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ABSTRACT 

The Trophic Ecology of Guppies (Poecilia reticulata) from the Streams of 

Trinidad  

Eugenia Zandonà 

Susan S. Kilham, Phd, Supervisor 

 

 

 

 

Several factors may influence intraspecific niche differentiation, such as the 

different levels of resources or degrees of competition and predation organisms 

experience. Resource use polymorphism can lead to morphological differentiation 

and to the evolution of different life history traits. Trinidadian Guppies (Poecilia 

reticulata) inhabit streams where they experience high or low predation pressure. 

Guppies living in high (HP) and low predation (LP) sites have evolved different life 

history traits: HP guppies mature earlier, produce more and smaller offspring, and 

have higher overall fecundity and reproductive allotment than their LP counterparts.  

The objective of this dissertation was to investigate the trophic ecology of 

guppies and its correlation with their life histories patterns. Three methodologies were 

employed: gut content analysis, gut length measurement, and stable isotope analysis. 

In the dry season, guppies in HP sites had a higher quality diet, which consisted of a 

greater proportion of invertebrates. Guppies in HP sites were more selective than 

guppies in LP sites, avoiding invertebrates of poor quality, as measured by a high 

carbon:nitrogen ratio. Gut morphology data confirmed these results, as guppies with 

lower quality diets (from LP sites) had longer guts. Comparisons between dry and wet 

seasons revealed that the diet of guppies shifted during the wet season, thereby 



 

 

xxi 

eliminating dietary differences between HP and LP guppies found during the dry 

season. 

A survey of HP and LP population pairs from six different rivers conducted in 

the wet season showed some similarity within stream types in their environmental and 

biological characteristics but with some differences between rivers. 
15

N and 
13

C 

stable isotope analysis across the surveyed sites showed that LP guppies generally 

occupied a higher trophic position than HP guppies, but that this relationship was 

highly influenced by the river of origin. Stable isotopes also indicated that guppies 

assimilated invertebrates into their tissues more than other dietary items and that the 

variation in diet composition between sites was high.  

The results of this dissertation help distinguish the mechanisms by which 

guppy phenotypes (HP vs. LP) affect their environment, improving the understanding 

of the feedback between evolutionary and ecological processes in nature. 
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The Guppy 

‘Whales have calves, 

Cats have kittens, 

Bears have cubs, 

Bats have bittens, 

Swans have cygnets, 

Seals have puppies, 

But guppies just have little guppies’ 

 

Ogden Nash 
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CHAPTER 1: General introduction 

 

 

 

The guppy (Poecilia reticulata) is a very interesting and widely studied 

species, representing one of the most important models in evolutionary ecology, 

mostly due its rapid evolutionary response to natural selection (Reznick and Bryga 

1987, Reznick et al. 1990, Reznick et al. 1997, Magurran 2005). Guppies are found in 

an incredible variety of habitats, encompassing a wide range of fish assemblages 

where they show adaptations correlated to the degree of predation (Haskins et al. 

1961). Guppies living in presence of predators have evolved differences in their 

morphology, coloration, behavior, and life history traits compared to sites where the 

predation pressure is relaxed. These characteristics make guppies and the streams 

where they live an ideal natural laboratory to test key questions in evolutionary 

biology. 

The guppy is a small fish, around 15-20 mm, which naturally occurs in 

northeastern South America and some Caribbean islands (Magurran and Seghers 

1994). Among these, Trinidad populations have been thus far the most studied 

(Reznick and Endler 1982, Reznick et al. 1990, Reznick et al. 1997, Magurran 2005). 

Guppies have been introduced in many countries mostly for mosquito control 

purposes and now occur worldwide (FAO 1997). Guppies are highly prolific and 

ovoviviparous (Parenti 1981) and can live in many different habitats, from pristine 
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headwaters, to more polluted and turbid large streams. These characteristics have 

made them a very successful invasive species. The males are more colorful and 

smaller than females, and have a large gonopodium formed by anal rays used for 

internal fertilization (Berra 2001). Females are heavily harassed by males, whose 

mating attempts are very frequent (Pilastro and Bisazza 1999). Male guppies have 

determinate growth, while females grow continuously throughout their lives. Guppy 

sex ratio, even if close to 1 at birth, is often female-biased (Magurran 2005). At birth 

they are fully developed and independent. With no need of parental care, they often 

form schools with other baby guppies as a way to avoid predation and cannibalism 

(Magurran and Seghers 1990).  

 

GUPPY LIFE HISTORIES 

Localities with high or low predation pressure on guppies are found in the 

same stream on Trinidad and are separated by barriers, such as waterfalls that cause a 

drop in the number of fish species preventing upstream migration (Gilliam et al. 

1993). In these upstream sites, guppies are found with only one other fish species, the 

Hart‟s killifish (Rivulus hartii), which is a competitor and can occasionally prey on 

small guppies, but does not create a high predation environment. Differences in life 

history traits in guppy populations that experience high or low predation pressures by 

predatory fish are widespread throughout many drainages in the Northern Range of 

Trinidad (Reznick 1989, Reznick and Bryga 1996, Reznick et al. 1996b) and have 

independently evolved, as shown by genetic data (Fajen and Breden 1992). Guppies 
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exposed to high predation pressure mature earlier and at smaller sizes, produce 

smaller offspring, have higher fecundity, have shorter interbrood intervals, have 

higher reproductive allotment, and have lower rates of aging compared to guppies 

exposed to low predation pressure (Reznick 1982b, a, Reznick and Endler 1982, 

Reznick 1989, Reznick et al. 2004). Guppies‟ life histories respond very rapidly to 

changes in selective pressures, as shown in transplant experiments where guppies 

from high predation localities were introduced into guppy-free sites (with only the 

Hart‟s killifish present) (Reznick 1982b, Reznick et al. 1990, Reznick et al. 1997). 

Introduced guppies changed some of their life history traits (offspring size and 

reproductive allotment) into those typical of low predation guppies within 2 years, 

which corresponds to 3-5 generations.   

These patterns in life histories were first considered to be the result of 

differences in mortality rates and age-specific mortality between guppies in high and 

low predation environments, as indicated by early demographic models (Gadgil and 

Bossert 1970, Law 1979). These models, which were density-independent, predicted 

that an increase in adult mortality would lead to the evolution of early age at maturity 

and high reproductive effort, while an increase in mortality of young individuals 

would lead to the evolution of a delayed age at maturity and lower reproductive 

effort. However, later studies showed that in high predation sites, even if mortality 

rate was overall higher than in low predation sites, there was no age-specific mortality 

but guppies of all size classes were equally preyed upon (Mattingly and Butler 1994, 

Reznick et al. 1996a). In a scenario where mortality rate is not size selective, density-
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independent theories do not predict changes in reproductive effort or age at 

maturation (Charlesworth 1980). It then became clear that factors other than age-

specific mortality were implicated in the evolution of life history traits in guppies, 

such as density-dependent population regulation, competition, resource abundance, 

and environmental fluctuations (Reznick et al. 2002). Indirect effects of predation are 

a likely mechanism driving the divergences in observed life history traits. The 

presence of predators reduces the density of guppies, increasing the amount of per 

capita resource available, and consequently decreasing intraspecific competition 

(Wootton 1994). The interplay of direct and indirect effects of predation, mediated 

through resource availability, is now considered an important aspect in the evolution 

of life history traits as shown by theories (Abrams and Rowe 1996) and some 

experimental data (Walsh and Reznick 2008), but there is yet no consensus (Gadgil 

and Bossert 1970, Kozlowski and Wiegert 1987) on how resource availability 

influences life history evolution.  

 

Even if today resource availability is considered a potentially important 

selective force in the evolution of life history traits in guppies, and many studies have 

been conducted altering the amount of food levels in experimental trials, there have 

not been any studies investigating differences in guppy diets or prey selectivity 

between high and low predation sites. Remarkably only a few studies investigated 

guppies feeding behavior (Murdoch et al. 1975, Dussault and Kramer 1981, Morrell 

et al. 2007) and, to my knowledge there is only one study that looked at guppy diet in 
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natural populations (Dussault and Kramer 1981). This study however was limited to 

comparison between sexes and did not address the role of predators in shaping guppy 

diet. No study addressed adaptive questions related to guppy diet and use of 

resources. Guppies have thus always been considered as opportunistic omnivores and 

their trophic ecology has been overlooked. Often studies referred to „high resource‟ 

and „low resource‟ available to guppies, but we do not really know which the 

resources are that the guppy uses or prefers. In my thesis I filled this important gap in 

the knowledge of guppy ecology by investigating guppy trophic ecology identifying 

what were their most important food sources (these so called „resources‟). I employed 

gut content analysis and stable isotope analysis comparing guppies from many high 

and low predation localities. Gut content analysis provided detailed taxonomic 

information on prey consumption by the fish, while stable isotopes supplied 

information on the long-term diet and what was assimilated into the organism‟s 

tissues. Each technique complemented the other, providing a complete picture of the 

guppy‟s diet.  

 

 

STABLE ISOTOPES IN FOOD WEB STUDIES 

 

Stable isotopes are used in ecosystem ecology to assess nutrient transfers 

through habitats and to detect trophic relations in food web studies (Peterson and Fry 

1987, Karasov and Martinez del Rio 2007). The basic concept is that a consumer‟s 
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isotopic signature - its distinct isotopic ratio – reflects that of its diet, because animals 

assimilate the isotopic composition of their food sources into their tissues (Karasov 

and Martinez del Rio 2007). Thus, the isotopic signature of an organism represents 

the integration over time of its diet and not just a snapshot of what it is eating in a 

precise moment, as gut content or fecal analysis show (Peterson and Fry 1987). Stable 

isotopes are useful because they also provide information on diet of organisms that 

are difficult to process with standard analysis, hard to observe, or even those that are 

extinct.  

 

The most used isotopes in food web studies are those of nitrogen (
15

N/
14

N 

ratio compared to atmospheric nitrogen, referred to as δ
15

N), which gives information 

on trophic steps among individuals; and carbon isotopes (
13

C/
12

C ratio compared to a 

standard fixed on PeeDee Belemnite, referred to as δ
13

C), which provide insights on 

the ultimate sources of carbon (De Niro and Epstein 1981). Typically, δ
15

N increases 

with the position of an organism in the food web: predators have higher signals than 

their prey. During the assimilation process of proteins (deamination and 

transamination of amino acids), the lighter isotope is removed and the heavier is 

retained. As a consequence, organisms excrete the lighter isotope and their tissues 

become enriched in 
15

N compared to their diet (Minagawa and Wada 1984, Gannes et 

al. 1997). On the opposite, 
13

C content is thought not to vary much between trophic 

levels, but it is useful in differentiating among carbon sources. For instance, δ
13

C is 

used in terrestrial habitats to distinguish between diets based on plants with different 
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photosynthesis pathways, such as C3 and C4; in lakes to distinguish among energy 

generated in pelagic or littoral habitat; and in streams to determine if basal resources 

have autochthonous (algae) or allochthonous (leaves) origin (Peterson and Fry 1987, 

Post 2002).  

 

The isotopic difference between a consumer and its diet is referred to as 

fractionation (or as discrimination factor or enrichment; Karasov and Martinez del 

Rio 2007):  

Δ =  δ
15

Xconsumer - δ
15

Xdiet,   

where X is the isotope of interest (see also Fry 2006). 

Fractionation is typically considered to be equal to 3.4‰ for 
15

N and ~ 0 ‰ 

for 
13

C (De Niro and Epstein 1981, Vander Zanden and Rasmussen 1999, Post 

2002), but many studies have reported a large variations in these values (Vander 

Zanden and Rasmussen 2001, McCutchan et al. 2003, Vanderklift and Ponsard 2003, 

Kilham et al. 2008). Vanderklift and Ponsard (2003) conducted a meta-analysis of 

134 previous estimates on the sources of variations in Δ 
15

N, finding that enrichment 

varied according to several factors: excretion forms, type of diet, taxonomic group, 

ecosystem, and tissue sampled. For instance, ureotelic and uricotelic organisms show 

higher fractionation values than ammonotelic, guanicotelic and species excreting 

amino acids. Also different tissues show variations in fractionation values: in birds, 

muscle enrichment is lower than in feathers, blood, or liver (Hobson and Clark 

1992b), while in mammals, brain shows high Δ 
15

N values and kidneys low values 
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(Vanderklift and Ponsard 2003). Peterson and Fry (1987) also documented variations 

in Δ δ
13

C values among tissues of the same organisms, in particular, bone collagen is 

enriched compared to diet while tissues with high lipid content are depleted. The 

different fractionation of both δ
15

N and δ
13

C is the result of different physiological 

and biochemical processes that tissues undergo, such as enzymatic reactions and 

turnover rates (Peterson and Fry 1987, Hobson and Clark 1992a, b, MacAvoy et al. 

2001, McIntyre and Flecker 2006). Turnover rate is a measure of how quickly a tissue 

assimilates and for how long it maintains the signatures of ingested food. Turnover 

rate varies with body size (larger animals have slower turnover rates), and thus affects 

isotopic signatures (McIntyre and Flecker 2006). Therefore, large-sized and long-

lived consumers have a slower turnover rate and show less variation in isotopic 

composition than their prey, which are generally smaller (Post 2002, McIntyre and 

Flecker 2006). 

 

Mixing models 

Over the course of the years many types of mixing models have been 

developed to estimate the proportional contribution of food sources to an animal‟s 

tissues. The simplest mixing model allows one to estimate the fractional contribution 

of two different food sources knowing the isotopic signatures (for just one isotope) of 

the consumer‟s tissue and of the two sources: 

δXtissue = p (δXA + ∆A) + (1-p) (δXB + ∆B) 
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where p is the fraction of food A, δXA and δXB are the isotopic compositions 

of food A and B, and ∆A and ∆B are the fractionation factors for food A and B 

(Karasov and Martinez del Rio 2007). If the isotopic composition of two elements is 

known, linear mixing models can calculate the contribution of 3 food sources to an 

animal‟s diet and so on (Ben-David and Schell 2001, Phillips 2001, Phillips and 

Gregg 2001). These linear mixing models, however, do not allow one to incorporate 

the variability of the source proportions, and are limited by the number of isotope 

employed, and also do not incorporate the high variation in sources and fractionation 

factors. Some of these problems were solved with the development of new models, 

some that incorporate sensitivity analyses and estimate the uncertainty in source 

proportions (Phillips and Gregg 2001), some that consider the concentration 

dependence of the food sources (their stoichiometry; Phillips and Koch 2002), and 

some that allowed one to calculate the proportion contribution to the diet of many 

sources (Isosource, Phillips and Gregg 2003). The most recent and innovative 

methods use Bayesian statistics and allow one to calculate the assimilation of many 

food sources, but most importantly to incorporate the variation in the sources and 

fractionation factors and also prior information (e.g. gut content) (Moore and 

Semmens 2008, Semmens et al. 2009, Parnell et al. 2010, Semmens et al. 2010) 
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SITE DESCRIPTION 

 

I conducted my research in the streams of the Northern Range, located on the 

island of Trinidad (Trinidad and Tobago, West Indies). Trinidad is the southernmost 

island in the Antilles, and it is situated approximately 15 km off the coast of 

Venezuela. Trinidad has a total area of 4,768 km
2
, and has an average length of 80 

km and width of 59 km. Trinidad is characterized by a wet (June to December) and a 

dry season (January to May). In the Northern Range, the precipitation pattern ranges 

from 1800 mm in the west to 2400 mm in the east. Temperature does not vary greatly 

over the whole island; the lowest average temperature is experienced in January 

(~24°C) and the highest in May (~ 27°C). The Northern Range includes the highest 

mountains of the island, which reach a maximum elevation of 940 m (El Cerro del 

Aripo). The Northern Range is composed mainly of metamorphic rocks and alluvial 

soils. 

The aquatic fauna of Trinidad is closely related to the fauna found on the 

mainland, because of its close proximity to Venezuela and its recent continental 

origin (Kenny 1995, Phillip 1998). However, in terms of ichthyofauna, the Northern 

Range represents a zoogeographical barrier which separates the southern slope, with 

typical South American assemblages, from the northern slope, with Antillean fauna 

(Phillip 1998). The only two species of fish, both Cyprinodontiformes, that are 

present in great abundance on both slopes are the guppy (Poecilia reticulata) and the 

Hart‟s killifish (Rivulus hartii) (Kenny 1995, Phillip 1998). The North and South 
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Slope of the Northern Range have shown striking differences in decapod diversity, 

with the South Slope showing a high depletion in number of species (Rostant 2005). 

The lack of amphidromous species, mainly shrimps, in the South Slope streams could 

likely be related to the strong human impact and consequent high water pollution 

occurring in the lower parts of the drainage (around the capital Port of Spain). On the 

other hand, the North Slope is still relatively pristine and does not have intense 

anthropogenic pressure, either in the coast or inland, because of its inaccessibility 

(Agard et al. 2005). Thus, its streams are more pristine and biotic communities are 

more intact (Rostant 2005). All these characteristics made the Northern range streams 

an ideal natural field laboratory for a comparative study to assess intraspecific 

differences in the trophic niches of both guppies and Hart‟s killifish. 

 

Fauna 

One of the main guppy competitors is the Hart‟s killifish (Rivulus hartii), 

which is native of Trinidad, Venezuela, and Eastern Colombia. In Trinidad, it is 

found basically in every stream, river, and riffle from the headwaters to the lowlands 

(Kenny 1995, Fraser et al. 2006). It is a small fish, reaching a maximum standard 

length (SL, from the tip of the snout to the beginning of the caudal bones) of 90 mm. 

It has good dispersal capability because it can stand periods of drought or dwell in 

small and temporal water bodies. It can jump out of the water and move on land, 

especially during wet weather (Seghers 1978). It is oviparous with external 

fertilization, and reproduction is not seasonal. Guppies and Rivulus are thought to 
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compete for resources, and Rivulus may sometimes prey on small guppies (Mattingly 

and Butler 1994). When Rivulus is alone, its density can be up to 3 times higher than 

when it occurs with guppies or with other species, suggesting that adult guppies have 

a strong impact on Rivulus populations either directly or indirectly (Gilliam et al. 

1993, Walsh and Reznick 2010). 

 

The other fish species present in the Northern Range streams are shown in 

Table 1-1. Many families have been documented in the lower parts of the streams, as 

biodiversity is higher with increasing proximity to the ocean (Gilliam et al. 1993). 

Some of the most abundant species belong to the family Characidae and Cichlidae on 

the South slope and Gobiidae on the North slope. Among the most important guppy 

predators are the pike cichlid (Crenicichla sp.) and the wolfish (Hoplias malabaricus) 

on the South slope of the Northern Range and Gobiomorus dormitur on the North 

slope streams. 

 

The decapod community is very diverse on the North and East slope of the 

Northern Range. The most common crustaceans on the North slope are the shrimp 

Macrobrachium carcinus and M. crenulatum, which are omnivores and predators, and 

the shrimp Atya scabra, that is a scraper and collector (Rostant 2005). On the South 

slope shrimp are only occasionally sighted due to the high pollution levels at the 

estuary of the Caroni river, which represents a barrier to the anadromous species of 
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shrimp. The only common species of decapod on the South slope is a crab of the 

family Pseudothelphusidae (Eudaniela garmani). 

The presence and abundance of other invertebrate species changes along 

abiotic and biotic gradients and riparian characteristics along the stream (Vannote et 

al. 1980). A list of macroinvertebrates present in the Northern Range streams is 

shown in Table 1-2.  

 

Other potential guppy predators 

Although there might be other non-aquatic organisms that prey on guppies, 

our knowledge of their identity and impact on guppy population is sparse and rarely 

considered (Magurran 2005). For instance, there are several species of birds in 

Trinidad that include fish in their diets, such as 6 species of kingfishers, 20 species of 

herons, egrets and bitterns, anhingas and cormorants (Ffrench 1992). However, other 

than the kingfishers, all the other species are very rarely observed in the smaller 

streams where I work (I have never observed any herons in our focal streams) and 

thus their impact on the guppies could be considered minimal. Some researchers 

investigated guppy reactions when exposed to a model bird predator and found that 

guppies from sites with high and low fish predation responded to the threat, but 

differently. High predation guppies reacted by hiding in shelters and low predation 

guppies froze on the bottom of the tank (in aquaria experiment; Templeton and 

Shriner 2004) or occupied the deeper parts of the streams (in natural habitats; Seghers 

1974).  
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Other possible piscivore vertebrate and potential guppy predators are the 

fishing bat (Noctilio leporinus), the spectacled caiman (Caiman crocodilus), and 

snakes (Magurran 2005). The importance and frequency of predation of these 

vertebrates is very unclear, highly occasional and are unlikely to pose a major threat 

to guppy populations or to act as a relevant selective pressure. 

 

 

NSF-FIBR (FRONTIERS IN INTEGRATIVE BIOLOGICAL 

RESEARCH) PROJECT IN TRINIDAD 

 

Some of the data presented in this dissertation were collected as a 

collaborative effort of many people, myself included, who were working in the NSF-

FIBR project entitled “From genes to ecosystems: How do ecological and 

evolutionary processes interact in nature?”. This project is interested in 

experimentally evaluating for the first time the feedback from adaptive evolution to 

ecosystem processes in a natural setting, which is the guppy system in the streams of 

Trinidad. The project develops around a main experimental manipulation, in which 

guppies from high predation localities are transplanted in sites where no guppies are 

present and the only fish species is the Hart‟s killifish. The purpose is to document 

not only the evolution of guppies into a low predation phenotype, as has been done in 

the past (Reznick et al. 1990, Reznick et al. 1997), but also to evaluate the co-

evolution of killifish, the impacts of both guppies and killifish on ecosystem structure 
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and function, the role of resources in the fish evolution, and to develop eco-

evolutionary theory. Around this main experiment, a lot of other projects, such as 

mesocosm experiments, electric exclosure manipulations, comparative analyses in 

replicate rivers throughout the island, whole-stream tracer additions, etc. are 

employed to develop predictions and refine experimental results. This project will 

generate a generalized conceptual framework that could be used in other ecosystems 

to evaluate, for instance, the anthopogenic effects in the environment, such as 

commercial exploitation of fish and its effect on the population or the introduction of 

exotic species. 

Part of the work I conducted in the project is not included in this dissertation, 

but resulted in a publication in the Proceedings of the National Academy of Science 

of the United States of America (Bassar et al. 2010a) and several other manuscripts in 

preparation of which I am a co-author. In the Bassar et al. (2010a) study, I was 

responsible for the diet analysis of guppies, in which we assessed the effects of guppy 

phenotypes on ecosystem structure and function. We housed guppies for 28 days in 

artificial streams with different replicates that differed in guppy phenotype (guppies 

that had been exposed to high and low predation pressures, called in this dissertation 

high and low predation guppies) and guppy density (high or low). Diet analysis was 

essential to understand the effects of local adaptation of guppies on ecosystem 

properties. High predation guppies were found to feed more consistently on 

invertebrates than low predation guppies, which instead ate more detritus and algae. 
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These patterns in the diet were the same as I found in populations of wild-caught 

guppies during the dry season (Chapter 2). 

I was also involved in a survey of 18 streams, where we collected numerous 

environmental variables to measure biomass standing stocks, plus fish, invertebrate 

and basal resource samples used for stable isotopes, stoichiometry, and diet analysis. 

Some of these data are reported in my dissertation, but are also included in many 

more publications in preparation, including a study on the stoichiometry and nutrient 

imbalance of guppies and Hart‟s killifish from different fish communities, as well as 

on the stoichiometry of epilithic algae.  

I also participated in electric exclosure experiments, in which we excluded 

macroconsumers from an area of the stream and assessed their impact on ecosystem 

structure and function (e.g. leaf decomposition, algal accrual, invertebrate biomass).  

 

 

OBJECTIVES 

 

The general objective of my thesis was to investigate the intraspecific 

variation in the trophic ecology of Trinidadian guppies, an aspect of this species that 

has typically been overlooked.  The main questions I addressed were: 

 

1) Do guppies with different phenotypes show different trophic niches? 

2) Are guppy diets correlated with life history traits? 
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3) Does resource availability affect guppy diet? 

4) Are guppies selective in feeding? 

5) Does guppy gut length correlate with diet quality? 

6) Does seasonality affect guppy diet? 

7) How repeatable are the differences in guppy diet across streams? 

8) Are environmental characteristics similar within high and low predation 

environments? 

 

In Chapter 2, I report differences in diet preferences, resource availability, and 

prey selectivity in guppies living in streams with high and low predation pressure. I 

compared guppy diets and prey selectivity with life history patterns and, most 

importantly I analyzed if prey selectivity was driven by food nutritional quality in 

terms of prey body stoichiometry. In this chapter I only analyzed guppies collected in 

the dry season, while in Chapter 3 I compared guppy diets between dry and wet 

season to assess a potential effect of seasonality on their feeding habits. I also 

examined one aspect of the digestive physiology of guppies examining the effect of 

diet quality on gut length. In Chapter 4 I tested whether the intraspecific variation in 

guppy trophic ecology was repeatable across high-low predation pairs from 6 

replicate streams. I analyzed guppy trophic positions through the use of stable 

isotopes, which provided an estimate of food assimilated over a longer period of time. 

I also examined the existence of an ontogenetic shift in feeding choices. Finally, I 

characterized all the high and low predation sites sampled for biological and 
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environmental variables, such as invertebrate, algae, fine and coarse organic matter 

biomass, stream morphometrics, and fish density. In general, in my dissertation I 

analyzed the role that guppies play in the food web and how this differed as an effect 

of predation intensity, with the goal of finding common, repeatable patterns that can 

help us understand how the evolution of this fish can impact differently the streams 

that it inhabits. My findings increase our knowledge of multiple aspects of the trophic 

ecology of the guppy, which in the past was simplistically considered just as an 

„opportunistic omnivore‟. 
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Table 1-1. Fish species list for the streams of the Northern Range. Feeding habits and 

locations for each species are from Kenny (1995) and Phillip (1998).  

 

 

 

Family Species Common name in 

Trinidad 

Feeding habit Slope 

Gobioesocida

e 

Gobiesox nudus Cling fish Omnivorous, microphagous, 

grazing 

North 

Gobiidae Sicydium punctatum No common name Omnivorous, microphagous, 

grazing bottom feeding 

North 

Gobiidae Awaous taiasica Sand fish Omnivorous, microphagous, 

grazing bottom feeding 

North 

Eleotridae Eleotris pisonis Guabine Carnivorous, macrophagous, 

ichthyophagous, bottom 

feeding 

 

Eleotridae Gobiomorus 

dormitor 

Guabine, Giant 

goby 

Carnivorous, macrophagous, 

ichthyophagous, bottom 

feeding 

North 

Mugilidae Agonostomus 

monticola 

Mountain mullet Omnivorous, surface, mid-

water, bottom feeding 

North 

Synbranchida

e 

Synbranchus 

marmoratus 

Swamp eel or 

Zange 

Carnivorous, scavenging, 

bottom feeding 

South 

Cichlidae Cichlasoma taenia Brown Coscarob Carnivorous – fish and 

invertebrates 

South 

Cichlidae Aequidens pulcher Blue Coscarob Carnivorous – fish and 

invertebrates 

South 

Cichlidae Crenicichla alta Matawal or Millet Carnivorous – fish and 

invertebrates 

South 

Erythrinidae Hoplias 

malabaricus 

Guabine Carnivorous, macrophagous, 

ichthyophagous 

South 

Erythrinidae Hoplerythrinus 

unitaeniatus 

Yarrow Carnivorous, macrophagous, 

ichthyophagous 

 

Curimatidae Steindachnerina 

argentea 

Stout sardine Omnivorous, microphagous, 

deposit feeding 

 

Characidae Astyanax 

bimaculatus 

Sardine doree or 

two spotted 

sardine 

Omnivorous, macrophagous, 

surface, mid-water or 

bottom feeding 

South 

Characidae Corynopoma riisei Sword-tail sardine Omnivorous, macrophagous, 

surface, mid-water or 

bottom feeding 

 

Characidae Roeboides dayi Glass sardine or 

Hunch back 

sardine 

Omnivorous, macrophagous, 

surface, mid-water or 

bottom feeding 

 

South 
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Characidae Hemigrammus 

unilineatus 

Featherfin sardine Omnivorous, macrophagous, 

surface, mid-water or 

bottom feeding 

South 

Characidae Hemibrycon 

taeniurus 

Guppy‟s sardine or 

Mountain stream 

sardine 

Omnivorous, macrophagous, 

surface, mid-water or 

bottom feeding 

South 

Loricariidae Hypostomus robinii Teta Omnivorous, microphagous, 

grazing 

South 

Loricariidae Ancistrus cirrhosus Jumbie teta Omnivorous, microphagous, 

grazing 

South 

Pimelodidae Rhamdia quelen Catfish or Silver 

catfish 

Carnivorous, scavenging, 

macrophagous, bottom 

feeding 

South 

Nandidae Polycentrus 

schomburgkii 

King Coscarob ?  

Anguillidae Anguilla rostrata Eel or Zange Carnivorous, scavenging, 

macrophagous, 

ichthyophagous 

 

Callichthyida

e 

Corydoras aeneus Pui-pui Omnivorous, microphagous, 

select bottom deposit 

feeding 

 

Poeciliidae Poecilia reticulata Guppy or Millions Omnivorous, surface, mid-

water, bottom feeding 

North/

South 

Rivulidae Rivulus hartii Leaping guabine 

or Jumping 

guabine 

Carnivorous, surface and 

bottom feeding 

North/

South 
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Table 1-2. List of the most common aquatic invertebrates and their functional feeding 

group (from (Merritt et al. 2007) found in the streams of the Northern Range in 

Trinidad. 

 

 

Family Functional Feeding Group (FFG) 

Insects 

Diptera  

Tipulidae Predator 

Chironomidae Collector (non-Tanypodinae)/Predator 

(Tanypodinae) 

Ceratopogonidae Predator 

Muscidae Collector 

Psychodidae Collector 

Simuliidae Filtering collector 

Ephemeroptera  

Baetidae Scraper/Collector 

Leptohyphidae Collector 

Leptophlebiidae Collector 

Euthyplocidae Predator 

Trichoptera  

Calamoceratidae Shredder 

Hydropsychidae Filtering collector/Omnivore 

Leptoceridae Collector 

Polycentropodidae Predator 

Glossosomatidae Scraper 

Philopotamidae Filtering collector/Omnivore 

Helicopsychidae Scraper 

Plecoptera  

Perlidae (Anacroneuria) Predator 
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 Odonata  

Odonata  

Zygoptera (Coenagrionidae, 

Calopterigidae) 

Predator 

Anysoptera (Libellulidae, 

Gomphidae) 

Predator 

Coleoptera  

Elmidae Collector (larva), Predator (adult) 

Psephenidae Scraper 

Lepidoptera  

Crambidae (Petrophila) Scraper 

Hemiptera  

Gerridae Piercer predator 

Veliidae Piercer predator 

Tricladida (Planaridae) Collector 

Oligochaete (Tubificidae) Collector 

Hydrachnida (Hydrachnidae) Predator 

Gastropoda (Thiaridae and other 

families) 

Scraper 
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CHAPTER 2: Diet quality and prey selectivity correlate with life histories 

and predation regime in Trinidadian guppies 

 

 

 

ABSTRACT 

 

Life histories evolve as a response to multiple agents of selection, such as age-

specific mortality, resource availability or environmental fluctuations. Predators can 

affect life history evolution directly, by increasing the mortality of prey, and 

indirectly, by modifying prey density and resources available to the survivors. 

Increasing prey densities can intensify intraspecific competition and cause 

evolutionary changes in the prey selectivity, also affecting nutrient acquisition. Here 

we show how the evolution of different life history traits in guppies (Poecilia 

reticulata) is correlated with differences in resource consumption and prey 

selectivity. We examined differences in guppy diet among stream types with high and 

low predation pressure and how these were related to benthic invertebrate biomass. 

Fish and invertebrate samples were collected from two high and two low predation 

reaches of two distinct study rivers in Trinidad. Our results showed that guppies from 

high predation environments matured earlier, had higher fecundity and reproductive 

allotment, fed more consistently on higher quality food, and showed higher prey 

selectivity. Guppies from low predation sites displayed the opposite patterns in life 

history traits and had diets with prevalence of detritus and algae, which are a poorer 
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quality food. Low predation guppies fed on invertebrates according to their 

availability, while high predation guppies were selective toward those invertebrates 

with the lower C:N body ratio, and thus with higher nutritional value. Our study 

corroborates the important role of predators in shaping their prey‟s life histories in 

concert with other traits, such as resource specialization and diet selectivity.  

 

 

INTRODUCTION 

 

Early models of life history evolution envisioned extrinsic, age-specific 

mortality as the dominant agent of selection in the evolution of life histories 

(reviewed in Charlesworth 1980, Roff 1992, Stearns 1992, Roff 2002). Those early 

theories were formulated in a density-independent context and predicted that the 

effect of increasing adult mortality could lead to the evolution of increased 

reproductive effort and earlier age of maturation (e.g. Gadgil and Bossert 1970, Law 

1979). Conversely, increased mortality of young would favor individuals with lower 

reproductive effort and delayed maturity.   

However, natural populations rarely experience complete density-

independence and are likely to be limited at some point by biotic or abiotic factors 

(Cappuccino and Price 1995, Bassar et al. 2010b). Population growth can be limited 

by top-down forces (predation), in which case classical theories may be sufficient to 

explain life history responses to changes in mortality. This is not the case for 
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populations regulated by bottom up forces (resource availability). Removal of 

predators from a system previously regulated through predation may increase the 

density of the prey and, in doing so, decrease the per capita resource availability 

(Wootton 1994). These changes may be dramatic enough to alter the system to one 

that is regulated by bottom-up forces.  

Increased prey density may thus strengthen intraspecific competition for high 

quality resources, leading to a change in diet selectivity of individuals (e.g. Werner 

and Hall 1974). Under resource scarcity, it may be optimal to consume resources 

more indiscriminately and include a higher proportion of lower quality food in the 

diet (e.g. Gende et al. 2001). Such shifts in diet preference might be accommodated 

by concomitant changes in physiology (e.g. Olsson et al. 2007), morphology, and 

behavior (Svanback and Bolnick 2007), which may further act to affect these 

interactions (Werner and Peacor 2003).  

Hence, variation in the mortality regime, density, and resource availability 

may all influence the evolution of life histories (Gadgil and Bossert 1970, Abrams 

and Rowe 1996, Reznick et al. 2002, Walsh and Reznick 2008, 2009). However, 

there is no consensus (Gadgil and Bossert 1970, Kozlowski and Wiegert 1987) and 

little experimental data (e.g. Walsh and Reznick 2008) on how resource availability 

influences life history evolution. Even less explored are the effects of diet and 

resource quality on the evolution of life history traits. Life histories can respond to the 

quantity but also the quality of resources consumed (Twombly et al. 1998, Jensen and 

Verschoor 2004). For instance, low quality food could affect individual fitness, alter 
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reproductive allocation, or decrease growth rates (e.g. Sterner 1993, Jensen and 

Verschoor 2004). However, the responses of multiple life histories to low food 

quality are not predictable, likely due to differences in nutritional requirements for 

different functions and between organisms (Twombly et al. 1998, Urabe and Sterner 

2001).  

Here we examined how life histories of guppies (Poecilia reticulata), resource 

abundance, and prey selectivity co-vary in natural streams of Trinidad. Guppies are 

found in two types of environments, referred to as high predation (HP) and low 

predation (LP), in which they have evolved different life history traits (Reznick and 

Endler 1982, Reznick 1989). In HP sites, they experience strong predation pressure 

mostly by the wolfish (Hoplias malabaricus) and the pike cichlid (Crenicichla sp). In 

LP sites, guppies coexist with only one other fish species, the Hart‟s killifish (Rivulus 

hartii), which may occasionally prey on juvenile guppies (Mattingly and Butler 

1994).  

Age-specific mortality has typically been considered the presumed agent of 

selection determining life history evolution in guppies (Reznick and Endler 1982, 

Reznick 1989). If guppies are mainly preyed upon as adults in HP sites and as 

juveniles in LP sites, density-independent life history theory predicts that HP guppies 

should mature earlier and have higher reproductive allotment than LP guppies 

(Reznick et al. 2002). These predicted differences in life histories have been observed 

in many replicates of natural populations (Reznick and Endler 1982, Reznick 1989, 
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Reznick et al. 1996a, Reznick et al. 1996b) and confirmed by laboratory common 

garden experiments (Reznick 1982b, Reznick and Bryga 1996).  

However, there are some inconsistencies between all available data about 

guppies and the theory of age-specific mortality as the sole agent of selection. For 

example, density-independent life history theory predicts that evolutionary changes 

can only occur when there are changes in juvenile relative to adult mortality (Gadgil 

and Bossert 1970, Law 1979, Charlesworth 1980). Mark-recapture experiments on 

wild guppy population have shown that, although predation was indeed higher in HP 

sites, the pattern of size-specific predation was similar in both environments (Reznick 

et al. 1996a). This suggests that other factors may be playing a role in guppy life-

history evolution. 

Resource availability, which can also shape life histories, varies considerably 

among natural populations of guppies (Grether et al. 2001). Resource levels, 

however, often co-vary with predation gradient, as HP sites are generally located 

downstream and are commonly wider streams with less canopy cover and higher 

primary productivity compared to LP sites (Reznick et al. 2001). Increased resource 

levels could be an indirect effect of increased predation (Wootton 1994). Guppy 

biomass is higher in LP communities, leading to lower resources per capita, and 

consequently increasing competition for food (Rodd and Reznick 1997, Grether et al. 

2001). Food availability may therefore represent another selective factor leading to 

differences in guppy growth rates, as well as other life history traits such as size at 

maturity and reproductive allotment (Gadgil and Bossert 1970). However, even if 
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resources are more abundant in HP sites, they might not be reflected in what guppies 

consume. Predators affect guppy habitat use by forcing them to occupy only the 

margins of pools (Fraser and Gilliam 1992), thus limiting available foraging areas. 

This may force HP guppies to feed on suboptimal resources (Werner et al. 1983). 

Bassar et al. (2010a) found the opposite pattern in a recent study performed in 

artificial streams: guppies from HP sites ate more invertebrates and less detritus and 

algae than guppies from LP sites. This result suggests that guppies from high 

predation sites have evolved a preference for higher quality food items, which may 

promote the evolution of increased investment in growth and reproduction (Walsh 

and Reznick 2008). Nevertheless, differences among guppies from HP and LP 

localities in resource consumption have not yet been examined in natural populations. 

Here we investigate how a suite of guppy life history traits co-varies with 

resource consumption and prey selectivity across sites in Trinidad that differ in their 

predation regime. We collected wild fish from HP and LP sites in two different 

drainages and examined their diets, life history traits, and invertebrate availability in 

the streams. We examined guppy prey selectivity for the two phenotypes and 

determined if it was correlated with the prey‟s nutritional quality, expressed as their 

C:N content.  
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MATERIALS AND METHODS 

 

We conducted this study in montane streams draining the Northern Range of 

Trinidad. Our study streams belonged to two different drainages, Aripo and Guanapo, 

which are both part of the Caroni River system on the south slope of the Northern 

Range. In each drainage, we sampled a low predation (LP) and a high predation (HP) 

site. The LP environments were generally found upstream of barrier waterfalls which 

prevented the dispersion of many fish species (Gilliam et al. 1993). The catfish 

Rhamdia quelen was also present in the LP Guanapo site. However, this species did 

not appear to represent a real threat to guppies (Gilliam et al. 1993, Zandonà unpubl. 

data). Fish community composition was based on observations and captures during 

multiple years. We measured stream width and canopy openness for 3 randomly 

chosen pools in each site. Canopy openness was measured with a hemispherical 

densiometer. Results are reported in Table 2-1. 

We collected samples during 18-24 March 2007, which corresponded to the 

dry season in Trinidad. In each site, we collected guppies and benthic invertebrates 

from three pools and, within each pool, from locales with different stream velocity 

(low, medium, and high) to ensure sampling of most microhabitats found in the 

stream. We collected 56-136 individuals per pool (N = 1003 individuals across all 

sites), but this was always less than the total number present in the pool. All samples 

from a given site were collected on the same day. Fish were collected with hand nets 

and euthanized immediately with an overdose of the neutrally buffered MS-222. 



 

 

32 

Guppies were then measured for standard length with a digital caliper, weighed, and 

intact guts were removed for the diet analysis. Guts and guppies were preserved in 

individual containers in 5% formalin solution. 

 

LIFE HISTORY MEASUREMENTS 

We measured the following life history traits for all guppies collected: size at 

maturation in males and females, fecundity, offspring size and reproductive allotment 

as follows (but see Reznick and Endler 1982, Reznick 1989 for detailed description of 

the procedures). Males stop growing at maturity, so for mean male size at maturation 

we randomly sampled 25 mature males from each site collection and measured their 

standard length (to the closest 0.05 mm) and wet mass (to the closest 1 mg). For 

female reproductive traits, we separated females into 2 mm size classes and selected a 

minimum of 3 females from each size class from each pool (N = 16-48 individuals 

per pool). Females were measured and then dissected. We determined the number of 

embryos in each female and their stage of development according to Reznick and 

Endler (1982). Developing embryos and reproductive tissues were separated from the 

female and, along with the female soma, were dried overnight in an oven and 

weighed the following day. For the minimum female size at maturation, we 

determined the pregnancy status of all females and found the smallest reproductive 

female in each pool. Fecundity was determined by counting the number of offspring 

in pregnant females. Mean offspring size for each female was calculated as the litter 

dry mass divided by the number of offspring in the litter. Reproductive allotment was 
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estimated as the summed dry mass of offspring and reproductive tissues. Only 

females carrying developing embryos were considered (Reznick and Endler 1982).  

For all traits, we examined the effects of predation regime and drainage using 

a linear mixed model approach. Drainage and predation were modeled as fixed effects 

while pool was modeled as a random effect within predation x drainage to control for 

non-independence of individuals measured within the same pool. When there was a 

significant interaction between drainage and predation, we used tests of simple main 

effects to compare life history traits between predation regimes within each drainage 

(Winer 1971). Female dry mass was included as a covariate in analyses of fecundity 

and offspring size. Because offspring dry mass declines as development progresses 

(Reznick and Endler 1982), stage of development was also included as a covariate in 

the analysis of offspring size. To analyze reproductive allotment, we used the 

summed dry mass of offspring and reproductive tissues as the dependent variable and 

female dry mass as a covariate.  

 

RESOURCE AVAILABILITY 

We collected benthic invertebrates from 3 pools in each site. Within each 

pool, we sampled invertebrates from 3 benthic areas with different water velocity 

(high, medium, and low) (N=36). We collected benthic invertebrates using a PVC 

pipe sampler (12.1 cm diameter). Invertebrates were picked and identified to the 

lowest taxonomic level (Perez 1996, Merritt et al. 2007). We used mass-length 

regression equations (Benke et al. 1999) to calculate total invertebrate biomass, 
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expressed in mg of dry mass per m
2
. A two-way ANOVA tested for differences in 

benthic invertebrate biomass/m
2
 between drainages and predation level.  

 

DIET ANALYSIS 

We analyzed 83 guppies for diet content. Only the anterior part of the guts 

(stomach and a small part of the foregut - at the point where the gut turns 180 

degrees) was analyzed, because here food was not fully digested. Invertebrates were 

identified at the most inclusive taxonomic level, usually the family category, 

following Perez (1996) and Merritt et al. (2007). The selected portion of the gut was 

placed onto a gridded slide, where ten squares (out of 64) were randomly chosen for 

quantification of the gut content under a compound microscope. Invertebrates and 

detritus proportions were estimated for each square. Individual diatoms and 

filamentous algae were counted in each of the 10 squares. Diatoms and filamentous 

algae were counted because they are too small to estimate their proportion coverage 

in one square. An average size for diatoms and one for filamentous algae was 

subsequently assigned to calculate the area they occupied in the 10 squares. The area 

taken by each food category was calculated for the whole slide (64 squares). Plant 

matter, inorganic material, and other algae were not included in the analysis as their 

occurrence was very low.  

We performed a multivariate analysis of covariance (MANCOVA) to test for 

differences in guppy diet across drainages and predation regimes. Proportions of 

invertebrates, detritus, and algae (diatoms and filamentous algae) were the dependent 
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variables of our general linear model (GLM). We included drainage (Aripo and 

Guanapo) and predation level (HP, LP) and their interaction as fixed factors. We used 

fish standard length as a covariate. We also included pool number nested within the 

interaction between predation and drainage as a random effect to remove non-

independent effects associated with sampling multiple individuals within a pool and 

thereby provide the proper error term for comparisons between drainage and 

predation regime.  In addition to this multivariate approach, we also tested the 

proportion of each diet class in the guts using three univariate ANCOVAs. Proportion 

of each food item was included as a dependent variable and the independent variables 

were the same as they were for the MANOVA. 

Finally, to assess if the benthic invertebrate abundance in the stream had an 

effect on the amount of invertebrates found in the fish guts, we ran a two-way 

ANCOVA. Our dependent variable was the proportion of invertebrates found in the 

fish guts, predation and drainage were fixed factors, and benthic invertebrate biomass 

(mg/m
2
) was set as a covariate. Fish standard length was not included in the GLM, as 

it did not have a significant effect.  

 

PREY SELECTIVITY 

To investigate if guppies were selectively choosing to feed on specific 

invertebrate taxa, we calculated an index of prey selectivity as follows: 

      Li = ri - pi  
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where Li was the index of prey selectivity for the taxa i, ri was the relative abundance 

of prey i in the fish gut, and pi was the relative abundance of the prey i in the pool 

where we caught the fish (Strauss 1979, Palkovacs and Post 2008). The index Li can 

have values from +1 to -1. If Li is greater than 0 the fish is actively selecting prey i, if 

it is less than 0 the fish is avoiding prey i, if Li is equal to 0 the fish is selecting prey i 

in proportion to its abundance. We chose 9 different invertebrate taxa, which were all 

the ones found in the guppy guts, as our prey items and for each of them we 

calculated guppies‟ selectivity index. The chosen taxa were: Ephemeroptera, 

Trichoptera (excluding Helicopsychidae and Glossosomatidae as they have never 

been found in guppy guts), Odonata, Chironomidae, other Diptera larvae 

(Ceratopogonidae, Tipulidae, Simuliidae), Elmidae (only larvae), Psephenidae, 

Ostracoda, Copepoda.  

We created random diets with a Monte Carlo simulation for each of the pools 

(N=12) where we caught the fish. The simulated random diets were used to test the 

significance of the selectivity indices Li for each of the 9 invertebrate taxa. The 

program first calculated a pooled diet for all fish from the same pool, with the 

purpose of comparing it to the invertebrate abundance in the environment. The 

simulation created random diets for each pool by randomly drawing invertebrate 

items based on the abundances from the same pool. The randomly simulated diets had 

the same number of prey items as in the actual diets. Benthic invertebrate taxa were 

drawn, with replacement, from each of the pools, creating 10,000 random diets for 

each pool. The program calculated a selectivity index from the simulated diets for 
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each of the 9 prey taxa in all the 12 pools, thus creating a null distribution of Li. If the 

selectivity index of the individual fish was within the 95% confidence interval of the 

null distribution, the fish was feeding according to availability. If it was significantly 

above or below the limits of the confidence interval, fish respectively selected or 

avoided that particular taxa. The Monte Carlo simulation was performed using 

MatLab 7.6.0. 

We also ran a linear mixed-effects model to investigate if guppies were 

selecting invertebrate taxa according to their quality, referred to as their elemental 

composition (body stoichiometry). Typically, prey with a relatively high nitrogen 

content represent good quality food items, so we characterized the invertebrate taxa 

based on their C:N body composition. The C:N ratios indicate the balance between 

energy and nutrient (nitrogen) acquisition: high C:N values indicate low nitrogen 

content and thus low quality food, while low C:N values characterize high nitrogen 

content and high quality. We estimated the C:N body composition of compiled 

invertebrate samples collected during a stream site survey in Trinidad in 2007 and 

2008. The C:N data were available for 7 of the 9 invertebrate taxa (not for Copepods 

and Ostracods). We excluded Psephenidae from the analysis due to their low 

occurrence in both diet (1%) and in the environment (2%). The other 6 taxa were the 

most abundantly found in guppy guts. In the model, our response variable was the 

selectivity index calculated by the Monte Carlo simulation, and the explanatory 

variables were invertebrates‟ C:N body compositions, predation levels, and the 

interaction between predation and C:N. The invertebrate taxa identity was set as a 



 

 

38 

random effect to account for other random factors that may affect their selectivity 

(e.g. species-specific anti-predatory adaptations). 

Dependent variables and covariates were either arcsin square root transformed 

(for proportions) or log transformed when appropriate. All statistical analyses, except 

the Monte Carlo simulation, were performed using SAS and PASWStatistics 18.0 and 

the levels of significance were accepted at 0.05. 

 

 

RESULTS 

 

LIFE HISTORY TRAITS 

Guppies showed clear life history differences between HP and LP sites in both 

drainages. Male guppies were smaller at maturity in HP relative to LP sites (F1,8 = 

79.7, P < 0.001; Fig. 2-1a), and there was no significant effect of drainage (F1,8 = 

1.67, P = 0.23) or an interaction between predation and drainage (F1,8 = 3.85, P = 

0.08). The marginal interaction arose because the difference in size of mature males 

from high and low predation sites on the Guanapo River was larger than on the Aripo 

River.  Females also matured at a smaller size in HP relative to LP sites (F1,8 = 26.0, P 

< 0.001; Fig. 2-1b) and there were no differences between drainages (F1,8 = 3.73, P = 

0.08) nor any significant interaction between drainage and predation (F1,8 = 1.31, P = 

0.28). Female fecundity increased with female body size (F1,150 = 194.0, P < 0.001) 

and was higher in HP than in LP sites (F1,8 = 10.99, P = 0.01; Fig. 2-1c). Fecundity 
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was greater in females from the Guanapo relative to the Aripo drainage (F1,8 = 6.33, P 

= 0.04), but there was no significant interaction between predation and drainage (F1,8 

= 4.55, P = 0.07). The marginal interaction for fecundity occurred because the 

difference between high and low predation localities was larger in the Aripo than the 

Guanapo rivers. Offspring size increased with female body size (F1,119 = 22.26, P < 

0.01), and decreased with stage of development (F1,119 = 71.8, P < 0.01). There was a 

significant effect of predation (F1,8 = 15.86, P < 0.01, Fig. 2-1d), but there was also a 

significant effect of drainage (F1,8 = 6.62, P = 0.03) as well as a significant interaction 

between predation and drainage (F1,8 = 68.6, P < 0.01). Offspring were larger in LP 

relative to HP sites in the Aripo drainage (F1,8 = 83.8, P < 0.01; Fig. 2-1d), but were 

smaller in LP relative to HP sites in the Guanapo drainage (F1,8=5.62, P=0.04). 

Finally, reproductive allotment increased with female dry mass (F1,119 = 270.7, P < 

0.001) and decreased with stage of development (F1,119 = 16.18, P < 0.001). 

Reproductive allotment was larger in HP relative to LP sites (F1,8 = 5.38, P = 0.04; 

Fig. 2-1e), and was not affected by drainage (F1,8 = 1.57, P = 0.24) or the interaction 

between predation and drainage (F1,8 = 2.08, P = 0.19).  

 

RESOURCE AVAILABILITY 

Predation (F1,8 = 6.92, P = 0.03), drainage (F1,8 = 9.52, P = 0.015), and the 

interaction between predation and density (F1,8 = 10.1, P = 0.013) all had a significant 

effect on benthic invertebrate biomass per area found in the streams. All three effects 

were caused by the much higher benthic invertebrate biomass in the Aripo HP site 
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relative to the other three sites (Table 2-1). We then ran a one-way ANOVA with site 

identity as a fixed factor and LSD post-hoc analysis to assess the differences in 

benthic invertebrates between the 4 sites. We found that site of origin had a 

significant effect (F3,8 = 8.85, P = 0.006) and that the Aripo HP site had a significantly 

higher invertebrate biomass/m
2
 than the other 3 sites (LSD: Aripo HP-Aripo LP P = 

0.003; Aripo HP-Guanapo HP P = 0.002; Aripo HP-Guanapo LP P = 0.004; see Table 

2-1). Invertebrate biomass was not significantly different between Aripo LP, Guanapo 

LP, and Guanapo HP (Table 2-1).  

 

DIET ANALYSIS 

Guppies from sites with different predation regimes had significantly different 

gut content composition. The MANCOVA indicated a significant effect of predation 

(F3,7 = 6.05, P < 0.02) and fish length (F3,67 = 8.06, P < 0.001) on the composition of 

guppy diets. There was no significant effect of drainage (F3,7 = 0.52, P = 0.68) nor of 

the interaction between drainage and predation (F3,7 = 0.99, P = 0.45). Univariate tests 

showed that HP guppies ate significantly more invertebrates than LP guppies (F1,9 = 

23.08, P = 0.001), which instead fed significantly more on algae (F1,9 = 10.74, P = 

0.01) and detritus (F1,9 = 20.28, P = 0.001) (Fig. 2-2 and Table 2-2).  

When we incorporated the pool benthic invertebrate biomass as a covariate in the 

two-way ANCOVA, we found that it did not have a significant effect (F1,79 = 0.16, P 

= 0.69) on the proportion of invertebrates found in the guppies guts. Even with 

benthic invertebrate biomass as a covariate, the model still detected a significant 
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effect of predation (F1,79 = 17.09, P < 0.001), a marginally non significant effect of 

drainage (F1,79 = 3.47, P = 0.066), and no significant effect of the interaction between 

drainage and predation (F1,79 = 1.18, P = 0.28) (Fig. 2-3).  

 

PREY SELECTIVITY 

In general guppies from HP sites were more selective when feeding on 

invertebrates than guppies from LP sites, which instead fed on what was available in 

the environment (Fig. 2-4). Overall, Chironomidae represented 40% of the 

invertebrate portion of guppy diet. Trichoptera were 14%, other Diptera 13%, and 

Ephemeroptera 8%. Even though Ephemeroptera was the most abundant taxon found 

in the environment (34%), the Monte Carlo simulation showed that HP guppies 

tended to avoid them (Fig. 2-4). Elmidae and Ostracoda also had relatively high 

abundance in the environment, with 11% and 19% respectively, but they were 

uncommon in the guts (0.5% and 2% respectively). Some invertebrate taxa 

commonly found in the benthic samples were never found in the guppy guts. These 

taxa were Trichoptera with rocky cases such as Helicopsychidae and 

Glossosomatidae, Oligochaete (Tubificidae), and Gastropoda (Thiaridae). 

The linear mixed-effects model showed selectivity was on average stronger in 

guppies in HP sites (t15=-3.37; P=0.004). Moreover, while selectivity was unrelated to 

C:N ratio in guppies in LP sites (t3=0.40; P=0.71), selectivity of guppies in HP sites 

was strongly related to C:N ratio (interaction predation x C:N; t15=3.48; P=0.003). 

The shape of this relationship for guppies in HP sites was quadratic (t15=-3.58; 
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P=0.003), showing stronger preference for invertebrates with a C:N ratio lower than 5 

and avoidance for lower quality invertebrates (with high C:N ratios; Fig. 2-5). 

Guppies in LP sites instead showed no selectivity, and fed according to what was 

available in the stream. 

 

 

DISCUSSION 

 

Guppies adapted to different levels of predation displayed marked differences 

in diet and prey selectivity. Fish from high predation environments fed on food of 

higher quality (invertebrates as opposed to detritus or algae) and selected those 

invertebrate taxa that had higher relative nitrogen content (Fig. 2-5). Low predation 

guppies were more opportunistic in their feeding behavior. They mostly ate detritus 

and algae, which have low nitrogen content, and did not show preferences for specific 

invertebrate taxa; they instead fed according to what was available in the stream 

(Figs. 2-4 and 2-5).   

 The life history differences that we observed between HP and LP guppies 

overall confirmed the results commonly found in other studies on wild-caught 

guppies in Trinidad (Reznick and Endler 1982, Reznick 1989). HP guppies matured 

at a smaller size (which has served as an indicator of earlier maturity in prior studies – 

Reznick and Endler 1982; Reznick 1982; Reznick et al. 1996a,b), and had higher 

fecundity and reproductive allotment than their LP counterparts. HP fish also 
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typically produce smaller offspring (Reznick and Endler 1982; Reznick 1982; 

Reznick et al. 1996 a.b), but in the Guanapo drainage we did not find a significant 

difference in this trait between HP and LP guppies (we discuss about this anomaly 

further below). 

 The patterns we found on resource (invertebrate) levels across predation 

regimes were complex. We expected higher invertebrate biomass in HP sites than in 

LP sites because HP sites were generally bigger streams with more primary 

productivity (Reznick et al. 2001), which should sustain higher levels of secondary 

production (Hill et al. 2001). There were instead no consistent differences between 

HP and LP sites (Table 2-1). The Aripo HP site had almost 9 times the invertebrate 

biomass/m
2
 of the other three sites and it was also significantly wider. The other 3 

sites did not significantly differ between each other for these two measurements 

(Table 2-1). Nevertheless, there were consistent differences in guppies from HP and 

LP sites for all variables in this study. 

 A missing link in our assessment is guppy population density and hence per 

capita food availability. Previous studies (Rodd and Reznick 1997, Reznick et al. 

2001) reported that the guppy size distribution is smaller in HP sites due to the higher 

death and birth rates, resulting in ¼ of the guppy biomass per area found in LP sites. 

If our sites replicated these guppy biomass differences, then the per capita 

invertebrate availability would be lower in LP sites. 

 There were correlated disparities in diet that were consistent with what we 

would predict if resources were less abundant in LP sites. Optimal diet theory predicts 
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that a predator should have a broader diet in unproductive environments and become 

more of a specialist on high quality food when prey density is high (MacArthur and 

Pianka 1966). For instance, Gende et al. (2001) found that brown and black bears 

became more specialized in energy-rich salmon (females that had not spawned) when 

their availability was high. In another study, Werner and Hall (1974) found that 

bluegill sunfish were more selective towards bigger size prey when prey density was 

high, but the fish were more opportunistic when prey density decreased. In a study on 

cadmium-intolerant Drosophila, Bolnick (2001) found that when cadmium-free food 

abundance was low and competition for it was high, Drosophila evolved tolerance for 

cadmium-rich food. In HP streams, with low guppy biomass, there are more high 

quality resources (invertebrates) available to each guppy, thus the fish can be more 

selective in what they feed on. HP guppies indeed showed higher invertebrate content 

in their diet and higher selectivity for certain taxa, especially the higher quality ones 

(with intermediate-low C:N values). HP guppies can afford to drop less profitable 

items from their diet, and they can specialize on higher quality prey, because food is 

not limiting. 

 In LP sites, where guppy biomass is typically higher and individual growth 

rates are lower (Reznick et al. 2001), guppies might be under stronger intraspecific 

competition for the fewer high quality resources available. Therefore, it would 

become advantageous for them to be more generalists and to feed on a broader variety 

of food items, even those of lower nutritional quality. Indeed, we found that LP 
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guppies had a more herbivorous diet, with high proportions of low quality food 

(detritus), and invertebrates consumed according to availability.  

 Bassar et al. (2010a) found the same patterns; HP guppies preferred to eat 

invertebrates while LP guppies had a higher proportion of detritus and algae in their 

diet. Bassar et al. (2010a) worked with fish from the same localities as in the current 

study, but diet was assessed after fish were kept for 28 days in artificial streams that 

had been uniformly stocked with invertebrates collected from natural streams. Seeing 

such a pattern in the absence of any difference in resource availability or population 

density suggests that guppies have specialized diets that might have evolved as a 

response to different resource levels in their natural environment.  

 Increased resource availability, when modeled as an indirect effect of 

predation, represents a factor that can select for the evolution of early age/size at 

maturity and higher reproductive effort according to some models (Gadgil and 

Bossert 1970, Abrams and Rowe 1996). On the other hand, chronically low food 

levels have been linked to the evolution of slower growth rates, as a strategy to 

minimize the costs of growth (Sinervo and Adolph 1994, Arendt and Reznick 2005). 

In a series of studies conducted on the Trinidadian killifish Rivulus hartii, Walsh and 

Reznick (2008, 2009) found that high resource availability was associated with the 

evolution of earlier maturity, increased reproductive allotment and the production of 

more, smaller eggs. In our study system, high resource levels were likewise correlated 

with smaller size at maturation, higher reproductive allotment and fecundity, while 

low food levels led to the opposite patterns. For this reason, resource availability, 
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which is indirectly affected by the presence/absence of predators, has to be 

considered an important agent of selection in the life history evolution of guppies.  

 

Offspring size anomaly 

In the Aripo River, HP fish produced smaller offspring size than LP fish, as in 

earlier studies. Offspring size instead was not significantly different between HP and 

LP guppies in the Guanapo. Reznick (1982a) and Torres-Dowdall (in prep) found that 

there is a genetic basis for these offspring size differences in both rivers. Most life 

history theory predicts how overall reproductive allocation evolves (e.g. Gadgil and 

Bossert 1970, Charlesworth 1980) but does not address how this allocation is 

provisioned to offspring (e.g., many small versus few large). The evolution of 

offspring size is often represented by independent theory (e.g, Smith and Fretwell 

1974, Lloyd 1987). It is possible that offspring size might evolve independently of 

other components of the life history. The fitness consequences of offspring size 

depend strongly on the competitive environment. Being larger is a big advantage 

when food is scarce and competition is intense, but of little advantage when food is 

abundant and competition is lax (Bashey 2008).  

If our HP streams had similar guppy biomass, then the Aripo HP site, with its 

very high benthic invertebrate biomass per unit area (Table 2-1), could have more 

resources available per individual newborn guppy than the Guanapo HP site. The 

Aripo HP site was indeed the one with the smallest offspring size. The Guanapo HP 

site has lower invertebrate biomass and bigger offspring size than the Aripo HP, so 
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resource availability to newborn guppies may have played a role in shaping this life 

history trait. More unusual was the difference in offspring size between our two LP 

streams. The Guanapo LP site had bigger offspring size than the Aripo LP. If we 

hypothesize that this difference evolved in response to chronic differences in resource 

availability, then the Guanapo LP site should have greater per capita invertebrates 

available. We found that the Guanapo LP fish had a higher proportion of invertebrates 

in their diet than the Aripo LP fish (~40% vs. ~10%), which supported the hypothesis 

that the Guanapo LP fish had more resources available. Also, the relative difference 

in the proportion of invertebrates in the diet between HP and LP fish was much 

greater in the Aripo river than in the Guanapo river, which corresponded to the 

greater difference in offspring size as well. Higher relative resources in the Guanapo 

LP site than in the Aripo LP site could be the cause of more invertebrates in the diet 

and smaller offspring size.  

 

Eco-evolutionary perspective 

Predators can drive community divergence in prey and these changes can 

feedback to mold the evolution of predators‟ traits in contemporary time (e.g. trophic 

morphology; Palkovacs and Post 2008). For instance, natural populations of 

anadromous and landlocked alewives (Alosa pseudoharengus) differently modified 

the structure and composition of the zooplankton community (Brooks and Dodson 

1965). Consequently, the effect of the alewives on the zooplankton community feeds 

back, affecting the alewives‟ trophic morphology and favoring those traits that are 
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more adapted to the modified zooplankton community (Palkovacs and Post 2008, 

2009). Possibly, eco-evolutionary feedback could have caused divergence between 

HP and LP guppies. The population densities of the guppies may dictate the nature of 

resource availability. In LP sites guppies are at higher population densities due to the 

lack of predators (Rodd and Reznick 1997) and they may actively depress the 

abundance of invertebrates. If such conditions persist, then there could follow 

selection in favor of those individuals that are less selective in their choice of prey. If 

such diet preferences do indeed evolve, then they could conceivably be accompanied 

by selection for differences in the digestion and absorption of nutrients from the diet 

(e.g. modified gut length and intestinal micro structure) and other changes to the 

metabolism, changes to external trophic morphology (e.g. gill raker spacing, gape 

width), and lastly, life history traits. We have yet to explore these other possibilities.  

 

Conclusions 

Predation can have direct and indirect effects on the evolution of life history 

traits of prey (Gadgil and Bossert 1970, Abrams and Rowe 1996, Walsh and Reznick 

2008, 2009). Predators directly affect mortality rates and population size structure 

(Rodd and Reznick 1997), and indirectly influence the amount of per capita resources 

available to surviving prey (Wootton 1994). In this study, we showed an association 

between evolved life history traits in guppies and their diet preferences. Guppies that 

lived in streams with predators display smaller size at reproduction and higher 

reproductive allotment. They also had more resources available per capita, which was 
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reflected in their feeding habits: they were more specialized on invertebrates and had 

higher prey selectivity. Guppies from predator-free streams showed the opposite 

pattern in life history traits and had fewer resources available in the environment. 

They also had lower individual growth rates (Reznick et al. 2001). They fed more 

consistently on lower quality food (detritus), most likely as an effect of the more 

intense intraspecific competition that guppies experience. Our results suggest that 

patterns of resource availability and diet selectivity may be linked to the evolution of 

life history traits. We suggest that resource-based life-history theory should 

incorporate knowledge of the dietary responses to predation and resource availability. 

Such a framework would provide a link between foraging and life-history theory. 

Understanding the coevolution of diet and life-histories can have profound 

implications for understanding the effects of evolution on communities and 

ecosystems. 
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Table 2-1. Stream characteristics for the 4 study sites in Trinidad. Values of the 

environmental variables have been averaged across the 3 pools. Values with the same 

uppercase letter are not significantly different. Fish species reported are the ones that 

have been observed and caught in the sites during multiple years. Differences in 

average % canopy and stream width were calculated with a Kruskal-Wallis test. 

Values indicate means (±1 SE). 

 

 

 

Stream 

characteristics 

 
Aripo HP Guanapo HP Aripo LP Guanapo LP 

Invertebrate 

biomass (mg/m
2
) 

177 (37.5)
 a 

20.9 (11.6)
 b 

19.7 (7.0)
 b 

19.2 (4.1)
 b 

Invertebrate 

abundance (# of 

individuals) 

122 (33.3) 
a 

29 (7.4) 
b 

29.7 (9.9) 
b 

42.3 (18.2) 
b 

Total number of 

invertebrate 

families 

17 14 14 10 

Fish community 

Poecilia 

reticulata, 

Rivulus hartii, 

Hoplias 

malabaricus, 

Crenicichla sp, 

Characidae 

(many species),         

Rhamdia 

quelen, 

Aquidens 

pulcher, 

Ancistrus 

cirrosus, 

Synbranchus 

marmoratus  

Poecilia 

reticulata, 

Rivulus hartii,  

Hoplias 

malabaricus, 

Characidae 

(many species),         

Rhamdia 

quelen, 

Aquidens 

pulcher, 

Ancistrus 

cirrosus 

Poecilia 

reticulata, 

Rivulus hartii 

Poecilia 

reticulata, 

Rivulus hartii, 

Rhamdia quelen 

Canopy Openness 

(%) 
31.5 (8.4)

a 
12.4 (1.9)

a 
30.4 (12.7)

a 
16.3 (3.7)

a 

Stream Width 

(cm) 
917 (159)

a 
653 (52.7)

a,b 
387 (30.3)

b 
403 (103.9)

b 
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Table 2-2. Univariate ANOVAs for the three food categories found in guppy diets in 

the streams of Trinidad. 

 

 

Univariate ANOVAs 

Effect Error type 
DF SS MS 

F-

Value 

P-

Value 

Inverts       

Fish length error 1 0.25 0.25 1.96 0.17 

Drainage 

Pool (Drainage 

x Predation) 
1 0.20 0.20 0.97 0.35 

Predation 

Pool (Drainage 

x Predation) 
1 4.72 4.72 23.08 0.001 

Drainage*Predation 

Pool (Drainage 

x Predation) 
1 0.29 0.29 1.44 0.26 

Pool 

(Drainage*Predation) error 
9 1.84 0.20 1.62 0.13 

Error  69 8.70 0.13   

       

Detritus       

Fish length error 1 0.75 0.75 8.15 0.006 

Drainage 

Pool (Drainage 

x Predation) 
1 0.08 0.08 0.66 0.44 

Predation 

Pool (Drainage 

x Predation) 
1 2.34 2.34 20.28 0.001 

Drainage*Predation 

Pool (Drainage 

x Predation) 
1 0.34 0.34 2.91 0.12 

Pool 

(Drainage*Predation) Error 
9 1.04 0.11 1.25 0.28 

Error  69 6.34 0.09   

       

Algae       

Fish length Error 1 0.15 0.15 7.15 0.009 

Drainage 

Pool (Drainage 

x Predation) 
1 0.07 0.07 1.62 0.23 

Predation 

Pool (Drainage 

x Predation) 
1 0.48 0.48 10.74 0.01 

Drainage*Predation 

Pool (Drainage 

x Predation) 
1 0.00 0.00 0.03 0.87 

Pool 

(Drainage*Predation) error 
9 0.40 0.04 2.17 0.03 

error   69 1.42 0.02     
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Figure 2-1. Differences in life history traits between high (HP) and low (LP) 

predation guppies from the Aripo (closed symbols) and Guanapo (open symbols) 

rivers in Trinidad. Values represent the estimated marginal means calculated by the 

general linear model (GLM) as explained in the text. Bars represent ±1 S.E. 
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Figure 2-2. Proportional diet composition of HP (high predation) and LP (low 

predation) guppies from the two study drainages, Aripo and Guanapo, in Trinidad. 

Data showed here represent the estimated marginal means calculated by the general 

linear model (GLM) on arcsin transformed data. Estimated marginal means and 

standard errors have been back-transformed for the graphical representation. Food 

categories analyzed are invertebrates, in dark grey; amorphous detritus, in white; and 

algae (filamentous and diatoms) in light grey. Bars represent ±1 S.E. 
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Figure 2-3. Relationship between benthic invertebrate density in the environment and 

proportion of invertebrates found in the fish guts. Aripo fish are indicated with circles 

and Guanapo with triangles; high predation (HP) fish are closed symbols, while low 

predation (LP) are open. Bars represent ±1 S.E. 
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  a)        b) 

 

 

 

 

Figure 2-4. Selectivity indexes (Li) for the 9 invertebrate taxa found in the guppy 

guts for a) Aripo HP and LP and b) Guanapo HP and LP. Positive values indicate 

positive selectivity, while negative values indicate avoidance. Error bars represent 

standard errors calculated across the means of three pools for each site. (Eph = 

Ephemeroptera; Ostr = Ostracoda; Elm = Elmidae; Psep = Psephenidae; Odon = 

Odonata; Chir = Chironomidae; Cop = Copepoda; Dipt = Diptera excluding 

Chironomidae; Trich = Trichoptera).  
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Figure 2-5. Relationship between C:N (molar) invertebrate body composition and 

selectivity index for HP and LP fish. Guanapo and Aripo have been lumped together 

in a single graph because the patterns for the two drainages were very similar. Open 

diamonds indicate HP and closed circles LP. Regression equation and R
2
 values are 

shown in graph. 



 

 

57 

CHAPTER 3: Seasonal variation in diet and gut length in guppies 

(Poecilia reticulata) from sites with different predation regimes 

 

 

 

ABSTRACT 

 

Phenotypic plasticity is an advantageous trait for organisms that live in 

variable environments. The digestive system is often plastic, changing its size and 

morphology in response to changes in diet. This occurs because digestive tissues are 

highly expensive to maintain, thus gut length is the result of a trade-off between 

maximum nutrient absorption and minimum cost for its maintenance. Here we 

assessed the variation in gut length of Trinidadian guppies (Poecilia reticulata) as a 

function of diet, season, and ontogeny. We sampled fish from sites that differed in 

their predation regime (high predation –HP; low predation – LP), in which guppies 

have evolved different life history traits and have different diets. Guppies from HP 

and LP sites differ in their diet, with guppies in HP sites feeding mostly on 

invertebrates, while guppies in LP sites feeding mainly on detritus. We collected fish 

during both the dry and wet season, assessing their diet and gut length. During the 

wet season the differences in diet between guppies from HP and LP sites disappeared, 

with guppies in HP sites decreasing the invertebrate proportion in their diet and 

guppies in LP sites increasing it. Gut length was negatively correlated with the 
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proportion of invertebrates in diet, supporting the hypothesis that in guppies digestive 

systems adapt in size to changes in diet. Our study showed that even in omnivorous 

fish gut length adapted to different diets, being more evident when the magnitude of 

difference between animal and plant material in diet was very large. 

 

 

INTRODUCTION 

 

Some organisms that live in a variable environment show the ability to 

generate a range of phenotypes, each better suited to certain conditions. These ranges 

of phenotypes are environmentally induced and thus are not the expression of genetic 

variation. However, this ability to alter phenotypes, referred to as phenotypic 

plasticity, is inherited (West-Eberhard 2003, Travis 2009). When individuals that 

show phenotypic plasticity have an increased fitness advantage compared to those 

that can only express one phenotype, this is indicated as adaptive plasticity and it can 

be a target of natural selection (Pigliucci 2001). Adaptive plasticity is advantageous 

when selection favors different phenotypes for different environmental conditions and 

if there is not a single phenotype that is best adapted to all circumstances (Ghalambor 

et al. 2007).  

There are many examples of phenotypic plasticity, which can be expressed 

through behavioral, morphological, and physiological changes. The expression of a 

different phenotype is triggered by an environmental cue that is unmistakably 
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perceived by the organism. Phenotypic plasticity can be reversible, which typically 

occurs when environmental changes take place throughout an individual‟s lifetime, 

during which the organism can switch from one phenotype to another (Travis 2009). 

Or it can be irreversible, more common in organisms living in environments that 

fluctuate less frequently (Travis 2009). A typical example of reversible phenotypic 

plasticity is the capability of the digestive tissues to adjust according to changes in 

diet or in the organism‟s energy demand (Starck 2003). Digestive tissues are one of 

the most expensive to maintain and it is therefore very important to adjust them to an 

optimal energy intake/maintenance balance (Sibly 1981). The digestive tract is highly 

flexible and can adjust in size and morphology to changes in diet quantity and quality, 

as shown in many vertebrate species (Piersma and Lindstrom 1997, Starck 1999, 

Naya et al. 2007, Olsson et al. 2007). An animal cannot maintain a unique digestive 

system that is well adapted for every type of diet, because different food is absorbed 

through different biochemical pathways or has different processing times (Karasov 

and Martinez del Rio 2007). For instance, an animal needs a longer gut to digest low 

quality food (e.g. fiber-rich) than more easily digestible food (e.g. protein-rich) 

(German and Horn 2006, Olsson et al. 2007, Wagner et al. 2009); longer guts have 

higher surface area and allow a longer retention time of the food, consequently 

enhancing nutrient absorption (Sibly 1981). Of course, organisms that have relatively 

fixed diets (e.g. strict carnivores) do not need to show gut plasticity, because their 

digestive system is already adapted to optimal efficiency (Buddington et al. 1991). 

However, gut flexibility becomes of paramount importance for those animals that 
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feed on a wide array of food types or that live in environments with high levels of 

variation in resources (Karasov and Martinez del Rio 2007). Such animals, for 

instance omnivorous or diet switchers, display high plasticity in their digestive 

systems because they often shift to different types of food that have different 

digestive requirements (e.g. animal vs. plant food) (Piersma and Lindstrom 1997). 

Also organisms that undergo long periods without eating (e.g. hibernating or 

migrating animals) require flexible digestive systems, so that they can minimize the 

cost of maintaining an active organ by reducing its size and cell proliferation 

(reviewed in Starck 2003 and German et al. 2010).  

Here we investigated how differences in diets were reflected in differences in 

gut length of an omnivorous tropical fish, the Trinidadian guppy (Poecilia reticulata). 

We also assessed how seasonality affected guppy diets and how it was reflected in the 

gut morphology. Guppies are an ideal model organism because they show two 

distinct phenotypes that differ in their life history traits (Reznick and Endler 1982, 

Reznick 1989) and diets (Bassar et al. 2010a) (Zandonà in prep – Chapter 2). The two 

phenotypes have evolved in streams that differ in the degree of predation experienced 

by guppies. When predation is high, guppies show higher growth rates, smaller size at 

maturation, and higher reproductive allotment, producing more and smaller offspring. 

In streams where predation is low or absent, guppies show the opposite patterns: they 

have slower growth rates, bigger size at maturation, they invest less in reproduction, 

and have larger and fewer offspring. These different life history trait patterns might 

have different energetic requirements, which could be met through different feeding 
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choices. Guppies are omnivores (Dussault and Kramer 1981), feeding on aquatic 

invertebrates, algae, and detritus, yet the two phenotypes show differences in the 

relative proportion of these food items in their diets. In a mesocosm study, where 

guppies from high and low predation sites were kept in artificial streams under the 

same conditions for 28 days, it has been shown that high predation guppies feed 

prevalently on invertebrates, while guppies from low predation sites have higher 

proportions of detritus in their diet (Bassar et al. 2010a). Detritus is a low quality food 

compared to invertebrates and might thus require longer guts to optimize the 

absorption of nutrients. Here we tested if guppies exhibited phenotypic plasticity in 

their digestive systems, and if this was related to their different diet preferences. We 

hypothesized that guppies from low predation sites had longer guts than guppies from 

high predation sites, being adapted to a lower quality diet.  

  

 Seasonality 

Organisms living in aquatic ecosystems often change their diets as an effect of 

ontogeny (Werner and Gilliam 1984) or seasonal variation in the availability of food 

(Winemiller 1990). For instance, tropical streams often undergo rapid shifts in the 

quantity and quality of resources and suitable habitats available due to changes in 

precipitation patterns. It is advantageous for organisms that live in such variable 

environments to respond to these sudden changes by modifying their diet and their 

digestive system. The streams in Trinidad experience variation in resource 

availability due to the presence of distinct dry and wet seasons, which are 
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characterized by changes in precipitation patterns. During the wet season, flooding 

and associated scouring events increase in frequency, reducing benthic invertebrate 

and algal biomass (Pringle and Hamazaki 1997), but increasing allochthonous inputs 

into the stream (Owens 2010). Benthic invertebrate communities generally decrease 

in abundance and species composition, and their spatial distributions, stoichiometric 

and nutritional content can be altered. Fish populations are also affected by 

precipitation patterns: in the wet season densities decline and the competitive or 

predatory interactions might weaken (Winemiller and Jepsen 1998).  

Guppies also respond to the environmental changes occurring during the wet 

season by decreasing population size and modifying their life history patterns 

(Reznick 1989). In the wet season guppies mature at a larger size, their fecundity 

decreases, and they invest less energy into reproduction as compared to the dry 

season (Reznick 1989). Differences in life history traits between high and low 

predation localities persist, but they change, mostly decreasing, in magnitude. The 

changes in life history traits with season can be the result of changes in resources 

available to guppies, which most likely decrease in the wet season. We expected that 

guppies would respond to these changes in the type and amount of resources available 

by modifying their diet and gut morphology. To test this, we collected guppies from 

both the dry and the wet season and analyzed their diet and gut length. We 

hypothesized that guppies would change diet with season and that their digestive 

system morphology would reflect this variation in diet.  
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MATERIALS AND METHODS 

 

We conducted this study in the Aripo river, which is part of the Caroni 

drainage system, located on the South slope of the Northern Range of Trinidad. 

Guppies were collected from two sites indicated as low predation (LP) and high 

predation (HP), which were characterized by different fish communities and different 

guppy phenotypes. In the HP environments guppies co-occured with a large suite of 

fish species, including the pike cichlid (Crenicichla sp.) and the wolfish (Hoplias 

malabaricus), which are piscivorous fish that prey upon guppies. In the LP sites, 

guppies co-occured with only one other fish species, the Hart‟s killifish (Rivulus 

hartii), which competes with guppies and can occasionally prey on them. The LP 

environments were generally found upstream of barrier waterfalls, which prevent the 

upstream movement of many fish species. The HP sites are generally bigger streams, 

with less canopy cover, and higher productivity, while LP sites are smaller, with more 

canopy cover, and fewer resources (Reznick et al. 2001). 

We collected samples in July 2006 (wet season) and March 2007 (dry season) 

on individual dates for each site. In each site, we collected guppies from three pools 

and within each pool, from areas with different stream velocity (low, medium, and 

high) to ensure sampling of most of the microhabitats guppies use in the stream. Fish 

were collected with hand nets and euthanized immediately with an overdose of the 

anesthetic MS-222. Guppies were then measured for standard length with digital 
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calipers, weighed, and intact guts were removed. Guts and fish were preserved in a 

5% formalin solution.  

 

DIET ANALYSIS 

A total of 41 dry season (21 for HP and 20 for LP) and 54 wet season guppies 

(26 in HP and 28 in LP) were analyzed for diet content. Using a dissecting 

microscope, the stomach and a small part of the foregut were separated from the rest 

of the gut, at the point where the gut turns 180 degrees. The rest of the gut (hindgut) 

was not used for the analysis, because food was too digested to be recognized. 

Stomach and foregut were placed onto a gridded slide where their contents were 

taken out and the gut wall removed. Invertebrates were identified to the lowest 

possible taxonomic level, usually down to family (Perez 1996, Merritt et al. 2007), 

and when possible, length and head width were measured. After the invertebrate 

identification, the material on the gridded slide was distributed evenly with a probe 

and covered with a cover slip. Ten squares (out of 64) of the slide were chosen 

randomly for quantification of the gut content under a compound microscope. 

Proportions of invertebrates and detritus were estimated for each square, and 

individual diatoms and filamentous algae were counted because they were too small 

to estimate their proportion coverage in one square. An average size for diatoms and 

one for filamentous algae was subsequently assigned to calculate the area they 

occupied in the 10 squares. The area taken by each food category was calculated for 



 

 

65 

the whole slide (64 squares). Plant matter, inorganic material, and other algae were 

not included in the analysis as their occurrence was very low.  

We used a multivariate analysis of covariance (MANCOVA) to test for 

predation and seasonal effects on the proportion of food items (invertebrates and 

detritus) in the guppy diet. We used fish length as a covariate, because fish often 

switch their diet with age/size. We did not include the proportion of algae as a 

dependent variable into the MANCOVA because it violated the assumptions of 

equality of variances and normal distribution of the residuals. 

 

GUT LENGTH MEASUREMENT 

We measured gut length of 80 guppies from the dry season (39 for HP, 41 for 

LP) and 44 guppies from the wet season (23 for HP, 21 for LP). All guppies analyzed 

for gut length measurement were different individuals from the ones used for dietary 

analyses. We placed individual guts in a petri dish and cut them into 2-3 parts, as the 

intestines can be very convoluted. In this way we could measure every part without 

stretching the guts, which would bias the total length measurement. We took pictures 

of the individual guts with a camera connected to a Leica dissecting microscope and 

to a computer. We measured each gut picture using the software J-Image. We took 3 

different measurements for each gut and averaged them to get the final gut length.  

Because of the allometric relationship between fish length and gut length, we 

employed a two-way ANCOVA, with fish standard length as a covariate, to test for 

differences in gut length between groups. In the model, predation level, season, their 
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interaction, and the interaction between fish length and predation were the main 

effects.  

In order to gather more insights into gut length morphology, we also measured 

the gut length of guppies caught in the dry season from HP and LP localities of 

another river, the Guanapo. In a companion paper (Chapter 2), we analyzed the diet 

content of guppies from these same Guanapo localities and hence we wanted to 

correlate the diet result with gut lengths. The diet results for the Guanapo river are 

reported in Table 2-2. We performed a one-way ANCOVA, with fish length as our 

covariate, to test for differences in gut length between HP and LP fish. Because there 

was no significant interaction between predation and fish length, we removed this 

effect from the model and left only predation as a fixed factor. 

Finally, we ran a linear regression analysis to examine the relationship 

between relative gut length and proportion of invertebrates in the diet. We included in 

the regression analysis only fish between 15 and 20 mm standard length, so we could 

minimize the effects of the allometric relationship between gut length and fish length 

(see also Kramer and Bryant 1995a, b). Guppies‟ length ranges from approximately 8 

to 25 mm and they are generally sexually mature above 15 mm. We also chose this 

size range because we had the highest sample size across all sites and seasons. The 

relative gut length was calculated as the gut length divided by the fish length. The use 

of this metric can be controversial when used to compare individuals of different 

sizes (Kramer and Bryant 1995a, b), thus we minimized this problem by using fish of 

the same size class across all sites. Because we did not have both gut length and diet 
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measurements for each individual fish, an average value was assigned for the 

proportion of invertebrates for each site and season (Aripo HP and LP for both dry 

and wet season; Guanapo HP and LP for only the dry season), which was the 

estimated marginal mean obtained from the diet analysis. 

Gut length, fish length, and relative gut length measurements were log 

transformed while proportion of food items values were arcsin square root 

transformed to meet the assumption of normal distribution of data. All levels of 

significance were accepted at 0.05 and statistical analyses were performed using 

PASWStatistics 18.0 (SPSS inc.). 

 

 

RESULTS 

 

SEASONALITY IN DIET 

Guppies from the Aripo river changed their diet with season. In the dry season 

there were significant differences between diets of guppies in HP and LP sites, but in 

the wet season those differences disappeared and guppies in the HP and LP sites had 

essentially the same diet (Fig. 3-1). The MANCOVA showed a significant effect of 

predation (F2,88 = 7.543, P = 0.001), season (F2,88 = 10.168, P < 0.001), and of the 

interaction between season and predation (F2,88 = 12.294, P < 0.001) on the guppy 

diet. Guppy length also had a significant effect on diet (F2,88 = 8.085, P = 0.001), as 

well as did the interaction between guppy length and season (F2,88 = 7.572, P = 0.001). 
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This heterogeneity of slopes was generated by the different correlations between 

proportion of invertebrates in the diet and guppy length between dry and wet season 

(univariate ANOVA: F1,89 = 7.146, P = 0.009) (Fig. 3-2). However, there was no 

heterogeneity of slopes for the proportion of detritus in the diet and guppy length 

between seasons (univariate ANOVA: F1,89 = 2.344, P = 0.129) (Table 3-1 and Fig. 3-

2). We ran two regression analyses to look at the relation between the proportion of 

invertebrates in the diet and guppy length for each season. In the wet season, there 

was a significant (F1,53 = 9.464, P = 0.03; y = -0.045x + 1.33, r
2
 = 0.15) negative 

relationship between proportion of invertebrates in the diet and guppy length (Fig. 2). 

In the dry season instead there was no significant relationship (F1,40 = 0.100, P = 

0.753; y = 0.007x + 0.57, r
2
 = 0.03) (Fig. 3-2). 

 

GUT LENGTH 

 The two-way ANCOVA confirmed the allometric relationship between gut 

length and fish length (fish length effect: F1,118=423.510, P<0.001). It also showed a 

significant effect of predation (F1,118=8.654, P=0.004) and a marginally significant 

effect of season (F1,118=3.792, P=0.054) on gut length in guppies. However, there was 

also a significant effect of the interaction between predation and season (F1,118 

=12.919, P<0.001), and of the predation by guppy length interaction (F1,118=11.565, 

P=0.001). Because of the heterogeneity of slopes due to the significant interaction 

between predation and guppy length, we need to be careful interpreting the results for 

the main effects (predation, season, and their interaction). For this reason, we also ran 
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regression analyses for each site and each season to examine in more detail the 

relationship between gut length and guppy length (Fig. 3-3). The slopes of the linear 

regressions were steeper for low predation guppies (dry: F1,39= 278.32, P < 0.001, y = 

1.76x – 0.81, r
2
 = 0.88; wet: F1,19= 74.31, P < 0.001, y = 1.9x – 1, r

2
 = 0.80) than for 

high predation guppies (dry: F1,37= 91.68, P < 0.001, y = 1.29x – 0.38, r
2
 = 0.71; wet: 

F1,21= 14.15, P = 0.01, y = 1.14x – 0.13, r
2
 = 0.40) both in the dry and wet season. 

This indicated that low predation guppy guts increased in size with fish length faster 

than for high predation guppies. The wet season samples were more limited in size 

range, with high predation guppies being mostly small individuals and low predation 

big individuals, thus reducing the overlap in size between the two sites. This limited 

overlap made the patterns in gut length more difficult to interpret. For instance, the 

regression analysis for the low predation site was highly affected by the only small 

fish data point (size: 11.66 mm). When this individual was removed from the 

analysis, the equation and r
2
 value change substantially (F1,18= 32.20, P < 0.001; y = 

1.57x – 0.6; r
2
 = 0.64), reducing the difference in slope between high and low 

predation guppies. Overall, in the dry season there was an obvious difference in gut 

length patterns between high and low predation fish, with low predation guppies 

having overall longer guts in particular when fish were above a certain size. In the 

wet season instead the patterns were not so clear primarily due to the more limited 

size range of our samples (Fig. 3-3). 

 Analysis on the Guanapo river showed that predation did not have a 

significant effect on gut length (F1,77=5.571, P=0.073). The regression equations for 
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high and low predation guppies are very similar (HP: F1,39= 160.42, P < 0.001; y = 

1.515x – 0.56, r
2
 = 0.80; LP: F1,37= 211.30, P < 0.001; y = 1.75x – 0.88, r

2
 = 0.85), 

confirming the patterns found in the ANCOVA. The diet differences between high 

and low predation guppies in the Guanapo (Table 3-2) did not have the same 

magnitude as in the Aripo (Fig. 3-1a). In particular, the Guanapo LP guppies had very 

similar proportions of detritus and invertebrates in their diet, thus still maintaining a 

relatively high proportion of invertebrates in their diet, while in the Aripo river 

guppies in the LP site had very low amounts of invertebrates in their guts. 

 The allometric equations for all 6 data sets fitted well the relationship between 

gut length and guppy length, with r
2
 values that ranged from 0.40-0.88 (average = 

0.74). The slope of the allometric equations ranged from 1.14-1.9, indicating that 

guppy intestine length always increased faster than body length (Figs. 3-3 and 4-4). 

 There was a significant negative relationship between the proportion of 

invertebrates in the diet and relative gut length across all our guppy samples (F1,117  = 

31.79, P < 0.001; y = -0.19x + 0.135; r
2
 = 0.21). In other words, as the proportion of 

invertebrates in the diet decreased (indicating a herbivory increase and thus an overall 

lower quality diet), there was an increase in the relative gut length (Fig. 3-5)  
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DISCUSSION 

 

 In vertebrates, the gastrointestinal tract responds to changes in diets, 

optimizing nutrient absorption and minimizing energy expenditure (Karasov and 

Martinez del Rio 2007). In our study gut morphology in guppies was a plastic trait 

influenced by temporal and spatial changes in diet. Guppies from high and low 

predation sites had differences in their diets, which were correlated with differences 

in gut length. However, gastrointestinal external morphology responded to diet 

differences mainly when the magnitude of change was big. Our study also confirmed 

the allometric relationship between fish length and intestine length in guppies, with 

slope values within the range found in other studies (Kramer and Bryant 1995a).  

 

 Seasonality in diets 

In the dry season we found the biggest differences in diet between high and 

low predation guppies (Fig 3-1. and Table 3-2). In particular, low predation guppies 

fed more consistently on low quality food – detritus – and showed relatively longer 

guts compared to high predation fish, which instead had a higher quality diet (mostly 

based on invertebrates) and had comparatively shorter guts. In the wet season, 

guppies from both localities switched their diet: in low predation sites they increased 

the proportion of invertebrates, while in high predation sites they decreased it and ate 

more detritus. As a result, the differences in diet between guppies in high and low 

predation sites became negligible in the wet season.  
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There are several possible explanations for why guppies switch their diet in 

this fashion between seasons. During the wet season the density of guppies decreases 

due to both the increased volume of water in the streams and the reduction in 

population size caused by high frequencies of washouts. We might thus expect that in 

the wet season the per capita resources available increase and intraspecific 

competition decreases. As a response, guppies could increase the amount of higher 

quality (invertebrates) food in their diet, especially in those streams where 

intraspecific competition was higher and the access to high quality resources more 

limited. This would explain the larger amount of invertebrates in the diet of low 

predation guppies, which live in sites with higher guppy density and thus stronger 

intraspecific competition.  

Alternatively, in the wet season, especially after heavy rain episodes, the 

amount of resources, such as periphyton and benthic invertebrates, drops off (Maharaj 

1994, Pringle and Hamazaki 1997, Ramirez et al. 2006), thus reducing food sources 

available to the guppies. High predation sites are generally located more downstream 

and are generally wider, while low predation sites are more upstream, narrower and 

have higher canopy cover (Reznick et al. 2001), a distinction that also characterizes 

our two Aripo sites. Upstream sites might recover much faster from heavy rain events 

than downstream, wider streams, which instead receive the water from all tributaries, 

thus increasing their own discharge many fold. The high predation population might 

be more heavily affected by the increasing precipitation during the wet season and 

might have more problems finding suitable refugia and food. This can explain why 
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the guppies in high predation sites decreased the proportion of invertebrates in their 

diet from dry to wet season.  

Reznick (1989) showed that guppy life history differences between high and 

low predation phenotypes persist during the wet season but decrease in magnitude. 

For instance, during the wet season the size at maturity increases for both phenotypes, 

but in low predation sites increases more than in high predation. In laboratory studies, 

decreased food availability leads to smaller sizes at reproduction (Walsh and Reznick 

2008). Our data showed that low predation fish increased the amount of invertebrates 

in their diet – perhaps due to the higher per capita availability in the stream -, which 

might be linked to the observed increase in size at maturation. High predation guppies 

decreased the proportion of invertebrates in their diet in the wet season compared to 

dry season, but the proportion was still high (~40%). This might explain why their 

size at maturation did not change as much. Fecundity and reproductive allotment 

decreased in the wet season, especially for high predation guppies (Reznick 1989). A 

decrease in these traits is consistent with the response to a decrease in food 

availability (Reznick and Yang 1993, Walsh and Reznick 2008). The greater decrease 

for these traits in guppies in high predation than low predation sites may indicate a 

larger magnitude decrease in high quality resources (invertebrates) for high than for 

low predation sites. This was confirmed by our diet analysis, which showed a decline 

in invertebrates in the high predation guppies diet, but smaller changes in the low 

predation guppies. 
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 Gut length 

We expected gut lengths to mirror the patterns found in the diet, so that 

nutrient absorption could be optimized. That is, shorter guts would correspond to 

more carnivorous diets (more invertebrates) and, vice versa, longer guts would 

correspond to more herbivorous diets (more detritus and algae). We found such a 

correlation between the high and low predation sites in the Aripo river during the dry 

season. In this time, we found the biggest differences in diet between the two 

populations (Fig. 3-1a) and also the biggest difference in gut length (Fig. 3-3a). In the 

Guanapo sites, we did not find such a clear relationship between diet and gut length 

(Fig. 3-4). However, in this stream the differences in diet between high and low 

predation were not as big as in the Aripo. For instance, in both drainages the 

percentage of invertebrates in the diet for guppies in high predation sites was around 

70%. In the Aripo river the percentage of invertebrates in the diet for guppies in low 

predation sites was much lower (~10%), but it was up to ~40% for guppies in the 

Guanapo low predation site. A similar but opposite pattern was found for the detritus.  

In a study on 21 species of fish from Panama, Kramer and Bryant (1995b) 

showed that the allometric equations relating fish body length to intestine length were 

different and with decreasing values between herbivorous, omnivorous, and 

carnivorous fish. However, within omnivores, they did not find differences in gut 

length between species consuming different proportion of plant material. Our data on 

the Aripo dry season did not agree with Kramer and Bryant‟s (1995b) results, but our 

Guanapo data did. Perhaps the differences in invertebrate and detritus proportions 
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between the diet of high and low predation guppies in the Aripo river were big 

enough to lead to correspondent differences in their gut length, but they were not so 

in the Guanapo river. Further work is required to clear this up. 

There was an allometric relationship between guppy length and gut length, 

with slopes greater than 1, indicating that gut length increased faster than guppy 

length. This result suggests that guppies might switch their diets with age. However, 

we found only limited indications of an ontogenetic shift in diet in our gut content 

analysis. Only in the wet season was there a significant relationship between the 

proportion of invertebrates in diet and guppy length in both high and low predation 

sites, indicating that small fish were more carnivorous than bigger ones, which has 

been shown in several species of fish. Nevertheless, considering that in the dry season 

we did not find indications of an ontogenetic diet switch and that in the wet season it 

was a limited phenomenon (the regression equation only explained 15% of the 

variation), it was more likely that the allometry of gut length in guppies was 

explained by the necessity of maintaining the surface-to-volume ratio with increasing 

size (Kramer and Bryant 1995a). 

 

Conclusions 

 While our findings confirmed that guppies are omnivores (Dussault and 

Kramer 1981), they also indicated that guppies have a broad range of variation in the 

proportion of invertebrates and detritus in their diet, which changed temporally with 

season and spatially with the presence/absence of predators. These variations in diet 
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preferences were often correlated with the gastrointestinal tract length. Guppies that 

showed higher levels of carnivory also had the shortest guts, and vice versa, higher 

levels of herbivory were correlated with longer gut lengths. Gut length in guppies 

appeared to respond to different diets, but it could not be used alone as an indication 

of the herbivory or carnivory level. The plasticity of the digestive system is an 

important attribute for guppies because it offers the possibility of responding 

favorably to changes in food sources, maximizing nutrient absorption and energy 

extraction from different food types.  

Our study shows that even within omnivores, gut length can change to relative 

differences in the proportion of animal and plant food sources. If differences between 

these two food categories are not very high, the gastrointestinal morphology may not 

change substantially in length. The cost of adapting to small changes in diet could 

perhaps be higher than the actual benefit of changing the morphology of the guts.  
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Table 3-1. Univariate ANCOVA results on the effects of predation and season 

on the proportion of invertebrates and detritus in the diets of guppies from Trinidad. 

SS = sums of squares; df = degrees of freedom; MS = mean squares. All F-ratios are 

based on type-III sums of squares.  

 

 

 

Univariate ANCOVA 

Source SS df MS F-ratio P-value 

Invertebrates      

Predation 1.93 1 1.93 15.26 <0.001 

Season 0.79 1 0.80 6.26 0.01 

Guppy Length 0.40 1 0.40 3.15 0.08 

Predation*Season 3.01 1 3.01 23.88 <0.001 

Season*Guppy Length 0.90 1 0.90 7.15 0.01 

Error 11.23 89 0.13   

      

Detritus      

Predation 1.16 1 1.16 13.45 <0.001 

Season 0.10 1 0.10 1.11 0.29 

Guppy Length 0.73 1 0.73 8.49 0.005 

Predation*Season 2.10 1 2.10 24.31 <0.001 

Season*Guppy Length 0.20 1 0.20 2.34 0.13 

Error 7.71 89 0.09   
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Table 3-2. Diet composition of Guanapo guppies from high predation (HP; N = 21) 

and low predation (LP; N = 21) sites (data from Chapter 2). Proportions of the 3 food 

items are estimated marginal means (±SE) calculated by a MANCOVA (predation as 

the fixed effect and fish length as a covariate); data reported have been back-

transformed. All F-ratios are based on type-III sums of squares. Num df = numerator 

degrees of freedom; Den df = denominator degrees of freedom.  

 

 

 

Predation Food item Proportion 

HP Invertebrate 0.70 (0.08) 

HP Detritus 0.27 (0.06) 

HP Algae 0.01 (0) 

   

LP Invertebrate 0.42 (0.08) 

LP Detritus 0.47 (0.07) 

LP Algae 0.04 (0.01) 

 

MANCOVA 

Source Statistics Value F-value Num df Den df P-value 

Predation 
Wilks‟ 

Lambda 
0.78 3.38 3 37 0.03 

Guppy 

length 

Wilks‟ 

Lambda 
0.83 2.55 3 37 0.07 
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Figure 3-1. Seasonal effect on the diet of guppies from HP (high predation) and LP 

(low predation) guppies from the Aripo river. Percent diet composition is shown for 

the dry (a) and the wet (b) seasons. Data showed here represent the estimated 

marginal means calculated by the MANCOVA on arcsin transformed data. Estimated 

marginal means and standard errors have been back-transformed for the graphical 

representation. Food categories analyzed are invertebrates, in dark grey and 

amorphous detritus in white. Bars represent ±1 SE.



 

 

80 

 

 

 

 
 

 

Figure 3-2. Correlation between guppy standard length and a) proportion of 

invertebrates and b) proportion of detritus in guppies diet. Wet season (filled 

diamonds) and dry season (open circles) fish are shown. Regression line shows the 

only significant relationship, which is between proportion of invertebrates in diet and 

guppy length during the wet season. 
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Figure 3-3. Correlation between fish standard length and gut length in fish from HP 

(filled circles) and LP (open triangles) streams in the dry (a) and wet (b) season. Data 

are not transformed and equations and R
2
 values are calculated on non-transformed 

data. Trend lines are exponential. 
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Figure 3-4. Correlation between fish standard length and gut length in fish from HP 

(filled circles) and LP (open triangles) sites in the Guanapo river. Data are not 

transformed and equations and R
2
 values are calculated on non-transformed data. 

Trend lines are exponential. 
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Figure 3-5. Mean proportion of invertebrates in diets vs. mean relative gut length for 

all guppies between 15 and 20 mm. Each data point represents one site (Aripo HP and 

LP for both dry and wet season, and Guanapo HP and LP from the dry season). 

Relative intestine length was calculated as the gut length divided by fish length. An 

average value was assigned for the proportion of invertebrates for each site, which 

was the estimated marginal mean obtained from the diet analysis. 
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CHAPTER 4: Intraspecific variation in trophic niches of the Trinidadian 

guppies (Poecilia reticulata) 

 

 

 

ABSTRACT 

 

Intraspecific difference in trophic niches is a widespread characteristic of 

many vertebrates that live in diverse habitats or with different competition and 

predation regimes. Guppies have evolved different life history traits as an effect of 

different predation pressure, where populations that experience high predation (HP 

sites) grow faster, reproduce earlier, produce more and smaller offspring than 

populations that live in low predation sites (LP). In this study, we assessed the 

existence and repeatability of intraspecific differences in trophic niches of guppies 

from a series of 6 replicate HP-LP population pairs. We examined direct diet (through 

gut analysis), trophic position and sources contribution to diet (with 
13

C and 
15

N 

stable isotopes) of guppies collected in 12 streams during the wet season. We also 

measured the environmental characteristics (invertebrate, algae, fine and coarse 

organic matter biomasses, and stream morphometrics) of each site and investigated 

the existence of common patterns within HP and LP sites. We found that in the wet 

season guppies in LP sites generally had higher trophic positions and had higher 

invertebrate proportion in their diets than guppies in HP sites. This result was in 
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contrast with what we previously observed in guppies in the dry season. The river of 

origin had an equally important effect as predation in shaping guppy trophic positions 

and diets. The causes of this pattern require further exploration. There was no 

indication of a shift in resource consumption (in diet and trophic position) as a 

function of guppy size. Sites with the same predation regimes showed many 

similarities in their environmental characteristics: HP sites generally had higher 

invertebrate biomass, less canopy cover, lower algae biomass, lower coarse and fine 

benthic organic matter biomass, while LP sites showed the opposite patterns. We 

discuss the patterns found in guppy trophic niches and site characteristics as an effect 

of intraspecific competition, top-down forces, and abiotic components due to 

seasonality.  

 

 

INTRODUCTION 

Intraspecific niche differentiation is widespread among many species of 

vertebrates, such as birds (Smith 1987), amphibians (Martin and Pfennig 2010), and 

fish (Robinson et al. 1993, Robinson and Wilson 1994, Svanback and Persson 2004), 

and can be manifested through morphological, behavioral, physiological, and life 

history adaptations (Smith and Skulason 1996). Niche differentiation and trophic 

polymorphism are often observed when populations adapt to a number of different 

habitats and resource abundances (Smith 1987, 1990).  
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Aquatic habitats offer a great number of examples of niche differentiation, 

because they are often heterogeneous and can present temporal and spatial variation 

in environmental characteristics. For instance, the quantity and quality of resources 

available can be altered as an effect of biotic (e.g. presence of predators, competitors, 

etc.) and abiotic (e.g. precipitation patterns, light regime, water velocity, turbidity, 

etc.) factors. Typical examples of such spatial variations in habitat characteristics are 

found in lakes between littoral (near shore) and pelagic (off-shore) areas. Species that 

inhabit each of these habitats show characteristic and different morphological 

adaptations, diet selectivity, feeding behavior, and so on (e.g. perch: Svanback and 

Persson 2004; stickleback: Svanback and Bolnick 2007; pumpkinseed: Wainwright et 

al. 1991, Robinson et al. 1993). Similar intraspecific niche differences are also found 

in alewives, between landlocked and anadromous populations (Palkovacs and Post 

2008, Post et al. 2008). 

Intraspecific diversification can also be manifested as an ontogenetic shift in 

niche use between young and adult individuals. Fish often show ontogenetic niche 

shifts, which can be expressed as differences in use of food resources or as habitat 

switches (see references in Werner and Gilliam 1984). It is not uncommon to find 

species that shift from feeding on zooplankton when young to feeding on fish when 

adults (Olson 1996), or from insectivory to frugivory (Drewe et al. 2004), or from 

carnivory to herbivory (German and Horn 2006). There can also be less drastic 

changes, where fish feed on progressively larger prey with increasing size, prey that 

they could not get when they were smaller due to gape limitation. These changes in 
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diet with age help to partition resources along an age gradient between individuals of 

the same population, reducing competition for food (Werner and Gilliam 1984).   

Decreased resource availability and intraspecific competition, resulting from 

increased conspecific density, can facilitate both niche differentiation and resource 

polymorphism (Svanback and Bolnick 2007, Martin and Pfennig 2010). However, 

other factors, such as the presence of predators, can contribute to the development of 

niche diversification within the same species (Eklov and Svanback 2006). For 

instance, predators can affect habitat use of prey, limiting their foraging areas and 

activities, and forcing them to occupy suboptimal microhabitats that they would not 

normally use (Werner et al. 1983). The presence of predators might thus force prey to 

change their feeding behavior and eat other types of food. Prey might thus be forced 

to specialize on different food sources, such as habitat-specific resources, or 

otherwise become more opportunistic. These changes in diet selectivity can then 

affect morphological adaptations, in particular of trophic traits (e.g. jaw size, gill 

rakers, gut length, etc.). Predators can thus affect the density, distribution and also the 

phenotypic occurrence of prey.  

Here we examined the existence and extent of intraspecific niche 

diversification in the guppy (Poecilia reticulata), a species of freshwater fish 

inhabiting the streams of Trinidad, which has evolved phenotypic divergence in its 

life history traits. Guppies are found in streams that span a gradient in predation risk 

and environmental variables. At one extreme of this gradient, referred to as high 

predation (HP), guppies experience strong predation pressure mostly by the wolfish 
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(Hoplias malabaricus) and the pike cichlid (Crenicichla sp.). At the other extreme, 

referred to as low predation (LP) environments, guppies coexist with only one other 

fish species, the Hart‟s killifish (Rivulus hartii), a guppy competitor which may 

occasionally prey on juvenile guppies (Liley and Seghers 1975, Mattingly and Butler 

1994). Guppies from HP and LP sites evolved different phenotypes with 

characteristic life history traits. For instance, guppies in HP sites mature at a smaller 

size, produce more and smaller offspring, allocate more energy into reproduction 

(Reznick and Endler 1982, Reznick 1989) and have faster growth rates (Arendt and 

Reznick 2005) compared to guppies in LP sites. In a previous study carried out in the 

dry season (Chapter 2), we showed that diet quality and prey selectivity correlated 

with the life history patterns, with guppies in HP sites fed more consistently on 

invertebrates, preferring those with higher nutritional quality. These results were also 

confirmed by a controlled mesocosm study (Bassar et al. 2010a), in which high and 

low predation guppies were kept in artificial streams that had been seeded with equal 

amount of resources (invertebrates, algae, and benthic organic matter). The guppies 

used for this mesocosm experiment were from the same 2 rivers, the Aripo and 

Guanapo, of the study in Chapter 2. At the end of the 28-day long experiment, 

guppies still showed differences in diet choice, with the same patterns as found in the 

wild. This suggests that HP guppies have evolved to feed on diets rich in 

invertebrates.  

Here we tested if the differences in trophic niches were widespread and 

repeatable among many high-low predation population pair replicates. We performed 
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a site survey across the Northern Range of Trinidad and collected guppies from 6 

different rivers, including the Aripo and Guanapo. We used gut contents to infer 

direct diet, and stable isotopes (
13

C and 
15

N) to provide information on what the 

animals were actually assimilating from what they eat. With stable isotopes, we 

inferred trophic position and sources contributing to the guppies‟ diets, how they 

differed between sites with different predation pressures and whether they change 

with guppy size (a proxy for age). We hypothesized that guppies from HP sites would 

occupy a higher trophic position than guppies from LP sites, due to their higher 

reliance on invertebrates. Furthermore, we characterized the resource availability of 

the different fish communities and assessed if there were similarities between sites 

with the same predation regime. We measured a suite of environmental 

characteristics, including benthic invertebrates, algae, fine benthic organic matter 

standing stocks and stream morphometrics.  

Our objectives were thus 1) to describe and compare guppies‟ trophic niches 

across many replicates of HP and LP sites; 2) to assess the existence of an 

ontogenetic niche shift in guppies; 3) to characterize a series of HP and LP sites to 

identify common patterns in resource abundance and environmental characteristics; 

4) to assess if environmental differences were correlated with the patterns found in 

guppies‟ trophic niches. 

 

 

 



 

 

90 

MATERIALS AND METHODS 

 

We collected samples during the wet season from 6 different rivers in the 

Northern Range of the Caribbean island of Trinidad. Three of our focal rivers (Arima, 

Aripo, Guanapo) were located on the South slope of the range and were part of the 

Caroni drainage, two of them (Quare and Turure) were on the East slope belonging to 

the Oropuche drainage, and one of them (Marianne) was found on the North slope. In 

each river we sampled a pair of streams: one high predation (HP) and one low 

predation (LP) site. The HP and LP sites were generally located along an altitudinal 

gradient, with HP being downstream of LP locales. All of the HP sites in our study 

had a large diversity of fish, including some of the most common guppy predators 

such as the pike cichlid (Crenicichla sp.) and the wolfish (Hoplias malabaricus). The 

Marianne, being located in the North slope, had a different ichthyofauna than the 

other rivers, and the main predators of guppies here were the Spinycheek sleeper 

(Eleotris pisonis) and the Bigmouth sleeper (Gobiomorus dormitor).  

We conducted this study during the wet season: 3 rivers (Aripo, Guanapo, 

Marianne) were sampled between 6 July and 14 August 2007, and the other 3 (Arima, 

Quare, Turure) on 12-26 July 2008. We collected all samples in one or occasionally 

two subsequent sampling dates. At each site we sampled a stream reach of 

approximately 100-200 m of length, which comprised at least 3 separate pools and 3 

riffles. 
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ENVIRONMENTAL VARIABLES 

In each of the three pools and riffles we sampled environmental 

characteristics, including algal biomass (as a proxy of habitat productivity), 

invertebrate standing stocks, fine benthic organic matter (FBOM) biomass, and coarse 

particulate organic matter (CPOM) standing stock. We also measured the stream 

morphometrics, percent open canopy, and discharge.  

Algal standing stocks were sampled by scraping 5 rocks from 3 pools and 3 

riffles at each site. We assessed algal biomass by measuring the ash-free dry mass 

(AFDM) of a predetermined subsample of the scraped slurry that was filtered on a 25 

mm pre-combusted and weighed glass fiber filter (at 450
o
C for 2 hours). The filter 

was then dried at 105
o
C until it reached a constant mass, it was then weighed and 

oxidized in a muffle furnace at 500
o
C and reweighed. The AFDM mass was equal to 

the mass of the dried material plus the filter, minus the filter mass, minus the mass of 

the remaining ashes after the oxidation. The AFDM weight was then divided by the 

subsampled area to obtain the AFDM/m
2
. AFDM represents a proxy for algal 

biomass, but it does not distinguish between algal material and other organic matter, 

such as fungi and bacteria; furthermore it also includes the biomass of senescent 

material (Steinman et al. 2007). 

Benthic invertebrates were sampled in 3 pools and 3 riffle habitats in each site 

using a Hess sampler (Hess 1941). Samples were then immediately stored in 95% 

ethanol solution (which was generally diluted to 70% due to the small amount of 

water in the sample). Back in the laboratory, samples were stained with rose bengal 
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for at least 24 hours and then separated using 2 sieves (1mm and 250 m). Only the > 

1mm and between 1 mm and 250 m fractions were picked and identified at the 

lowest taxonomic level (generally Family or Genus) following Perez (1996) and 

Merritt et al. (2007). The <250 m fraction was not used for this analysis, as we were 

not interested in estimating meiofauna. Samples that had more than 100-150 

invertebrates were subsampled using a plankton splitter. Invertebrates were counted 

and identified using a dissecting scope. Invertebrate biomass was calculated using 

length-mass regression equations from the literature (Benke et al. 1999) and from 

estimates of Trinidadian specimens (T. Heatherly unpubl. data) 

Fine benthic organic matter (FBOM) was collected in 3 pools and 3 riffles in 

2007 and 2 pools and 2 riffles in 2008 in each site. We collected FBOM using a 

sampling corer and graduated bucket following the procedure described in Wallace et 

al. (2007). All the material collected was passed through nested sieves of 63 m, 250 

m, and 1000 m and everything that was retained by the sieves, including what 

passed through the smaller sieve, was stored in bags. Back in the lab, the material 

collected by each sieve was then dried at 50
o
C until it reached a constant mass and 

then ashed at 500
o
C. The AFDM/m

2
 for each size fraction was calculated following 

the formulas in Wallace et al. (2007) and then summed up to obtain the total FBOM 

biomass of the whole sample. 

Coarse particulate organic matter (CPOM) is mostly composed of 

allochthonous material (mainly leaves). The CPOM biomass was assessed by 

randomly tossing a pvc frame (1.25 m
2
 area) in the stream and collecting all material 
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within the frame by hand. The material was then dried at 50
o
C for at least 48 hours or 

until completely dry, and subsequently weighed. We collected CPOM in 3 pools and 

3 riffles in 2007 and 3 random pools or riffles in 2008.  

Percent open canopy was measured using a hemispherical densiometer. Pool 

width and depth were measured at transects across the pool, then averaged. Pool 

widths measurements were all wetted width. Discharge was measured using the 

midsection method (Gore 2007). All stream characteristics and environmental 

variables are reported in Table 1. 

 

STABLE ISOTOPE ANALYSIS (SIA) 

We used stable isotopes to estimate the source proportion contribution to 

guppy diets from the different sites and to calculate their trophic position. We 

collected a minimum of 17 and a maximum of 48 guppies (mean and median=26) of 

all size classes per site. We collected them with hand nets and immediately put them 

on ice in a cooler and transported them back to the laboratory. Viscera were 

subsequently removed and the fish were put in a drying oven until completely dry. 

Guppies‟ guts were stored in a 5% formalin solution until diet analysis was 

performed, although those from the 2007 collection were not well preserved and thus 

not suitable for diet analysis. 

We collected the most abundant invertebrate taxa with hand nets. Upon 

collection, they were left in separate containers with water for approximately 6-8 
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hours, to allow them to clear their guts. In order to reach enough mass for SIA, we put 

several individuals of the same taxon in one sample and then dried. 

Epilithon from pools and riffles, benthic organic matter, seston, and leaves 

were collected for stable isotope analysis. However, we only used epilithon from 

pools for this study, because it represented what guppies ingested, being a mixture of 

algae and fine detritus. Epilithon was collected from rocks using a loeb sampler. The 

collected slurry was then filtered on a 25 mm pre-combusted GFF (at 450
o
C for 2 

hours) until it clogged and the filter was subsequently dried. Once dried, the material 

was scraped off the filter and used for SIA.  

All samples were dried at 50-60
o
C until completely dry and then ground to 

fine powder with a mortar and pestle. Approximately 1 mg of each sample (~3 mg for 

epilithon samples) was weighed and put in 4 x 6 mm tin capsules (5 x 9 for epilithon 

samples) and sent to the University of Georgia (Athens, Georgia, USA) for SIA. 

Samples were analyzed using a Finnigan Delta C mass spectrometer connected to a 

Carlo Erba 1500 CHN analyzer. Isotopic ratios (heavy isotope/light isotope) were 

expressed in the typical  notation (Minagawa and Wada 1984, Peterson and Fry 

1987, Fry 2006) as parts per thousand deviation from international standards, which is 

atmospheric nitrogen for 
15

N and Pee Dee belemnite limestone for 
13

C. 

 

We calculated guppy trophic position using the formula proposed by Vander 

Zanden et al. (1997) and Anderson and Cabana (2005): 

   TP = [(
15

Ngup - 
15

Nbase)/] +  
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Where  is the fractionation factor (equal to 3.2‰, from Minagawa and Wada 

1984), and  (=1) is the trophic position of the baseline, 
15

Nbase is the signature of the 

baseline, which is a mixture of two invertebrate primary consumers. The 
15

N of 

basal resources varies temporally and spatially, making it necessary to choose a 

primary consumer that can function as a proxy of the base of the food web (Vander 

Zanden et al. 1997, Post 2002, Anderson and Cabana 2005). We chose as our baseline 

an average value between Psephenus sp., a grazing water penny, and Phylloicus sp., a 

shredding caddisfly. These two taxa were among the most common primary 

consumers, being found in almost all of our sites, and overall had among the lowest 


15

N signatures. We chose to use an average between a shredder and a grazer, 

because they represented the baselines for the allochthonous and autochthonous 

pathways respectively. Other studies conducted in streams propose to only use 

grazers, but suggest to use a shredder as a baseline when the stream is detrital-based 

(Anderson and Cabana 2005). Our streams most likely had an important detrital-

based component, which was the reason why we chose to use both. In addition, we 

did not have both taxa for all our sites, so we calculated an average difference 

between Psephenus and Phylloicus and used it for those sites in which we only had 

one of the two taxa.  

 

In order to estimate the proportional contribution of each food item to the 

guppy diet we employed the SIAR mixing model, which is a software in R that 

utilizes Bayesian statistics (Parnell et al. 2010). SIAR is a novel methodology that 
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incorporates multiple dietary sources and generates solutions as probability 

distributions of the different sources. We found that SIAR was the most appropriate 

model to use, as it allows one to incorporate the variability of the sources, of the end 

members (consumers), and of the fractionation factors. It is very important to be able 

to incorporate variability into a mixing model, especially for fractionation factors that 

are difficult to assess and are a problematic issue (Gannes et al. 1997, Vander Zanden 

and Rasmussen 2001, McCutchan et al. 2003, Vanderklift and Ponsard 2003, Kilham 

et al. 2008, Martinez del Rio et al. 2009). For the guppy fractionation values we chose 

to use 3.2 ±0.5 ‰ for 
15

N and 0 ±0.5 ‰ for 
13

C (Minagawa and Wada 1984). SIAR 

allowed us to use many dietary sources, however, like other mixing model (e.g 

IsoSource; Phillips and Gregg 2003), its performance decreased with increasing 

number of sources. Thus, we tried to reduce the number of sources including only the 

most abundant taxa found in the guppy diet and clumping them together into 

functional feeding groups. We assumed that invertebrates belonging to the same 

functional feeding group would have similar isotopic signatures, as they feed on 

similar food sources. In this way we should be able to have a better definition of the 

sources contributing to guppies‟ diet. The sources we chose for the SIAR were: 

epilithon from pools (from now on indicated as EPI), collector/grazers, filterers, 

shredders, omnivores, and predators.  
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DIET ANALYSIS 

Guppies from the Quare and Arima rivers were analyzed for gut contents. We 

only used the stomach and a small part of the foregut - at the point where the gut turns 

180 degrees, because here food is not completely digested. Invertebrates were 

identified at the most inclusive taxonomic level, usually the family category, 

following Perez (1996) and Merritt et al. (2007). The gut content was emptied onto a 

gridded slide, where ten squares (out of 64) were randomly chosen for the 

quantification of the different food items using a compound microscope. The areas 

occupied by invertebrates and detritus were estimated for each square. Individual 

diatoms and filamentous algae were counted in each of the 10 square, because they 

are too small to estimate their proportion coverage in one square. An average size for 

diatoms and one for filamentous algae was subsequently assigned to calculate the area 

they occupied in the 10 squares. The area taken by each food category was calculated 

for the whole slide (64 squares). Plant matter, inorganic material, and other algae 

have not been included in the analysis as their occurrence was very low.  

 

SITE ANOMALIES 

Two of the 12 surveyed sites presented some anomalies. The Arima HP site 

was found to be contaminated with manure, which altered the 
15

N signatures of 

several organisms of the food web, including guppies. Stable isotope data from this 

site must thus be carefully interpreted.  
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The Turure LP site had a very uncommon morphology, being composed 

entirely of very large travertine pools separated by high waterfalls. Its morphology 

prevented us from collecting several of the biomass compartments standing stocks. 

Moreover, guppies did not naturally occur in this site, but they were introduced 50 

years ago by Haskins from the Guanapo river (Magurran 2005). These factors make 

both the site and the guppies living in it an anomaly and must thus be carefully 

considered. 

 

STATISTICAL ANALYSIS 

Differences in trophic position of guppies between predation regimes were 

assessed using a Mann-Whitney test, while differences in trophic position between 

rivers were estimated with a Kruskal-Wallis test. Even if the data were normally 

distributed, we used a non-parametric test because the variances across groups were 

not equal. We also ran separate Univariate ANOVAs for each river, because when we 

kept rivers separated the variances became equal. For the Quare river we ran a 

Univariate ANCOVA, with fish standard length set as a covariate, because only in 

this river was there a significant effect on the trophic position. In the Quare river the 

Levene‟s test for homogeneity of variances was significant, however, because the p 

value was not very low (P = 0.029) we considered the ANCOVA a test powerful 

enough for our purposes. The Arima HP site was contaminated with manure, as 

indicated by the unusually high 
15

N signatures of many organisms from the stream 

(Aravena et al. 1993), in particular those relying on autochthonous food sources. For 
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this reason, we did not consider the trophic position results from the Arima HP site 

comparable with those from other sites and, as such, we did not include it in the 

analysis. 

We performed a multivariate analysis of covariance (MANCOVA) to test for 

differences in guppy diet across rivers and predation regimes. Proportions of 

invertebrates, detritus, and algae (diatoms and filamentous algae) were the dependent 

variables of our general linear model (GLM). We included river (Arima and Quare) 

and predation level (HP, LP) and their interaction as fixed factors. We used fish 

standard length as a covariate. Because the interaction between river and fish length 

was significant, we included it in the model. In addition to this multivariate approach, 

we also tested the proportion of each diet class in the guts using three univariate 

ANCOVAs. Proportion of each food item was included as a dependent variable and 

the independent variables were the same as for the MANOVA. For these two rivers, 

we also examined the linear relationship between guppies‟ trophic position and 

proportion of invertebrates in the guts using a linear regression.  

We assessed the existence of ontogenetic shift in guppies by using both the 

stable isotope and gut content data. Linear relationships between trophic position and 

fish standard length were examined in separate regressions for high and low predation 

fish from each site. For the Arima and Quare rivers, we also ran linear regressions to 

look at the relationship between proportion of food items (invertebrates and algae) 

and fish standard length.  
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We performed Univariate ANOVAs to assess differences in resources 

biomass between predation regimes and rivers (our fixed factors). For each ANOVA, 

the dependent variables we used were benthic invertebrate biomass/m
2
, epilithon 

AFDM/m
2
, CPOM/m

2
, and FBOM/m

2
 (only the 63-250 m size fraction). In the 

model we also included the interaction between predation and river. The Turure river 

was included only in the epilithon analysis. The Guanapo river was included in all 

analyses, but the epilithon, due to missing samples. 

Data were transformed to meet normal distribution assumptions when 

necessary and levels of significance were set at P<0.05. All statistical analyses were 

carried out using PASWStatistics 18.0.  

 

 

RESULTS 

 

TROPHIC POSITION 

We found that the trophic position of guppies differed between HP and LP 

sites (Mann-Whitney test, rejected null hypothesis) and also between streams 

(Kruskall-Wallis, rejected null hypothesis) (Fig. 4-1). When we individually analyzed 

the 6 rivers sampled, we found that in the Aripo river (F1,33 = 25.52; P < 0.001), 

Turure river (F1,50 = 127.58; P < 0.001), and Quare river (F1,49 = 19.29, P < 0.001) LP 

guppies had a significantly higher trophic position than HP ones, while in the 

Marianne river (F1,48 = 3.38; P = 0.072) there was no significant difference between 
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sites. Only in the Guanapo river we found that HP guppies had a marginally 

significantly higher trophic position than LP guppies (F1,66 = 3.71, P = 0.058). In the 

Quare river (the only river where we ran an ANCOVA), we found that fish standard 

length also had a significant effect (F1,49 = 4.52, P = 0.039).  

Overall, we did not find a significant relationship between trophic position 

and fish standard length in any of the sites, with the only exceptions being the Quare 

HP and the Turure LP. In the Quare HP, guppies significantly (F1,24 = 5.43, P = 0.029; 

r
2
=0.184) increased their trophic position with increasing size (Fig.4-2), while in the 

Turure LP they significantly decreased their trophic position with increasing size 

(F1,24 = 4.51, P = 0.044; r
2
=0.158).  

 

 

DIET 

Guppies from different rivers, different predation regimes, and of different 

size had different diets preferences. The most predominant food item in guppy diets 

was detritus, followed by invertebrates. Algae composed a very small part of their 

diet (Fig. 4-3). The MANCOVA showed a significant effect of predation (F3,46 = 3.91; 

P = 0.014), river (F3,46 = 5.96; P = 0.002), body length (F3,46 = 11.87; P < 0.001), 

while the interaction between river and predation was not statistically significant 

(F3,46 = 0.98; P = 0.41). The interaction between river and body length was significant 

(F3,46 = 8.51; P < 0.001) for all food items (see Table 4-2). This indicates a 

heterogeneity of slopes between rivers, suggesting a need for careful interpretation of 
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the river main effect. We further investigated the causes of this heterogeneity of 

slopes by running linear regressions between the proportion of the 3 food items and 

fish length for each river. We found that in the Arima there was no significant 

relationship between fish length and any of the food items (invertebrates: r
2
=0.071, 

F1,28 = 2.13, P = 0.155; detritus: r
2
=0.086, F1,28 = 2.63, P = 0.116; algae: r

2
=0.015, 

F1,28 = 0.42, P = 0. 521; Fig. 4-4). In the Quare river guppies significantly decreased 

the amount of invertebrates in their diet with increasing size (r
2
=0.614, F1,22 = 34.96, 

P < 0.001), while they significantly increased the proportion of detritus (r
2
=0.491, 

F1,22 = 21.25, P < 0.001) and algae (r
2
=0.428, F1,22 = 16.48, P = 0.001) (Fig. 4-4). 

These changes in diet with guppy size showed the same patterns between HP and LP 

fish.  

Even if we found a significant effect of predation on guppy diet, the 

magnitude of differences between high and low predation sites changed between the 

two rivers examined. For instance, in the Quare, HP guppies had a lower proportion 

of invertebrates and higher proportion of detritus and algae than the LP fish (Fig. 4-

3). Instead, in the Arima, HP and LP guppies had more similar diets (Fig. 4-3).  

Opposite to what we expected, there was no significant relationship between 

proportion of invertebrates in the guts of guppies and the trophic position of the 

guppies in any of the 4 sites (Arima HP: F1,8 = 2.09, P = 0.19; r
2
=0.23; Arima LP: 

F1,13 = 2.96, P = 0.11, r
2
=0.20; Quare HP: F1,11 = 4.01, P = 0.73, r

2
=0.29; Quare LP: 

F1,11 = 0.50, P = 0.50, r
2
=0.05) (Fig. 4-5).  
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ISOTOPIC SOURCE PROPORTIONS 

From the mixing models, it emerged that guppies were indeed omnivorous but 

that invertebrates were a much more important food source than basal resources (pool 

epilithon, which is a mixture of algae and fine detritus). Indeed, in all sites the 

proportion of the 4 invertebrate categories contributed the great majority of food 

assimilated in the guppies‟ diet (Fig. 4-6). Guppies from the 12 sites showed 

considerable variation in the proportions of the 5 food sources (epi, collectors-

grazers, shredders, omnivores, predators) assimilated in their diet, which made it 

difficult to identify common patterns. We found that LP guppies had a tendency 

towards higher assimilation of EPI than HP guppies in 3 rivers (Guanapo, Marianne, 

Quare), while the proportion of EPI was very similar between guppies in HP and LP 

sites in the Arima and Aripo rivers (Fig. 4-6). The Turure river was the only river in 

which we found a higher contribution of EPI to the guppy isotopic signature in HP 

than in LP sites. However, the results from the Turure LP site were not very clear or 

informative, which might be due to the fact that the guppies‟ signatures were outside 

the isotopic mixing polygon delineated by the food sources. When this happens, 

SIAR still tries to fit a model and thus it calculates a solution, but this violates the 

assumptions of the mixing model (Parnell et al. 2010). Guppies‟ isotopic signatures 

were outside the isotopic mixing polygon most likely because one food source was 

not sampled and thus not included in the analysis. We collected all the most abundant 

invertebrates found in the stream, but we must have missed some unknown, perhaps 
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rare, food source, which was necessary to define the isotopic mixing polygon and 

which likely prevented SIAR from calculating a more precise solution.  

 

STREAM CHARACTERISTICS 

Overall, streams with comparable fish communities (HP vs. LP) showed 

similarity across rivers, with some exceptions. The HP sites generally had higher 

invertebrate biomass, lower epilithon ash-free dry mass, lower leaf litter, and a non-

significant tendency toward lower benthic organic matter. River of origin was also an 

equally important factor determining differences between sites, especially for the 

benthic invertebrate, fine detritus, and algal biomasses. 

Univariate ANOVA showed that predation (F1,48 = 41.11; P < 0.001), river of 

origin (F4,48 = 19.66; P < 0.001), and the interaction of these two factors (F4,48 = 5.85; 

P = 0.001) all had significant effects on the benthic invertebrate biomass found in the 

stream. Benthic invertebrate biomass was higher in HP sites than LP sites in all rivers 

but the Guanapo, which showed the opposite pattern (Table 4-1, Fig. 4-7). There was 

considerable variation between rivers and post-hoc tests (LSD) showed that the 3 

rivers sampled in 2007 (Guanapo, Marianne, Aripo) did not differ between each other 

in the benthic invertebrate biomass, while the Arima and Quare had significantly less 

biomass than the 2007 rivers. The Quare river also had significantly lower biomass 

than the Arima river, exhibiting the lowest invertebrate biomass. 

The amount of BOM AFDM/m
2
 in the stream was not affected by predation 

regime (F1,36 = 2.55; P = 0.119), but differed between rivers (F4,36 = 4.78; P = 0.003). 
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The interaction between predation and river was also not significant (F4,36 = 0.36; P = 

0.832). The river with the lowest amount of BOM was the Quare, while the one with 

the highest amount was the Aripo (Fig. 4-7). 

The amount of leaf litter per area in the streams was significantly higher in LP 

than in HP sites (F1,33 = 4.32; P = 0.045). We did not find a significant effect of river 

(F4,33 = 2.12; P = 0.100) or of the interaction between predation and river (F4,33 = 0.12; 

P = 0.974). The Marianne river had the highest CPOM/m
2
 and was significantly 

different from the Aripo and Guanapo, which were the rivers with the lowest values 

(Fig. 4-7). 

In all the five rivers examined, LP sites had higher epilithon AFDM/m
2
 than 

HP sites (Univariate ANOVA, predation: F1,47 = 19.20; P < 0.001) (Fig. 4-7). River of 

origin also had a significant effect on the epilithon AFDM/m
2
 (F4,47 = 5.21; P = 

0.001), but there was no interaction between predation regime and river (F4,47 = 1.33; 

P = 0.272). The Quare river had the highest epilithon AFDM/m
2
 and post-hoc tests 

showed that it was significantly different from all the other 5 rivers. The Arima river, 

with its lowest epilithon AFDM/m
2
, was significantly different from Quare and 

Turure, but not from the Aripo and Marianne (Fig. 4-7).  
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DISCUSSION 

 

Our survey of Trinidadian streams during the wet season showed that both 

predation and river of origin had an equally important effect on the intraspecific 

differences in guppies‟ trophic niches. Guppy size was not an important factor in 

determining trophic niches, as guppies did not show an ontogenetic shift in trophic 

position and there was only limited data on its effect on diet. Guppies showed 

considerable variation in the proportion of prey assimilated, with no clear HP or LP 

patterns, even if we found a weak tendency towards guppies in LP sites to assimilate 

more basal resources (algae and detritus) than guppies in HP sites. In the guts, detritus 

was the most abundant food component, but stable isotopes indicated that guppies 

assimilated this only in limited amounts (Fig. 4-6). Invertebrates were, in contrast, 

less abundant than detritus in the guts but were highly assimilated into guppies‟ 

tissues. These results might indicate that detritus is accidentally ingested while 

foraging for invertebrates, which are a more nutritious food source. The amount of 

detritus found in guppies‟ guts might therefore also depend on the substrate they 

forage on. For instance, if guppies prevalently forage on benthic surfaces with great 

fine organic matter accumulation, they might incidentally ingest more detritus, which 

is then found in their guts. A prevalence of drift-feeding would alternatively decrease 

the amount of detritus ingested and found in their intestines. 

 

 



 

 

107 

Predation and competition 

The observed predation effect on diet and trophic position was the opposite of 

what we previously reported for guppies collected in the dry season. Here we showed 

that wet season guppies from low predation (LP) sites generally had higher trophic 

position than guppies that lived with predators (HP), although the difference was not 

very high (~1/4 trophic position; Fig. 4-1). Gut content analyses on two of the 6 rivers 

surveyed, confirmed that predation regime had a significant effect on diet, with 

guppies in LP sites having overall higher proportion of invertebrates in their diet 

compared to guppies in HP sites. The river of origin also affected diet, and we found 

a greater difference in diet between HP and LP sites in the Quare river than in the 

Arima river, where guppies in HP and LP sites had a more similar diet (Fig.4-3).  

In the dry season (Chapter 2), we found the opposite pattern: guppies in HP 

sites fed mostly on invertebrates, while guppies in LP sites ate more detritus and 

algae. These contrasting results suggest that seasonality might affect guppy‟s diets 

and that its effect might be different in HP and LP sites. In Chapter 3 we showed 

some evidence of a change in diet between seasons, as we found that in the Aripo 

river LP guppies increased the proportion of invertebrates in their diet in the wet 

season, while HP guppies decreased it. The overall result was that the diets of guppies 

in HP and LP sites were very similar in the wet season, while in the dry season HP 

guppies were more insectivorous than LP guppies.  

Palkovacs and colleagues (unpubl. data) found that guppies in LP sites were 

more efficient and morphologically better adapted at capturing invertebrates than 
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guppies in HP sites. In LP sites guppies are released from predation pressure and their 

density is much higher than in HP sites (Table 4-1); the per capita high quality 

resources (invertebrates) available therefore might decrease, leading to increased 

intraspecific competition for these resources. Selective pressures might thus favor 

those individuals that are more efficient at finding and capturing invertebrates. On the 

other hand, guppies in HP sites live in very productive environments and their density 

is low. As a consequence, guppies in HP sites should not be resource-limited, thus 

selection towards anti-predator adaptations (e.g. body shape; Langerhans and DeWitt 

2004) over feeding efficiency might be favored.  

The patterns in resource availability and guppy density described above are 

typical of the dry season, but they can change during the wet season (Fig. 4-8). For 

instance, guppy density decreases substantially in the wet season, due to the frequent 

floods (Lopez-Sepulcre pers. comm.). In LP sites, the surviving guppies, which are 

very efficient at capturing invertebrates (Palkovacs et al. unpubl.data), are released 

from high intraspecific competition and could increase the amount of high quality 

food (invertebrates) intake (Fig. 4-8a). During the wet season, resources might 

decrease in abundance and HP guppies could begin to suffer low resource 

availability, driving them to become less selective. Abiotic disturbance, such as 

frequent floods and high spates, together with lower resources and the presence of 

predators, could affect and limit feeding activity of guppies in HP sites more than in 

LP sites. These changes could result in an overall decrease in invertebrates in the diet 

and reduced prey selectivity in guppies from HP sites (Fig. 4-8b). 
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In conclusion, guppies‟ diets could change cyclically according to changes in 

population density, which could alter the per capita resource availability and for 

instance the intraspecific competition strength. Possibly, in the wet season there could 

be a relaxation of some selective pressures (e.g. competition, predation), while abiotic 

disturbance could become a more important component in shaping guppy diets. It 

thus becomes imperative to look at the guppy diet and resource availability along a 

time series, especially focusing on the differences between dry and wet season and 

how guppies in HP and LP sites are differently affected.  

 

Food web perspective 

We found many environmental similarities between sites with the same 

predation intensity on guppies. With some exceptions, HP sites all tended to have 

higher invertebrate biomass, lower leaf litter (CPOM/m
2
), lower algae biomass 

(epilithic AFDM/m
2
), and a tendency towards lower FBOM (AFDM/m

2
) compared to 

LP sites (Table 4-1, Fig. 4-7). The HP sites were also bigger rivers, with lower 

canopy cover and higher discharge (Table 4-1). In a subset of the surveyed streams, 

guppy density was measured (Table 4-1., E. Palkovacs unpubl. data) and it was 

always higher in LP sites. These correlations between environmental characteristics 

and predation regime make it difficult to understand if the intraspecific differences we 

found in guppies‟ trophic niches were an effect of the predation regime, of the 

resource availability in the streams, or of both. For instance, predator release certainly 

was the cause of an increased guppy density in LP sites. Predator release can thus 
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alter the top-down effects in the food web. The patterns in our streams can be 

analyzed with a simple trophic cascade perspective (Fig. 4-9). For instance, in HP 

sites the presence of predators keeps guppy density low, which allows invertebrate 

biomass to increase and basal resources to decrease (Fig. 4-9). In LP sites, guppy 

density is higher due to the lack of predators. High guppy density keeps invertebrate 

abundance low, relaxing the pressure on basal resources that can increase in biomass 

(Fig. 4-9). These patterns on the trophic compartments relative abundance are 

confirmed by our data (Table 1, Fig. 4-7). In this top-down scenario, guppies are 

resource-limited in LP sites and could become more omnivorous. HP guppies instead 

have a lot of invertebrates available and could become more selective (more 

insectivorous). These patterns in guppies diet preferences reflect what we found in the 

dry season, but not what we observed in the present study. However, this is a 

simplified scenario, as these streams have high levels of omnivory and HP sites have 

other species of fish that can influence the ecosystem structure and function.  

 

The differences observed in the biological characteristics between HP and LP 

sites were also consistent with what is observed along altitudinal gradients. The River 

Continuum Concept (RCC) states that biological and physical characteristics of 

streams change in a continuum with increasing stream order (Vannote et al. 1980). 

Upstream low-order streams (such as our LP sites) are small, with high canopy cover 

and elevated CPOM input and terrestrial through fall, with low light levels and low 

primary production. These attributes progressively shift moving downstream: stream 
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size increase coincides with a decrease in canopy cover and terrestrial subsidy, along 

with an increase in light levels and primary productivity (Vannote et al. 1980). With 

the exception of algal biomass that we found to be higher in LP vs. HP sites, all of the 

other environmental characteristics described for upstream-downstream reaches in the 

RCC correspond to the patterns we found between our HP-LP stream pairs (Table 4-

1, Fig. 4-7). This suggests that physical patterns or bottom-up effects could also be 

responsible in defining the biological characteristics of our surveyed sites. 

 

Ontogenetic niche shift 

Guppies change their microhabitat use with age: baby guppies stay at the 

surface, while bigger juveniles and adults mostly foraging in the water column and on 

the bottom (Croft et al. 2003). This change in habitat use with age suggests that 

guppies might also be changing their foraging behavior and diet. Our stable isotope 

data did not support the existence of an ontogenetic diet shift in guppies in the wet 

season. Gut content data were consistent with the stable isotope results for the Arima 

river, but showed a strong effect of fish size on diet for the Quare guppies. In this 

river, guppies decreased the proportion of invertebrates in their diet with increasing 

size (Fig. 4-4), hence we should have expected their trophic position to decrease with 

size as well. We instead found a positive relationship between size and trophic 

position in the Quare river, even if size explained only 22% of the variation in trophic 

position (Fig. 4-2). Nevertheless, the Quare river most likely represented an 

exception, as in the great majority of sites we did not find indication of a shift in 
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trophic position with changing size. This finding indicates that there are sometimes 

differences between what is found in an organism‟s gut and what is preferentially 

assimilated.  

The overall lack of an ontogenetic shift could be related to the omnivorous 

nature of guppies‟ diets and the small increase in size from birth to adulthood 

(guppies are around 8mm at birth and females can reach a maximum of ~25 mm). 

Fish species that change diet during their lifetime have bigger size differences 

between juvenile and adult stages. Alternatively, guppies of different size classes 

might avoid intraspecific competition by using different microhabitats without 

changing their diet preferences or what food they assimilate. Finally, guppies can 

elude competition with conspecifics by showing high levels of individual-based 

specialization that are not size-related. 

 

Conclusions 

Intraspecific niche diversifications are important to identify because they 

could initiate speciation processes (Skulason and Smith 1995, Schluter 2001). 

Guppies showed intraspecific differences in their trophic position and diet preferences 

as an effect of predation regime and river of origin. Guppy diets, in particular, 

exhibited high variation across sites (Fig. 4-6), but also within populations from the 

same site, as shown by the big range encompassed by their isotopic signatures (Fig. 4-

10). Different degrees of individual-level diversification in resource use within a 

population can be promoted by different levels of competition (Svanback and Persson 
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2004, Svanback and Bolnick 2005, 2007). Future studies should address this 

potentially important aspect of guppies‟ trophic ecology. 

Moreover, the present study suggests that seasonality could play an important 

role in determining guppy trophic niches by relaxing some of the selective pressures 

that act during the dry season, altering the system to one controlled by abiotic forces. 

We suggest that there is a need to monitor how guppy population dynamics, resource 

availability, and diet preferences change along a time series. 



 

 

Table 4-1. Characteristics of the 12 surveyed sites in 6 streams in the Northern Range of Trinidad. R: Rivulus; G: guppy; 

Chrenic: Crenicichla. (Next page) 

 

 

 

Site Date 
Fish 

community 

Guppy 

density 

(#/m
2
) 

% 

open 

canopy 

Discharge 

Q (L/s) 

CPOM 

(gDM/m
2
) 

Reach 

width 

(m) 

algae 

AFDM 

POOL 

(mg/m
2
) 

algae 

AFDM 

RIFFLE 

(mg/m
2
) 

BOM - 

AFDM/

m
2
 

Inverts 

abun-

dance 

(#) 

Inverts 

biomass

/m
2
 

Arima 

HP 

Jul-

08 

R, G, 

Chrenic, 

Rhamdia 

1.01 38.4 32.0 20.5 (8.9) 32.6 3.59 (2.5) 2.84 (2.0) 
9.92 

(8.9) 

156 

(78.1) 

971 

(861) 

Arima 

LP 

Jul-

08 
R, G 3.06 14.8 15.8 195 (215) 5.40 7.58 (0.5) 1.85 (0.3) 

17.2 

(15.7) 

72.8 

(45.4) 

208 

(266) 

Aripo 

HP 

Jul-

07 

R, G, 

Chrenic, 

Rhamdia, 

Aquidens, 

Hypostomus/

Ancistrus, 

Hoplias, 

Characidae, 

Sinbranchus 

0.27 28.4 52.7 
31.0 

(54.2) 
17.4 3.51 (1.1) 2.45 (1.0) 

15.3 

(15.0) 

250 

(114) 

5517 

(1867) 

Aripo  

LP 

Jul-

07 
R, G 19.4 10.8 41.1 

39.7 

(22.2) 
1.63 9.81 (6.0) 7.53 (4.3) 

57.9 

(83.3) 

110 

(69.1) 

700 

(629) 

Guanapo 

HP 

Jul-

07 

R, G, 

Rhamdia, 

Aquidens, 

Hypostomus/

Ancistrus, 

Hoplias, 

Characidae 

2.20 18.3  
18.6 

(21.2) 
 3.36 (1.5) 2.14 (0.7) 

9.95 

(13.0) 

306 

(131) 

1400 

(755) 

Guanapo 

LP 

Jul-

07 
R, G 5.02 11.0 32.6 

40.7 

(38.2) 
2.37   

21.7 

(22.3) 

98.3 

(32.2) 

2431 

(1799) 

 1
1
4
 



 

 

 

Site Date 
Fish 

community 

Guppy 

density 

(#/m
2
) 

% 

open 

canopy 

Discharge 

Q (L/s) 

CPOM 

(gDM/m
2
) 

Reach 

width 

(m) 

algae 

AFDM 

POOL 

(mg/m
2
) 

algae 

AFDM 

RIFFLE 

(mg/m
2
) 

BOM - 

AFDM/

m
2
 

Inverts 

abun-

dance 

(#) 

Inverts 

biomass

/m
2
 

Marianne 

HP 

Jul-

07 

R, G, 

Sicydium, 

Awaous, 

Gobiesox, 

Agonostomu

s 

5.37 23.4 1323 112 (136) 6.61 5.39 (2.1) 2.40 (0.7) 
16.6 

(16.4) 

206 

(62.9) 

21645 

(1307) 

Marianne 

LP 

Jul-

07 
R, G  12.5 1478 242 (240) 3.55 

8.21 (5.3) 
5.13 (1.4) 

19.1 

(22.5) 

75.5 

(33.4) 

816 

(476) 

Quare 

HP 

Jul-

08 

R, G, 

Chrenic, 

Rhamdia, 

Aquidens, 

Hypostomus/

Ancistrus, 

Hoplias, 

Characidae 

 48.2 57.5 17.0(10.0)  9.89 (6.5) 7.48 (3.4) 
8.67 

(9.8) 

93.5 

(29.6) 

415 

(233) 

Quare 

LP 

Jul-

08 
R, G  11.4 11.9 43.1(29.3) 2.37 11.2 (4.7) 8.83 (3.1) 

10.0 

(9.8) 

10.0 

(5.7) 

38.3 

(47.4) 

Turure 

HP 

Jul-

08 

R, G, 

Chrenic, 

Rhamdia, 

Characidae, 

Synbranchus 

 22.2 157.4 
53.5 

(55.2) 
 5.13 (2.0) 2.00 (0.4) 

10.3 

(8.5) 

22.2 

(20.7) 

89.1 

(151) 

Turure 

LP 

Jul-

08 
R, G  14.9    8.41 (2.2) 8.96 (4.0)    

 

 

 

 

1
1
5
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Table 4-2. Univariate ANCOVA results for the effects of predation and river on the 

proportion of invertebrates, detritus, and algae in the diet of guppies from Trinidad. 

SS=type-III sums of squares; df=degrees of freedom; MS=mean squares.  

 

 
Univariate ANCOVA 

Source SS df MS F-ratio P-value 

Invertebrates      

Predation 0.45 1 0.45 8.01 0.007 

River 0.49 1 0.49 8.80 0.005 

Guppy Length 1.54 1 1.54 27.41 <0.001 

Predation*River 0.04 1 0.04 0.75 0.390 

River*Guppy Length 0.65 1 0.65 11.63 0.001 

Error 2.69 48 0.056   

Detritus      

Predation 0.48 1 0.48 9.36 0.004 

River 0.21 1 0.21 4.15 0.047 

Guppy Length 0.95 1 0.95 18.38 <0.001 

Predation*River 0.03 1 0.03 0.68 0.414 

River*Guppy Length 0.27 1 0.27 5.22 0.027 

Error 2.49 48 0.052   

Algae      

Predation 0.00 1 0.00 0.04 0.842 

River 0.12 1 0.12 11.48 0.001 

Guppy Length 0.16 1 0.16 15.05 <0.001 

Predation*River 0.01 1 0.01 0.82 0.369 

River*Guppy Length 0.19 1 0.19 17.66 <0.001 

Error 0.52 48 0.01   



117 

 

 

 

 

 

 

 

 

 

Figure 4-1. Guppy trophic position across HP and LP sites in the 6 study 

rivers in Trinidad. High predation sites are in grey, while low predation sites are in 

white. Trophic position of guppies from the Arima HP site is not included due to a 

manure contamination that altered the organisms‟ 
15

N signature. Error bars are ± 1 

S.E.  
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Figure 4-2. Relationship between guppy standard length and trophic position in the 

Arima (on top) and the Quare (on the bottom) rivers. The only significant relationship 

(in the Quare HP site) is indicated with a solid line.
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Figure 4-3. Proportional diet composition of HP (high predation) and LP (low 

predation) guppies from two study drainages, Arima and Quare. Data shown here 

represent the estimated marginal means calculated by the general linear model (GLM) 

on arcsin transformed data. Estimated marginal means and standard errors have been 

back-transformed for the graphical representation. Food categories analyzed are 

invertebrates, in dark grey; amorphous detritus, in white; and algae (filamentous and 

diatoms) in light grey. Error bars are ± 1 SE.  
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Figure 4-4. Correlation between fish size and (A-B) proportion of invertebrates and 

(C-D) proportion of detritus in diet in the Arima (A, C) and in the Quare (B, D) river. 

High predation (filled symbols) and low predation (open symbols) guppies are shown. 

Regression lines are shown for both high (solid line) and low predation (dashed line) 

sites when the relationship was significant. The relationship is significant for both 

invertebrates and detritus in both high and low predation in the Quare river only. The 

relationship in the Arima river are not significant. 
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Figure 4-5. Relationship between trophic position and proportion of invertebrates in 

the Arima and Quare rivers. High predation (closed symbols) and low predation 

(open symbols) guppies are shown. No significant relationship was found.
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Figure 4-6. Posterior probability intervals for prey source contribution, calculated by 

the SIAR model for each of the 12 sites sampled. 95
th

 (light gray), 75th (grey), 50th 

(dark grey) percentiles are shown. Prey sources are different items found in guppy‟s 

diet: omnivore invertebrates (omniv.), predatory invertebrates (predat.), shredder 

invertebrates (shred.), collector-grazer invertebrates (coll/graz), epilithon (EPI, a 

mixture of algae and detritus). a) Sites sampled in 2007; b) sites sampled in 2008. 

(Next pages) 
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Figure 4-7. Biological characteristics of the 12 sites sampled in Trinidad. Top left: 

logarithm of the benthic invertebrate biomass (mg/m
2
). Top right: logarithm of the 

epilithon (EPI) ash-free dry mass (AFDM) per meter square (g/m
2
). Bottom left: 

logarithm of the benthic organic matter (BOM) ash-free dry mass (AFDM) per meter 

square (g/m
2
). Bottom right: logarithm of the coarse particulate organic matter 

(CPOM or leaf litter) (mg/m
2
). The Turure river was not included in the invertebrates, 

BOM, and CPOM analyses, as we could not sample its low predation site. The 

Guanapo river was not included in the EPI analysis as the samples were lost. High 

predation sites are in dark grey and low predation sites in light grey. Values are 

estimated marginal means calculated by the Univariate ANOVA. Error bars are ± 1 

SE. (Next page) 
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A) 

 

B) 

 

 

Figure 4-8. Model of the seasonal patterns of guppy population density (solid line), 

benthic invertebrate availability per capita (dashed line), and invertebrate abundance 

in diet (dotted line) in A) low predation sites and B) high predation sites.
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Figure 4-9. Model of the top-down effects in the food webs of high predation (HP) 

and low predation (LP) sites in streams of Trinidad. 
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Figure 4-10. Bi-plots of guppy trophic position (y-axis) and 
13

C signatures (x-axis) 

for the 6 rivers sampled in Trinidad. In the top row are the rivers sampled in 2007, 

while in the bottom row are the rivers sampled in 2008. The HP guppies are indicated 

in filled circles, while the LP guppies are in open diamonds. Each data point 

represents an individual guppy. The Arima HP site was contaminated with manure, 

thus guppies‟ trophic position values for this site should not be considered 

comparable to the other sites. 
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CHAPTER 5: Conclusions and future directions 

 

 

 

In my thesis I reported the existence of intraspecific variation in the trophic 

ecology of guppies. Predation regime, season, and the river of origin all affected 

guppies‟ diets but I did not find an indication of ontogenetic shift in diets. In the dry 

season, the differences in diet between guppies from high and low predation sites 

were the greatest, and they correlated with guppy life history trait patterns (Chapter 

2). Guppies from sites with high predation pressures had higher overall reproductive 

allotment, matured earlier, and produced more and smaller offspring. HP guppies 

were also more insectivorous with high degrees of prey selectivity, selecting higher 

quality. Guppies from low predation sites showed the opposite life histories patterns, 

with lower allocation to reproduction, later maturation, and production of fewer and 

larger offspring. Concurrently, LP guppies were more herbivorous and did not show 

to be selective. The diet patterns found were confirmed by gut length measurements. 

In general, guppies from LP sites that consumed lower quality diets had longer guts 

compared to HP guppies that consumed higher quality diets (Chapter 3). More 

information regarding the role of the quantity and quality of resources in the 

environment in determining guppies‟ diets is needed. In particular, we know that 

guppies in high predation sites had high quality diet and also show higher 

reproductive output, earlier maturation, and faster growth rates (Arendt and Reznick 
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2005), but we do not know the causative mechanisms between these traits. 

Experiments showing the effects of high quality diet on growth rates and life history 

traits are needed, as well as studies looking at the genetic basis of the observed 

differences in diet between guppies from high and low predation.  

 

The plasticity of gut physiology in response to changes in diet is also 

unknown. My data confirmed the inverse relationship between diet quality and gut 

length, and raised questions related to the performance of nutrient and energy 

assimilation. For instance, I found that guppies from low predation sites in the dry 

season have much higher percentages of detritus and algae in their guts compared to 

guppies from high predation, and they also have longer guts. Does this mean that 

guppies from low predation sites are better herbivores? Or else, are they better at 

assimilating nutrients from low quality food than high predation guppies? More 

detailed studies on the differences between high and low predation guppies‟ guts 

plasticity, assimilation efficiencies, and metabolism are needed to address these 

unanswered questions.  

 

In Chapters 3 and 4 I showed that guppies‟s diets shifted during the wet 

season and that the differences found during the dry season between guppies from 

high and low predation sites disappeared. The data on guppies‟ diets were all 

collected at one point. Data collected along a time series would provide a profile of 

the diet dynamics throughout the year, which would help understanding the patterns 
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of changes between dry and wet seasons. In particular, information on the factors 

causing the observed changes in diet between seasons is needed. The change in diet 

during the wet season could be attributed to a decrease in stream resources or to a 

decrease in guppy density. Both effects could alter the per capita resources available 

to guppy and the competitive environment in which they live, hence affecting their 

feeding choices. Also, abiotic factors, such as flood frequency and magnitude or other 

types of disturbance, could influence guppies‟ diets; however our knowledge on this 

topic is very limited. Studies that are conducted along a time series and concurrently 

investigate the patterns of multiple variables such as life histories, diet, guppy 

density, per capita resource availability, and abiotic disturbance (e.g. floods) could be 

useful to pin point the cause-effect relationship among all these factors. An 

investigation focusing on the causative mechanisms underlying the dynamics of 

guppy diets in high and low predation environments would help elucidate the 

relationships among the aforementioned variables.  

 

The river of origin had an effect on guppy diets and trophic position, as well 

as on biological and environmental characteristics of the streams (Chapter 4). This is 

not surprising considering that streams are natural systems and that it is almost 

impossible to find streams that are the exact replicate of each other. There could be 

many factors, such as the geology of the landscape and the extent of suitable habitats, 

that could affect the stream and the organisms living in it. For instance, the amount of 

resources and the guppy density in two distinct low predation streams could be 
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different, which could affect guppies‟ diets. The river of origin should be considered 

as an important source of variation. It should not be overlooked when exploring 

common patterns between high and low predation guppies. Studies that aim to find 

repeatable pattern should thus incorporate guppies from several drainages, and the 

factors causing differences between drainages should be investigated into greater 

detail. 

Overall, my thesis calls for more studies on the mechanisms by which 

guppies‟ phenotypes can differentially affect the environment in which they evolved. 

It also promotes further investigations on physiological, behavioral, and 

morphological adaptations of guppy phenotypes. 

 



134 

 

 

LIST OF REFERENCES 

 

 

 

 

Abrams, P. A. and L. Rowe. 1996. The effects of predation on the age and size of 

maturity of prey. Evolution 50:1052-1061. 

 

Agard, J., M. Alkins-Koo, A. Cropper, K. Garcia, F. Homer, S. Maharaj, and other 

contributors. 2005. Northern Range Assessment 2005. Report of an 

Assessment of the Northern Range, Trinidad and Tobago: People and the 

Northern Range. State of the Environment Report 2004. 

 

Anderson, C. and G. Cabana. 2005. δ
15

N in riverine food webs: effects of N inputs 

from agricultural watersheds. Canadian Journal of Fisheries and Aquatic 

Sciences 62:333-340. 

 

Aravena, R., M. L. Evans, and J. A. Cherry. 1993. Stable isotopes of Oxygen and 

Nitrogen in source identification of nitrate from septic systems. Ground Water 

31:180-186. 

 

Arendt, J. D. and D. N. Reznick. 2005. Evolution of juvenile growth rates in female 

guppies (Poecilia reticulata): predator regime or resource level? Proceedings 

of the Royal Society B-Biological Sciences 272:333-337. 

 

Bashey, F. 2008. Competition as a selective mechanism for larger offspring size in 

guppies. Oikos 117:104-113. 

 

Bassar, R. D., A. Lopez-Sepulcre, M. R. Walsh, M. M. Turcotte, M. Torres-Mejia, 

and D. N. Reznick. 2010a. Bridging the gap between ecology and evolution: 

integrating density regulation and life-history evolution. The Year in 

Evolutionary Biology 1206:17-34. 

 



135 

 

 

Bassar, R. D., M. C. Marshall, A. Lopez-Sepulcre, E. Zandonà, S. K. Auer, J. Travis, 

C. M. Pringle, A. S. Flecker, S. A. Thomas, D. F. Fraser, and D. N. Reznick. 

2010b. Local adaptation in Trinidadian guppies alters ecosystem processes. 

Proceedings of the National Academy of Sciences of the United States of 

America 107:3616-3621. 

 

Ben-David, M. and D. M. Schell. 2001. Mixing models in analyses of diet using 

multiple stable isotopes: a response. Oecologia 127:180-184. 

 

Benke, A. C., A. D. Huryn, L. A. Smock, and J. B. Wallace. 1999. Length-mass 

relationships for freshwater macroinvertebrates in North America with 

particular reference to the southeastern United States. Journal of the North 

American Benthological Society 18:308-343. 

 

Berra, T. M. 2001. Freshwater Fish Distribution. Academic Press. 

 

Bolnick, D. I. 2001. Intraspecific competition favours niche width expansion in 

Drosophila melanogaster. Nature 410:463-466. 

 

Brooks, J. L. and S. I. Dodson. 1965. Predation, body size, and composition of 

plankton. Science 150:28-35. 

 

Buddington, R. K., J. W. Chen, and J. M. Diamond. 1991. Dietary-regulation of 

intestinal brush-border sugar and amino-acid-transport in carnivores. 

American Journal of Physiology 261:R793-R801. 

 

Cappuccino, N. and P. W. Price. 1995. Population dynamics: new approaches and 

synthesis. Academic Press, San Diego. 

 

Charlesworth, B. 1980. Evolution in age-structured populations. Cambridge 

University Press, Cambridge, U.K. 

 

 



136 

 

 

Croft, D. P., B. J. Arrowsmith, J. Bielby, K. Skinner, E. White, I. D. Couzin, A. E. 

Magurran, I. Ramnarine, and J. Krause. 2003. Mechanisms underlying shoal 

composition in the Trinidadian guppy, Poecilia reticulata. Oikos 100:429-

438. 

 

De Niro, M. J. and S. Epstein. 1981. Influence of diet on the distribution of nitrogen 

isotopes in animals. Geochim. Cosmochim. Acta 45:341-351. 

 

Drewe, K. E., M. H. Horn, K. A. Dickson, and A. Gawlicka. 2004. Insectivore to 

frugivore: ontogenetic changes in gut morphology and digestive enzyme 

activity in the characid fish Brycon guatemalensis from Costa Rican rain 

forest streams. Journal of Fish Biology 64:890-902. 

 

Dussault, G. V. and D. L. Kramer. 1981. Food and feeding-behavior of the guppy, 

Poecilia reticulata (Pisces, Poeciliidae). Canadian Journal of Zoology-Revue 

Canadienne De Zoologie 59:684-701. 

 

Eklov, P. and R. Svanback. 2006. Predation risk influences adaptive morphological 

variation in fish populations. American Naturalist 167:440-452. 

 

Fajen, A. and F. Breden. 1992. Mitochondrial-dna sequence variation among natural-

populations of the Trinidad guppy, Poecilia reticulata. Evolution 46:1457-

1465. 

 

FAO. 1997. Database on introduced aquatic species, Rome. 

 

Ffrench, R. 1992. Birds of Trinidad and Tobago. Christopher Helm, London. 

 

Fraser, D. F. and J. F. Gilliam. 1992. Nonlethal Impacts of Predator Invasion - 

Facultative Suppression of Growth and Reproduction. Ecology 73:959-970. 

 

Fraser, D. F., J. F. Gilliam, B. W. Albanese, and S. B. Snider. 2006. Effects of 

temporal patterning of predation threat on movement of a stream fish: 

evaluating an intermediate threat hypothesis. Environmental Biology of Fishes 

76:25-35. 



137 

 

 

Fry, B. 2006. Stable Isotope Ecology. Springer. 

 

Gadgil, M. and W. H. Bossert. 1970. Life Historical Consequences of Natural 

Selection. American Naturalist 104:1-24. 

 

Gannes, L. Z., D. M. Obrien, and C. M. delRio. 1997. Stable isotopes in animal 

ecology: Assumptions, caveats, and a call for more laboratory experiments. 

Ecology 78:1271-1276. 

 

Gende, S. M., T. P. Quinn, and M. F. Willson. 2001. Consumption choice by bears 

feeding on salmon. Oecologia 127:372-382. 

 

German, D. P. and M. H. Horn. 2006. Gut length and mass in herbivorous and 

carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, 

and phylogenetic effects. Marine Biology 148:1123-1134. 

 

German, D. P., D. T. Neuberger, M. N. Callahan, N. R. Lizardo, and D. H. Evans. 

2010. Feast to famine: The effects of food quality and quantity on the gut 

structure and function of a detritivorous catfish (Teleostei: Loricariidae). 

Comparative Biochemistry and Physiology a-Molecular & Integrative 

Physiology 155:281-293. 

 

Ghalambor, C. K., J. K. McKay, S. P. Carroll, and D. N. Reznick. 2007. Adaptive 

versus non-adaptive phenotypic plasticity and the potential for contemporary 

adaptation in new environments. Functional Ecology 21:394-407. 

 

Gilliam, J. F., D. F. Fraser, and M. Alkinskoo. 1993. Structure of a Tropical Stream 

Fish Community - a Role for Biotic Interactions. Ecology 74:1856-1870. 

 

Gore, J. A. 2007. Discharge measurements and streamfolw analysis. Pages 51-78 in 

F. R. Hauer and G. A. Lamberti, editors. Methods in Stream Ecology. 

Academic Press. 

 



138 

 

 

Grether, G. F., D. F. Millie, M. J. Bryant, D. N. Reznick, and W. Mayea. 2001. Rain 

forest canopy cover, resource availability, and life history evolution in 

guppies. Ecology 82:1546-1559. 

 

Haskins, C. P., E. F. Haskins, J. J. A. McLaughlin, and R. E. Hewitt. 1961. 

Polymorphism and population structure of Lebistes reticulatus, an ecological 

study. Pages 320-395 in W. F. Blair, editor. Vertebrate Speciation. University 

of Texas, Austin. 

 

Hess, A. D. 1941. New limnological sampling equipment. Limnological Society of 

America Special Publication 6:1-5. 

 

Hill, W. R., P. J. Mulholland, and E. R. Marzolf. 2001. Stream ecosystem responses 

to forest leaf emergence in spring. Ecology 82. 

 

Hobson, K. A. and R. G. Clark. 1992a. Assessing avian diets using stable isotopes .1. 

Turnover of C-13 in tissues. Condor 94:181-188. 

 

Hobson, K. A. and R. G. Clark. 1992b. Assessing avian diets using stable isotopes .2. 

Factors influencing diet-tissue fractionation. Condor 94:189-197. 

 

Jensen, T. and A. Verschoor. 2004. Effects of food quality on life history of the 

rotifer Brachionus calyciflorus Pallas. Freshwater Biology 49:1138-1151. 

 

Karasov, W. H. and C. Martinez del Rio. 2007. Physiological Ecology: How Animal 

Process Energy, Nutrients, and Toxins. Princeton University Press. 

 

Kenny, J. S. 1995. Views from the bridge: a memoir on the freshwater fishes of 

Trinidad. Maracas, St. Joseph, Trinidad and Tobago. . 

 

Kilham, S. S., M. Hunte-Brown, P. Verburg, C. M. Pringle, M. R. Whiles, K. R. Lips, 

and E. Zandona. 2008. Challenges for interpreting stable isotope fractionation 

of carbon and nitrogen in tropical aquatic ecosystems. Verh. Internat. Verein. 

Limnol. 30:166-170. 

 



139 

 

 

Kozlowski, J. and R. G. Wiegert. 1987. Optimal age and size at maturity in annuals 

and perennials with determinate growth. Evolutionary Ecology 1:231-244. 

 

Kramer, D. L. and M. J. Bryant. 1995a. Intestine length in the fishes of a tropical 

stream. 1. Ontogenic allometry. Environmental Biology of Fishes 42:115-127. 

 

Kramer, D. L. and M. J. Bryant. 1995b. Intestine length in the fishes of a tropical 

stream. 2. Relationships to diet - the long and short of a convoluted issue. 

Environmental Biology of Fishes 42:129-141. 

 

Langerhans, R. B. and T. J. DeWitt. 2004. Shared and unique features of evolutionary 

diversification. American Naturalist 164:335-349. 

 

Law, R. 1979. Optimal life histories under age-specific predation. American 

Naturalist 114:399-417. 

 

Liley, N. R. and B. H. Seghers. 1975. Factors affecting the morphology and 

behaviour of guppies in Trinidad. Pages 92-118 in G. Baerends, C. Beer, and 

A. Manning, editors. Function and evolution in behavior, Clarendon, Oxford. 

 

Lloyd, D. G. 1987. Selection of offspring size at independence and other size-versus-

number strategies. American Naturalist 129:800-817. 

 

MacArthur, R. H. and E. R. Pianka. 1966. On optimal use of a patchy environment. 

American Naturalist 100:603-609. 

 

MacAvoy, S. E., S. A. Macko, and G. C. Garman. 2001. Isotopic turnover in aquatic 

predators: quantifying the exploitation of migratory prey. Canadian Journal of 

Fisheries and Aquatic Sciences 58. 

 

Magurran, A. E. 2005. Evolutionary Ecology. The Trinidadian Guppy. Oxford 

University Press. 

 



140 

 

 

Magurran, A. E. and B. H. Seghers. 1990. Population differences in the schooling 

behavior of newborn guppies, Poecilia reticulata. Ethology 84:334-342. 

 

Magurran, A. E. and B. H. Seghers. 1994. Sexual Conflict as a Consequence of 

Ecology - Evidence from Guppy, Poecilia reticulata, Populations in Trinidad. 

Proceedings of the Royal Society of London Series B-Biological Sciences 

255:31-36. 

 

Maharaj, L. D. 1994. The ecology of selected aquatic insects in the Maracas River. 

M.Sc Thesis. University of the West Indies, St. Augustine, Trinidad. 

 

Martin, R. A. and D. W. Pfennig. 2010. Field and experimental evidence that 

competition and ecological opportunity promote resource polymorphism. 

Biological Journal of the Linnean Society 100:73-88. 

 

Martinez del Rio, C., N. Wolf, S. A. Carleton, and L. Z. Gannes. 2009. Isotopic 

ecology ten years after a call for more laboratory experiments. Biological 

Reviews 84:91-111. 

 

Mattingly, H. T. and M. J. Butler. 1994. Laboratory predation on the Trinidadian 

guppy - implications for the size-selective predation hypothesis and guppy 

life-history evolution. Oikos 69:54-64. 

 

McCutchan, J. H., W. M. Lewis, C. Kendall, and C. C. McGrath. 2003. Variation in 

trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 

102:378-390. 

 

McIntyre, P. B. and A. S. Flecker. 2006. Rapid turnover of tissue nitrogen of primary 

consumers in tropical freshwaters. Oecologia 148:12-21. 

 

Merritt, R. W., K. W. Cummins, and M. B. Berg. 2007. An Introduction to the 

Aquatic Insects of North America. 4th Edition. Kendall/Hunt Publishing 

Company. 

 



141 

 

 

Minagawa, M. and E. Wada. 1984. Stepwise Enrichment of N-15 Along Food-Chains 

- Further Evidence and the Relation between Delta-N-15 and Animal Age. 

Geochimica Et Cosmochimica Acta 48:1135-1140. 

 

Moore, J. W. and B. X. Semmens. 2008. Incorporating uncertainty and prior 

information into stable isotope mixing models. Ecology Letters 11:470-480. 

 

Morrell, L. J., K. L. Hunt, D. P. Croft, and J. Krause. 2007. Diet, familiarity and 

shoaling decisions in guppies. Animal Behaviour 74:311-319. 

 

Murdoch, W. W., S. Avery, and M. E. B. Smyth. 1975. Switching n predatory fish. 

Ecology:1094-1105. 

 

Naya, D. E., W. H. Karasov, and F. Bozinovic. 2007. Phenotypic plasticity in 

laboratory mice and rats: a meta-analysis of current ideas on gut size 

flexibility. Evolutionary Ecology Research 9:1363-1374. 

 

Olson, M. H. 1996. Ontogenetic niche shifts in largemouth bass: Variability and 

consequences for first-year growth. Ecology 77:179-190. 

 

Olsson, J., M. Quevedo, C. Colson, and R. Svanback. 2007. Gut length plasticity in 

perch: into the bowels of resource polymorphisms. Biological Journal of the 

Linnean Society 90:517-523. 

 

Owens, D. C. 2010. Seasonal variation in terrestrial insect subsidies to tropical 

streams and implications for the diet of Rivulus hartii. M.Sc. Thesis. 

University of Nebraska. 

 

Palkovacs, E. P. and D. M. Post. 2008. Eco-evolutionary interactions between 

predators and prey: can predator-induced changes to prey communities feed 

back to shape predator foraging traits? Evolutionary Ecology Research 

10:699-720. 

 



142 

 

 

Palkovacs, E. P. and D. M. Post. 2009. Experimental evidence that phenotypic 

divergence in predators drives community divergence in prey. Ecology 

90:300-305. 

 

Parenti, L. R. 1981. A Phylogenetic and Biogeographic Analysis of Cyprinodontiform 

Fishes (Teleostei, Atherinomorpha). Bull. Am. Museum Nat. History 168. 

 

Parnell, A. C., R. Inger, S. Bearhop, and A. L. Jackson. 2010. Source Partitioning 

Using Stable Isotopes: Coping with Too Much Variation. Plos One 5. 

 

Perez, G. R. 1996. Guia para el estudio de los macroinvertebrados acuaticos del 

Departimento de Antioquia. Universidad de Antioquia, Colombia. 

 

Peterson, B. J. and B. Fry. 1987. Stable Isotopes in Ecosystem Studies. Annual 

Review of Ecology and Systematics 18:293-320. 

 

Phillip, D. 1998. Biodiversity of Freshwater Fishes of Trinidad and Tobago, West 

Indies. PhD thesis. University of St. Andrews. 

 

Phillips, D. L. 2001. Mixing models in analyses of diet using multiple stable isotopes: 

a critique. Oecologia 127:166-170. 

 

Phillips, D. L. and J. W. Gregg. 2001. Uncertainty in source partitioning using stable 

isotopes. Oecologia 127:171-179. 

 

Phillips, D. L. and J. W. Gregg. 2003. Source partitioning using stable isotopes: 

coping with too many sources. Oecologia 136:261-269. 

 

Phillips, D. L. and P. L. Koch. 2002. Incorporating concentration dependence in 

stable isotope mixing models. Oecologia 130:114-125. 

 

Piersma, T. and A. Lindstrom. 1997. Rapid reversible changes in organ size as a 

component of adaptive behaviour. Trends in Ecology & Evolution 12:134-

138. 



143 

 

 

Pigliucci, M. 2001. Phenotypic plasticity: beyond nature and nurture. John Hopkins 

University Press, Baltimore. 

 

Pilastro, A. and A. Bisazza. 1999. Insemination efficiency of two alternative male 

mating tactics in the guppy (Poecilia reticulata). Proceedings of the Royal 

Society of London Series B-Biological Sciences 266:1887-1891. 

 

Post, D. M. 2002. Using stable isotopes to estimate trophic position: Models, 

methods, and assumptions. Ecology 83:703-718. 

 

Post, D. M., E. P. Palkovacs, E. G. Schielke, and S. I. Dodson. 2008. Intraspecific 

variation in a predator affects community structure and cascading trophic 

interactions. Ecology 89:2019-2032. 

 

Pringle, C. M. and T. Hamazaki. 1997. Effects of fishes on algal response to storms in 

a tropical stream. Ecology 78:2432-2442. 

 

Ramirez, A., C. M. Pringle, and M. Douglas. 2006. Temporal and spatial patterns in 

stream physicochemistry and insect assemblages in tropical lowland streams. 

Journal of the North American Benthological Society 25:108-125. 

 

Reznick, D. 1982a. Genetic determination of offspring size in the guppy (Poecilia 

reticulata). American Naturalist 120:181-188. 

 

Reznick, D. 1982b. The impact of predation on life-history evolution in Trinidadian 

guppies - genetic-basis of observed life-history patterns. Evolution 36:1236-

1250. 

 

Reznick, D., M. J. Bryant, and F. Bashey. 2002. r- and K-selection revisited: The role 

of population regulation in life-history evolution. Ecology 83:1509-1520. 

 

Reznick, D., M. J. Butler, and H. Rodd. 2001. Life-history evolution in guppies. VII. 

The comparative ecology of high- and low-predation environments. American 

Naturalist 157:126-140. 

 



144 

 

 

Reznick, D. and J. A. Endler. 1982. The impact of predation on life-history evolution 

in trinidadian guppies (Poecilia reticulata). Evolution 36:160-177. 

 

Reznick, D. and A. P. Yang. 1993. The influence of fluctuating resources on life-

history - patterns of allocation and plasticity in female guppies. Ecology 

74:2011-2019. 

 

Reznick, D. A., H. Bryga, and J. A. Endler. 1990. Experimentally induced life-history 

evolution in a natural population. Nature 346:357-359. 

 

Reznick, D. N. 1989. Life-history evolution in guppies .2. Repeatability of field 

observations and the effects of season on life histories. Evolution 43:1285-

1297. 

 

Reznick, D. N., M. J. Bryant, D. Roff, C. K. Ghalambor, and D. E. Ghalambor. 2004. 

Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 

431:1095-1099. 

 

Reznick, D. N. and H. Bryga. 1987. Life-history evolution in guppies (Poecilia 

reticulata) .1. Phenotypic and genetic changes in an introduction experiment. 

Evolution 41:1370-1385. 

 

Reznick, D. N. and H. A. Bryga. 1996. Life-history evolution in guppies (Poecilia 

reticulata: Poeciliidae) .5. Genetic basis of parallelism in life histories. 

American Naturalist 147:339-359. 

 

Reznick, D. N., M. J. Butler, F. H. Rodd, and P. Ross. 1996a. Life-history evolution 

in guppies (Poecilia reticulata) .6. Differential mortality as a mechanism for 

natural selection. Evolution 50:1651-1660. 

 

Reznick, D. N., F. H. Rodd, and M. Cardenas. 1996b. Life-history evolution in 

guppies (Poecilia reticulata: Poeciliidae) .4. Parallelism in life-history 

phenotypes. American Naturalist 147:319-338. 

 



145 

 

 

Reznick, D. N., F. H. Shaw, F. H. Rodd, and R. G. Shaw. 1997. Evaluation of the rate 

of evolution in natural populations of guppies (Poecilia reticulata). Science 

275:1934-1937. 

 

Robinson, B. W. and D. S. Wilson. 1994. Character release and displacement in 

fishes - a neglected literature. American Naturalist 144:596-627. 

 

Robinson, B. W., D. S. Wilson, A. S. Margosian, and P. T. Lotito. 1993. Ecological 

and morphological-differentiation of pumpkinseed sunfish in lakes without 

bluegill sunfish. Evolutionary Ecology 7:451-464. 

 

Rodd, F. H. and D. N. Reznick. 1997. Variation in the demography of guppy 

populations: The importance of predation and life histories. Ecology 78:405-

418. 

 

Roff, D. A. 1992. The evolution of life histories: Theory and analysis. Chapman and 

Hall, New York. 

 

Roff, D. A. 2002. Life history evolution. Sinauer Associates, Sunderland, MA. 

 

Rostant, W. G. 2005. Freshwater Decapod Community of Trinidad and Tobago. 

Master thesis. The University of the West Indies. 

 

Schluter, D. 2001. Ecology and the origin of species. Trends in Ecology & Evolution 

16:372-380. 

 

Seghers, B. H. 1974. Geographic variation in the responses of guppies (Poecilia 

reticulata) to aerial predators. Oecologia 14:93-98. 

 

Seghers, B. H. 1978. Feeding behavior and terrestrial locomotion in the cyprinodontid 

fish Rivulus hartii (Boulenger). Verh. Internat. Verein. Limnol. 20. 

 



146 

 

 

Semmens, B. X., P. J. Auster, and M. J. Paddack. 2010. Using Ecological Null 

Models to Assess the Potential for Marine Protected Area Networks to Protect 

Biodiversity. Plos One 5. 

 

Semmens, B. X., E. J. Ward, J. W. Moore, and C. T. Darimont. 2009. Quantifying 

Inter- and Intra-Population Niche Variability Using Hierarchical Bayesian 

Stable Isotope Mixing Models. Plos One 4. 

 

Sibly, R. M. 1981. Strategies of digestion and defecation. Pages 109-139 in C. R. 

Townsend and P. Calow, editors. Physiological ecology: an evolutionary 

approach to resource use. Blackwell Publishing, Oxford. 

 

Sinervo, B. and S. C. Adolph. 1994. Growth plasticity and thermal opportunity in 

sceloporus lizards. Ecology 75:776-790. 

 

Skulason, S. and T. B. Smith. 1995. Resource polymorphisms in vertebrates. Trends 

in Ecology & Evolution 10:366-370. 

 

Smith, C. C. and S. D. Fretwell. 1974. The optimal balance between size and number 

of offspring. American Naturalist 108:499-506. 

 

Smith, T. B. 1987. Bill size polymorphism and intraspecific niche utilization in an 

African finch. Nature 329:717-719. 

 

Smith, T. B. 1990. Patterns of morphological and geographic-variation in trophic bill 

morphs of the African finch Pyrenestes. Biological Journal of the Linnean 

Society 41:381-414. 

 

Smith, T. B. and S. Skulason. 1996. Evolutionary significance of resource 

polymorphisms in fishes, amphibians, and birds. Annual Review of Ecology 

and Systematics 27:111-133. 

 

Starck, J. M. 1999. Structural flexibility of the gastro-intestinal tract of vertebrates - 

Implications for evolutionary morphology. Zoologischer Anzeiger 238:87-

101. 



147 

 

 

Starck, J. M. 2003. Shaping up: how vertebrates adjust their digestive system to 

changing environmental conditions. Animal Biology 53:245-257. 

 

Stearns, S. C. 1992. The evolution of life histories. Oxford Univ. Press, Oxford, U.K. 

 

Steinman, A. D., G.A. Lamberti, and P.R.Leavitt. 2007. Biomass and Pigments of 

Benthic Algae. Pages 357-379 in F. R. Hauer and G.A.Lamberti, editors. 

Methods in Stream Ecology. Academic Press. 

 

Sterner, R. W. 1993. Daphnia growth on varying quality of Scenedesmus: mineral 

limitation of zooplankton. Ecology 74:2351-2360. 

 

Strauss, R. E. 1979. Reliability estimates for Ivlev's electivity index, the forage ratio, 

and a proposed linear index of food selection. Transactions of the American 

Fisheries Society 108:344-352. 

 

Svanback, R. and D. I. Bolnick. 2005. Intraspecific competition affects the strength of 

individual specialization: an optimal diet theory method. Evolutionary 

Ecology Research 7:993-1012. 

 

Svanback, R. and D. I. Bolnick. 2007. Intraspecific competition drives increased 

resource use diversity within a natural population. Proceedings of the Royal 

Society B-Biological Sciences 274:839-844. 

 

Svanback, R. and L. Persson. 2004. Individual diet specialization, niche width and 

population dynamics: implications for trophic polymorphisms. Journal of 

Animal Ecology 73:973-982. 

 

Templeton, C. N. and W. M. Shriner. 2004. Multiple selection pressures influence 

Trinidadian guppy (Poecilia reticulata) antipredator behavior. Behavioral 

Ecology 15:673-678. 

 

Travis, J. 2009. Phenotypic plasticity.in S. A. Levin, editor. The Princeton Guide to 

Ecology. Princeton University Press. 

 



148 

 

 

Twombly, S., N. Clancy, and C. Burns. 1998. Life history consequences of food 

quality in the freshwater copepod Boeckella triarticulata. Ecology 79:1711-

1724. 

 

Urabe, J. and R. W. Sterner. 2001. Contrasting effects of different types of resource 

depletion on life-history traits in Daphnia. Functional Ecology 15:165-174. 

 

Vander Zanden, M. J., G. Cabana, and J. B. Rasmussen. 1997. Comparing trophic 

position of freshwater fish calculated using stable nitrogen isotope ratios 

(δ
15

N) and literature dietary data. Canadian Journal of Fisheries and Aquatic 

Sciences 54:1142-1158. 

 

Vander Zanden, M. J. and J. B. Rasmussen. 1999. Primary consumer δ
13

C and δ
15

N 

and the trophic position of aquatic consumers. Ecology 80:1395-1404. 

 

Vander Zanden, M. J. and J. B. Rasmussen. 2001. Variation in δ
15

N and δ
13

C trophic 

fractionation: Implications for aquatic food web studies. Limnology and 

Oceanography 46:2061-2066. 

 

Vanderklift, M. A. and S. Ponsard. 2003. Sources of variation in consumer-diet δ
15

N 

enrichment: a meta-analysis. Oecologia 136:169-182. 

 

Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell, and C. E. Cushing. 

1980. River Continuum Concept. Canadian Journal of Fisheries and Aquatic 

Sciences 37:130-137. 

 

Wagner, C. E., P. B. McIntyre, K. S. Buels, D. M. Gilbert, and E. Michel. 2009. Diet 

predicts intestine length in Lake Tanganyika's cichlid fishes. Functional 

Ecology 23:1122-1131. 

 

Wainwright, P. C., C. W. Osenberg, and G. G. Mittelbach. 1991. Trophic 

polymorphism in the pumpkinseed sunfish (Lepomis gibbosus Linnaeus) - 

effects of environment on ontogeny. Functional Ecology 5:40-55. 

 



149 

 

 

Wallace, J. B., J. J. Hutchens, and J. W. Grubaugh. 2007. Transport and storage of 

FPOM. Pages 249-271 in F. R. Hauer and G. A. Lamberti, editors. Methods in 

stream ecology. Academic Press. 

 

Walsh, M. R. and D. Reznick. 2010. Influence of the indirect effects of guppies on 

life-history evolution in Rivulus hartii. Evolution 64: 1583-1593 

 

Walsh, M. R. and D. N. Reznick. 2008. Interactions between the direct and indirect 

effects of predators determine life history evolution in a killifish. Proceedings 

of the National Academy of Sciences of the United States of America 

105:594-599. 

 

Walsh, M. R. and D. N. Reznick. 2009. Phenotypic diversification across an 

environmental gradient: a role for predators and resource availability on the 

evolution of life histories. Evolution 63:3201-3213. 

 

Werner, E. E. and J. F. Gilliam. 1984. The ontogenetic niche and species interactions 

in size structured populations. Annual Review of Ecology and Systematics 

15:393-425. 

 

Werner, E. E., J. F. Gilliam, D. J. Hall, and G. G. Mittelbach. 1983. An experimental 

test of the effects of predation risk on habitat use in fish. Ecology 64:1540-

1548. 

 

Werner, E. E. and D. J. Hall. 1974. Optimal foraging and the size selection of prey by 

the bluegill sunfish Lepomis macrohirus. Ecology 55:1042-1052. 

 

Werner, E. E. and S. D. Peacor. 2003. A review of trait-mediated indirect interactions 

in ecological communities. Ecology 84:1083-1100. 

 

West-Eberhard, M. J. 2003. Developmental plasticity and evolution. Oxford 

University Press, Oxford. 

 

Winemiller, K. O. 1990. Spatial and temporal variation in tropical fish trophic 

networks. Ecological Monographs 60:331-367. 



150 

 

 

Winemiller, K. O. and D. B. Jepsen. 1998. Effects of seasonality and fish movement 

on tropical river food webs. Journal of Fish Biology 53:267-296. 

 

Winer, B. J. 1971. Statistical principles in experimental design. McGraw-Hill, New 

York. 

 

Wootton, J. T. 1994. The nature and consequences of indirect effects in ecological 

communities. Annual Review of Ecology and Systematics 25:443-466. 

 

 



151 

 

 

VITA  

Eugenia Zandonà  

 

EDUCATION 

PhD Environmental Science/Ecology 2010      Drexel University 

B.S. Natural Sciences 2004       Università degli Studi di Padova, Italy 

 

AWARDS, FELLOWSHIPS, AND GRANTS 

2010, 2008  Best Poster Presentation, 1st prize. Drexel Research Day ($500 each) 

2009, 2006 Honorable Mention. Drexel Research Day  

2009   ASLO Outstanding Student Poster Award ($50) 

2006-2010 6 Travel grants. Drexel University (Dept. of Biology) ($500 each) 

2010 Travel grant. Drexel University (Office of Graduate Studies) ($310) 

2010   ASLO Student Travel Award – ($250) 

2005-2010 J.Mozino scholarship (6 years). Drexel University (total amount 

$69,586) 

2009  Office of International Travel award. Drexel University ($500) 

2005, 2003  Fondaz. “Ing. Aldo Gini” grant. Università di Padova (total €8,200) 

2001  Erasmus scholarship-Kopenhagen University. (€1,500) 

 

PUBLICATIONS 

1. Zandonà E., S. Auer, S. Kilham, A. López-Sepulcre, M. O‟Connor, R. Bassar, 

A. Osorio, C. Pringle, D. Reznick. Diet quality and prey selectivity correlate with 

life histories and predation regime in Trinidadian guppies. Submitted to 

Functional Ecology. 

2. Bassar R.D., M.C.Marshall, A.López-Sepulcre, E. Zandonà, S.K.Auer, J.Travis, 

C.M.Pringle, A.S.Flecker, S.A.Thomas, D.Fraser, D.Reznick. 2010. Local 

adaptation in Trinidadian guppies alters ecosystem processes. PNAS. 107(8): 

3616-21. 

3. Dadda, M., E. Zandonà, C. Agrillo, A. Bisazza. The cost of hemispheric 

specialization in a fish. 2009. Proceedings of the Royal Society B: Biological 

Sciences. 276(1677): 4399-4407. 

4. Sieg A.E., E. Zandonà, V.M. Izzo, F.V. Paladino, J.R. Spotila. 2010. Population 

level “flipperedness” in the eastern Pacific leatherback turtle. Behavioral Brain 

Research. 206(1): 135-138. 

5. Kilham S.S., M.E. Hunte-Brown, P. Verburg, C.M. Pringle, M.R. Whiles, K.R. 

Lips E. Zandonà. 2009. Challenges for interpreting stable isotope fractionation 

of carbon and nitrogen in tropical aquatic ecosystems. Verhand. Internat. Verein. 

Limnol. 30(5): 749-753. 

6. Dadda M., E. Zandonà, A. Bisazza. Emotional responsiveness in fish from lines 

artificially selected for a high or low degree of laterality. 2007. Physiology and 

Behaviour. 92(4): 764-772. 

 

INVITED REVIEWER: (2010) - Limnology & Oceanography  



 

 


