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Abstract
Problems in Extremal and Combinatorial Geometry

Thomas A. Plick

Advisor: Ali Shokoufandeh, Ph.D.

This thesis deals with three families of optimization problems: (1) Euclidean opti-

mization problems on random point sets; (2) independent sets in hypergraphs; and (3)

packings in point lattices. First, we consider bounds on several monochromatic and

bichromatic optimization problems including minimum matching, minimum spanning

trees, and the travelling salesman problem. Many of these problems lend themselves

to representations in terms of hierarchically separated trees — trees with uniform

branching factor and depth, and having edge weights exponential in the depth of the

edge in the tree. In the second part, we consider the independent set problem on

uniform hypergraphs, in anticipation of applying it to the third part, packing prob-

lems on point lattices. In these problems we wish to select a subset of points from an

n×n× ...×n grid avoiding particular patterns. We also study several generalizations

of these problems that have not been handled previously.
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1. Introduction

This thesis covers three fields in discrete and computational geometry: (1) the

behavior of Euclidean optimization problems on random point sets; (2) graph and

hypergraph theory; and (3) packing problems in point lattices. We review each of

these fields in turn.

1.1 Optimization problems on Euclidean sets and hierarchically sepa-

rated trees

Euclidean optimization problems are of interest to many real-world applications,

such as routing and transportation. Although worst-case bounds are useful, for many

problems the expected bound is a better indicator of the overall behavior of the

algorithm1 — even more so if we can show that the variance is small, so that the

results are tightly concentrated around the mean. When such concentration holds,

derandomization of these results can provide a fast deterministic algorithm that,

although having a poor worst-case bound, provides good results with overwhelming

probability.

Let us consider, as a first example, the travelling salesman problem (TSP) on the

d-dimensional unit hypercube [0, 1]d: given a point set {x1, . . . , xn} ⊆ [0, 1]d, the TSP

asks for the route of shortest distance that starts at x1, visits all the other points

exactly once, and returns to x1. Beardwood, Halton and Hammersley’s landmark

result [10] showed that for the TSP functional T on i.i.d. random variablesXi ∈ [0, 1]d,

lim
n→∞

T (X1, X2, . . . , Xn)

n(d−1)/d
= α(T, d) ·

∫
[0,1]d

f(x)(d−1)/d dx

1Hoare’s quicksort is a good example: its expected running time is Θ(n log n) but its worst case
is Θ(n2).
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almost surely, where α(T, d) is a constant depending on d, and f(x) is the c.d.f. of

the continuous part of the distribution of the Xi’s. The integral is maximized (and

in fact evaluates to 1) when the Xi’s obey a uniform distribution.2 Rhee [38] later

extended this result to apply to the minimum matching functional and shows complete

convergence (instead of almost sure convergence) for minimum matchings and for the

TSP; in [39] she showed how to extend the result to cover unbounded distributions

over the entire space Rd.

Yukich [58] uses the relationships between smooth subadditive Euclidean func-

tionals and their corresponding superadditive boundary functionals, introduced by

Redmond in his dissertation [37]. In the boundary version of the TSP, the boundary

of the hypercube is treated as a “highway” on which travel costs nothing; it is clear

that the optimal solution to the boundary TSP is less than the optimal solution of

the ordinary TSP. Similar boundary versions can be defined for other Euclidean func-

tionals as well. By relating a wide class of Euclidean functionals to their respective

boundary versions, Yukich generalized these results into his “umbrella theorem”:

Theorem 1.1 (Yukich) If Lp is a subadditive Euclidean functional and is close in

mean to a superadditive Euclidean functional LpB, both smooth of order p; if 1 ≤ p < d;

and if d ≥ 2; then

lim
n→∞

Lp(X1, X2, . . . , Xn)

n(d−p)/d = α(Lp, d) ·
∫

[0,1]d
f(x)(d−p)/d dx

with complete convergence.

Here α(Lp, d) is a constant depending on d, p, and the functional L; and Lp denotes

the sum of the p-th powers of each edge. Yukich also strengthened this result to

handle distributions on unbounded subsets of Rd.

2Intuitively, this is to be expected; if the distribution is biased toward one region of the hypercube,
we expect more of the points to fall there, shortening the length of the average optimal tour.
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The problems whose functionals satisfy the hypothesis of the theorem include

the TSP, the minimum spanning tree (MST) problem, and the minimum matching

problem (MMP). We will have more to say about these problems later, but for now

we give quick definitions of the latter two. Given a set of points {x1, . . . , xn}, the

MST is the minimum weight graph that connects the points, where the edge between

two points is weighted by Euclidean distance. The minimum matching (when n is

even) is a pairing of these points that minimizes the sum of the distances between

each pair.

Yukich [58] provides an additional reason to care about the expected behavior of

these optimization problems. Suppose that for a given n, we wish to find a set of n

points in [0, 1]d that maximizes the cost of the solution to the TSP (or to another

problem). In general this is hard to solve; but it turns out that for many problems,

the cost is of the same order of magnitude as the expected cost for a randomly chosen

point set. We thereby see that the expected behavior of these problems provides

insight into their worst-case behavior.

In a different direction, Ajtai, Komlós, and Tusnády [3] considered the bichromatic

matching problem, which is to minimize the expected matching cost between two

randomly chosen point sets R = {r1, . . . , rn} ⊆ Rd and B = {b1, . . . , bn} ⊆ Rd. Here

each red point is matched to a unique blue point; the cost of the matching is the sum

of the distance between each red point and its matched blue point.3 Leighton and

Shor [31] analyzed the problem of minimizing the maximum distance in the matching

instead of the sum of the distances (similar to the distinction between the L1 and L∞

norms). Much later, Abrahamson, Csaba, and Shokoufandeh [1, 2] rederived some

of the results of [3] using hierarchically separated trees (HSTs), trees with a regular

3This distance is sometimes called the earth mover’s distance (EMD), where the points of R are
analogized to mounds of earth (here of the same size) and the points of B represent holes that will
hold them.
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structure and regular edge weights. (The HST was introduced by Bartal [8].) For the

bichromatic matching problem on [0, 1]d for d 6= 2, they were able to derive upper

bounds identical to those of [3].

In this thesis, we will extend their results to cover the expected costs of an op-

timal matching or Hamiltonian tour on HSTs; we will consider monochromatic and

bichromatic versions of both these problems, as well as the monochromatic matching

problem. We also offer concentration results for the monochromatic problems. We

anticipate that these results will be useful to others in the future, since many optimiza-

tion problems can be reduced to problems on HSTs. To demonstrate, we will apply

these bounds to derive previously unknown bounds on the costs of the bichromatic

minimum spanning tree problem and TSP in high-dimensional Euclidean hypercubes

[0, 1]d.

1.2 Independent sets in graphs and hypergraphs

We now turn to graph theory, before returning later to geometry proper. There is

a rich history of interplay between geometric problems and problems in graph theory;

see Bárány [7] for a survey. It happens often that the constraints of a geometric

problem can be encoded into a graph, onto which all the tools of graph theory can then

be brought to bear. We will demonstrate the reduction of several lattice-point packing

problems to the independent set problem on uniform hypergraphs. The reduction is

fairly natural: many problems dealing with conflicts between elements of a set can

be recast as independent set problems on suitably defined hypergraphs.

After carrying out the reduction, we must then determine the independence num-

ber of the graph, either by algorithmic means (constructing an independent set) or

by bounding the independence number (finding an expression for it). The indepen-

dent set problem is, like many (hyper)graph problems, NP-hard — assuming P 6=
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NP, a polynomial-time algorithm can only provide a good solution that is not neces-

sarily optimal. For completeness, we mention that the TSP is also NP-hard; several

constant-factor approximation algorithms exist for the TSP, and we will examine two

of these in Chapter 4.

For independent sets, the situation is different: the best-known general bound

on the independence number is given by probabilistic methods. For some problems,

it happens that a randomly chosen configuration often provides a good solution; if

the expected value is sufficient, we can take advantage of the linearity of expecta-

tion to generate a solution that achieves this expected value. This strategy is called

E-M, meaning expectation maximization in maximization problems and expectation

minimization in minimization problems. We give an example of this process in Chap-

ter 4, where we demonstrate the derandomization of a probabilistic result of Caro and

Wei [13, 56] on the independence number of a graph.

Their result is related to Turán’s famous theorem [55]. Let us define the (n, k)

Turán graph T (n, k) to be the complete k-partite graph on n vertices where the

division of the vertices into k classes is as equal as possible. Turán proved

Theorem 1.2 (Turán [55]) Of all the graphs on n vertices not containing a sub-

graph isomorphic to Kk+1, the graph T (n, k) has the smallest independence number,

namely dn/ke; and every such graph with the same independence number is isomor-

phic to T (n, k).

Equivalently,

Theorem 1.3 (Turán [55]) The independence number of a graph on n vertices with

average degree δ is at least n/(δ + 1).

Turán’s paper actually proved Theorem 1.2, but many people also refer to Theorem

1.3 as Turán’s theorem.
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Extensions of Caro and Wei’s theorem due to Caro and Tuza [14] and to Thiele [54]

provide a generalization of the E-M algorithm to K-uniform hypergraphs; in Chap-

ter 5, we will use their bounds to improve bounds on some high-dimensional lattice-

point packing problems. We also have novel results to report, Theorems 4.13 and

4.17, that follow from the Caro-Tuza bound.

1.3 Lattice packing problems

Our final topic in this thesis is packing problems on lattice points. A lattice

in d dimensions is a point set of the form A · Zd where A is a d × d nonsingular

matrix. In this thesis we will normally be concerned with the square lattice Zd and

subsets thereof; this is what we will mean when we speak of “the” lattice. Another

frequently encountered type of lattice is the triangular lattice, generated by setting

A =

 1 1/2

0
√

3/2

 (or a multiple); this lattice resembles a tessellation of the plane

by triangles. The d-dimensional lattice of width n is the set {1, . . . , n}d. The two-

dimensional lattice turns up in many bounds involving planar point sets in Rd (that

is, questions involving points with real coordinates, not just integer coordinates). We

briefly describe some of these problems.

The Heilbronn triangle problem [42] asks how to place n points inside the unit

square [0, 1]2 in a way that maximizes the minimum area of the
(
n
3

)
triangles so

formed. Heilbronn believed the maximum to be c/n2, which is obtainable with a sim-

ple modular construction on lattice points (see Section 5.2). To the contrary, Komlós,

Pintz, and Szemerédi [29] proved a lower bound of Ω(log n/n2) using a probabilistic

construction.

A question of Erdős asked for the maximum number of incidences between n

points and m lines in the plane. The famous Szemerédi-Trotter theorem [50] bounds
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this number from above by O(n2/3m2/3 + n + m). This bound is in fact attained by

taking a b
√
nc × b

√
nc lattice and drawing m lines in such a way that maximizes the

point incidences on each line.

Another problem considered by Erdős [20] was that of finding the maximum num-

ber of pairs of n points that can lie a unit distance apart. A scaled version of the

square lattice gives a lower bound of nec logn/ log logn, which is believed to be tight.

The best known upper bound is O(n4/3), first proved by Spencer, Szemerédi, and

Trotter [46]. Also in [20], Erdős considered the problem of minimizing the number

of distinct distances occurring among n points. The b
√
nc × b

√
nc lattice contains

O(n/
√

log n) distinct distances; again this is believed to be the tight bound, but the

best known lower bound4 is Ω(nC−ε) where C ≈ 0.8641.5 Curiously, over a wide range

of values of n, the minimum number of distinct distances among n points is realized

by a section of the triangular lattice (in other words, it seems that we only have to

consider subsets of the triangular lattice); Erdős and Fishburn [22] conjectured this

to be true for all n greater than some n0.

Lattices also come into play in questions about geometric packings and coverings in

the plane. Let T be a convex set, and let A1, A2, . . . be a set of shape-preserving affine

transformations (thus each is a composition of translations, rotations, and reflections).

The Ai’s and T induce an arrangement
⋃
iAiT . It is a packing if no point in the plane

is contained in two of the copies of T (with the possible exception of the boundaries of

T , if T is a closed set). The complementary notion of a covering is an arrangement in

which every point in the plane is contained in at least one copy of T . Over a domain

D, we can define the efficiency of a packing by the ratio of the area of the packing

4This is found in [12, Chapter 5] as the consequence of two results, one by Solymosi and Tóth
[45] and the other by Katz and Tardos [28].

5Recently (in 2010), Guth and Katz [24] have demonstrated a lower bound of Ω(n/ log n) for this
problem, which gives an almost-tight bound. As far as we can tell, this paper has not yet been
published; it is available at http://arxiv.org/abs/1011.4105
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to the area of D; packings have efficiency ≤ 1, coverings ≥ 1. If D is unbounded, we

can take the limit of the efficiency on the bounded domains D∩{(x, y) : x2 + y2 ≤ r}

for r = 1, 2, 3, . . . . Many results on the optimal efficiency of packings involve lattice-

centered packings,6 which are packings of the form
⋃
c∈C(T+c) for some C ⊆ R2. Here,

rotations and reflections are not allowed. When T is centrally symmetric, it turns out

that the lattice-centered packing often gives optimal results over all possible packings.

Similar considerations are true for non-crossing coverings.7 The most efficient non-

crossing coverings tend to be lattice-centered. A good overview of geometric packing

and covering can be found in the book by Pach and Agarwal [34, Chapters 3 and 4].

Lattices have received considerable attention from researchers even beyond their

relations to the above problems. In Chapter 5 we will consider packing problems on

the n× n lattice; these problems entail finding a maximum subset of the lattice that

contains no instance of a forbidden subset. Solutions to problems of this type are of

great use in computational geometry and in sampling theory.

The most famous open problem in this class is the no-three-in-line problem, which

asks for a maximal subset of the n × n lattice containing no three collinear points.

The upper bound is 2n, and this bound is generally believed to be attainable. The

best known lower bound is (1.5− o(1)) · n, given by a construction of Hall et al. [25].

Thiele [52, 53] considered the related problem of choosing points from the lattice while

avoiding four co-circular points (considering four collinear points to lie on a circle of

infinite radius). He demonstrated a lower bound of (1/4−o(1))·n. Erdős and Guy [21]

considered the problem of choosing a subset of k points such that the
(
k
2

)
pairs of

points all have distinct distances; they give a greedy algorithm that constructs a set

6These are generally called just “lattice packings,” but we add “centered” to the term to distin-
guish this notion from the type of problems we consider later on.

7A covering is non-crossing if for any copies T1 and T2 of the tile, the differences T1 − T2 and
T2−T1 form connected sets. This condition is believed not to be essential to the theory, but exisiting
proofs about coverings rely on it.



9

of n2/3−o(1) points. We review these constructions in Sections 5.2 and 5.5.

Higher-dimensional lattices present additional problems; these problems generally

have not been explored as deeply as their two-dimensional equivalents. Riddell [40]

considered the problem of choosing points from the lattice {1, . . . , n}d such that no

n points are collinear. Thiele [52] considered subsets of {1, . . . , n}d that avoid (1)

d + 1 points on the (d − 1)-dimensional hyperplanes, and (2) d + 2 points on the

d-dimensional hyperspheres (including (d−1)-dimensional hyperplanes as degenerate

hyperspheres).

In a similar vein, we will consider generalizations of the no-K-in-line and no-four-

on-circle problems to higher dimensions. Our results will be obtained with the aid of

the results in Chapter 4 on the independence number of uniform hypergraphs. These

packing problems have natural representations as hypergraphs — take the vertex set

to be the points of the lattice, and form an edge from every forbidden subset (collinear

K-tuple or co-circular 4-tuple) of points.

1.4 Plan of the thesis

The rest of this thesis is laid out as follows. In Chapter 2 we discuss monochro-

matic optimization problems on HSTs. In Chapter 3 we consider the bichromatic

versions of these problems. Then, in Chapter 4, we turn to graph and hypergraph

theory, looking into questions concerning the independence number of uniform hyper-

graphs. In Chapter 5, we apply these results to packing problems on lattice structures.

We offer conclusions in Chapter 6.

A summary of the mathematical notation used in this thesis is found in Appendix

A. Appendix B contains proofs of some theorems and lemmata used in the main text;

we have placed them there so as not to disrupt the flow (such as it is) of the main

text. Appendix C contains some material that we produced late in the writing of this
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thesis; the ideas are elegant but the proofs are lacking. Perhaps the reader will have

some insights into the questions raised there.
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2. Monochromatic HST problems

2.1 Introduction

The notion of the hierarchically (well-)separated tree (HST) was introduced by

Bartal [8]. A λ-HST is a rooted weighted tree satisfying two properties: (1) for a

given node v, the edges connecting v to its children have the same weight; and (2)

for a given node v that is neither a root nor a leaf, the ratio of each of v’s child edge

weights to the weight of v’s parent edge is λ. Therefore, along any path from the

root to a leaf, the weights of the edges will be c, cλ, cλ2, etc. In what follows, we only

consider HSTs that are balanced (those for which the branching factor of all nodes

other than the leaves is the same, denoted by b) and uniform (having every leaf at

the same depth δ). We also require 0 < λ < 1. We describe an HST with these

parameters as a (b, δ, λ)-HST.

There is a little ambiguity here, in that we have not specified the weight of the

edges incident on the root; most of the time, we will assume that this weight is λ,

giving us a weight sequence of λ, λ2, . . . , λd. If the weight is different, it only affects

our results by constant factors, and so we feel free to ignore them.

Bartal [9] showed that arbitrary metric spaces on n points can beO(log n log log n)-

probabilistically approximated by a collection of HSTs; the factor of the approxima-

tion (here c log n log log n) indicates the maximum factor by which a randomly chosen

tree from the collection will overestimate, in expectation, the distance between any

pair of points. Fakcharoenphol, Rao and Talwar [23] improved the factor in Bartal’s

result from O(log n log log n) to O(log n).

General HSTs are well suited to approximating arbitrary Euclidean metric spaces.

In this paper we consider only balanced uniform HSTs, but even these are useful in



12

1
16

3
16

5
16

7
16

9
16

11
16

13
16

15
16

1/4

1/8

1/16

Figure 2.1: Eight equispaced points on [0, 1] and their HST approximation. For every
pair of points x, y, the distance between x and y in the tree exceeds or equals their
Euclidean distance |x− y|.

approximating “well-behaved” spaces. To start, let us consider a set Pn of n equally

spaced points on the interval [0, 1]. For simplicity, let us assume the points are

placed at the midpoints of the subintervals [0, 1/n], [1/n, 2/n], . . . , [(n− 1)/n, 1]. For

n a power of two, we can draw a full binary tree of height log2 n whose leaves are

collocated with Pn. Figure 2.1 shows the tree for n = 8. The edge weight ratio is set

to 1/2, and the edges incident on the root are given weights of 1/4; the tree then has

a diameter of 1− 1/n.

This tree defines a metric on the leaves of Pn: the distance between two leaves is

the length of the path connecting them. It is clear that the distance between the two

leaves p and q in the tree is greater than or equal to the Euclidean distance between

the points p and q; thus it is said that the tree metric dominates the Euclidean

metric on these points. While the tree metric is close to the Euclidean distance for

many point pairs (consider the two extreme points), other point pairs are assigned

an exaggerated distance. Consider the two middle points: their Euclidean distance is

1/n, but their distance in the tree is nearly 1.

We obtain better results with a more complex technique. Let us embed Pn into
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Figure 2.2: The sixteen white points represent sixteen equispaced points on the toric
interval [0, 2]. They are paired off, and the midpoint of each pair is drawn, with edges
to the points of its pair. This process is repeated until only one point remains.

the interval [0, 2] equipped with a torus distance metric: the distance between two

points x and y is defined as min(|x− y|, 2− |x− y|). Thus the interval wraps around

— the points 0 and 2 are coincident — but for two points inside [0, 1], the torus

metric agrees with the Euclidean metric. Define P ′n = Pn ∪ (1 + Pn). We can repeat

our construction from above: choose one of the points to be the “first” leaf, and build

a binary tree whose leaves are collocated with P ′n. In this way we obtain a set of n

trees; one such tree is shown in Figure 2.2. Now, for a fixed pair of points p and q

from Pn, some trees will greatly overestimate the distance between p and q, but most

of the trees will give a fairly close value to the Euclidean distance. Choosing a tree

at random will provide an approximation that is accurate with high probability; one

can show that the expected distance in the tree is no more than O(log2 n) times the

actual Euclidean distance.

Our construction easily generalizes to higher dimensions. Given n points equally
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spaced in [0, 1]d, we can embed them into a set of n·2d points in [0, 2]d equipped with a

torus metric. The resulting tree will now have a branching factor of 2d. Furthermore,

the restriction to equispaced points is, for many applications, not essential: points on

[0, 1]d can be discretized to an equispaced grid of points. The most convenient such

grid is the one formed by cutting the hypercube into n parts along every dimension,

forming nd smaller hypercubes, and taking the midpoint of each cube. This setup

introduces some error, which depends on the coarseness of the discretization; the

optimal error is often negligible when compared to the cost of the problem. For more

on the application of HSTs to problems on metric spaces, we refer the reader to the

papers by Bartal [8, 9] and Fakcharoenphol et al. [23].

2.2 Definitions of problems

Given an HST H and a submultiset V ′ of its leaves, we let G be the complete

graph with vertex set V. Here V contains the elements of V ′, and if there are multiple

copies of a leaf in V ′, we distinguish them in V by indexing the different copies. For

every v, w ∈ V , the weight of the path from v to w is denoted by dH(v, w). Note that

we will have distinct vertices of G that are at a distance zero from each other, when

these are copies of the same leaf of H.

In this chapter, we will demonstrate tight bounds on the expected costs of solutions

to three problems on HSTs. These problems are the minimum matching problem, the

travelling salesman problem (TSP), and the minimum spanning tree (MST) problem.

Minimum Matching Problem (MMP ): The minimum matching on V has

cost given by

M(V ) = min
M⊆G

∑
e∈M

|e|,

where |e| denotes the weight of the edge e and the minimum is taken over all possible

perfect matchings of G. If n is odd, one of the vertices is excluded from the matching,
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and so the minimum matching on V is the minimum of the minimum matchings on

the n subsets V \{x1}, V \{x2}, . . . , V \{xn}.

Travelling Salesman Problem (TSP ): A closed tour or Hamiltonian cycle is a

simple cycle that visits each vertex of V exactly once. We denote by T (V ) the length

of the shortest closed tour on V . Thus

T (V ) = min
τ⊆G

∑
e∈τ

|e|,

where the minimum is taken over all tours τ .

Minimum Spanning Tree Problem (MST ): We let MST (V ) be the cost of

the minimum spanning tree on V , namely

MST (V ) = min
F⊆G

∑
e∈F

|e|,

where the minimum is taken over all spanning trees F .

2.3 The minimum matching problem

Let H be an HST, and let W be a set of points assigned to the leaves of H.

In this section, we will prove that the optimal matching cost is on the order of∑h
k=1(bλ)k, where h = min(δ, logb n). The proof proceeds in two broad stages. First,

we determine, based on the leaves that form W , the number of matches τv occurring

at each node v of the tree; the idea of a matching occurring at a node is formalized

as a transit. Once this question is resolved, the value of E[M(W )] can be found as

the expectation of a weighted sum of the τv’s.

For each vertex v ∈ V (H), we define X(v) to be the number of points assigned to

the descendants of v in H. We consider a node to be a descendant of itself, so that

when v is a leaf, X(v) is simply the number of points assigned to v. For a non-leaf
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vertex v with children u1, u2, . . . , uk, we have

X(v) =
k∑
i=1

X(ui).

For a pair of matched points (x, y) in W belonging to distinct leaves ux and uy

in H, we will say the pair (x, y) results in a transit at vertex v when v is the lowest

common ancestor of ux and uy — that is, when the path between ux and uy passes

through v. We denote by τv the total number of transits at vertex v in an optimal

matching. Given an integer N , we define Odd(N) to be the parity of N , i.e., 1 when

N is odd and 0 when N is even.

Lemma 2.1 Let H be an HST, and let W be a submultiset of the leaves of H. The

number of transits at any non-leaf vertex v in a minimum matching M(W ) is

τv =
1

2

((
k∑
i=1

Odd(X(ui))

)
−Odd (X(v))

)
,

where u1, u2, . . . , uk are the children of v.

Proof: First consider a vertex v at height 1 and its children u1, u2, . . . , uk. For each

ui, only Odd(X(ui)) instances need to look for a match elsewhere in the tree, since an

even number of the instances can be paired off in the leaf. The number of remaining

unmatched points will therefore be
∑

iOdd(X(ui)). These points can now be paired

off at v; if this quantity is odd, there will be one point left over. The number of pairs

that transit through v is thus

1

2

(∑
i

Odd(X(ui))−Odd

(∑
i

Odd(X(ui))

))

=
1

2

(∑
i

Odd(X(ui))−Odd

(∑
i

X(ui)

))
.
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We will now modify the HST in the following way. Each point resident at a leaf

of the tree will be transferred to its parent, and the leaves will be removed. Thus

each vertex v that was formerly at depth 1 will become a leaf, and every remaining

vertex will retain its previous X-value. It is clear that the number of transits at

every vertex w in this new tree remains the same, since any unmatched point at ui

would have had to search above v in any case, and these points will transit at the

same vertex as they would have before. Successive applications of the argument in

the preceding paragraph will reduce the tree to a single node, showing that τv =

1
2

(
∑

iOdd(X(ui))−Odd (
∑

iX(ui))) for every vertex v in the original tree. �

The above argument also shows that τv ≤ 1
2
degH(v): the number of transits at

v is upper-bounded by the number of children of v, regardless of the number of

descendants v has in the HST.

Lemma 2.2 Let v be a non-root vertex in level ` of an HST H. Then

Pr[X(v) is odd] ≤ 1

2
,

so that E[Odd(X(v))] ≤ 1
2
. If n, the number of points chosen, is at least b`, then

Pr[X(v) is odd] ≥ 1

4
,

so that E[Odd(X(v))] ≥ 1
4
.

Proof: Let r be the ratio of leaves of H that are descendants of v. We have r = 1/b`.

Let us start with an empty multiset of points and add points one by one. Some of

these points will belong to leaves that are descendants of v, while others will not.

For i = 1, . . . , n, define mi to be the number of the first i points that belong to

descendants of v, and let χi = Odd(mi). The variables χi form a Markov process
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where each transition changes state with probability r and remains at the current

state with probability 1−r; this gives us the transition matrix P =

 1− r r

r 1− r

.

The initial state of the process is π = [1, 0].

We can diagonalize P as U−1DU , where D =

 1 0

0 1− 2r

 and U = U−1 =

1√
2

 1 1

1 −1

. After n points have been chosen, the state of the system will be

πPn = πU−1DnU

=

[
1

2
+

1

2
(1− 2r)n,

1

2
− 1

2
(1− 2r)n

]
,

and we have Pr[X(v) is odd] = 1
2
− 1

2
(1− 2r)n.

Set ∆ = (1 − 2r)n. Notice that ∆ cannot be negative, since b ≥ 2 and r ≤ 1/b.

This shows the first statement of the lemma. For the lower bound, we wish to show

∆ ≤ 1
2
. When n ≥ b`, the worst case is clearly for r = 1/b` and n = b`, which gives

us

∆ ≤ (1− 2/b`)b
`

< exp(−2) <
1

2
,

and the second statement is proved. �

We now have

Corollary 2.3 Let H = H(b, δ, λ) be a balanced HST, and let v be one of its non-leaf

vertices in level ` > 0. Then

E[τv] ≤
1

4
(b− 1),

and if n ≥ b`,

E[τv] ≥
1

8
(b− 1).

Proof: Take the expectation of τv as given by Lemma 2.1. The values of
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E[Odd(X(v))] and E[Odd(X(ui))] are bounded by Lemma 2.2. �

Theorem 2.4 Let H = H(b, δ, λ) be a balanced HST, and let W be a randomly chosen

n-element submultiset of its leaves. The value of E[M(W )], the expected weight of the

optimal matching of W , obeys

E[M(W )] ≤ Bb,λ

δ∑
k=1

(bλ)k

for some positive constant Bb,λ depending only on b and λ. If n ≥ bδ, then

E[M(W )] ≥ Ab,λ

δ∑
k=1

(bλ)k

for some positive constant Ab,λ depending only on b and λ.

Proof: Consider the contribution of level k (where k > 0) to the value of M(W ).

Level k contains bk vertices, and the expected number of transits at each of these

vertices is between 1
8
(b − 1) and 1

4
(b − 1), by Corollary 2.3. The weight of a match

at level k is 2(λk + λk+1 + λk+2 + . . . + λδ); this is bounded from below by 2λk and

from above by 2
∑∞

i=k λ
i = 2λk/(1 − λ). The total contribution of levels 1, 2, . . . , δ

can therefore be bounded from above by

δ∑
k=1

(
bk · 1

4
(b− 1) · 2λk

1− λ

)
=

b− 1

2(1− λ)
·

δ∑
k=1

(bλ)k.

and bounded from below, when n ≥ bδ, by

δ∑
k=1

(
bk · 1

8
(b− 1) · 2λk

)
=
b− 1

4
·

δ∑
k=1

(bλ)k.

Choose Ab,λ < (b − 1)/4 and Bb,λ > (b − 1)/2(1 − λ). We have not counted the

contribution of the root, but it is negligible, at most the constant b. �
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Remark 2.5 Let us perform a walk on the tree, starting at the root, and visiting each

leaf in order from left to right. This walk will use each edge twice. At level ` there

are b` edges, and their cost is λ`. Therefore the total cost will be

2 ·
δ∑
`=1

b`λ`.

Note the similarity to the bounds in Theorem 2.4.

Now we have

Theorem 2.6 Let H = H(b, δ, λ) be a balanced HST, let W be a randomly chosen

n-element submultiset of its leaves, and let h = min(δ, logb n). Then

E[M(W )] ≤ Cb,λ

h∑
k=1

(bλ)k

for some positive constant Cb,λ depending only on b and λ.

Note that the upper index of the summation has changed from δ to h.

Proof: If δ ≤ logb n then there is nothing to prove. Hence, we may assume that

δ > logb n, and consider the case h = logb n for n a power of b.

Each node at depth h will have an average of one element of W in its subtree.

The worst case occurs when each node at depth h has exactly one element: otherwise,

elements can be paired off in the subtrees without looking above level h. Thus the

situation is the same as locating points at level h instead of at level δ. More generally,

when n is not a power of b, the average number of elements of W in each subtree will

still be O(1), giving us the same result (with a different constant). The bound then

comes from applying Theorem 2.4 to a tree of height h. �

Relaxing the index of the second summation in Theorem 2.4 from δ to h, we

conclude
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Theorem 2.7 Let H = H(b, δ, λ) be a balanced HST, let W be a randomly chosen

n-element submultiset of its leaves, and let h = min(δ, logb n). Then

A′b,λ

h∑
k=1

(bλ)k ≤ E[M(W )] ≤ B′b,λ

h∑
k=1

(bλ)k

for some positive constants A′b,λ, B
′
b,λ depending only on b and λ.

(Above, and throughout the rest of this thesis, we implicitly assume that the

value logb n appearing in the index of the summation is an integer. The reader may

substitute blogb nc or dlogb ne if he wishes; the results are not affected.)

2.4 The TSP and the MST problem

Now we turn our attention to the MST problem and the TSP. Let us first consider

the TSP. We construct a tour on the multiset W as follows: we build a tree T ′ that

contains each edge e = (p, c), where p is the parent vertex of c, if and only if some

descendant of c is identified with a point of W . The tour T is formed by visiting the

leaves of T ′ in order; it is clear that the weight of T is exactly twice the weight of

T ′, since each edge of T ′ will be traversed exactly twice to form the tour T . We can

easily show that an optimal tour on W and the root of the HST can be formed in this

way: Suppose we have a tour that does not have the form described above. There

are two leaves u and v that are out of order in the tour. Switching the positions of u

and v in the tour can only decrease the total cost.

Observe that even though the root is not always needed to create a tour on W , it

will be needed with high probability. More precisely, the probability that it will not

be needed is the same as the probability that all n chosen leaves of T have the same

ancestor at level 1 of the tree; this probability is 1/bn−1, which is at most 1/2 for

b, n ≥ 2. In the following, we presume that the root is needed; this only changes the
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true values of the expectations by a constant factor, which we can ignore. We will

show that the expected cost of the optimal tour is on the order of
∑h

`=1(bλ)`, where

h = min(δ, logb n).

Let v be a non-root vertex in T , and let ` be its level in the tree (with the root

being at level 0). The probability that a randomly chosen leaf of T is a descendant

of v is 1/b`. Since n points will be chosen, the probability that the parent edge of v

is needed in T is

1−
(

1− 1

b`

)n
.

Since there are b` vertices in level ` and each of their parent edges has weight λ`, the

total contribution of level ` to the weight of T is

2 · (bλ)` ·
(

1−
(

1− 1

b`

)n)
,

hence

Theorem 2.8 Let H = H(b, δ, λ) be a balanced HST, and let W be a randomly

chosen n-element submultiset of its leaves. Then the expected cost of a tour on W

and the root of T is

2 ·
δ∑
`=1

[
(bλ)` ·

(
1−

(
1− 1

b`

)n)]
.

The result of Theorem 2.8 is exact, though unwieldy in this form. Our goal now

is to massage this quantity into the expression of Theorem 2.12.

Since removing the root from the tour can only decrease its cost, we have

E[TSP (W )] ≤ 2 ·
δ∑
`=1

[
(bλ)` ·

(
1−

(
1− 1

b`

)n)]
,

and
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Corollary 2.9

E[TSP (W )] ≤ 2 ·
δ∑
`=1

(bλ)`.

By the inequality 1 + x ≤ ex, when n ≥ b` we have

(
1− 1

b`

)n
≤ e−n/b

` ≤ 1

e
,

hence

Lemma 2.10 Given that the root is necessary in the tour,

E[TSP (W )] ≥ 2 · (1− 1/e) ·
h∑
`=1

(bλ)`

where h = min(δ, logb n).

Since the root is necessary with probability at least 1/2,

Corollary 2.11

E[TSP (W )] ≥ (1− 1/e) ·
h∑
`=1

(bλ)`

where h = min(δ, logb n).

All that remains is to reconcile these two corollaries.

Theorem 2.12

E[TSP (W )] = Θ

(
h∑
`=1

(bλ)`

)

where h = min(δ, logb n).

Proof: Assume h = logb n, since otherwise the theorem follows directly from Corol-

laries 2.9 and 2.11. We divide the tour into two parts in relation to the h-th level of

the tree: the “upper” part consists of the edges above this level, while the “lower”
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part consists of the edges below this level. The theorem will be proved if we can show

that the expected cost of the lower part is dominated by that of the upper part.

Let us change the lower part in the following way: instead of building the optimal

tour within each subtree, we will just connect each leaf (that has a point) to its

ancestor in the h-th level. This is a more direct or “lazier” tour, where we ignore the

cheaper edges in these subtrees. Clearly this increases the cost; moreover, this new

cost is easier to calculate. There are n points, and the cost of connecting each point

to its ancestor in the h-th level is 2 · (λh+1 + λh+2 + . . . + λδ−1) ≤ 2 · λh+1/(1 − λ).

This cost is therefore bounded from above by 2n · λh+1/(1− λ).

We now consider the upper part of the tour — in fact, we need only consider

those edges connecting nodes in the (h − 1)-st and h-th levels. Let us mark every

node in the h-th level that has a point in its subtree. The parent edge of every marked

node must be included in the tour: how many of these n nodes do we expect to be

marked? It is not hard to see that the probability of a node remaining unmarked is

(1− 1/n)n; this is bounded from above by 1/e. Thus the expected number of marked

nodes exceeds n · (1 − 1/e), and the total expected cost of their parent edges is at

least 2n · (1− 1/e) ·λh. We conclude that the cost of the lower part of the tour is less

than a constant factor (depending on b and λ) times the cost of the upper part of the

tour. �

Let us turn to the MST problem. It is well known that on a graph whose edge

weights obey the triangle inequality, the optimal solutions to the MST problem and

to the TSP are within constant factors of each other. An algorithm appearing in

the work of Rosenkrantz et al. [41]1 uses this fact to find a 2-approximation for the

TSP on metric graphs. Our goal in the remainder of this section is to show that the

1This reference is one of the earliest to the algorithm, but is not clear who first came up with it
first.
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optimal solutions to these two problems on HSTs are, in fact, approximately equal:

we will have

MST (W ) ≤ T (W ) ≤MST (W ) + ∆,

where ∆ is the diameter of the tree. The minimum spanning tree is obtained by

removing one edge from the optimal tour, and this edge will have weight less than or

equal to the tree diameter.

As observed above, with probability at least 1/2, the root is needed to form the

MST; in what follows, we assume that the root is part of the MST. Let F be a rooted

tree with positive edge weights, and let r be its root. Assume further that every leaf

lies in level k of the tree. Let us denote by d(u, v) the total edge weight of the path

connecting the leaves u and v. These distances clearly determine a metric spaceMF

on the leaf set of F. For any x ∈ V (F ), let F (x) denote the subtree of F rooted at x.

Lemma 2.13 Let W be a submultiset of the leaves of F. Denote by T the minimum

spanning tree on W with distances determined byMF . Also, for an arbitrary non-root

vertex x ∈ V (F ), let T (x) be the forest spanned by the vertices of V (T ) ∩ V (F (x)).

Then the forest T (x) is either connected or empty.

Proof: Assume on the contrary that some T (x) is disconnected and non-empty. Let

C1 and C2 be two of its components. We will change T in the following way: delete

the edge that connects C1 to T − T (x), and connect C1 to C2 by an edge. This new

tree has a smaller total edge weight, since we can connect C1 and C2 by keeping the

edges of the C1 − (T − T (x)) path from C1 to x and deleting the other edges. �

We can say more about the structure of the minimum spanning tree if we impose

another condition on F :

Lemma 2.14 Assume that all edges that connect a parent with its children have equal

weight. Then one of the minimum spanning trees is a path.



26

Proof: Let us first consider the case when F is a star tree. In this case, the distance

between any two distinct leaves is the same, so there is an MST which is a path.

When F is not a star tree, we apply the lemma inductively to the subtrees rooted

at the children of r; each subtree has an MST that is a path. Stitching together these

MSTs creates an MST of F that is a path. To see its minimality, note that if it were

not optimal, the suboptimal pieces could be replaced by optimal ones. We know that

the MST can be formed piecewise in this way from Lemma 2.13. �

The next lemma follows easily.

Lemma 2.15 For any HST F , it holds that 0 < TSP (F )−MST (F ) ≤ diam(F ).

Proof: By the preceding lemma, we may take the MST to be a path. The first

inequality follows from the fact that removing an edge from a Hamiltonian tour yields

a spanning tree. To see the second inequality, observe that the TSP solution and the

MST differ only in that the former is a cycle and the latter is a chain; the TSP tour

is obtained by adding one edge to the MST. This edge has weight at most diam(F ).

�

Notice that diam(F ) = 2
∑δ

i=1 λ
i < 2λ/(1− λ), which we consider constant. The

bounds (expectation and, later, concentration inequalities) obtained for the TSP will

therefore apply to the MST problem as well.

Corollary 2.16

0 < E[TSP (W )]− E[MST (W )] ≤ diam(F ).

Thus Theorem 2.12 also applies to MSTs, viz.,

Theorem 2.17

E[MST (W )] = Θ

(
h∑
`=1

(bλ)`

)
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where h = min(δ, logb n).

2.5 The lifting lemma [17]

Our results for the monochromatic problems give us a sense that there is something

special about the (logb n)-th level of the tree; deeper levels of the tree seem to have

negligible effect on the solutions’ asymptotic costs. We formalize this notion as a

process that we call “lifting,” in which points in deep levels are moved up to the

(logb n)-th level.

Given an HST H(b, δ, λ) and an n-point multiset W with δ ≥ logb n, we define

the lifting of W , written LH(W ), to be the multiset formed from the level-(logb n)

ancestor of each point in W . Stated otherwise, if we define A(v) to be the ancestor

of the point v that lies in level logb n of the tree, then

LH(W ) =
⋃
v∈W

A(v),

where each point in level logb n is included as many times as it has descendants in

W . Notice that if the points of W are chosen i.i.d. uniformly from the leaves of H,

then LH(W ) is an i.i.d. uniformly chosen multiset of tree nodes from the (logb n)-th

level of H.

For convenience we again define h = logb n.

Claim 2.18 Let v be a vertex of H that sits in level ` ≥ h. Then

dH(v,LH(v)) ≤
∞∑

i=h+1

λi =
λh+1

1− λ
,

where dH(x, y) denotes the distance of x and y in H.

The claim follows easily from the definition of the edge weights in an HST. From
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this claim follows

Lemma 2.19 (the lifting lemma) Assume that a balanced HST H(b, δ, λ) has depth

δ > h. Let W be an n-element multiset of the leaves. Then

dH(W,LH(W )) = O((bλ)h).

Proof: dH(W,LH(W )) ≤ n · λh+1/(1− λ) = (bλ)h/(1− λ). �

The lifting lemma enables us to use a three-part strategy on these problems when

δ > h:

1. Lift the points from the leaves to level h. This incurs a certain cost, say α.

2. Solve the problem with the points placed at level h. Let us say the cost is β.

3. If we can show α = O(β), the cost of the original problem is Θ(β).

We now present new proofs of the monochromatic matching and TSP theorems.

Theorem 2.20 Let H = H(b, δ, λ) be a balanced HST, let W be a randomly chosen

n-element submultiset of its leaves, and let h = min(δ, logb n). Then

E[M(W )] ≤ Cb,λ

h∑
k=1

(bλ)k

for some positive constant Cb,λ depending only on b and λ.

Proof: If δ ≤ logb n then there is nothing to prove. Hence, we may assume that

δ > logb n, and consider the case h = logb n for n a power of b. From Lemma 2.19,

the cost of lifting every point to level h is O((bλ)h). The cost of the matching on the

lifted points is O
(∑h

k=1(bλ)k
)

by Theorem 2.4. Summing these two costs proves the

theorem. �
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Theorem 2.21

E[TSP (W )] = Θ

(
h∑
`=1

(bλ)`

)

where h = min(δ, logb n).

Proof: Assume h = logb n, since otherwise the theorem follows directly from Corollar-

ies 2.9 and 2.11. The lower bound is evident from Corollary 2.11. From Lemma 2.19,

the cost of lifting the points residing at the leaves to level h is O((bλ)h). Since the

points are now at level h of the HST, we will treat h as the new height: by Corol-

lary 2.9, the cost of this tour on the lifted points is Θ
(∑h

`=1(bλ)`
)

. The sum of these

two costs is Θ
(∑h

`=1(bλ)`
)

.

The tour so constructed is not in fact the optimal tour, but instead a “lazier” one:

above level h the tour is unchanged, but below level h there are n direct circuits, one

between each point and its ancestor in level h. The cost of the optimal tour is therefore

O
(∑h

`=1(bλ)`
)

. Since, by Corollary 2.11, the cost above level h is Ω
(∑h

`=1(bλ)`
)

,

the theorem is proved. �

While the lifting lemma was not essential to our proofs in this chapter, it will be

crucial when we consider the bichromatic problems in the next chapter.

2.6 Concentration inequalities

Many of the ideas in this section stem from those of Yukich [58, Chapter 6], who in

turn used methods of Talagrand [51], Rhee [38] and Steele [48]. Given a hierarchically

separated tree T with branching factor b and weight ratio λ satisfying 0 < λ < 1 and

bλ ≥ 1, we investigate the probability that the matching length of a random point set

X deviates widely from its expectation. We will consider both the monochromatic

case and the bichromatic case. As it turns out, we have much better concentration
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results for the former than for the latter, since in the monochromatic case we can use

an isoperimetric inequality which, unfortunately, cannot be applied to the bichromatic

problems.

First we briefly discuss Azuma’s inequality, which will be of use to us in both

cases. Let (Ω,A, P ) be a finite probability space with the filtration (in this case a

sequence of partitions of Ω)

(∅,Ω) = A0 ⊆ A1 ⊆ . . . ⊆ At = A.

Let X be a random variable. For each 1 ≤ i ≤ t we define the martingale difference

di = E(X|Ai) − E(X|Ai−1), and assume that ‖di‖∞ ≤ σi. We have the following

well-known result:

Theorem 2.22 (Azuma’s inequality) For all a > 0,

Pr(|X − EX| ≥ a) ≤ 2e−a
2/2σ2

,

where σ2 ≡
∑t

i=1 σ
2
i .

First we will consider the minimum matching problem.

Lemma 2.23 Assume that k points are assigned to vertices of T, with k even. Then

the minimum matching for this point set has total cost at most 2 · Top(k)/(1 − λ),

where Top(k) is the sum of the edge lengths of the first dlogb ke levels of T.

Proof: Let y1 and y2 be two points below level ` = dlogb ke that are matched in

the minimum matching. Denote their ancestors at level ` by x1 and x2, respectively.

Then dT (y1, y2) ≤ dT (x1, x2) + 2λ`/(1− λ) by Lemma 2.19. If one of the points, say

y1, is at level `, we still have the same inequality. It is easy to see that no edge of the
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tree is used more than once in a minimum matching. Hence, the minimum matching

length is at most Top(k) + kλ`/(1− λ), since we have k/2 pairs to be matched.

It is easy to see that Top(k) = bλ+ . . . b`λ` ≥ kλ`. This implies that the minimum

matching length is at most 2 · Top(k)/(1− λ). �

We are now going to use isoperimetric methods in order to prove strong concen-

tration inequalities. Toward this end, let (Ω,A, µ) be the finite probability space

with the atoms of Ω corresponding to the leaves of T , with each atom having equal

probability. We define Ωn to be the n-fold product space on Ω, and we denote by µn

its probability measure.

Given X, Y ∈ Ω, the Hamming distance H between X and Y is the number of

coordinates in which X and Y disagree:

H(X, Y ) = |{i : Xi 6= Yi}|.

With the following lemma, we show that if two n-tuples are close in Hamming

distance, the corresponding minimum matching costs are close to each other. This

property is called the smoothness of the minimum matching functional.

Lemma 2.24 Let X, Y ∈ Ωn. If H(X, Y ) = k then

M(X) ≤M(Y ) + 2 · Top(k)/(1− λ),

where Top is as defined in Lemma 2.23.

Proof: Assume that we have a minimum matching for Y, and then delete/add k

points in order to make X. We construct a matching (not necessarily minimum) for

X that will satisfy the inequality of the lemma.
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There are three kinds of matched pairs in Y. First, there are those that are un-

affected — that is, both points belong to X as well. We will keep them matched in

the new matching. Second, there are matched pairs from which we deleted one point

each. The remaining points of these pairs became unmatched, as well as the points

of X − Y. Since H(X, Y ) = k, we have k unmatched points (here k must be even).

We find a minimum matching for these points; the cost is at most 2 · Top(k)/(1− λ)

by Lemma 2.23. In this way, we constructed a matching for X having total length at

most M(Y ) + 2 · Top(k)/(1− λ), and the lemma is proved. �

Let us now consider the smoothness of the TSP functional on HSTs. Earlier we saw

that the difference between the costs of the TSP and MST are bounded by a constant

(the limit of the diameter of the tree as δ → ∞). Therefore, the concentration we

show below for the TSP holds for the MST as well. First we need an analogue of

Lemma 2.23.

Lemma 2.25 Assume that k points are assigned to vertices of T, with k even. Then

the travelling salesman tour for this point set has total cost at most 4 ·Top(k)/(1−λ),

where Top(k) is the sum of edge lengths of the first dlogb ke levels of T.

Proof: The proof is very similar to the proof of Lemma 2.23, so we emphasize the

differences only. First, the TSP tour that connects all the vertices in level k has total

length 2 · Top(k). We use the lifting lemma again to prove that for points below level

k, we have to add at most an extra cost of 2λ/(1 − λ). Since there are k points, we

can have at most 2kλ/(1− λ) extra cost. This adds up to 2 · Top(k) + 2kλ/(1− λ) ≤

4 · Top(k)/(1− λ). �

With this we are prepared to show the smoothness of the TSP.

Lemma 2.26 Let X, Y ∈ Ωn. If H(X, Y ) = k then

TSP (X) ≤ TSP (Y ) + 8 · Top(k)/(1− λ).
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Proof: Assume that we have an optimal tour T for Y, and then delete/add k points

in order to make X. We construct a tour (not necessarily optimal) for X that will

satisfy the inequality of the lemma.

Notice that even if we delete points from T , the optimal cost of the tour T1 that

skips the deleted points, going through only the remaining points in their original

order, is at most as large as the cost of T . This follows from the triangle inequality:

say, u, v, w are in this order in the optimal tour, and then we delete v. Then d(u, v) +

d(v, w) ≥ d(u,w).

Next, we construct an optimal tour T2 through the new points, with cost at most

4 · Top(k) by Lemma 2.25. Then we delete one edge from T1 and one edge from T2.

This way we get two paths. We will get a new tour by connecting the endpoints of

the paths; this has cost at most twice the diameter, which is at most 4λ/(1−λ). The

total additional cost is therefore 4 · Top(k) + 4λ/(1− λ) ≤ 8 · Top(k)/(1− λ). �

It will be convenient to introduce a new notation L for a smooth functional.

We will assume that L(X) ≤ L(Y ) + K · Top(k)/(1 − λ), if H(X, Y ) ≤ k, with

K > 0 a constant. We further assume that EL = Θ
(∑h

i=1(bλ)i
)
. Notice that

by Lemmata 2.24 and 2.26, we have the smoothness conditions for M , TSP and

MST , albeit with different values for K. We showed in previous sections that for

these functionals the expectation has the above form. As it turns out, smoothness

and expectation value are the most important properties we need for showing strong

concentration about the mean.

The isoperimetric inequality we need is standard, but for completeness we present

the proof. For a subset A ⊆ Ω, we define

H(A,X) = min
Y ∈A

H(X, Y ).
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Let us fix a set A such that µn(A) ≥ 1/2. For a number t we define

At = {X : H(X,A) ≤ t}.

We will show, with the aid of Azuma’s inequality, that µn(At) = 1− µn(At) tends to

zero very fast as we increase t. Let

α =

∫
H(A,X) dµn;

this is the expected Hamming distance of a randomly chosen n-tuple of Ωn from A.

Then by Azuma’s inequality,

µn({X : |H(A,X)− α| ≥ t}) ≤ 2e−t
2/2n.

(Here we have used the fact that changing one coordinate results in a change of at

most 1 in the Hamming distance.)

Next we give a bound for α. Observe that when Y ∈ A, we have H(A, Y ) = 0.

Thus

A ⊆ {X : |H(A,X)− C| ≥ C}

for all C > 0. Setting t = α in the above inequality, we have

1/2 ≤ µn(A) ≤ µn({X : |H(A,X)− α| ≥ α}) ≤ 2e−α
2/2n,

which implies α ≤
√

2n log 4. Hence

µn({X : H(A,X) ≥ t+
√

2n log 4}) ≤ 2e−t
2/2n.

Some consideration of the cases t ≥ 2
√

2n log 4 and t < 2
√

2n log 4, after necessary
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modifications of the parameters, produces the following isoperimetric inequality, valid

for all t independently of α.

Proposition 2.27 (isoperimetric inequality) If A ⊆ Ωn satisfies µn(A) ≥ 1/2,

then

µn(At) ≤ 4e−t
2/8n.

We are going to use the median of the L functional:

med(L) = inf{t ∈ R : µn({X ∈ Ωn : L(X) ≤ t}) ≥ 1/2}.

Let

A = {X ∈ Ωn : L(X) ≤ med(L)};

then µn(A) ≥ 1/2. Applying Lemma 2.24, we obtain

Pr(L(X) ≥ med(L) + t) = µn({X ∈ Ωn : L(X) ≥ med(L) + t})

≤ µn({X ∈ Ωn : med(L) +K · Top(k)/(1− λ) ≥ med(L) + t})

= µn({X ∈ Ωn : K · Top(k)/(1− λ) ≥ t}),

where k = H(A,X). One can also prove a similar inequality using the set B = {X ∈

Ωn : L(X) ≥ med(L)}, to bound the probability Pr(L(X) ≤ med(L) − t). Putting

the two together, we see

Pr(|L(X)−med(L)| ≥ t) ≤ 2µn({X ∈ Ωn : K · Top(k)/(1− λ) ≥ t}).

In the cases that interest us most, we can find the inverse of Top(k), and hence

we can apply the isoperimetric inequality (Proposition 2.27) to prove strong concen-
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tration around the expected value.

First, we consider the case when bλ = 1. Then

Top(k) =

dlogb ke∑
i=1

(bλ)i = dlogb ke.

In this case, using the isoperimetric inequality, we have

P(|L(X)−med(L)| ≥ t) ≤ 2µn({X ∈ Ωn : KC(λ)Top(k) ≥ t}) ≤

2µn({X ∈ Ωn : k ≥ bt/c}) ≤ 4 exp

(
−b

t/c′

8n

)
with the constants c and c′, where c = 2c′.

Now suppose bλ > 1. Then

Top(k) =

dlogb ke∑
i=1

(bλ)i =
1

1− λ
· bλ(bλ)dlogb ke − 1

bλ− 1
≤ C1(b, λ)(bλ)logb k,

where C1(b, λ) is a constant depending only on b and λ. The inequality K ·Top(k)/(1−

λ) ≥ t, using that (bλ)logb k = klogb(bλ), implies the inequality

k ≥
(

t

C2(b, λ)

) 1
logb(bλ)

.

This in turn implies

P(|L(X)−med(L)| ≥ t) ≤ 2µn({X ∈ Ωn : K · Top(k)/(1− λ) ≥ t}) ≤

2µn({X ∈ Ωn : k ≥ (t/C2(b, λ))
1

logb(bλ)}) ≤ 4 exp

(
−t

2/ logb(bλ)

C3n

)
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for bλ > 1.

Since
∫

P(Z ≥ t) dt = EZ for any random variable Z, integrating these inequal-

ities over the non-negative reals produces an upper bound for E|L(X) −med(L)| ≥

|EL(X)−med(L)|. Hence, we can derive concentration inequalities for the probability

Pr(|L(X)−EL(X)| ≥ t). In the next section we will look at some important special

cases.

It is particularly interesting to consider the case λ = 1/2, since it relates the func-

tionals in question on an HST with functionals on the unit cube of some dimension.

When b = 2d for some positive integer d, the HST approximates the d-dimensional

unit cube in Euclidean space.

Let us first consider the case b = 2: we encounter such a tree T when approximat-

ing the [0, 1] interval. For this case bλ = 1, and therefore Top(k) = O(log2 k). One

can show (using, e.g., numerical approximation) that

|EL(X)−med(L)| ≤
∫
t≥0

Pr(|L(X)−med(L)| ≥ t) dt

≤ 4

∫
t≥0

exp

(
−2t/c

8n

)
dt

= Θ(log2 n).

Consequently, we have

Pr(|L(X)− EL(X)| ≥ t+ C log2 n) ≤ 4 exp

(
−2t/c

8n

)
.

Since EL(X) = O(log2 n), this means that we don’t have an especially useful concen-

tration result for this special case. Inspecting cases, one finds the following inequality
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for the case b = 2 and λ = 1/2:

Pr(|L(X)− EL(X)| ≥ t) ≤ 8 exp

(
−2t/c

8n

)
,

where c is a real constant. While the constants can be improved somewhat (partly due

to the fact that the constants are not the best possible for this case), this inequality

allows L(X) to be spread out over an interval of length Θ(EL(X)). However, the

probability of L(X) falling outside this interval is very small: even a deviation of

C log log n results in a probability less than 1/n.

On the other hand, the bounds that we have derived will provide very good con-

centration inequalities for the case b > 2. As above, we need to estimate an integral

to get a bound for |EL(X)−med(L)| :

|EL(X)−med(L)| ≤ 4

∫
t≥0

exp

(
−t

2/ logb(bλ)

C3n

)
dt

= Θ(
√

EL(X)),

as can be shown by numerical approximation.

We thus have the following concentration inequality:

Pr(|L(X)− EL(X)| ≥ t) ≤ 8 exp

(
−t

2/ logb(b/2)

c′n

)
,

where c′ is a real constant. Notice logb(b/2) < 1; thus, whenever λ = 1/2 and

b ≥ 3, the exponent of t above is larger than 2. In other words, in these cases all the

considered monochromatic optimization problems exhibit sub-gaussian behavior.

The case b = 2d can be used to approximate the L-functional in the d-dimensional
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unit cube. In general, when b = 2d the inequality has the following form:

Pr(|L(X)− EL(X)| ≥ t) ≤ 8 exp

(
−t

2d/(d−1)

c′′n

)
,

for some real constant c′′.

2.7 Application to problems on random point sets from [0, 1]d

Let us finish by considering these problems on the Euclidean hypercube [0, 1]d.

As described in the introduction, we can break the hypercube into s parts (with s

a power of 2) along every dimension, giving us a set of sd smaller hypercubes. We

now build an HST with branching factor 2d, edge weight ratio 1/2, and sd leaves.

(The implied depth is log2d(s
d) = log2 s.) Each leaf corresponds to one of the small

hypercubes. The structure of the tree is such that the root corresponds to the whole

hypercube, its children correspond to the 2d hypercubes obtained by breaking it in

half along every dimension, etc.

A point set W is chosen i.i.d. uniformly, and we wish to know the expected cost of

the minimum matching, spanning tree, or tour. We can translate the point set into a

leaf set as follows: Each point is contained in one of the sd small hypercubes. Move

each point to the center of its hypercube. The distances in the HST dominate the

distances between the centered points, so that the cost of the optimal solution to the

HST problem dominates the cost of the optimal solution to the point problem.

We introduced some error when we centered the points, but this error can be made

to vanish by increasing s. Although the tree becomes deeper, the effective height of

the tree is capped at logb n: this is the number that appears in our results. Thus the

error is negligible, and our results on the monochromatic HST problems give upper

bounds for the corresponding problems on point sets.
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Theorem 2.28 Fix a dimension d ≥ 2, and let W be a set of points chosen i.i.d. uni-

formly from [0, 1]d. The expected costs of the monochromatic minimum matching,

MST, and TSP tour on W are

O
(
n(d−1)/d

)
.

Proof: Transforming the problem into an HST problem, we obtain an HST with

b = 2d and λ = 1/2. Its effective height is logb n = log2d n. By Theorems 2.7, 2.12,

and 2.17, the cost of the optimal solution to the HST problem is Θ(
∑logb n

k=1 (bλ)k).

Here, bλ = 2d−1, so the dominant term in the series is (2d−1)log
2d
n. Using the identity

alog b = blog a, we obtain

(2d−1)log
2d
n = nlog

2d
2d−1

= n(d−1)/d,

the desired bound. �

(If we repeat this process for d = 1, we have bλ = 1 and the summation evaluates

to log2 n, a weak result.)

Our upper bounds for d ≥ 2 are, in fact, tight; see, e.g., Yukich [58], who proves

(by a different method) that n(d−1)/d is a tight bound for all d ≥ 1. Our inequalities

from the previous section apply here, but only from above. They do not prove con-

centration, then, but rather show that our upper bound holds with extremely high

probability.

2.8 Conclusion

We began by showing how the Euclidean hypercube [0, 1]d can be embedded into a

hypertorus on [0, 2]d and then approximated by a balanced HST. Once this embedding

has been done, numerous problems about point sets on [0, 1]d can be re-expressed as

problems about multisets of the leaves of the HST.
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We showed tight bounds on the monochromatic matching problem, MST problem,

and TSP on balanced HSTs. The expected optimal cost for each problem is on the

order of
∑h

k=1(bλ)k, where h = min(δ, logb n). From our tight concentration results,

we know that with high probability, an optimal solution to these problems will have

a cost close to the expected cost.

Along the way, we presented the lifting lemma, a useful tool in tightening the

bounds on our solutions. We saw that the (logb n)-th level of the tree is “special” in

a sense that is hard to pin down precisely. This level of the tree has an average (in

expectation) of one point per node; for the matching problem, this situation gives

the worst case, but for the MST problem the relationship is not as clear. In the

next chapter, we consider the bichromatic versions of these problems, and the lifting

lemma will become crucial.
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3. Bichromatic MST and TSP on HSTs

3.1 Introduction

Monochromatic problems on HSTs have natural generalizations to bichromatic

problems. Instead of considering a single n-element multiset of leaves, we now have

two n-element multisets, which we generally call the “red” set and the “blue” set,

denoting these by R and B. Links between the leaves — matches in a matching

problem, and edges in the MST problem and TSP — are now allowed only between

points of different colors. We assume that the reader has already read Chapter 2.

The bichromatic matching problem emerges naturally in many areas. It is often

termed the earth-mover’s distance: if we view each red point as a load and each

blue point as a site, the optimal bichromatic matching gives the most efficient way

(minimizing total distance) to move each load to a distinct site. Beyond its obvious

logistical uses, bichromatic matching finds uses in such diverse areas of computer

science as image retrieval [26], hashing schemes [27], wireless network routing [49],

and subtree isomorphism problems [32].

Abrahamson et al. [1, 2] solved the bichromatic matching problem on HSTs,

showing that the optimal matching has a cost of Θ
(√

n ·
∑h

i=1(
√
bλ)i

)
, where h =

min(δ, logb n). We will extend their results to cover the bichromatic MST problem

and the bichromatic TSP. For the sake of completeness, we will also give a short proof

of the bound for the matching problem. The following observation will be crucial;

the reader may find it intuitive, but we state it here to refer to it later.

Observation 3.1 Let P be a monochromatic problem and P ′ be the corresponding

bichromatic problem. Writing P(W ) for the cost of the optimal solution to P on the

point set W , and writing P ′(R,B) for the cost of optimal solution to P ′ on the sets
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R and B, we have

P(R ∪B) ≤ P ′(R,B).

Note that a bichromatic problem with |R| = |B| = n will give rise to a monochro-

matic problem on a multiset of size 2n. Defining h = min(δ, logb n) and h′ =

min(δ, logb(2n)), we see h′ ≤ h + logb 2. If bλ > 1, the optimal cost for one of our

monochromatic problems on 2n points will thus have a lower bound of Ω
(∑h

k=1(bλ)k
)

and an upper bound of

O

(
h′∑
k=1

(bλ)k

)
= O

(
h+logb2∑
k=1

(bλ)k

)
= (bλ)logb 2 ·O

 h∑
k=1−logb 2

(bλ)k

 ,

so that the cost is still Θ
(∑h

k=1(bλ)k
)

. If bλ < 1, taking extra terms of the sequence

does not change its asymptotic cost. If bλ = 1, the cost becomes Θ (logb n+ logb 2) =

Θ(logb n). In every case, then, we see that the cost of an optimal solution on 2n

points is the same, up to a constant factor, as the cost of an optimal solution on n

points. In fact, for any constant K ≥ 1, the optimal cost for one of our monochro-

matic problems on Kn points remains Θ
(∑h

k=1(bλ)k
)

: the factor (bλ)logb 2 = 21+logb λ

becomes (bλ)logbK = K1+logb λ, which is still a constant.

After settling these problems for HSTs, we will consider the bichromatic MST

problem and TSP on point sets in the Euclidean hypercube [0, 1]d. By relying on

Observation 3.1 and on previously known results about monochromatic problems

(see Yukich, [58]), we can obtain novel bounds on these two problems for d ≥ 3.

3.2 Definitions of problems

The bichromatic versions of our problems are defined very similarly to the monochro-

matic cases. We first choose two submultisets of the leaves of H; let us call these R′
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and B′. We define G to be the complete bipartite graph with two n-element color

classes R and B, where, as before, R will contain every element of R′, B will contain

every element of B′, and, if necessary, we index the multiple copies of the leaves. The

weight of an edge is again determined by the distance between its the endpoints in

H. Since G is bipartite, every edge that will be included in the solution of any of the

optimization problems above will be a red-blue edge. For completeness, we list these

problems more formally below.

Bichromatic Minimum Matching Problem (MMP ′): The minimum match-

ing on V has cost given by

min
M⊆G

∑
e∈M

|e|,

where |e| denotes the weight of the edge e and the minimum is taken over all possible

perfect bichromatic matchings M of G.

Bichromatic Travelling Salesman Problem (TSP ′): A bichromatic tour is

a simple cycle that visits each vertex of V exactly once and alternates colors along

each edge. The minimum tour length is given by

min
T⊆G

∑
e∈T

|e|,

where the minimum is taken over all bichromatic tours T .

Bichromatic Minimum Spanning Tree Problem (MST ′): The minimum

bichromatic spanning tree cost is given by

min
F⊆G

∑
e∈F

|e|,

where the minimum is taken over all bichromatic spanning trees F .

One can also consider K-partite versions of these problems for arbitrary K > 2,
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where a pair of points is allowed to be joined if and only if the two points are of

different colors. It turns out that the K-chromatic minimum spanning tree problem

behaves much like the bichromatic version; we will have more to say about this at

the end of the chapter. We have not pursued the K-chromatic matching problem or

TSP.

3.3 Behavior of the discrepancy

Our proof for the bichromatic TSP relies on a kind of random variable to which we

will refer as discrepancy. Recall that a binomial variable Binomial(n, p) is one of the

form Y1+Y2+. . .+Yn, where P (Yi = 1) = p and P (Yi = 0) = 1−p for every 1 ≤ i ≤ n,

with the Yi’s independent. For a vertex v in level ` of an HST, the discrepancy has

the form |R(v)−B(v)|, where R(v) and B(v), the numbers of red and blue points in

v’s subtree, are independent variables with distribution Binomial(n, 1/b`). We can,

if we like, view the discrepancy as the outcome of a random walk. Let us start at

zero on the number line, and at each turn, we move left with probability p ≤ 1/2,

move right with probability p, and stay put with probability 1 − 2p. After n turns,

our distance from the origin is given by the discrepancy.

We now consider its expected behavior. We prove two bounds: one will be useful

in the case of a star tree, while the other will be used in the bound for general HSTs.

Lemma 3.2 Let X be the difference of two i.i.d. Binomial(n, p) variables. For fixed

p,

E|X| = Θ(
√
n).

Lemma 3.3 Let X be the difference of two i.i.d. Binomial(n, p) variables, with n ≥

1/p and p ≤ 1/2. Then √
Cnp ≤ E|X| ≤

√
2np
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for some constant C > 0.

Proof (of both lemmata): We denote by DY the standard deviation of the random

variable Y . From elementary probability, we recall

0 ≤ Var|X| = E|X|2 − (E|X|)2 = EX2 − (E|X|)2 = (DX)2 − (E|X|)2,

and E|X| ≤ DX. Since DX =
√

2np(1− p), the upper bounds on E|X| follow.

The lower bound will take more work. Recall Hölder’s inequality,

E|Y Z| ≤ (E|Y |q)1/q · (E|Z|r)1/r when 1/q + 1/r = 1.

Setting Y = |X|2/3, Z = |X|4/3, q = 3/2, r = 3, we obtain E|X|2 ≤ (E|X|)2/3(E|X|4)1/3,

and thus

E|X| ≥ (EX2)3/2

√
EX4

.

By definition, we can write X as the sum X1 + X2 + . . . + Xn, where the Xi’s are

i.i.d. with

Xi =


1 with probability p(1− p),

−1 with probability p(1− p),

0 with probability p2 + (1− p)2.

It is clear that EX2 = 2np(1− p).

Consider the expansion X4 = (X1 +X2 + . . .+Xn)4. Any term with an odd power

of an Xi, such as X3
1X2 or X2

1X2X3, will have zero expectation, by independence

and the fact EXi = EX3
i = 0. Thus the only terms with nonzero expectation will

be the terms X4
i and X2

iX
2
j with i 6= j. Since EX4

i = EX2
i = 2p(1 − p) and
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EX2
iX

2
j = EX2

i · EX2
j = 4p2(1− p)2 for i 6= j, we have

EX4 =
n∑
i=1

X4
i + 6

∑
i 6=j

EX2
iX

2
j = 2np(1− p) + 24n(n− 1)p2(1− p)2 = Θ(n2).

Thus

E|X| ≥ (EX2)3/2

√
EX4

=
[2np(1− p)]3/2√

Θ(n2)
= Ω(

√
n),

proving Lemma 3.2. Note that without the 2np(1− p) term in the denominator, this

function would behave as
√
Cnp(1− p). To see when the 24n(n− 1)p2(1− p)2 term

will dominate, we set

np(1− p) ≤ 24n(n− 1)p2(1− p)2

and obtain

1 ≤ 24(n− 1)p(1− p).

For n ≥ 2 we have 2(n − 1) ≥ n, and for p ≤ 1/2 (as it always is for us) we have

p(1 − p) ≥ p/2; thus 1 ≤ np will imply 1 ≤ 4(n − 1)p(1 − p). When n ≥ 1/p, then,

this bound is at least
√
Cnp, and Lemma 3.3 is proved. �

Remark 3.4 For a vertex in level ` of the tree, p = 1/b`; thus when ` ≤ logb n, we

have n ≥ 1/p.

3.4 Bichromatic TSP

In this section, we will show that the expected TSP cost on two n-element multisets

R and B is on the order of
√
n ·
∑h

i=1(
√
bλ)i, where h = min(δ, logb n).

We start by considering the case when F is a star tree with edge weight λ. Let n

red points and n blue points be uniformly distributed at random among the leaves

of F. We will call a leaf easy if it has been assigned equal numbers of red and blue
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points; otherwise, we will call the leaf hard. Note that a hard leaf can be either

monochromatic or bichromatic.

Our optimal tour is produced by the following algorithm:

1. Connect the points at every easy leaf into a path that begins at a red point and

ends at a blue point. These paths have zero cost.

2. Connect the paths at the easy leaves into one long red-blue path. If there are

k easy leaves, the total cost of this is (k − 1)λ.

3. At each hard leaf, find the longest possible red-blue path, depending on whether

we have more red or more blue points.

Since one color outnumbers the other, each of these paths can have the same

color at both its endpoints. We delete the inner points of all such paths, leaving

only the two same-colored endpoints. Hence, after this process, some points are

isolated, while the other points are all arranged into a long path.

4. Connect the isolated points into a long red-blue path, and then glue the two

long paths together to get the traveling salesman tour.

This algorithm can easily be extended to find the optimal TSP tour for general

HSTs (not just star trees). To this end, it is useful to consider a version that works

when the numbers of red and of blue points are different. In such a case, we can

only have a path of minimum cost, hence, in Steps 3 and 4 one has to modify the

method to first connect as many isolated red-blue points together into a red-blue path

as possible, and then connect this long path to the path containing the points of the

easy leaves.

Let us now apply Lemma 3.2 to the problem of finding the expected TSP cost

for a star tree. Let us write Ri for the number of red points assigned to leaf li, and
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similarly Bi for the number of blue points. Then X in Lemma 3.2 will be Ri − Bi

for the leaf li. As described initially, we make as long a path as possible in each leaf;

these paths have zero cost. Our task is now to connect these paths into a tour.

If Ri 6= Bi, our tour must visit the leaf exactly |Ri − Bi| + 1 times. If Ri = Bi,

the cost depends on whether Ri and Bi are zero or not. If they are, then there is no

cost; if not, the leaf must be visited once. Therefore, the cost contributed by leaf li

is either |Ri −Bi| or |Ri −Bi|+ 1.

The extra +1 poses no problem. By Observation 3.1, the cost of the optimal

monochromatic tour is less than or equal to the cost of the optimal bichromatic tour.

Thus we can add the cost of the monochromatic tour to the bichromatic tour and

only increase its cost by a constant factor. Since E|Ri−Bi| = Θ(
√
n) by Lemma 3.2,

we have

Proposition 3.5 Let R and B be two multisets of size n of the leaves of the star tree

F with b leaves and all edge weights 1. Consider b fixed, and assume that n is large.

The expected cost of the optimal bichromatic tour on R and B is Θ(
√
n).

The case of a general HST can be handled similarly, this time using Lemma 3.3.

Let v be a non-leaf vertex in the HST. As described above, we make as long a path

as possible in the subtree rooted at v. The endpoints of this path must now look

upward to connect to the rest of the tour, as must the leftover points that were not

incorporated into the path.

Let the number of red (resp. blue) points assigned to a non-leaf node v be R(v)

(resp. B(v)). If R(v) 6= B(v), our tour must enter v’s subtree exactly |R(v)−B(v)|+1

times. If R(v) = B(v), then the cost depends on whether their value is zero or not: if it

is zero, then there is no cost, while if the value is nonzero, the subtree must be entered

once. Thus the cost contributed by v is either |R(v)−B(v)| or |R(v)−B(v)|+ 1.

As before, the extra +1 does not matter: using Observation 3.1, we can add the
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cost of the monochromatic tour to the bichromatic tour, and the only effect will be

to increase its cost by a constant factor.

Theorem 3.6 Let R and B be two n-element multisets taken independently from the

leaves of the HST H(b, δ, λ). Consider b and λ fixed, and define h = min(δ, logb n).

The expected cost of the optimal bichromatic tour on R and B is

Θ

(
√
n ·

h∑
i=1

(
√
bλ)i

)
.

Proof: Let v be a node in level ` ≤ h. By Lemma 3.3 and Remark 3.4, the expected

contribution of v to the cost of the tour is Θ(λ` ·
√
n/b`) = Θ((λ/

√
b)` ·
√
n). The total

cost of level `, obtained by multiplying by b`, is therefore Θ((
√
bλ)` ·

√
n); summing

up over levels 1, 2, . . . , h and adding in the cost of the monochromatic MST gives us

bounds on the cost of the portion of the tour above level h: the lower bound is

Ω

(
√
n ·

h∑
i=1

(
√
bλ)i

)
,

while the upper bound is

O

(
√
n ·

h∑
i=1

(
√
bλ)i +

h∑
i=1

(bλ)i

)
.

But in fact
h∑
i=1

(bλ)i = O

(
√
n ·

h∑
i=1

(
√
bλ)i

)
,

because bi ≤
√
n · bi for i ≤ h. (The inequality simplifies to bi ≤ n; recall bh = n.)

We have shown, then, that the expected cost of the tour above level h is

Θ

(
√
n ·

h∑
i=1

(
√
bλ)i

)
.
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If h = δ we are done. If instead h = logb n, we must first lift the points to level

h; the cost of the lifting is O((bλ)h), but as above, (bλ)h = O
(√

n ·
∑h

i=1(
√
bλ)i

)
, so

that the lifting does not increase the asymptotic cost. �

3.5 Bichromatic matching revisited

If we lean on the results from the previous section, we can easily re-derive the

bichromatic matching result from [1] and [2].

When we considered monochromatic matching, we spoke in terms of the number

of transits at each node v in the tree. For bichromatic matching, we should instead

think about the points that must be sent up from v. Suppose the subtree rooted

at v contains R(v) red points and B(v) blue points. We can form min(R(v), B(v))

matches within this subtree, but |R(v) − B(v)| of the points must look for matches

outside this subtree. The parent edge of v must therefore be used |R(v)−B(v)| times.

If v is in level ` ≤ h of the HST, this edge has weight λ`, so that the contribution

of v to the matching cost is λ` · |R(v) − B(v)|. By Lemma 3.3 with p = 1/b`, the

expectation of this cost is Θ(λ` ·
√
n/b`). The entire cost of level ` is

b` ·Θ(λ` ·
√
n/b`) = Θ(

√
n · (
√
bλ)`).

Adding over all the levels from 1 to h, we obtain a bound of

Θ

(
√
n ·

h∑
k=1

(
√
bλ)k

)

for the tree edges above level h that are used in the matching. Thus

Lemma 3.7 Let R and B be two multisets of size n of the leaves of the HST H(b, δ, λ).

Consider b and λ fixed, and define h = min(δ, logb n). In an optimal bichromatic
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matching on R and B, the total cost of the edges needed above level h of the tree is

Θ

(
√
n ·

h∑
k=1

(
√
bλ)k

)
.

Theorem 3.8 ([1, 2]) Let R and B be two multisets of size n of the leaves of the

HST H(b, δ, λ). Consider b and λ fixed, and define h = min(δ, logb n). Then the

expected cost of the optimal bichromatic matching on R and B is

Θ

(
√
n ·

h∑
k=1

(
√
bλ)k

)
.

Proof: If h = δ, the above argument shows the theorem to be true. Suppose instead

h = logb n. By Lemma 3.7, the cost is lower-bounded by Ω(
√
n ·
∑h

k=1(
√
bλ)k). To

show the upper bound, we lift the points to level h. The cost of this lifting is O((bλ)h),

but since (bλ)h = O(
√
n · (
√
bλ)h), the total cost remains O(

√
n ·
∑h

k=1(
√
bλ)k). �

3.6 Bichromatic MST

It turns out that the bichromatic MST problem is substantially different from the

bichromatic TSP and matching problem; for this reason, we have saved its discussion

for last. This difference appears even in the simple example of a star tree. Consider

the following problem: F is a star tree centered at r and has l leaves, x1, x2, . . . , xl,

with l even. Assume that at half the leaves xi there are s > 1 red points and one

blue point, and at each of the other leaves there are s blue points and one red point.

We stipulate that the distance of two points residing at the same leaf is zero, and the

distance between any other pair of points is one. It is easy to see that the optimal

cost for the bichromatic TSP is (s− 1)l, while the optimal bichromatic spanning tree

we will have a total weight of merely l − 1.

Of course, our example has not shown anything about the expected behavior of the
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bichromatic MST problem. Nonetheless, it turns out that on average, the optimal

bichromatic MST is lighter than the bichromatic TSP tour. Let R and B be two

multisets of n points chosen uniformly at random from the leaves of an HST H(b, δ, λ).

In this section, we will show that the expected cost of the MST is on the order of∑h
k=1(bλ)k, where h = min(δ, logb n). This result is somewhat unexpected, since

it differs from our other bichromatic results and coincides with our monochromatic

results.

To form the bichromatic MST, we must connect each red point ri to its nearest blue

neighbor, and similarly, we must connect each blue point bi to its nearest red neighbor.

Since these two cases are symmetric, we will assume without loss of generality that

we are concerned with connecting a red point ri to a blue neighbor. We will write

N(ri) for the closest opposite-colored point in the tree. (In fact, more than one point

may be the “closest”; we can disambiguate by making N(ri) the leftmost closest

point.) It is evident that N(ri) is the blue point p that minimizes the height of the

highest node H in the path from ri to p. If p is at the same leaf as ri, the cost

will be zero. Otherwise, if H is in level `, the cost of the path from ri to H will be

λ`+1 + λ`+2 + . . .+ λδ < λ`+1/(1− λ), while the cost of the path from H to p will be

the same. Therefore, the cost that ri contributes to the MST is between 2λ`+1 and

2λ`+1/(1− λ).

We can illustrate this process by coloring the nodes of the MST as follows. We

color a node violet if it has both red and blue points in its subtree. If it has no

points in its subtree, we leave the node white. Otherwise, the node is colored red

or blue, depending on which color of points appears in its subtree. See Figure 3.1

for an example (the colors are represented by the letters R, B, V, W). The cost of

the bichromatic MST is then obtained by finding the cost from each point pi to its

nearest (ancestral) violet node V (pi).
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R V V

R W R R B B W V B

r r r b b r

b
b

Figure 3.1: Four red points and four blue points are distributed among the leaves of
an HST with b = 3 and δ = 2. Lowercase letters represent points; uppercase letters
represent the node colors. R = red, B = blue, V = violet, W = white (blank)

There is a caveat with this formulation: the resulting structure may not be con-

nected. (This will occur, for example, when each subtree of the root receives n/b red

points and n/b blue points.) As before, we will include the edges of the monochro-

matic MST on R ∪ B as part of the bichromatic MST. The cost of the monochromatic

MST does not increase the asymptotic cost of the bichromatic MST, since the former

is easily seen to cost no more than the latter by Observation 3.1.

We can now state

Proposition 3.9 Let R and B be two uniformly and independently chosen multisets

of n leaves from the HST H(b, δ, λ). The expected cost of the bichromatic MST on R

and B is

Θ(µ+ n · E[C(b, δ, λ, n)]),

where C(b, δ, λ, n) is the cost of the path from a point p to its lowest violet ancestor in

H, and µ is the expected cost of the monochromatic MST of R ∪B.

Note that the distribution of C = C(b, δ, λ, n) is the same for every point in R∪B.
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(They are not, however, independent.) We determine E[C] by calculating explicitly

the distribution of C. Let the first red point r1 be located, without loss of generality,

at the leftmost leaf L of the HST. We define the function P (m,n, i, j) to be the

probability that the smallest element of an n-element randomly chosen submultiset

of {1, . . . ,m} falls in the range i, . . . , j. Then

• the probability that its leaf L is violet is the probability that one of the blue

points is also located at L, which is P (bδ, n, 1, 1) = 1− (1− 1/bδ)n.

• The probability that L is not violet, but its parent is violet, is the probabil-

ity that L has no blue point but one of its siblings does. This probability is

P (bδ, n, 2, b).

• The probability that L and its parent are not violet, but its grandparent is

violet, is P (bδ, n, b+ 1, b2), etc., etc.

Lemma 3.10

P (m,n, i, j) =
(m− i+ 1)n − (m− j)n

mn
.

Proof: One can visualize the elements of the multiset as lattice points in the n-

dimensional cube with edge length m. Then the total number of points is mn. The

chosen points must belong to a sub-cube with edge length m − i + 1; however, we

have to discard those lattice points that have only large entries. These lattice points

belong to a sub-cube of volume (m− j)n. �

In general, the probability that the red point will have its lowest violet ancestor

in the `-th level from the bottom of the tree, 1 ≤ ` ≤ δ, is

P (bδ, n, b`−1 + 1, b`) =
(bδ − b`−1)n − (bδ − b`)n

(bδ)n

= (1− b(`−δ)−1)n − (1− b`−δ)n.
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Clearly P (bδ, n, b`−1 +1, b`) ≤ (1− b(`−δ)−1)n. Under stronger conditions, a similar

lower bound (Lemma 3.12 below) also holds. Before we prove it, we make a brief

digression to talk about the behavior of the expression (1 ± r/n)n for r fixed. It is

well known that it approaches e±r as n → ∞. But since our earlier results did not

rely on n going to infinity, we would like to avoid that here as well. Fortunately, the

expression is bounded between exponentials even for relatively small values of n.

Proposition 3.11 Let r > 0. Then for n > r,

er/2 < (1 + r/n)n < er,

and for n > 3r,

e−3r/2 < (1− r/n)n < e−r.

Proof: The upper bounds follow from the elementary inequality 1+y < ey for y 6= 0.

(The simplest proof: The expression ey − (1 + y) has its unique global minimum at

y = 0, shown by taking derivatives. The value of this minimum is 0.)

Now we show the lower bounds. We use the Taylor series

ln(1− x) = −x− x2/2− x3/3− x4/4− . . . ,

which is valid for −1 ≤ x < 1.

n · ln(1 + r/n) = n · (r/n− r2/2n2 + r2/3n3 − r4/4n4 + . . .)

> n · (r/n− r2/2n2)

= r − r2/2n.

Simplifying r− r2/2n > r/2 shows that it is equivalent to n > r. Thus, for n > r, we
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have n · ln(1 + r/n) > r/2. Exponentiating both sides gives the first statement.

Similarly,

n · ln(1− r/n) = n · (−r/n− r2/2n2 − r3/3n3 − . . .)

> n · (−r/n− r2/n2 − r3/n3 − . . .)

= n · −r/n
1− r/n

=
rn

r − n
.

Simplifying rn/(r − n) > −3r/2, assuming n > r, shows that it is equivalent to

n > 3r. Thus for n > 3r, we have n · ln(1− r/n) > −3r/2. Exponentiating both sides

gives the second statement. �

We now turn our attention back to the lower bound on P (bδ, n, b`−1 + 1, b`).

Lemma 3.12 When δ ≤ logb n and n > 1,

P (bδ, n, b`−1 + 1, b`) ≥ 1/5 · (1− b(`−δ)−1)n.

Proof: For brevity, we write z = b`−δ. The smallest that z can be is b−δ ≥ b− logb n =

1/n — that is, z cannot be smaller than 1/n.

Consider the fraction
1− z

1− z/b
. It is less than 1, and its value increases as z

decreases. Thus

(
1− z

1− z/b

)n
≤ (1− 1/n)n

(1− 1/bn)n
≤ e−1

e−3/2b
= e3/2b−1 ≤ e−1/4 < 4/5.

(We have used Proposition 3.11 to show (1 − 1/bn)n ≥ e−3/2b. Notice that n > 1

implies n > 3/b.)

So

(1− z)n ≤ 4/5 · (1− z/b)n,
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and

(1− z/b)n − (1− z)n ≥ 1/5 · (1− z/b)n.

�

Accordingly, given δ ≤ logb n, we have

E[C(b, δ, λ, n)] = Θ
(

0 · P (bδ, n, 1, 1) + 2λδ/(1− λ) · P (bδ, n, 2, b) +

2λδ−1/(1− λ) · P (bδ, b, b+ 1, b2) +

2λδ−2/(1− λ) · P (bδ, n, b2 + 1, b3) +

. . .+ 2λ1/(1− λ) · P (bδ, n, bδ−1 + 1, bδ)
)

= Θ

(
δ∑
`=1

2λ(δ−`)+1/(1− λ) · (1− b(`−δ)−1)n

)

= 2λδ ·Θ

(
δ∑
`=1

λ1−` · (1− b(`−δ)−1)n

)

for fixed b and λ. Our next task is to show that the expression

Θ
(∑δ

`=1 λ
1−` · (1− b(`−δ)−1)n

)
is bounded between constants.

Lemma 3.13 Let b ≥ 2 and λ < 1 be fixed, let δ ≤ logb n, and let n > 4 ln(1/λ).

Define a` = λ1−` · (1− b(`−δ)−1)n. Then there is a constant C such that

a`
a`+1

≥ 1

λ

for all ` ∈ {C, . . . , δ}.
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Proof: Defining z = b`−δ as above, we have

a`
a`+1

= λ

(
1− z/b
1− z

)n
≥ λ

(
1− z/2
1− z

)n
= λ

(
1 +

z/2

1− z

)n
≥ λ

(
1 +

z

2

)n
.

When z > (8 ln(1/λ))/n, we have

(
1 +

z

2

)n
>

(
1 +

4 ln(1/λ)

n

)n
> e2 ln(1/λ) =

1

λ2
;

thus
(
1 + z

2

)n ≥ 1
λ2

, and we have a`/a`+1 ≥ 1/λ.

We have shown that the inequality a`/a`+1 ≥ 1/λ can fail to hold only when

z ≤ (8 ln(1/λ))/n. We need to see what this means in terms of `:

z ≤ 8 ln(1/λ)

n

⇓

b`−δ ≤ 8 ln(1/λ)

n

⇓

`− δ ≤ logb
8 ln(1/λ)

n

⇓

` ≤ logb
8 ln(1/λ)

n
+ δ

≤ logb
8 ln(1/λ)

n
+ logb n

= logb(8 ln(1/λ)).
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Thus a`/a`+1 ≥ 1/λ is true with the possible exceptions of when ` = 1, 2, . . . ,

logb(8 ln(1/λ)). Set C = logb(8 ln(1/λ)) + 1. �

We next consider the behavior of the expression n · (1 − 1/bδ)n. It will be more

convenient to substitute z = bδ.

Lemma 3.14 Let z ≥ 1 and n > 0. Then

n · (1− 1/z)n < z.

Proof: If z = 1 the proof is trivial, so let us assume z > 1. Dividing and taking

roots, we obtain the equivalent statement 1− 1/z < n
√
z/n. We will prove

1− 1

z
≤ e−1/z < e−1/ez ≤ n

√
z

n
.

The first inequality of these three follows from the well-known fact 1 + y ≤ ey, here

taking y = −1/z. The second is equally simple, since a < b implies ea < eb; take

a = −1/z and b = −1/ez.

Only the third inequality remains to be proved. We will show that the minimum

value of n
√
z/n = (z/n)1/n as a function of n (considering z constant) is e−1/ez. Several

manipulations will make this task easier. First, set x = 1/n. Then

(z/n)1/n = (zx)x,

where x ∈ (0,∞). It is equivalent to minimize its logarithm,

ln(zx)x = x ln zx = x lnx+ x ln z.

This expression has derivative

1 + ln x+ ln z;
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the derivative is zero when x = 1/ez. This value of x does, in fact, give a minimum,

since the second derivative 1/x is positive. We conclude that the minimum value of

(zx)x is

(z/ez)1/ez = e−1/ez,

as desired. �

Corollary 3.15 Let b ≥ 2 and λ < 1 be fixed, and let δ ≤ logb n. Then

n ·
δ∑
`=1

λ1−` · (1− b(`−δ)−1)n = O(bδ).

Proof: Let n be sufficiently large. We define a` = λ1−` · (1 − b(`−δ)−1)n. Notice

a1 = (1− b−δ)n. By Lemma 3.14 with z = bδ, we have n · a1 < bδ. For ` > 1, we have

(1− b(`−δ)−1)n < (1− b−δ)n, so that n · a` < λ1−` · bδ.

Set C as in Lemma 3.13. We see that each of the first C terms n · a1, . . . , n · aC

is at most λ−C · bδ, so their sum is at most Cλ−Cbδ. For ` > C, we have a`+1/a` ≤ λ,

so that the sum n ·
∑δ

`=C+1 a` converges faster than a geometric series with common

ratio λ; this part of the sum is at most Cλ−Cbδ/(1− λ). Both of these quantities are

O(bδ). �

At long last, we can bound the value of E[n · C(b, δ, λ, n)]:

Proposition 3.16 For δ ≤ logb n,

E[n · C(b, δ, λ, n)] = O((bλ)δ).
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Proof:

E[n · C(b, δ, λ, n)] = n · 2λδ ·Θ

(
δ∑
`=1

λ1−` · (1− b(`−δ)−1)n

)
= n · 2λδ ·O(bδ/n) (by the previous Corollary)

= O(λδbδ).

�

Applying this result to Proposition 3.9 gives our main result for the bichromatic

MST.

Theorem 3.17 Let R and B be two uniformly chosen multisets of n leaves from the

HST H(b, δ, λ). The expected cost of the bichromatic MST on R and B is

Θ

(
h∑
i=1

(bλ)i

)
,

where h = min(δ, logb n).

This is the same (up to constant factors depending on b and λ) as the expected cost

for the monochromatic MST on R ∪B.

Proof: Suppose δ ≤ logb n. By Proposition 3.9, the expected cost is

Θ
(
E[n · C(b, δ, λ, n)] +

∑δ
i=1(bλ)i

)
; by Observation 3.1, it is Ω

(∑δ
i=1(bλ)i

)
. We need

only to show E[n · C(b, δ, λ, n)] = O
(∑δ

i=1(bλ)i
)

. But by the previous Proposition,

E[n · C(b, δ, λ, n)] = O((bλ)δ), and the last term in the summation is (bλ)δ. Thus the

total cost is also O
(∑δ

i=1(bλ)i
)

.

If δ > logb n, we lift the points up to level logb n. By the above argument, the

expected cost of the bichromatic MST on the lifted points is Θ
(∑logb n

i=1 (bλ)i
)

. The

lifting cost is Θ((bλ)logb n), and as before, such a term is already present in the sum-

mation. �
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3.7 Application to problems on random point sets from [0, 1]d

As with the monochromatic problems, we can apply the results of this chapter

to bichromatic problems on random point sets taken from the unit hypercube. Let

R and B be two n-element point sets chosen i.i.d. uniformly from [0, 1]d. We are

interested in the bichromatic minimum spanning tree and the optimal bichromatic

tour on R and B.

Recall that our result for the bichromatic MST (Theorem 3.17) is the same as for

the monochromatic problems. Thus

Lemma 3.18 Fix a dimension d ≥ 2, and let R and B be two sets of points chosen

i.i.d. uniformly from [0, 1]d. The expected cost of the bichromatic MST on R and B

is O
(
n(d−1)/d

)
.

But by Observation 3.1 and the Θ(n(d−1)/d) bound [58] on the monochromatic prob-

lems, the expected cost of the bichromatic MST is also Ω
(
n(d−1)/d

)
, and thus

Theorem 3.19 Fix a dimension d ≥ 2, and let R and B be two sets of points chosen

i.i.d. uniformly from [0, 1]d. The expected cost of the bichromatic MST on R and B

is Θ
(
n(d−1)/d

)
.

We can derive a similar result for the bichromatic TSP.

Theorem 3.20 Fix a dimension d ≥ 3, and let R and B be two sets of points chosen

i.i.d. uniformly from [0, 1]d. The expected cost of the bichromatic TSP tour on R and

B is

Θ
(
n(d−1)/d

)
.

Proof: The lower bound follows from Observation 3.1 and the Θ(n(d−1)/d) bound on

the monochromatic problem; we proceed to prove the upper bound. Transforming

the problem into an HST problem, we obtain an HST with b = 2d and λ = 1/2. Its



64

effective height is logb n = log2d n. By Theorem 3.6, the cost of the optimal solution

to the HST problem is

Θ

(
√
n ·

logb n∑
k=1

(
√
bλ)k

)
= Θ

(√
n · (
√

2d · 1/2)log
2d
n
)

= Θ
(√

n · nlog
2d

(
√

2d·1/2)
)

= Θ(n(d−1)/d).

This is also an upper bound on the point problem. �

For bichromatic matching, this result appears in [1] and [2]. To the best of our

knowledge, the results for the bichromatic MST problem and TSP are novel.

For d < 3 we can derive weaker results. When d = 1 the summation is constant

and we obtain an upper bound of O(
√
n). This bound is known to be tight for

bichromatic matching (see [1]). When d = 2, we have
√
bλ = 1 and obtain a bound

of O(
√
n log n). This exceeds the tight bound Θ(

√
n log n) found for bichromatic

matching by Ajtai et al. [3] by a factor of
√

log n.

We are not limited to the d-dimensional hypercube, either. One can apply similar

reasoning to other spaces (fractal spaces are a natural choice). We may pursue such

courses in the future, but we will not consider them here.

3.8 Conclusion

We showed tight bounds on the bichromatic MST problem and TSP on balanced

HSTs; we also revisited the bichromatic matching problem from [1] and [2]. The

expected optimal cost for the TSP (and for the matching problem) is on the order of

√
n·
∑h

k=1(
√
bλ)k, where h = min(δ, logb n). On the other hand, the MST has expected

cost on the order of
∑h

k=1(bλ)k. It is surprising that the bichromatic matching and

TSP problems should behave so similarly to each other, yet so differently from the
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bichromatic MST problem. Moreover, the bichromatic MST problem has the same

solution cost as the monochromatic problems we considered in Chapter 2.

Since the monochromatic and bichromatic MST problems had the same cost,

one might naturally wonder what will happen for a K-chromatic MST problem with

K ≥ 3. For any fixed even value of K, a simple argument shows that the expected cost

remains Θ
(∑h

k=1(bλ)k
)

. Let us say we have K multisets (color classes) of n points,

denoted W1,W2, . . . ,WK , and we wish to form the MST TK in which every edge

connects points in two different color classes. By Observation 3.1, the cost of this MST

exceeds the cost of the monochromatic MST T1. On the other hand, we can group

the color classes into two equal-sized multisets — say, R = W1 ∪W3 ∪W5 ∪ . . .WK−1

and B = W2∪W4∪W6∪ . . .∪WK — and find the bichromatic MST T2 for R and B.

The cost of T2 must exceed the cost of TK , since T2 is a K-chromatic spanning tree

for the Wi’s. In summary, we have

c1 · Cost(T1) ≤ Cost(TK) ≤ c2 · Cost(T2),

where c1 and c2 are constants depending only on K, b, and λ. Thus the cost of TK

is Θ
(∑h

k=1(bλ)k
)

. We note that the constants c1 and c2 are not too extreme: T1 is

built on a multiset of Kn points, so c1 is at most K1+logb λ. Meanwhile, T2 is built on

K/2 multisets of 2n points, so c2 is at most (K/2)1+logb 2.

We can make a similar, but less slick, argument for odd values of K. If we take

R = W1 and B = W2 ∪ W3 ∪ W4 ∪ . . . ∪ WK , it makes sense to ask about the

bichromatic MST on R and B, even though the sets are of different size. Our proof

for the bichromatic MST can be extended to apply to the case of sets of unequal size.

Each red point must be linked to a blue point, but now we have more than n blue

points, so it will be easier for each red point. The constants hidden by the Θ-notation

will change.
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We ended the chapter by applying our HST results to the bichromatic MST prob-

lem and TSP on uniformly chosen point sets from the Euclidean hypercube [0, 1]d. We

showed that the bichromatic MST has cost Θ(n(d−1)/d) for d ≥ 2. The bichromatic

TSP tour also has this cost for d ≥ 3. In smaller dimensions, our results are too

weak to give a tight bound. Our preceding argument about the K-chromatic MST

problem on HSTs also transfers to the K-chromatic MST problem on point sets in

[0, 1]d: that is, for fixed d ≥ 2 and K ≥ 2, the expected K-chromatic MST cost on

K random sets of n points taken i.i.d. uniformly from [0, 1]d is Θ(n(d−1)/d). Here,

again, the constants hidden by the Θ-notation are reasonable: the hidden factors are

K(d−1)/d and (K/2)(d−1)/d.

The bichromatic problems do not offer tight concentration inequalities like the

ones we derived for the monochromatic problems in Section 2.6, since a bichromatic

version of Lemma 2.24 is lacking. Since the deviation after the first level is already

Ω(
√
n), we cannot hope for sub-gaussian behavior. The most we can say is that a

change at one point changes the length of the red-blue matching by at most one unit

(the diameter of T is a constant, and after normalization it is one unit). If we now

apply Azuma’s inequality, we obtain

P(|M(X)− EM(X)| ≥ t) ≤ 2 exp

(
− t

2

2n

)
.

This is clearly weaker than the very strong concentration results we obtained for the

monochromatic matching problems.
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4. Problems on hypergraphs

4.1 Introduction

A graph G = (V,E) is a combinatorial structure consisting of a vertex set V and

an edge set E. The vertex set can be any finite set. The edge set is a list of unordered

pairs of the vertices; if two vertices u and v have an edge {u, v} present in the set, we

say that u and v are connected. We do not allow a vertex to be connected to itself.

Many real-world problems involving transportation and communication have natural

and straightforward representations as graph problems.

The concept of a graph can be generalized to a hypergraph: here every edge is a

subset of V , not necessarily a pair. If every edge has the same cardinality K, we say

that the hypergraph is K-uniform; for example, a 2-uniform graph is the same thing

as a graph (by our definition above). The degree of a vertex v is the number of edges

to which v belongs. We say a hypergraph is d-regular if every vertex has degree d.

We call a graph uniform when it is K-uniform for some K; we use the term regular

similarly.

Many graph and hypergraph problems are NP-hard; assuming P 6= NP, the optimal

solutions to these problems cannot be found in polynomial time. However, under

special circumstances, one may find a polynomial-time approximation algorithm to

produce a nearly optimal solution. We have already seen an NP-hard problem: the

travelling salesman problem (TSP), considered in Chapters 2 and 3, is one of the

best known and most studied. For graphs G whose edge weights obey the triangle

inequality, several polynomial-time approximation algorithms for the TSP are known.

An early one appearing in Rosenkrantz et al. [41] finds a solution whose weight is at

most twice the weight of the optimal solution. Since the minimum spanning tree of
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G weighs less than the optimal TSP tour, we can traversing the MST T of G and

eliminate duplicate visits, yielding a tour of weight at most 2 times the weight of T .

A refinement of this algorithm due to Christofides [15] improves the ratio to 1.5: we

find the optimal matching M on the vertices of odd degree in T , and traverse the

edges of M ∪ T . The optimal matching has weight at most half the weight of the

optimal tour.

We emphasize that these TSP approximation algorithms only apply when the edge

weights of G obey the triangle inequality; for general graphs, even approximating the

TSP solution within a constant factor is NP-hard.

The previous algorithms are made possible by the relationships between the solu-

tions to the different graph problems: the MST (which is computable in polynomial

time) provides an approximation to the TSP (which is not, given P 6= NP). Later,

Christofides noticed that a tour on an even number of vertices consists of two match-

ings, and thus uses the optimal matching (computable in polynomial time) to form

part of a tour.

In situations where no such relation is forthcoming, we may make recourse to the

probabilistic method [6], in which we generate a candidate solution at random and

show that it is satisfactory. We can choose a target size and show that with positive

probability, our candidate is a valid solution; another way is to bound the expected

size of our candidate solution. Solutions to the independent set problem, another

NP-hard problem and a subject of this chapter, can be found in this way. We call

attention to our Theorems 4.13 and 4.17, novel results.

This chapter is laid out as follows. We first review the independent set problem

on hypergraphs, looking at the Caro-Wei and Caro-Tuza lower bounds on the sizes

of independent sets. We then develop an algebraic form of Caro-Tuza that closely

resembles the form of Caro-Wei. Next, we introduce the triple-free set problem on
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hypergraphs. From there we formulate a conjecture about independent sets in a

certain type of 3-uniform hypergraph; this conjecture is related to the no-three-in-

line problem, a lattice problem that we will examine in Chapter 5.

4.2 The independent set problem

An independent set I of a hypergraph H = (V,E) is a subset of V such that for

all e ∈ E, we have e 6⊆ I. For a graph (K = 2), an independent set is a subset

of V that contains no pair of neighbors. The independent set problem is to find the

largest independent set in a given hypergraph. As mentioned above, this problem is

NP-hard. The independence number of H, denoted α(H), is the size of the largest

independent set; as one might expect, calculating this number is also NP-hard.

We will apply the probabilistic method to the problem of bounding the indepen-

dence number of a uniform hypergraph. We start with the simplest case, a graph.

A theorem due independently to Caro [13] and to Wei [56] states that for a graph

G = (V,E) with vertices of respective degrees d1, d2, . . . , dn,

α(G) ≥
n∑
i=1

1

di + 1
.

This quantity is in fact the expected size of the independent set constructed by the

following algorithm (due to Boppana; see [6]). Let σ be a random permutation of

V . We construct an independent set I(G) by considering the vertices in σ in order,

adding each vertex to the set if none of its neighbors precedes it in σ. The probability

of vi being added is thus 1/(di + 1), the same as the probability that vi precedes in σ

all its neighbors in G. Adding over the vi gives the result.

From the proof, it is straightforward to produce a deterministic algorithm that

generates an independent set of this size. We will start with an empty set I and add
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vertices to it one by one. Notice that when we add a vertex v to I, all of its neighbors

become ineligible for inclusion in I. This constraint suggests the following process for

generating an independent set of a graph G: select a vertex v, add v to I, delete v and

its neighbors from G, and repeat. To choose v, we employ the Caro-Wei estimate.

Let us write CW (G) to denote the Caro-Wei estimate for α(G), and let us define Gi

to be the subgraph of G induced by removing vi and its neighbors. We have

CW (G) ≤ 1 +
1

n

n∑
i=1

CW (Gi),

so that choosing the vertex vi that maximizes CW (Gi) will induce an independent

set of size at least 1 + CW (Gi) ≥ CW (G). Repeating this process recursively on Gi

will give us the desired independent set of G.1

Caro and Tuza [14] later generalized this result to K-uniform hypergraphs, and

Thiele [54] extended it further to general hypergraphs. Caro and Tuza proved

Theorem 4.1 (Caro-Tuza) For K ≥ 2, let H = (V,E) be a K-uniform hypergraph

whose vertices v1, v2, . . . , vn have respective degrees d1, d2, . . . , dn. Then α(H) obeys

α(H) ≥
n∑
i=1

pK(di),

where

pK(d) =
d∏
j=1

(
1− 1

(K − 1)j + 1

)
.

When K = 2 the probability function simplifies to p2(d) = 1/(d+ 1). For K = 3, we

1An alternate method: at each step, set v to be the vertex with the highest degree (in the
remaining graph, i.e., ignoring vertices that have already been removed), and remove v. Repeat
until every vertex has degree 0; the resulting graph forms an independent set. It is a simple, but
lengthy, matter of arithmetic to show that such a choice maintains the expectation of the Caro-Wei
estimate.
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have the elegant closed form

p3(d) =
4d · (d!)2

(2d+ 1)!
.

This result is the optimal bound on the random permutation algorithm.

4.3 Proof of Caro-Tuza for K = 3

In this section, we prove

Theorem 4.2 (Caro-Tuza for 3-uniform hypergraphs) For K ≥ 2, let H =

(V,E) be a 3-uniform hypergraph whose vertices v1, v2, . . . , vn have respective degrees

d1, d2, . . . , dn. Then α(H) obeys

α(H) ≥
n∑
i=1

p(di),

where

p(d) =
d∏
j=1

(
1− 1

2j + 1

)
=

2

3
· 4

5
· · · 2d

2d+ 1
.

The function p(d) will emerge from consideration of a particular set of sequences.

Let Sm be the set of the 2m + 1 symbols {x, y1, y
′
1, y2, y

′
2, . . . , ym, y

′
m}. It consists of

the symbol x together with m pairs of symbols {yi, y′i} for i = 1, . . . ,m. We will say

that for a given i, the symbols yi and y′i are complements. We call a permutation of

Sm valid if for each pair {yi, y′i}, one of the elements of the pair comes after x. We

consider m to be fixed for the rest of this section.

Lemma 4.3 The number of valid permutations of Sm is 4m · (m!)2.

Proof: Let us index the positions by 0, 1, . . . , 2m. The position of x must be

from 0 to m. Let us consider the number of valid permutations with x at position

k. The portion preceding x must have k elements, and for each i, it can only contain
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at most one of yi and y′i. There are m!
(m−k)!

possibilities for this portion that use only

non-primed symbols. Since we can replace (or not) each symbol with its complement,

there are 2k · m!
(m−k)!

possibilities altogether. The part after x can be any arrangement

of the remaining 2m − k symbols, so there are (2m − k)! possibilities there. We

conclude that the total number of valid permutations is

m∑
k=0

2k · m!

(m− k)!
· (2m− k)! =

m∑
k=0

2k ·m!

(
2m− k
m

)
m!

= (m!)2 ·
m∑
k=0

2k ·
(

2m− k
m

)
= (m!)2 · 4m,

where the final substitution is justified by Lemma B.5 (see Section B.3). �

Lemma 4.4 The probability that a uniformly chosen random permutation σ of Sd is

valid is

p(d) =
4d · (d!)2

(2d+ 1)!
.

Proof: By Lemma 4.3, there are 4d · (d!)2 permutations in which x precedes an

element of each pair, and each of these permutations is equally likely to appear in σ.

There are (2d+ 1)! total permutations of these symbols; dividing gives the statement

of the lemma. �

Note that this expression for p(d) is equal to the one given in Theorem 4.2.

Remark 4.5 We note in passing the similarity between p(d) and the formula for the

d-th Catalan number,

Cd =

(
2d

d

)
/(d+ 1) =

(2d)!

(d!)2(d+ 1)
.
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Suppose a vertex v ∈ V of degree d has a disjoint neighborhood — that is, it has

exactly 2d neighboring vertices, because none of its neighbors appears in more than

one edge incident on v. Lemma 4.4 already gives us the probability that v will be

placed into the independent set: this probability is p(d). To see this, identify v with

the symbol x, and for edge ei = {v, ui, wi} incident on v, identify {ui, wi} with the

complement pair {yi, y′i}. Then the valid permutations of Sd correspond precisely to

the permutations of v and its neighbors in which v precedes a vertex in each of its

incident edges. As a result, we have

Theorem 4.6 Let H be a 3-uniform hypergraph whose vertices have degrees

d1, d2, . . . , dn, and each of whose vertices has a disjoint neighborhood. Then

E|I| =
n∑
i=1

p(di).

Our goal now is to generalize this to vertices with non-disjoint neighborhoods. A nice

monotonicity result enables us to carry this out.

Let T = {s1, s2, . . . , s|T |} be a partition of Sm−{x} into non-empty sets such that

no set si contains both an element yk and its complement y′k. We define a permutation

of T ∪ {x} to be a rearrangement of these sets with x included in the permutation.2

We permute only the sets, not the elements that they contain. To illustrate, for

T = {{y1, y
′
2}, {y′1}, {y2}}, the permutations of T ∪ {x} are

x{y1, y
′
2}{y′1}{y2}

{y′1}x{y1, y
′
2}{y2}

{y1, y
′
2}{y2}x{y′1}

{y′1}{y1, y
′
2}{y2}x

etc.

2We include x in the permutations but exclude it from T . We do this in order to simplify the
arithmetic for the lemmata of this section.
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The number of permutations of T ∪ {x} is (|T |+ 1)!

Given si, sj ∈ T , we say that si and sj are conflicting if for some k, we have

{yk, y′k} ⊆ si ∪ sj. That is, si and sj conflict with each other if one contains the

complement of an element in the other. Note that by construction, si never conflicts

with itself. If two sets are not conflicting, we will call them compatible. We define

a valid permutation of T ∪ {x} to be a permutation of T ∪ {x} in which no pair of

conflicting sets appears before x. These definitions match those given for Sm; indeed,

Sm is equivalent to the base partition T0 = {{y1}, {y′1}, . . . , {ym}, {y′m}}.

Let us define P(T ) to be the set of non-conflicting subsets of T . Then

Lemma 4.7 The number of valid permutations of T ∪ {x} is

∑
S∈P(T )

|S|! · (|T | − |S|)!

Proof: We arrange S to the left of x and T − S to the right of x. This gives us

|S|! · (|T | − |S|)! valid permutations for each S. �

We can form a new partition T ′ by merging two non-conflicting sets s1, s2 ∈ T

into a new set s1 ∪ s2. It is clear that there will be some relationship between

the valid permutations of T and those of T ′, but the relationship is fairly complex.

Let us partition P({s3, s4, . . . , s|T |}) into three sets P0(T ),P1(T ),P2(T ). Those sets

compatible with s1 and s2 will be placed into P2(T ); those compatible with neither

will be placed into P0(T ); and the rest of the sets will be placed into P1(T ). Thus a

set in Pi(T ) is compatible with exactly i of {s1, s2}.

Let us define N(T ) to be the number of valid permutations of T∪{x}, and similarly

for N(T ′).

Lemma 4.8 N(T ) = L1(T ) + L2(T ) + L3(T ) + L4(T ) and N(T ′) = L5(T ) + L6(T ),
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where

L1(T ) =
∑

S∈P0(T )∪P1(T )∪P2(T )

|S|! · (|T | − |S|)!

L2(T ) =
∑

S∈P1(T )

(|S|+ 1)! · (|T | − 1− |S|)!

L3(T ) = 2 ·
∑

S∈P2(T )

(|S|+ 1)! · (|T | − 1− |S|)!

L4(T ) =
∑

S∈P2(T )

(|S|+ 2)! · (|T | − 2− |S|)!

L5(T ) =
∑

S∈P0(T )∪P1(T )∪P2(T )

|S|! · (|T | − 1− |S|)!

L6(T ) =
∑

S∈P2(T )

(|S|+ 1)! · (|T | − 2− |S|)!

Proof: First consider N(T ). Each S in P0(T ) ∪ P1(T ) ∪ P2(T ) can be permuted

|S|! ways without s1 or s2, yielding |S|! · (|T |− |S|)! valid permutations. Furthermore,

each S in P1(T ) can be permuted with exactly one of {s1, s2}, yielding (|S| + 1)! ·

(|T | − 1 − |S|)! extra permutations. Finally, each S in P2(T ) can be permuted with

either of s1 and s2, yielding 2 · (|S|+ 1)! · (|T | − 1− |S|)! extra permutations, or with

both s1 and s2, yielding (|S| + 2)! · (|T | − 2 − |S|)! extra permutations. The sum of

these four quantities yields N(T ).

The reasoning for N(T ′) is similar, but now s1 and s2 have been merged into

s1∪ s2. (Note |T ′| = |T |− 1.) Each S in P0(T )∪P1(T )∪P2(T ) can be permuted |S|!

ways, but now only the elements of P2(T ) can be permuted with the new set s1 ∪ s2,

and S ∪ {s1 ∪ s2} can be permuted (|S|+ 1)! ways. �

Proposition 4.9

(|T |+ 1) ·N(T ′) ≥ N(T ).
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Proof: By Lemma 4.8, we have (|T |+1)·N(T ′)−N(T ) = (|T |+1)·(L5(T )+L6(T ))−

(L1(T ) +L2(T ) +L3(T ) +L4(T )); we will show that this quantity is nonnegative. To

make it clearer, we will perform the evaluation piecemeal.

(|T |+ 1) · L6(T )− L4(T ) =
∑

S∈P2(T )

(|S|+ 1)! · (|T | − 2− |S|)! · (|T |+ 1)−

∑
S∈P2(T )

(|S|+ 2)! · (|T | − 2− |S|)!

=
∑

S∈P2(T )

(|S|+ 1)! · (|T | − 1− |S|)!

= L3(T )/2.

(|T |+ 1) · L5(T )− L1(T ) =
∑

S∈P0(T )∪P1(T )∪P2(T )

|S|! · (|T | − 1− |S|)! · (|T |+ 1)−

∑
S∈P0(T )∪P1(T )∪P2(T )

|S|! · (|T | − |S|)!

=
∑

S∈P0(T )∪P1(T )∪P2(T )

(|S|+ 1)! · (|T | − 1− |S|)!

=
∑

S∈P0(T )

(|S|+ 1)! · (|T | − 1− |S|)! +

∑
S∈P1(T )

(|S|+ 1)! · (|T | − 1− |S|)! +

∑
S∈P2(T )

(|S|+ 1)! · (|T | − 1− |S|)!

= L2(T ) + L3(T )/2 +
∑

S∈P0(T )

(|S|+ 1)! · (|T | − 1− |S|)!

≥ L2(T ) + L3(T )/2.
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Therefore

(|T |+ 1) · (L5(T ) + L6(T ))− (L1(T ) + L2(T ) + L3(T ) + L4(T ))

= [(|T |+ 1) · L6(T )− L4(T )] + [(|T |+ 1) · L5(T )− L1(T )]− L2(T )− L3(T )

≥ (L3(T )/2) + (L2(T ) + L3(T )/2)− L2(T )− L3(T )

= 0.

�

Define P (T ) to be the probability that a random permutation of T ∪{x} is valid,

and let T ′ be a permutation obtained by merging two non-conflicting sets of T . Clearly

P (T ) = N(T )/(|T |+ 1)! and P (T ′) = N(T ′)/|T |!

Corollary 4.10

P (T ′) ≥ P (T ).

Proof: Dividing the conclusion of Proposition 4.9 by (|T |+ 1)!, we obtain

N(T ′)

|T |!
≥ N(T )

(|T |+ 1)!
,

i.e., P (T ′) ≥ P (T ). �

Remark 4.11 Lemma 4.8, Proposition 4.9 and Corollary 4.10 can also be made to

apply to K-uniform hypergraphs with K > 3, provided we change the definition of

Sm and valid sets accordingly. The analogue of Lemma 4.4 must, however, use more

sophisticated counting methods than those that we have used here.

Theorem 4.12 Let H = (V,E) be a 3-uniform hypergraph, and let σ be a (uniformly)

random permutation of V . For v ∈ V with degree d, the probability that v precedes,

in σ, a vertex in each of its incident edges is at least p(d).
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Proof: Let us denote the edges incident on v by e1, e2, . . . , ek. We will identify the

vertices in ei with the symbols yi and y′i, and we identify v with the symbol x. Define

the base partition T0 = {{y1}, {y′1}, . . . , {yd}, {y′d}} of Sd−{x}. We represent shared

vertices between edges by merging the corresponding sets. For example, if y1 and y′2

represent the same vertex, we merge the sets that contain y1 and y′2. Note that these

merges will never create a conflicting set, since that would mean one of the edges of

H has cardinality 2.

We perform these merges one at a time, creating a sequence of partitions T0, T1, T2,

. . . , Tc. The partition Tc represents the actual vertex set, and every valid permutation

of Tc∪{x} represents a permutation of v and its neighbors that will cause v to precede

one vertex in each of its incident edges. By Lemma 4.4, P (T0) = p(d), since the (valid)

permutations of T0∪{x} are simply the (valid) permutations of Sm. By Corollary 4.10,

P (Ti) ≥ P (Ti−1) for each i. We conclude that P (Tc) ≥ p(d), so that with probability

at least p(d), the vertex v will precede one vertex in each of its incident edges. �

We are finally in a position to prove Theorem 4.2.

Proof of Theorem 4.2: Let σ be a random permutation of V , and build I as

described in the introduction. By Theorem 4.12, the probability that vi will be added

to the set is at least p(di). Therefore, E|I| is at least
∑n

i=1 p(di), and some σ yields

an independent set I of at least this size. �

K-uniform hypergraphs (for K > 2) pose a problem when we want to derandomize

the algorithm: when we add vi to I and remove it from H, we cannot now remove its

neighbors. We are left, in effect, with a non-uniform hypergraph, in which some edges

will have cardinality K and others K − 1.3 We can avoid this difficulty by running

the algorithm in reverse: iterate through the permutation σ backwards, removing the

3For a (2-)graph this was not a problem, since the edges generated were of cardinality 1, meaning
that the incident vertices can never be taken into the independent set.



79

vertex vi from the graph if and only if it has an edge incident on it. When we remove

vi, all its incident edges dissolve. When the algorithm is done, an independent set

will remain whose expected size is at least the number given by Caro-Tuza. This

algorithm can be derandomized as above (see also [14] and [54]).

4.4 Algebraic bounds on α(H)

Based on the Caro-Tuza result, we have found what we believe to be novel results

on α(H) for K-uniform hypergraphs H. We begin by handling the simplest case of

K = 3. For convenience, we will write p(·) to mean p3(·).

Theorem 4.13 Let H be a 3-uniform hypergraph, and let d1, d2, . . . , dn be the degrees

of its vertices, with n > 0. Then

α(H) >

√
π

2
·

n∑
i=1

1√
di + 1

.

The proof is as follows. Recall Wallis’ formula,

π

2
=
∞∏
i=1

2 · di/2e
2 · bi/2c+ 1

=
2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· 8

9
· 10

9
· 10

11
· · · ·

Let Wk denote the product of the first k fractions in the formula as written above.

Thus W1 = 2
1
, W2 = 2

1
· 2

3
, etc.

Remark 4.14 Normally Wallis’ formula is given as

∞∏
i=1

(2i)2

(2i− 1)(2i+ 1)
,

giving partial products W2,W4, . . ., but we will find the prior version more convenient.
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The difference in grouping does not change its convergence properties, since

lim
k→∞

W2k+1

W2k

= 1;

as a result, the sequence {W1,W3,W5, . . .} has the same limit as the sequence

{W2,W4,W6, . . .}.

Proposition 4.15 Wk <
π
2

for even k, and Wk >
π
2

for odd k.

Proof: Let k be even. The next two factors in the product have the forms i
i−1

and

i
i+1

; their product is greater than 1. The same is true for the next two, the next two

after them, etc. Letting R be the product of all these pairs of factors, we have R > 1.

Since Wk ·R = π
2
, it follows that Wk <

π
2
.

Similarly, when k is odd, each subsequent pair of factors has the form i−1
i

and

i+1
i

, whose product is less than 1. Thus the product of the remaining pairs, R, is less

than 1. Since Wk ·R = π
2
, we have Wk >

π
2
. �

Theorem 4.16 √
π

2
√
d+ 1

< p(d) <

√
π

2
√
d+ 1/2

.

Note the tightness of this bound.

Proof:

p(d) =
(2d · d!)2

(2d+ 1)!

=
22 · 42 · 62 · · · (2d)2

1 · 2 · 3 · · · (2d+ 1)

=
2 · 4 · 6 · · · (2d)

1 · 3 · 5 · · · (2d+ 1)
,

because each even factor in the denominator had a counterpart in the numerator.
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Squaring and multiplying by 2d+ 1,

p(d)2 · (2d+ 1) =
2 · 2 · 4 · 4 · 6 · 6 · · · (2d) · (2d)

1 · 3 · 3 · 5 · 5 · · · · (2d− 1) · (2d− 1) · (2d+ 1)
= W2d <

π

2

by Proposition 4.15.

Similarly,

p(d)2 · (2d+ 2) =
2 · 2 · 4 · 4 · 6 · 6 · · · (2d) · (2d) · (2d+ 2)

1 · 3 · 3 · 5 · 5 · · · · (2d+ 1) · (2d+ 1)
= W2d+1 >

π

2
.

Thus

π

2(2d+ 2)
< p(d)2 <

π

2(2d+ 1)√
π√

4d+ 4
< p(d) <

√
π√

4d+ 2√
π

2
√
d+ 1

< p(d) <

√
π

2
√
d+ 1/2

.

�

The proof of Theorem 4.13 follows from applying the lower bound in Theorem

4.16 to the Caro-Tuza theorem.

What about when K > 3? It is known (see [19]) that for each K > 1, some

positive constant cK satisifies

α(H) ≥ cK ·
1

(di + 1)1/(K−1)
.

For the case K = 3, we were fortunate to find that the probability given by Caro-Tuza

has a connection to Wallis’ formula. When K = 4, for instance, we instead obtain

the product

p4(d) =
3

4
· 6

7
· 9

10
· · · 3d

3d+ 1
=

3d · d!

4 · 7 · 10 · · · (3d+ 1)
,
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whose corresponding constant is not so easy (perhaps impossible) to express in a

closed form. As we will see, these constants can be approximated quite closely.

Theorem 4.17 Let H be a K-uniform hypergraph for K ≥ 3, and let d1, d2, . . . , dn

be the degrees of its vertices, with n > 0. Then

α(H) > e−γ/(K−1) ·
n∑
i=1

1

(di + 1)1/(K−1)
,

where γ = 0.5772 . . . is the Euler-Mascheroni constant.

The proof is as follows. For general K ≥ 2, we have

Proposition 4.18

lim
d→∞

pK(d) · (d+ 1)1/(K−1) = eh(K−1),

where

h(z) =
1

z
·
∞∑
i=2

(−1)i · ζ(i)

i
·
(

1

zi−1
− 1

)
and ζ is the Riemann zeta function.

Thus for fixed K,

pK(d) ∼ eh(K−1)

d1/(K−1)
.

Proof: We can rewrite pK(d) · (d+ 1)1/(K−1) as
∏d

i=1 ai, where

ai =
(K − 1)i

(K − 1)i+ 1
·
(
i+ 1

i

)1/(K−1)

=

(
1 +

1

(K − 1)i

)−1

·
(

1 +
1

i

)1/(K−1)

.
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Then

log ai =
1

K − 1
· log

(
1 +

1

i

)
− log

(
1 +

1

(K − 1)i

)
=

1

K − 1
·
∞∑
j=1

(−1)j+1

j · ij
−
∞∑
j=1

(−1)j+1

j · ((K − 1)i)j

=
1

K − 1
·
∞∑
j=2

(−1)j+1

j · ij
−
∞∑
j=2

(−1)j+1

j · ((K − 1)i)j
,

since the terms for j = 1 cancel out. These were the troublesome terms, since they

belong to the harmonic series, which does not converge.

The next step is to calculate
∑∞

i=1 log ai, but we must be careful. The series for

log ai converges absolutely when i > 1 but not when i = 1. We must therefore handle
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that series differently.

∞∑
i=1

log ai =
∞∑
i=1

(
1

K − 1
·
∞∑
j=2

(−1)j+1

j · ij
−
∞∑
j=2

(−1)j+1

j · ((K − 1)i)j

)

=
∞∑
i=1

(
∞∑
j=2

(
(−1)j+1

(K − 1) · j · ij
− (−1)j+1

j · ((K − 1)i)j

))

=
∞∑
j=2

(
(−1)j+1

(K − 1) · j
− (−1)j+1

j · (K − 1)j

)

+
∞∑
i=2

∞∑
j=2

(
(−1)j+1

(K − 1) · j · ij
− (−1)j+1

j · ((K − 1)i)j

)

=
∞∑
j=2

(−1)j+1

j

(
1

K − 1
− 1

(K − 1)j

)

+
∞∑
i=2

∞∑
j=2

(−1)j+1

j · ij

(
1

K − 1
− 1

(K − 1)j

)
(1)

=
∞∑
j=2

(−1)j+1

j

(
1

K − 1
− 1

(K − 1)j

)

+
∞∑
j=2

∞∑
i=2

(−1)j+1

j · ij

(
1

K − 1
− 1

(K − 1)j

)
(2)

=
∞∑
j=2

(
(−1)j+1

j

(
1

K − 1
− 1

(K − 1)j

)

+
∞∑
i=2

(−1)j+1

j · ij

(
1

K − 1
− 1

(K − 1)j

))

=
∞∑
j=2

(
∞∑
i=1

(−1)j+1

j · ij

(
1

K − 1
− 1

(K − 1)j

))

=
∞∑
j=2

(−1)j+1

j

(
∞∑
i=1

1

ij

(
1

K − 1
− 1

(K − 1)j

))

=
∞∑
j=2

(−1)j+1

j

(
1

K − 1
·
∞∑
i=1

1

ij
− 1

(K − 1)j
·
∞∑
i=1

1

ij

)

=
∞∑
j=2

(−1)j+1

j

(
ζ(j)

K − 1
− ζ(j)

(K − 1)j

)

=
1

K − 1
·
∞∑
j=2

(−1)j+1 · ζ(j)

j

(
1− 1

(K − 1)j−1

)
= h(K − 1).
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We have repeatedly used the identity
∑∞

k=1(xk + yk) = (
∑∞

k=1 xk) + (
∑∞

k=1 yk),

which is valid whenever the sums
∑∞

k=1 xk and
∑∞

k=1 yk are finite. To get from (1) to

(2), switching the summations for i and j, we used the fact that the double sum is

absolutely convergent (in fact,
∑∞

i=2

∑∞
j=2 1/(j · ij) = 1− γ).

Exponentiating, we conclude
∏∞

i=1 ai = exp(h(K − 1)). �

As was the case for K = 3, our asymptotic bound also yields a lower bound:

Proposition 4.19

pK(d) · (d+ 1)1/(K−1) > eh(K−1).

Thus

pK(d) >
eh(K−1)

(d+ 1)1/(K−1)
.

Proof: We will show that each factor ai (from the proof of Proposition 4.18) is

less than 1; as a result, the partial products will decrease toward the limit given in

Proposition 4.18. The statement ai < 1 is equivalent to

(K − 1)i

(K − 1)i+ 1
·
(
i+ 1

i

)1/(K−1)

< 1,

from which we obtain

(
(K − 1)i

(K − 1)i+ 1

)K−1

· i+ 1

i
< 1,

and

((K − 1)i)K−1 · (i+ 1) < ((K − 1)i+ 1)K−1 · i.

This latter statement is easily shown to be true. The left-hand side equals (K −

1)K−1 · iK + (K − 1)K−1 · iK−1. The expansion of the right-hand side will contain

(among others) the terms (K − 1)K−1 · iK and
(
K−1

1

)
· (K − 1)K−2 · iK−2 · i. Thus the
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right-hand side exceeds the left-hand side. �

Since for a K-uniform hypergraph H we have α(H) ≥
∑n

i=1 pK(di), Theorem 4.1

and Proposition 4.19 now let us state

Theorem 4.20 For K ≥ 3, let H = (V,E) be a K-uniform hypergraph whose n

vertices v1, v2, . . . , vn (with n > 0) have respective degrees d1, d2, . . . , dn. Then

α(H) > eh(K−1) ·
n∑
i=1

1

(di + 1)1/(K−1)
.

(For K = 2 we must replace “>” with “≥”.)

Proof of Theorem 4.17: The identity
∑∞

i=2(−1)i · ζ(i)/i = γ lets us rewrite

h(z) as

1

z
·

[(
∞∑
i=2

(−1)i · ζ(i)

i · zi−1

)
− γ

]
.

The parenthesized summation is an alternating series whose terms are descending in

magnitude; thus the sign of the limit is the same as its first term, which is positive.

We thereby have

h(K − 1) > − γ

K − 1
,

which together with Theorem 4.20 proves Theorem 4.17. �

Using the fact ζ(2) = π2/6 (Euler’s solution to the Basel problem), we can bound

h(z) fairly tightly. The summation is at most π2/(12z), giving us:

Corollary 4.21

−γ
z
< h(z) < −γ

z
+

π2

12z2
.

(π2/12 = 0.8224...)
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The bound in Corollary 4.21 is tighter than the obvious bound h(z) < 0, since

−γ
z

+
π2

12z2
=
π2 − 12γz

12z2

is negative for z ≥ 2.

The results of this section have been published in February 2012 as [16].

Remark 4.22 Why would we believe, in the first place, that such an argument is

true? The following simple argument (adapted from Alon and Spencer, [6, Chapter

1]; see also [47]) shows that for a K-uniform hypergraph H with average vertex degree

δ ≥ 1, we have α(H) ≥ (1 − 1/K) · n/δ1/(K−1). We construct a set S of vertices at

random by choosing each vertex independently with probability p, whose value is yet

to be determined. An edge ei will have a violation (all of its vertices will be in S) with

probability 1/pK; to fix the violation, we will remove one of the vertices of ei from S.

This process gives us an independent set of expected size at least np−mpK. Given the

(reasonable) assumption4 m ≥ n/K (equivalent to δ ≥ 1), this quantity is maximized

when p = (n/mK)1/(K−1), giving an independent set of size

n1+1/(K−1)

m1/(K−1)
· 1

K1/(K−1)
·
(

1− 1

K

)
.

Since m = δn/K, we have

α(H) ≥ n

δ1/(K−1)
·
(

1− 1

K

)
.

Theorems 4.13 and 4.17 are best applied for graphs with large degrees. For small

degrees the approximation is too slack (consider a 3-uniform hypergraph on n vertices

4This condition is needed to ensure that p is a valid probability, i.e., less than or equal to one.
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and no edges: Theorem 4.13 gives α(H) > n
√
π/2). For larger degrees, the approx-

imation is quite close. It is curious that the worst value of the constant occurs for

K = 3.

We comment briefly that the result of Caro-Tuza (Theorem 4.1) and Thiele’s

result in [54] are the best in general — in the former case, the best given the degree

sequence {di}; in the latter, the best given the degree matrix D. Tighter bounds are

possible given tighter constraints on the hypergraph. For instance, a bipartite graph

G has α(G) ≥ dn/2e, and we see that this bound is tight from the graph Kdn/2e,bn/2c.

For a triangle-free5 graph G of average degree δ > 0, we have

α(G) ≥ (1− f(δ)) · n log δ

δ
,

where f(δ) → 0 as δ → ∞. This bound is due to Ajtai, Komlós, and Szemerédi [5],

who showed the order of magnitude, and Shearer [44], who subsequently showed that

the leading constant can be taken to be 1− o(1).

4.5 The K-tuple-free set problem

The estimate of Caro and Tuza gives a lower bound on the expected size of the

independent set generated by the random permutation algorithm. This estimate is

in fact tight when the hypergraph H is linear : a linear hypergraph is one in which

every pair u, v of distinct vertices belongs to at most one edge. For a given vertex v

and its neighborhood N(v), every vertex in N(v) shared between more than one edge

increases the probability of v being chosen; we would like to take advantage of this

fact.

This phenomenon becomes especially apparent when, as in the next chapter, we

5A graph is said to be triangle-free if it contains no subgraph isomorphic to K3. In such a graph,
no pair u, v of adjacent vertices has a common neighbor.



89

deal with points and collinearity. We will construct hypergraphs using lattice points

for the vertices and collinear triples as the edges. A set of N collinear points gives

rise to
(
N
3

)
collinear triples, and each pair along this line will belong to N − 2 edges.

It would be nice to increase the Caro-Tuza estimate, in anticipation of the sharing

that will occur between the edges.

Toward this end, we introduce6 the K-tuple-free set problem. A K-tuple-free set

of a hypergraph H = (V,E) is a subset F of V such that for each e ∈ E, we have

|e ∩ F | < K — in words, F contains at most K − 1 vertices from every edge.7 For

K = 2 we will say pair-free, and for K = 3 we will say triple-free. We will write

βK(H) to denote the size of the largest K-tuple-free subset of H.

Let H be a linear8 hypergraph and let v be one of its vertices. Let us say

that v has degree d, and its incident edges e1, e2, . . . , ed have respective cardinali-

ties C1, C2, . . . , Cd. We will set si = Ci − 1, so that si is the number of vertices aside

from v in ei. We denote
∑d

i=1 si by σs(v).

We first consider the case K = 2. The probability that v will be chosen before

any of its neighbors is 1/(σs(v) + 1), so that we have

β2(H) ≥
n∑
i=1

1

σs(vi) + 1
.

This is in fact the same quantity as we would get if we split every edge in E into

2-edges9 and apply Caro-Wei to the resulting graph. It is a consequence of the fact

that every 2-graph is linear.

The case K = 3 is more interesting. We obtain

6As far as we know, this problem has not been considered before.
7For comparison, note that the condition |e∩F | < |e| would instead redefine the independent-set

problem.
8We suspect that this condition is not necessary, but we are not sure.
9This is done by creating a 2-edge for every pair of vertices in E.
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Theorem 4.23

β3(H) ≥
n∑
i=1

∑di
a=0 a! · (σs(vi)− a)! · Ca(s1(vi), . . . , sdi(vi))

(σs(vi) + 1)!
,

where Ca(s1, . . . , sd) is the coefficient of xa in the expansion of the product

(s1x+ 1)(s2x+ 1) · · · (sdx+ 1).

This formula is admittedly unwieldy; for the case where every vertex has degree

d and every edge has cardinality s + 1, we can simplify it considerably. In this case

Ca =
(
d
a

)
· sa, hence

Corollary 4.24

β3(H) ≥ n · d! · [(s− 1)d]!

(sd+ 1)!
·

d∑
a=0

(
sd− a
d− a

)
sa.

When s = 2 the summation simplifies to 4d (see Section B.3), and we obtain

β3(H) ≥ n · (d!)2 · 4d

(2d+ 1)!
;

this bound is the same as the one that Caro-Tuza gives for 3-uniform hypergraphs of

regular degree d.

To demonstrate the difference in these estimates, we will consider a simple problem

in which every vertex will have the same degree. Let p be prime, and take the p× p

lattice square {1, . . . , p}2. How many points can we select such that no three points

lie on a modular line (mod p)? In Section 5.2 we will see a deterministic construction

that gives p− 1 points, but for now, let us consider a random solution: we will order
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the points randomly and insert points into a set whenever it will not cause a conflict.

How many points will be placed into the set?

Let us first see what Caro-Tuza has to tell us. Let q be one of the points in the

lattice. Every pair of points lies on exactly one modular line,10 and each modular

line contains exactly p points. The number of collinear triples to which q belongs is

therefore

(p2 − 1)(p− 2)

2

exactly. We will denote this quantity by ∆p. The Caro-Tuza bound is

p2 · (∆p!)
2 · 4∆p

(2∆p + 1)!
;

because of the large numbers involved, when p > 5 we approximate this by

p2
√
π

2
√

∆p + 1
.

(The error here is negligible; see Theorem 4.16.)

On the other hand, we can apply Corollary 4.24 with s = p − 1 and d = p + 1.

These values are such because each modular line passes through p points (cardinality

p) and each point belongs to p+1 modular lines (d = p+1). We compare these results

in Table 4.1. There is no clear trend present, although the results for Corollary 4.24

are always larger than those for Caro-Tuza.

We remark briefly on the summation in Corollary 4.24. The summation is listed

in the Online Encyclopedia of Integer Sequences [33] as approaching

s

2(s− 1)
·
(

ss

(s− 1)s−1

)d
10This was our reason for using a prime size; for a composite size the situation is much more

complicated.
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Table 4.1: A comparison of the results of Caro-Tuza and Corollary 4.24 for an example
problem.

p Caro-Tuza Corollary 4.24 difference
3 3.66 3.66 0
5 3.65 4.04 0.40
7 3.95 4.45 0.50
11 4.61 5.20 0.59
13 4.92 5.53 0.61
17 5.51 6.14 0.63
19 5.78 6.42 0.64
23 6.30 6.94 0.64
29 6.99 7.65 0.66
31 7.22 7.87 0.65

101 12.72 13.39 0.67
113 13.44 14.11 0.67

from above. This permits us to rewrite the corollary as

β3(H) ≥ n

(sd+ 1) ·
(
sd
d

) · ( ss

(s− 1)s−1

)d
.

4.6 Proof of Theorem 4.23

Our proof goes along the same lines as the proof of Caro-Tuza presented earlier.

Let us consider a single vertex v and its σs(v) neighbors. There are (σs(v) + 1)!

orderings of these vertices. For v to be placed into the triple-free set, we need it to be

the case that at most one vertex from each edge e1, e2, . . . , ed occurs before v in the

ordering. Put another way, if we define ci (i = 1, . . . , d) to be the number of vertices

in edge ei occurring before v, we need ci ∈ {0, 1} for all i.

Let us temporarily fix values for c1, c2, . . . , cd. The question now becomes: How

many orderings are there in which, for all i, exactly ci vertices from si occur before v?
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We can break the ordering down to the form AvB, where A is the sequence of vertices

before v, and B is the sequence after v. The length of A must be Σc =
∑d

i=1 ci. The

number of unordered sets of vertices that can comprise A is
∏d

i=1 s
ci
i . Each of these

sets can be ordered in Σc! ways. The remaining vertices in B can be ordered in

(σs(v) − Σc)! ways. Therefore, the number of orderings in which exactly ci vertices

from si occur before v, for all i, is

(
d∏
i=1

scii

)
· Σc! · (σs(v)− Σc)!

Fix a value of a from among 0, 1, 2, . . . , n. The number of valid orderings for which

Σc = a is

∑
c1, c2, . . . , cd ∈ {0, 1}
c1 + c2 + . . .+ cd = a

((
d∏
i=1

scii

)
· a! · (σs(v)− a)!

)

= a! · (σs(v)− a)! ·
∑

c1, c2, . . . , cd ∈ {0, 1}
c1 + c2 + . . .+ cd = a

d∏
i=1

scii

= a! · (σs(v)− a)! · Ca(s1, . . . , sd).

The theorem follows. �

4.7 A conjecture on 3-uniform hypergraphs with bounded degrees and

pair-degrees

The no-three-in-line problem (see Section 5.2) inspired us to make the following

conjecture. Let us define the pair-degree of two distinct vertices u, v ∈ V (H), written

γ(u, v), to be the number of edges containing both u and v. The maximum pair-degree

of H is the maximum of γ(u, v) over all distinct vertex pairs (u, v).
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Conjecture 4.25 Let H be a 3-uniform hypergraph on n vertices with maximum

vertex degree ≤ n log n and maximum pair-degree ≤
√
n− 2. Then α(H) ≥ b1.6

√
nc.

It can be shown that the hypergraph induced by the no-three-in-line problem (see

Section 5.2) on the
√
n ×

√
n lattice fits the hypothesis of this conjecture. The

condition on the pair-degree is obvious, since any line can only pass through
√
n of

the lattice points; the bound on the (individual) degrees is shown by Zhang [59]. A

proof of this conjecture would demonstrate a better bound for the no-three-in-line

problem than the best bound currently known (due to [25]). We believe that both of

the conditions, the one on the degree and the one on the pair-degree, are necessary.

If we relax the condition on the degree, then the problem considered previously on

the p×p lattice disproves the conjecture: each vertex has pair-degree p−2 =
√
n−2,

but we can only select p+ 2 =
√
n+ 2 points (see Section 5.2). Experimental results

suggest that relaxing the pair-degree condition will also cause the conjecture to fail.

We do not yet know how to prove this conjecture, but we have good reason to

believe it is true. We have run experiments on randomly generated11 hypergraphs

for n = 9, 16, 25, 36, and we have never seen the conjecture fail for these sizes. Un-

fortunately, we have to try every vertex subset of size b1.6
√
nc; we have not found a

reasonable algorithm that reliably generates an independent set of this size. Further-

more, any significant tightening of the conclusion of the conjecture makes it fail (for

example, replacing the pair-degree
√
n − 2 with

√
n − 1, or increasing the constant

1.6 to 1.7). This sensitivity leads us to believe that the conjecture holds for all such

hypergraphs and not just for most of them.

We have not encountered any result of this ilk in the literature; most strength-

enings of the Turán and Caro-Wei bounds rely on the hypergraph H containing no

small cycles. Here we make no such assumption: on the contrary, the hypergraph

11according to the Erdös-Rényi model
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induced by the
√
n×
√
n lattice has large numbers of 2-cycles. It is our hope that the

condition on the pair-degree can be applied, instead of the absence of small cycles,

to similar effect.

Another difficulty is that most of these results are given in Ω-notation, without an

explicit constant. For the conjecture to be applicable to the no-three-in-line problem,

we need the constant in the conjecture to be greater than 1.5. There is also the

question of why 1.6 works; our best guess is that it has something to do with log2 3 ≈

1.584.

4.8 Conclusion

In this chapter, we examined the independent set problem and some results related

to it. We stated the Caro-Wei bound and gave a short proof of it; then, we moved on

to the Caro-Tuza bound and proved it for the case K = 3. We showed (for general

K) a consequence of Caro-Tuza that had not previously appeared in the literature.

We introduced the triple-free set problem on hypergraphs and showed that, while

it can be reduced to a standard independent set problem, the bound obtained for the

independent set problem is slightly less than the bound on the original triple-free set

problem. We also stated a bound that applies to the triple-free set problem on linear

hypergraphs. We ended with a conjectured lower bound on the independence number

of a specifically structured 3-uniform hypergraph, with an eye toward applying the

result to the no-three-in-line problem. Unfortunately, we have not been able to prove

the conjecture. If someone proves it in the future, it will immediately imply an

improved bound for the no-three-in-line problem.
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5. Packing problems in lattices

The d-dimensional lattice of width n is the set of points {1, 2, . . . , n}d. There is

a rich literature on packing problems in such lattices. In our exposition we focus

the greatest part of our attention on the no-three-in-line problem, because it has,

arguably, been studied the most, and because we have several ideas as to how the

current optimal bound can be improved. We will then proceed to other problems in

the literature, before finally outlining the generalizations of these problems which we

intend to address.

5.1 Preliminaries

Many of these questions are concerned with lines passing through lattice points.

In the plane, the general form of a line is ax + by + c = 0, with one of a, b nonzero.

This line has slope −a/b; if this slope is written in lowest terms as c/d, the number of

lattice points lying on the line is at most dn/max(|c|, |d|)e. To simplify things later,

we will define the characteristic of a line as the quantity max(|c|, |d|). The number

of lines with characteristic C is ≤ 4Φ(C), where Φ is Euler’s totient function:

Φ(n) = |{m : m ∈ {1, . . . , n}, m and n are relatively prime}|.

Most of the time we will use the obvious bound Φ(n) ≤ n.

We can also define the characteristic of lines in three or more dimensions. Let d

be the dimension. A line ` through two lattice points can be specified by a lattice

point P and a difference vector δ such that P + δ is also a lattice point. Without loss

of generality we can assume GCD(δ1, δ2, . . . , δd) = 1. Then the characteristic of ` is

max(|δ1|, |δ2|, . . . , |δd|), and the number of points of the n× n× · · · × n lattice lying
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on ` is at most dn/max(|δ1|, |δ2|, . . . , |δd|)e.

5.2 The no-three-in-line problem

One of the oldest open lattice problems is the no-three-in-line problem, due to

Dudeney [18]: How many points can be chosen from the n × n lattice with no three

collinear? The obvious upper bound is 2n, and a simple construction of Erdős shows

that we can choose (1− o(1)) · n points. The optimum must therefore lie somewhere

in between. Hall et al. [25] improved this bound to (1.5− o(1)) · n, but no advances

have been made since then.

Erdős observed (cf. [42, Appendix]) that the set Sp = {(x, x2 mod p)}p−1
x=1 contains

no three collinear points. (This follows from the fact that in the set {(x, y) : y ≡ x2

(mod p)} ⊆ Z2, any set of three collinear points must contain two congruent points;

see Section B.1 for the proof.) Figure 5.1a depicts this set for p = 11. Given n, we

set p to be the largest prime not exceeding n, and we take Sp for our subset. The size

of this subset is therefore p− 1 = (1− o(1)) · n.

Remark 5.1 This construction is quite versatile; for example, as observed in [6], it

can be applied to Heilbronn’s triangle problem [42] to yield a set of n points in the unit

square with minimum triangle area ≥ (1 − o(1))/2n2. Again, take the set Sp. Since

no three points are collinear, no triangle has area zero; thus the minimum triangle

area is at least 1/2, because the area of the triangle (x1, y1), (x2, y2), (x3, y3) is

1

2

∣∣∣∣∣∣∣∣∣∣
det


1 x1 y1

1 x2 y2

1 x3 y3


∣∣∣∣∣∣∣∣∣∣

and the determinant is a nonzero integer. Dividing these points by p will place them

within [0, 1]2 and maintains a minimum triangle area of 1/2p2.



98

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9
10

(a)

......................... 1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9
10

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

(c)

Figure 5.1: No-three-in-line arrangements. (a) The points (x, x2 mod 11) for x =
1, . . . , 10. (b) The points in {1, . . . , 10}2 satisfying xy ≡ 1 (mod 11). (c) The
construction of Hall et al. [25] for p = 11. The initial set is {(x, y) : x, y ∈
{1, . . . , 22}, (x+5)y ≡ 1 (mod 11)}. The central points are removed as shown, leaving
30 points in a 22× 22 lattice.
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The construction of Hall et al. used a similar principle: the set S ′p = {(x, y) : xy ≡

1 (mod p)} ⊆ Z2 also has the property that any set of three collinear points must

contain two congruent points (see Section B.2). See Figure 5.1b for an example of

such a set; these sets bear a clear resemblance to permutation matrices. By choosing

a 2p× 2p region of the plane (which contains 4(p− 1) points) and throwing out p− 1

points, we obtain a set of 3(p− 1) points in {1, . . . , 2p}2 in which no three points are

collinear. (Figure 5.1c gives an example.) This ratio tends to 1.5 as n→∞.

Some simple heuristics appear to give a better ratio than 1.5; these are explained

in the next section.

These constructions also give a solution to the related problem of choosing points

from the p×p lattice (for p prime) so that no three lie on a modular line. We can show

that these solutions are nearly optimal: Without loss of generality, let us say (0, 0)

belongs to the set. Each other point (xi, yi) forms a line with (0, 0) of slope yi/xi, and

so the modular line has slope yix
−1
i (the inverse is taken mod p) unless xi = 0, in which

case the slope is ∞. The different points must give different slopes, since otherwise

three points will be collinear mod p. The possible slopes are 0, 1, . . . , p− 1 and ∞, a

total of p+ 1 slopes. Thus there can be at most p+ 2 points in the arrangement, and

our construction generates a set whose size is only 3 less than this.

Pór and Wood [36] showed that for the 3-dimensional analogue of the no-three-

in-line problem, the set {(x, y, (x2 + y2) mod p) : x, y = 1, . . . , p− 1}, which contains

(p− 1)2 points, has no three points collinear, as long as p ≡ 3 (mod 4).

5.3 Heuristic results for the no-three-in-line problem

We have found four algorithms that yield better results for the no-three-in-line

problem than the best currently known; we are, however, at a loss to explain why

they work. Recall that the best known bound is (1.5− o(1)) · n. We conjecture that
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the first algorithm gives a bound of (1.51 − o(1)) · n; the second algorithm gives a

bound of 1.623n for n > 1; the third gives a bound of 1.6n for n > 1; and the fourth

gives a bound of 1.51n for n > 1.

The first is a simple greedy algorithm. The most straightforward greedy algorithm

— consider each point in order, adding each to the set unless it causes a conflict —

performs poorly, yielding a set of size around 1.35n. Curiously, a minor modification,

listed below as Algorithm 1, yields greatly improved results.

Algorithm 1 The checkerboard algorithm.

1: S ← {}

2: for x = 1 to n do
3: for y = 1 to n do
4: if x+ y is even and the point (x, y) is not collinear with any two points of S

then
5: S ← S ∪ {(x, y)}

6: for x = 1 to n do
7: for y = 1 to n do
8: if x+ y is odd and the point (x, y) is not collinear with any two points of S

then
9: S ← S ∪ {(x, y)}

10: return S

We call this the checkerboard algorithm because if we treat the lattice points as

the squares of an n × n checkerboard, we can imagine this process as considering

all the black squares in order, then all the red squares in order. The sizes of the

generated sets are shown in Figure 5.2; for 1000 ≤ n ≤ 23000, the size exceeds 1.51n.

There appears to be a limit around 1.525.

The second algorithm considers the number of “free” points in the arrangement,

i.e., the number of points that have not been eliminated by points already chosen.
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Figure 5.2: Results for the checkerboard algorithm. The horizontal axis shows the
value of n; the vertical axis shows the ratio of the size of the subset to n.

Let us define free(S) to be the set of free points left after choosing all those in S; we

say that p is free if and only if p 6∈ S and p is not collinear with any two points in S.

We will add points to S that keep the size of free(S) as high as possible, for as long

as possible. See the listing for Algorithm 2.

Algorithm 2 The max-free algorithm.

1: S ← {}

2: while free(S) 6= {} do
3: p← argmax

q∈free(S)

|free(S ∪ {q})| /* break ties arbitrarily */

4: S ← S ∪ {p}

5: return S

The max-free algorithm reliably generates point sets of size > 1.62n; the sizes are
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Figure 5.3: Results for the max-free algorithm.

shown in Figure 5.3 for 2 ≤ n ≤ 500.

The third algorithm employs expectation minimization. Given a set of points S,

we can compute in polynomial time the expected number of collinear triples that will

arise if we complete S randomly — that is, while the size of S is less than 2n, we

choose a random point not already in S and add it to S. The algorithm picks the point

that minimizes this quantity. We stop when it chooses a point that would cause S to

have three collinear points; at this point, no further improvement is possible. Results

are given in Figure 5.4 for n ≤ 42; for n > 1 we see that the point set generated is of

size greater than 1.6n.

This E-M algorithm, while producing good results, runs quite slowly, since at every

step it must consider many triples; the first two algorithms only need to consider pairs

of points already placed in the set. Note well that the usual justification for E-M does

not apply here, since the expected number of collinear triples is quite large.1 Each

1It is in excess of 8n when n is large.
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Figure 5.4: Results for the E-M algorithm.

step reduces this expectation considerably, but we do not understand why.

The fourth and final algorithm we will consider here is related to the second, but

applies the idea in reverse. We start with a full n × n grid; at each iteration, we

remove one point. The point removed is the one that belongs to the greatest number

of collinear triples in the remaining configuration. We were inspired to try this by

[4], in which Ajtai et al. start with a triangle-free graph G, remove certain vertices

to create G′, and then apply the Turán estimate α ≥ n/(δ+ 1) to this reduced graph.

Perhaps a similar strategy can be applied to the no-three-in-line problem, through

a judicious choice of point removals. Results are given in Figure 5.5 for n ≤ 40; for

n > 1 we see that the point set generated is of size > 1.51n.

5.4 “Strong” configurations

We observe that most of the complexity of the configurations in [25] (recall Fig-

ure 5.1c) stems from the collinear triples that occur on the lines of slope ±1. If we
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Figure 5.5: Results for the reduction algorithm.

could create a similar (and large enough) configuration that avoids the difficulties

along these diagonals, we would have an improved solution to the no-three-in-line

problem. We dub these “strong” configurations.

Definition 5.2 A strong n× n configuration is a subset of {1, . . . , n}2 in which

1. every row and every column contains at most one point;

2. every modular line (mod n) passes through at most two points; and

3. every modular line (mod n) of slope ±1 passes through at most one point.

Figure 5.6 demonstrates the utility of such a configuration. In (a) we see a strong

12 × 12 configuration containing 10 points. In (b) we have tiled four copies of this

configuration side by side; it creates a no-three-in-line subset of the 24 × 24 lattice

containing 40 points, a ratio of 5/3 ≈ 1.67. The fact that this configuration has no

three collinear points is not hard to see: we need two of the points on the line to
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be congruent, but this induces a line of slope 0,∞, or ±1, and these lines can only

contain two points.

The parabolic construction (Figure 5.1a) satisfies condition 1 but not 2 or 3. The

hyperbolic construction (Figure 5.1b) satisfies conditions 1 and 2 but not 3. We

can satisfy the third condition by starting with a modular hyperbola and removing

half of its points. Each point (except those on the main diagonals) has three mirror

images, and the four together form a rectangle; removing an opposite pair of points

eliminates the problem with the modular lines of slope ±1. This only leaves (p−1)/2

points, however; our experiments suggest that this is close to optimal for prime p.

For composite sizes we may have more luck. Unfortunately the brute-force search

takes a long time, and we have only been able to run it for n from 1 to 26. The best

results (containing more than 3n/4 points) occur for n = 12 and n = 20. The optimal

configuration for n = 12 was already shown in Figure 5.6; that for n = 20 is shown

in Figure 5.7. For the sake of completeness we present all the maximum sizes of the

strong n× n configurations for n = 1, . . . , 26 in Table 5.1.

We conjecture that large strong configurations exist for n of the form 4p, where p

is an odd prime. It may be possible that they exist only for certain small values of n

and that no general construction exists, but we do not think it likely.

5.5 Other packing problems

A problem related to the no-three-in-line problem was considered by Thiele [53]:

How many points can be chosen from the n×n lattice with no four points co-circular?

Here we consider four collinear points to lie on a circle of infinite radius (zero cur-

vature). Again the optimum is known to be Θ(n), but the optimal constant is not

known. Thiele’s construction, yielding (1/4 − o(1)) · n points, is as follows. Let

S ′′p = {(x, x2 mod p)}bp/4cx=1 . Four points (x1, y1), . . . , (x4, y4) are co-circular if and only
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Figure 5.6: (a) A strong 12 × 12 configuration containing 10 points. (b) Tiling four
copies of (a) creates a no-three-in-line packing of 40 points into the 24× 24 lattice.
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Table 5.1: The maximum sizes of strong n× n configurations for n from 1 to 26.

n
maximum

size ratio
1 1 1.000
2 1 0.500
3 1 0.333
4 2 0.500
5 2 0.400
6 4 0.667
7 4 0.571
8 5 0.625
9 4 0.444
10 7 0.700
11 6 0.545
12 10 0.833
13 7 0.538

...............

n
maximum

size ratio
14 10 0.714
15 10 0.667
16 10 0.625
17 10 0.588
18 12 0.667
19 10 0.526
20 16 0.800
21 14 0.667
22 14 0.636
23 13 0.565
24 17 0.708
25 17 0.680
26 16 0.615
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Figure 5.7: A strong 20× 20 configuration containing 16 points.
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if the determinant ∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1 x2
1 + y2

1

1 x2 y2 x2
2 + y2

2

1 x3 y3 x2
3 + y2

3

1 x4 y4 x2
4 + y2

4

∣∣∣∣∣∣∣∣∣∣∣∣∣
is zero. But since yi ≡ x2

i (mod p), this determinant simplifies mod p to

(x1 + x2 + x3 + x4) ·
∏
i<j

(xj − xi),

which is nonzero mod p.

Erdős and Guy [21] considered the problem of selecting k points from an n × n

lattice such that every pair of these points determines a distinct distance. A simple

argument gives k ≤ n; their paper presents a construction that provides, given ε > 0,

a configuration of n2/3−ε lattice points for sufficiently large n. We now review their

proof. (Later results by Thiele and Lefmann [30, 52] improved the bound to Ω(n2/3).)

First let us see why k cannot exceed n. In the n×n lattice there are at most
(
n+1

2

)
distinct distances — this is the number of unordered pairs of {0, 1, . . . , n − 1} with

repetition. A set of k points determines
(
k
2

)
distances; since none of these distances

can be zero and they must all be distinct, we have

(
k

2

)
<

(
n+ 1

2

)
,

so that k < n+ 1.

We now turn to proving the lower bound of n2/3−ε. Their proof is constructive

and uses an elegant greedy algorithm. We start with an empty point set. Inductively,

suppose k points have already been chosen. We will show that when k < n2/3−ε, there

is still another point available. In order to avoid duplicating a distance, the new point
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cannot sit a distance d away from another point, where d is the distance between any

two points already in the set (we call this condition A); and the new point cannot be

equidistant from two already-chosen points (condition C). These conditions ensure

that the resulting point set has distinct distances. To obtain the lower bound, we

enforce an additional condition: no two lines should lie on a line of characteristic

< n1/3 (condition B).2

Let us suppose now that k points have been chosen: are any points still available?

This will be the case when the number of eliminated and chosen points is less than n2:

let us count these points. To count the number of points eliminated by condition A,

we note that these points lie on the circles centered at the k points with radii defined

by the
(
k
2

)
pairs of points. A circle centered at a lattice point passes through at most

nc1/ log logn points of an n×n lattice (see Section B.4); therefore condition A eliminates

at most k
(
k
2

)
nc1/ log logn ≤ k3

2
· nc1/ log logn points. This quantity also accounts for the

points already chosen, since when k > 1, each point lies on one of these circles.

We turn now to condition B. If a line ` has slope a/b, a line perpendicular to `

will have slope −b/a; the line ` and the perpendicular have the same characteristic.

Each point in the set therefore excludes at most

n1/3∑
i=1

4Φ(i) · n
i

= 4n
n1/3∑
i=1

Φ(i)

i
≤ 4n4/3

points. Altogether, the k points exclude at most 4k · n4/3 points.

Let us now consider condition C. There are
(
k
2

)
pairs of points; the bisector of

each pair has characteristic ≥ n1/3, so that each bisector passes through at most n2/3

points. The bisectors therefore exclude

(
k

2

)
· n2/3 ≤ k2n2/3

2

2Our odd lettering was chosen to match the order of explanation in Erdős and Guy’s paper.
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points.

Adding these together, the total number of chosen and excluded points is at most

k3

2
· nc1/ log logn + 4k · n4/3 +

k2n2/3

2
,

which is less than n2 for k < n2/3−ε.

We conclude our review of lattice packing problems with a problem in higher

dimensions. Riddell [40] considered a particular d-dimensional generalization of the

no-three-in-line problem: How many points can be chosen from the d-dimensional

lattice hypercube of width n with no n points collinear? The sets of n collinear points

have a very restricted form: if we denote a set of n collinear points by z1, z2, . . . , zn

and write zi = (zi1, zi2, . . . , zin), then for the sequence (z1j, z2j, . . . , znj) formed from

the j-th coordinate of each point, we have either

z1j = z2j = . . . = znj

or

(z1j, z2j, . . . , znj) = (1, 2, . . . , n)

or

(z1j, z2j, . . . , znj) = (n, n− 1, . . . , 1).

Riddell observed that for a fixed integer r, the set of points containing exactly r 1’s

contains no points fitting these descriptions, and thus contains no subset of n collinear

points. The number of points in this set is easily shown to be

(
d

r

)
(n− 1)n−d;
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this quantity is maximized when r = bd + 1c/n, giving a lower bound (when d >

max{2(n− 2), (n+ 8)/2}) of

1

e3/2
√

2π
· nd+1√

d(n− 1)
.

Generally speaking, algorithms for generating solutions to lattice packing problems

follow one of three paradigms:

1. Greedy algorithms, as in the distinct slopes problem discussed above [21].

2. The application of some mathematical structure to the problem, yielding a

declarative description (a construction) of the solution. Oftentimes, modular

constructions are used for this purpose (e.g., [25, 53]); Riddell’s is a different

kind of example [40]. Here, there is required some fortuitous insight into the

problem; certain problems do not lend themselves to such neat solutions.

3. Optimization of expectation (E-M), where we seek simultaneously to maximize

the number of chosen points and minimize the number of conflicts.

Of our heuristics in Section 5.3, the checkerboard algorithm embodies principle

#1 here, while our E-M algorithm clearly follows #3.

5.6 Generalizations

We now consider generalizations of the no-three-in-line and no-four-on-circle prob-

lems to higher dimensions:

Problem 5.3

How many points can be chosen from {1, . . . , n}d with no three points collinear?

Problem 5.4
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How many points can be chosen from {1, . . . , n}d with no K points collinear?

Problem 5.5

How many points can be chosen from {1, . . . , n}d with no four points co-circular?

Here we are allowing d and K to vary, whereas [25] and [53] considered only the case

d = 2 (and for [25], K = 3).

The structures of these problems readily lend themselves to hypergraph repre-

sentations. For Problem 5.3, we can represent each triple of collinear points as an

edge in a 3-uniform hypergraph. For Problem 5.4, we can represent each K-tuple

of collinear points as an edge in a K-uniform hypergraph. For Problem 5.5, we can

represent each 4-tuple of co-circular points as an edge in a 4-uniform hypergraph.

Each problem induces a hypergraph whose vertex set is the point set {1, . . . , n}d and

whose edge set is the set of conflicting point tuples. The main difficulty is to bound

effectively the degrees of the vertices in these graphs. Geometric reasoning will give

us these bounds, which we can then apply in Theorem 4.17 to find a lower bound on

the independence number.

Let us first examine Problem 5.3. Let P be a point in the d-dimensional n× n×

· · · × n lattice, with n > 1. For every other point P ′, there is a line `(P ′) passing

through it and P . There are nd − 1 choices for P ′ and then, for each P ′, at most

n− 2 other points along the line `(P ′). This process accounts for two copies of each

(unordered) pair of points that is collinear with P ; the number of collinear triples

containing P is therefore no greater than (nd − 1) · (n − 2)/2, meaning we have a

hypergraph on nd vertices with maximum degree ≤ (nd − 1) · (n − 2)/2 ≤ nd+1/2.

Substituting into Theorem 4.13 gives

α(H) >

√
π

2
· nd√

nd+1/2
=

√
π

2
· n(d−1)/2.
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Theorem 5.6 For n > 1, there is a subset S of the d-dimensional n × n × · · · × n

lattice such that

|S| >
√
π

2
· n(d−1)/2

and S contains no set of three collinear points.

We now turn our attention to Problem 5.4. As before, let P be a point in the

d-dimensional n× n× · · · × n lattice. For every other point P ′, there is a line `(P ′)

passing through it and P . There are nd − 1 choices for P ′ and then, for each P ′, at

most n−2 other points along the line `(P ′). From these n−2 points, there are
(
n−2
K−2

)
sets of K−2 points. The number of collinear triples is therefore bounded from above

by

(nd − 1) ·
(
n− 2

K − 2

)
/(K − 1) ≤ (nd − 1) · (n− 2)K−2

(K − 2)! · (K − 1)
≤ nd+K−2

(K − 1)!
.

Substituting into Theorem 4.17 gives

α(H) > e−γ/(K−1) · nd

K−1
√
nd+K−2

· K−1
√

(K − 1)!

We must now simplify this expression.

Lemma 5.7 m
√
m! > m/e.

Proof: Using the fact that Stirling’s approximation is a lower bound on the factorial,

we obtain

m
√
m! > m

√√
2πm ·

(m
e

)m
=

2m
√

2πm · m
e

>
m

e
.

�
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Thus K−1
√

(K − 1)! > (K − 1)/e. We also have

nd

K−1
√
nd+K−2

= nd−d/(K−1)−1−1/(K−1) = n(d−1)·(K−2)/(K−1).

We conclude

Theorem 5.8 For n > K−1, there is a subset S of the d-dimensional n×n×· · ·×n

lattice such that

|S| > (K − 1)e−1−γ/(K−1) · n(d−1)·(1−1/(K−1))

and S contains no set of K collinear points.

Let us finish by looking at Problem 5.5. Let P be a point in the d-dimensional

n × n × · · · × n lattice. We will build a 4-uniform hypergraph which has an edge

for every cocircular 4-tuple of points in the lattice. Let P ′ and P ′′ be two other

points in the lattice. (If P, P ′, and P ′′ are collinear, we can say either that there is

no circle passing through them, or that the line passing through them is a circle of

zero curvature. We will say the latter.) The plane determined by these three points

contains at most n2 points, and a circle can only pass through 2n of these. Thus,

every point will have degree at most
(
nd

2

)
· 2n < n2d+1. We conclude

Theorem 5.9 There is a subset S of the d-dimensional n× n× · · · × n lattice such

that

|S| > e−γ/3 · n(d−1)/3

and S contains no set of four cocircular points.

5.7 Conclusions

The first part of this chapter focused on the no-three-in-line problem in the n×n

lattice. We saw some heuristics that give better results than the best-known con-
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struction, due to Hall et al. [25]. Unfortunately, we have not been able to provide a

proof for any of these experimental results. It is still heartening to know that better

results are likely possible; perhaps someone will be able to prove the efficacy of one

of the algorithms presented here. The max-free algorithm seems the best candidate,

since it gives substantially better results than [25], while its process closely resembles

the independent set algorithms that we touched on in Chapter 4.

We attempted to extend the no-three-in-line problem to higher dimensions; our

generalizations were listed as Problems 5.3 and 5.4. Our result for the first problem,

listed as Theorem 5.6, is disappointing, since the analogous problems in 2 and 3

dimensions lead us to expect that we can choose Θ(nd−1) points. The exponent we

obtained is instead (d− 1)/2. Our second result is a little better: the exponent that

we obtained in Theorem 5.8 is (d− 1) · (1− 1/(K − 1)), which is close to d− 1 when

K is large.

We have had difficulty finding other bounds with which to compare the bounds

in this section. Brass et al. [12, Chapter 10] mention that few bounds are known

beyond the trivial bounds, but we are not sure what qualifies as “trivial” in their

eyes. If we take d = K in Theorem 5.8, we obtain an exponent of d−2; this compares

unfavorably with Brass and Knauer [11], who demonstrated an exponent of d− 1.
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6. Concluding remarks

We have come to the end of our material. Our investigations into optimization

problems on HSTs were quite successful, as we derived several new results. For

the monochromatic matching problem, MST problem, and TSP, we proved that the

expected cost of an optimal solution for a randomly chosen multiset of n leaves is

Θ(
∑h

k=1(bλ)k), where h = min(δ, logb n). Turning to the bichromatic problems, we

discovered that the bichromatic MST problem obeys the same bound, while the cost

of the optimal tour for the bichromatic TSP is Θ(
√
n·
∑h

i=1(
√
bλ)i). This latter bound

is the same as the one found by Abrahamson et al. [1, 2] for the bichromatic matching

problem. The lifting lemma proved vital to the bichromatic proofs; we anticipate that

many more researchers may make use of this lemma in the future.

One might wonder, apart from the mathematics, why the bounds for the bichro-

matic MST and TSP are so different. We can offer only a rough idea: In the TSP, each

node is attached to two other nodes (its neighbors in the tour), while in a spanning

tree, each node can be attached to many other nodes. Thus we should expect the

TSP to behave more like the matching problem, and we should expect the bichromatic

MST problem to behave less like it.

Noting that the monochromatic and bichromatic MST problems had the same

bound, we briefly considered the K-chromatic MST problem for K ≥ 3. For fixed

even values of K, we showed that the asymptotic bounds for the bichromatic MST also

apply to the K-chromatic MST problem; the only change is in the leading constants,

which now depend on K. In fact there is no need for K to be even (and it would

be quite surprising if the parity of K affected our result!). We can recast a K-

chromatic problem into a bichromatic problem as follows. Let W1,W2, . . . ,WK be

our K multisets of leaves. We form the bichromatic problem by calling W1 our red
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set and calling W2 ∪W3 ∪WK our blue set. Even though the red set and the blue

set have different sizes, our proof for the bichromatic MST still holds: each red point

must still reach out to a blue point, and it will be easier with a larger blue set.

We have not determined what happens in the K-chromatic matching problem or

TSP. This may be a fruitful area for future research. We anticipate that the matching

problem and TSP will again have the same solution. To prove a bound the way we

have in this thesis, one must first figure out how to extend our notion of discrepancy

to more than two colors.

We ended our look at HSTs by deriving novel bounds on the bichromatic problems

on unit hypercubes. We showed that for sufficiently high dimension d, the cost of

the optimal solutions to the bichromatic matching problem, MST problem, and TSP

obey the asymptotic bound Θ(n(d−1)/d). This bound was proved by sandwiching the

cost between previous known bounds on the monochromatic problems [58] and the

upper bound obtained by the HST approximation.

Let us now turn to our investigations into hypergraph problems. We concentrated

on the independent set problem on uniform hypergraphs. Here, we were able to apply

a result of Caro and Tuza [14] to obtain a bound resembling Caro and Wei’s bound

[13, 56]. Our result is a natural consequence of Caro-Tuza, but it did not appear

to have been published previously. The novel results of Chapter 4 (to be specific,

Theorems 4.13 and 4.17) were published in February 2012 as [16].

We proceeded to explain an alternative formalism to the independent set problem,

naming this alternative formalism the K-tuple-free set problem. In this problem, we

are given a hypergraph H = (V,E), and we wish to find a subset I ⊆ V such that

no K vertices of I appear in an edge in E. While problems of this form can easily

be turned into independent set problems, this transformation sacrifices some of the
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properties of the original hypergraph. We may be able to derive better bounds by

tackling the problem directly. Unfortunately, our results for K = 3 (the triple-free

set problem) were not very impressive. It would be nice to know what happens for

larger values of K.

At the end of the chapter, we outlined a conjecture about the independence num-

ber of a certain type of 3-uniform hypergraph. Again, our motivation here was that a

proof of this conjecture would improve the best-known bound for the no-three-in-line

problem. Unfortunately we did not manage to prove the conjecture, but we have

great reason to believe it is true. If it is true, it would imply that the structure of the

n×n lattice is not as important to the no-three-in-line problem as initially suspected;

rather, the most important properties of the graph are the degrees of its vertices and

the pair-degrees of its vertex pairs.

Appendix C contains some material that we developed late in the writing of this

thesis. It presents an interesting new algorithm for generating independent sets. We

have been unable to find proofs of its efficacy (we explain this in the appendix), but

we have managed to find several small examples for which our algorithm outdoes

other simple algorithms.

We finished off by considering several packing problems in point lattices. We

devoted the most attention to the no-three-in-line problem in the plane, coming up

with several heuristics that improve the best-known bound due to Hall et al. [25].

Unfortunately we could not come up with a proof for any of these heuristics. We also

considered three generalizations of the no-three-in-line problem to higher dimensions,

leaning on the results of Chapter 4 to derive our bounds. These bounds are smaller

than we would like, but we have been unable to find other results with which to

compare our bounds.
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Appendix A. Notation

Pr[A] the probability of the event A
EX the expected value of the random variable X
DX the standard deviation of X

VarX the variance of X

Recall
VarX = E(X − EX)2 = EX2 − (EX)2

and DX =
√

VarX.

e Euler’s constant 2.718281828 . . ., the base of the natural logarithm
log x the natural logarithm (to the base e) of x
γ the Euler-Mascheroni constant 0.5772156649 . . .

bxc the greatest integer less than or equal to x

dxe the least integer greater than or equal to x

We will sometimes write exp(x) to mean ex.
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Appendix B. Postponed proofs

To maintain the flow of the main text, we have waited until now to give proofs of

some statements given or used earlier. The AM-GM inequality (Section B.5) was not

used in the main text, but instead is used in Section B.4.

B.1 Modular parabola

We can follow the derivation of the quadratic formula to obtain

Theorem B.1 The quadratic congruence ax2 + by + c ≡ 0 (mod p), with a 6≡ 0

(mod p), has the precise solutions

x ≡ −b±
√
b2 − 4ac

2a
(mod p);

if b2 − 4ac is a quadratic non-residue, there is no solution.

An immediate consequence is

Corollary B.2 A quadratic congruence with nonzero quadratic coefficient has at

most two solutions mod p.

Let Sp,k = {(x, y) : x, y ∈ Z, y ≡ kx2 (mod p)}. We say two points (x1, y1), (x2, y2) ∈

Sp are congruent if x1 ≡ x2 and y1 ≡ y2 (mod p).

Here we show

Theorem B.3 Let k 6≡ 0 (mod p). If three points (x1, y1), (x2, y2), (x3, y3) ∈ Sp,k are

collinear, two of them are congruent.

Proof: Suppose the line ` passes through two points of Sp. This line has the form

ax + by = c, where a, b, c ∈ Z and a, b 6≡ 0 (mod p). This implies ax + by ≡ c
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(mod p). Substituting y ≡ kx2, we obtain a quadratic congruence; by Corollary B.2,

there are at most two values of x that satisfy it. Therefore two of the xi, say x1 and

x2, must be congruent. Since y1 ≡ x2
1 ≡ x2

2 ≡ y2, we have that (x1, y1) and (x2, y2)

are congruent. �

B.2 Modular hyperbola

Let S ′p,k = {(x, y) : x, y ∈ Z, xy ≡ k (mod p)}.

Theorem B.4 Let k 6≡ 0 (mod p). If three points (x1, y1), (x2, y2), (x3, y3) ∈ S ′p,k are

collinear, two of them are congruent.

The proof resembles the previous one. Suppose the line ` passes through two points

of Sp. This line has the form ax + by = c, where a, b, c ∈ Z and a, b 6≡ 0 (mod p).

Multiplying by x, we obtain ax2 + bk ≡ cx; by Corollary B.2, there are at most two

values of x that satisfy it. Therefore two of the xi, say x1 and x2, must be congruent.

Since y1 ≡ x2
1 ≡ x2

2 ≡ y2, we have that (x1, y1) and (x2, y2) are congruent. �

B.3 A combinatorial lemma

In Section 4.5 we claimed
∑d

a=0

(
2d−a
d−a

)
2a = 4d. Note that this summation is the

same as
∑d

a=0

(
2d−a
d

)
2a. We now show

Lemma B.5
d∑
a=0

(
2d− a
d

)
2a = 4a.
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Proof: Let f(d) equal the summation. Clearly f(0) = 40. Then for d > 0, assuming

f(d− 1) = 4d−1, we have

f(d) =
d−1∑
a=0

2a ·
(

2d− a− 1

d

)
+

d∑
a=0

2a ·
(

2d− a− 1

d− 1

)

=
d∑
a=1

2a−1 ·
(

2d− a
d

)
+

d−1∑
a=−1

2a+1 ·
(

2d− a− 2

d− 1

)

=

(
−1

2
·
(

2d

d

)
+

d∑
a=0

2a−1 ·
(

2d− a
d

))
+

d−1∑
a=−1

2a+1 ·
(

2(d− 1)− a
d− 1

)

=

(
−1

2
·
(

2d

d

)
+

1

2
· f(d)

)
+

((
2d− 1

d− 1

)
+

d−1∑
a=0

2a+1 ·
(

2(d− 1)− a
d− 1

))

=

(
−1

2
·
(

2d

d

)
+

1

2
· f(d)

)
+

((
2d− 1

d− 1

)
+ 2 · f(d− 1)

)
=

1

2
· f(d) + 2 · 4d−1,

implying f(d) = 4d. �

B.4 Lattice points on a circle

In Section 5.5 we made reference to a result concerning the number of lattice

points on a circle:

Theorem B.6 A circle centered on a lattice point passes through at most nC/ log logn

points of the n× n lattice, where C is a universal constant.

For every ε > 0, this number is o(nε).

There are two elements to the proof. The first is the relation between the divisor

function d(n) and the number of ways to write n as the sum of two squares. Every

expression of n in the form x2 + y2 induces a factorization of n into two Gaussian

integers; for instance,

13 = 32 + (−2)2
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corresponds to the factorization

13 = (3− 2i)(3 + 2i).

A number whose prime factorization over the real integers is pa11 · · · p
ak
k will have at

most 8(a1 + 1)(a2 + 1) · · · (ak + 1) = 8d(n) factorizations into two Gaussian integers.

(To see where the 8 comes from, notice that we can also write 13 as [U(3−2i)](3+2i)

or [U(3 + 2i)](3 − 2i) where U ∈ {1, i,−1,−i}.) The number of ways to write n as

the sum of two squares is thus ≤ 8d(n). Naturally, we have glossed over the finer

points in this argument; a good treatment of the Gaussian integers and their unique

factorization can be found in [35, Chapter 1].

The second element is the bound on d(n). Wigert [57] showed that d(n) obeys

d(n) < nC/ log logn

for n ≥ 3. We are going to provide a new (as far as we know) proof of this theorem.

Surprisingly little of it has to do with number theory — the bulk of the proof is

algebraic in nature. To simplify things, we will use ln to denote the natural logarithm

and log to denote the logarithm to the base 21/3 (we will explain later this odd choice

of base).

If n has the prime factorization pa11 · · · p
ak
k , with p1 < p2 < . . . < pk and all ai ≥ 1,

then d(n) = (a1 + 1) · · · (ak + 1). We prove here that for n ≥ 3 and for some constant

c,

d(n) < nc/ ln lnn.

This result was first proved by Wigert around 1907; Wigert also found that the

optimal value for c approaches ln 2 as n→∞. Our proof does not determine c.

Some preliminaries:
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Lemma B.7 For integer k ≥ 1 and for some constant C, the function f(k) =

k ln ln(k + 1)−
∑k

i=1 ln ln(i+ 1) obeys f(k) < Ck.

Proof: We show that for all k greater than some k0, we have f(k+1)−f(k) < 1. This

will show f to obey f(k) < k+D for some D; we then choose C so that Ck > k+D.

f(k + 1)− f(k) = (k + 1) ln ln(k + 2)−
k+1∑
i=1

ln ln(i+ 1)

−k ln ln(k + 1) +
k∑
i=1

ln ln(i+ 1)

= k(ln ln(k + 2)− ln ln(k + 1)).

Recall d
dx

ln lnx = 1
x lnx

. By l’Hôpital’s rule, the limit as k →∞ is

lim
k→∞

ln ln(k + 2)− ln ln(k + 1)

1/k

= lim
k→∞

1
(k+2) ln(k+2)

− 1
(k+1) ln(k+1)

−1/k2

= lim
k→∞

k2 · (k + 2) ln(k + 2)− (k + 1) ln(k + 1)

(k + 1)(k + 2) ln(k + 1) ln(k + 2)

= lim
k→∞

k2 ·
ln(k + 2)− (k + 1) ln

(
k+2
k+1

)
(k + 1)(k + 2) ln(k + 1) ln(k + 2)

= lim
k→∞

k2 ln(k + 2)

(k + 1)(k + 2) ln(k + 1) ln(k + 2)
− lim

k→∞

k2(k + 1) ln
(
k+2
k+1

)
(k + 1)(k + 2) ln(k + 1) ln(k + 2)

= 0− lim
k→∞

k2 ln
(
1 + 1

k+1

)
(k + 2) ln(k + 1) ln(k + 2)

.

Examination of the Taylor series for ln(1 + x) gives us 0 < ln(1 + x) < x for 0 <

|x| < 1. Therefore k2 ln
(
1 + 1

k+1

)
is between 0 and k2

k+1
. Since limk→∞

0
(k+2) ln(k+1) ln(k+2)

and limk→∞
k2/(k+1)

(k+2) ln(k+1) ln(k+2)
are both 0, we have limk→∞

k2 ln(1+ 1
k+1)

(k+2) ln(k+1) ln(k+2)
= 0. Thus

f(k + 1)− f(k)→ 0. For some k0, then, k > k0 implies f(k + 1)− f(k) < 1. �

We will also use the well-known arithmetic mean-geometric mean inequality:
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Lemma B.8 (AM-GM inequality) For x1, x2, . . . , xn > 0,

x1 + x2 + . . .+ xn
n

≥ n
√
x1x2 · · ·xn,

with equality if and only if x1 = x2 = . . . = xn.

For completeness, we present a proof of this inequality in the following section.

Now, the main proof. We prove first that d(n) < nc/ log logn, where log x denotes

the logarithm to the base 21/3. Solving for c, we find that this statement is equivalent

to

(logn d(n)) · log log n < c;

let us evaluate the left-hand side. Since n = pa11 · · · p
ak
k , we have log n = a1 log p1 +

. . . + ak log pk. Also, logn d(n) = log d(n)
logn

= log(a1+1)+...+log(ak+1)
a1 log p1+...+ak log pk

. The left-hand side

therefore evaluates to

(log(a1 + 1) + . . .+ log(ak + 1)) · log(a1 log p1 + . . .+ ak log pk)

a1 log p1 + . . .+ ak log pk
.

The function log x
x

has its maximum at x = e and goes to zero, so that 3 ≤ x ≤ y

implies log x
x
≥ log y

y
. Thus

(log(a1 + 1) + . . .+ log(ak + 1)) · log(a1 log p1 + . . .+ ak log pk)

a1 log p1 + . . .+ ak log pk

≤ (log(a1 + 1) + . . .+ log(ak + 1)) · log(a1 log 2 + . . .+ ak log(k + 1))

a1 log 2 + . . .+ ak log(k + 1)
≡ f(a1, . . . , ak),

since replacing pi with i + 1 can only lower the value of the denominator, but the

denominator remains at least 3. We proceed to bound f(a1, . . . , ak).
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Let us write

f(a1, . . . , ak) ≡ g(a1, . . . , ak) ·
log(h(a1, . . . , ak))

h(a1, . . . , ak)
.

Let v = h(a1, . . . , ak); note v ≥ log(k+ 1)!. We now consider the problem of max-

imizing g(b1, . . . , bk) subject to the constraint h(b1, . . . , bk) = v and bi > −1; clearly,

for the optimal bi’s, the value f(b1, . . . , bk) will be an upper bound on f(a1, . . . , ak).

We rewrite the constraint b1 log 2 + . . .+ bk log(k + 1) = v as

(b1 + 1) log 2 + . . .+ (bk + 1) log(k + 1) = v + log(k + 1)!

and replace the objective function (b1 + 1) · · · (bk + 1) with an equivalent objective

((b1 + 1) log 2) · · · ((bk + 1) log(k+ 1))). If we write xi = (bi + 1) log(i+ 1), we can see

that we are maximizing the geometric mean k
√
x1 · · ·xn subject to a constraint on the

arithmetic mean, where the xi’s are taken from the positive reals; by Lemma B.8, the

geometric mean is maximized (and is in fact equal to the arithmetic mean) when the

xi’s are made equal. Therefore g is maximized when x1 = x2 = . . . = xk = v+log(k+1)!
k

,

giving

bi =
v + log(k + 1)!

k log(i+ 1)
.

We have h(b1, . . . , bk) = v and g(b1, . . . , bn) = k log v+log(k+1)!
k

−
∑k

i=1 log log(i+1).

Substituting v = y · log(k + 1)!, and using the facts 1
2
k log(k + 1) ≤ log(k + 1)! ≤
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k log(k + 1) and y ≥ 1, we obtain

f(b1, . . . , bk) =

(
k log

(y + 1) log(k + 1)!

k
−

k∑
i=1

log log(i+ 1)

)
· log y + log log(k + 1)!

y log(k + 1)!

≤ (k log((y + 1) log(k + 1))−
k∑
i=1

log log(i+ 1)) · log y + log k + log log(k + 1)
1
2yk log(k + 1)

= 2

(
log(y + 1) + log log(k + 1)− 1

k

k∑
i=1

log log(i+ 1)

)

× log y + log k + log log(k + 1)

y log(k + 1)

= 2

(
log(y + 1) log y

y log(k + 1)
+

log(y + 1) log k

y log(k + 1)
+

log(y + 1) log log(k + 1)

y log(k + 1)

+(log log(k + 1)− 1

k

k∑
i=1

log log(i+ 1)) · log y + log k + log log(k + 1)

y log(k + 1)

)
.

It is easily seen that log(y+1) log y
y log(k+1)

, log(y+1) log k
y log(k+1)

, log(y+1) log log(k+1)
y log(k+1)

, and log y+log k+log log(k+1)
y log(k+1)

are bounded by constants (independent of k and y) for y ≥ 1. A constant bound on

the value of (log log(k + 1)− 1
k

∑k
i=1 log log(i+ 1)) would prove the entire expression

to be bounded. It is equivalent to bound instead (ln ln(k + 1)− 1
k

∑k
i=1 ln ln(i + 1)),

since

log log(k + 1)− 1

k

k∑
i=1

log log(i+ 1) = log

(
ln(k + 1)

ln 21/3

)
− 1

k

k∑
i=1

log

(
ln(i+ 1)

ln 21/3

)
= log ln(k + 1)− log ln 21/3

−1

k

k∑
i=1

log ln(i+ 1) + log ln 21/3

=
ln ln(k + 1)− 1

k

∑k
i=1 ln ln(i+ 1)

ln 21/3
.

Lemma B.7 shows that the numerator is bounded.
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Finally we show that for sufficiently large n, we have nc/ log logn ≤ nc/ ln lnn. We

need to show that ln lnn ≤ log log n:

log log n = log

(
lnn

ln 21/3

)
= log lnn− log ln 21/3

=
ln lnn

ln 21/3
− log

(
1

3
ln 2

)
=

3

ln 2
· ln lnn− log

(
1

3
ln 2

)
,

which is ≥ ln lnn for n larger than some N0. To make the statement of the theorem

hold for the integers from 3 to N0, we can increase c to a large enough value.

The proof of Theorem B.6 is now complete. �

B.5 Proof of the AM-GM inequality

By induction, we assume that the inequality has been shown for n. We now prove

it for n+ 1. For y > 0, define

f(y) =
x1 + x2 + . . .+ xn + y

n+ 1
− (x1x2 · · · xn · y)1/(n+1).

Our ultimate goal is to show f(xn+1) ≥ 0.

Let y∗ be the location of the critical point of f . We set the derivative to zero and

solve:
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0 = f ′(y)

=
1

n+ 1
− 1

n+ 1
· y−n/(n+1) · (x1x2 . . . xn)1/(n+1)

⇓

1 = y−n/(n+1) · (x1x2 . . . xn)1/(n+1)

⇓

1 = y−n · (x1x2 . . . xn)1

⇓

y = (x1x2 . . . xn)1/n.

Thus y∗ = (x1x2 . . . xn)1/n, the geometric mean of {x1, . . . , xn}, is the only critical

point of f . Since f ′′(y) = (x1x2...xn)1/(n+1)

n+1
· n
n+1
· y−n/(n+1)−1 is always positive, f has

its unique minimum at y∗.

What is the value of this minimum? Let us see.

f(xn+1) ≥ f(y∗) =
x1 + x2 + . . .+ xn + (x1x2 · · ·xn)1/n

n+ 1
−

(x1x2 · · ·xn · (x1x2 . . . xn)1/n)1/(n+1)

=
x1 + x2 + . . .+ xn

n+ 1
+

(x1x2 · · ·xn)1/n

n+ 1
− ((x1x2 · · ·xn)(n+1)/n)1/(n+1)

=
x1 + x2 + . . .+ xn

n+ 1
+

(x1x2 · · ·xn)1/n

n+ 1
− (x1x2 · · ·xn)1/n

=
x1 + x2 + . . .+ xn

n+ 1
− ((x1x2 · · ·xn)1/n) · n

n+ 1

=
n

n+ 1
·
(
x1 + x2 + . . .+ xn

n
− (x1x2 · · ·xn)1/n

)
.

By the inductive hypothesis, the expression inside the parentheses is≥ 0. Thus the
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inequality is proved. To prove the statement about equality, note that for f(xn+1) = 0

to hold, we need

f(xn+1) = f(y∗)

and

x1 + x2 + . . .+ xn
n

− (x1x2 · · ·xn)1/n = 0.

By the inductive hypothesis, the latter holds if and only if x1 = x2 = . . . = xn. Then

the former holds if and only if xn+1 = y∗ = (x1x2 · · ·xn)1/n = x1. �
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Appendix C. Variations on Caro-Wei

This material is still in rough form. I had these ideas in mid-March 2012, long

after the previous chapters were written. My goals (what I hope to prove) are given

in the conclusion.

C.1 Introduction

Caro [13] and Wei [56] found the following lower bound on the independence

number of a graph G.

Theorem C.1 (Caro-Wei [13, 56]) Let G be a graph on n vertices whose respec-

tive degrees are d1, d2, . . . , dn. Then

α(G) ≥
n∑
i=1

1

di + 1
.

Proof: (after [6]) Let σ be a (uniformly) random permutation on V (G). We

insert a vertex vi into the set if and only if vi precedes all of its neighbors in the

ordering determined by σ. Clearly, the probability that vi does so is 1/(1 +di). Then

the expected number of vertices put into the independent set is given by the above

formula. �

Selkow [43] came up with a stronger formula using the degrees of vi and the degrees

of vi’s neighbors. Let us write NG(v) to denote the neighborhood of v in G.

Theorem C.2 (Selkow [43]) Let G be a graph on n vertices whose respective de-

grees are d1, d2, . . . , dn. Then

α(G) ≥
n∑
i=1

(
1

di + 1

)1 +

 di
di + 1

∆
∑

vj∈NG(vi)

1

dj + 1

 ,
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where ∆ is the proper subtraction operator:

a ∆ b = max(a− b, 0).

Let’s look again at Theorem C.1, supposing now that we also know the neighbor

degrees for each vertex. Our observation here is that the permutation σ does not

have to be constructed with uniform probabilities. We can instead assign probabilities

p1, p2, . . . , pn to each vertex. Every time we choose a new vertex for the set, the vertex

vi is chosen with probability proportional to pi.

Example: suppose we have three vertices v1, v2, v3, and we use p1 = 4/7, p2 =

2/7, p3 = 1/7. Then our first vertex is p1 with probability 4/7; v2 with probability 2/7;

and v3 with probability 1/7. Suppose our first chosen vertex is v2; this leaves v1 and v3

still to be chosen. In the next round, v1 is chosen with probability (4/7)/(4/7+1/7) =

4/5, and v3 is chosen with probability (1/7)/(1/7 + 4/7) = 1/5.

The pi’s can, in fact, be any positive numbers; the division described above will

always give numbers in the range (0, 1). Multiplying or dividing every pi by the same

value has no effect on the set generated by the algorithm.

Theorem C.3 Let G be a graph on n vertices, and let p1, p2, . . . , pn > 0. Then

α(G) ≥
n∑
i=1

pi∑
vj∈NG(vi)

pj
.

Proof: Follow the proof of Theorem C.1, but form the permutation according to the

values of the pi’s. That is, denoting by V ′ the set of vertices not yet chosen, vi ∈ V ′

is chosen next with probability

pi∑
vj∈V ′ pj

.
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The probability that vi is chosen before all its neighbors is

pi∑
vj∈NG(vi)

pj
.

�

If we set pi = 1 for all i, we obtain the Caro-Wei bound. Perhaps some different

choices for the pi’s will give better results. It makes sense to prefer to choose vertices

that have low degrees, while avoiding vertices with high degrees. So let’s set pi = 1/di

for di > 0, or 1 for di = 0. If any vertex has degree 0, we can just put it in the

independent set automatically. So we will assume di > 0. Plugging these values into

Theorem C.3, we obtain

Theorem C.4 Let G be a graph on n vertices whose respective degrees are

d1, d2, . . . , dn > 0. Then

α(G) ≥
n∑
i=1

1/di∑
vj∈NG(vi)

1/dj
.

We will say “the expectation for vi” to refer to the i-th term in this summation.

We can try different settings for the pi’s; the problem is that it is not easy to see

which ones are better than others. I am fairly confident that Theorem C.4 always

gives a bound better than or equal to Caro-Wei, but I don’t have a proof yet. I will

therefore demonstrate a quick example. The end of Selkow’s paper uses the example

of a star tree on n + 1 nodes (1 central node and n outer nodes). For this graph,

Caro-Wei gives a bound of approximately n/2, since every node but one has degree

1. Selkow says that his bound gives approximately 3n/4. What does our bound give?

The expectation for the central node is nearly zero. But the expectation for an outer

node is (1/1)/(1/1 + 1/n) = 1 − 1/(n + 1). Since we have n outer nodes, we have

α(G) ≥ n − n/(n + 1). This is within 1 of the optimal value. In fact, since the
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independence number is an integer, we must round the value anyway; rounding it up

gives n exactly.

Certain graphs give all these formulas problems. Consider a cycle on n vertices.

Caro-Wei gives n/3. Our formula must give the same, since every degree in the graph

is the same. Notice, though, that this bound is attained for a graph consisting of

a set of 3-cycles; any improvement to this formula would have to assume something

else about the graph (such as assuming that the graph is connected).

C.2 Take the pi’s to the extremes

We can generalize Theorem C.4 further:

Theorem C.5 Let G be a graph on n vertices whose respective degrees are

d1, d2, . . . , dn > 0. Then for any value of k,

α(G) ≥
n∑
i=1

1/dki∑
vj∈NG(vi)

1/dkj
.

It appears that the estimate increases as k increases. If this is so, the best estimate

of this form is obtained by letting k →∞. Then the contribution of a vertex v is as

follows:

• If v has a lower degree than all of its neighbors, v contributes 1.

• If v has a higher degree than one of its neighbors, v contributes 0.

• Otherwise, v contributes 1/(m + 1), where m is the number of v’s neighbors

that have degree equal to v.

Let’s look at this graph:
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A-----B B-----A

| | / /

| |/ /

B-----C-----B

/ \

/ \

B B

\ /

\ /

A

Caro-Wei gives α ≥ 31
7
. Let’s see what Selkow’s formula gives. For vertex C, the

contribution is still 1/7. Each vertex A still contributes 1/3. The contribution for

each vertex B increases slightly to 1/3 · (1 + (2/3− 1/2− 1/7)) = 43/126. The grand

total is 3 4
21

, which is little improvement over the Caro-Wei estimate.

What if we apply Theorem C.5? Each A contributes 1/3; each B contributes

1/2; and C contributes 0. The total is 4. Quite an improvement! We suspect that

Theorem C.5, with k → ∞, is the best possible bound on α given only the vertex

degrees and neighbor degrees.

C.3 An iterative algorithm

Since any positive values are permissible for the pi’s, we can try to modify them to

increase the bound. For a fixed graph G, let us define functions f1, f2, . . . , fn on the

pi’s. Each fi takes as input the vector [p1, p2, . . . , pn]T and outputs the expectation

for vi, that is, pi/
∑

vj∈NG(vi)
pj. Now define a vector-valued function f : Rn → Rn by

f(x) = [f1(x), f2(x), . . . , fn(x)]T .
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We call this the adjacency function.

We should give an example here. Suppose the graph is a chain of three nodes:

v1—v2—v3. Then the adjacency function is

f



x1

x2

x3


 =


x1/(x1 + x2)

x2/(x1 + x2 + x3)

x3/(x2 + x3)

 .

Suppose we initially use x(0) = [1/n, 1/n, . . . , 1/n]. Apply f to x(0) to obtain x(1).

Continue this process, obtaining a sequence x(0), x(1), . . . , x(k), . . . . Each vector is the

result of applying Theorem C.3 to the p-values given by the previous vector; the sum

of any of these vectors, then, is a lower bound on the independence number of G.

In fact, we use the expectations from one algorithm as the probabilities for the next

algorithm.

Eventually the sequence reaches an equilibrium. Typically the equilibrium will

have every element 0 or 1; in this case, the independent set is evident. We run into

a problem with certain graphs, though, such as the cycle on n vertices. Here, we will

have x(1) = [1/3, 1/3, . . . , 1/3], and it remains the same on every subsequent step.

This is an unstable equilibrium; the problem is that an optimal independent set must

favor some set of vertices over the other, but the probabilities are equal to start with.

To eliminate this situation, we can apply a small perturbation to every x(k) before

applying f in the next step. (In fact, this perturbation may not be necessary in an

implementation; I noticed that floating-point error seems to have the same effect.

Also, we may only need the perturbation on the first step in the algorithm, not at

every step.)

We see a stable equilibrium when we run the algorithm on a complete graph Kn.

Here, the sequence of vectors remains the same, except for the perturbations involved.
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This seems to be saying that the relative ordering of these vertices does not matter,

since we can only choose one of them anyway.

I suspect that without perturbations,
∑

i x
(k+1)
i ≥

∑
i x

(k)
i for all k. If so, then

this algorithm is guaranteed to give a larger bound than Caro-Wei, since
∑

i x
(1)
i is

equal to the Caro-Wei bound.

We have a curious situation here that adding edges to the graph can, in fact, help

the algorithm out! Suppose again that we have a complete cycle on n vertices, this

time with n even. If we do not use perturbations, it remains stuck at a suboptimal

solution. If we add an edge between two opposite vertices, then their probabilities

will be lower. This drives up the probabilities of their neighbors, then their neighbors

decrease in probability, and so on. We approach a state [0, 1, 0, 1, . . .] or [1, 0, 1, 0, . . .].

The perturbations also give us a convenient stopping point. If we ever have∑
i x

(k+1)
i <

∑
i x

(k)
i , it must be because the perturbations pushed the sum down.

As long as there is still an improvement to be made, the perturbations cannot have

such a strong effect; therefore, we can interpret a decrease as a hint that there is no

gain to be had from continuing on.

C.4 Comparison to greedy algorithms

Let us call the algorithm from the above section Algorithm I. There are two well-

known greedy algorithms for building independent sets:

— Algorithm II: Find a vertex of highest degree in the graph and remove it.

Repeat until every vertex has degree zero; the remainder is the independent set.

— Algorithm III: Take a vertex v of lowest degree, put it into the independent

set, then remove v and its neighbors from the graph.

Algorithm II is a derandomization of Caro-Wei; Algorithm III is not, but often

gives good results. Our goal in this section is to show that Algorithm I outperforms
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these two algorithms in certain cases. Let us first look at Algorithm II. We consider

a cycle C3n on 3n vertices, ordered on the cycle as v1, v2, . . . , v3n. One possible course

of Algorithm II is that it chooses to remove v1, v4, v7, . . . , v3n−2. The remaining graph

only has n independent vertices. This is a poor result, since there is an independent

set of size b3n/2c. Algorithm I will find such a set. Suppose we apply an initial

perturbation of ε to v1. Now v1 has initial probability 1/3n + ε, while the other

vertices have initial probability 1/3n. One iteration will increase the value for v1 and

drive down the values of its neighbors. The effect ripples out, causing an alternating

of values, high-low-high-low-etc. Eventually the values will converge to alternating

zeroes and ones. This is demonstrated below for a cycle on 9 vertices.



144

v1 v2 v3 v4 v5 v6 v7 v8 v9

1.010 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.336 0.332 0.333 0.333 0.333 0.333 0.333 0.333 0.332
0.336 0.332 0.334 0.333 0.333 0.333 0.333 0.334 0.332
0.336 0.331 0.334 0.333 0.333 0.333 0.333 0.334 0.331
0.336 0.331 0.334 0.333 0.333 0.333 0.333 0.334 0.331
0.337 0.330 0.335 0.333 0.333 0.333 0.333 0.335 0.330
0.338 0.330 0.336 0.332 0.334 0.334 0.332 0.336 0.330
0.339 0.329 0.336 0.332 0.334 0.334 0.332 0.336 0.329
0.340 0.328 0.337 0.331 0.334 0.334 0.331 0.337 0.328
0.342 0.326 0.339 0.330 0.334 0.334 0.330 0.339 0.326
0.344 0.324 0.340 0.329 0.335 0.335 0.329 0.340 0.324
0.347 0.321 0.343 0.328 0.335 0.335 0.328 0.343 0.321
0.350 0.318 0.345 0.326 0.336 0.336 0.326 0.345 0.318
0.355 0.314 0.349 0.324 0.337 0.337 0.324 0.349 0.314
0.362 0.308 0.354 0.321 0.338 0.338 0.321 0.354 0.308
0.370 0.301 0.360 0.317 0.339 0.339 0.317 0.360 0.301
0.380 0.292 0.368 0.312 0.341 0.341 0.312 0.368 0.292
0.395 0.281 0.379 0.305 0.343 0.343 0.305 0.379 0.281
0.413 0.266 0.393 0.297 0.346 0.346 0.297 0.393 0.266
0.437 0.248 0.411 0.287 0.350 0.350 0.287 0.411 0.248
0.468 0.227 0.434 0.274 0.355 0.355 0.274 0.434 0.227
0.508 0.201 0.464 0.258 0.361 0.361 0.258 0.464 0.201
0.558 0.171 0.503 0.238 0.368 0.368 0.238 0.503 0.171
0.620 0.139 0.551 0.215 0.378 0.378 0.215 0.551 0.139
0.690 0.106 0.609 0.188 0.389 0.389 0.188 0.609 0.106
0.765 0.075 0.675 0.158 0.403 0.403 0.158 0.675 0.075
0.835 0.050 0.743 0.128 0.418 0.418 0.128 0.743 0.050
0.893 0.031 0.807 0.099 0.434 0.434 0.099 0.807 0.031
0.936 0.018 0.861 0.074 0.449 0.449 0.074 0.861 0.018
0.964 0.010 0.904 0.054 0.462 0.462 0.054 0.904 0.010

It is approaching [1, 0, 1, 0, 0.5, 0.5, 0, 1, 0]. The values 0.5 mean that either v5

or v6 can be added to the independent set.

Another example is the following graph:
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A--B--C--B--A
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Algorithm II removes vertex C at the first iteration. The remaining graph has only

3 independent vertices. Algorithm I without perturbations generates the following

values:

A B C
1.000 1.000 1.000
0.500 0.333 0.250
0.600 0.308 0.200
0.661 0.278 0.178
0.704 0.249 0.176
0.739 0.220 0.191
0.770 0.192 0.224
0.801 0.162 0.281
0.832 0.130 0.367
0.865 0.098 0.485
0.898 0.068 0.623
0.930 0.043 0.755
0.956 0.025 0.855
0.975 0.013 0.921
0.986 0.007 0.958

We see that the value for C decreases initially, but it rebounds and eventually

approaches 1.

To evaluate Algorithm III, let us look at our original graph again:
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Here, every vertex except the central one has degree 2. Algorithm III may therefore

choose all the A vertices, eliminating the B vertices. Then vertex C can be chosen,

giving an independent set of size 4.

When we run Algorithm I without perturbations on this graph, we obtain the

following values:

A B C
1.000 1.000 1.000
0.333 0.333 0.143
0.333 0.412 0.067
0.288 0.507 0.026
0.221 0.617 0.009
0.152 0.729 0.002
0.094 0.825 0.001

Clearly it favors the B vertices, giving an independent set of size 6. We can extend

this example to n loops; Algorithm I will give 2n independent vertices, but Algorithm

III may give only n+ 1.

C.5 Conclusion

I want to prove the following statements, or at least one of them:



147

Conjecture C.6 For a given graph G, the quantity in Theorem C.5 increases as k

increases.

Conjecture C.7 Each iteration of Algorithm I increases the value of
∑

i xi.

The first conjecture implies that the bound in Theorem C.5 is always an improve-

ment on Caro-Wei. When we have k = 0, the bound is equal to the Caro-Wei bound.

When we have k = 1, the bound is the same as that in Theorem C.4. Thus the bound

for k →∞ would be an improvement on both.

The second conjecture is necessary to show that Algorithm I is actually a good

way to generate independent sets. It makes sense, but there does not seem to be an

easy proof (either probabilistic or algebraic).
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