorithm based on two-wheel model 
and traditional two-level method are compared and shown in 
Figure 3. It is noted that for the traditional two-level method, 

the desired trajectory is assumed to be planned and known 
already and the two-level trajectory tracking controller is 

implemented to achieve the desired trajectory. The 
trajectories of all the three methods can accurately follow the 
road centreline. Figure 4(a) shows the vehicle yaw rate 

response of all the three methods and the proposed MP 
method based on four-wheel model shows more stable yaw 

rate response and less yaw angle change rate compared with 
other methods. Figure 4(a) also suggest that the actual 

trajectory and yaw rate responses of the MP method based on 
two-wheel model and traditional two-level method are 
oscillating abruptly and the reason behind this should be 

discussed further. For the traditional two-level method, the 
reason behind this is the desired trajectory is pre-defined and 

the trajectory cannot be smoothly optimised in real-time. For 
the two-wheel model based MP method, the MP optimisation 
algorithm cannot fully utilise the characteristic of 4WIS-

4WID vehicle and the yaw stability performance of the 
controlled vehicle is compromised.  However, in Figure 4(b), 

the proposed MP algorithm based on four-wheel model has 
larger side-slip angle response compared to two-wheel model 
method and traditional two-level method. The main reason of 

this is that the excessive tyre force is applied in order to 
minimise the yaw angle change rate. The generation of 

additional tyre force causes the increase of the side-slip angle.                 

In the second set of simulations, the autonomous 
vehicle is still implementing the single lane change task with 

the same boundary condition in Figure 3. However, two static 
obstacles are assumed to locate in the road centre line with 
the coordinates values of (105, -2) and (185, -4) in the global 

coordinate system. The size of these two obstacles are 

assumed as ��� = ��� = 0.5 �. The initial velocity and tyre-

road friction coefficient are the same as the first set of 
simulation, but the vehicle will deaccelerate after 5 seconds 
to test the robustness control performance of proposed MPC. 

It is noted that instead of following the pre-defined path in the 
first set of simulation, the traditional two-level method 

applies the potential field method [25] to generate the 
obstacle avoidance trajectory. The proposed four-wheel MPC 

and two-wheel MPC methods both apply the two-point 
repulsive potential method to generate the avoidance 
trajectory. The blue point indicates the boundary point and 

black point is the obstacle point.  Figure 5 presents the actual 
vehicle trajectory of the proposed method and traditional 

methods. It is indicated that the traditional two-level method 
can just avoid the obstacle point but the safety distance 
between the ego vehicle and obstacle cannot be maintained. 

The proposed MP algorithm based on the four-wheel model 

and two-wheel model can successfully generate the 

avoidance trajectory and also maintain the safety distance.   

Figure 3. Vehicle desired and actual trajectory in the first set 
of simulations. 
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(b) 

Figure 4. Vehicle dynamics response in the first set of 
simulations. 

(a) yaw rate (b) body side-slip angle  

Figure 6(a) suggests the longitudinal velocity response 
of all the three methods and it can be observed the vehicle is 

deaccelerating after 5 seconds. Figure 6(b) shows the yaw rate 
response of all the three methods. The proposed four-wheel 
model based method has smooth yaw rate response compared 

with the two-wheel model method when the obstacle 
avoidance manoeuvre is implemented. Figure 6(c) shows that 

the body side-slip angle of four-wheel model based method is 
larger than the two-wheel model based method since the 

additional force is applied to better avoid the obstacle with 
smaller yaw rate. The traditional two-level method generates 
the avoidance trajectory with smaller lateral displacement and 

consequently the response of yaw rate and body side-slip 
angle are smaller than MPC methods. Figures 7(a) and 7(b) 

show the steering angle response of the front left wheel and 
rear right wheel, while Figures 7(c) and 7(d) suggest the side-
slip angle response of front left wheel and rear right wheel. 

The steering angle or side-slip angle of front right wheel is 
similar to the front left wheel, and the steering angle of rear 

left wheel is similar to the rear right wheel, which are not 
presented in Figure 7.  It can be seen form Figure 7 that all 
the proposed methods satisfy both the constraints of 

individual wheel steering angle and side-slip angle. 

Figure 5. Vehicle desired and actual trajectory in the second 
set of simulations. 
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(c) 

Figure 6. Vehicle dynamics response in the second set of 
simulations. 

(a) longitudinal velocity (b) yaw rate (c) body side-slip angle 

(a) 

(b) 

(c) 

(d) 

Figure 7. Vehicle steering angle and side-slip angle 

responses in the second set of simulations. 

(a) steering angle of front left wheel (b) steering angle of rear 
right wheel (c) side-slip angle of front left wheel (d) side-slip 
angle of rear right wheel 

In the third set of simulations, the autonomous vehicle 
is still implementing the single lane change task with the same 
boundary condition in Figure 3. The initial longitudinal 

velocity of ego vehicle is still 10 m/s. The obstacle is assumed 
to move randomly to present the moving obstacles, which is 

different from the static obstacles in the second set of 
simulations. The heading angle and longitudinal acceleration 

of the moving obstacle is assumed as the random values with 
normal distribution (For the heading angle, mean value is 0 
and variance is 10; for the longitudinal acceleration, mean 

value is 0 and the variance 40). In order to test the robustness 
of the proposed MPC method under changing tyre road 

friction coefficient, it is assumed the tyre road friction 
coefficient changes from 0.9 into 0.5 at 5 seconds, and then 
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changes back to 0.9 at 12 seconds. Figure 8 (a-d) presents the 

trajectory of the autonomous vehicle controlled by various 
control strategies at 9 seconds, 9.5 seconds, 10.5 seconds and 

11.5 seconds. The proposed MP algorithm based on four-
wheel model and two-wheel model can successfully carry out 

the obstacle avoidance manoeuvre. However, since it is hard 
to determine the boundary point of moving obstacle and 
applied the proposed two-point repulsive potential method, 

the proposed four-wheel MPC and two-wheel MPC method 
may not maintain the safety distance between the ego vehicle 

and the moving obstacle. The traditional two-level method 
cannot generate the avoidance trajectory although the 
repulsive potential of the moving obstacle has been included 

in the optimization cost function of two-level method. Figure 
9(a) shows that the yaw rate of four-wheel based method is 

smaller than the two-wheel based method. Figure 9(b) 
suggests that the body side-slip angle response of the four-

wheel model based method is larger since more control effort 
is applied to improve the trajectory control and yaw rate 
control performance. Similar to Figure 7, it can be seen form 

Figure 10 that all the proposed method satisfy both the 
constraints of individual wheel steering angle and side-slip 

angle. 

(a) 

(b) 

(c) 

(d) 

Figure 8. Vehicle desired and actual trajectory in the third 
set of simulations. 

(a) at 9 seconds (b) at 9.5 seconds (c) at 10.5 seconds (d) at 

11.5 seconds 
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(a) 

(b) 

Figure 9. Vehicle dynamics response in the third set of 

simulations. 

(a) yaw rate (b) body side-slip angle 
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(d) 

Figure 10. Vehicle steering angle and side-slip angle 
responses in the third set of simulations. 
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(a) steering angle of front left wheel (b) steering angle of rear 

right wheel (c) side-slip angle of front left wheel (d) side-slip 
angle of rear right wheel 

          In Table 3, the actual computational time of the 

traditional two-level method, two-wheel MPC method and 
four-wheel MPC method in all the three sets of simulations 

are compared. It can be concluded that the proposed MPC 
method in general is much more computational efficient than 

the traditional two-level method. Due to the complex four-
wheel model in the MP algorithm, the proposed four-wheel 
MPC is more time-consuming than the two-wheel MPC in 

certain scenario. It is noted that the actual time spent in the 
simulation environment of Matlab is quite large since the 

major disadvantage of the Matlab language is very time-
consuming during the implementation. Thus, Matlab 
language only suits for the computer simulation for the 

research purpose and can be hardly applied on the actual 
autonomous vehicle control system. When the proposed 

method is implemented on the autonomous vehicle, the more 
computational efficiency programming language (such as C 
or C++) should be utilised for the coding of the proposed 

MPC algorithm to meet the real-time trajectory control 
requirement.

Table 3. The actual time spent on each set of simulations 

(unit: second) 

Simulation 
number 

Simulation 
time 

Traditional 
two-level 
method 

Two-
wheel 
MPC 

Four-
wheel 
MPC 

1 20 1226 108 131 

2 30 927 170 314 

3 20 1822 108 160 

7.  Conclusion 

This study proposes an innovative real-time integrated 
trajectory planning and control method based on the MP 
algorithm for a 4WIS-4WID electric vehicle. The four-wheel 

dynamics model and nonlinear Dugoff tyre model are applied 
in the proposed integrated control method to better present 

the tyre non-linear characteristic and fully utilise the 
advantages of 4WIS-4WID vehicle. The major findings of the 

simulation results can be summarised as the followings: 

1) The trajectory planning and trajectory control can 
be successfully integrated in the MP optimisation algorithm 
in the real-time without the application of the trajectory 

tracking controller. 

2) The proposed MP algorithm based on four-wheel 
model can fully utilise the advantage of the 4WIS-4WID 

vehicle, and four steering wheels and four driving torques can 

be independently controlled. 

3) The proposed MP algorithm based on four-wheel 
model can generate smoother trajectory with smaller yaw 

angle change rate compared with the MP algorithm based on 
two-wheel model. 

4) The proposed MP method shows robustness control 

performance at different longitudinal velocities and different 
tyre-road friction coefficients. 

5) The proposed integrated method based on MP 

algorithm can significantly improve the computational 
efficiency compare with the traditional two-level method 
which separates the trajectory planning and trajectory 

tracking control.      

6)  For the static obstacle, the simulations results prove 
that the proposed MP method can successfully avoid the 

obstacle by applying the two-point repulsive potential method. 
For the moving obstacle, the simulation results also verify 

that the proposed method can successfully generate the 
obstacle avoidance trajectory.    

In the future, instead of the study on the trajectory 
planning and control of single autonomous vehicle, we will 

focus on the interaction between the vehicles nearby and 
propose the trajectory control of multiple on-road 

autonomous vehicles. 
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