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Abstract There is a great interest in developing cost-effi-

cient nutrients to stimulate microorganisms in indigenous

microbial enhanced oil recovery (IMEOR) processes. In

the present study, the potential of rice bran as a carbon

source for promoting IMEOR was investigated on a labo-

ratory scale. The co-applications of rice bran, K2HPO4 and

urea under optimized bio-stimulation conditions signifi-

cantly increased the production of gases, acids and emul-

sifiers. The structure and diversity of microbial community

greatly changed during the IMEOR process, in which

Clostridium sp., Acidobacteria sp., Bacillus sp., and

Pseudomonas sp. were dominant. Pressurization, acidifi-

cation and emulsification due to microbial activities and

interactions markedly improved the IMEOR processes.

This study indicated that rice bran is a potential carbon

source for IMEOR.

Keywords Rice bran � Bio-stimulation � Petroleum �
Microbial diversity � Indigenous microbial enhanced oil

recovery

1 Introduction

Increasing demand for crude oil is promoting the develop-

ment of oil extraction technologies. Among these, microbial

enhanced oil recovery (MEOR) is a promising tertiary oil

recovery technology for depleted oil fields (Brown 2010; Sen

2008). Indigenous microorganisms, which naturally inhabit

oil reservoirs, show a greater metabolic activity than

exogenous ones due to their long-term adaptation (Castoren-

Cortés et al. 2012; Lazar et al. 2007). Therefore, indigenous

microorganisms activated MEOR (IMEOR) has greater

efficiency than using exogenous ones (Yao et al. 2012;

Zhang et al. 2012). Stimulation, growth and propagation of

beneficial microorganisms that can contribute to producing

effective metabolites are critical to the application of

IMEOR (Zhang et al. 2010). Themetabolites mainly include

gases, acids and emulsifiers (Gao and Zerki 2011). Gases can

pressurize the oil reservoir and reduce the viscosity of crude

oil (Kobayashi et al. 2012; Spirov et al. 2014). Acids may

increase carbonate rock porosity and permeability, thereby

promote the exudation of remained oil (Sen 2008). Emulsi-

fiers can emulsify crude oil, lower its viscosity and improve

its fluidity (Banat et al. 2010;Dastgheib et al. 2008;Kitamoto

et al. 2009; Sarafzadeh et al. 2013; She et al. 2011). The

multiple effects of various metabolites improve oil flooding

and thus enhance crude oil recovery.

Efficient production of beneficial metabolites is needed

during an IMEOR process. However, nutrients in an oil

reservoir are often insufficient and unbalanced, thus cannot

provide adequate bio-stimulation (Wang et al. 2012). The
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injection of nutrients can optimize bio-stimulation condi-

tions in an oil reservoir (Gao et al. 2013). The injected

nutrients should stimulate beneficial microorganisms but

restrain harmful ones, while they should not cause forma-

tion damage or contamination (da Silva et al. 2014). More

importantly, the nutrients should be economical. Of these

nutrients, carbon sources have an overwhelming influence

on bio-stimulation effects and application costs. Carbohy-

drates such as molasses, corn syrup, malt dextrin sucrose

and starch have been explored for use in IMEOR in past

decades (Bao et al. 2009; Joshi et al. 2008). As market

prices of carbohydrates are rising, finding an economical

carbon source has been a significant motivation. Rice bran,

as an abundant agricultural by-product, has been used to

prepare culture media for enzymatic solid-state fermenta-

tions (Ng et al. 2010; Noike and Mizuno 2000; Tanaka

et al. 2006). However, it has not been investigated as a bio-

simulator to promote IMEOR.

The objective of this study was to investigate the

industrial potential of rice bran to promote IMEOR.

Additionally, the bio-stimulation mechanism of rice bran

can be acquired by the microbial diversity analysis during

an IMEOR process. The results could be hopefully bene-

ficial to reduce IMEOR cost and would generate value

from agricultural by-products.

2 Materials and methods

2.1 Materials

The formation water and crude oil were both sampled from

the Qixi block of Karamay oil field, which is located in

Xinjiang Uygur Autonomous Region, Northwest China.

Water flooding has been implemented by recycling pro-

duction water for 40 years. The sampling and storage

methods were as previously described (Tang et al. 2012).

The initial temperature, pH and salinity of the formation

water were 33.5 �C, 7.85 and 5054 mg/L, respectively. The

kinematic viscosity (50 �C) and density (20 �C) of the

crude oil were 62.33 mm2/s and 0.912 g/cm3, respectively.

The nutrients that were used to stimulate microorgan-

isms in an IMEOR process commonly included carbon,

nitrogen and phosphorus sources. The carbon nutrients

were selected from several agricultural by-products

including rice bran (reducing sugar at 390 mg/g and total

nitrogen at 2.21 mg/g), wheat bran (reducing sugar at

280 mg/g and total nitrogen at 0.45 mg/L), corn residue,

rice husk, glycerol residue and molasses. Rice bran and

wheat bran were pulverized to 100 mesh particles prior to

the experiment. The nitrogen sources were urea, NH4Cl,

KNO3 and NaNO3. The phosphorus sources were K2HPO4,

NH4H2PO4, NaH2PO4, KH2PO4, (NH4)2HPO4 and

Na2HPO4. The agricultural by-products were purchased

from a local market. All nitrogen and phosphorus sources

were from Beijing Chemical Reagents Co., China.

2.2 Optimization experiments of bio-stimulation

conditions

Preferred nutrients and their basic concentrations were

selected by single factor optimization (SFO) experiments.

Concentrations of preferred nutrients were further opti-

mized by orthogonal design experiments (Chen et al.

2010). The optimized bio-stimulation conditions were

quantified with response surface methodology (RSM)

experiments based on a Box–Behnken design (Chen et al.

2007). Response surface regression analysis and analysis of

variance (ANOVA) were performed by Minitab software

(Version 16, Minitab Inc, State College, PA, USA). The

experiments were carried out with 250 mL SIBATA fer-

mentation bottles. Various nutrients at different concen-

trations and 50 mL distilled water were introduced into the

bottles, followed by pH adjustment to 7.85. After steril-

ization at 115 �C for 30 min, the bottles were inoculated

with 50 mL of formation water and 5 g of crude oil, and

then incubated at 33.5 �C and 110 rpm for 7 days. Gas

production and surface tension were indicators of bio-

stimulation effects. All experiments were done in triplicate.

2.3 Laboratory-scale experiments of IMEOR

The potential of rice bran was investigated in 250 mL

SIBATA fermentation bottles to simulate an IMEOR pro-

cess. The initial broth contained 50 mL of formation water,

5 g of crude oil and optimized nutrient components, and

was diluted to a final volume of 100 mL with distilled

water. Sterilization followed the protocols described in the

above-mentioned optimization experiments, as well as the

incubation conditions with an extended 10 day incubation

period. An aliquot of 0.05 mL Resazurin solution

(0.1 wt%) was added to each bottle as a visual anaerobic

status indicator. Simulated IMEOR experiments were car-

ried out in triplicate.

The bio-stimulation effects were measured during

experiments. The produced gases which mainly reflected the

re-pressurization of an oil reservoir were collected in a

Devex gas collecting bag (0.3 L), and the gas volume was

recorded by a graduated syringe. The gas composition was

analyzed on a HP 6890 gas chromatograph (GC) (Agilent,

Wilmington, DE, USA) equipped with a TCD detector

(80 �C) and a Porapak Q packing column (60 �C). Helium
was used as carrier gas. The pH values which indicated the

production of acidsweremeasured on a PHSJ-4meter (Leici,

Shanghai, China). Two mL of broth was extracted by a

graduated syringe and injected to a 5-mL centrifuge tube for
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pH measurement. Bacterial numbers were counted by a cell

counting method (Zhou and Wang 2004). Surface tension

and emulsification degree both characterized the production

of emulsifiers such as biosurfactants, biopolymer, acids and

solvents. Surface tension was measured with a JK99B ten-

siometer (Powereach, Shanghai, China), and emulsification

degree was obtainedwith the emulsification index (%, EI 24)

method (Reddy et al. 2010).

2.4 Analysis of microbial diversity

Describing the relationship between the microbial com-

munity structures and their functions will contribute to

understanding of bio-stimulation mechanisms (Fuhrman

2009). Polymerase chain reaction-denaturing gradient gel

electrophoresis (PCR-DGGE) has been widely used in

microbial community analysis (Wang et al. 2008a, b).

Aliquots (2 mL) of fermentation broth were collected from

the bottles. After centrifugation at 10,000 rpm for 5 min,

the total DNA was extracted with a genomic DNA

extraction kit (TaKaRa, Dalian, China) according to the

supplier’s instructions. PCR-DGGE was performed as

previously described in literature (Ji et al. 2009). DGGE

profiles, including the presence, intensity and abundance of

the bands, were analyzed with Quantity One software

(Version 4.4, Bio-Rad, Hercules, CA, USA). Microbial

diversity was calculated by Shannon-Wiener’s indexes

(H) (Andreoni et al. 2004). Dominant bands were excised

from the gels and re-amplified, and the fragments were

recovered and cloned again. The positive clones were

selected and sequenced (Sangon, Shanghai, China). Typi-

cal sequences were analyzed using the NCBI BLAST

database to identify the closest relatives. A phylogenetic

tree was constructed with MEGA software (Version 5.0).

3 Results

3.1 Optimized bio-stimulation conditions

Rice bran, K2HPO4 and urea were selected as preferred

carbon, phosphorus and nitrogen sources, respectively

(Fig. 1). An optimal bio-stimulation condition was prelimi-

narily estimated to be 2.0 g/100 mL of rice bran, 0.05 g/

100 mL of K2HPO4 and 0.05 g/100 mL of urea under SFO

experiments (Fig. 2). The concentrations of rice bran,

K2HPO4 and urea were further optimized to be 3.0, 0.07 and

0.07 g/100 mL, respectively, under 33 orthogonal design

experiments (Table 1). According to the Box–Behnken

experiments (Table 2) and subsequent response surface

regression analysis (Fig. 3), the optimal bio-stimulation

conditions were estimated as 3.36 g/100 mL of rice bran,

0.075 g/100 mL of K2HPO4 and 0.076 g/100 mL of urea.

3.2 Bio-stimulation effects of rice bran

Color changes of the fermentation broth from red to pink

and then colorless indicated the gradual conversion from

aerobic (0–1st day), facultative (2nd–3rd days) to anaero-

bic (4–10th days) metabolic stages in the simulated
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Fig. 1 Screening of preferred carbon nutrient (1.0 g/100 mL carbon

sources, 0.1 g/100 mL urea and 0.1 g/100 mL (NH4)2HPO4) (a),
phosphorus nutrient (0.1 g/100 mL phosphorus sources, 1.0 g/

100 mL rice bran and 0.1 g/100 mL urea) (b), and nitrogen nutrient

(0.1 g/100 mL nitrogen sources, 1.0 g/100 mL rice bran and 0.1 g/

100 mL K2HPO4) (c)

574 Pet. Sci. (2016) 13:572–583

123



IMEOR process. The numbers of bacteria rapidly increased

from the initial 0.07 9 109 cell/mL to 2.4 9 109 cell/mL

in the aerobic stage and reached a peak value of

4.9 9 109 cell/mL in the anaerobic stage (5th day), fol-

lowed by a slight drop to 4.5 9 109 cell/mL at the end of

bio-stimulation (Fig. 4a). The pH values significantly

decreased from the initial 7.85 to 5.26 in the facultative

stage (3rd day) and then finally decreased to 4.94 (Fig. 4a).

Gas production lasted for 8 days; a total 322 mL of gases

was collected mainly in the facultative stage where the

highest gas production rate was observed (Fig. 4b). Gas

components varied markedly among stages (Table 3). CO2

concentration promptly increased from 0.03 to 42.7 vol%

along with sharp depletion of O2 in the aerobic and fac-

ultative stages; CO2 and H2 were the main gases in the

anaerobic stage. Surface tension dropped from 62.5 to

37.6 mN/m in the early anaerobic stage (5th day) when the

EI 24 increased rapidly from zero to 61.1 % (Fig. 4c).

3.3 Microbial community

There were 17 major bands in the DGGE profiles (Fig. 5a)

with obvious variations in the intensities (Fig. 5b), H-in-

dex, numbers of bands and microbial abundances among

lanes (Table 4). All 17 bands were isolated from the gel,

re-amplified, and sequenced. Except for bands 1, 2 and 3,

all of the identified genera had sequence similarities of

98 % or higher (Table 5). The phylogenetic tree (Fig. 6)

shows that the identified sequences could be divided into

three classifications, Proteobacteria, Firmicutes and Aci-

dobacteria. Sequences from bands 3, 4, 5 and 13 were not

classified with the phylogenetic tree, which was presumed

to be not reported.

4 Discussion

4.1 Optimized bio-stimulation conditions

Nutrient-rich polysaccharides stimulate indigenous

microorganisms in oil reservoirs (Cheng et al. 2010; Feng

et al. 2012). Rice bran and wheat bran showed higher

emulsification and gas production than the other carbon

sources. The market prices of rice bran and wheat bran are

similar at approximately $180 per ton. Rice bran contained

more reducing sugar, total nitrogen and vitamins than

wheat bran under previous composition analysis (Wang

2013); therefore, it was identified as a preferred carbon

source. Urea and K2HPO4 contributed largely to the gas

production and were determined as the preferred nitrogen

and phosphorus nutrients. The concentration of rice bran

displayed a positive correlation with gas production, while

an excess of rice bran would increase the costs. The con-

centrations of K2HPO4 and urea showed negligible influ-

ence on bio-stimulation. The concentrations of rice bran,

K2HPO4 and urea at, respectively, 2.0 0.05 and 0.05 g/

100 mL basically were the balanced nutrient ratios.

The surface tension that directly accounted for oil-flood-

ing effects was selected as the decisive indictor to optimize

bio-stimulation conditions. The significance order of nutri-

ent concentrations were rice bran[ urea[K2HPO4
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Fig. 2 Preliminary screening of concentrations of rice bran (0.1 g/

100 mL urea and 0.1 g/100 mL K2HPO4,) (a), K2HPO4 (1.0 g/

100 mL rice bran and 0.05 g/100 mL urea) (b), and urea (1.0 g/

100 mL rice bran and 0.1 g/100 mL K2HPO4) (c)
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according to the analysis of orthogonal design experiments.

By applying response surface regression analysis to the

surface tension data from theBox–Behnken experiments, the

following second-order equation was established:

Y ¼ 114:276� 22:4558C � 568:595N � 444:793P

þ 3:30217C2 þ 3229:07N2 þ 2696:85P2

þ 6:2500CN � 3:46667CPþ 786:667NP

ð1Þ

where Y is the surface tension, mN/m; C, N and P are the

concentrations (g/100 mL) of rice bran, urea and K2HPO4,

respectively. C2, N2, C, and N show significant influences

on surface tension with P values of 0.028, 0.043 and 0.029,

respectively. ANOVA results indicated a good consistency

between experimental and predicted values with a P value

of 0.017 and a R2 value of 0.902. The experimental surface

tension (40.6 mN/m) under the optimized bio-stimulation

conditions agreed well with the predicted value, which the

predicted minimum surface tension (38.6 mN/m) was also

obtained under the optimal bio-stimulation conditions.

4.2 Bio-stimulation effects of rice bran

for promoting IMEOR

Indigenous microorganisms became active and reached a

logarithmic growth phase shortly after addition of rice bran

supplemented with urea and K2HPO4. A stationary growth

phase appeared in the later anaerobic stage due to depletion

of nutrients. Acids were rapidly produced in the aerobic

and facultative stages, and their production and utilization

reached an approximate balance in the anaerobic stage.

Acid production favors flooding, whereas a lower pH value

is harmful to some indigenous microorganism species.

Gas-producing bacteria were sensitive to rice bran, and

gas production mainly occurred in the aerobic and facul-

tative stages. As O2 was consumed, CO2 was generated

Table 1 Experimental results

of 33 orthogonal designs
Runs Rice bran,

g/100 mL

Urea,

g/100 mL

K2HPO4,

g/100 mL

Gas production,

mL

Surface tension,

mN/m

1 1 (-1) 0.03 (-1) 0.03 (-1) 67 48.8

2 1 0.05 (0) 0.05 (0) 41 51.0

3 1 0.07 (?1) 0.07 (?1) 61 46.5

4 2 (0) 0.03 0.05 92 46.2

5 2 0.05 0.07 64 35.4

6 2 0.07 0.03 38 34.7

7 3 (?1) 0.03 0.07 191 35.8

8 3 0.05 0.03 120 39.9

9 3 0.07 0.05 125 33.9

(-1) for low level, (0) for medium level and (?1) for high level

Table 2 Experimental results

of Box–Behnken designs
Runs Rice bran,

g/100 mL

Urea,

g/100 mL

K2HPO4,

g/100 mL

Gas production,

mL

Surface tension,

mN/m

1 2 (-1) 0.04 (-1) 0.07 (0) 93 48.5

2 3 (0) 0.07 (0) 0.07 78 38.0

3 3 0.04 0.1 (?1) 153 46.2

4 4 (?1) 0.07 0.1 250 41.8

5 3 0.1 (?1) 0.1 219 42.3

6 4 0.1 0.07 310 42.6

7 2 0.07 0.1 160 45.8

8 3 0.07 0.07 189 40.5

9 3 0.1 0.04 (-1) 154 41.4

10 2 0.07 0.04 100 47.8

11 2 0.1 0.07 101 48.2

12 4 0.07 0.04 38 44.2

13 3 0.04 0.04 85 48.1

14 3 0.07 0.07 22 39.0

15 4 0.04 0.07 210 42.1

(-1) for low level, (0) for medium level and (?1) for high level
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rapidly with the growth of aerobic bacteria. The emergence

of H2 signified that anaerobic bacteria became active, while

aerobic bacteria were inhibited in the anaerobic stage.

Injecting an extra amount of air or O2 can extend the

aerobic and facultative stages, and contribute to re-pres-

surization and CO2 flooding.

Aerobic bacteria rapidly produce emulsifiers utilizing

sufficient nutrients and O2 in the aerobic stage. After that,

facultative and anaerobic bacteria became dominant and

emulsifier production decreased; therefore, no further sig-

nificant decrease of surface tension was observed. The EI

24 demonstrated the high emulsification of crude oil at the

end of bio-stimulation. Emulsifiers play a critical role in

MEOR processes. Continuous supply of nutrients and O2 to

an oil reservoir would contribute to the production of a

greater amount of emulsifiers.

The rice bran, as a carbon nutrient stimulator, success-

fully stimulated beneficial indigenous microorganisms and
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enhanced the production of acids, gases and emulsifiers,

and hence effectively promoted the IMEOR process.

4.3 Diversity and functions analysis of microbial

community

Changes in microbial community structure occurred in the

simulated IMEOR process (Table 6). Microbial diversity

(H-index) was significant on the 1st, 4th, 5th and 7th days

and microbial abundance peaked markedly on the 1st, 3rd

and 7th days. Clostridium sp., Acidobacteria sp., Pseu-

domonas sp. and Bacillus sp. were the dominant bacteria.

Of these bacteria, Bacillus sp. and Pseudomonas sp.

dominated the aerobic stage and Acidobacteria sp. domi-

nated the facultative and anaerobic stages. Clostridium sp.

was highly distributed throughout the simulated IMEOR

process.

Aerobic bacteria were stimulated and caused a higher

microbial diversity and abundance in the aerobic stage (1st

day). Clostridium sp., uncultured Acidobacteria bacterium,
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Fig. 5 DGGE profile of bacterial samples from different days (a),
schematic diagram of relative band intensities in DGGE profiles (b).
Note Lane number represented the bacterial samples collected in

different days. Lane 1—the 1st day; Lane 2—the 2nd day; and so on;

Lane 10—the 10th day

Table 4 Diversity index (H),

numbers of bands and

abundances of DGGE profiles

Lane no. 1 2 3 4 5 6 7 8 9 10

H-index 2.45 2.40 2.05 2.77 2.61 1.93 2.61 2.43 1.98 1.99

Numbers of bands 12 14 8 21 15 9 14 13 10 10

Microbial abundance 1665 157 1150 476 368 282 1908 358 239 226

Table 3 Composition of

produced gases at different days

during a simulated IMEOR

process

Components 0 day 2nd day 3rd day 8th day 10th day

vol% mL vol% mL vol% mL vol% mL vol% mL

N2 78 117 39.5 118.5 33.9 101.7 0 0 0 0

O2 21 31.5 2.3 6.9 1.9 5.7 0 0 0 0

H2 0 0 12.8 38.4 30.7 92.1 6.3 18.9 20.4 61.2

CO2 0.03 0.05 42.7 128.1 32.1 96.3 89.8 269.4 76.1 228.3

Others (C2H6, C3H8, etc.) 0.97 0.15 2.7 8.1 1.4 4.2 3.9 11.7 3.5 10.5
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Bacillus aerius, and Pseudomonas sp. were stimulated and

resulted in the increase of bacteria numbers. B. aerius and

Pseudomonas sp. began to produce acids and emulsifiers

(e.g., biosurfactants) by utilizing O2, nutrients and even

crude oil (Abdel-Mawgoud et al. 2009; Banat 1995), then

both pH and surface tension decreased.

Aerobic bacteria (e.g., Pseudomonas sp.) were gradually

inhibited with consumption of O2, and facultative bacteria

became dominant in the facultative stage. Microbial

abundance rebounded in the 3rd day, while the genera of

bacteria were not rich. Clostridium sp. began to produce

gases by utilizing nutrients (Taguchi et al. 1996). Bre-

vundimonas sp., Pantoea agglomerans, Ochrobactrum sp.,

and Agrobacterium vitis were stimulated. Among these,

Brevundimonas sp. and Ochrobactrum sp. can decompose

crude oil to produce biosurfactants and acids (Arulazhagan

and Vasudevan 2011; Ghosal et al. 2010; Ruggeri et al.

2009; Takahashi et al. 1999); Agrobacterium vitis can

promote the metabolism of petroleum-degrading bacteria

(Chalneau et al. 1995). The functions of P. agglomerans in

an IMEOR process have not been reported. The co-effects

of microbial community increased the bacteria numbers

and EI 24, but decreased both the pH and surface tension.

As anaerobic bacteria were stimulated in the anaerobic

stage, the number of bacterial genera significantly

increased on the 4th day and the microbial diversity

reached its maximum level. Clostridium sp., Clostridium

sulfidigenes, Clostridium indolis, Achromobacter sp.,

Bacillus cereus, B. aerius, Pseudomonas aeruginosa, Ar-

cobacter sp., A. vitis, uncultured Acidobacteria bacteria

Table 5 Comparisons of

nucleotide sequences of

sequenced DGGE bands

Band no. Closest relatives Accession No. Identity, %

1 Clostridium sp. HM801879.1 95

Uncultured Clostridium sp. JX273758.1 95

2 Clostridium sulfidigenes strain HM163534.1 96

Uncultured Enterococcus sp. DQ232854.1 96

3 Achromobacter sp. AB772984.1 96

Uncultured bacterium clone KC465632.1 97

4 Bacillus cereus strain KC683782.1 98

Uncultured bacterium clone GU002857.1 98

5 Pseudomonas aeruginosa strain KC570343.1 100

Uncultured Pseudomonas sp. KC470004.1 100

6 Clostridium indolis strain JX960755.1 100

Uncultured bacterium clone KC000040.1 100

7 Brevundimonas sp. HF571531.1 99

Uncultured Brevundimonas sp. clone JQ701321.1 99

8 Pantoea agglomerans strain KC009691.1 100

Uncultured bacterium clone KC299005.1 100

9 Ochrobactrum sp. KC493414.1 100

Uncultured Ochrobactrum sp. KC502956.1 100

10 Arcobacter sp. FN397894.1 99

Uncultured Arcobacter sp. HM245616.1 99

11 Agrobacterium vitis strain KC196472.1 99

Uncultured bacterium clone JX872344.1 99

12 Uncultured Acidobacteria bacterium clone DQ829628.1 99

13 Clostridium sp. KC331196.1 100

Uncultured Clostridium sp. KC110473.1 100

14 Bacillus aerius strain KC469617.1 100

Uncultured bacterium clone KC414651.1 100

15 Sulfurospirillum carboxydovorans strain AY740528.1 99

Uncultured epsilon proteobacterium AJ576003.1 99

16 Paenibacillus sp. KC134361.1 99

Uncultured bacterium clone JX223186.1 99

17 Pseudomonas sp. KC433644.1 100

Uncultured Pseudomonas sp. clone KC253432.1 100
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and the other uncultured bacteria co-built up the most

complex structure of microbial community. B. cereus can

produce acids but not gases in anaerobic conditions (Naz-

ina et al. 2003). P. aeruginosa can produce biosurfactants

by degrading crude oil (Das and Mukherjee 2007). Sul-

furospirillum carboxydovorans and Paenibacillus sp.

appeared on the 5th day. The former can inhibit sulfate-

reducing bacteria (Hubert and Voordouw 2007), and the

latter may produce biopolymers (Wang et al. 2008a, b).

The bacteria abundance reached a peak value and surface

tension at a minimum on the 5th day when the pH and EI

24 almost attained their lowest and highest values,

respectively; meanwhile, the gas production declined sig-

nificantly. The number of bacterial genera decreased, but

the microbial abundance increased, and B. cereus, A. vitis,

uncultured Acidobacteria and Clostridium sp. became

dominant on the 6th day. As anaerobic bacteria becoming

adapted, microbial abundance recovered again and reached

its peak value on the 7th day when the microbial diversity

remained high. After that, microbial diversity and
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Fig. 6 Phylogenetic tree of 16S rDNA sequences from DGGE profiles
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abundance both reduced to their minimum values at the end

of bio-stimulation with the depletion of nutrients.

The structure and relative abundance of the microbial

community, especially the interactions between different

microorganisms, have great influence on promoting

IMEOR. Rice bran, with the participation of the other

preferred nutrients, could enhance the microbial diversity

as well as strengthen the multiple functions of producing

gases, acids and emulsifiers. The results indicated that rice

bran can effectively promote IMEOR.

5 Conclusion

The potential of rice bran as a carbon nutrient for pro-

moting IMEOR was investigated. Rice bran showed great

bio-stimulation effects on producing gases, acids and

emulsifiers with the supplements of K2HPO4 and urea. The

oil reservoirs were re-pressurized and pH and surface

tension decreased, which contributed to the IMEOR pro-

cess. The indigenous microbial community showed

remarkable successions, and the beneficial functioning

Table 6 Dominant bacteria and the community succession during a simulated IMEOR process

Band no. Genus Dominance during a simulated IMEOR process

1st

day

2nd

day

3rd

day

4th

day

5th

day

6th

day

7th

day

8th

day

9th

day

10th

day

1 Clostridium sp.

Uncultured Clostridium sp.

- - - - ? - - - - -

2 Clostridium sulfidigenes strain

Uncultured Enterococcus sp.

- - - ? ? - ? ? - -

3 Achromobacter sp.

Uncultured bacterium clone

- - - ? ? - ? ? - -

4 Bacillus cereus strain

Uncultured bacterium clone

- - - ? ? ? ? ? ? -

5 Pseudomonas aeruginosa strain

Uncultured Pseudomonas sp.

- - - ? ? ? ? ? ? -

6 Clostridium indolis strain

Uncultured bacterium clone

- - - ? ? ? ? ? ? -

7 Brevundimonas sp.

Uncultured Brevundimonas sp. Clone

- - ? - - - ? ? - -

8 Pantoea agglomerans strain

Uncultured bacterium clone

- - ? - - - ? ? - -

9 Ochrobactrum sp.

Uncultured Ochrobactrum sp.

- - ? - - - - - - ?

10 Arcobacter sp.

Uncultured Arcobacter sp.

- - - ? ? - ? ? ? -

11 Agrobacterium vitis strain

Uncultured bacterium clone

- - ? ? ? ? ? ? ? -

12 Uncultured Acidobacteria bacterium clone ? ? - ? ? ? ? ? ? ?

13 Clostridium sp.

Uncultured Clostridium sp.

? ? ? ? ? ? ? ? ? ?

14 Bacillus aerius strain

Uncultured bacterium clone

? ? - ? - - - - - -

15 Sulfurospirillum carboxydovorans strain

Uncultured epsilon proteobacterium

- - - - ? - - - - -

16 Paenibacillus sp.

Uncultured bacterium clone

- - - - ? - - - - -

17 Pseudomonas sp.

Uncultured Pseudomonas sp. Clone

? - - - - - - - - -

(?) represent the dominant bacteria, (-) represent the non-dominant bacteria or absence
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bacteria were stimulated in the simulated IMEOR process.

Clostridium sp., Acidobacteria sp., Bacillus sp., and

Pseudomonas sp. dominated the IMEOR process. Micro-

bial activities and interactions among indigenous

microorganisms enhanced the IMEOR process. The results

indicated the potential of rice bran for promoting IMEOR

due to its effectiveness and low cost.
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