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Abstract 
The Development of An Empirically Corrected Semi-Empirical Method and its 

Application to Macromolecular Complexes 
Michael E. Foster 

Karl W. Sohlberg, Ph.D. 
 

 

Computational chemistry is a growing field crossing interdisciplinary scientific fields 

because of the ability to predict physical properties while reducing costs and waste 

materials; however, there are limiting factors.  Computationally modeling systems 

governed by non-bonded interactions, especially van der Waals (dispersion) interactions, 

is currently a difficult task, since many conventional quantum mechanical techniques 

neglect such interactions. Methods that are capable of modeling such interactions are 

computationally extremely expensive, limiting system size to only a few dozen atoms. 

Therefore, such computations are intractable for exploring in the upper limits of the 

nanoscopic world. One avenue of nanotechnology involves engineering machines at the 

molecular level that are capable of producing useful work. Such devices promise to be 

applicable in a wide range of areas, such as molecular-scale electronics, nanometer-scale 

engineering, medicine, and space science to name a few. In order to model such large 

systems, semi-empirical methods appear to be an attractive option; however, the popular 

semi-empirical methods (e.g. AM1) do not model long-range dispersion but this is not 

their only shortcoming. For weakly interacting systems, hydrogen bonding also poses a 

concern. Therefore, an empirically-corrected AM1 method that uses two empirical 

correction terms, one for dispersion and one for hydrogen-bonding interactions, has been 

developed and termed AM1-FS1. The AM1-FS1 method has been tested and used to 

study several carbon nanostructure complexes and rotaxane systems and is found to 
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produce results in good agreement with experimental and other first-principles 

calculations.  
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Chapter 1: Introduction 
 
 
 

 Intermolecular interactions such as dispersion and hydrogen-bonding play a 

critical role in determining the structure and properties of many molecular systems of 

current interest. For example:  Protein folding is currently of vast interest in the scientific 

community1-4 because of its involvement in many biological processes, including but not 

limited to “the trafficking of molecules to specific cellular locations and the regulation of 

cellular growth and differentiation4.” The secondary structure of proteins is, in part, 

dependent on hydrogen bonding and van der Waals forces5, 6, thus, an accurate and 

efficient computational model for non-covalent interactions is needed to model such 

processes. Additionally, the two strands in the double helix of DNA are held together by 

hydrogen-bonding7, 8, so accurate modeling of non-bonding interactions is critical to the 

theoretical description of many life processes. Also of importance is the structure of 

molecular crystals9, 10 arising from non-bonding interactions among the molecular 

monomers, and co-conformational selectivity1-4, 11-13 in interlocked molecules such as 

catenanes14, 15 and rotaxanes15-17. All these types of systems are dictated by non-bonding 

interactions.  

Significant breakthroughs in the previously mentioned areas could be expected to 

result from the application of accurate theoretical/computational modeling to these 

systems. Such studies will require accurate and computationally efficient modeling 

techniques. In the toolbox of the theoretical/computational chemist, generally the most 

efficient techniques are those that fall into the category of molecular mechanics (MM). 

The MM methods are efficient because they rely upon an empirically parameterized 
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function of the atomic coordinates to express the energy of the system. Computation of 

the energy therefore involves only the evaluation of an algebraic expression. A major 

disadvantage of the MM methods is that they do not yield explicit electronic structure 

information. Such methods represent a fundamentally different theoretical approach from 

what will be addressed; therefore, MM approaches will not be considered any further. 

 In contrast to MM methods, quantum mechanical (QM) techniques yield explicit 

electronic structure information, but at significant computational expense. Currently, the 

most popular QM method for modeling molecular systems is density functional theory 

(DFT). This is due in part to its ability to accurately describe chemical and physical 

properties for a diversity of systems, often at modest computational expense.  A major 

shortcoming with DFT is the inability of most popular XC-functionals (exchange-

correlation functionals) to accurately model long-range van der Waals (dispersion) 

interactions.  Therefore, these methods predict systems like the benzene dimer to be 

unbound.  Currently, an increasingly popular approach to overcome this hurdle is to add 

an empirical correction to the DFT total energy.  Empirically corrected DFT methods for 

dispersion interactions, coined DFT-D, have become popular due to their success with 

essentially no added computational expense.  These methods have shown dramatic 

improvements for dispersion bound complexes.  Not only are such complexes now 

predicted to be bound, but excellent agreement with CCSD(T) results have been 

achieved, the current “gold standard” in computational chemistry.  For relatively small 

systems, DFT-D methods are computationally feasible and should provide quite accurate 

results, but modeling macromolecular host/guest complexes can be extremely 

computationally expensive; therefore, alternative methods need to be explored. A detailed 
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review of DFT-D methods is presented in Chapter 2, where both performance/accuracy 

and theory are discussed. 

Intermediate between MM and first-principles methods are semi-empirical (SE) 

electronic structure methods. The SE techniques are based on a quantum mechanical 

description of the electronic structure, but to achieve computational efficiency, rely upon 

empirical parameterization to estimate the values of certain difficult-to-evaluate integrals. 

Some of the most widely used semi-empirical techniques are AM118, PM319, RM120, and 

PM621. These methods are sufficiently computationally efficient for modeling systems 

composed of hundreds or even thousands of atoms, but typically perform poorly for 

dispersion and hydrogen-bonding.  Like most XC-functionals, these semi-empirical 

methods are essentially incapable of modeling dispersion bound complexes (e.g. the 

benzene dimer) because the form of the semi-empirical wavefunction causes electron-

correlation to be neglected.  Even qualitatively reliable modeling of dispersion-bound 

macromolecular systems, such as complexes of carbon-nanostructures, is therefore out of 

the question; SE methods predict such complexes to be unbound.  That is, the wrong sign 

of the interaction is predicted.  

Like DFT methods, the accuracy of SE methods in modeling dispersion-bound 

systems can be dramatically improved by adding an empirical correction term.  

McNamara and Hillier22 reported adding an empirical correction term to the AM1 and 

PM3 methods to incorporate dispersion interactions, but found the overall results to be 

unsatisfactory.  Therefore, to gain further improvements, in particular to improve the 

accuracy with which hydrogen-bonding is modeled, they re-optimized a large portion of 

the original AM1 parameters, using a small data set consisting of 22 complexes (see 
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Appendix A).  The resulting method, with both re-optimized semi-empirical parameters 

and an empirical correction term, is referred to as AM1-D. (They have also produced an 

analogous PM3-D.)  These empirically-corrected methods show a substantial 

improvement in accuracy (over the corresponding original SE methods) for predicting 

intermolecular interaction energies, but at a significant cost. As described in chapter 3, 

AM1-D is nearly 25-fold less accurate in the prediction of heats of formation than the 

original AM1 method.  

More recently Řezáč and colleagues23 published an empirically corrected PM6 

method for modeling dispersion and hydrogen-bonding (HB) interactions, named PM6-

DH.  This method incorporates an empirical correction for dispersion interactions and 

also includes a second correction term for HB interactions.  The group identified 8 types 

of H-bonds and used a different set of 3 parameters for each type, for a total of 24 H-

bonding parameters.  In their defense it should be noted that they did use a relatively 

large training set to determine these H-bonding parameters.  The major shortcoming of 

this method, as they acknowledge, is that knowledge of atom connectivity is required.  

One of the major benefits of QM techniques is that atom connectivity is not required, 

allowing bond formation/deformation to be modeled.  Although, Řezáč and colleagues 

have obtained good results, for a method to be widely used, atom connectivity 

information should not be required. In addition to the limitations introduced, input of 

atom connectivity information is sufficiently burdensome to deter routine use, especially 

for macromolecular complexes where there may be thousands of atom-atom interactions 

that must be distinguished. These different empirically corrected SE methods are 

reviewed in Chapter 2.  
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To address some of the mentioned shortcomings, an in-house empirically 

corrected SE method has been developed, termed AM1-FS1. This method has been 

parameterized to a diverse training set that includes non-equilibrium structures and yields 

sub-kilocalorie accuracy in the prediction of intermolecular interaction energies. This has 

been achieved with substantially less parameterization than existing empirically-corrected 

SE methods and without modification of the original AM1 parameters. AM1-FS1 

therefore retains the predictive power for thermochemical quantities of the original AM1 

Hamiltonian, and does not require atom connectivity information. A detailed analysis and 

description of the AM1-FS1 method is presented in Chapter 3.  

Ultimately, we seek a method that leads to good accuracy in the prediction of 

structural properties and intermolecular interaction energies for macromolecular 

complexes, without the sacrifice of some of the basic QM benefits. The performance of 

AM1-FS1 has been tested on several carbon nanostructure complexes and 

pseudorotaxanes and is found to produce results in very good agreement with the best 

first-principles calculations available. These results have prompted further investigations 

of carbon nanostructure complexes and rotaxanes systems, which are discussed in 

Chapters 4 and 5 respectively. 
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Chapter 2: Empirically Corrected DFT and Semi-Empirical Methods for Non-
Bonding Interactions 

 

 

2.1 Introduction 

In density functional theory (DFT), the total energy of the ground state is 

expressed as a functional of the electron probability density (ρ). No knowledge of the 

molecular wave function is required. This is a statement of the Hohenberg-Kohn 

theorem; however, the theorem does not tell us how to find ρ without first finding the 

molecular wave function. This hurdle was overcome by Kohn and Sham who developed a 

method for determining ρ and from it the ground state energy24. The Kohn-Sham 

approach is the most widely used DFT technique. Based on the Kohn-Sham approach, the 

ground state energy can be expressed as: 

( ) ( ) ( ) ( ) ( ) [ ]ρρρθθρ

αα
α xc

n

i

KS
i

KS
i Edd

r
d

r
ZE ++∇−−= ∫ ∫∫∑∑

=
21

12

21

1

2
11

1

1
0 2

111
2
1 rrrrrr   ,   (2.1) 

where the terms describe the electron-nuclear attraction, electronic kinetic energy, 

electron-electron repulsion, and the exchange-correlation energy of the electrons 

respectively. The kinetic energy term depends on the Kohn-Sham (KS) orbitals ( ). 

The Kohn-Sham orbitals can be found by iterative self-consistent solution of the 

following equation:       
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where xcυ  is the exchange-correlation potential: 

                                                      
( )
)(

][)(
r

rr
δρ

ρδυ xc
xc

E
=    .                                              (2.3) 



7 
 
This quantity can be found if the Exc[p] is known; however, the exact functional form of 

Exc[p] is unknown, except for the free electron gas. In principle, DFT would provide the 

exact ground state energy if the exact exchange-correlation functional was known. In lieu 

of the exact exchange-correlation functional, numerous approximate forms have been 

proposed and the best choice is often unclear. The exact functional is a “holy grail” of 

computational chemistry. 

 Dispersion interactions depend on electron correlation, but DFT typically neglects 

long-range dispersion because the exchange-correlation term, Vxc, is typically assumed to 

be a functional of the local electron density Vxc(ρ), or of the gradient of the electron 

density Vxc(∂ρ/∂r). A consequence of this assumption is that only local contributions to 

the electron correlation are included. The typical DFT functionals therefore do not model 

correlation outside the Fermi hole, and thereby neglect long-range dispersion. There have 

recently been some functionals developed that are capable of modeling dispersion 

interactions, such as M0525 and M0626. These functionals do not contain an explicit 

dispersion term; but they have been parameterized to systems governed by dispersion 

interactions and have shown some success for modeling dispersion bound complexes. 

Implicit inclusion of dispersion is conceptually very different from correcting the DFT 

total energy with an empirical dispersion term. This review focuses on DFT (and SE) 

methods that have been corrected with an empirical dispersion term.   

 The popular AM1 and PM3 semi-empirical methods are based on Hartree-Fock 

(HF) theory. HF theory utilizes the approximation that the total electronic wavefunction 

 may be written as a Hartree-product of one-electron wavefunctions:  ( )Ψ

                                         ( ) ( ) ( ) ( ) ( )NNN rrrrrrr φφφφ ⋅⋅⋅≈Ψ 33221121 ,...,   .                        (2.4) 
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This approximation simplifies the wavefunction from 3N dimensional space to N 

wavefunctions in three dimensions, which begins to make solution to the Schrödinger’s 

equation feasible, but it leads to the neglect of electron exchange and correlation. The 

Hartree-product also does not satisfy the antisymmetry principle (Pauli Exclusion 

Principle); however, this condition is satisfied by expressing the product in a Slater-

determinant. A Slater-determinant insures that the wave function vanishes if two 

electrons have the same spin and occupy the same space. Ultimately HF theory is based 

on a single Slater-determinant, thus taking electron-exchange into consideration, but not 

electron-correlation27. As mentioned above, electron correlation is responsible for long-

range dispersion interactions, thus the HF Hamiltonian is incapable of accurately 

modeling van der Waals complexes.  Since electron-correlation is neglected in the 

wavefunction of HF theory, it is neglected in the wavefunction of the AM1 and PM3 

methods as well, and as a consequence AM1 and PM3 fail to model dispersion 

interactions. 

 While the popular DFT and SE methods neglect long-range dispersion, the 

functional form of dispersion at long range is known. The functional form can be derived 

from basic physical principles. Here we outline a derivation presented in Ref. 28. Start by 

considering two non-polar molecules, a and b. Suppose each molecule is composed of a 

negative charge (-Q) that oscillates about a fixed positive charge (+Q) with angular 

frequency (ωo) in the z-direction, as shown in Figure 2.1. On average, the two molecules 

possess no permanent dipole moment, however, at any instant in time (t), they have an 

instantaneous dipole moment (μa = Qza(t)). To determine the functional form, first 

consider the molecules at infinite separation. This allows the two molecules to be 
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modeled separately. The Schrödinger wave equation for molecule a is (an equivalent 

equation can be written for molecule b): 
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where the first term is the kinetic energy and the second is the potential energy of the 

system (½kza
2 is the potential energy of the oscillator). This is just the simple harmonic 

oscillator problem, thus the eigenvalue equations for molecules a and b are: 
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Therefore, the total energy of the system in the ground state is: 

                                                   oba EEE ωh=+=∞)(   .                                            (2.7) 

Now consider the case when the molecules are separated by some distance r, 

where r is much greater than the displacement of the positive and negative charges (r >> 

za and zb). Now, there will be an interaction between the two molecules, which can be 

modeled as the interaction between two dipoles, since at any instant in time each 

molecule has a dipole moment. Thus, the Schrödinger wave equation for this system can 

be written as follows: 
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The last term in the parentheses is the potential energy between the dipoles. If the 

following transformation is made: 
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the Schrödinger wave equation can be rewritten as: 
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This transformation reduces the problem to two independent harmonic oscillators, thus 

the eigenvalue equation is the sum of the two independent oscillators: 
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The ground state energy is: 
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If we substitute these frequencies into Eq. 2.12 and expand the solution by the binomial 

theorem, the energy of the ground can be expressed as follows:  
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Thus, for this simple model the interaction energy can be expressed as follows: 
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where the leading term in the binomial expansion, which is the dipole-dipole dispersion 

energy, has 1/r6 dependency. This proves that long-range dispersion interactions are 

dominated by the 1/r6 term, which is the justification behind the popular Lennard-Jones 

potential, which will be briefly discussed in the next section.   
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Given that the popular DFT and SE methods neglect dispersion, but given also 

that the correct functional form of the dispersion interaction at long range is known, there 

has been much interest in empirically correcting DFT and SE methods to include 

dispersion. Herein we review recent advances in this area. 

 

+Q -Q +Q-Q

za zb

r

+Q -Q +Q-Q

za zb

r

 

Figure 2.1: A schematic of two non-polar molecules, separated by some distance r. Each 
molecule is composed of a single positive (+Q) and negative (-Q) charge displaced by 
some distance za and zb. This simple model may be used to derive the functional form of 
long-range dispersion interactions.  

 

2.2 Empirical Dispersion Potentials 

As noted above, dispersion interactions are solely of quantum mechanical 

origin28, but they are neglected for the most part, if not completely, in commonly 

employed quantum chemical techniques (SE, HF, and DFT). One approach to 

incorporating dispersion interactions is to add an empirical potential to the quantum 

mechanical total energy. Empirical potentials are the basis of molecular mechanics and 

are computationally extremely efficient in comparison to QM methods. Therefore, an 

empirical potential can be added to a QM method without incurring any appreciable 

additional computational expense. Because of the promise of increased accuracy without 
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additional computational expense, this approach has recently been receiving considerable 

attention for modeling dispersion-bonded complexes. 

A popular empirical potential for describing interactions between neutral atoms or 

molecules is the 6-12 Lennard-Jones (LJ) potential. The LJ potential attempts to describe 

both attractive and repulsive interactions. The attractive portion of the potential models 

the instantaneous dipole-dipole interactions, in other words, the dispersion interactions. 

The functional form of the LJ potential is:   
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where ε is the depth of the well, σ is the intermolecular separation at which the potential 

equals zero, and r is the separation of the two particles. The two parameters ε and σ are 

specific to the two interacting particles. For two interacting atoms these quantities are 

usually combined: 

                                                       ,       ,                                   (2.17) 12
12 εσ=C 6

6 εσ=C

and the LJ potential is then expressed in the general form:    
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r
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where C12 and C6 are constants that depend on the atoms being considered; the C6 

constant is commonly referred to as the dispersion coefficient. In molecular mechanics 

these values are determined by parameterization; however, C6 values can be determined 

with the knowledge of the polarizability of the atoms and their ionization potentials. To 

determine the dispersion interaction of a molecular system, the term is summed over the 

unique atom pairs. (Typically bonded pairs, i.e. “1-2 interactions” and atoms bonded to a 
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common atom, i.e.”1-3 interactions” are removed. In some cases atoms sharing a 

common dihedral angle, i.e. “1-4 interactions” are also excluded from the sum.) The LJ 

function is composed of two terms: a repulsion term and an attractive term. The negative 

r-6 term describes the long range dispersion interactions; the origin of this functional form 

was derived above. The positive r-12 term attempts to describe the short range Pauli 

repulsive interactions; however, this term has no fundamental theoretical basis and is 

chosen for computational convenience. (r-12 is easily obtained by squaring r-6.)29 Figure 

2.2 graphically shows the functional form of the LJ potential (solid line) for the 

interaction between two carbon atoms (the C6 and C12 values for two interacting carbon 

atoms were obtained from AutoDock Version 130). This figure also shows the behavior of 

the attraction dispersion term (dotted line) and repulsion term (dashed line). At large 

values of r, the attractive term dominates since the repulsion term approaches zero much 

more quickly with increasing r. The reverse is true at close distances; therefore, at close 

distances the LJ potential has a steep potential wall due to the (r-12) term. The dispersion 

interaction between two molecules can be approximated by summing over all unique 

inter-component atom-atom pairs.     

 
 

http://www.csb.yale.edu/userguides/datamanip/autodock/html/Using_AutoDock_305.20.html#32242
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Figure 2.2: Graphical representation of the LJ potential (solid line) and the corresponding 
attractive (dotted line) and repulsive (dashed line) components. The curves correspond to 
two interacting carbon atoms (the C6 and C12 values for two interacting carbon atoms 
were obtained from the code, AutoDock Version 130). 

 
 
  
 The LJ potential is a relatively reliable model for dispersion interactions, provided 

good dispersion coefficients are available, however, other variants are also in use. A 

variation proposed by Wu and Yang31, has been receiving considerable attention for use 

in empirically correcting DFT methods. This function is of the form: 
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where is the dispersion coefficient, fdamp is a damping function and the sum is over all 

unique atom pairs. The damping function attenuates the r-6 long-range dispersion 

interaction at short range and is expressed as follows: 
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http://www.csb.yale.edu/userguides/datamanip/autodock/html/Using_AutoDock_305.20.html#32242
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where d is the damping coefficient and Rvdw is the equilibrium van der Waals separation 

for the atom-pair being considered. A graphical representation of this function for the 

interaction between two carbon atoms is shown in Figure 2.3; the figure also graphically 

shows the attractive portion of the function and the damping function.  

 While the LJ potential “blows-up” at short-range (small values of r) due to the r-12 

term, Eq. 2.19 goes to zero at short range due to the damping function. The reason for 

this difference is that DFT and SE methods already model short-range repulsive (Pauli 

repulsive) interactions. The empirical correction function is therefore made to go to zero 

to avoid double counting the repulsive interactions. Energy decomposition analysis 

(EDA) and symmetry-adapted perturbation theory (SAPT) can be used with HF, DFT, or 

higher levels of theory to separate out the individual energy contributions such as: 

electrostatic, exchange repulsion, polarization and dispersion energy. This type of 

analysis can help identify the functional form of the various components that contribute 

to the total energy. This can help identify potential improvements that can/need to be 

made and is also very useful for the development of MM methods32, 33.  

Employing a damping function also allows intra-component dispersion 

interactions to be easily considered in addition to inter-component interaction even 

without knowledge of atom connectivity. In protein modeling for example, the inclusion 

of intra-component dispersion interactions is very important34. Due to the large size of 

proteins, intra-molecular dispersion interactions play a major role in determining their 

structure. Including both inter-molecular and intra-molecular terms in the dispersion 

correction is also beneficial from a computational standpoint. Including both inter-

molecular and intra-molecular terms allows the total dispersion energy to be calculated 
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by summing over all the unique atom-atom pairs so that the number of atoms in each 

monomer does not need to be specified. While keeping track of the number of atoms in 

each monomer is not much of a problem for a dimer system, as the number of monomers 

increases, such bookkeeping becomes a cumbersome programming task. 
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Figure 2.3: A graphical representation of the potential (solid line) proposed by Wu and 
Yang31. The attractive (dotted line) R-6 term and damping function (dashed line) are 
included. The curves correspond to two interacting carbon atoms. The dispersion 
coefficient ( ) was obtained from Ref. 35 and the damping coefficient (d) was set to 20.  ijC6

 
 
 

Subsequent to the introduction of the functional form (Eq. 2.19) by Wu and 

Yang31, Grimme34 proposed to use of a global scaling factor (S6), an adjustable parameter 

multiplying Eq. 2.19. The value of this parameter is obtained by a fitting procedure. Both 

the S6 and d parameters can be adjusted depending on the method or DFT functional 

used. These parameters are unitless and typically have values close to 1.0 and 20 
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respectively. Grimme proposed and used a value of 20 for the damping constant and 

adjusted the global scaling factor depending on the DFT functional used (B97, S6 = 1.25; 

BLYP, S6 = 1.2; PBE, S6 = 0.75)35. The effect of adjusting these two parameters is shown 

in Figure 2.4. Figure 2.4A shows the effect of changing the damping coefficient (d): d = 

15 (dotted line), 20 (solid line), and 25 (dashed line); S6 = 1.0 in all cases. As the 

damping coefficient increases, the function is more abruptly shut off at low r. The depth 

of the potential well also increases as d increases, however, the depth is more strongly 

influenced by the global scaling factor (Figure 2.4B: S6 = 0.8 (dotted line), 1.0 (solid 

line), and 1.2 (dashed line); d = 20 in all cases). These parameters can be tailored for 

different methods. As in MM methods, fitting the parameters requires a training set; 

therefore, the values obtained may or may not be the best choice for a system outside the 

training set, especially if it is chemically significantly different from the species in the 

training set. 
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Figure 2.4: Figure 2.4A shows the effect of changing the damping coefficient (d) in Eq. 
2.18: d = 15 (dotted line), 20 (solid line), and 25 (dashed line); S6 = 1.0 in all cases. 
Figure 2.4B shows the effect of change the global scaling factor: S6 = 0.8 (dotted line), 
1.0 (solid line), and 1.2 (dashed line); d = 20 in all cases. The curves correspond to two 
interacting carbon atoms; the dispersion coefficient ( ) was obtained from Ref. 35. ijC6

 
 

Other functions have been proposed for modeling dispersion interactions, but, Eq. 

2.19 appears to be the most widely used and has shown considerable success when used 

as a correction term for DFT techniques. Jurečka and colleagues36 suggest a slight 

variation to the function proposed by Grimme. They recommend that the scaling factor 

(S6) be moved inside of the damping function, yielding,   
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The parameter, now termed SR, scales the equilibrium van der Waals separation. A 

graphical representation of the dispersion function (Eq. 2.19) utilizing this damping 

function is shown in Figure 2.5, where it can be seen that scaling the sum of the van der 

Waals radii allows the short-to-medium range interactions to be adjusted while leaving 
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the long-range r-6 behavior unchanged. This differs from the effect of the global scaling 

(S6) used by Grimme, which affects the function over all r, as shown in Figure 2.4B. 

Moving the scaling factor inside the damping function is therefore physically motivated, 

since only the short-range dispersion interactions should differ among different XC-

functionals36. The SR term attempts to correct for the deviation from r-6 behavior at short 

range and the parameter therefore needs to be optimized for the functional of choice. 

Jurečka and colleagues state that this term “allows for correction of the inaccuracy (or, 

better, fitness) of the absolute values of the vdW radii, and thus only relative values of the 

radii need to be correct36.” The same could be said about the S6 factor relating to the 

dispersion coefficient ( ). Moreover, the best position of the parameter might depend of 

the computational method being used.   

ijC6

 

 

 

Figure 2.5: Graphical representation of the modified potential (solid line) suggested by 
Jurečka and colleagues36. This figure shows the effect of changing SR in the damping 
function (Eq. 2.20): SR = 0.9 (dotted line), 1.0 (solid line), and 1.1 (dashed line). The 
figure serves as a graphical representation of the effect of changing the value of the SR 
term. The curves correspond to two interacting carbon atoms; the dispersion coefficient (

) was obtained from Ref. 35. ijC6



20 
 

It is worth briefly discussing the different combination rules being used to 

determine the pair-wise dispersion coefficient. Grimme originally34 used a harmonic 

average of the form: 
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but later35 switched to the geometric mean combination rule: 

                                                           jiij CCC 666 =   .                                                 (2.23) 

Grimme clams that the geometric mean “yields much better results35.” Jurečka and 

colleagues36 are using the combination rule suggested by Wu and Yang31, which is of the 

form: 
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where Neff is the effective number of electrons. This combination rule is based on the 

Slater-Kirkwood formula37. Different combination rules have also been used for the 

equilibrium van der Waals separation (Rvdw) term. Grimme uses the arithmetic mean, thus 

refers to this term as the sum of the atomic van der Waals radii. Jurečka and colleagues36 

used the cubic mean: 
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where Rii and Rjj are the equilibrium van der Waals radii of two identically atoms (van 

der Waals diameter). Jurečka and colleagues stated that, “the cubic mean yielded lower 

errors,” thus they have employed this combination rule. This combination rule was 

suggested by Halgren38, and can be viewed as a weighted average. The cubic mean 
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increases the equilibrium van der Waals separation, relative to the arithmetic mean, as the 

difference between Rii and Rjj become larger. In the next section, the accuracy of 

empirically corrected DFT and SE methods will be considered. These methods are 

referred to as DFT-D and SE-D, where -D signifies dispersion corrected.              

2.3. Empirically Corrected DFT and SE Methods  

   2.3.1 DFT-D Methods 

 Empirically corrected DFT methods for modeling dispersion interactions are far 

more popular than empirically-corrected semi-empirical methods. This is mainly due to 

the general greater accuracy of DFT methods. Although most DFT methods include some 

electron correlation, as discussed in the previous section, long-range dispersion 

interactions are almost universally neglected by the popular DFT functionals34. An 

empirical correction for long-range dispersion interactions is therefore a desirable 

enhancement to DFT methods. 

 Grimme and colleagues34, 35, 39-41 have published numerous articles devoted to 

developing and studying DFT-D methods, with the first in 200434. In 2006, Grimme35 

published a revised method and provided dispersion coefficients (C6) and van der Waals 

radii (Rvdw) for the elements H-Xe. These parameters were derived from high level 

computations. (The computational details will not be discussed here. For details the 

reader should consult Ref. 35.) Grimme’s research has increased the applicability of 

DFT-D methods, allowing for molecules containing a wide variety of elements to be 

modeled. In addition to Grimme, numerous other groups are now pursuing this line of 

research16, 22, 42-44.             
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 Grimme and colleagues have developed empirical corrections for a variety of 

DFT functionals35, 39. The accuracy of the different empirically corrected DFT methods 

was tested on a database containing 22 complexes with accurately known structures and 

interaction energies (commonly referred to as the “S22” database, see Appendix A). The 

S22 database, provided by Jurecka et al.45, is composed of 7 hydrogen bonded, 8 

dispersion-bonded, and 7 mixed-bonded complexes. The binding energies reported are 

CCSD(T) quality and are extrapolated to the complete basis set (CBS) limit (see Table 

B-1 for names and binding energies of the different complexes in the S22 database). The 

geometries are mainly MP2 quality, with a few smaller complexes optimized at the 

CCSD(T) level. This database has been used by others as a standard; therefore, it will be 

used herein when comparing methods whenever possible.   

Of the different XC-functionals considered by Grimme and colleagues in 200639, 

the dispersion corrected B97 functional produced the best results and the BLYP 

functional was a close second. The reported binding energies for the species in the S22 

database as computed using these two different methods are reported in Table B-1. The 

root mean square errors (RMSE) and mean unsigned error (MUE) are reported in Table 

2.1. The total RMSE values are 0.46 and 0.58 kcal/mol for B97-D and BLYP-D 

respectively. When the RMSEs are partitioned, it is found that the hydrogen bonded 

complexes have the greatest error in both cases (0.60 and 0.83 kcal/mol respectively). 

The larger error associated with the hydrogen bonded complexes may be due to the fact 

that their calculations are not counterpoise (CP) corrected. This is discussed further 

below.   
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 More recently, Schwabe and Grimme46 empirically corrected the B2PLYP XC-

functional (a semiempirical hybrid functional with corrections from perturbation theory) 

and achieved even greater accuracy, as evaluated based on the S22 database. The 

statistical results are shown in Table 2.1 (detailed results for the individual complexes are 

shown in Table B-1). It should be noted that in their study the interaction energy was 

defined in a non-standard way as,  

                                                      CPnoCP EEE Δ+Δ=Δ 2
1

2
1 ,                                      (2.26) 

where CP indicates the energy has been counterpoise corrected for basis set superposition 

error (BSSE). In the group’s earlier studies, the interaction energies were not CP 

corrected, because it was found that uncorrected results yielded lower errors, assuming a 

basis set of a least triple-zeta quality is used39. Using the B2PLYP-D method, the total 

RMSE for the S22 database reduced to 0.39 kcal/mol, with most of the improvement 

coming from the mixed complexes. The overall improvement is likely due to the 

B2PLYP functional, since this functional “seems to outperform all current hybrid GGAs 

and meta-GGAs47” functionals. It should be noted that a smaller global scaling factor was 

used (S6 = 0.55) in the dispersion correction term (typical values are close to 1). This was 

needed due to the perturbation term in the B2PLYP functional recovering part of the 

dispersion effects. The B2PLYP functional underestimates long-range effects principally 

because the MP2 perturbation component recovers only part of the correlation that is 

otherwise neglected by the semi-local GGA component46. This is why a dispersion 

correction term is needed and why the optimal global scaling factor is small. Since the 

B2PLYP functional incorporates some long-range dispersion interactions, owing to the 
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perturbation correction, it would not be desirable to scale Rvdw (use SR). Scaling Rvdw 

would result in double counting dispersion interactions in the long-range regime. 

 
 

Table 2.1: Single-point interaction energy statistics (kcal/mol) for the S22 database45. The 
B97/TVZ(2df,2pd) and BLYP/TVZ(2df,2pd) interactions energies used to construct this 
table were obtained from Ref. 39 and the B2PLYP/TVZP values from Ref. 46. 

B2PLYP-D/TZVPP
RMSE (Hydrogen bonded) 0.60 0.83 0.58
RMSE (Dispersion bonded) 0.22 0.40 0.24
RMSE (Mixed bonded) 0.48 0.43 0.29

RMSE 0.46 0.58 0.39
MUE 0.35 0.47 0.31

B97-D / TZV(2df,2pd) BLYP-D / TZV(2df,2pd)

 

 

 

 As discussed earlier, Jurečka and colleagues36 proposed that the scaling factor be 

moved inside the damping function (Eq. 2.21). It is worth noting that they used the 

dispersion coefficients reported by Grimme but alternative van der Waals radii. They also 

used different combination rules for determining  (Eq. 2.24) and Rvdw (Eq. 2.25). 

Although no direct comparisons were made, Jurečka and colleagues36 claim to have 

achieved more accurate results, thereby justifying these changes. The group studied the 

accuracy of numerous DFT functionals with and without an empirical correction for 

dispersion interactions. They also considered a variety of basis sets and the effect of 

BSSE. In each case considered, optimal parameters were used (d and SR). The best results 

were obtained with the TPSS functional using the 6-311++G(3df,3pd) basis set; 

therefore, we will limit our discussion to this functional and basis set. The article by 

ijC6
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Jurečka and colleagues36 is also useful for comparing the performance of various 

uncorrected DFT methods.  

 Jurečka et al.36 used the S22 database to test the performance of the various 

different methods, allowing comparisons to the works of Grimme and others. The 

uncorrected DFT results reported clearly demonstrate why it is desirable to include an 

empirical correction for dispersion interactions. The statistical results for the empirically 

corrected and uncorrected TPSS functional are shown in Table 2.2 (detailed results for 

the individual complexes are shown in Table B-2). The empirical dispersion term lowers 

the RMSE from 4.17 kcal/mol to 0.40 kcal/mol, an improvement by more than a factor of 

10 (a graphical representation showing the individual deviation from the reference values 

is shown in Figure 2.6). Comparable improvement is observed for all the XC-functionals 

considered in the study; clearly showing the benefit of an empirical dispersion term. 

Improvements are not only seen in the dispersion bound cases, but also for hydrogen 

bonded cases. The RMSE for the hydrogen bonded cases decreased from 1.75 to 0.59 

kcal/mol. This presumably occurs because dispersion interactions still play an important 

role for systems dominated by hydrogen bonding. Table 2.2 also shows the effect of the 

CP-correction. In agreement with the findings of Grimme, the CP-corrected results 

increase the error. This is likely due to the fact that the BSSE tracks the dispersion 

interaction energy16, so that in the absence of the CP correction, the BSSE artificially 

“recovers” a portion of the dispersion interaction. In addition, the dispersion parameters 

are optimized with non CP-corrected results, and since the parameters are basis set 

depended, it is not surprising the better results are obtained without CP-correcting. 
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Table 2.2: Single-point interaction energy statistics (kcal/mol) for the S22 database45. LP 
= 6-311++G(3df,3pd); CP indicates that the results have been counterpoise corrected. 
The interactions energies used to construct this table were obtained from Ref. 36. 

TPSS / LP TPSS / LP CP TPSS-D / LP TPSS-D / LP CP
RMSE (Hydrogen bonded) 1.7 2.2 0.6 0.4
RMSE (Dispersion bonded) 6.3 7.2 0.3 0.6
RMSE (Mixed bonded) 2.5 3.0 0.2 0.4

RMSE 4.2 4.8 0.4 0.5
MUE 3.0 3.7 0.3 0.4  

 

 

Unfortunately, a direct comparison between the methods of Jurečka and Grimme 

could not be made because the same XC-functional and basis set were not used in the 

different works reported in the literature. Currently the best results of Jurečka and 

Grimme are virtually identical, both having a mean unsigned error (MUE) of 0.3 

kcal/mol and a RMSE of 0.4 kcal/mol. From this information alone it is hard to ascertain 

which method is better; however, avoiding the CP-correction, which was used for 

Grimme’s B2PLYP-D method, significantly limits the computational expense. The two 

methods (TPSS-D and B2PLYP-D) are graphically compared in Figure 2.6, where the 

deviation from the reference interaction energy is plotted against the S22 complex 

number. It can be seen that both these methods show good agreement with the CCSD(T) 

reference values; however, it should be noted that both these methods have used the S22 

database for parameterizing the dispersion correction term.  Therefore, it is not too 

surprising to find very good correlation. It can be stated that both these methods perform 

very well and represent a drastic improvement over the uncorrected DFT methods, which 

is also shown in Figure 2.6 for the TPSS functional. 
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Figure 2.6: A graphical representation showing the interaction energy (kcal/mol) 
deviation from the S22 CCSD(T) reference values45. All DFT calculations are preformed 
at the reference geometries. Note a positive deviation indicates that the complex is under 
bound and if negative it is over bound. LP = 6-311++G(3df,3pd). Here and in subsequent 
analogous figures the line segments connecting adjacent data points are intended as a 
visual aid. The TPSS and TPSS-D interactions energies used to construct this figure were 
obtained from Ref. 36 and the B2PLYP values from Ref. 46. 

 
  

Comparing the energies from DFT-D calculations to CCSD(T) energies at fixed 

reference geometries is not a completely realistic estimator of accuracy. First of all, the 

DFT-D energy is of little practical value if the CCSD(T) energy is already known. 

Secondly, it is possible for a method to predict a very accurate energy at a specific 

molecular geometry, yet yield a very inaccurate picture of the remainder of the potential 

energy surface, as shown schematically in Figure 2.7. Therefore, it is very important to 

consider the effect of structural optimization with DFT-D methods. Often, the geometry 

of the system(s) is the property of interest. We will now look at the effect on the energies 

and geometries when the complexes in the S22 database are optimized with different 
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DFT-D methods. DFT-D optimized energies and/or structures have not always been 

made available, (or even computed) therefore, limited comparisons are possible. Grimme 

and colleagues carried out DFT-D optimization work, but their optimized energies and 

structures for the species in the S22 database have apparently not been reported in the 

literature. Fortunately, another group that has adopted Grimme’s method, (Morgado and 

colleagues48) has preformed geometry optimizations at the BLYP-D/TZV(2d,2p) level of 

theory and provided optimized structures as supplementary material. The method used 

was identical to the one used by Grimme and colleagues for the data reported in Table 

2.1, except for the size of the basis set (TZV(2df,2pd) vs. TZV(2d,2p)). Morgado and 

colleagues48 reported only optimized energies and not single-point energies for the S22 

complexes, again preventing a direct comparison. The change in the RMSE upon 

optimization cannot be directly evaluated; however, it can be estimated based on 

Grimme’s single-point BLYP-D/TZV(2df,2pd) results (Table 2.1). 
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Figure 2.7: A schematic showing how it is possible for a method to predict a very 
accurate energy at a specific molecular geometry, yet yield a very inaccurate picture of 
the entire potential energy surface. Note that the model curve (solid-line) yields exactly 
the correct energy at the minimum of the potential (dashed-line), yet upon structural 
optimization based on the model would yield a wildly incorrect value for the equilibrium 
separation. 

 
       
 

Statistical data evaluating the performance of the BLYP-D/TZV(2d,2p) method 

upon optimization for the species in the S22 database are reported in Table 2.3. The 

RMSE and MUE for the optimized energies and interaction distances are shown, along 

with the RMSE for the different categories of complexes (detailed results for the 

individual complexes are shown in Table B-3). As should be expected, the RMSE value 

for the energy is larger for the optimized geometries (0.90 kcal/mol), than the single-

point energies (0.46 kcal/mol). (Note that this result is not a direct comparison due to the 

difference in basis sets as discussed above.) The structural distortion upon optimization is 

compared in two different ways: i) the interaction distance (see Figure S1 of Ref. 22) and 

ii) the center-of-mass distance (CM-distance) between the two monomers. The two 

different comparisons are used, because limited data is available in the literature. (Some 
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of the interaction distances are defined as the CM-distances, see Table 2.3.) The RMSE 

of the CM-distances was found to be 0.095 Å, whereas for the interaction distances it was 

found to be 0.183 Å for the BLYP-D/TZV(2d,2p) method. This indicates that the 

interaction distance is a more sensitive measurement of structural distortion upon 

optimization. The BLYP-D method produces very accurate interaction distances for the 

hydrogen bonded complexes (RMSE = 0.035 Å), but the RMSE for the interaction 

energies exceeds 1.0 kcal/mol. This is the highest RMSE for any category of complexes, 

but the relative error is the smallest of any category. The error associated with the 

interaction energy for the hydrogen bonded complexes would likely be even lower if the 

energies were CP-corrected, as this was the case for the TPSS functional (see Table 2.2). 

The relative error associated with the dispersion bonded complexes is the largest; 

however, the most drastic improvement is seen for these complexes; they are now 

predicted to be bound.   

 
 
 
Table 2.3: A statistical comparison of the geometry optimized energies (kcal/mol), 
interaction distances (Angstroms), and CM-distance (Angstroms) for the complexes in 
the S22 database45. The interaction distance is defined as the CM-distance for complexes 
11-15 and the 2nd distance reported for complex 22. All data used to construct this table 
was obtained from Ref. 48.  

CM-Distances (Å)
RMSE (Hydrogen bonded) 1.32 0.035 0.047
RMSE (Dispersion bonded) 0.76 0.144 0.104
RMSE (Mixed bonded) 0.40 0.304 0.117

RMSE 0.90 0.192 0.095
MUE 0.72 0.097 0.071

Interaction Distances (Å)

BLYP-D / TZV(2d,2p)

Interaction Energies (kcal/mol)
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 Above we have compared binding energies and interaction distances, determined 

with the BLYP-D method, to the benchmark S22 structures, and have seen that this 

method is relatively successful. It is also useful to consider the benefit that is gained by 

using a DFT-D method over a traditional (uncorrected) DFT method. Jurečka and 

colleagues36 have made these data available; reporting optimized binding energies and 

CM-distances between the two monomers, using the TPSS functional both with and 

without dispersion correction. In addition, the TPSS-D optimized structures were 

graciously provided by the authors upon our request, allowing the interaction distances to 

be calculated for comparison. The statistical data for the optimized interaction energies, 

center-of-mass (CM) and interaction distances are reported in Table 2.4 (detailed results 

for the individual complexes are shown in Table B-4). The RMSE for the binding 

energies of the S22 complexes decreases from 2.7 to 1.1 kcal/mol upon inclusion of the 

empirical dispersion correction to the TSPP results. A more drastic improvement is 

observed for the CM-distances, the RMSE decreased from 0.524 to 0.062 Å. This clearly 

shows the benefit of using an empirical dispersion term with traditional DFT methods.   

In Table 2.2 (single-point TPSS and TPSS-D analysis), it is shown that by 

applying the dispersion correction to the TPSS functional, the overall interaction energy 

error decreases for the hydrogen bonded complexes; however, this is not true upon 

geometry optimization. For TPSS-D optimized hydrogen bonded structures, the RMSE 

increases for the interaction energies from 1.3 to 1.8 kcal/mol. The error associated with 

the CM-distances also increases from 0.023 to 0.051 Å. These results indicate that it is 

better to use the uncorrected TSPP functional, if the dominant interaction is hydrogen 

bonding; (a conclusion that does not necessarily extend to other functionals). This is a 
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non-intuitive result; including theory otherwise neglected gives a worse result? This is 

just a consequence of BSSE, which is more prevalent in hydrogen bonded complexes due 

to their short inter-molecular distances. As observed in Table 2.2, CP-correcting the 

TPSS result causes the RMSE to decrease from 0.6 to 0.4 kcal/mol. Thus, if the 

calculations were performed at the complete basis set limit, it would likely be found that 

the TPSS-D method outperforms TPSS method for hydrogen bonded complexes upon 

geometry optimizations. It should be noted that a new set of dispersion parameters would 

be needed since these parameters are basis set depended36. 

 
 
 

Table 2.4: A statistical comparison of the geometry optimized interaction energies 
(kcal/mol) and CM-distances (Angstroms) for the complexes in the S22 database. LP = 6-
311++G(3df,3pd). The interaction distance is defined as the CM-distance in complexes 
11-15 and 2nd value reported for complex 22. The TPSS/LP interactions energies and 
CM-distances used to construct this table were obtained from Ref. 36. The interaction 
distances were computed from the optimized structures obtained from the authors36.   

ΔE (kcal/mol) CM-Distance (Å) ΔE (kcal/mol) CM-Distance (Å) Interaction Distances (Å)
RMSE (Hydrogen bonded) 1.3 0.023 1.8 0.051 0.070
RMSE (Dispersion bonded) 3.9 0.812 0.3 0.039 0.040
RMSE (Mixed bonded) 2.0 0.331 0.2 0.089 0.084

RMSE 2.7 0.524 1.1 0.062 0.067
MUE 2.1 0.342 0.6 0.036 0.045

TPSS-D / LPTPSS / LP

 

 
 
 

When the interaction energies for the structures in the S22 database as computed 

with the BLYP-D and TSPP-D methods are compared, it is found that the BLYP-D 

method performs slightly better. The total RMSEs for the S22 database are 0.90 and 1.1 

kcal/mol respectively. On the other hand, if the interaction distances or CM-distances are 
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compared, the TSPP-D method outperforms BLYP-D. The interaction distance RMSE for 

the BLYP-D method is more than twice that of the TSPP-D method (see Table 2.3 and 

Table 2.4). Graphical comparisons are presented in Figure 2.8, where the deviation from 

the reference interaction energies (Figure 2.8A) and distances (Figure 2.8B) are plotted 

against the S22 complex number. Here it can be clearly seen that the TPSS-D method is 

superior for producing interaction energies upon optimization in almost all cases of 

dispersion and mixed complexes. What is really remarkable about the TSPP-D method, 

however, is that the RMSE in the energy does not change upon optimization for the 

dispersion and mixed bound complexes. This is not achieved by any other method 

considered. The TSPP-D method also performs considerably better then BLYP-D for 

interaction distances, which can be seen in Figure 2.8B and is backed by the statistical 

data in Table 2.3 and Table 2.4. The TSPP-D method, however does not outperform 

BLYP-D upon optimization for the hydrogen bonded complexes based on both the 

interaction energies and distances.  In fact, the uncorrected TSPP method outperforms 

both corrected methods. (See Figure 2.8 and/or Table 2.3 & Table 2.4.) Again, CP-

correcting the TSPP-D method should improve the error for the hydrogen bonded 

complexes. This is not the case for the BLYP-D method due to the nature of the CP-

correction; which decreases the binding. As shown in Figure 2.8A for the BLYP-D 

method, most of the deviations are in the positive direction indicating the complexes are 

under bound. Thus, very careful consideration should be taken when picking a DFT-D 

method depending on the dominant interaction(s) in the system.  
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Figure 2.8: Graphical representation showing deviations of the optimized interaction 
energies (kcal/mol) (Figure A) and CM-distances (Å) (Figure B) from the S22 CCSD(T) 
reference values45. The TPSS values for the interaction distances are only shown for the 
hydrogen bonded complexes. This was done for clarity and axis scaling proposes, many 
of the other points are far off scale, see Table B-4. Note that a positive deviation indicates 
that the complex is under bound and if it is negative the complex is over bound. LP = 6-
311++G(3df,3pd). The TPSS and TPSS-D data used to construct these figures were 
obtained from Ref. 36 and the BLYP-D data from Ref. 48. 
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Antony and Grimme39 also subjected the B97-D and BLYP-D methods to testing 

with a larger database (JSCH-2005) containing DNA base pairs and amino acid pairs. 

The database is MP2 and CCSD(T) quality. (For further detail see Ref. 45). The JSCH-

2005 database plus the S22 database, consists of 161 complexes. The RMSE for the 

combined database are 0.92 and 0.85 kcal/mol for B97-D and BLYP-D respectively, 

showing BLYP-D to be more accurate. This is opposite to what is found when looking at 

only the S22 database. Antony and Grimme39 still recommend using the B97 functional, 

however, “because it provides a more consistent description of non-covalent complexes 

compared to normal thermochemistry39.” This statement is supported by the RMSE for 

the dispersion-bonded complexes in Table 2.1. Antony and Grimme conclude that, “the 

DFT-D ΔE values are essentially of coupled cluster quality39.” DFT-D calculations 

(TZV(2df,2pd) basis) may be computational efficient in comparison to CCSD(T) 

(extrapolated to the CBS limit); however, even DFT-D calculations are not cheap and are 

typically only practical for systems consisting of less than a few hundred atoms.  

   2.3.2 SE-D Methods 

 Empirically corrected semi-empirical (SE) methods for modeling dispersion 

interactions have not received a lot of attention in comparison to DFT-D methods, but 

SE-D methods potentially have a huge computational efficiency advantage over DFT-D. 

Modeling very large systems (hundreds or even thousands of atoms) with accuracy is of 

significant interest in the scientific community. Systems such as, molecular devices, 

polypeptides, DNA and RNA are of great importance, but are currently essentially 

inaccessible to DFT-D calculations. SE-D methods have the potential of making accurate 

inter-component interaction energies for such systems computationally accessible. In this 
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section, the results of empirically correcting the popular AM1 and PM3 semiempirical 

methods for improved description of dispersion interactions will be considered. 

 As discussed in Section 2.1, the AM1 and PM3 methods neglect dispersion 

interactions because they are HF-based and HF theory assumes an uncorrelated electron 

wavefunction. Incorporating an empirical correction provides one possible approach to 

modeling van der Waals bonded complexes with SE methodology. McNamara and 

Hillier22 have applied Grimme’s empirical dispersion correction to the AM1 and PM3 

methods. To achieve more accurate results, McNamara and Hillier re-optimized 18 of the 

AM1 and PM3 parameters (for H, C, N, and O) using the S22 database as the training set. 

They also considered different global scaling factors when optimizing the AM1 and PM3 

parameters. They concluded that the final result is independent of the global scaling 

factor because the AM1 and PM3 parameters adjust to accommodate the different global 

scaling factors considered. This finding suggests that some of the AM1 and PM3 

parameters did not need to be optimized, just the global scaling factor for each method 

and possibly also the damping constant. McNamara and Hillier used the same global 

scaling factor and damping constant for both semiempirical methods and optimized the 

AM1 and PM3 parameters. More accurate results with less parameterization might have 

been achieved if optimal parameters for the dispersion term were found for both AM1 

and PM3. They choose to use the same parameters that Grimme34 used with the BLYP 

functional because of possible QM/MM implications, since using the same dispersion 

parameters avoids a discontinuity at the QM/MM boundary.     

McNamara and Hillier did attempt to adjust only the dispersion parameters, and 

not change the SE parameters, but “found the final results to be quite poor22.” They did 
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not report these values; however, so we performed these calculations and found that the 

poor results arise almost exclusively from the hydrogen bonded complexes (see AM1-Da 

results in Table 2.5). The re-parameterization of the AM1 and PM3 methods significantly 

decreases the RMSE of hydrogen bonded complexes from 9.25 to 1.56 kcal/mol for the 

AM1 methods. By contrast, it has actually increased the RMSE for the dispersion and 

mixed complexes. This suggests that the carbon, and perhaps hydrogen, parameters 

should not have been changed. The empirically corrected methods of McNamara and 

Hillier are significant improvements over the traditional AM1 and PM3 methods. The 

RMSE for the uncorrected AM1 and PM3 methods are 8.47 and 7.73 kcal/mol22, based 

on the S22 database. As can be seen, the empirically corrected AM1-D and PM3-D 

methods are far superior to their uncorrected counterparts, with RMSEs of 1.23 and 1.18 

kcal/mol respectively. The AM1-D method outperforms the PM3-D method for 

dispersion-bonded complexes; on the other hand, PM3-D outperforms AM1-D for 

hydrogen bonded complexes. The PM3-D method surprisingly even outperforms the 

BLYP-D method for hydrogen bonded complexes, based on the RMSE for the S22 

database. All of this error analysis data is presented in Table 2.5. Detailed information for 

the individual complexes is reported in Table B-5. 
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Table 2.5: Single-point interaction energies (kcal/mol) at the S22 geometries. a AM1-D 
results without re-parameterization of AM1 method (S6=1.1 and d=23.0). The AM1, 
PM3, AM1-D, and PM3-D interactions energies used to construct this table were 
obtained from Ref. 22 and the PM3-D* and PM6-DH values from Ref. 49 and 23 
respectively. 

       

AM1 PM3 AM1-Da AM1-D PM3-D PM3-D* PM6-DH
RMSE (Hydrogen bonded) 11.64 7.77 9.25 1.56 0.76 2.85 1.07
RMSE (Dispersion bonded) 8.21 10.13 0.61 0.82 1.68 0.81 0.54
RMSE (Mixed bonded) 3.57 3.22 0.77 1.25 0.72 0.92 0.57

RMSE 8.47 7.73 5.25 1.23 1.18 1.76 0.76
MUE 6.54 5.94 2.77 0.85 0.90 1.23 0.59

              

 

 Thus far we have considered only the energies corresponding to the structures in 

the S22 database, but it is also important to consider the effect of optimizing with the 

AM1-D and PM3-D methods. McNamara and Hillier22 optimized all systems in the S22 

database with both methods. Upon optimization, the RMSEs for the binding energy 

increased to 2.47 and 1.60 kcal/mol for the AM1-D and PM3-D methods respectively. 

These results are reported in Table 2.6, along with the RMSE associated with each 

subgroup of complexes in the S22 database. (Detailed results for the individual 

complexes are shown in Table B-6.) The partitioning of errors shows that the dispersion-

bonded complexes are drastically affected by optimization with the AM1-D method; the 

RMSE increased from 0.82 to 2.36 kcal/mol. The RMSE error in the interaction energy 

for the PM3-D method was hardly affected, suggesting that this method should be 

preferred over AM1-D. The uncorrected AM1 and PM3 methods actually show 

improvement for the energies of dispersion-bonded complexes upon optimization. This is 

just because the reference geometries are repulsive at the uncorrected AM1 and PM3 
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levels since dispersion interactions are neglected. Thus, upon optimization, the 

complexes dissociate. This is why it is important to consider structural changes upon 

optimization. Based solely on the interaction energy analysis, the PM3-D method 

outperforms the AM1-D method when optimizations are performed. This could just be a 

result of the parameterization, that is, better parameterization of the AM1 method might 

be achievable.     

 

 

Table 2.6: Geometry optimized interaction energies (kcal/mol) for the S22 complexes. 
The AM1, PM3, AM1-D, and PM3-D interactions energies used to construct this table 
were obtained from Ref. 22 and the PM3-D* and PM6-DH values from Ref. 49 and 23 
respectively. 

AM1 PM3 AM1-D PM3-D PM3-D* PM6-DH
RMSE (Hydrogen bonded) 9.90 8.04 3.38 1.82 2.66 1.40
RMSE (Dispersion bonded) 3.73 3.65 2.36 1.71 2.79 0.80
RMSE (Mixed bonded) 2.96 2.40 2.09 1.40 0.89 0.82

RMSE 6.25 5.22 2.65 1.65 2.31 1.04
MUE 4.82 4.09 2.16 1.51 1.60 0.82  

                 

 

 McNamara and Hillier22 also considered the structural distortion resulting from 

optimization with the AM1-D and PM3-D methods. The group reported the interaction 

distances (see Ref. 22) for the AM1, PM3, AM1-D, and PM3-D methods. The resulting 

error analysis is shown in Table 2.7. (It should be noted that we disagree with the 

reference interaction distance reported by McNamara and Hillier22, for the indole-

benzene (S14) complex. They reported a value of 3.444 Å; we calculated the value to be 

3.498 Å. We are in agreement for all other interaction distances reported.) The RMSE in 
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interaction distances for the AM1-D and PM3-D methods are 0.419 and 0.249 Å 

respectively. The PM3-D method more accurately reproduces the energies and structures, 

overall and in all categories, than the AM1-D method. Not surprisingly, both methods 

significantly outperform the uncorrected methods. The PM3-D interaction distance error 

is actually comparable to that of the BLYP-D (Table 2.3), which is 0.183 Å. Most of the 

difference can be related back to the hydrogen bonded complexes (PM3-D RMSE (H-

bonded) = 0.134 Å and BLYP-D RMSE (H-bonded) = 0.035 Å. This suggests that the 

PM3 method, as well as the AM1 method, needs to be better parameterized for hydrogen 

bonding. One of the most surprising findings is that AM1-D performs quite poorly for the 

dispersion bound complexes upon optimization as measured by either the interaction 

energy or distance. It can be seen in Figure 2.9 that all the complexes are over bound 

based on interaction energy and most exhibit an over-bound (i.e. too short) interaction 

distance as well. The same can generally be said for the PM3-D method, however, the 

errors are not quite as drastic. It is conceivable that a more accurate semi-empirical 

method could be developed if the training set used to optimize the parameter contained 

complexes on both sides of the minimum of the potential well. McNamara and Hillier 

used the S22 database to obtain the new AM1 and PM3 parameters; but this database 

contains only optimized complexes, i.e. structures at the minimum of the potential energy 

surface. If a larger and more diverse training set were used, potentially more accurate 

geometries and energies could be obtained upon optimization. Such an approach could 

also benefit DFT-D methods. 
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Table 2.7: Geometry optimized interaction distances (Angstroms) for the S22 complexes. 
The interaction distance is defined as the CM-distance in complexes 11-15 and 2nd value 
reported for complex 22. All interactions energies used to construct this table were 
obtained from Ref. 22. 

AM1 PM3 AM1-D PM3-D
RMSE (Hydrogen bonded) 0.387 0.257 0.137 0.134
RMSE (Dispersion bonded) 2.015 1.962 0.644 0.272
RMSE (Mixed bonded) 0.929 0.598 0.336 0.315

RMSE 1.277 1.171 0.419 0.249
MUE 0.853 0.691 0.301 0.199  

 
 
 
 

Hillier and colleagues49 more recently reported a re-parameterized version of the 

PM3-D method, named PM3-D*. (The results are summarized in Table 2.5 & Table 2.6, 

details information about the individual systems can be found in Table B-5 & Table B-6.) 

The training set for optimization of the parameters consisted of the S22 database along 

with 9 carbohydrate-benzene complexes calculated at the BLYP-D/TZV(2d,2p) level. 

The group also optimized more parameters associated with the PM3 method and added a 

tailored version of the core-core repulsion function developed by Voityuk and Rösch50, in 

attempt to achieve a more accurate method. The group claims that the new PM3-D* 

method reduces the geometry optimized mean unsigned error (MUE) from 2.16 to 1.40 

kcal/mol for the S22 database complexes; however, we are unable to reproduce these 

numbers. From the interaction energies reported by Hillier and colleagues, we find the 

MUE to be 1.51 and 1.60 kcal/mol for the PM3-D and PM3-D* method respectively. It 

therefore appears that not only are the RMSE numbers reported by Hillier and colleagues 

incorrect, but the PM3-D* method is worse for optimizing the S22 database complexes 

than PM3-D. The MUE value reported for the PM3-D optimized energies in Ref. 49 
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(2.16 kcal/mol), disagrees with what was previously reported in Ref. 22 (1.51 kcal/mol), 

which is reproducible. The reported MUE value of 2.16 kcal/mol is the same value 

previously reported for the AM1-D method. The origin of error related to the MUE value 

associated with the PM3-D* is unknown. To the credit of the PM3-D* method, it does 

show significant improvement for a variety of interactions of carbohydrates and amino 

acids with aromatic systems, which was the stated main goal in developing the new 

method. 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

-5

-3

-1

1

3

5

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2

A 

 

2

PM6-DH

AM1-D
PM3-D

S22 Database Complex #

E 
-E

(R
ef

.) 
kc

al
/m

ol

H-bonded Dispersion Mixed

B 

 

-1.00

-0.50

0.00

0.50

1.00

1 2 3 4 5 6a 6b 7a 7b 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22a 22b

AM1-D
PM3-D

S22 Database Complex #

E 
-E

(R
ef

.) 
Å

H-bonded Dispersion Mixed

Figure 2.9: Graphical representation showing deviations in the optimized interaction 
energies (kcal/mol) (Figure A) and distances (Å) (Figure B) from the S22 CCSD(T) 
reference values45. Note a positive deviation indicates that the complex is under bound 
and if it is negative the complex is over bound. Complexes 6, 7, and 22 are defined by 
two interaction distances and are represented by superscript a and b. The AM1-D, and 
PM3-D interactions energies and distances used to construct this table were obtained 
from Ref. 22 and the PM6-DH interactions energies from Ref. 23. 
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Very recently Řezáč and colleagues23 published an empirically corrected PM621 

method for dispersion and hydrogen-bonding interactions, named PM6-DH. To 

incorporate dispersion interaction, the group used the empirical correction described by 

Jurecka et al.36 that is they used Eq. 2.19 and Eq. 2.21. The group optimized the two 

dispersion parameters to complexes 8-22 of the S22 database, a very small training set. 

Thus, it is not surprising that they have achieved very accurate signal-point interaction 

energies for the dispersion bonded complexes. The RMSE for the dispersion bonded 

complexes is 0.54 kcal/mol (see Table 2.5). They also achieved good results for the 

optimized interaction energy, a RMSE of 0.80 kcal/mol (Table 2.6). Unfortunately, the 

group did not report any interaction distances or CM-distances, nor did they provide 

optimized structures. Therefore, we are unable to provide a structural distortion 

comparison. To gain a little insight into the structural distortion we have constructed a 

potential energy curve for the parallel benzene dimer. The graph is shown in Figure 2.10. 

This figure shows that the PM6-DH method severely over binds this dispersion bound 

system. Based on this one system, it seems that the PM6-DH method could benefit from 

more parameterization for the dispersion parameters. 
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Figure 2.10: Potential energy curves for the parallel benzene dimer as determined with 
the PM6-DH method. a Ref. 51. 

 
 

 

To improve the PM6 method for H-bonding Řezáč and colleagues included a 

second correction term involving 3 parameters. The correction term is applied to H-

bonding situations, but not all types of H-bonds are modeled with the same parameters. 

The group identified 8 types of H-bonds and used a different set of 3 parameters for each 

type, for a total of 24 H-bonding parameters. The group did use a relatively large training 

set to determine these parameters. They used 14 point potential energy curves for 104 

hydrogen bonded complexes; this is the kind of parameterization training set that could 

benefit the dispersion parameters. The major shortcoming with their hydrogen bonding 

correction term is that atom connectivity information is required. Therefore, PM6-DH is 

unable to model bond formation and bond breaking A major benefit of a quantum 

mechanical techniques is thereby lost. Even after all this hydrogen bonding 
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parameterization, the PM6-DH method is outperformed by McNamara and Hillier22 

PM3-D method for the single-point interaction energies (see Table 2.5), albeit not for the 

optimized interaction energies for the hydrogen complexes. The PM6-DH method results 

in a RSME for the optimized hydrogen bonded complexes of 1.4 kcal/mol (PM3-D 

RMSE = 1.82 kcal/mol). As noted before, the ability for a method to perform well upon 

optimization is arguably much more important.    

The PM6-DH method currently produces the lowest RMSE for the full S22 

database for both the signal-point (0.76 kcal/mol) and optimized energies (1.04 

kcal/mol); when compared to other published empirically corrected SE methods. The 

optimized interaction energy and distance results for the AM1-D, PM3-D and PM6-DH 

(optimized interaction distances are not available) are graphically summarized in Figure 

2.9. Figure 2.9A shows the optimized interaction energy deviations from the reference 

values as a function of S22 database complex number. Looking at the hydrogen bonding 

curves it can be seen that the points are distributed evenly (i.e. similar positive and 

negative deviations) for the PM3-D and PM6-DH methods. This likely indicates that 

optimal parameterization has been achieved. Thus, to achieve appreciable improvements 

an additional or different correction term would be needed.  On the other hand, the 

dispersion complexes are virtually all over bound, indicting further benefits likely could 

be achieved with better parameterization. This over binding is not solely due to the 

parameters in the dispersion term; it is caused by the weak repulsive wall associated with 

the SE methods. This weak repulsive wall is an artifact of the minimal basis set used in 

the NDDO approximation52 that is commonly employed in SE methods. The effect of 

using a minimal basis set is shown in Figure 2.11; where the HF method is used to model 
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the parallel benzene dimer with different basis sets. As the number of valence basis 

functions increase from 1 to 3 (STO-3G  3-21G  6-311G), the repulsive wall also 

increases. Thus, the use of a minimum basis severely limits the accuracy. Another issue, 

as mentioned earlier, is that SE methods are parameterized to experimental data. Since 

experimental data includes electron correlation, SE methods implicitly incorporate some 

correlation, although, not explicitly in the wavefunction.        
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Figure 2.11: Potential energy curves for the parallel benzene dimer as determined with 
the HF method using if basis sets. This figure serves as a visual aid showing the affect of 
basis set on binding energy at short-range. 

 
 
 

McNamara and Hillier22 also considered the JSCH-2005 database, as did Antony 

and Grimme39. They neglected complexes containing sulfur, however, because no 

systems containing sulfur are present in the S22 database, which was their training set for 
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parameterization. This reduced the size of the database to 156 complexes instead of 161 

as used by Antony and Grimme. The RMSE for the total database at the reported 

geometries are 1.54 and 1.68 kcal/mol for AM1-D and PM3-D respectively. These errors 

represent a significant improvement over the standard AM1 and PM3 methods. RMSE 

for the SE-D methods is about twice that of the B97-D (0.92 kcal/mol) and BLYP-D 

(0.85 kcal/mol) methods; however, significantly less computational time is required. 

Hillier’s group43 later re-parameterized AM1-D and PM3-D for sulfur and claimed to 

achieve significant improvements. These empirically corrected SE methods considered 

are not of DFT-D quality; however, these methods are capable of model system far 

beyond the scope of DFT-D methods. 

2.4. Conclusion 

 Empirically corrected DFT and SE methods for dispersion interactions have been 

used with considerable success. It is found, not unexpectedly, that DFT-D methods are 

more accurate than SE-D methods. This accuracy is a result of DFT methods more 

precisely describing the electrostatic and exchange-repulsion interactions. Consequently, 

DFT methods describe hydrogen bonding with considerably higher accuracy. In both 

cases, adding an empirical dispersion correction significantly increases the accuracy for 

modeling dispersion-bonded complexes, since in both cases (depending on the DFT 

functional) inter-component dispersion interactions are neglected. This seems to suggest 

that, in theory, the same accuracy could be achieved with a SE-D method when 

dispersion interactions are the only inter-component binding forces, if optimal empirical 

parameters are used. In reality this is not possible without an addition correction term for 

the repulsive wall, or at least not without significant re-parameterization of the SE 
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method itself. The empirically corrected and re-parameterized AM1-D and PM3-D 

methods are significant improvements over their uncorrected predecessors. Even greater 

accuracy has been achieved with the recently published PM6-DH method.  

Partitioning the RMSE for the different subset of complexes showed that the 

dispersion-bonded complexes are described well with DFT-D and the SE-D methods, 

based on the S22 database geometries. Upon geometry optimization, the PM6-DH 

method outperforms both the AM1-D and PM3-D methods. For the DFT-D methods, the 

TPSS-D method performs the best. This method reproduces the same RMSE for 

dispersion complexes and mixed complexes upon optimization based on the interaction 

energy. The TPSS-D method also distorts the structure the least upon optimization. Both 

DFT-D and SE-D methods perform less-well for hydrogen bonded complexes. 

In order for these methods to be widely applicable, they must produce reasonable 

optimized structures. Therefore, it is very important to consider the geometries produced 

upon optimization. Improvements could perhaps be achieved if the training set for 

optimization of the empirical parameters contained complexes not just at the potential 

minimum, as in the S22 database. Considering complexes on both sides of the potential 

minimum should help produce better results upon optimization. Such improvement 

would be at the expense of less accurate single-point energies though. Although DFT-D 

methods perform relatively well in this area, increasing the training set would very likely 

benefit the methods. 

Another important issue is the computational efficiency of the two methods. 

Though DFT-D methods provide more accurate results, the computational expense can be 

100-1000 times greater. Therefore, SE-D methods have a huge computational cost 
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advantage. If it is desired to accurately model systems composed of less than 100 atoms 

or so, DFT-D is a better choice. When modeling systems composed of several 100 or 

even 1000’s of atoms, however, SE-D methods are far superior from the standpoint of 

computational efficiency. 
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Chapter 3: A New Empirical Correction to the AM1 Method for Macro-Molecular 

Complexes 
 

 

3.1 Introduction 

Herein, we present an empirical correction for the AM1 method that is suitable for 

modeling macromolecular complexes and avoids the noted shortcomings of existing 

techniques mentioned in Chapter 1. We have chosen to apply separate empirical 

correction terms for dispersion and hydrogen-bonding.  Our method requires significantly 

less parameterization than the AM1-D and PM3-D methods of McNamara and Hillier22 

and also the PM6-DH method of Řezáč et al.23.  Additionally, it is important to note that 

we have not altered any of the original AM1 parameters. Such changes can have 

deleterious effects on predictions of properties not based strictly on the total energy or its 

derivatives; such as heats of formation, ionization potentials, and dipole moments, if 

these quantities are not taken into consideration during re-parameterization. Our method 

also does not require knowledge of atom connectivity. We will henceforth refer to our 

new method as “AM1-FS1”.  AM1-FS1 achieves results that are comparable to, (and in 

many cases better than) those of other empirically corrected SE methods, with 

significantly less parameterization and with no reparameterization of the AM1 method.  

The main objective of AM1-FS1 is to accurately model macromolecular host/guest 

systems that are currently out of reach of DFT-D techniques.  AM1-FS1 aims to not only 

accurately predict energies but also reasonable structures upon geometry optimization, 

since structural optimization is one of the main uses for such a technique.  Herein, the 

accuracy of AM1-FS1 is tested by comparing interaction energies and distances to 
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CCSD(T) and SAPT results; comparisons are also made with other empirically corrected 

semi-empirical techniques.  

3.2 Theory  

   3.2.1 Dispersion Correction 

 To correct the AM1 method for dispersion interactions, we have employed a 

method used by Grimme35 with a slight modification suggested by Jurečka et al.36.  The 

resulting dispersion correction is of the form:         
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where rij is the atom-atom separation, C6
ij is the dispersion coefficient, and fdamp is a 
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This damping function depends on the equilibrium van der Waals separation (Rvdw) and 

the pair-wise atom separation (rij).  The damping function also depends on two unitless 

parameters SR and d, which have been optimized to a training-set as discussed at length in 

Section 3.2.3.  The damping function operates as a switching function, turning off the 

dispersion term at short range.  This is required because the SE wavefunction already 

models short-range repulsive interactions.  Thus the popular 6-12 Lennard-Jones (LJ) 

potential is not suitable for use as a dispersion correction since a repulsive term is 

involved. (See Ref. 53 for a more detailed discussion and graphical representations).  
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 It should be noted that we tried employing the global scaling factor, used by 

Grimme34, 35, instead of scaling the equilibrium van der Waals separation (SR); however, 

a smaller root mean square error (RMSE) was obtained on our training-set using SR 

(discussed in section 3.2.3).  Scaling Rvdw seems theoretically well motivated, since this 

allows only the short-range interactions to be tailored and leaves untouched the long-

range interactions for which the correct functional form of the interaction is known to 

follow r-6. (See Ref. 53 for a more detailed discussion and graphical representations). 

Another decision concerns the choice of combination rules used for obtaining C6
ij 

and Rvdw. We have chosen to employ the geometric mean and simple average 

combination rules for determining C6
ij and Rvdw, respectively: 

                                                 jiij CCC 666 =  ,  
2
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vdw

RR
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=    .                              (3.3) 

The dispersion coefficients (C6
i and C6

j) and van der Waals radii (Ri and Rj) for the 

different atoms were obtained from Grimme’s 2006 publication35. The decision of using 

these particular combination rules was not made without considering other options. For 

C6
ij, both the harmonic mean34 and the combination rule suggested by Wu and Yang31, 

which uses the Slater-Kirkwood effective number of electrons, were considered.  For 

Rvdw, the cubic mean suggested by Halgren38 was also considered.  We have also 

considered all possible combinations and found that the parameters (SR and d) seemed to 

adjust to accommodate the different combination rules.  The combination rules employed 

yielded the lowest RMSE for our training-set.  It should be noted that only Grimme’s 

2006 published dispersion coefficients and van der Waals radii values were considered. 
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This dispersion correction scheme and its gradient (see Appendix C) has been added to 

the AM1 method and implemented into a locally modified version of GAMESS54.  

   3.2.2 Hydrogen-Bonding Correction 

 Correcting the AM1 method for hydrogen-bonding is a more difficult task than 

correcting for its neglect of dispersion since hydrogen-bonding interactions are already 

in-part considered, given their partial electrostatic nature.  It can be seen by looking at the 

H-bonded systems (1-7) in the S22 database (Table 3.1) that the AM1 method severely 

under binds such complexes.  The AM1 method does, however, produce more reasonable 

interaction energies for hydrogen-bonded systems upon geometry optimizations (Table 

3.2); this is because AM1 generally predicts dispersion-bound complexes to be unbound, 

while for H-bonded complexes it predicts some bonding, but generally with an 

unphysically large equilibrium separation (see Table 3.3).  Thus, to improve the AM1 

method for predicting H-bonding systems, the strength of these interactions needs to be 

increased at medium-to-short range.  We have achieved this by adding a post-SCF (this 

term has since been added in a SCF manner, see Appendix D) pseudo-electrostatic term 

of the form:           

                                               ( ) ( )ijdamp
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E 2
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where α1 is a global scaling factor, Qi and Qj are the AM1 Coulson charges55 (which are 

referred to as MOPAC charges in GAMESS54), rij is the H---Y separation, θ is the XH---

Y angle, and fdamp2 is a damping function of the form:  

                                                ( )
( )

( )( )224
2
3

2
2

1
2

vdwij

vdwij

Rr

Rr

ijdamp erf ααα

α

−+

−−

=    ,                              (3.5) 



55 
 
where α2, α3, and α4 are parameters and all other terms have the same meanings as in the 

dispersion correction. In this case, however, Rvdw is defined as the cubic mean, 

                                                           22
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+

=   .                                                 (3.6) 

The cubic mean is used in this case because it yields a slightly smaller RMSE for the F66 

training set than using the simple average combination rule. 

The damping function is an asymmetric distribution function (see Figure 3.1A) 

that turns the hydrogen-bonding function on/off over an appropriate range for correcting 

the AM1 method.  To achieve an asymmetric distribution, three parameters (α2, α3, α4) 

have been introduced, giving a total of 4 parameters in the H-bonding correction. We 

have optimized these four parameters to improve upon H-bonding for the AM1 method. 

A detailed discussion is presented in the next section.   

The H-bonding correction function also depends on the square of the cosine of the 

XH---Y angle. This is motivated by the observation that H-bonding interactions are 

directionally dependent56.  The cosine squared function was used instead of the cosine 

function because it approaches zero smoothly.  We have also chosen to make the function 

zero for all angles less then 90 degrees.  This helps exclude cases that are not H-bonding; 

such as an alpha-H atom in a carboxylic acid interacting with the adjacent carboxylate O 

atom.  By using an appropriate summing scheme, we are able to identify highly likely H-

bonding scenarios without knowledge of atom connectivity.  This is done by first 

identifying H atoms for which the nearest neighbor is an N, O, or F atom.  These H atoms 

are then allowed to interact with other N, O, or F atoms.             
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The overall function (Eq. 3.4) is shown graphically in Figure 3.1B, where it can 

be seen that the function is only turned on over a short range, peaking at approximately 

2.8 bohr (1.5 Å), (for the specific bonding scenario depicted).  This is the behavior that is 

needed to improve the AM1 method for H-bonding, since these interactions only need to 

be increased over a short range and only at short distances.  The nature of the charges 

(MOPAC) of the atoms involved in H-bonding insures that Eq. 3.4 is negative, resulting 

in an attractive contribution. The charges are updated every optimization step. The 

optimization procedure also requires the gradient, which is determined by numerical 

differentiation. This correction scheme and its gradient (see Appendix C) has been 

implemented into a locally modified version of GAMESS54. 

The hydrogen bonding correction scheme as described above is continuous for 

proton transfer under most conditions. In most cases, the correction term effectively turns 

off, (i.e. is essentially equal to zero) before the proton reaches the half-way point in a 

proton transfer. For example, when a proton transfers between two formic acid 

molecules, the intercomponent oxygen-oxygen separation is about 2.7 Å; therefore, when 

the proton reaches the half-way point the H---Y distance is about 1.35 Å (2.55 bohr) and 

the H-bonding correction term is approximately zero (see Figure 3.1B). The function is 

also continuous when the molecules are separated by a greater distance even though there 

is a nonzero correction at the half-way point because at this point the function is identical 

in both directions (H---Y equals X---H). When the proton passes the half-way point, the 

H-bonding correction term corrects in the opposite direction. If a proton is transferring 

across an asymmetric system, however, a discontinuity can occur since the charges on the 

X and Y atoms may not be the same. This discontinuity can be eliminated by evaluating 
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Eq. 3.4 in both directions at all times and taking the correction to be a weighted sum of 

the two. This correction has been implemented into AM1-FS1 and has no effect on any of 

the binding energies reported in this manuscript, since evaluating the function in the 

opposite direction (considering the X---H bond to be H-bonding) leads to no correction 

because the X---H distance is essentially always less than 1 Å (1.9 bohr).  In summary, 

the switching transition from one H-bonding situation to another is effectively continuous 

during a proton transfer. We currently cannot recommend AM1-FS1 for modeling proton 

transfers, however, since it has not been tested and more importantly because our training 

set does not contain data to parameterize for such situations. Nevertheless this correction 

scheme does not produce discontinuities. High quality (CCSD(T) and DFT-SAPT) proton 

transfer potential energy curve are scarce, rendering such a parameterization difficult at 

this time. We plan to explore this avenue in the future. 

 

A.                                                                               B.

            
Figure 3.1: Graphical representation of the H-bonding damping function (A), the entire 
correction term (solid-line) and the electrostatic attractive portion (dotted-line) (B) used 
in the AM1-FS1 method. This model is for the case of the alpha-hydrogen atom 
(connected to the nitrogen atom) interacting with the parallel oxygen atom on the second 
monomer of the uracil dimer in the hydrogen bonding conformation. The MOPAC 
charges used correspond to the minimum energy structure (O---H R=1.77); this 
simplification has little effect on the functional form. This simplification has been used 
for graphical convenience.  
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   3.2.3 Parameter Optimization 

 To improve the AM1 method for dispersion and hydrogen-bonding interactions 

two empirical correction terms have been added as discussed above.  These two 

correction terms involve a total of 6 parameters: two for the dispersion term (Eq. 3.1) and 

four for the H-bonding term (Eq. 3.4).  These 6 parameters have been mathematically 

optimized to the RMSE of the interaction energies of 66 complexes (the F66 training set, 

see Table E-1).  All of the interaction energies in the training set are CCSD(T) or SAPT 

quality.  The training set consists of complexes not only at their minimum energy 

structures but also at greater and lesser separation than the potential minimum. Inclusion 

of these non-equilibrium structures is intended to increase the reliability of geometry 

optimization with AM1-FS1. 

 Our F66 training set includes the complexes in the S22 database45, which has been 

used by others for similar parameterization purposes22, 36, 46.  We have also included the 

four additional H-bonded complexes57 that were later introduced to the S22 database, 

now termed the S26 database.  The additional interaction energies are also CCSD(T) 

quality. In our F66 training set the water dimer, T-shaped benzene dimer, and both uracil 

dimer structures from the S22 database have been replaced by 5 points on their respective 

interaction potential energy curves. In addition, 5 point potential energy curves have been 

added for the nitromethane dimer58, parallel51 and M159 benzene dimer, and three 

different benzene-acetylene60 dimer conformations.  For a detailed list of complexes in 

the training set refer to Table E-1 in the supplementary material.  It would be desirable to 

have more potential energy curves in the training set, but there is limited high quality data 
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available.  For training set proposes we have restricted ourselves to using only CCSD(T) 

or SAPT results, and only at or near the complete basis set limit.  

 Upon optimization of the parameters, the damping coefficient (d) in Eq. 3.2 

optimized to infinity.  This is because the AM1 method, as well as other semi-empirical 

methods, inaccurately models repulsive interactions at close range for dispersion bound 

complexes. This can be observed by comparing DFT and semi-empirical (AM1, PM3, 

RM1, and PM6) potential energy curves for the parallel benzene dimer, as shown in 

Figure 3.2.  The figure clearly shows that at close separation the semi-empirical methods 

(AM1, PM3, RM1, and PM6) differ significantly from the DFT (BLYP/6-311G(d,p)) 

results, severely underestimating the repulsion at close separations.  The inaccurate 

repulsive inner wall of the potential is a consequence of the minimal basis set and 

parameterization of the SE methods53.  This inaccuracy is the origin of d optimizing to 

infinity.  As d becomes larger, the dispersion correction is turned off more rapidly, 

however, the function cannot become positive as needed to correct for underestimation of 

the repulsion at short range by the SE method.  This problem could potentially be 

improved if a 6-12 LJ potential was used and only inter-component atom pairs were 

considered; however, this introduces the requirement of atom connectivity information. It 

would also introduce a discontinuity in the potential and/or its derivative during bond 

breaking and formation processes, (not to mention that intra-component dispersion 

interactions would be neglected completely, thereby rendering the method ineffective for 

modeling conformational preference in macromolecules).  We have therefore chosen to 

set d equal to 1000 and fully optimize the other 5 parameters.  The damping coefficient 

was chosen to be 1000, because this is at the computational limit for evaluating the 
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derivative of Eq. 3.1 within double precision. (Derivative information is needed for 

structural optimizations.)  The other 5 parameters optimized to the following values: S6 = 

1.1059, α1 =0.4882, α2 =0.6211, α3 =0.3344, and α4 =1.5451. 

 
 

 

 

Figure 3.2: Potential energy curves for the parallel benzene dimer determined with 
various quantum mechanical methods. a Values from Ref. 51. 

 

 

   3.2.4 Why Begin with AM1? 

AM1 has long been accepted as one of the most robust semi-empirical methods.  

This method has been used many times with success for modeling large systems, but this 

is not the only reason for choosing AM1.  We applied the same correction scheme 

described above to the RM1 method, which is a reparameterized version of AM1.  The 
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“corrected” RM1 method was actually less successful, based on the RMSE for the F66 

training set.  Upon further investigation, we found that the RM1 method, (as well as the 

PM3 and PM6 methods) performs worse than the AM1 method for the benzene dimer 

when compared to the DFT results that neglect dispersion interactions, as discussed 

above.  Thus, if the same dispersion correction is applied to these mentioned SE methods, 

the AM1 method will produce the best result; even though other uncorrected SE methods 

produce potential energy curves closer to the CCSD(T) results. This is because the AM1 

method has the strongest repulsive wall, therefore, producing a potential energy curve 

closest to the DFT result (see Figure 3.2). The functional form of the dispersion 

correction (Eq. 3.1) does not allow the term to become positive as is needed in some 

cases.  This can be easily seen for the PM6 results in Figure 3.2.  At close range the 

CCSD(T) results are more repulsive then the PM6 results, thus to make the PM6 curve 

identical to the CCSD(T) curve a repulsive correction would be needed.  This problem is 

less severe for the AM1 method, rendering it more suitable for modeling dispersion 

interactions at close range.  Note that these findings again might lead one to believe that 

using a function like the LJ potential would be beneficial, since a repulsive term is 

included.  In fact, the LJ potential was among our many attempts to improve the AM1 

method, but without success.  This was due to the fact that we were/are unwilling to add 

the burden of requiring of atom connectivity information.  We believe such a burden 

outweighs the potential added benefit.     
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3.3 Validation Studies 

   3.3.1 Single-Point Energies 

 In Table 3.1, the single-point interaction energies for the structures in the S22 

database45 are compared for various corrected and uncorrected SE methods.  First, note 

that the interaction energies for the uncorrected AM1 and PM3 methods deviate 

significantly from the CCSD(T) reference values.  The root mean square error (RMSE) 

for the AM1 and PM3 methods is 8.47 and 7.73 kcal/mol, respectively.  Not only are 

these errors very large, but in many cases the sign of the interaction is predicted 

incorrectly.  That is, the interactions are predicted to be repulsive not attractive.  The 

addition of an empirical correction term(s) can drastically improve these methods.  Our 

AM1-FS1 method reduces the RMSE to 1.18 kcal/mol, with the correct sign being 

predicted in all cases.   

The results from McNamara and Hillier’s22 AM1-D and PM3-D methods and the 

PM6-DH method of Řezáč et al.23 are also reported in Table 3.1.  AM1-FS1 shows a 

slight improvement over the AM1-D method in two of the three subcategories and over 

all has a lower RMSE. AM1-FS1 achieves comparable accuracy to the PM3-D method 

for intermolecular interaction energies; the RMSE are both 1.18 kcal/mol with AM1-FS1 

achieving a slightly lower MUE. While the overall improvement achieved by AM1-FS1 

in the accuracy with which intermolecular binding energies are predicted is minor, we 

note that this has been achieved with significantly less parameterization and no 

modification of the original AM1 parameters. 

The recently published PM6-DH method23 slightly outperforms AM1-FS1 based 

on the single-point energies for the S22 database.  Looking at the hydrogen bonded 
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complexes, the RMSE are 1.07 and 1.37 kcal/mol for the PM6-DH and AM1-FS1 

methods respectively.  Given that PM6-DH requires different parameters for each type of 

hydrogen bond, the 0.3 kcal/mol improvement in RMSE shown by PM6-DH is not 

especially significant.  The group has identified 8 H-bonding scenarios resulting in a total 

of 24 parameters for their H-bond correction term (three parameters for each H-bonding 

type).  AM1-FS1 only uses 4 parameters; AM1-FS1 also does not introduce the 

requirement of knowing atom connectivity.  The PM6-DH method does show significant 

improvement for many dispersion bonded cases, but it performs poorly for modeling the 

potential energy surface of the benzene dimer.  This is discussed below and shown 

graphically in Section 3.3.4.  It should be noted that Řezáč et al.23 only used complexes 8-

22 of the S22 database for determining the dispersion parameters for PM6-DH.  Thus, it 

is not unexpected that good agreement was achieved for the 8 dispersion bound 

complexes.   
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Table 3.1: Single-point interaction energies (kcal/mol) at the S22 geometries.  The AM1-
D and PM3-D results have been taken from Ref. 22, and the PM6-DH results from Ref. 
23. 

 

No. Molecule (symmetry) Ref. Values AM1 PM3 AM1-D PM3-D PM6-DH AM1-FS1
Hydrogen bonded complexes

1 (NH3)2  (C2h) -3.17 -0.78 0.77 -3.43 -1.77 -3.74 -1.60
2 (H2O)2  (Cs) -5.02 -2.89 -2.79 -7.29 -5.14 -4.67 -5.53
3 Formic acid dimer  (C2h) -18.61 1.54 -9.91 -15.45 -18.57 -17.39 -16.06
4 Formamide dimer  (C2h) -15.96 -12.02 -8.08 -17.16 -15.37 -15.39 -15.75
5 Uracil dimer  (C2h) -20.65 -5.79 -11.32 -20.15 -20.30 -18.84 -20.80
6 2-Pyridoxine2-aminopyridine (C1) -16.71 -4.45 -7.46 -16.50 -17.52 -17.35 -14.73
7 Adenine thymine  WC (C1) -16.37 -4.28 -6.79 -16.58 -17.33 -17.83 -16.29

Complexes with predominant dispersion contribution
8 (CH4)2  (D3d) -0.53 0.21 -0.25 -0.94 -1.24 -0.73 -0.61
9 (C2H4)2  (D2d) -1.51 -0.13 -1.11 -3.31 -3.60 -1.52 -2.27

10 Benzene CH4  (C3) -1.50 0.40 -0.19 -2.12 -2.42 -1.75 -1.79
11 Benzene dimer  (C2h) -2.73 3.52 2.38 -2.90 -4.30 -3.62 -2.23
12 Pyrazine dimer  (Cs) -4.42 2.49 3.90 -4.57 -4.20 -5.41 -3.81
13 Uracil dimer  (C2) -10.12 0.12 5.80 -10.56 -6.78 -9.70 -8.47
14 Indole benzene (C1) -5.22 5.39 4.04 -4.04 -6.09 -5.20 -3.23
15 Adenine thymine stack (C1) -12.23 2.91 7.37 -12.20 -10.63 -12.78 -9.87

Mixed complexes
16 Ethene ethyne  (C2v) -1.53 -0.35 -0.82 -1.61 -1.85 -1.11 -1.36
17 Benzene H2O  (Cs) -3.28 -0.69 -1.47 -3.43 -3.65 -3.41 -2.78
18 Benzene NH3  (Cs) -2.35 -0.33 -0.59 -3.00 -2.96 -2.77 -2.65
19 Benzene HCN  (Cs) -4.46 -0.81 -1.63 -4.44 -4.43 -3.20 -3.17
20 Benzene dimer (C2v) -2.74 0.37 -0.43 -3.85 -4.15 -2.84 -3.36
21 Indole benzene T-shape (C1) -5.73 -1.05 -1.25 -7.10 -6.65 -5.30 -4.63
22 Phenol dimer (C1) -7.05 -1.36 -1.37 -9.76 -7.52 -6.73 -6.91

RMSE (Hydrogen bonded) 11.64 7.77 1.56 0.76 1.07 1.37
RMSE (Dispersion bonded) 8.21 10.13 0.82 1.68 0.54 1.30
RMSE (Mixed bonded) 3.57 3.22 1.25 0.72 0.57 0.72

RMSE 8.47 7.73 1.23 1.18 0.76 1.18
MUE 6.54 5.94 0.85 0.90 0.59 0.88

    

3.3.2 F66 Results 

 Many of the other empirically corrected SE methods discussed have been 

parameterized to the S22 database, thus should achieve accurate results for those 

complexes.  AM1-FS1 has been parameterized to a larger training set consisting of 66 

complexes.  Parameterizing to this larger training set has led to an increase in RMSE for 

the S22 database.  This is not unexpected and, in our opinion, is a worthwhile sacrifice 

that should make AM1-FS1 more versatile.  (In fact, we tried optimizing AM1-FS1 

solely to the S22 database and achieved near DFT-D level accuracy, but when the method 

was subsequently tested on the F66 training set, a larger RMSE resulted.)  AM1-FS1 is 
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parameterized to the F66 training set and achieves a sub kilocalorie RMSE (0.99 

kcal/mol) and MUE (0.69 kcal/mol). The individual results are reported in Table E-1 in 

the supplementary materials. Both AM1-D and PM3-D were parameterized solely to the 

S22 database, so high accuracy is not surprising when the S22 database is used as the 

“test set”.  We have performed calculations on the 66 complexes of the F66 set using 

McNamara and Hillier’s AM1-D method for comparison. This provides for a much more 

comprehensive test of the method than the S22 database because it contains a wider 

variety of structures and non-equilibrium structures.  AM1-D produces a RMSE and 

MUE of 1.49 and 1.02 kcal/mol respectively, approximately 50% less accurate than 

AM1-FS1.  Upon close inspection of Table E-1, it can be seen that AM1-FS1 

significantly outperforms AM1-D on the repulsive wall; an issue we will look at more 

closely in Section 3.3.4.  

   3.3.3 Optimized Energies and Structures 

This section considers the effect of geometry optimization on interaction energy 

and structural distortion for systems in the S22 database.  The ability of an empirically 

corrected SE method to perform accurately in this role is crucial because one of the 

principal uses of SE methodology is structural optimization of systems that are too large 

for optimization with first-principles methods. The ability of a method to reproduce 

interaction energies at reference geometries is not very useful, because if we know the 

CCSD(T) geometry, and therefore its energy, there is little value in knowing the SE 

energy for that structure.  In Table 3.2, the interaction energies for the geometry 

optimized complexes are reported for a variety of corrected and uncorrected SE methods.  

Again, the uncorrected AM1 and PM3 methods perform poorly.  Upon applying our 
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correction scheme to the AM1 method, the RMSE is lowered from 6.25 to 1.80 kcal/mol.  

AM1-FS1 is also an improvement over AM1-D; AM1-FS1 outperforms AM1-D in all 

subcategories by about 1 kcal/mol.  This increase in performance for optimization, 

compared to the AM1-D method, presumably results from our use of a substantially 

larger training set that includes non-equilibrium structures.   

The performance of McNamara and Hillier’s PM3-D method is comparable to our 

AM1-FS1 method.  Depending of the statistical metric selected, either may be said to 

outperform the other for predicting interaction energies upon geometry optimization of 

the structure in the S22 database. AM1-FS1 does perform better in two of the three 

categories, the dispersion and mixed bounded complexes. The PM6-DH method 

outperforms all the other methods; however, structural distortion should also be 

considered but, unfortunately, data for such a comparison is not available.  Again, this 

aspect of a SE method is especially important since such a method will likely be used for 

optimization purposes.   

To gauge the degree of structural distortion upon geometry optimization, select 

interaction distances are compared and are shown in Table 3.3.  The interaction distances 

are defined as the center-of-mass separation and/or atom-atom distance(s) between the 

two monomers depending on the system (see Figure S1 of Ref. 22 for the specific 

interaction distances).  Comparing the different empirically corrected SE methods we 

find that AM1-FS1 outperforms AM1-D in every category. Our method is generally 

comparable to PM3-D based on interaction distance. AM1-FS1 performs better in two of 

the three categories. This time AM1-FS1 outperforms PM3-D for the H-bonded 

complexes based on interaction distances, but not for the dispersion bound complexes.  
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Based solely on the total RMSE for the S22 database would be difficult to choose which 

method, AM1-FS1 or PM3-D, is better; however, AM1-FS1 does not require 

reoptimization of the AM1 parameters thereby preserving the predictive power of AM1 

for calculation of heats of formation, discussed below. As noted above, interaction 

distances and/or structural geometries were not made available for the PM6-DH method 

preventing structural comparisons upon optimization of the S22 complexes. 

 

  
 
Table 3.2: Geometry optimized energies (kcal/mol) for the complexes in the S22 
database. The AM1-D and PM3-D results have been taken from Ref. 22, and the PM6-
DH results from Ref. 23. 

 

No. Molecule (symmetry) Ref. Values AM1 PM3 AM1-D PM3-D PM6-DH AM1-FS1
Hydrogen bonded complexes

1 (NH3)2  (C2h) -3.17 -1.39 -0.71 -3.03 -1.99 -3.92 -2.82
2 (H2O)2  (Cs) -5.02 -3.30 -3.55 -7.22 -6.53 -4.73 -5.59
3 Formic acid dimer  (C2h) -18.61 -6.62 -9.58 -12.45 -16.16 -19.11 -17.76
4 Formamide dimer  (C2h) -15.96 -2.06 -6.99 -14.64 -14.42 -15.01 -15.83
5 Uracil dimer  (C2h) -20.65 -10.48 -10.70 -17.80 -18.83 -19.55 -25.06
6 2-Pyridoxine2-aminopyridine (C1) -16.71 -6.15 -7.06 -13.06 -18.32 -18.50 -15.16
7 Adenine thymine  WC (C1) -16.37 -5.06 -6.90 -12.66 -18.66 -19.12 -21.10

Complexes with predominant dispersion contribution
8 (CH4)2  (D3d) -0.53 -0.21 -0.32 -4.10 -2.38 -0.73 -2.46
9 (C2H4)2  (D2d) -1.51 -0.13 -1.08 -4.85 -4.11 -1.53 -4.09

10 Benzene CH4  (C3) -1.50 0.35 -0.20 -2.93 -2.88 -1.88 -2.84
11 Benzene dimer  (C2h) -2.73 0.01 -0.02 -3.10 -4.59 -3.59 -2.21
12 Pyrazine dimer  (Cs) -4.42 -0.34 -0.26 -4.87 -4.45 -5.74 -4.73
13 Uracil dimer  (C2) -10.12 -6.05 -4.26 -11.25 -7.59 -10.03 -9.99
14 Indole benzene (C1) -5.22 -1.33 -1.65 -8.16 -6.26 -5.99 -6.51
15 Adenine thymine stack (C1) -12.23 -5.15 -6.50 -15.13 -11.70 -13.61 -12.59

Mixed complexes
16 Ethene ethyne  (C2v) -1.53 -0.57 -1.23 -2.47 -2.58 -1.17 -1.50
17 Benzene H2O  (Cs) -3.28 -1.03 -1.63 -3.90 -4.46 -3.95 -3.38
18 Benzene NH3  (Cs) -2.35 -0.80 -0.93 -4.04 -3.99 -3.82 -4.70
19 Benzene HCN  (Cs) -4.46 -0.92 -1.85 -4.28 -4.40 -3.21 -2.46
20 Benzene dimer (C2v) -2.74 -0.09 -0.52 -4.22 -4.39 -2.85 -2.15
21 Indole benzene T-shape (C1) -5.73 -1.24 -1.67 -7.74 -7.20 -5.22 -5.88
22 Phenol dimer (C1) -7.05 -3.39 -4.33 -11.55 -8.95 -7.46 -8.87

RMSE (Hydrogen bonded) 9.90 8.04 3.38 1.82 1.40 2.55
RMSE (Dispersion bonded) 3.73 3.65 2.36 1.71 0.80 1.34
RMSE (Mixed bonded) 2.96 2.40 2.09 1.40 0.82 1.37

RMSE 6.25 5.22 2.65 1.65 1.04 1.82
MUE 4.82 4.09 2.16 1.51 0.82 1.28
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Table 3.3: Interaction distances (Angstroms) for the complexes in the S22 database.  The 
AM1-D and PM3-D results have been taken from Ref. 22. 

 
 

No. Molecule (symmetry) Ref. Values AM1 PM3 AM1-D PM3-D AM1-FS1
Hydrogen bonded complexes

1 (NH3)2  (C2h) 2.504 2.784 3.241 2.646 2.726 2.668
2 (H2O)2  (Cs) 1.952 2.094 1.809 1.911 1.769 1.932
3 Formic acid dimer  (C2h) 1.670 2.101 1.776 1.925 1.737 1.567
4 Formamide dimer  (C2h) 1.841 2.072 1.807 1.981 1.763 1.916
5 Uracil dimer  (C2h) 1.775 2.044 1.787 1.946 1.744 1.563
6 2-Pyridoxine2-aminopyridine (C1) 1.859, 1.874 2.511, 2.107 1.798, 1.815 1.980, 1.981 1.722,1.768 1.760, 1.878
7 Adenine thymine  WC (C1) 1.819, 1.929 2.476, 2.101 1.780, 1.821 1.807, 2.018 1.708,1.769 1.597, 1.893

Complexes with predominant dispersion contribution
8 (CH4)2  (D3d) 3.718 3.721 3.447 2.881 3.160 2.899
9 (C2H4)2  (D2d) 3.718 3.714 3.706 3.305 3.469 3.266

10 Benzene CH4  (C3) 3.716 3.746 3.718 3.315 3.450 3.457
11 Benzene dimer  (C2h) 3.765 6.952 6.096 3.643 3.499 3.753
12 Pyrazine dimer  (Cs) 3.479 4.848 4.760 3.695 3.437 3.681
13 Uracil dimer  (C2) 3.166 5.805 6.732 3.097 3.406 3.007
14 Indole benzene (C1) 3.498 5.572 5.520 4.448 3.415 4.378
15 Adenine thymine stack (C1) 3.172 6.202 5.788 4.320 3.280 3.099

Mixed complexes
16 Ethene ethyne  (C2v) 2.752 2.468 2.429 2.319 2.366 2.374
17 Benzene H2O  (Cs) 2.531 4.020 3.746 2.986 2.982 2.988
18 Benzene NH3  (Cs) 3.592 4.092 4.025 2.995 3.069 3.014
19 Benzene HCN  (Cs) 3.387 3.472 3.694 3.228 3.343 3.303
20 Benzene dimer (C2v) 3.513 5.225 3.606 3.253 3.370 3.351
21 Indole benzene T-shape (C1) 3.210 3.811 3.807 3.010 3.233 3.208
22 Phenol dimer (C1) 1.937, 4.921 2.174, 5.925 1.829, 5.712 2.001, 5.040 1.778, 5.265 2.016, 4.937

RMSE (Hydrogen bonded) 0.387 0.257 0.137 0.134 0.129
RMSE (Dispersion bonded) 2.015 1.962 0.644 0.272 0.473
RMSE (Mixed bonded) 0.929 0.598 0.336 0.315 0.301

RMSE 1.277 1.171 0.419 0.249 0.326
MUE 0.853 0.691 0.301 0.199 0.222

 

 

To further test the ability of AM1-FS1 to model H-bonding complexes, 16 

additional hydrogen bonded DNA base pairs have been considered. The 16 additional 

complexes were chosen from Ref. 45 since these are the only complexes from the 

H-bonding subsection that have CCSD(T) quality binding energies. The geometries of 

these complexes, however, are from MP2 optimizations or experimental data. Therefore, 

these structures do not correspond to the CCSD(T) potential minimum, this is also the 

case for most of the S22 database structures. We have computed the binding energies for 

these complexes based on the reference geometries and also AM1-FS1 optimized 

geometries. The RMSE for the binding energies are 1.78 and 2.18 kcal/mol respectively. 

This error is consistent with the error associated with the hydrogen bonding complexes in 
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the S22 database, which were used for parameterization. The 16 complexes as well as the 

reference CCSD(T), single point and optimized AM1-FS1 binding energies are reported 

in Table E-2 of the supplementary material. 

   3.3.4 Potential Energy Curves  

 The value of a computational method is significantly enhanced if it is able to 

accurately describe the potential energy surface apart from the minimum. A given 

method could accurately predict the interaction energy at a specific molecular geometry, 

yet yield a very inaccurate picture of the remainder of the potential energy surface. (See 

Ref. 53 for a detailed discussion.) In this section, potential energy curves will be 

compared for various empirically corrected SE methods.   

In Figure 3.3, potential energy curves for two different benzene dimer 

conformations are shown.  Figure 3.3A, shows the interaction energy for the parallel 

dimer as a function of monomer separation.  The parallel dimer is not the lowest energy 

conformation, but it is important to be able to model a variety of geometries correctly for 

the correct description of π-π interactions involved in large systems, and the parallel 

dimer represents a widely used test case, probably owing to the simplicity of its 

construction.  The M1 benzene dimer, according to Ref. 59, is the lowest energy structure 

known.  Comparing to the CCSD(T) and DFT(SAPT) reference values, among the 

empirically-corrected SE methods PM6-DH performs the worst for these systems.  The 

PM6-DH method seems to over bind π-π interactions.  This is due to the fact that the 

PM6 method performs poorly for dispersion bound complexes compared to DFT-BLYP 

results as discussed earlier and shown in Figure 3.2 (further discussion is presented in 

Ref. 53).  McNamara and Hillier’s AM1-D method performs very well for the M1 dimer, 
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however, not so well for the parallel dimer.  On average AM1-FS1 performs the best for 

these two systems.  AM1-FS1 has a very steep potential wall at close separation (Figure 

3.3A), this is an artifact of using a large damping parameter (d) in the dispersion 

correction term (Eq. 3.2).  Again, the large term is required because of the inability of the 

AM1 method to properly capture short-range repulsive interactions. 

 

 

A.                                                                            B.

          

Figure 3.3: Parallel (Fig. A) and M1 (Fig. B) benzene dimer potential energy curves 
determined with various computational methods. a Ref. 51. b Ref. 59. 

 
 
 
 

In Figure 3.4 and Figure 3.5, potential energy curves for the water dimer and the 

nitromethane dimer are shown respectively.  The water dimer is a classic hydrogen 

bonding system.  The potential energy curves in Figure 3.4 are shown as a function of 

O---O separation.  The figure shows that AM1-FS1 dramatically improves upon the AM1 

method, and outperforms McNamara and Hillier’s AM1-D method.  The correlation to 
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SCF-SAPT results61 again shows that the hydrogen bonding correction term (Eq. 3.4) is a 

worthwhile addition to the AM1 method.  The AM1-D method also performs relatively 

well for the water dimer.  This means that the changes they have made to the AM1 

parameters improve the results for this particular system; however, the same is not 

observed if we consider the nitromethane dimer.  In Figure 3.5, we see that AM1-D 

performs poorly for the nitromethane dimer.  The SCF-SAPT curve58 is for the so-called 

“double hydrogen bond” configuration; however, nitromethane is not a classical H-

bonding system.  It lacks a hydrogen atom attached to a highly electronegative atom (N, 

O, or F), nevertheless, this system is said to form weak H-bonds58.  As shown (Figure 

3.5) the AM1 method performs relatively well for this system; whereas McNamara and 

Hiller’s modification of the AM1 parameters has caused the AM1-D method to 

inadequately model this system.  AM1-FS1, on the other hand, does not consider this a 

H-bonding case.  Therefore, the H-bonding correction term is not turned on for this 

system.  Consequently, AM1-FS1 performs well for this system by applying only the 

dispersion correction. This potential energy curve demonstrates that the AM1 parameters 

should not be changed in all cases. It should be noted that the AM1-D training set does 

not contain this system whereas the training set for AM1-FS1 does. (We have not 

compared the PM6-DH method of Řezáč et al.23 in H-bonding cases because we do not 

have code for their elaborate H-bonding correction scheme.)   
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Figure 3.4: Water Dimer potential energy curves as a function of O---O separation, as 
determined with various computational methods. a Ref. 61. 
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Figure 3.5: Nitromethane dimer potential energy curve in the “double hydrogen bond” 
configuration, as determined with various computational methods. a Ref. 58. 
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   3.3.5 Heat of Formation 

 As mentioned earlier, modifying the original semi-empirical parameters can have 

deleterious effects, especially for thermodynamic properties. For example, the 

experimental heat of formation of benzene is 19.8 kcal/mol62 and is predicted to be 22.0 

kcal/mol by the AM1 method18. The AM1-D method, however, predicts a value of -12.9 

kcal/mol. (PM3-D performs even more poorly, yielding -21.8 kcal/mol.) Re-

parameterization has rendered AM1-D (and PM3-D) unreliable for predicting 

thermodynamic properties. On the other hand, AM1-FS1 does not change any of the 

original AM1 parameters and predicts the heat of formation of benzene to be 20.0 

kcal/mol; in good agreement with experiment and, serendipitously, even a slight 

improvement over AM1. The AM1-FS1 empirical correction is designed to have little 

effect on quantities that are already predicted relatively well by the AM1 method. Table 

3.4 collects results for calculations of heat of formation on 53 test molecules. Note that 

the RMSE in predictions of heat of formation with AM1-FS1 is comparable to that of the 

original AM1 method, but AM1-D is 24 times (2400%) less accurate. Reparameterization 

of the original PM3 method in the development of PM3-D, has also seriously degraded 

its predictive power for heats of formation (see Table 3.4). This clearly shows the 

negative consequences of changing the original semi-empirical parameters without the 

consideration of such quantities during optimization of the parameters. 

 While the original AM1 parameters have not been altered in AM1-FS1, the FS1 

correction terms do influence the predicted heat of formation. This occurs because the 

heat of formation is in part determined from the total energy of the complex, which now 

contains the empirical correction energy, but also in part from the energies of the isolated 
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atoms. The isolated atom energies do not include any empirical correction energy since, 

by design, the correction terms are not implemented for a single atom. Therefore, the 

difference between the heat of formation as computed with AM1 and AM1-FS1 will 

generally become larger as the correction term(s) contribution increases. This will also be 

the case for DFT-D methods when the total energy is used in the determination of the 

heat of formation. The influence of the FS1 correction on the predicted heat of formation 

can have both undesirable and desirable consequences. For example, in Table 3.4, it can 

be seen that as the number of methylene units in the aliphatic hydrocarbons increases 

(methane  ethane  propane  etc.) the error in the predicted heat of formation 

increases. Fortunately, since the original AM1 parameters have not been altered, the 

AM1 heat of formation can be easily obtained by subtracting out the empirical correction 

energy from the AM1-FS1 heat of formation. This approach of subtracting the correction 

energy will also be effective for DFT-D methods when the total energy is used in the 

determination of the heat of formation. On the other hand, the correction to the total 

energy sometimes has a beneficial impact on the predicted heat of formation.  For 

example, the experimental heat of formation of the benzene dimer is 30.4 kcal/mol63 and 

is predicted to be 37.9 kcal/mol and 44.1 kcal/mol based upon structures optimized with 

the AM1-FS1 and AM1 methods, respectively. Note that these structures are significantly 

different upon optimization because the AM1 method does not consider dispersion 

interactions. If we determine the heat of formation of the AM1-FS1 optimized geometry 

with the AM1 method the error is even larger; the heat of formation is predicted to be 

46.7 kcal/mol.   Since the original AM1 parameters were optimized to give reliable 

predictions of the heat of formation at AM1-optimized geometries, it seems reasonable to 



75 
 
conclude that, in general, if the heat of formation of some large multicomponent carbon 

structure is desired, the AM1-FS1 method will likely produce a more accurate result at 

the AM1-FS1 geometry. Certainly, the AM1-FS1 structure will be more accurate since 

the dominate intercomponent interaction will be incorporated. This situation is much less 

complicated when a heat of reaction is of interest since the correction term(s) are applied 

to both the reactants and products.  
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Table 3.4: Heat of formation (kcal/mol). The experimental and AM1 results were 
obtained from Ref. 18. Note: the AM1-D and PM3-D results were obtained by coding the 
method outlined in Ref. 22; however, slight disagreements in the binding energies were 
observed with PM3-D for compounds containing oxygen, suggesting a misprint in the 
published PM3-D oxygen parameters.     

 

Molecule expt AM1 AM1-D PM3-D AM1-FS1
methane -17.8 -8.8 -78.4 -6.6 -8.8
ethane -20.0 -17.4 -114.1 -12.2 -18.3
ethylene 12.5 16.5 -39.4 -11.0 16.1
acetylene 54.5 54.8 38.6 -9.8 54.8
propane -25.0 -24.3 -148.4 -17.7 -27.1
propene 4.8 6.6 -75.6 -16.5 5.3
propyne 44.2 43.4 3.4 -15.3 43.0
allene 45.5 46.1 6.6 -15.3 45.7
n-butane -30.0 -31.1 -182.7 -23.2 -36.1
isobutane -32.0 -29.4 -181.1 -23.2 -35.3
but-1-ene -0.1 0.4 -109.2 -22.0 -2.6
trans-2-butene -2.8 -3.3 -111.8 -22.0 -5.6
cis-2-butene -1.7 -2.2 -110.9 -22.0 -4.8
isobutene -4.0 -1.2 -109.8 -22.0 -4.3
1,2-butadiene 38.8 37.1 -28.5 -20.8 35.9
trans-1,3-butadiene 26.3 29.9 -38.2 -20.8 28.3
1-butyne 39.5 37.5 -29.8 -20.8 35.6
2-butyne 34.8 32.0 -31.8 -20.8 31.1
vinylacetylene 72.8 67.9 42.1 -19.6 66.9
diacetylene 113.0 106.1 122.4 -18.4 105.8
n-pentane -35.1 -37.9 -216.9 -28.7 -45.1
neopentane -40.2 -32.8 -212.3 -28.7 -42.8
benzene 19.8 22.0 -12.9 -29.6 20.0
toluene 12.0 14.5 -46.6 -35.1 10.7
ammonia -11.0 -7.3 -154.0 -7.7 -7.3
methylamine -5.5 -7.4 -165.2 -13.3 -8.2
dimethylamine -4.4 -5.6 -175.1 -18.8 -7.5
trimethylamine -5.7 -1.7 -183.3 -24.3 -5.1
ethylamine -11.3 -15.1 -200.4 -18.8 -17.5
n-propylamine -16.8 -22.1 -234.7 -24.3 -26.5
isopropylamine -20.0 -19.2 -231.9 -24.3 -23.9
tert-butylamine -28.9 -21.2 -261.6 -29.8 -29.3
pyrrole 25.9 39.9 -56.0 -26.3 38.5
pyridine 34.6 32.1 -29.5 -30.7 30.6
pyridazine 66.5 55.3 -33.6 -31.8 54.2
water -57.8 -59.2 -200.8 -12.0 -59.2
methanol -48.2 -57.0 -193.7 -17.5 -57.5
ethanol -56.2 -62.7 -225.8 -23.0 -64.4
1-propanol -61.0 -70.6 -261.9 -28.5 -74.7
2-propanol -65.2 -67.7 -258.2 -28.5 -71.8
t-butyl_alcohol -74.7 -71.6 -288.7 -34.0 -78.6
dimethyl_ether -44.0 -53.2 -185.7 -23.0 -53.8
diethyl_ether -60.3 -64.4 -249.6 -34.0 -67.8
oxirane -12.6 -8.9 -95.3 -21.8 -9.2
furan -8.3 3.0 -52.7 -30.5 2.1
phenol -23.0 -22.2 -120.0 -40.4 -24.9
anisole -16.2 -15.8 -110.1 -45.9 -19.8
benzaldehyde -8.8 -8.9 -58.5 -44.8 -12.1
formic_acid -90.5 -97.4 -222.7 -27.2 -97.4
acetic_acid -103.4 -103.0 -252.9 -32.7 -103.7
propionic_acid -108.4 -108.0 -285.5 -38.2 -111.1
oxalic_acid -173.0 -172.4 -370.9 -53.2 -172.8
benzoic_acid -70.3 -68.0 -181.4 -55.6 -71.0

RMSE 4.9 132.5 46.7 5.6
MUE 3.6 118.4 36.1 4.3

Heat of Formation (kcal/mol)
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3.4 Application to Macromolecular Complexes 

The ultimate goal of AM1-FS1 is to be able to efficiently and accurately model 

large weakly-bound systems, such as complexes of carbon nanostructures and molecular 

devices. Such large systems are currently out of reach for CCSD(T), and extremely 

computationally demanding for DFT methods. Furthermore, most DFT functionals are 

incapable of modeling carbon nanostructure complexes due to the fact that these systems 

are governed by van der Waals interactions. Presumably, the current most accurate 

methods capable of modeling such systems are DFT-D methods and the M0525, M0626, 

and M0864 family of functionals developed by Zhao and Truhlar. Performing geometry 

optimizations with DFT based methods on systems larger than 100 atoms is currently 

extremely computationally expensive, but such optimizations can be routinely performed 

with semiempirical based techniques even on “PC”-class computers. This great 

computational efficiency of semiempirical methods provides the central motivation for 

the present work. 

   3.4.1 Carbon Nanostructures  

To test the performance of AM1-FS1 on complexes of carbon nanostructures, we 

have performed geometry optimizations and determined the binding energy of several 

inclusion complexes. The hosts considered are corannulene (C20H10), a double-concave 

hydrocarbon buckycatcher65 (C60H28), and cyclic[6]paraphenylacetylene (6CPPA). The 

AM1-FS1 optimized structures are shown in Figure 3.6.  (It is important to note that these 

complexes would be predicted to be unbound if the standard AM1 and most DFT 

methods were used.)  To-date, the best binding energy values for these complexes are 

from DFT calculations reported by Zhao and Truhlar66, 67, using the M06-2X functional. 
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The binding energies along with the AM1-FS1 and AM1-D results are reported in Table 

3.5.  The AM1-FS1 results are very comparable to the M06 values, however, AM1-FS1 

overestimates the binding energy for 3,3@[6]CPPA and 4,4@[6]CPPA in comparison to 

DFT-M06-2X.  This may be a result of the M06 functional underestimating dispersion 

interactions at long-range. This hypothesis is supported by the potential energy curve for 

the parallel benzene dimer shown in Figure 3.7, which clearly shows that the M06 

functional fails to accurately model dispersion interactions in the long-range regime, 

where the predicted interaction energy even becomes slightly positive. This behavior 

might be easily overlooked since upon optimization of the parallel benzene dimer, a 

reasonable energy and structure will be produced. To show that this is the case for 

3,3@[6]CPPA, the binding energy was determined using the BLYP-D functional. The 

resulting binding energy of 18.9 kcal/mol is in very good agreement with the AM1-FS1 

result. The M06-2X functional underestimates binding for 3,3@[6]CPPA because the 

nearest intermolecular interaction is 4.5 Å, a distance at which M06 underestimates the 

interaction energy as exhibited by the benzene dimer potential energy curve. 



79 
 

 

3,3@[6]CPPA 4,4@[6]CPPA
5,5@[6]CPPA

HMB@[6]CPPA C60@[6]CPPA C70@[6]CPPA

C60@C60H28 C60@C20H10

Figure 3.6: AM1-FS1 geometry optimized carbon nanostructure complexes. 

 

 

The AM1-FS1 method significantly outperforms AM1-D in every case based on 

the current benchmark M06 values. AM1-FS1 achieves this correlation with only two 

added parameters (due to the nature of the systems only the dispersion correction term is 

“turned on” during the AM1-FS1 calculations), whereas, AM1-D utilizes 10 parameters.  

We credit the success of AM1-FS1 to parameterizing to a larger training set containing 

nonequilibrium complexes.     
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Table 3.5: Binding energies (kcal/mol) of carbon nanostructure complexes. The M06 
results were obtained from Ref. 66. a Results were obtained from Ref. 67.  

AM1-FS1 AM1-D
HMB@6CPPA -16.6 -17.6 -14.7
C60@6CPPA -26.9 -30.1 -28.0
C70@6CPPA -36.3 -41.0 -31.1
3,3@6CPPA -17.7 -22.1 -5.4
4,4@6CPPA -32.7 -42.0 -24.0
5,5@6CPPA -43.2 -46.4 -43.3
C60@BuckyCatchera -29.3 -36.8 -26.4
C60@Coroanulenea -13.4 -16.7 -12.4

M06-2X/6-31+G(d,p)//M06-L/MIDI!
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Figure 3.7: Parallel benzene dimer potential energy curve calculated with the M06-2X 
functional, using the 6-311G(d,p) basis. CCSD(T) results were obtained from Ref. 51. 
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   3.4.2 Pseudorotaxanes 

We also tested the performance of AM1-FS1 on six different pseudorotaxanes, 

since these types of complexes are of central interest to our research group. All of the 

systems considered incorporate cyclobis(paraquat-p-phenylene) (CBPQT+4), a 

tetracationic ring structure. Six inclusion complexes with this ring have been formed with 

dimethoxybenzene and benzenedimethanamine in the ortho, meta, and para 

conformations. (AM1-FS1 optimized structures are shown in Figure 3.8.) We have 

performed geometry optimizations and determined the binding energies of these 

complexes and compared them to previously reported LMP2/6-

311+G(d,p)//BHandHLYP/6-31G(d) results68. We also computed these binding energies 

at the M06-2X/6-311G(d,p)//M06-L/MIDI level of theory for additional comparisons. 

(All results are reported in Table 3.6.) Based on the results, the LMP2/6-

311+G(d,p)//BHandHLYP/6-31G(d) results appear to underestimate the binding energy. 

This is likely a result of the geometry produced by the BHandHLYP functional and not 

the LMP2 method. This conclusion is based on the binding energies determined at the 

M06-2X/6-311G(d,p)//M06-L/MIDI level. The differences in binding energies between 

the isomers are sufficiently small that they may be taken to be insignificant given the 

level of theory and the large conformational space associated with these complexes. 

Based on these results, we believe AM1-FS1 is a valuable tool for modeling this class of 

macromolecular complexes. 
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ortho-NH@CBPQT+4 meta-NH@CBPQT+4 para-NH@CBPQT+4

ortho-O@CBPQT+4 meta-O@CBPQT+4 para-O@CBPQT+4
 

Figure 3.8: AM1-FS1 geometry optimized pseudorotaxane complexes. 

 

 

Table 3.6: Binding energies (kcal/mol) of pseudorotaxane complexes. The LMP2 results 
were obtained from Ref. 68. 

AM1-FS1 M06-2X/6-311G(d,p)//
M06-L/MIDI

LMP2/6-311+G(d,p)//
BHandHLYP/6-31G(d)

ortho-O@CBPQT+4 -32.1 -34.7 -21.0
meta-O@CBPQT+4 -31.7 -35.0 -16.1
para-O@CBPQT+4 -33.4 -34.7 -21.3

ortho-NH@CBPQT+4 -37.7 -41.7 -22.3
meta-NH@CBPQT+4 -38.2 -36.9 -22.5
para-NH@CBPQT+4 -38.5 -40.1 -23.9

Binding Energy (kcal/mol)
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3.5 Conclusions 

AM1-FS1 is a new empirically-corrected semi-empirical method suitable for 

performing geometry optimizations on macromolecular complexes. AM1-FS1 displays 

considerable improvement over the traditional AM1 method for non-bonding 

interactions, yet it retains the computational efficiency and predictive power for thermo-

chemical quantities of the original AM1 Hamiltonian.  Validation testing shows that the 

method reduces the RMSE for the popular S22 database from 8.47 to 1.18 kcal/mol.  

More impressively, this new method has achieved kilocalorie accuracy on a training set 

of 66 complexes.  This was accomplished with just 6 empirical parameters (2 for 

dispersion and 4 for hydrogen-bonding) and no reparameterization of AM1, (which we 

show here has led to serious consequences in existing empirically-corrected SE methods).  

This is a dramatic reduction in the total number of adjustable parameters compared to 

other previously published empirically corrected SE methods. Validation testing showed 

that the existing PM6-DH method outperforms AM1-FS1 based on the S22 database; 

however, the PM6-DH method has shown to be inaccurate for reproducing potential 

energy curves for the benzene dimer which is a classic test case for demonstrating the 

ability of a method to model dispersion interactions at various distances. This inability 

would result in inaccurate modeling of large dispersion bound systems like carbon 

nanostructures, due to the large number of interacting atoms at various distances. 

Moreover, unlike PM6-DH, AM1-FS1 does not require knowledge of atom connectivity. 

Based on the examples reported, on average AM1-FS1 is also the most reliable 

empirically corrected SE method for reproducing the potential energy curve away from 
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the global minimum.  We credit this success to using a training set that contains non-

equilibrium complexes.       

This new AM1-FS1 method has shown to yield results comparable in accuracy to 

the best available calculations on complexes of carbon nanostructures and 

pseudorotaxanes. We believe AM1-FS1 is a useful computational tool for obtaining 

reliable results for such systems at limited computational expense. It should prove to be a 

valuable asset for routine modeling of macromolecular complexes that are currently at (or 

beyond) the limit of DFT based techniques, or out of reach of higher levels of theory.  
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Chapter 4: Designing Fullerene Separation Materials: A Theoretical Study 
 

 

4.1 Introduction 

The availability of reliable and efficient theoretical and computational schemes 

that could serve as design tools for nano-devices could revolutionize the process by 

which nanoscale devices are developed. Currently, the development process is closer akin 

to fundamental research than to design engineering. Synthetic chemists and materials 

scientists identify target materials based on chemical insights and experience concerning 

the effects of various structures and functional groups on molecular properties. Syntheses 

are then carried out and the targeted products tested. If the properties of the product don't 

match expectations, the findings become part of the knowledge base upon which new 

target materials are selected.  By contrast, macro-scale device design makes extensive use 

of computational testing of hypothetical designs before prototypes are fabricated. The 

ultimate commercialization of nanotechnologies would benefit tremendously from similar 

computational design tools for nanoscale devices. Obviously the starting point for the 

design of nano-devices is quantum chemistry, as embodied in the time independent 

Schrödinger equation. Many robust codes for application of computational quantum 

chemistry are available, but the large size of nano-device systems makes identifying a 

technique that yields adequate reliability at a reasonable computational expense a great 

challenge. 

Polycyclic aromatic hydrocarbons (PAHs) have been receiving a great deal of 

attention for possible use as the building blocks of nano-devices. PAHs are relatively 
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easy to synthesize from inexpensive starting materials and can form nano-particles in a 

stunning variety of shapes and sizes69. Among the PAH nanostructures, fullerenes are 

very promising as potential components for the development of nano-devices and nano-

machines70, 71. One of the current hurdles to developing such devices is obtaining 

components/molecules of the same size in sufficient quantity. Typically, when fullerenes 

are synthesized, a distribution of sizes is generated. Therefore, an efficient separation 

technique is needed. A computational model that could identify suitable separation 

materials would be of considerable importance. Herein, we identify such a computational 

model and apply it to investigate fullerene complexation.  

Since PAH nanostructures are composed solely of carbon and hydrogen atoms, 

the governing inter-molecular interactions are van der Waals-London (dispersion) forces. 

Studying systems in which the inter-molecular interactions are dominated by dispersion 

presents significant computational challenges. CCSD(T) and SAPT(DFT) methods 

accurately consider inter-component dispersion interactions, but are computationally 

extremely expensive, which renders calculations on even one fullerene intractable. In 

many of the more commonly used quantum mechanical methods, such as Hartree-Fock 

(HF) and most of the popular Density Function Theory (DFT) based techniques, 

dispersion interactions are neglected. Therefore, if optimizations are carried out on 

fullerene/PAH complexes with any of these common methods, the components will likely 

dissociate because the main attractive interaction, dispersion, is neglected in the 

calculations. Dispersion corrected DFT (DFT-D) methods and DFT functionals such as 

the M0626 and M0864 are capable of modeling inter-component dispersion interactions; 

however, modeling systems of the desired size can be extremely computationally 
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demanding even at the DFT level of theory. There have been several studies72, 73 using 

the MPWB1K functional74 to model the encapsulation of metallic and nonmetallic 

species into fullerenes; however, these systems are significantly smaller and, due to the 

nature of the systems, cannot spontaneously dissociate upon optimization even if 

dispersion interactions are not considered. More importantly, in order to get a good 

description of the potential energy surface a large degree of conformational space needs 

to be explored. This is where DFT based techniques become computationally inadequate 

from an efficiency standpoint. By contrast, semiempirical molecular orbital techniques 

(such as AM1 or PM6) are sufficiently efficient to model even large PAH nanostructures, 

but these techniques are based on HF theory and therefore cannot reliably model 

dispersion-bound complexes. In order to model the desired PAH nanostructures 

complexes, an empirically corrected semi-empirical method offers both the requisite 

efficiency and accuracy. Here we apply an empirically-corrected form of the AM1 

Hamiltonian, termed AM1-FS175, to study the complexation of fullerenes by PAH 

macrocycles.  In the present study many hundreds of thousands of SCF-calculations were 

required; a prohibitively expensive task for DFT based techniques.  The AM1-FS1 results 

yield insight into the challenges involved in designing a selective fullerene separation 

system. 
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Figure 4.1: PAH nano-rings used in this investigation. 

 

4.2 Theory 

   4.2.1 Structures 

One avenue to fullerene separation that has seen considerable attention is 

complexation with PAH nano-rings76-80 such as the [n]paraphenyleneacetylenes. In this 

study, four different carbon nano-ring structures, shown in Figure 4.1, were considered 

for their potential to aid in fullerene separation. The interactions of these four ring 

systems with eight different fullerenes ranging from C20 to C180 are considered here; the 

fullerenes are shown in Figure 4.2. These types of inclusion complexes have proven to 
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present a significant challenge to theoretical modeling81. Starting structures for the PAH 

nano-rings were constructed using a graphical-user-interface molecular editor82. Starting 

structures for the fullerenes were obtained from the Fullerene Structure library83, except 

for the C180 capped nanotube structures (C180-CNT) which was constructed using Nanotube 

Modeler84. The different conformations of the fullerene/capped nanotubes were chosen 

for their spherical or prolate geometry; therefore, the conformations may not be the 

lowest energy structures for the given stoichiometries. The ring/fullerene complexes were 

assembled manually with a graphical-user-interface molecular editor82. The host/guest 

systems considered contained between 92 and 264 atoms. 
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Figure 4.2: Fullerenes used in this investigation. 
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   4.2.2 Modeling 

The ring/fullerene complexes studied here are non-bonded complexes held 

together by weak intermolecular interactions.  The dominant non-bonding interactions 

involved are dispersion interactions.  To study the complexation, the AM1-FS1 method75 

has been employed, which is a augmented version of the AM1 method incorporating 

dispersion and hydrogen-bonding correction terms. This method has been chosen for its 

previous success in modeling carbon nanostructure complexes75. While the AM1 method 

is unreliable for PAH complexes for structures, binding energies, and heat of formation85, 

the FS1 correction greatly improves the accuracy in the prediction of structures and 

binding energies, and show slight improvements for heat of formations.  

The AM1-FS1 method employs the empirical dispersion correction of Grimme35, 

86 with a slight modification suggested by Jurečka et al.36  The resulting form is:         

( )ijdamp

ij

dis rf
r
CE 6

6−=  ,                                                        (4.1) 

where rij is the atom-atom separation, C6
ij is the dispersion coefficient, and fdamp is a 

damping function of the form, 
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This damping function depends on the equilibrium van der Waals separation (Rvdw) and 

the pair-wise atom separation (rij).  The damping function also depends on the empirical 

parameters SR and d. To determine C6
ij and Rvdw we employ the geometric mean and 

simple average combination rules as follows: 
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jiij CCC 666 =  ,  
2

jjii
vdw

RR
R

+
=  .                                        (4.3) 

The dispersion coefficients (C6
i and C6

j) and equilibrium van der Waals radii for two 

identical atoms (Rii and Rjj) for the different atoms were obtained from Grimme35, 86. 

The two empirical parameters SR and d in the dispersion correction term were 

determined by fitting to a database of intermolecular interaction energies for 66 weakly-

bound complexes that contains both equilibrium (potential minima structures) and non-

equilibrium structures (see Chapter 3 for parameterization details). It is believed that this 

parameterization scheme makes AM1-FS1 more suitable for modeling these PAH 

nanostructures than other current empirically corrected SE methods.  

 The systems involved in the study only contain H and C atoms; therefore, only the 

dispersion correction is utilized in the AM1-FS1 method. For details involving the 

hydrogen-bonding correction term refer to Foster and Sohlberg 2010. 
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Figure 4.3: Potential energy curves for the M1 benzene dimer computed at different 
levels of theory. The M1 structure and DFT(SAPT) energies are reported in Ref. 59. 
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Table 4.1: AM1-FS1 and reported CCSD(T) binding energies (kcal/mol) for different 
conformations of the naphthalene dimer. The different dimer configurations and 
CCSD(T) energies are reported in Ref. 87.  

Dimer R1 R or R2 CCSD(T) AM1-FS1 

A  3.6 -3.15 -4.46 

  3.8 -3.77 -4.24 

  4.0 -3.60 -3.78 

B  3.4 -4.77 -4.85 

  3.6 -5.28 -4.74 

  3.8 -4.91 -4.35 

C 1.4 3.5 -5.32 -4.52 

D 1.6 3.5 -5.32 -4.55 

E 1.4 1.0 -5.73 -4.53 

F  5.0 -4.34 -6.01 

  5.2 -4.33 -4.55 

G  5.2 -3.09 -4.40 

  5.4 -3.07 -3.35 

   RMSE 0.87 

 

4.2.3 Validation 

As a demonstration of the reliability of FS1-corrected AM1 for modeling PAH 

nanostructures, calculations were performed on the benzene and naphthalene dimers, and 

a coronene stack. Figure 4.3 shows interaction potential energy curves (PECs) for the 
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benzene dimer, in the M1 conformation, as computed with various theoretical methods. 

Note that both HF-SCF and DFT-B3LYP predict the system to be unbound. The AM1-

FS1 method yields an interaction potential curve in very good agreement with high-level 

calculations based on symmetry-adapted-perturbation-theory (DFT(SAPT))59. Table 4.1 

compares the AM1-FS1 binding energy of the naphthalene dimer in several different 

conformations to published CCSD(T) results87. FS1-corrected-AM1 produces a sub 

kilocalorie root mean square error (RMSE) for the 13 different naphthalene structures 

considered. Again the AM1-FS1 method gives results in good agreement with the best 

first-principles calculations.  A PEC for the coronene dimer in the shifted graphite 

conformation is shown in Figure 4.4. Again, it can be seen that the AM1-FS1 method is 

in good agreement with recent DFT(SAPT) results88. Note that both HF-SCF and DFT-

B3LYP will (incorrectly) predict the structure to be un-bound, i.e. full geometry 

optimization will result in dissociation of the complex. This method has also been tested 

on a cluster composed of four perylenediimide (PTCDI) molecules. This system involves 

both dispersion and hydrogen bonding interactions; therefore, it utilizes both correction 

terms in the AM1-FS1 method. The optimized cluster, shown in Figure 4.5, is in good 

agreement with the experimentally determined structure69. Experimentally, the structure 

has a π-π stacking spacing (d-spacing in the longitudinal direction) of 3.6 Å and a 14 Å d-

spacing in the perpendicular direction69. The FS1-corrected-AM1 method predicts a 

spacing of 3.5 Å and 14.5 Å respectively. This cluster was also optimized with the 

uncorrected and dispersion corrected (dispersion only) AM1 methods and in both cases 

the incorrect structure was predicted. In the AM1 case, the four monomers essentially 

merged into the same plane due to the inability of the AM1 method to model π-π stacking 
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(dispersion) interactions. (The HF as well as most DFT methods would likely result in 

similar unphysical structures.) When only the dispersion correction is added to the AM1 

method, the structure maintains the π-π stacking configuration; however, the stacked 

pairs are shifted so that the four monomers are staggered. This shows the significance of 

including a hydrogen bonding correction term that depends on the XH---Y angle. 
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Figure 4.4: Potential energy curves for the shifted graphite coronene dimer. The structure 
and DFT(SAPT) energies are reported in Ref. 88. 

 



95 
 

O

O
O

OO

O

O

O O

O

O

O

O

O
N

N

N

N
N

N
N

N

O

O

3.6 Å

14.5 ÅÅ

 

Figure 4.5: AM1-FS1 optimized perylenediimide (PTCDI) cluster. (Note, the hydrogen-
bonding correction term is utilized). 

 

 

It is important to note that in order to properly model large PAH nanostructures 

complexes, a method must be capable of accurately modeling dispersion interactions over 

a wide range of  separations. These systems often contain a large number of mid-to-long 

range interactions; therefore, the mid-to-long range contributions have an appreciable 

effect on the interaction energy. Consequently, it is important that the computational 

method being used is cable of modeling the potential energy curve apart from the 

minimum energy geometry. We believe that the AM1-FS1 method is reasonably capable 

of modeling these types of system based on the potential energy curves provided as well 

as the other tests provided here and in Foster and Sohlberg 2010. 

4.3 Results and Discussion 

The computed AM1-FS1 binding energies for interactions of the eight fullerenes 

with the four rings are collected in Table 4.2. Literature values66 computed with the DFT-

M06 functional are available for comparison for ring1 interacting with C60 and C70. These 

values are -28.0 and -31.1 kcal/mol respectively, in good agreement with the FS1-
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corrected AM1 values. Note that in the prior first-principles investigation66 of ring1 with 

C60, certain symmetry elements were implicitly (or explicitly) assumed. We have 

therefore reported a calculation for the high symmetry case as well as for the fully 

optimized structure. The agreement of our empirically-corrected AM1 results with those 

of the best available calculations is generally excellent. 

 
 
 
 
 
Table 4.2: Binding energies for fully optimized fullerene complexes in kcal/mole. The 
binding energy for the symmetry-constrained (C2h) complex of ring1 with C60 is given in 
parenthesis. 

 ring1 ring2 ring3 ring4 

C20 -11.3 -14.7 -11.0 -8.7 

C60 -33.5 (-26.9) -37.3 -30.8 -24.3 

C70 -37.1 -40.7 -37.3 -32.1 

C80 -34.6 -39.9 -41.6 -36.9 

C90 -35.9 -44.4 -42.4 -32.8 

C100 -43.7 -50.0 -45.9 -42.3 

C180 -36.3 -42.1 -40.9 -42.0 

C180-CNT -45.2 -52.2 -45.7 -34.9 
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Figure 4.6: Single-point potential energy curves for interactions with ring1. The insert in 
lower right corner corresponds to the C90 curve (Bold line) in the range of 0 to 5 Å. This 
insert is attended for clarity of the observed oscillations. 

 

 

One common theme in the search for fullerene complexation agents has been the 

idea that for best binding one should optimize the "fit" of the ring to the fullerene of 

interest76, 78. Consultation of Table 4.2 reveals no obvious pattern of selectivity of the 

rings based on the molecular weight of the fullerenes. To investigate the complexation 

more closely, potential energy curves were computed for interactions of each fullerene 

with each ring. Discrete representations of the PECs were generated by placing the 

fullerene at large separation from the ring on the axis that pierces the center of the ring 
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perpendicular to the nominal ring plane. (This axis is approximately collinear with the 

axis corresponding to the largest eigenvalue of the moment of inertia tensor for the 

isolated ring and is taken to be the z-axis here.) The single-point energies for the different 

fullerenes interacting with ring1 are shown in Figure 4.6. Corresponding PECs were 

generated for the other ring systems; however, more accurate PECs were desired. 

Therefore, constrained optimizations were performed by optimizing two of the spatial 

coordinates for every atom (x and y) while freezing the third (z). The two-dimensional 

optimizations preserved the fixed distance between the two components while allowing 

the complex to remove any close contacts. The results are shown in Figure 4.7 - 4.10. 

(These constrained optimization are well beyond what is currently computationally 

reasonable with DFT methods and are a testament to the computational efficiency of 

AM1-FS1.) Note that some complexes optimize with the fullerene at the center of the 

ring cavity, whereas others optimize with the ring offset from the center. This is also the 

case when full optimizations are performed; the displacements are reported in Figure 

4.11. In general, this is unsurprising. The low molecular weight fullerenes "fit" into the 

cavity whereas the higher molecular weight ones are too large to insert into the cavity and 

instead find optimum interaction when displaced from the center, much as a large beach 

ball might rest on a basketball hoop whereas a basketball fits through the hoop.  
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Figure 4.7: Constrained optimization potential energy curves for interactions with ring1. 
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Figure 4.8: Constrained optimization potential energy curves for interactions with ring2.
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Figure 4.9: Constrained optimization potential energy curves for interactions with ring3. 
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Figure 4.10: Constrained optimization potential energy curves for interactions with ring4.
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Consider, for example, the fullerene interactions with ring3. C20 binds inside of 

the ring. C60 also binds inside the ring but the binding energy is greater because more 

inter-component atom-atom interactions are near their optimum van der Waals 

separation. The match is even better for C70 as evinced by the slightly greater binding 

energy. C80 is too large to fit within the cavity of the ring so the optimized structure 

exhibits the fullerene displaced from the center, (଼ߜ଴௥ଶ = 0.7 Å, where δ denotes 

displacement, the subscript indicates the fullerene and the superscript indexes the ring). 

One might expect that the larger fullerenes optimize to positions farther from the ring 

center, and indeed C180 is much more displaced from the center (δ 180 = 6.6 Å), but C90 

and C100 appear to break the pattern. (ߜଽ଴௥ଶ ൎ ଵ଴଴௥ଶߜ ൎ 0). The origin of this discrepancy is 

revealed by closer examination of the structures of the fullerenes. C20, C60, C80, and C180 

are nearly spherical, but C70, C90, C100, and C180-CNT are prolate so despite their molecular 

weights they share nearly identical cross-sectional diameters with C60 and therefore fit 

within the cavity of ring3. 

If we consider only the spherical fullerenes, the trend in binding is clear: Starting 

from the smallest fullerene, C20, the binding energy increases with molecular weight as 

long as the fullerene fits within the cavity of the ring. (  < ). For larger 

fullerenes that don't fit inside the ring, the larger the fullerene, the greater is its optimized 

displacement from the ring (଼ߜ଴௥ଶ ൏ ଵ଼଴௥ଶߜ ).  

3
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If we consider only the five fullerenes that have approximately 7 Å cross sectional 

diameter, (C60, C70, C90, C100, C180-CNT) all fit within ring3 given proper orientation. The 

binding energy ΔE increases with molecular weight (  <  <  <  ≈ 

) because more inter-component atom-atom dispersion interactions are possible. 
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However, the binding energy converges to a maximum at some molecular weight since 

making the fullerene longer eventually adds only very long-range inter-component 

interactions that make no appreciable contribution to the binding energy. This is evident 

by comparing the binding energies for C100 and C180-CNT interacting with ring3, both 

prolate-shaped fullerenes have approximately 7 Å cross-sectional diameter, but the 

computed binding energies differ by less than a half a percent. 

Both ring1 and ring2 have sufficiently smaller diameters than ring3 so that only 

C20 binds within the ring cavity, but otherwise the trends are the same. For the spherical 

fullerenes, the displacement increases with increasing molecular weight (ߜଶ଴௥ଵ ൏

଺଴௥ଶߜ ൏ ଴௥ଵ଼ߜ ൏ ଵ଼଴௥ଵߜ ) and (ߜଶ଴௥ଶ ൏ ଺଴௥ଶߜ ൏ ଴௥ଶ଼ߜ ൏ ଵ଼଴௥ଶߜ ). The corresponding binding energies 

are generally larger for ring2 than ring1 because more intercomponent interactions are 

involved due to the increase in the number of atoms but not in the diameter in ring2 

relative to ring1. The potential energy curves for interaction of the prolate fullerenes (C70, 

C90, C100, C180-CNT) with ring1 show interesting oscillations so that there are multiple local 

minima at close separation. (This is most evident for the single-point energy curves 

(Figure 4.6).) For clarity, the interactions of ring1 with C90 are highlighted in the insert 

of Figure 4.6. The oscillations are the strongest for C100, which exhibits local minima 

near 0.5, 1.75, 3.0 and 4.25 Å. Note that these minima are separated by ~1.25Å and are a 

manifestation of translational periodicity in the interaction between the nanotube and the 

ring. Similar oscillations appear for ring2, but no such oscillations are present for 

interactions with ring3 or ring4 for interactions with these fullerenes. The oscillations 

will likely be present for any tube-like fullerene interacting with a ring in which the fit is 

"tight", i.e. the tube diameter is only slightly smaller than the diameter of the ring cavity.  
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Table 4.3: Fullerene-nanoring potential interaction distances (Angstroms). Values are 
defined as one-half of the difference of the diameter of the two components. 

  C20 C60 C70 C80 C90 C100 C180 C180-CNT

  4.1 7.1 7.1 8.2 7.0 6.9 12.6 6.8 

ring1 13.3 4.6 3.1 3.1 2.6 3.2 3.2 0.4 3.3 

ring2 13.1 4.5 3.0 3.0 2.5 3.1 3.1 0.3 3.2 

ring3 14.5 5.2 3.7 3.7 3.1 3.7 3.8 0.9 3.8 

ring4 15.2 5.5 4.0 4.0 3.5 4.1 4.1 1.3 4.2 

 
 
 

For the largest of the rings, all of the fullerenes except for C180 fit within the 

cavity. Again, to dissect the trends, we separate the spherical and prolate fullerenes. 

Among the spherical fullerenes that do fit within the cavity (  < < ), 

increasing in binding strength as the fullerene becomes a closer match to the cavity size. 

Among the prolate fullerenes, the binding energy generally increases with molecular 

weight because more inter-component atom-atom dispersion interactions are possible. 

Overall the deepest potential well for interaction with ring4 is exhibited by C80 (
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Figure 

4.10). In this case the C80 fullerene, which has a diameter of 8.2 Å, interacting with ring4 

of diameter 15.2 Å, yields an interaction distance of 3.5 Å, (See Table 4.3) which is the 

closest to the optimum separation of graphene sheets of 3.4 Å89 that is possible with the 

set of fullerenes considered here. Upon full optimization, however, ring1, ring2 and ring3 

all exhibit the strongest interaction with C180-CNT. Here the interaction distance is never 

more than 0.4 Å from optimum, and C180-CNT presents sufficiently many more 
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opportunities for atom-atom dispersion interactions than any of the other fullerenes that 

its binding is strongest. Ring4 breaks the pattern, showing optimum binding with C80. 

This is likely due to the fact that the diameter of C180-CNT is slight smaller than any of the 

other prolate fullerenes considered. As a test, a slightly different conformation of the C180 

capped carbon nanotube was considered, which had a diameter of 7.9 Å (comparable to 

C80). The resulting binding energy was -50.9 kcal/mol, showing again that binding 

energy increases with molecular weight for the prolate fullerenes.  
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Figure 4.11:  Projected displacements of the fullerene from the ring centroid in the fully-
optimized fullerene-nanoring complexes. 
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4.4 Conclusions 

The interactions of eight fullerenes, (having molecular weights ranging from 240 

to 2162) with four PAH nano-rings have been studied with AM1-FS1, an empirically-

corrected semiempirical electronic structure theory. It is found that trends in structure and 

binding energy for the complexes only become apparent when the fullerenes are 

categorized by geometry. Among fullerenes of spheroidal geometry, those that fit within 

a ring cavity show strongest bonding for the largest structure. Among fullerenes too large 

to fit within the ring cavity, the structural displacement of the fullerene from the ring 

increases with fullerene molecular weight. For fullerenes having a prolate spheroidal 

geometry that fit within a ring cavity, binding strength increases with fullerene molecular 

weight, converging to a maximum for fullerenes of very high aspect ratio. Fullerene 

complexation is therefore highly conformationally dependent. Given the increasing 

prevalence of conformational isomerism with increasing fullerene molecular weight the 

challenge of separating fullerenes by complexation increases with molecular weight. 
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Chapter 5: A Computational Investigation of the Role of Counterions and 
Reorganization Energy in a Switchable Bistable [2]Rotaxane 

 

5.1 Introduction 

 The development of molecular electronic devices is at the forefront of 

nanotechnology. Such devices not only have vast potential impact on the ever growing 

electronic world, but also are intrinsically intriguing to the scientific community. The 

fabrication of devices from molecules, termed the “bottom-up” approach, holds the 

potential of removing the size reduction limitations associated with the current “top-

down” methodology typically used in device manufacture. A leading candidate in the 

development of molecular electronic devices is the “Stoddart-Heath-type” [2]rotaxane 

based switch90-99. Workable memory devices93, 98, 99 have been fabricated using these 

switchable bistable [2]rotaxanes as memory elements and “promise ultimate scalability, 

minimal power consumption and low fabrication costs97.”      

A switchable bistable [2]rotaxane is composed of two components; a long chain 

molecule referred to as the “shaft” that passes through a “ring” structured molecule. The 

shaft contains two stations where the ring may bind and is terminated with bulky end 

groups, stoppers, preventing dissociation of the ring from the shaft. To achieve 

switchable functionality, the stations have different compositions and therefore different 

affinities for the ring. The complex therefore has two co-conformations with different 

stabilities, hence it is bistable. Some of the currently most promising systems are 

composed of a tetra-cationic ring, cyclobis(paraquat-p-phenylene) (CBPQT4+), which 

shuttles between the electron-donating groups tetrathiafulvalene (TTF) and 1,5-

dioxynaphthalene (DNP) on the shaft. Among these types of systems, considerable 
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synthetic and experimental effort has been expended with the hope of achieving more 

desirable properties97. The system studied here, (shown in Figure 5.1) has been 

successfully incorporated into a two-dimensional crossbar circuit94. This system, as well 

as similar ones, has the ability to function as a molecular switch because the two co-

conformations exhibit different conductivities. The ground state co-conformation 

(GSCC), which is associated with the ring at the TTF station, exhibits low-conductance 

(off-state); whereas, the metastable state co-conformation (MSCC), wherein the ring is at 

the DNP station, exhibits high-conductance (on-state) (see Figure 5.2). This behavior has 

been demonstrated experimentally93, 94, 96 in numerous systems of this type. While the 

exact theoretical reason for the conductivity change is unknown, the basic mechanism for 

functionality is agreed upon92, 93, 100. The inhabitants of the GSCC and MSCC states are 

controlled by oxidation of the system, which occurs predominantly in the TTF moiety.  

Oxidation causes an electrostatic repulsion of the tetracationic ring from TTF, rendering 

the DNP station the only stable binding site for the ring. Upon reduction, the ring remains 

at the DNP station. Now in the MSCC state the system is highly-conductive. After a 

period of time the system returns to the GSCC. The relaxation time depends on the 

reaction barrier (shuttling barrier) that must be surpassed97. Therefore, the shuttling 

barrier and site preference are key properties for designing functional and nonvolatile 

memory95. 
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Figure 5.1: Schematic of the switchable bistable [2]rotaxane.  
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Computational studies of molecular electronic devices have the potential of 

providing a fundamental understanding of the inner-workings of these types of systems. 

Ultimately, such studies will aid the future design process by providing more likely 

structural compositions that will provide the desired properties. The first step towards 

utilizing computational methods for design purposes is to identify a method that is 

capable of accurately predicting the key properties of known systems. When choosing a 

particular method, one typically is faced with the dilemma of balancing accuracy and 

computational cost. The accuracy needed for a particular problem depends on the 

property or properties in question. In practice, accuracy is limited by computational 

resources; therefore, as the size of the system increases, the ability to perform high level 

ab initio calculations diminishes. In an attempt to remove this obstacle, it is common to 

remove part of the system to focus in on individual sections. This allows higher level 

calculations to be performed with the goal of obtaining more accurate results than 

otherwise possible. The Goddard group101 has demonstrated that qualitatively correct 

results can be achieved on these types of systems by such an analysis. An alternative 
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approach is to employ computationally efficient semi-empirical electronic structure 

methodology. 

In this study we employ the AM1-FS175 method to investigate the binding site 

preference and energy profiles for the shuttling of the ring along the shaft in the neutral 

and dicationic states. In addition, the reorganization energy associated with the 

oxidation/reduction process, starting from both the GSCC and MSCC states, is 

determined. The AM1-FS1 method is a version of the AM1 Hamiltonian empirically-

corrected for van der Waals (dispersion) and hydrogen-bonding interactions. The 

incorporation of dispersion interactions for systems of the type considered here is 

important because of the π-π stacking that occurs when the ring resides at either of the 

binding sites. These interactions are neglected in Hartree-Fock (HF) theory and by many 

exchange-correlation (XC) functionals used in density functional theory (DFT)102. Note 

that the system considered here does not have an alpha-hydrogen atom attached to a 

highly electronegative atom (N, O, or F); therefore, the H-bonding correction in AM1-

FS1 method is not utilized. One of the main goals of this article is to further demonstrate 

that the AM1-FS1 method is capable of accurately modeling intermolecular bound 

complexes75, 103. As additional evidence, comparisons are made to previously published 

experimental and computational results as well by performing in-house DFT calculations. 

Choosing the AM1 Hamiltonian, over DFT methodologies, is desirable because semi-

empirical methods can be 100-1000 times more computationally efficient. In addition to 

the mentioned studies, the presence of the hexafluorophosphate (PF6
-) counterions on the 

computational results is considered.  

 



110 
 

 

Figure 5.2: Full Geometry Optimized AM1-FS1 structures. On the left: the GSCC which 
is associated with the “off” state. On the right: the MSCC which is associated with the 
“on” state. The hydrogen atoms have been removed for clarity.  

 
 

5.2 Computational Methods 

Starting structures for the components of the pseudorotaxane considered here 

were generated using the HyperChem104 gui. These structures were then fully optimized 

at the AM1-FS175 level of theory, using a locally modified version of GAMESS105.  

Hexafluorophosphate (PF6
-) counterions were then symmetrically placed in the vicinity of 

each electron deficient nitrogen atom in the CBPQT4+ ring and the CBPQT(PF6)4 

complex was fully optimized.  
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 To map the variation in energy with ring shuttling along the shaft, constrained 

optimizations were carried out for the complex with the center-of-mass (CM) of the 

optimized ring structure placed at 18 different positions along the shaft of the 

pseudorotaxane. Each of the positions corresponds to an atom, or midpoint between two 

atoms, along the shaft (see Figure 5.3). At each position, 6 different trial structures were 

generated by rotating the CBPQT(PF6)4 complex in equal increments between 0 and 90 

degrees (this range covers full axial rotation due to the symmetry of the ring) about the 

axis that passes through the selected atom and its nearest neighbor on the backbone of the 

shaft, generating a total of 108 structures. All 108 structures were then optimized in the 

neutral (ground state) and oxidized (2+ state) states with AM1-FS1. To help maintain the 

desired conformations, three constraints were applied. First, a torsional constraint was 

applied between three “corner” carbon atoms on the ring and the selected atom position 

on the shaft. This constraint maintains the ring position relative to the shaft but allows for 

rotation of the ring during optimization. Second, the distance between the N atoms on the 

ring and the corresponding P atoms of the counterions were also fixed. This constraint 

prevented a large change in the position of the counterions, especially during the 

beginning steps of the optimization procedure. Without this constraint it was observed in 

some cases that the initial atomic forces were very large, (presumably due to unphysically 

close contacts created during structure generation) causing rapid counterion migration 

resulting in large differences in final energy between similar starting structures. The use 

of counterion constraints is intended to help more clearly map the shuttling barrier while 

limiting the computational space that needs to be explored. Third, the position of one 

atom on each end of the shaft was fixed, preventing the system from coiling. This 
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constraint is justified since in typical applications the ends of these systems are bound to 

surfaces preventing coiling. In practical application, the neighboring structures on the 

surface should also help prevent coiling of the complex. Note, approximately 10 

structures in each state failed to converge; mainly because rotation of the ring near the 

DNP site causes unphysically close contacts. These structures were simply discarded. 
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Figure 5.3: Schematic of the shaft of the pseudorotaxane. The different ring positions 
along the shaft are identified by integers; The “ * ” indicates that the midpoint between 
the two atoms was used for ring placement.   

 

 

To further investigate this system, the lowest energy structure, (based on the 

AM1-FS1 optimizations) for each ring position along the shaft was identified and single-

point DFT and AM1 calculations were preformed. This comparison is intended to remove 

methodological bias and show that AM1-FS1 is appropriate for the task at hand. All DFT 

calculations were performed using NWChem106, with the PBE functional107 and the 6-

31G basis set. In addition, single-point calculations were carried out on these optimized 

structures with the counterions removed, since it has been suggested that the actual 

presence of these ions is uncertain108.  Removing the counterions inherently changes the 

charge of the ground state of the system to 4+. To compare with results previously 
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reported by Subramanian et al.108, single-point energies were also determined for the 

neutral state, again without counterions. This is an "unnatural" electronic configuration, 

however, we believe this was the electronic state previously considered. Evidence and 

further discussion of this matter will be addressed in the next section. 

The lowest energy GSCC and MSCC structures, including counterions, were 

further investigated. These two structures were fully optimized, at the AM1-FS1 level, 

with all geometry constraints removed and are shown in Figure 5.2. A full geometry 

optimization was also performed on the lowest energy structure, including counterions, in 

the oxidized 2+ state with the ring positioned at the DNP site. (Only the DNP site was 

considered in the oxidized state; since the ring is energetically disfavored that the TTF 

site in the oxidized state.)  

5.3 Results and Discussion 

   The variation in energy for the ring shuttling along the shaft of the 

pseudorotaxane in the neutral and oxidized (2+) states is shown in Figure 5.4. These 

curves are based on the AM1-FS1 constrained optimizations in the presence of 

counterions. The neutral state curve (more clearly depicted in Figure 5.7) correctly 

predicts the lowest energy co-conformation (GSCC) to be when the ring is positioned 

about the TTF site; a result that is in agreement with experimental94 and other 

computational results108. Based on this curve (constrained optimizations), the GSCC state 

is favored by 1.6 kcal/mol over the MSCC state. This number is in excellent agreement 

with the value (1.5 kcal/mol) obtained when full geometry optimizations were carried out 

with the ring positioned at the TTF and DNP site. This provides evidence that the 

constraints applied during geometry optimization did not qualitatively alter the results. 
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The predicted reaction barrier for the ring moving from the GSCC state to the MSCC 

state is 14.4 kcal/mol, (and 12.8 kcal/mol in the reverse direction). These values agree 

with previously published108 DFT (PBE functional) calculations using periodic-boundary-

condition; where a 14 kcal/mol (600 meV) barrier was reported from the GSCC state to 

the MSCC state. Figure 5.4 also displays the reaction path in the oxidized state. This 

curve clearly indicates that upon oxidation DNP is the preferred site for ring binding. 

This site is predicted to be preferred by about 90 kcal/mol. This large energy preference 

is a result of the oxidation of the TTF group, leading to the repulsion of the tetracationic 

ring. The DNP site is therefore the only stable ring-binding site in the oxidized state. 

These two states are predicted to be separated by about 400 kcal/mol (~17 eV), roughly 

corresponding to the energy required to remove two electrons from the system. 
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Figure 5.4: AM1-FS1 potential energy curves for the shuttling process of the pseudorotaxane 
with counter ions in the neutral and 2+ states obtained by restrained optimizations.  

 

  

The binding site preference and the reaction barrier influence the functionality of 

the system. The binding site preference controls whether the system is in the “on” or 

“off” state. If the DNP site were preferred over the TTF site in the reduced state, the ring 

would never leave that site, rendering the system useless as a molecular switch. In this 

particular system, the TTF site is predicted to be more stable by about 1.5 kcal/mol. It 

might be desirable if these two states were separated further in energy to limit the initial 

population of the MSCC state, thereby decreasing the number of defects upon assembly. 

The reaction barrier is also important because it controls the rate at which the system 

returns to the GSCC from the MSCC. Increasing the reaction barrier should increase the 
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memory-retention characteristics. Tailoring these different properties by structural 

modifications is one area where accurate computational methods can potentially be 

extremely useful.  

 

 

Figure 5.5: Potential energy curve for the shuttling process of the pseudorotaxane without 
counter ions in the neutral state (incorrect state). The pseudorotaxane structures were 
obtained by removing the counter ions from the AM1-FS1 optimized structures.    

 

 
 As mentioned above, this system was further studied by removing the 

counterions, since it has been suggested that “the presence and arrangement of these 

counterions has not been definitively established108.” Subramanian et al108, reported that 

in the absence of counterions the ring is energetically favored to bind between the TTF 

and DNP sites. We disagree with these findings and believe this is a result of a 
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computational error. Specifically, we believe that when the counterions where removed 

from the system the charge state was not changed to 4+, the natural charge state of the 

system in the absence of the four PF6
- counterions, which balance the tetracationic ring 

(CBPQT4+). To support this claim, we have carried out single-point calculations in the 

absence of counterions in the neutral (incorrect electronic state) and 4+ (correct electronic 

state) states. For comparison, these calculations were carried out at the AM1, AM1-FS1, 

and PBE/6-31G levels. The PBE functional was chosen since it was used in the previous 

study that found the ring to be favored between the two binding sites in absence of 

counterions. Figure 5.5 shows the energy profile for the ring moving along the shaft in 

the neutral state, clearly the ring is preferred at the center of the shaft. This is the same 

result reported by Subramanian et al.108; however, this curve represents the incorrect 

charge state. On the other hand, if we model the same system in the correct charge state 

(4+), a completely different energy profile is observed (see Figure 5.6). This curve more 

closely describes the correct behavior of the system, but does suggest that the ring is 

preferred at the DNP site in the absence of the counterions. The conclusion of 

Subramanian et al.108, that the presence of counterions is needed to correctly describe this 

system, may be true, but the reasoning is entirely different.  
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Figure 5.6: Potential energy curve for the shuttling process in the pseudorotaxane without 
counter ions in the 4+ state (correct state). The pseudorotaxane structures were obtained by 
removing the counter ions from the AM1-FS1 optimized structures.    

 

 To further support the accuracy of our AM1-FS1 calculations, single-point 

PBE/6-31G calculations in the presence of counterions were preformed. The results are 

shown in Figure 5.7. This figure shows that the PBE single-point calculations, based on 

the AM1-FS1 optimized structures, qualitatively predict the correct behavior of the 

system. These results are in agreement with those by Subramanian et al.108, where the 

same XC-functional was used to study this system. 
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Figure 5.7: Potential energy curve for the shuttling process of the pseudorotaxane with 
counter ions. Single-point PBE/6-31G calculations were preformed on the AM1-FS1 
optimized structures.

  

It has been recently suggested109 that the reorganization energy associated with 

the oxidation/reduction process is the leading cause of the experimentally observed 

conductivity difference between the GSCC and MSCC states. This claim was theorized 

based on Deng and Goddard’s implementation of Marcus hop rate theory110. More 

specifically, it is based on the fact that the reorganization energy enters exponentially into 

the expression for hop rate, which is directly proportional to the conductivity. Moreover, 

a decrease in reorganization energy corresponds to an increase in the hop rate and thus an 

increase in conductance. In a switchable bistable [2]rotaxane, as considered here, two 

minima exist in the reduced state (neutral or 4+ w/o counterions) namely the GCSS and 
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MSCC states. Therefore, the system can be in either of the two co-conformations at the 

moment of oxidation resulting in two different reorganization energies. These values can 

be determined from the energy associated with the diabatic charge transfer (a detailed 

prescription for determining these values is given in Ref. 109). The reorganization 

energies based on the AM1-FS1 full optimizations with counterions are 172 kcal/mol and 

108 kcal/mol starting from the GSCC and MSCC respectively. This 64 kcal/mol 

difference has a huge affect (many orders-of-magnitude) on the difference in the 

predicted hoprate. The large difference in reorganization energy is not especially 

surprising since there is a large change in the nuclear coordinates between the minimum 

withe the ring at the TTF site in the reduced state, and the minimum with the ring at the 

DNP site in the oxidized state. On the other hand, when the system is oxidized in the 

MSCC, the ring remains at the DNP site; therefore, significantly less structural 

reorganization of the system is required upon oxidation. This energy difference is of the 

magnitude of the relaxation energy for the ring moving from the TTF site to the DNP site 

in the oxidized state. This result supports the claim109 that the reorganization energy is the 

leading cause for the observed high-conductance in the MSCC state in comparison to the 

GSCC state.  

5.4 Conclusions 

Switchable bistable [2]rotaxanes have been previously studied both 

experimentally and computationally with the aim of aiding in the future development of 

molecular electronic devices. Although, many promising advances have been made, 

further investigations and advances are still needed before such devices will become 

integrated into practical electronic devices. To this end, we have studied one such 
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plausible system in hopes of indentifying a relatively efficient computational model for 

predicting key properties of the complex. We have demonstrated that the AM1-FS1 

method is capable of determining binding site preference as well as quantitatively 

(relatively speaking to the more computationally expense DFT method) predicting the 

relative stabilities and the reaction barrier between the different co-conformational states. 

Since the functionality of the Stoddart-Heath type [2]rotaxanes depends on the difference 

in conductance resulting from the co-conformational state occupied, we have explored 

the idea that the reorganization energy is the possible origin of differences in conductivity 

between the two co-conformations. Our findings indeed support this prior claim. All of 

these properties, (binding site preference, barrier to co-conformational isomerism, 

reorganization energy) play important roles in the functionality of these systems; 

therefore, there is significant benefit in identifying an efficient computational technique 

for identifying them.  
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Appendix A: S22 Database Complexes 

 
 
 
 

 
 

Figure A-1: Hydrogen-bonded complexes in the S22 database 
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Figure A-2: Dispersion bonded complexes in the S22 database 
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Figure A-3: Mixed bonded complexes in the S22 database 
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Appendix B: Supporting Information for Chapter 2 

 
 
 
Table B-1: Single-point interaction energies (kcal/mol) at the S22 geometries.  

 
 

No. Molecule (symmetry) Ref. Values B2PLYP-D/TZVPP
Hydrogen bonded complexes

1 (NH3)2  (C2h) -3.17 -3.72 -4.16 -3.65
2 (H2O)2  (Cs) -5.02 -5.07 -5.80 -5.47
3 Formic acid dimer  (C2h) -18.61 -18.25 -19.34 -19.43
4 Formamide dimer  (C2h) -15.96 -15.28 -16.39 -16.37
5 Uracil dimer  (C2h) -20.65 -19.45 -20.73 -20.88
6 2-Pyridoxine2-aminopyridine (C1) -16.71 -17.13 -18.05 -17.60
7 Adenine thymine  WC (C1) -16.37 -16.20 -17.19 -16.85

Complexes with predominant dispersion contribution
8 (CH4)2  (D3d) -0.53 -0.57 -0.36 -0.40
9 (C2H4)2  (D2d) -1.51 -1.55 -1.55 -1.50

10 Benzene CH4  (C3) -1.50 -1.51 -1.37 -1.42
11 Benzene dimer  (C2h) -2.73 -2.67 -2.35 -2.52
12 Pyrazine dimer  (Cs) -4.42 -4.07 -4.05 -4.26
13 Uracil dimer  (C2) -10.12 -10.02 -10.50 -10.14
14 Indole benzene (C1) -5.22 -4.72 -4.55 -4.69
15 Adenine thymine stack (C1) -12.23 -12.11 -12.85 -12.52

Mixed complexes
16 Ethene ethyne  (C2v) -1.53 -1.73 -1.62 -1.60
17 Benzene H2O  (Cs) -3.28 -4.14 -4.16 -3.66
18 Benzene NH3  (Cs) -2.35 -2.75 -2.66 -2.47
19 Benzene HCN  (Cs) -4.46 -4.88 -4.87 -4.96
20 Benzene dimer (C2v) -2.74 -2.93 -2.76 -2.82
21 Indole benzene T-shape (C1) -5.73 -6.26 -6.16 -6.04
22 Phenol dimer (C1) -7.05 -6.60 -7.35 -7.28

RMSE (Hydrogen bonded) 0.60 0.83 0.58
RMSE (Dispersion bonded) 0.22 0.40 0.24
RMSE (Mixed bonded) 0.48 0.43 0.29

RMSE 0.46 0.58 0.39
MUE 0.35 0.47 0.31

B97-D / TZV(2df,2pd) BLYP-D / TZV(2df,2pd)
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Table B-2: Single-point interaction energies (kcal/mol) at the S22 geometries. LP = 
6-311++G(3df,3pd). 

 
 

No. Molecule (symmetry) Ref. Values TPSS / LP TPSS / LP CP TPSS-D / LP TPSS-D / LP CP
Hydrogen bonded complexes

1 (NH3)2  (C2h) -3.17 -2.3 -2.2 -3.0 -3.1
2 (H2O)2  (Cs) -5.02 -4.9 -4.4 -5.5 -5.2
3 Formic acid dimer  (C2h) -18.61 -18.3 -17.5 -19.8 -19.2
4 Formamide dimer  (C2h) -15.96 -14.4 -13.9 -16.1 -15.9
5 Uracil dimer  (C2h) -20.65 -18.2 -17.6 -20.5 -20.2
6 2-Pyridoxine2-aminopyridine (C1) -16.71 -14.6 -14.2 -17.5 -17.5
7 Adenine thymine  WC (C1) -16.37 -13.6 -13.1 -16.7 -16.7

Complexes with predominant dispersion contribution
8 (CH4)2  (D3d) -0.53 0.2 0.2 -0.7 -0.7
9 (C2H4)2  (D2d) -1.51 0.2 0.3 -1.8 -2.5
10 Benzene CH4  (C3) -1.50 0.1 0.5 -1.7 -1.5
11 Benzene dimer  (C2h) -2.73 2.1 3.0 -3.3 -2.6
12 Pyrazine dimer  (Cs) -4.42 1.3 1.9 -4.2 -3.9
13 Uracil dimer  (C2) -10.12 -2.2 -1.0 -9.8 -9.2
14 Indole benzene (C1) -5.22 2.4 3.7 -5.4 -4.5
15 Adenine thymine stack (C1) -12.23 -0.6 0.8 -11.9 -11.4

Mixed complexes
16 Ethene ethyne  (C2v) -1.53 -1.0 -0.8 -1.7 -1.3
17 Benzene H2O  (Cs) -3.28 -2.1 -1.4 -3.6 -3.2
18 Benzene NH3  (Cs) -2.35 -0.8 -0.3 -2.5 -2.3
19 Benzene HCN  (Cs) -4.46 -2.8 -2.2 -4.4 -4.1
20 Benzene dimer (C2v) -2.74 0.0 0.6 -2.6 -2.3
21 Indole benzene T-shape (C1) -5.73 -1.8 -1.0 -5.4 -4.8
22 Phenol dimer (C1) -7.05 -3.5 -2.9 -6.9 -6.7

RMSE (Hydrogen bonded) 1.7 2.2 0.6 0.4
RMSE (Dispersion bonded) 6.3 7.2 0.3 0.6
RMSE (Mixed bonded) 2.5 3.0 0.2 0.4

RMSE 4.2 4.8 0.4 0.5
MUE 3.0 3.7 0.3 0.4
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Table B-3: Geometry optimized energies (kcal/mol), interaction distances (Angstroms), 
and CM-distance (Angstroms) for the complexes in the S22 database. The interaction 
distance is defined as the CM-distance for complexes 11-15 and the 2nd distance reported 
for complex 22. 

 
 

No. Molecule (symmetry) Ref. Values Ref. Values BLYP-D / TZV(2d,2p) Ref. Values BLYP-D / TZV(2d,2p)
Hydrogen bonded complexes

1 (NH3)2  (C2h) -3.17 -3.58 2.504 2.595 3.209 3.305
2 (H2O)2  (Cs) -5.02 -5.98 1.952 1.961 2.909 2.927
3 Formic acid dimer  (C2h) -18.61 -16.62 1.670 1.674 2.993 3.017
4 Formamide dimer  (C2h) -15.96 -14.91 1.841 1.864 3.229 3.267
5 Uracil dimer  (C2h) -20.65 -18.41 1.775 1.789 6.075 6.127
6 2-Pyridoxine2-aminopyridine (C1) -16.71 -16.20 1.859, 1.874 1.846, 1.851 5.136 5.165
7 Adenine thymine  WC (C1) -16.37 -15.48 1.819, 1.929 1.786, 1.908 5.974 5.99

Complexes with predominant dispersion contribution
8 (CH4)2  (D3d) -0.53 -0.32 3.718 3.717 3.718 3.716
9 (C2H4)2  (D2d) -1.51 -1.39 3.718 3.712 3.718 3.712
10 Benzene CH4  (C3) -1.50 -0.94 3.716 3.732 3.716 3.732
11 Benzene dimer  (C2h) -2.73 -2.01 3.765 3.775 3.765 3.772
12 Pyrazine dimer  (Cs) -4.42 -3.76 3.479 3.631 3.479 3.628
13 Uracil dimer  (C2) -10.12 -9.01 3.166 2.807 3.166 3.223
14 Indole benzene (C1) -5.22 -4.20 3.498 3.574 3.498 3.724
15 Adenine thymine stack (C1) -12.23 -11.20 3.172 3.259 3.172 3.268

Mixed complexes
16 Ethene ethyne  (C2v) -1.53 -1.46 2.752 2.755 4.422 4.428
17 Benzene H2O  (Cs) -3.28 -3.72 2.531 3.330 3.380 3.262
18 Benzene NH3  (Cs) -2.35 -2.14 3.592 3.628 3.560 3.596
19 Benzene HCN  (Cs) -4.46 -4.08 3.387 3.510 3.950 4.068
20 Benzene dimer (C2v) -2.74 -2.19 3.513 3.651 4.909 5.053
21 Indole benzene T-shape (C1) -5.73 -5.09 3.210 3.409 4.884 5.024
22 Phenol dimer (C1) -7.05 -6.94 1.937, 4.921 1.921, 5.084 4.921 5.084

RMSE (Hydrogen bonded) 1.32 0.035 0.047
RMSE (Dispersion bonded) 0.76 0.144 0.104
RMSE (Mixed bonded) 0.40 0.304 0.117

RMSE 0.90 0.192 0.095
MUE 0.72 0.097 0.071

Interaction Distances (Å) CM-Distances (Å)Interaction Energies (kcal/mol)

BLYP-D / TZV(2d,2p)
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Table B-4: Geometry optimized interaction energies (kcal/mol) and CM-distances 
(Angstroms) for the complexes in the S22 database. LP = 6-311++G(3df,3pd). The 
interaction distance is defined as the CM-distance in complexes 11-15 and 2nd value 
reported for complex 22. 

 
 

ΔE CM Distance ΔE CM-Distance ΔE CM-Distance Interaction Distances
Hydrogen bonded complexes

1 (NH3)2  (C2h) -3.17 3.209 -2.4 3.257 -3.1 3.324 2.635
2 (H2O)2  (Cs) -5.02 2.909 -5.0 2.891 -5.6 2.897 1.928
3 Formic acid dimer  (C2h) -18.61 2.993 -20.7 2.964 -22.4 2.955 1.608
4 Formamide dimer  (C2h) -15.96 3.229 -15.3 3.210 -17.0 3.205 1.800
5 Uracil dimer  (C2h) -20.65 6.075 -19.1 6.074 -21.5 6.055 1.731
6 2-Pyridoxine2-aminopyridine (C1) -16.71 5.136 -15.9 5.134 -18.9 5.104 1.804,1.800
7 Adenine thymine  WC (C1) -16.37 5.974 -14.6 5.969 -17.9 5.938 1.752, 1.851

Complexes with predominant dispersion contribution
8 (CH4)2  (D3d) -0.53 3.718 0.0 3.923 -0.7 3.719 3.719
9 (C2H4)2  (D2d) -1.51 3.718 -0.3 4.202 -1.8 3.718 3.735
10 Benzene CH4  (C3) -1.50 3.716 0.1 3.723 -1.7 3.721 3.721
11 Benzene dimer  (C2h) -2.73 3.765 0.0 4.638 -3.3 3.769 3.769
12 Pyrazine dimer  (Cs) -4.42 3.479 -0.6 4.322 -4.3 3.575 3.575
13 Uracil dimer  (C2) -10.12 3.166 -3.5 3.800 -10.2 3.172 3.172
14 Indole benzene (C1) -5.22 3.498 -0.7 4.637 -5.4 3.515 3.515
15 Adenine thymine stack (C1) -12.23 3.172 -6.7 4.525 -12.0 3.224 3.224

Mixed complexes
16 Ethene ethyne  (C2v) -1.53 4.422 -1.0 4.445 -1.6 4.437 2.768
17 Benzene H2O  (Cs) -3.28 3.380 -2.2 3.544 -3.6 3.386 2.531
18 Benzene NH3  (Cs) -2.35 3.560 -1.0 3.845 -2.5 3.567 3.599
19 Benzene HCN  (Cs) -4.46 3.950 -2.8 3.956 -4.4 3.951 3.395
20 Benzene dimer (C2v) -2.74 4.909 -0.8 5.411 -2.9 5.134 3.738
21 Indole benzene T-shape (C1) -5.73 4.884 -2.5 5.279 -5.3 4.891 3.241
22 Phenol dimer (C1) -7.05 4.921 -4.4 5.420 -7.2 4.983 1.924,4.983

RMSE (Hydrogen bonded) 1.3 0.023 1.8 0.051 0.070
RMSE (Dispersion bonded) 3.9 0.812 0.3 0.039 0.040
RMSE (Mixed bonded) 2.0 0.331 0.2 0.089 0.084

RMSE 2.7 0.524 1.1 0.062 0.067
MUE 2.1 0.342 0.6 0.036 0.045

Ref. Values TPSS-D / LPTPSS / LP
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Table B-5: Single-point interaction energies (kcal/mol) at the S22 geometries. a AM1-D 
results without re-parameterization of AM1 method (S6=1.1 and d=23.0). 

 
 

No. Molecule (symmetry) Ref. Values AM1 PM3 AM1-Da AM1-D PM3-D PM3-D*
Hydrogen bonded complexes

1 (NH3)2  (C2h) -3.17 -0.78 0.77 -2.35 -3.43 -1.77 -0.67
2 (H2O)2  (Cs) -5.02 -2.89 -2.79 -3.74 -7.29 -5.14 -4.53
3 Formic acid dimer  (C2h) -18.61 1.54 -9.91 -1.24 -15.45 -18.57 -17.46
4 Formamide dimer  (C2h) -15.96 -12.02 -8.08 -8.67 -17.16 -15.37 -10.32
5 Uracil dimer  (C2h) -20.65 -5.79 -11.32 -9.48 -20.15 -20.30 -19.88
6 2-Pyridoxine2-aminopyridine (C1) -16.71 -4.45 -7.46 -8.84 -16.50 -17.52 -13.50
7 Adenine thymine  WC (C1) -16.37 -4.28 -6.79 -8.95 -16.58 -17.33 -13.89

Complexes with predominant dispersion contribution
8 (CH4)2  (D3d) -0.53 0.21 -0.25 -0.70 -0.94 -1.24 -1.00
9 (C2H4)2  (D2d) -1.51 -0.13 -1.11 -2.48 -3.31 -3.60 -2.44
10 Benzene CH4  (C3) -1.50 0.40 -0.19 -2.00 -2.12 -2.42 -1.83
11 Benzene dimer  (C2h) -2.73 3.52 2.38 -2.79 -2.90 -4.30 -4.41
12 Pyrazine dimer  (Cs) -4.42 2.49 3.90 -4.38 -4.57 -4.20 -4.83
13 Uracil dimer  (C2) -10.12 0.12 5.80 -9.87 -10.56 -6.78 -10.78
14 Indole benzene (C1) -5.22 5.39 4.04 -4.04 -4.04 -6.09 -5.68
15 Adenine thymine stack (C1) -12.23 2.91 7.37 -11.74 -12.20 -10.63 -11.58

Mixed complexes
16 Ethene ethyne  (C2v) -1.53 -0.35 -0.82 -1.45 -1.61 -1.85 -1.41
17 Benzene H2O  (Cs) -3.28 -0.69 -1.47 -3.29 -3.43 -3.65 -2.71
18 Benzene NH3  (Cs) -2.35 -0.33 -0.59 -2.85 -3.00 -2.96 -1.97
19 Benzene HCN  (Cs) -4.46 -0.81 -1.63 -4.27 -4.44 -4.43 -3.05
20 Benzene dimer (C2v) -2.74 0.37 -0.43 -3.68 -3.85 -4.15 -2.90
21 Indole benzene T-shape (C1) -5.73 -1.05 -1.25 -6.96 -7.10 -6.65 -4.60
22 Phenol dimer (C1) -7.05 -1.36 -1.37 -5.86 -9.76 -7.52 -5.57

RMSE (Hydrogen bonded) 11.64 7.77 9.25 1.56 0.76 2.85
RMSE (Dispersion bonded) 8.21 10.13 0.61 0.82 1.68 0.81
RMSE (Mixed bonded) 3.57 3.22 0.77 1.25 0.72 0.92

RMSE 8.47 7.73 5.25 1.23 1.18 1.76
MUE 6.54 5.94 2.77 0.85 0.90 1.23
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Table B-6: Geometry optimized interaction energies (kcal/mol) for the S22 complexes. 

 

No. Molecule (symmetry) Ref. Values AM1 PM3 AM1-D PM3-D PM3-D*
Hydrogen bonded complexes

1 (NH3)2  (C2h) -3.17 -1.39 -0.71 -3.03 -1.99 -2.12
2 (H2O)2  (Cs) -5.02 -3.30 -3.55 -7.22 -6.53 -4.04
3 Formic acid dimer  (C2h) -18.61 -6.62 -9.58 -12.45 -16.16 -19.71
4 Formamide dimer  (C2h) -15.96 -2.06 -6.99 -14.64 -14.42 -10.05
5 Uracil dimer  (C2h) -20.65 -10.48 -10.70 -17.80 -18.83 -22.19
6 2-Pyridoxine2-aminopyridine (C1) -16.71 -6.15 -7.06 -13.06 -18.32 -13.70
7 Adenine thymine  WC (C1) -16.37 -5.06 -6.90 -12.66 -18.66 -16.29

Complexes with predominant dispersion contribution
8 (CH4)2  (D3d) -0.53 -0.21 -0.32 -4.10 -2.38 -1.14
9 (C2H4)2  (D2d) -1.51 -0.13 -1.08 -4.85 -4.11 -2.37

10 Benzene CH4  (C3) -1.50 0.35 -0.20 -2.93 -2.88 -1.84
11 Benzene dimer  (C2h) -2.73 0.01 -0.02 -3.10 -4.59 -4.82
12 Pyrazine dimer  (Cs) -4.42 -0.34 -0.26 -4.87 -4.45 -6.36
13 Uracil dimer  (C2) -10.12 -6.05 -4.26 -11.25 -7.59 -15.47
14 Indole benzene (C1) -5.22 -1.33 -1.65 -8.16 -6.26 -5.89
15 Adenine thymine stack (C1) -12.23 -5.15 -6.50 -15.13 -11.70 -17.13

Mixed complexes
16 Ethene ethyne  (C2v) -1.53 -0.57 -1.23 -2.47 -2.58 -1.36
17 Benzene H2O  (Cs) -3.28 -1.03 -1.63 -3.90 -4.46 -2.94
18 Benzene NH3  (Cs) -2.35 -0.80 -0.93 -4.04 -3.99 -1.99
19 Benzene HCN  (Cs) -4.46 -0.92 -1.85 -4.28 -4.40 -2.88
20 Benzene dimer (C2v) -2.74 -0.09 -0.52 -4.22 -4.39 -2.87
21 Indole benzene T-shape (C1) -5.73 -1.24 -1.67 -7.74 -7.20 -4.87
22 Phenol dimer (C1) -7.05 -3.39 -4.33 -11.55 -8.95 -5.63

RMSE (Hydrogen bonded) 9.90 8.04 3.38 1.82 2.66
RMSE (Dispersion bonded) 3.73 3.65 2.36 1.71 2.79
RMSE (Mixed bonded) 2.96 2.40 2.09 1.40 0.89

RMSE 6.25 5.22 2.65 1.65 2.31
MUE 4.82 4.09 2.16 1.51 1.60
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Table B-7: Geometry optimized interaction distances (Angstroms) for the S22 
complexes. The interaction distance is defined as the CM-distance in complexes 11-15 
and 2nd value reported for complex 22. 

No. Molecule (symmetry) Ref. Values AM1 PM3 AM1-D PM3-D
Hydrogen bonded complexes

1 (NH3)2  (C2h) 2.504 2.784 3.241 2.646 2.726
2 (H2O)2  (Cs) 1.952 2.094 1.809 1.911 1.769
3 Formic acid dimer  (C2h) 1.670 2.101 1.776 1.925 1.737
4 Formamide dimer  (C2h) 1.841 2.072 1.807 1.981 1.763
5 Uracil dimer  (C2h) 1.775 2.044 1.787 1.946 1.744
6 2-Pyridoxine2-aminopyridine (C1) 1.859, 1.874 2.511, 2.107 1.798, 1.815 1.980, 1.981 1.722,1.768
7 Adenine thymine  WC (C1) 1.819, 1.929 2.476, 2.101 1.780, 1.821 1.807, 2.018 1.708,1.769

Complexes with predominant dispersion contribution
8 (CH4)2  (D3d) 3.718 3.721 3.447 2.881 3.160
9 (C2H4)2  (D2d) 3.718 3.714 3.706 3.305 3.469

10 Benzene CH4  (C3) 3.716 3.746 3.718 3.315 3.450
11 Benzene dimer  (C2h) 3.765 6.952 6.096 3.643 3.499
12 Pyrazine dimer  (Cs) 3.479 4.848 4.760 3.695 3.437
13 Uracil dimer  (C2) 3.166 5.805 6.732 3.097 3.406
14 Indole benzene (C1) 3.498 5.572 5.520 4.448 3.415
15 Adenine thymine stack (C1) 3.172 6.202 5.788 4.320 3.280

Mixed complexes
16 Ethene ethyne  (C2v) 2.752 2.468 2.429 2.319 2.366
17 Benzene H2O  (Cs) 2.531 4.020 3.746 2.986 2.982
18 Benzene NH3  (Cs) 3.592 4.092 4.025 2.995 3.069
19 Benzene HCN  (Cs) 3.387 3.472 3.694 3.228 3.343
20 Benzene dimer (C2v) 3.513 5.225 3.606 3.253 3.370
21 Indole benzene T-shape (C1) 3.210 3.811 3.807 3.010 3.233
22 Phenol dimer (C1) 1.937, 4.921 2.174, 5.925 1.829, 5.712 2.001, 5.040 1.778, 5.265

RMSE (Hydrogen bonded) 0.387 0.257 0.137 0.134
RMSE (Dispersion bonded) 2.015 1.962 0.644 0.272
RMSE (Mixed bonded) 0.929 0.598 0.336 0.315

RMSE 1.277 1.171 0.419 0.249
MUE 0.853 0.691 0.301 0.199
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Appendix C:Determining the Gradient of the FS1 Correction 

 

C.1 Dispersion Gradient 

Determining the gradient of the dispersion correction term (Eq. 3.1) is relatively 

simple, since the only variable is rij (the distance between two atoms in the system). 

Taking the derivative of Eq. 3.1 yields: 
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This derivative can be use to determine the gradient, with respect to the x, y, and z 

coordinates by applying the following transformations: 

 ( ) ijji
ij

DISP
x rxx

dr
dEG −= ,                                       (C.2)

 

( ) ijji
ij

DISP
y ryy

dr
dEG −= ,                                      (C.3)

 

( ) ijji
ij

DISP
z rzz

dr
dEG −= .                                       (C.4) 

These values can now be simply added to the AM1 gradient of the ith atom and the 

negative of these values to the jth atom. The gradient needs to be computed for every 

unique atom pair. This allows geometry optimizations to be performed considering the 

dispersion correction.  
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C.2 Hydrogen-Bonding Gradient 

Determining the Gradient of the hydrogen-bonding correction term (Eq. 3.4) is 

more difficult than for the dispersion term. In this case the there are two variables rik (the 

distance between the H---Y atoms in the system) and θ (the XH---Y angle). This is more 

difficult than just taking the partial derivative with respect to the two variables, since 

these variables are dependent. The gradient was achieved by writing the HB correction 

terms of a function of the distance between the x, y, and z components of the X-H and H-

Y atom pairs: 

( )jiij xxX −=
  
,                                                  (C.5)

 
( )jiij yyY −=

  
,                                                  (C.6)

 
( )jiij zzZ −=

  
,                                                  (C.7)

 
( )kiik xxX −=

 
,                                                 (C.8)

 
( )kiik yyY −=

  
,                                                 (C.9)

 
( )kiik zzZ −=

  
,                                               (C.10) 

where i is the H atom, j is the X atom, and k is the Y atom. The following substitutions 

can be made: 

222
ijijijij ZYXr ++= ,                                           (C.11) 

222
ikikikik ZYXr ++= ,                                          (C.12) 
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Now, the partial derivatives with respect to these 6 variables can be taken, since the 

variables are now independent. This yields the following 6 expressions: 
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where: 
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Since, these partial derivatives are with respect to the difference of the x, y, and z 

coordinates, the values can be directly added to the AM1 gradient of the ith, jth, and kth 

atoms as follows; for the ith atom: 
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for the jth atom: 
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for the kth atom: 
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The gradient needs to be computed for every HB situation identified. This allows 

geometry optimizations to be performed considering the HB correction. The gradient 

considered here is the nuclear contribution; however, the charges on the atoms are also 

changing. This effect was not considered in the 1st version of AM1-FS1, but the method 

was later adjusted, as described is Appendix D.  
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Appendix D: SCF Addition of the HB Correction Term 

 

In the first version of the empirically corrected AM1 method, termed AM1-FS1, 

the hydrogen-bonding (HB) correction term was added to the post self-consistent-field 

(SCF) energy. This causes the electronic gradient of HB correction to be neglected. This 

led to a slight error in the energy upon optimization. The error arises since the HB 

correction term depends on the Coulson charges for each atom involved, which depend 

on the electron density matrix (P). The Coulson charge of the ith atom is determined as 

follows: 

iii RZQ −=   ;   )(PtracePR
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i ==∑
∈μ

μμ

 
.                                    (D.1) 

Solving the AM1 Hamiltonian for the electronic energy is an iterative process (SCF 

procedure); therefore, the density matrix changes throughout the process. Since, the FS1 

HB correction term depends on the electron density matrix, the term needs to be added 

iteratively. To achieve this goal, let’s first write the HB correction term involving RA: 
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upon expanding , the expression can be broken up into the nuclear 

(EHB0), 1-electron (EHB1), and 2-electron terms (EHB2): 
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( ) ( )ijdamp
ij

ji
HB rf

r
RR

E 2
2
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Therefore, the total HB correction energy is: 

210 HBHBHBHB EEEE ++=   .                                        (D.6)
 

The EHB0 term is a constant because it does not depend on the electron density; therefore, 

it can simply be added at the end of the SCF procedure. The other two terms do need to 

be considered in the SCF procedure; however, this process is more complicated than 

simply adding EHB1 and EHB2 to the total energy at each iteration. The derivative of EHB1, 

with respect to the electron density, needs to be added to the core-Hamiltonian matrix 

which is the one-electron part of the Fock operator. In addition, the derivative of EHB2, 

with respect to the electron density, needs to be added to the Fock matrix; the two-

electron part of the Fock operator. The derivatives of Eq. A.4 and A.5 with respect to Ri 

and Rj are:  
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These derivatives were obtained by using the following relation for the trace of a matrix, 

1=
∂

∂
=

∂
∂

μνμν P
traceP

P
Ri  .                                               (D.9) 

These derivatives with respect to Ri and Rj are added to the diagonal matrix elements of 

the core-Hamiltonian and Fock matrices centered on the ith and jth atoms respectively. 
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This process incorporates the total energy of the HB correction term, as well as, the 

derivative with respect to the atom charges.  

Making these changes to the AM1-FS1 method required re-optimization of the 

HB parameters, leading to the following values: α1 =0.3400, α2 =0.6238, α3 =0.4165, and 

α4 =1.2409. Although, these values differ slightly from the original AM1-FS1, there is no 

appreciable effect on the tested interaction energies. The RMSE for the binding energies 

(see Chapter 3) of the F66 training set converged to the same value of 0.99 kcal/mol. The 

consequence of not considering the charge derivative causes the true minimum of the 

potential energy surface to differ from what is otherwise predicted.  
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Appendix E: Supporting Information for Chapter 3 

 
Table E-1: F66 training set.  All values are interaction energy (kcal/mol) at the reported 
geometry.  The AM1-D results are from applying McNamara and Hillier’s method.  
Complexes 1-18 Ref. 45 ; Complexes 19-22 Ref. 57; Complexes 23-27 Ref. 61; 
Complexes 28-32 Ref. 58; Complexes 33-37 Ref. 51; Complexes 38-42 Ref. 59; 
Complexes 43-47 Ref. 51; Complexes 48-57 Ref. 111; Complexes 58-66 Ref. 60. 

 

Ref. Values AM1-D AM1-FS1
1 adenine_thymine_wc (C1) -16.37 -16.58 -16.29
2 adenine_thymine_stack (C1) -12.23 -12.20 -9.87
3 ammonia_dimer (C2h) -3.17 -3.43 -1.60
4 methane_dimer (D3d) -0.53 -0.94 -0.61
5 ethene_dimer (D2d) -1.51 -3.31 -2.27
6 ethene_ethine (C2v) -1.53 -1.61 -1.36
7 formic_acid_dimer (C2h) -18.61 -14.56 -16.06
8 formamide_dimer (C2h) -15.96 -16.77 -15.75
9 benzene_water (Cs) -3.28 -3.43 -2.78

10 benzene_ammonia (Cs) -2.35 -3.00 -2.65
11 benzene_methane (C3) -1.50 -2.12 -1.79
12 benzene_dimer_(C2h) -2.73 -2.90 -2.23
13 indole_benzene_T-shape (C1) -5.73 -7.10 -4.63
14 indole_benzene (C1) -5.22 -4.04 -3.23
15 pyrazine_dimer (Cs) -4.42 -4.57 -3.81
16 2-pyridoxine_2-aminopyridine (C1) -16.71 -16.01 -14.73
17 phenol_dimer (C1) -7.05 -9.07 -6.91
18 benzene_HCN (Cs) -4.46 -4.44 -3.17
19 methanol_dimer -5.70 -6.83 -4.82
20 methanol-formaldehyde -5.31 -6.59 -4.24
21 methyl_amide_dimer_alpha -6.69 -7.95 -7.39
22 methyl_amide_dimer_beta -7.65 -8.62 -7.52
23 H2O_R=2.5 -2.68 -3.77 -1.66
24 H2O_R=2.85 -5.59 -6.59 -5.14
25 H2O_R=2.95 -5.45 -6.31 -5.16
26 H2O_R=3.0 -5.32 -6.06 -5.29
27 H2O_R=3.5 -3.43 -3.23 -3.05
28 nitromethane_R=2.0 -4.53 -9.08 -4.01
29 nitromethane_R=2.25 -5.63 -7.98 -5.75
30 nitromethane_R=2.375 -5.50 -7.02 -5.38
31 nitromethane_R=2.5 -5.19 -6.12 -4.86
32 nitromethane_R=2.75 -4.40 -4.58 -4.13
33 benzene_dimer_PAR_R=3.2 3.71 -1.04 0.77
34 benzene_dimer_PAR_R=3.5 -0.62 -2.88 -2.09
35 benzene_dimer_PAR_R=3.9 -1.70 -2.56 -1.97
36 benzene_dimer_PAR_R=4.5 -1.08 -1.50 -1.21
37 benzene_dimer_PAR_R=6.5 -0.04 -0.18 -0.14
38 benzene_dimer_M1_R=3.25 4.35 2.16 2.86
39 benzene_dimer_M1_R=3.6 -1.64 -2.11 -1.26
40 benzene_dimer_M1_R=3.96163 -2.74 -2.83 -2.17
41 benzene_dimer_M1_R=4.4 -2.18 -2.24 -1.80
42 benzene_dimer_M1_R=5.0 -1.17 -1.34 -1.12
43 benzene_dimer_T_R=4.4 1.10 -2.65 0.16
44 benzene_dimer_T_R=4.7 -2.03 -4.34 -2.07
45 benzene_dimer_T_R=5.0 -2.61 -3.51 -2.98
46 benzene_dimer_T_R=5.5 -1.98 -1.78 -1.50
47 benzene_dimer_T_R=7.9 -0.22 -0.20 -0.18
48 uracil_dimer_H-bonded_R=1.47 -12.19 -10.87 -12.29
49 uracil_dimer_H-bonded_R=1.67 -18.68 -17.89 -21.34
50 uracil_dimer_H-bonded_R=1.77 -19.22 -19.57 -20.80
51 uracil_dimer_H-bonded_R=2.77 -9.27 -7.68 -8.54
52 uracil_dimer_H-bonded_R=3.77 -3.82 -0.65 -3.76
53 uracil_dimer_Stacked_R=3.06 -6.91 -8.29 -6.13
54 uracil_dimer_Stacked_R=3.26 -9.38 -9.43 -9.43
55 uracil_dimer_Stacked_R=3.36 -9.58 -8.98 -8.47
56 uracil_dimer_Stacked_R=4.36 -4.60 -3.65 -3.54
57 uracil_dimer_Stacked_R=8.36 -0.30 -0.30 -0.31
58 benz-acetylene_S1_R=3.0 1.48 0.68 1.34
59 benz-acetylene_S1_R=3.75 -0.82 -1.07 -0.80
60 benz-acetylene_S1_R=4.5 -0.32 -0.56 -0.45
61 benz-acetylene_T_R=3.5 1.69 -0.07 2.98
62 benz-acetylene_T_R=4.25 -2.59 -2.71 -2.30
63 benz-acetylene_T_R=5.00 -1.52 -1.00 -0.88
64 benz-acetylene_SS1_R=4.5 -0.41 -2.13 -2.04
65 benz-acetylene_SS1_R=5.0 -1.32 -1.30 -1.05
66 benz-acetylene_SS1_R=6.0 -0.60 -0.43 -0.38

RMSE 1.492 0.988
MUE 1.017 0.685
MAXE-MINE 8.800 5.489



153 
 
Table E-2: The reference CCSD(T), single point and optimized AM1-FS1 binding 
energies (kcal/mol) for 16 hydrogen bonded DNA base pair complexes. All reference 
values can be found in Ref. 45. 
 

 
  

Ref. Geometry CCSD(T)/CBS noCP AM1-FS1
G…C WC MP2 -32.06 -29.8 -32.7
mG…mC WC MP2 -31.59 -30.4 -32.1
A…T WC MP2 -16.86 -16.3 -18.5
mA…mT H MP2 -18.16 -13.8 -12.8
8oG…C WC pl MP2 -33.30 -33.4 -36.2
I…C WC pl MP2 -24.90 -24.8 -25.5
G…U wobble MP2 -19.10 -18.3 -17.6
CCH+ MP2 -51.40 -55.7 -54.2
U…U Calcutta pl MP2 -10.30 -9.3 -10.1
U…U pl MP2 -13.70 -13.5 -14.4
A…T WC Exp. -16.40 -17.0 -17.7
G…C WC* Exp. -35.80 -34.8 -32.4
A…T WC Exp. -18.40 -18.6 -17.5
G…A HB Exp. -11.30 -10.1 -9.9
C…G WC Exp. -30.70 -32.1 -32.8
G…C WC Exp. -31.40 -32.2 -33.2

RMSE 1.78 2.18
MUE 1.25 1.75

AM1-FS1//Ref.
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Appendix F: FS1 FORTRAN Code 

 
  

This FORTRAN code is designed to be implemented with GAMESS and requires 

modifications of several GAMESS source files in order to pass information to and from 

the different subroutines. The below FORTRAN code contains the following subroutines: 

FS1SETUP – Contains required parameters and setup information 

EDISFS1 – Calculates the dispersion energy 

EHBFS1 – Calculates the hydrogen-bonding energy (EHB0, EHB1, and EHB2) 

and electronic HB gradient. 

GRADCORDIS – Calculates the dispersion gradient 

GRADCORHB – Calculates the nuclear HB gradient 

 
C*MODULE AM1FS1  *DECK FS1SETUP 
      SUBROUTINE FS1SETUP(MODE) 
      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
C 
      LOGICAL RHO 
      PARAMETER (MXATM=2000, TOANGS=0.52917724924D0) 
C GAMESS COMMON BLOCKS 
      COMMON /INFOA / NAT,ICH,MUL,NUM,NQMT,NE,NA,NB, 
     *                ZAN(MXATM),C(3,MXATM),IAN(MXATM) 
      COMMON /IOFILE/ IR,IW,IP,IS,IPK,IDAF,NAV,IODA(950) 
C FS1 PARAMETERS 
      COMMON /FS1PAR/ SRVDW,D6,DTOL,ALFAP(4),C6(100),VDWD(100) 
C 
C     MODE=0: JUST PRINT 
C     MODE=1: ABOUT TO DO DISPERION ENERGY TERM 
C     MODE=2: ABOUT TO DO H-BOND ENERGY TERM 
C     MODE=3: ABOUT TO DO DISPERION GRADIENT TERM 
C     MODE=4: ABOUT TO DO H-BOND GRADIENT TERM 
C 
C 
      C6(1)= 0.14D0*(1.0D0/(TOANGS/10.0D0))**6*3.809D-07 
      C6(5)= 3.13D0*(1.0D0/(TOANGS/10.0D0))**6*3.809D-07 
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      C6(6)= 1.75D0*(1.0D0/(TOANGS/10.0D0))**6*3.809D-07 
      C6(7)= 1.23D0*(1.0D0/(TOANGS/10.0D0))**6*3.809D-07 
      C6(8)= 0.70D0*(1.0D0/(TOANGS/10.0D0))**6*3.809D-07 
      C6(9)= 0.75D0*(1.0D0/(TOANGS/10.0D0))**6*3.809D-07 
      C6(14)= 9.23D0*(1.0D0/(TOANGS/10.0D0))**6*3.809D-07 
      C6(15)= 7.84D0*(1.0D0/(TOANGS/10.0D0))**6*3.809D-07 
      C6(16)= 5.57D0*(1.0D0/(TOANGS/10.0D0))**6*3.809D-07 
      C6(17)= 5.07D0*(1.0D0/(TOANGS/10.0D0))**6*3.809D-07 
C 
      VDWD(1)= 1.001D0/TOANGS 
      VDWD(5)= 1.485D0/TOANGS 
      VDWD(6)= 1.452D0/TOANGS 
      VDWD(7)= 1.397D0/TOANGS 
      VDWD(8)= 1.342D0/TOANGS 
      VDWD(9)= 1.287D0/TOANGS 
      VDWD(14)= 1.716D0/TOANGS 
      VDWD(15)= 1.705D0/TOANGS 
      VDWD(16)= 1.683D0/TOANGS 
      VDWD(17)= 1.639D0/TOANGS 
C 
      SRVDW = 1.1058892D0 
      D6 = 1000.0D0 
      ALFAP(1)=0.3400377D0 
      ALFAP(2)=0.6237877D0 
      ALFAP(3)=0.4164925D0 
      ALFAP(4)=1.2409020D0 
C 
C EXPONENTIAL CUTOFF IN DAMPING FUNCTION 
      CTOL = 1.D-10 
      DTOL = -LOG(CTOL/100.D0) 
C 
      IF(MODE.EQ.0) THEN 
        WRITE(IW,*)'FS1 CORRECTION WILL BE APLIED TO THE AM1 METHOD' 
        WRITE(IW,*)'SR (VDW SCALE FACTOR)=',SRVDW 
        WRITE(IW,*)'D (DAMPING)=          ',D6 
        WRITE(IW,*)'ALPHA1=               ',ALFAP(1) 
        WRITE(IW,*)'ALPHA2=               ',ALFAP(2) 
        WRITE(IW,*)'ALPHA3=               ',ALFAP(3) 
        WRITE(IW,*)'ALPHA4=               ',ALFAP(4) 
      END IF 
C 
      IF(MODE.GT.0) THEN 
          IF(MODE.EQ.1) WRITE(IW,9000) 
C          IF(MODE.EQ.2) WRITE(IW,9001) 
          IF(MODE.EQ.3) WRITE(IW,9002) 
          IF(MODE.EQ.4) WRITE(IW,9003) 
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      END IF 
C 
      RETURN 
C 
 9000 FORMAT(/1X,'SCF HAS CONVERGED, FS1 DISPERSION CORRECTION', 
     *           ' ADDED TO AM1-HB ENERGY') 
C 9001 FORMAT(/1X,'FS1 H-BOND CORRECTION TO ENERGY CONSIDERED') 
 9002 FORMAT( 1X,'FS1 DISPERSION CORRECTION ADDED TO GRADIENT') 
 9003 FORMAT( 1X,'FS1 H-BOND CORRECTION TO GRADIENT CONSIDERED') 
C 
      END 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC 
C*MODULE AM1FS1  *DECK EDISFS1 
      SUBROUTINE EDISFS1(E_DISP) 
      IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
      PARAMETER (MXATM=2000) 
      COMMON /INFOA / NAT,ICH,MUL,NUM,NQMT,NE,NA,NB, 
     *                ZAN(MXATM),C(3,MXATM),IAN(MXATM) 
      COMMON /FS1PAR/ SRVDW,D6,DTOL,ALFAP(4),C6(100),VDWD(100) 
C 
C       PROGRAM CALCULATES DISPERSION ENERGY 
C       BASED ON GRIMME''S 2006 DISPERSION CORRECTION 
C       NOTE THAT THIS IS DONE AFTER THE SCF PROCESS HAS CONVERGED 
C 
      CALL FS1SETUP(1) 
C 
      E_SUM = 0.0D0 
      DO II=1,NAT-1 
         C6I=C6(IAN(II)) 
         DO JJ=II+1,NAT 
           C6J= C6(IAN(JJ)) 
C 
            DX= C(1,II)-C(1,JJ) 
            DY= C(2,II)-C(2,JJ) 
            DZ= C(3,II)-C(3,JJ) 
            RIJ= SQRT(DX*DX+DY*DY+DZ*DZ) 
C 
            RVDW= (VDWD(IAN(II))+VDWD(IAN(JJ))) 
            C66= SQRT(C6I*C6J) 
            SRRVDW= RVDW*SRVDW 
            EXPARG=D6*(RIJ/SRRVDW-1.0D0) 
            IF( EXPARG.GT.DTOL ) THEN 
               DAMP = 1.D0 
            ELSE IF( EXPARG.LT.-DTOL ) THEN 
               DAMP = 0.D0 
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            ELSE 
               DAMP = 1.D0/(1.D0+EXP(-EXPARG)) 
            ENDIF 
            E_SUM = E_SUM-DAMP*C66/RIJ**6 
         ENDDO 
      ENDDO 
      E_DISP=E_SUM 
      RETURN 
      END 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC 
C*MODULE AM1FS1  *DECK EHBFS1 
      SUBROUTINE EHBFS1(DMATRX,EHB0,EHB1,EHB2,MODE) 
      IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
      PARAMETER (MXATM=2000,PIVAL=3.141592653589793D0) 
      DIMENSION DMATRX(*) 
      DIMENSION HMHB(MXATM),FMHB(MXATM) 
      COMMON /INFOA / NAT,ICH,MUL,NUM,NQMT,NE,NA,NB, 
     *                ZAN(MXATM),C(3,MXATM),IAN(MXATM) 
      COMMON /IOFILE/ IR,IW,IP,IS,IPK,IDAF,NAV,IODA(950) 
C 
      COMMON /MOLKST/ 
NUMAT,MNAT(MXATM),NFIRST(MXATM),NMIDLE(MXATM), 
     *                NLAST(MXATM),NORBS,NELECS,NALPHA,NBETA,NCLOSE, 
     *                NOPEN,NDUMY,FRACT 
      COMMON /FS1PAR/ SRVDW,D6,DTOL,ALFAP(4),C6(100),VDWD(100) 
      COMMON /HBSCF/ DPHB(MXATM) 
      COMMON /CORE  / CORE(107) 
C 
C         CALCULATE H-BONDING CORRECTION TO THE ENERGY 
C         NOTE THAT THIS IS DONE EVERY SCF STEP! 
C 
      CALL FS1SETUP(2) 
C 
      DO II=1,NAT 
         IF (MODE.EQ.1) HMHB(II)=0.D0 
         IF (MODE.EQ.2) FMHB(II)=0.D0 
      ENDDO 
C 
      DO II=1,NAT 
C FINDS A HYDROGEN ATOM 
         NI=IAN(II) 
         IF(NI.EQ.1) THEN 
            RIJ=1.0D+99 
            DO JTEMP=1,NAT 
C FINDS NEAREST ATOM TO THE HYDROGEN ATOM 
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            DX=C(1,II)-C(1,JTEMP) 
            DY=C(2,II)-C(2,JTEMP) 
            DZ=C(3,II)-C(3,JTEMP) 
            RIJTEMP=SQRT(DX*DX+DY*DY+DZ*DZ) 
C FINDS NEAREST ATOM TO THE HYDROGEN ATOM 
              IF((RIJTEMP.LT.RIJ).AND.(II.NE.JTEMP)) THEN 
                 RIJ=RIJTEMP 
                 JJ=JTEMP 
              END IF 
            ENDDO 
C 
         NJ=IAN(JJ) 
         IF((NJ.EQ.7).OR.(NJ.EQ.8).OR.(NJ.EQ.9)) THEN 
C 
C         SEARCH FOR HYDROGEN BOND PARTNER 
C 
           DO KK=1,NAT 
              NK=IAN(KK) 
             IF( ((NK.EQ.7).OR.(NK.EQ.8).OR.(NK.EQ.9)) .AND. 
     *           (JJ.NE.KK) ) THEN 
C 
               DX1=C(1,JJ)-C(1,II) 
               DY1=C(2,JJ)-C(2,II) 
               DZ1=C(3,JJ)-C(3,II) 
C 
               DX2=C(1,KK)-C(1,II) 
               DY2=C(2,KK)-C(2,II) 
               DZ2=C(3,KK)-C(3,II) 
C 
               D1D2=DX1*DX2 + DY1*DY2 + DZ1*DZ2 
               RIJ2=DX1*DX1 + DY1*DY1 + DZ1*DZ1 
               RIK2=DX2*DX2 + DY2*DY2 + DZ2*DZ2 
               RIJ=SQRT(RIJ2) 
               RIK=SQRT(RIK2) 
               HBANG=ACOS(D1D2/(RIJ*RIK)) 
C 
               IF((HBANG.LE.-PIVAL/2.0D0).OR. 
     *            (HBANG.GE.PIVAL/2.0D0)) THEN 
C 
                 WF=(D1D2/(RIJ*RIK))**2 
C 
                 RVDW = ( (2.0D0*VDWD(IAN(II)))**3 + 
     *                    (2.0D0*VDWD(IAN(KK)))**3 ) / 
     *                  ( (2.0D0*VDWD(IAN(II)))**2 + 
     *                    (2.0D0*VDWD(IAN(KK)))**2 ) 
C 
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                 DAMP2= EXP(-1.0D0*(RIK-RVDW*ALFAP(2))**2/ 
     *                     (ALFAP(3)**2*(1.0D0+ALFAP(4)* 
     *                     (RIK-RVDW*ALFAP(2)))**2)) 
C 
C PRE-SCF STEPS 
                 IF (MODE.EQ.1) THEN 
                   EHB0= EHB0+CORE(IAN(II))*CORE(IAN(KK))* 
     *                   ALFAP(1)*WF*DAMP2/RIK 
C 
                   DHBE1I= -CORE(IAN(KK))*ALFAP(1)*WF*DAMP2/RIK 
                   DHBE1K= -CORE(IAN(II))*ALFAP(1)*WF*DAMP2/RIK 
                   HMHB(II)=HMHB(II)+DHBE1I 
                   HMHB(KK)=HMHB(KK)+DHBE1K 
                 END IF 
C EVERY-SCF STEP 
                 IF (MODE.EQ.2) THEN 
                   EHB1= EHB1-(CORE(IAN(II))*DPHB(KK)+ 
     *                   CORE(IAN(KK))*DPHB(II))* 
     *                   ALFAP(1)*WF*DAMP2/RIK 
                   EHB2= EHB2+DPHB(II)*DPHB(KK)* 
     *                     ALFAP(1)*WF*DAMP2/RIK 
C CALCULATE THE 2-E DERIVATIVE 
                   DHBE2I= DPHB(KK)*ALFAP(1)*WF*DAMP2/RIK 
                   DHBE2K= DPHB(II)*ALFAP(1)*WF*DAMP2/RIK 
C 
                   FMHB(II)=FMHB(II)+DHBE2I 
                   FMHB(KK)=FMHB(KK)+DHBE2K 
                 END IF 
C 
               END IF 
             END IF 
           ENDDO 
         END IF 
         END IF 
      ENDDO 
C ADD CHARGE DERIVATIVE TO FOCK MATRIX 
       MM=0 
       DO II=1,NAT 
         IA=NFIRST(II) 
         IB=NLAST(II) 
           DO LL=IA,IB 
              MM=MM+LL 
                IF (MODE.EQ.1) DMATRX(MM)=DMATRX(MM)+HMHB(II) 
                IF (MODE.EQ.2) DMATRX(MM)=DMATRX(MM)+FMHB(II) 
           ENDDO 
       ENDDO 
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       RETURN 
       END 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC 
C*MODULE AM1FS1  *DECK GRADCORDIS 
      SUBROUTINE GRADCORDIS(GEDIS) 
C 
C     CALCULATE DISPERSION CORRECTION CONTRIBUTION TO NUCLEAR 
GRAD 
C 
      IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
      PARAMETER (MXATM=2000) 
      DIMENSION GEDIS(3,MXATM),G(3,MXATM) 
      COMMON /INFOA / NAT,ICH,MUL,NUM,NQMT,NE,NA,NB, 
     *                ZAN(MXATM),C(3,MXATM),IAN(MXATM) 
      COMMON /IOFILE/ IR,IW,IP,IS,IPK,IDAF,NAV,IODA(950) 
      COMMON /FS1PAR/ SRVDW,D6,DTOL,ALFAP(4),C6(100),VDWD(100) 
C 
      CALL FS1SETUP(3) 
C 
      DO JJ=1,NAT 
        DO II=1,3 
          G(II,JJ) = 0.0D0 
          GEDIS(II,JJ) = 0.0D0 
        ENDDO 
      ENDDO 
C 
      DO II=1,NAT-1 
         C6I=C6(IAN(II)) 
         DO JJ=II+1,NAT 
           C6J=C6(IAN(JJ)) 
C 
            DX=C(1,II)-C(1,JJ) 
            DY=C(2,II)-C(2,JJ) 
            DZ=C(3,II)-C(3,JJ) 
            RIJ=SQRT(DX*DX+DY*DY+DZ*DZ) 
C 
            RVDW =(VDWD(IAN(II))+VDWD(IAN(JJ))) 
            C66  =SQRT(C6I*C6J) 
            SRRVDW= RVDW*SRVDW 
C 
            EXPARG=D6*(RIJ/SRRVDW-1.0D0) 
            IF( EXPARG.GT.DTOL ) THEN 
               DAMP = 1.D0 
               DAMP1 = 0.D0 
            ELSE IF( EXPARG.LT.-DTOL ) THEN 
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               DAMP = 0.D0 
               DAMP1 = 0.D0 
            ELSE 
               DAMP = 1.D0/(1.D0+EXP(-EXPARG)) 
               DAMP1 = EXP(-EXPARG) 
            ENDIF 
C 
            DEDF= 6.0D0*DAMP/(RIJ**7)-D6/(SRRVDW*RIJ**6)* 
     *            DAMP1*DAMP**2 
C 
            G(1,II)=G(1,II) + C66*DEDF*DX/RIJ 
            G(2,II)=G(2,II) + C66*DEDF*DY/RIJ 
            G(3,II)=G(3,II) + C66*DEDF*DZ/RIJ 
            G(1,JJ)=G(1,JJ) - C66*DEDF*DX/RIJ 
            G(2,JJ)=G(2,JJ) - C66*DEDF*DY/RIJ 
            G(3,JJ)=G(3,JJ) - C66*DEDF*DZ/RIJ 
         ENDDO 
      ENDDO 
C 
      DO JJ=1,NAT 
         DO II=1,3 
            IF(ABS(G(II,JJ)).LT.1.0D-14) G(II,JJ)=0.0D+00 
         ENDDO 
      ENDDO 
C 
      DO JJ=1,NAT 
         DO II=1,3 
           GEDIS(II,JJ) = G(II,JJ) 
         ENDDO 
      ENDDO 
C 
      RETURN 
      END 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCC 
C*MODULE AM1FS1  *DECK GRADCORHB 
      SUBROUTINE GRADCORHB(GEHB) 
C 
C     CALCULATE H-BOND CORRECTION CONTRIBUTION TO GRADIENT  
C     CHARGE CONTRIBUTION IS NEGLECTED HERE, THIS IS DONE IN EHBFS1 
C 
      IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
      PARAMETER (MXATM=2000,PIVAL=3.141592653589793D0) 
      DIMENSION G2(3,MXATM),GEHB(3,MXATM) 
      COMMON /INFOA / NAT,ICH,MUL,NUM,NQMT,NE,NA,NB, 
     *                ZAN(MXATM),C(3,MXATM),IAN(MXATM) 
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      COMMON /IOFILE/ IR,IW,IP,IS,IPK,IDAF,NAV,IODA(950) 
      COMMON /FS1PAR/ SRVDW,D6,DTOL,ALFAP(4),C6(100),VDWD(100) 
      COMMON /HBSCF/ DPHB(MXATM) 
      COMMON /CORE  / CORE(107) 
C 
      CALL FS1SETUP(4) 
C 
      DO JJ=1,NAT 
        DO II=1,3 
          G2(II,JJ) = 0.0D0 
          GEHB(II,JJ) = 0.0D0 
        ENDDO 
      ENDDO 
C 
      DO II=1,NAT 
C FINDS A HYDROGEN ATOM 
         NI=IAN(II) 
         IF(NI.EQ.1) THEN 
            RIJ=1.0D+99 
            DO JTEMP=1,NAT 
              DX=C(1,II)-C(1,JTEMP) 
              DY=C(2,II)-C(2,JTEMP) 
              DZ=C(3,II)-C(3,JTEMP) 
              RIJTEMP=SQRT(DX*DX+DY*DY+DZ*DZ) 
C FINDS NEAREST ATOM TO THE HYDROGEN ATOM 
                IF((RIJTEMP.LT.RIJ).AND.(II.NE.JTEMP)) THEN 
                   RIJ=RIJTEMP 
                   JJ=JTEMP 
                END IF 
             ENDDO 
C 
          NJ=IAN(JJ) 
          IF((NJ.EQ.7).OR.(NJ.EQ.8).OR.(NJ.EQ.9)) THEN 
C 
C         SEARCH FOR HYDROGEN BOND PARTNER 
C 
          DO KK=1,NAT 
            NK=IAN(KK) 
            IF( ((NK.EQ.7).OR.(NK.EQ.8).OR.(NK.EQ.9)) .AND. 
     *           (JJ.NE.KK) ) THEN 
C 
                DX1=C(1,JJ)-C(1,II) 
                DY1=C(2,JJ)-C(2,II) 
                DZ1=C(3,JJ)-C(3,II) 
C 
                DX2=C(1,KK)-C(1,II) 
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                DY2=C(2,KK)-C(2,II) 
                DZ2=C(3,KK)-C(3,II) 
C 
                D1D2=DX1*DX2 + DY1*DY2 + DZ1*DZ2 
                RIJ2=DX1*DX1 + DY1*DY1 + DZ1*DZ1 
                RIK2=DX2*DX2 + DY2*DY2 + DZ2*DZ2 
                RIJ=SQRT(RIJ2) 
                RIK=SQRT(RIK2) 
                HBANG=ACOS(D1D2/(RIJ*RIK)) 
C 
                IF((HBANG.LE.-PIVAL/2.0D0).OR. 
     *             (HBANG.GE.PIVAL/2.0D0)) THEN 
                RVDW = ( (2.0D0*VDWD(NI))**3 + 
     *                   (2.0D0*VDWD(NK))**3 ) / 
     *                 ( (2.0D0*VDWD(NI))**2 + 
     *                   (2.0D0*VDWD(NK))**2 ) 
C 
                TEMP1= D1D2/RIJ2 
                TEMP2= 1.0D0/(RIK*RIK2) 
                TEMP3= RIK - ALFAP(2)*RVDW 
                TEMP4= 1.0D0/(ALFAP(3)**2) 
                TEMP5= TEMP3**2*TEMP4 
                TEMP6= 1.0D0 + ALFAP(4)*TEMP3 
                TEMP7= TEMP6**2 
                TEMP8= EXP(-TEMP5/TEMP7) 
                TEMP9= D1D2**2/RIJ2**2 
                TEMP10= TEMP2*TEMP8*DX1 
                TEMP11= TEMP2*TEMP8*DY1 
                TEMP12= TEMP2*TEMP8*DZ1 
                TEMP13= D1D2**2/RIJ2 
                TEMP14= TEMP8/(RIK*RIK2**2) 
                TEMP15= TEMP3*TEMP4 
                TEMP16= 1.0D0/(TEMP7*RIK) 
                TEMP17= TEMP5/(TEMP7*TEMP6) 
                TEMP18= ALFAP(4)/RIK 
C 
                QI=CORE(IAN(II))-DPHB(II) 
                QK=CORE(IAN(KK))-DPHB(KK) 
                Q2IK= QI*QK 
C 
                DDX1= Q2IK*(2.0D0*TEMP1*TEMP2*TEMP8*DX2 
     *              - 2.0D0*TEMP9*TEMP10) 
                DDY1= Q2IK*(2.0D0*TEMP1*TEMP2*TEMP8*DY2 
     *              - 2.0D0*TEMP9*TEMP11) 
                DDZ1= Q2IK*(2.0D0*TEMP1*TEMP2*TEMP8*DZ2 
     *              - 2.0D0*TEMP9*TEMP12) 
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                DDX2= Q2IK*(2.0D0*TEMP1*TEMP10 - 3.0D0*TEMP13*TEMP14 
     *                *DX2 + TEMP13*TEMP2*(-2.0D0*TEMP15*TEMP16 
     *                *DX2 + 2.0D0*TEMP17*TEMP18*DX2)*TEMP8) 
                DDY2= Q2IK*(2.0D0*TEMP1*TEMP11 - 3.0D0*TEMP13*TEMP14 
     *                *DY2 + TEMP13*TEMP2*(-2.0D0*TEMP15*TEMP16 
     *                *DY2 + 2.0D0*TEMP17*TEMP18*DY2)*TEMP8) 
                DDZ2= Q2IK*(2.0D0*TEMP1*TEMP12 - 3.0D0*TEMP13*TEMP14 
     *                *DZ2 + TEMP13*TEMP2*(-2.0D0*TEMP15*TEMP16 
     *                *DZ2 + 2.0D0*TEMP17*TEMP18*DZ2)*TEMP8) 
C 
                G2(1,II)= G2(1,II)- ALFAP(1)*(DDX1 + DDX2) 
                G2(2,II)= G2(2,II)- ALFAP(1)*(DDY1 + DDY2) 
                G2(3,II)= G2(3,II)- ALFAP(1)*(DDZ1 + DDZ2) 
C 
                G2(1,JJ)= G2(1,JJ)+ ALFAP(1)*DDX1 
                G2(2,JJ)= G2(2,JJ)+ ALFAP(1)*DDY1 
                G2(3,JJ)= G2(3,JJ)+ ALFAP(1)*DDZ1 
C 
                G2(1,KK)= G2(1,KK)+ ALFAP(1)*DDX2 
                G2(2,KK)= G2(2,KK)+ ALFAP(1)*DDY2 
                G2(3,KK)= G2(3,KK)+ ALFAP(1)*DDZ2 
C 
                END IF 
             END IF 
           ENDDO 
           END IF 
         END IF 
       ENDDO 
C 
      DO JJ=1,NAT 
         DO II=1,3 
            IF(ABS(G2(II,JJ)).LT.1.0D-14) G2(II,JJ)=0.0D+00 
         ENDDO 
      ENDDO 
C 
      DO JJ=1,NAT 
        DO II=1,3 
           GEHB(II,JJ)=G2(II,JJ) 
        ENDDO 
      ENDDO 
      RETURN 
      END 
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