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Abstract
Bipedal Walking Trajectory Energy Minimization Through a Learned Hip Height

Trajectory
Sean Mason

Paul Oh, Ph.D.

This thesis describes methods used to optimize energy consumption of an offline

bipedal walking trajectories through hip height control. The experiments were car-

ried out on a miniature humanoid robot within the simulation environment Webots.

Zero Moment Point (ZMP) preview control methods were implemented in Matlab to

produce a stable walking trajectory for the robot with a fixed hip height. The hip

height trajectory was then developed using an observation based Q-learning method

that consider both stability and energy consumption. Through the Q-learning meth-

ods there was approximately a 9% decrease in the average energy consumption. Ad-

ditionally, an increase in stability was observed.
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Chapter 1: Introduction

1.1 Introduction

As the name implies, a humanoid robot is designed to mimic both the form and

function of humans. Most robots are specially adapted by their designers to suit a

particular application within a particular environment. Humans, on the other hand,

have adapted their environment to suit their own form. As humans continue to ex-

pand, we have converted many existing environments into ones that are more favorable

for our own function and comfort. Hallways are narrow and tall to suit the upright

human locomotion, table tops are built to a height where visual referencing and ma-

nipulation is convenient, and stairs are designed to be easily traversed by humans

connecting different floors. Each of these specialized environments is pre-adapted for

the human form. A humanoid robot therefore can utilize these adaptations without

needing tailored designs. A humanoid shape allows it to manipulate and interact with

the countless tools and objects that humans use. Rather than equipping the robot

with specialized tools for the task, robots can make use of tools already available on

the work site and used by humans. Beyond the shape of the humanoid, another fun-

damentally distinguishing characteristic of the humanoid robot is bipedal locomotion.

Bipedal locomotion is advantageous over many other forms of locomotion in that once

stability is achieved it requires a relatively low amount of input energy, enables the

robot to traverse rough and discontinuous terrain, and has a small footprint when
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compared to other forms of locomotion.

In the history of bipedal research, most researchers have spent their efforts on

making bipedal robots walk faster or more stably. One area that has been less ad-

dressed is the area of energy efficiency. If humanoids are truly designed to work in

human environments, this likely means that they will work indoors. When in confined

spaces, locomotion speed becomes less important as higher speeds tends towards to

greater changes in acceleration. This start and stop motion is not consistent with the

locomotion displayed by humans indoors. Rather than looking into methods that op-

timize speed, energy optimization becomes much more a pertinent topic. Currently,

humanoid robots have a typically charge life of less than 2 hours [6]. This is consider-

ably low given that a typical human is expected to work an eight hour work shift. In

order for a humanoid to remain untethered for a full work day, the batteries powering

the robots must improve and measures must be taken to operate more efficiently.

1.2 Review of Literature

To address the topic of energy minimization, researches have taken a variety of ap-

proaches. These efforts can be broken down into a few fundamentally different cate-

gories. Section 1.2.1 discusses methods of optimizing walking gaits through exploit-

ing natural dynamics, Section 1.2.2 introduces search methods that optimize energy

using evolutionary and genetic search algorithms, and Section 1.2.3 discusses work

done to optimize energy using reinforcement learning methods.Within these different

approaches, there is substantial cross-over in the methodology for formulation and

evaluation. The literature chosen for discussion touches on the most seminal and

Chapter 1: Introduction
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relevant publications addressing the biped energy minimization problem.

1.2.1 Natural Dynamics

Bipedal research that has exploited natural dynamics began with passive walkers. The

original passive walkers were developed with the capability to walk down gentle slopes

with a constant walking cycle and no additional input energy. Because passive walking

gaits are “naturally” formed , meaning that walking gaits are tuned by changing

physical characteristics of the robot, and require no input energy they are likely to

either achieve or approach energy optimality.

Passive dynamic walking was pioneered by McGeer’s experimental research con-

ducted on 2D bipeds and their walking gaits [1, 7]. A 2D robot is mechanically

constrained so that there is no movement in the sagittal plane. To ensure that the

robot would not collapse in the sagittal plane, the robot was designed to have a re-

dundant set of legs that allowed the robot to move much like a person on crutches.

To ensure smooth ground contact, curved feet were used as shown in Figure 1.1.

McGeer’s work paved the road for passive walker research by providing the step-

to-step analysis of a 2D biped achieving steady walking. In addition, his research

explored the effects of parameter variation for the robot design, including: scale, foot

radius, leg inertia, hip mass, Center of Mass (COM) height, hip damping, hip mass

offset, and leg mismatch.

Following McGeer, other researchers began to develop control laws for stability

and energy associated with the system. Zhenze et. al [8], worked to develop a

control law for passive walkers that tracked passive energy levels. In their efforts,

Chapter 1: Introduction
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Figure 1.1: Realization of the 2D compass gait walker used by McGeer [1].

they defined the robot’s “reference energy” as the characteristic energy of the passive

limit cycle and that when the robot is driven towards the reference energy mobile

balance is achieved. Furthermore, they developed two different control laws that allow

them to more quickly converge to the reference energy: control with hip torque and

control with ankle torque. As robots have evolved, metaphorically, they have become

more complex and have incorporated more Degrees of Freedom (DOFs). While the

fundamental concepts behind passive walkers are still relevant, the humanoids of

higher DOF require a more extensive analysis on stability than the early 3 or 5 DOF

robots.

While much research has moved away from the methods developed for the passive

walker robots, Vanderborght et. al [9], was interested in retaining the energy efficient

Chapter 1: Introduction
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properties of natural dynamics. In 2007, his research aimed to preserve the versatility

of an actively controlled humanoid while exploiting the known benefits of natural

dynamics to reduce energy consumption. The proposed method to accomplish this

on the pneumatically controlled biped known as “Lucy” is to fit the controllable

stiffness of the actuators to the natural stiffness of the desired trajectory.

Diverging from the ideas previously expressed about “natural” walking gaits, other

researchers have explored the straight, or stretched, legged walking gait observed by

humans. Intuitively, walking with stretched legs, apposed to crouched, is more energy

efficient because there is less torque on the knee and ankle joints. The cost of this

improvement in energy conservation is a sacrifice in stability. As the distance from the

ground to the COM of the robot increases the Zero Moment Point (ZMP) becomes

more difficult to control. The reason for this is that when the legs become more

stretched out some DOFs of motion are degenerated [2]. Researchers as Kyushu

University proposed a straight leg walking controller that allowed for variable COM

height that would help compensate for the decrease in stability.

Figure 1.2: Proposed stretched legged walking gait by Kurazume [2].

Chapter 1: Introduction
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1.2.2 Genetic Algorithm

Genetic algorithms (GA) consist of a global search procedure composed of reproduc-

tion, crossover, and mutation of chromosomes that aims to increase average fitness

values that are defined by desirable traits. A chromosome contains all of the necessary

information to define each of the desired parameters. After these three processes, the

fitness function is applied to the current generation of chromosomes and the candi-

dates for reproduction are selected. One major advantage of the genetic algorithm is

that it has very little mathematical restrictions. Genetic algorithms have been used

in robotics to accomplish a wide ranges of tasks that include optimizing stability,

speed, similarities to human-like walking, and energy [10, 11, 12].

In 1999, researchers at Inha University used a GA to generate a leg trajectory that

aimed to reduce peak velocity and accelerations [3]. In doing so, optimal via-points

were found that when interpolated resulted in the leg trajectory. In this study, the

fitness function, Equation 1.1, was defined to decrease the peak values of velocity and

acceleration over the interval of one step.

f = 1/
∑

((vi + 1− vi)2 + (ai + 1− ai)2) (1.1)

where vi and ai represent the velocity and acceleration at a given interval. The

method for this GA approach is shown in Figure 1.3.

Through numerical simulation and experimentation on the IWR-III system, it was

observed that the GA had a damping effect on the robot allowed the robot to track

the calculated ZMP more accurately.

Chapter 1: Introduction
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Figure 1.3: Flowchart for trajectory generation using via-points[3].

In 2004, researchers at Hanyang University used a GA to generate trajectories for

each joint angle. In this case, each chromosome represents a coefficient of a 4th order

polynomial that defines a trajectory for a given joint [13]. Rather than minimizing

the differences in velocity and acceleration, the performance index to be minimized

is a function of the power applied at each joint given by:

J =
1

2
∗
∫ tf

0

pTQpdt (1.2)

where p is the power applied at each joint, tf is the time for a step, and Q is a

matrix comprised of weighting factors on control torque for the actuators. Using this

criteria, walking gaits were optimized for walking on the ground, ascending stairs,

and descending stairs using the computed torque controller.

Chapter 1: Introduction



8

Lastly, in 2008 researchers at the National University of Singapore used a GA

to minimize torque within the robots joints while using the calculated ZMP as the

stability criteria to see if the trajectory is physically realizable [14]. In total, seven

key parameters were used that represent a set of redundant coefficients that are used

to interpolate the 4th order foot trajectory, and 7th order hip trajectory. To simplify

the problem, the hip height is constrained to be constant and the trunk is constrained

to be upright. In this study, the cost function is given by:

P =
1

n

∫
ts0τ

T τdt (1.3)

where τ is the matrix of all the joint-torques, ts it the time for one step, and n is

the number of integration steps. From here, the fitness function evaluates stability,

which will be discussed later, and is given by:

F =


1
P
, if ZMP stays inside the stable region

0, else

(1.4)

1.2.3 Reinforcement Learning

Compared to the other methods discussed previously, the use of machine learning

methods is a relatively newer research area. Machine learning covers a wide range

of approaches and algorithms that are typically formulated to work within Markov

Decision Process (MDP) environments.

In 2004, researchers at the Robotics Institute of Carnegie Mellon University used

Chapter 1: Introduction
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model based reinforcement learning to learn the appropriate foot placement and the

walking cycle timing for a 5 DOF walking robot [15]. The learned model consists of

a Poincare map that directs the control actions based on a computed value function.

The trajectories were represented by interpolating four via-points such that there

was zero velocity and acceleration at each via point. The robot was rewarded for

continuous walking and punished if the height of the robot drops below a set threshold,

representing instability. The experiment was first simulated on a 3 and 5 link robot,

and then finally on a 5 link bipedal robot that was fixed to a boom to constrict sagittal

movement. After 80 trials, averaged over 5 experiments, a stable walking controller

was acquired.

In 2007, the reinforcement method known as Q-learning was used by the Korea

Advanced Institute of Science and Technology to develop a stable walking trajectory

[16]. In this study, ZMP position was modeled after the inverted pendulum and a

third order polynomial for the ankle and hip joint pattern was learned. The boundary

conditions chosen for the third order walking pattern we as follows:

1. beginning angle of ankle joint

2. beginning velocity of the ankle joint

3. final position of foot (step length)

4. final velocity of the robot (hip position)

By learning the final velocity of the robot after a step, the walking pattern shape

can be changed without changing the step size. Rewards were given based on the

Chapter 1: Introduction
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torso rotation angle with respect to the ground andif the robot did not fall. Stable

walking was realized after 19 trials.

Recently (2011), researchers at National Cheng Kung University used reinforce-

ment learning methods to generate bipedal walking trajectories [17]. In their research,

they implemented policy gradient reinforcement learning to learn walking parameters

to develop the fastest walking speed. In early tests, stability was not considered

and the reward was only a function of the walking velocity. As the walking speed in-

creased, so did the number of falls. To address this problem, a reward that considered

the desired ZMP trajectory was introduced. This reward, as well as the velocity re-

ward, were normalized and summed to create the total reward. Lagrange polynomial

interpolation was used to generate the new motion trajectories.

1.3 Proposed Solution

As humanoid motion has evolved from the simple 2 or 4 DOF walkers into the ad-

vanced humanoids that we know today, over 30 DOF [18, 19, 20], it is essential to

adapt energy minimization methods to more modern walking gaits. In order for the

research conducted now to be relevant to future walking gaits, it must remain both

general and adaptable. Machine learning lends itself well to this idea because it is

not attached to mathematical constraints that analytical solutions posses and the

methods can be integrated across different robotic platforms. Rather than tedious

methods of tuning gains on a system, machine learning takes the system as it truly is

and learns a desired trait based on observation or prediction. As mentioned in many

of the previous works discussed, there are often simplifying assumptions or constraints

Chapter 1: Introduction
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imposed on the system to either reduce computational costs or allow a more simplistic

model to be used. Many of these constraints may improve desired attributes, such

as stability, but usually do not consider energy consumption. A common example

of such a constraint is the fixed hip height constraint for many walking gaits. This

constraint does give stability in the upper body, which can prove useful, but as seen

in the motion capture data of a human waling gait, Figure 1.4, it is unnatural.

Figure 1.4: Up and down motion of the hip while walking [2].

In order to decrease energy consumption, I propose that Q-learning be applied

to learn the hip height trajectory that optimizes energy consumption. In doing so,

the stability provided by the fixed hip height trajectory generation will be considered.

Because Q -learning is a observation based reinforcement learning algorithm, meaning

that many tests must be conducted in order to converge to the optimal trajectory. In

order to more rapidly test the learning method, the evaluation will be done on a 21

DOF miniature humanoid in a simulation environment. It is the author’s hypothesis

that through the proposed method, the optimal hip trajectory can be found that will

Chapter 1: Introduction
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further minimized energy consumption without destroying the stability provided by

ZMP preview control.

Chapter 1: Introduction
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Chapter 2: Simulation

2.1 Humanoid Robot Model

The robot used in these experiments was the miniature humanoid named miniHUBO

designed by Dennis Hong at Virginia Polytechnic Institute and State University. It

was designed as a scalable testing platform for the adult sized humanoid, HUBO [20].

This particular model was chosen because it reduced the complexity of the problem,

with fewer DOFs, and has proven advantageous in other studies before testing on an

adult sized humanoid [5, 21, 22]. The high level specifications of the robot are as

follows:

Table 2.1: MiniHUBO Specifications

Height 46 cm

Weight 2.9 kg

DOF 22

Motors
Robotis Dynamixel
(RX-10, RX-28, RX-64)

To create the model used in simulation, the robot was modeled in Autodesk In-

ventor. Each specific part was assigned mass values based off measurements taken

from the actual robot. From the 3D CAD, properties such as mass, shape, size and

moment of inertia were able to be exported for each moving part.

These properties were imported into the robotic simulator Webots. The model

used in Webots consisted of prism shaped body parts that were bounded by the
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Table 2.2: MiniHUBO Mass Properties

H (m W (m) D (m) Mass (Kg)
CHEST 0.10635 0.1297 0.056 0.366
SHOULDER - LF 0.025 0.034 0.044 0.009
SHOULDER - RT 0.025 0.034 0.044 0.009
BICEP 0.09965 0.0356 0.06125 0.140
ELBOW 0.034 0.044 0.025 0.009
FOREARM - LF 0.0506 0.0485 0.0356 0.065
FOREARM - RT 0.0506 0.0485 0.0356 0.065
WAIST 0.05585 0.1114 0.0631 0.285
HIP YAW 0.039 0.025 0.0865 0.015
HIP PITCH ROLL - LF 0.0506 0.0485 0.0905 0.158
HIP PITCH ROLL - RT 0.0506 0.0485 0.0905 0.158
THIGH 0.102 0.044 0.048 0.019
SHIN - LF 0.113837 0.0485 0.053538 0.100
SHIN - RT 0.113837 0.0485 0.053538 0.100
ANKLE PITCH ROLL - LF 0.0506 0.0485 0.0905 0.158
ANKLE PITCH ROLL - RT 0.0506 0.0485 0.0905 0.158
FOOT 0.041 0.064 0.11 0.048

Table 2.3: MiniHUBO Center of Mass Locations

X (m) Y (m) Z (m)
CHEST 0.000000 0.007496 0.000613
SHOULDER - LF 0.008434 0.000000 0.000000
SHOULDER - RT -0.008434 0.000000 0.000000
BICEP 0.000000 0.000767 0.002706
ELBOW 0.000000 0.008434 0.000000
FOREARM - LF -0.001666 0.002207 0.000000
FOREARM - RT 0.001666 0.002207 0.000000
WAIST 0.000000 -0.000704 0.003727
HIP YAW 0.011966 0.000000 0.000113
HIP PITCH ROLL - LF -0.001630 0.002940 0.001054
HIP PITCH ROLL - RT -0.001630 0.002940 0.001054
THIGH 0.000000 -0.005221 0.006995
SHIN - LF -0.001648 0.031707 0.000977
SHIN - RT 0.001648 0.031726 0.000894
ANKLE PITCH ROLL - LF -0.001630 -0.002940 0.001054
ANKLE PITCH ROLL - RT 0.001630 -0.002940 0.001054
FOOT -0.000170 -0.016098 -0.003432

Chapter 2: Simulation
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Table 2.4: MiniHUBO Inertia Properties

Ixx
(kgmm2)

Iyy
(kgmm2)

Izz
(kgmm2)

Ixy
(kgmm2)

Iyz
(kgmm2)

Izx
(kgmm2)

CHEST 0.377268 0.571481 0.761391 0.000000 -0.013663 0.000000
SHOULDER
- LF

0.003225 0.004119 0.002129 0.000000 0.000000 0.000000

SHOULDER
- RT

0.003225 0.004119 0.002129 0.000000 0.000000 0.000000

BICEP 0.128338 0.034871 0.112464 0.000000 -0.018017 0.000000
ELBOW 0.002129 0.003225 0.004119 0.000000 0.000000 0.000000
FOREARM -
LF

0.015576 0.011951 0.019327 0.000000 0.000000 0.000000

FOREARM -
RT

0.015576 0.011951 0.019327 0.000000 0.000000 0.000000

WAIST 0.106898 0.299527 0.273885 0.000001 0.000634 0.000001
HIP YAW 0.018457 0.015826 0.004771 0.000000 -0.000032 0.000000
HIP PITCH
ROLL - LF

0.103932 0.091297 0.043876 0.000487 -0.003423 0.000349

HIP PITCH
ROLL - RT

0.103932 0.091297 0.043876 -0.000487 -0.003423 -0.000349

THIGH 0.016916 0.011540 0.020715 0.000000 -0.000768 0.000000
SHIN - LF 0.160967 0.039660 0.159313 0.005246 0.002326 0.000414
SHIN - RT 0.160798 0.039507 0.159297 -0.005229 0.002243 -0.000381
ANKLE
PITCH
ROLL - LF

0.103932 0.091297 0.043876 -0.000487 0.003423 0.000349

ANKLE
PITCH
ROLL - RT

0.103932 0.091297 0.043876 0.000487 0.003423 -0.000349

FOOT 0.068493 0.072762 0.033967 -0.000161 -0.001749 -0.000009

maximum extents of each moving part in the real robot. This simplification was

made to speed up the simulation process. Figure 2.1 shows the physical miniHUBO

robot and the resulting model used in simulation.

Chapter 2: Simulation



16

Figure 2.1: The physical miniHubo (right half body parts labeled) and the
virtual model created in Webots that was used for used for simulation.

2.2 Simulation Environment and Physics Engine

Webots relies on Open Dynamics Engine (ODE) to perform the physics simulation

of the experiment. Within Webots, robots and environments are modeled to interact

with each other through the command code known as the controller. The controller

specifies all the information about how the simulation will be executed. Using Webots,

it is possible to obtain joint positions, velocities, and torques for rapid testing and

evaluation. In this testing setup, the controller for the robot was written in MATLAB

and was given supervisor permissions. Supervisor permissions allow the controller to

access global environment information, which is useful for resetting the robot, scene,

and physics engine in between tests.

Chapter 2: Simulation
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Figure 2.2: Webots Guided User Interface (GUI) with modeled robot.
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Chapter 3: Walking Trajectory Generation

3.1 Control Method

In the past, walking pattern generation fell into two fundamentally different cate-

gories: ZMP based pattern generation and the inverted pendulum approach [23].The

ZMP approach is efficacious when an accurate model of the robot, including loca-

tion of center-of-masses (COMs) and inertia for each link, is provided. The inverted

pendulum approach requires much less information about the system, such as center

of mass and total angular momentum. This system is simply treated as an inverted

pendulum, and with a fast enough control loop the system can remain stable. In this

paper, the author uses a method that falls in between these two categories known

as a ZMP preview controller.This method of walking trajectory generation has been

used successfully my many researchers to generate stable walking gaits. Specifically,

the ZMP preview controller proposed has previously been successfully implemented

on the miniHUBO robot [21, 5]

3.2 Derivation of ZMP Equation from 3D-LIPM

The Three-Dimensional Linear Inverted Pendulum Mode (3D-LIMP) [24] describes

the dynamics of a inverted pendulum where the mass is constrained to move along

an arbitrary defined plane. To fit this model, the robot is modeled as a point mass m

located at length l at the humanoids COM. The dynamics given under the constraint
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Figure 3.1: 3D inverted pendulum under constraint.

control is given by

ÿ =
g

zc
y − 1

mzc
τx (3.1)

ẍ =
g

zc
x− 1

mzc
τy (3.2)

and the constraint equation is:

τxx+ τyy = 0 (3.3)

where m is the mass of the pendulum, g is gravity acceleration and τx, τy are

the torques around z-axis and y-axis respectively. The constraint plane, as shown in

Figure 3.1 is given by the normal vector (kx, ky,−1) where the intersection of z and
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zc is

z = kxx+ kyy + zc

The horizontal constraint imposed on the 3D-LIPM allows the sagittal and lateral

motions to controlled separately and overall greatly simplifies the walking pattern

generation. For a horizontal constraint “(kx = ky = 0)” the zero-moment point is

easily calculated to be :

px = − τy
mg

(3.4)

py = − τx
mg

(3.5)

where point (px, py) is the projection of the ZMP on the ground. This point

represents the position where the sum of the moments is equal to zero. For very slow

statically stable systems, the ZMP is the projection of the COM. As the system moves

faster, the dynamics of the bodies contribute to the ZMP and distort the shape.

Opposite to calculating the resulting ZMP from the system, walking pattern gen-

eration requires the systems motion to be calculated by a given ZMP trajectory. To

generate the off-line reference trajectories, ZMP-Preview control is used [25]. Defin-

ing the control input u as the time derivative of the horizontal acceleration of the

Chapter 3: Walking Trajectory Generation
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COM, the ZMP equation is translated into state space as:

d

dt


y

ẏ

ÿ

 =


0 1 0

0 0 1

0 0 0




y

ẏ

ÿ

+


0

0

1

u (3.6)

yzmp =

[
1 0 − zc

g

]

y

ẏ

ÿ

 (3.7)

Using 3.6, it is possible to construct a control system that outputs the robots

COM walking pattern based off of ZMP tracking control using preview control. To

do this, first the system described by 3.6 is represented as a discrete system with

sampling time T as:

Y (k + 1) = AY (k) +Bu(k) (3.8)

Yzmp(k) = CY (k) (3.9)

where

Y (k) =

[
y(kT ) ẏ(kT ) ÿ(kT )

]T

u(k) = u(kT )
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Yzmp(k) = Yzmp(kT )

A =


1 T T 2

T

0 1 T

0 0 1



B =


T 3

6

T 2

2

T



C =

[
1 0 − zc

g

]

The controller, simulated in MATLAB, takes a defined ZMP input and outputs

the appropriate COM trajectory that a 3D-LIPM would need to follow to obtain the

prescribed ZMP trajectory. To define the ZMP trajectory, the walking pattern cycle

is broken down into discrete phases as shown in Figure 3.2 . If the robot were to

start with a right step, the Single-Support Phase (SSP) occurs when the right leg

is planted on the ground and the left leg is in transition between foot placements.

When the left foot lands, the robot is in its Double-Support Phase (DSP) where the

COM is shifted so that it can be supported by the initial foot. A robot is considered

stable if the ZMP is located with the the stability polygon defined by the edges of

the robots feet that are actively in contact with the ground. The progressive stability

region for different foot placements is shown in Figure 3.3. Knowing this, the desired
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Figure 3.2: Phases of robot’s walking cycle [4].

ZMP can easily be defined to traverse back and forth to the centroids of the planned

footsteps during the DSP and dwell at the foot centroid during the SSP.

Figure 3.3: Stability region for given foot placements and the desired ZMP
trajectory.
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3.3 Foot Trajectory

Once, the COM trajectory is generated a complete walking pattern can be generated

once the foot trajectory is defined. When defining a foot trajectory, a key component

to energy loss is the impact force caused by the foot landing. To avoid this problem,

may researchers have used cycloids to define the foot trajectory. A cycloid is generated

by following the x-y position of a point on a rolling disk, Figure 3.4. Using this

trajectory, the point on the disk, representing the foot trajectory, has an instantaneous

velocity of zero when it contacts the ground.

Figure 3.4: Generation of a cycloid trajectory using a rolling disk

To completely define the foot trajectory, the SSP, step distance, and max foot

height are needed. Of these parameters, the first two are provided by the ZMP

equations and the third is defined manually. In the case of this study, the value
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chosen for the max foot height is negligible because it will not significantly impact

the robots stability. In addition, it is the main purpose to find an optimal trajectory

for the hip motion, not for the foot trajectory. Using the three parameters, the

equations for the foot trajectory for walking straight forwards are:

Footx =
Sd
2π

(2wtSSP − sin(2wtSSP )) (3.10)

Footz = H
2π

(2wt− sin(2wt)), for 0 ≤ t < 1
2
SSP

Footz = 2H + H
2π

(sin(2wt)− 2wt), for 1
2
SSP ≤ t < SSP

(3.11)

Footy = constant (3.12)

where w is defined by 2πf , f is 1
tSSP

, tSSP is the duration of the SSP, Sd is the

step distance, and H is the maximum foot height.

3.4 Inverse Kinematics

With the COM and feet trajectories generated, Inverse Kinematics (IK) can be used

to solve for each individual joint angle of the robot. In this situation, the foot is

treated as the origin, because it is grounded, and the hip is treated as the end effector,

because we wish to control it’s relative position. By constraining the yaw of the robot

to be zero, [5] was able to constrain the system so that the remaining angles in each

individual leg, three pitch angles and two roll angles, were able to be analytically
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calculated in vector space. The constraints on the system are:

1. Angular momentum of hip yaw = 0

2. Upper body remains perpendicular to the ground

3. Foot plane remains parallel to the ground

Figure 3.5: Joint configuration of the robot from an isometric view [5].

Using trigonometry, θ1 and θ4 are determined to be:

θ1 = 90− cos−1((Yt − Ya)/| ~lleg|) (3.13)

θ4 = −θ1 (3.14)

where

| ~lleg| =
√

(Zc − Za)2 + (Yt − Ya)2
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Then by using the law of cosines:

θ3 = 180− cos−1((l2thigh + l2shin − ~lleg
2
)/(2lthighlshin)) (3.15)

θ5 = 90− θ − cos−1((l2thigh + ~lleg
2
− l2shin)/(2lthigh| ~lleg|)) (3.16)

θ2 = 90− θ + cos−1((l2shin + ~lleg
2
− l2thigh)/(2lshin| ~lleg|)) (3.17)

where | ~lleg| =
√

(Zt − Za)2 + (Yt − Ya)2 + (Xt −Xa)2

θ = cos−1((Xt −Xa)/| ~lleg|)

Figure 3.6: Joint configuration of the robot from a lateral view [5].
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Figure 3.7: Joint configuration of the robot from a back view [5].
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Chapter 4: Machine Learning

4.1 Q-Learning

To develop the optimal hip trajectory that will minimize energy comsumption, a

Q-learning algorithm was used as the reinforcement agent. Figure 4.2, shows the

architecture of the learning system. As shown, random trajectories for the hip z

motion are input into the system. The random trajectories are created by defining

the number of available neighbors N , the discrete height increment ∆h, and the time

step ∆t. Because of this discretization, states and actions can be broken down into a

directed node tree that represents the space for hip heights as shown in Figure 4.1 .

These trajectories are then used to create the full walking trajectory for the robot

using the methods described in Chapter 3. Next, trajectories are executed in simula-

tion and the values for torque and velocity are recorded for each time step. Energy

Figure 4.1: Example of the time dependent node tree for N = 1.
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Figure 4.2: The proposed machine learning process.

consumption at each joint is approximated by the equation:

Ei = Tivi∆t (4.1)

Where i is the joint, T is the torque measured, and v is the current velocity. The

Q -table is organized to represent the “value” of all possible state-action pairs for each

time step in the simulation. The break down of state-action pairs into the Q-table is

shown in Table 4.1.
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Time Step 1 Time Step 2 · · · Time Step N

Q(s1, a0) Q(s1, a0) · · · Q(s1, a0)

State 1 Q(s1, a1) Q(s1, a1) · · · Q(s1, a1)

: :
. . .

...

Q(s1, aN) Q(s1, aN) · · · Q(s1, aN)

Q(s2, a−N) Q(s2, a−N) · · · Q(s2, a−N)

Q(s2, a−N+1) Q(s2, a−N+1) · · · Q(s2, a−N+1)

...
...

. . .
...

State 2 Q(s2, a0) Q(s2, a0) · · · Q(s2, a0)

...
...

. . .
...

Q(s2, aN−1) Q(s2, aN−1) · · · Q(s2, aN−1)

Q(s2, aN) Q(s2, aN) · · · Q(s2, aN)

Q(sN , a−N) Q(sN , a−N) · · · Q(sN , a−N)

Q(sN , a−N+1) Q(sN , a−N+1) · · · Q(sN , a−N+1)

State N
...

...
. . .

...

Q(sN , a0) Q(sN , a0) · · · Q(sN , a0)

To reduce the computation cost of learning, the space was discretized and the

amount of neighbors for each state was fixed. The values for the number of neighbors

and the interval between neighbors was determined based on the max velocity of the

motor and the value for the time step was determined experimentally. Equation 4.2,
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shows how values in the Q-table were updated.

Q(st, at)← Q(st, at) + αt(st, at) ∗ [Pt+1 + γ ∗ argmaxQ(st+1, at+1)] (4.2)

Where at each time step t, there are multiple states, st, which have a set of actions,

at, available for each state. α is the learning rate, γ is the discount factor for the

maximum future Q value, and P is the penalty value. The penalty value was formed

by a weighted summation among the energy consumed at each joint and the 2-norm

of the planned COM trajectory and the observed trajectory. To make the values

of the two penalties comparable, both were normalized by a maximum acceptable

value that was determined experimentally. For the energy penalty this was chosen

to be the max value observed during an initial sweep of the hip height space where

hip height was kept constant. For the ZMP penalty, this was chosen to be a value

where instability that lead to falling was observed. While the energy penalty was left

continuous, the ZMP penalty was converted to a binary value so the penalty would

only be applied if the robot fell.

P = w1 ∗ ‖COMplanned − COMobserved‖+ w2 ∗
n∑
i=1

Ei (4.3)

where n is the number of joints in the robot.
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4.2 Optimal Path Search - A*

Because walking trajectories are periodic, data from each individual step was used

to update the Q-table. Once the Q-table has reached convergence, the best path

is extracted from the Q table using the search algorithm A*. A* is a widely used

“best first” search algorithm that combines knowledge of a current distance, where

in this case the distance represents the summation of the chosen values in the Q

table, and a heuristic that estimates future choices. Figure 4.3 shows an example

surface that represents a Q matrix passed to A*. With a specific height chosen as

a start and end point, A* finds the path that minimizes the total travel cost. To

ensure a periodic walking trajectory, A* starts at each discrete start height and finds

the penalty minimizing path that ends at the same height. Each trajectory from

the available start heights are compared and the best global path is outputted. The

resulting solution, for the given starting and end points, is shown in Figure 4.3.

Chapter 4: Machine Learning
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Figure 4.3: The local optimal path found by A* for the given example surface.
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Chapter 5: Results and Discussion

5.1 Preliminary Testing

Using the ZMP preview and the proposed IK solver, a stable walking trajectory was

able to be generated in MATLAB and verified in Webots. The walking parameters,

Table 5.1, were manually tuned for stability within the webots environment.

Table 5.1: Walking Parameters

SSP 1.8 (s)
DSP 0.3 (s)

Lateral Distance 65 (mm)
Step Distance 80 (mm)
Step Height 50 (mm)

Using the methods outlined in Chapter 3 resulting stick figure diagram, Figure 5.1

and profiler of the generated walking pattern, Figure 5.2.

Figure 5.1: Stick figure profile of walking trajectory generated in Matlab.
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Figure 5.2: Profiler of all trajectories generated to create the full walking tra-
jectory in Matlab.

As a baseline test, the energy and stability for each walking trajectory was evalu-

ated at constant hip height that spanned the space being considered. The minimum

and maximum hip height values used are 240 mm and 270 mm respectively. Fig-

ures 5.3 shows the normalized resulting values.

Figure 5.3: Normalized data for stability and energy consumption for walking
trajectories with fixed hip height.

From the preliminary tests, the data shows that there are two general trends.

Chapter 5: Results and Discussion
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First, the energy consumed decreases as the hip height increases until 262 mm where

energy consumption begins to increase. Second, the stability of the walking pattern

is maximized early at 247 mm and then becomes increasingly more unstable.

5.2 Q-learning Results

The following gains were chosen for the Q learning process:

Table 5.2: Q-Learning Parameters

α (learning rate) 0.7
γ (discount rate) 0.3

p1 1.0
p2 0.2

The resulting Q table evolution is shown in Figure 5.4.

Figure 5.4: Evolution of the Q-table throughout the learning process.

On average the the Q table converged after approximately 600-700 tests where the
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robot was required to take 10 steps per test. The convergence is shown in Figure 5.5,

where the error displayed is the error between consecutive Q tables.

Figure 5.5: Convergence of the Q-table.

A more detailed version of the final Q -table is shown in Figure 5.6. After the

Q table reached convergence, the following trajectories were extracted by using A*,

where the best is shown in bold, Figure 5.7.

Figure 5.6: Labeled surface plot of the final Q-table after convergence.
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Figure 5.7: 2D plot of the extracted trajectories for each starting hip height.

This trajectory was then used in Webots and the energy consumption was then

compared to the preliminary testing data. The resulting comparisions for energy

consumption and stability are shown in Figure 5.8.

Overall, the final changes in energy that the learned hip height trajectory con-

tributed are:

Table 5.3: Final Energy Results

percent increase
min 3.106%
max 24.750%

average 8.953%

Chapter 5: Results and Discussion
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Figure 5.8: Values for stability and energy from the learned hip height trajec-
tory.
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Chapter 6: Conclusion

From this study, the goal was to develop the optimal hip height trajectory that

when combined with the walking trajectories provided by ZMP preview control would

reduce the total energy consumption. To accomplish this Q-learning methods were

applied where input trajectories were randomly generated and observations were made

in the simulation environment Webots. The proposed learned hip height trajectory

should increase energy efficiency without destroying the stability provided by ZMP

preview control. This resulting trajectory both increased energy efficiency of the

average walking trajectory by approximately 9% and also provided a more stable

walk at the given hip height than if it were fixed. Beyond this success, this study

provided insight on how machine learning methods can be used as a post processing

tool to further optimize given traits that had been previously constrained.
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