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Abstract

Distributed Assembly Strategies for Teams of Autonomous Robots

Joshua W. Rogo�

M. Ani Hsieh, Ph.D.

The distributed assembly problem involves using a team of robots to assemble a

structure autonomously. The goal is to develop a strategy such that the robots

assemble the structure correctly and in the most e�cient way possible. This thesis

outlines di�erent single robot assembly strategies, di�erent methods for partitioning

the building tasks amongst multiple robots, and de�ning the complexity of a structure

to be assembled. The scope of work includes investigating di�erent assembly strategies

through design and analysis of di�erent assembly algorithms, developing simulations

to evaluate and validate the di�erent assembly strategies, comparing the proposed

methods with existing approaches, and implementing selected assembly strategies on

an actual robotic testbed.
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Chapter 1

Introduction

With every passing day, we see robots e�ecting our lives more and more. These robots

aim to make certain aspects of our lives easier, whether it is a vacuum cleaner in our

home, or an automated warehouse that allows a company to deliver products more

quickly and cost e�ectively to our doorstep. It is with this knowledge that we can

understand how a team of robots cooperating to complete a task is not a far-fetched

idea.

Distributed assembly aims to utilize a multi-robot team that works together to

assemble a structure. Real-world applications of the distributed assembly idea can

range from building everyday structures, to assembling a structure underwater or on

another planet. Although a common structure such as an o�ce building or house

may not require a team of robots to assemble, imagine a group of astronauts arriving

at the moon to an already assembled base, or a team of robots being able to patch a

hole in a damaged nuclear plant. These scenarios present applications where it would

be either too hazardous, or simply impossible for humans to complete the task. It

is with these examples that the usefulness of distributed assembly research can be

understood.
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1.1 Problem Statement

Distributed assembly introduces several problems. Tasks that must be completed

include coordinating a team of robots to work cohesively and e�ectively, dividing

the workload amongst the team, developing di�erent assembly strategies, and testing

these strategies through simulation and experimentation. Assembly can be completed

in either a centralized or decentralized manner, using homogeneous or heterogeneous

robots. The problem we aim to solve involves outlining methods for decentralized

multi-robot assembly given a team of homogeneous robots.

1.2 Related Work

There are many conceivable ways to tackle the distributed assembly problem. The

type of hardware being used, coupled with the vast algorithmic possibilities allow

for countless combinations of solutions. When designing solutions for a speci�c suite

of hardware, limitations can play a role in the way the algorithm is structured. In

[21] and [22], the dynamics and size of the robot being used e�ect the algorithm. In

these cases, a row of blocks must be completed (in accordance with the prede�ned

structural shape) once it is started, because the robot being used for the experiment

is not capable of �lling in a gap in the structure once it has been created. In [14]

Sanderson et al. introduce an assembly sequence planning algorithm using a structure

that has various attachment constraints.

Werfel et al. explore the use of intelligent building materials in [22, 23]. These

building materials have varying capabilities, but all maintain the general idea that

when a robot arrives at the structure, the structure is able to communicate informa-

tion about itself. This work is tested using a Lego construction robot described in

[15]. In [10], Klavins introduces a robotic building block system that is capable of self
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assembly. In other words, the blocks act as both the assembly robot and the building

material. Similarly, Yim et al. describe their modular self-assembling robot in [26].

This introduces the idea that building blocks can gain the ability to assemble into a

body that can become mobile.

Three-dimensional assembly approaches are also explored. Terada et al. present

an automatic modular assembly system (AMAS) capable of 3-d assembly, which in-

cludes modular building materials and a robot capable of assembling a 3-d structure

in [17]. Werfel et al. present a more abstract approach which focuses on assembly

strategy rather than hardware implementation in [24].

Division of labor is another aspect of distributed assembly that must be addressed.

Cortes et al. describe a way of using a continuous time Lloyd algorithm to drive a

team of robots to positions such that each robot has the same amount of work to do

in [4]. This algorithm is put to use to divide structures into equal-mass partitions

amongst a team of robots in [28]. Yun et al. use their algorithm from [28] to develop

an algorithm to account for robot failure during construction in [27]. This algorithm

was also used by Pimenta et al. in [12] to develop a coverage controller for real time

tracking. Schwager also uses Voronoi decompositions to develop a decentralized and

adaptive control algorithm for coverage in networked robots in [16].

Voronoi diagrams, although e�ective, are only one way to partition the assembly

tasks. Another way to approach the problem is to de�ne complexity measures for

the assembly tasks. In [13], Sanderson describes a �parts entropy� method for robotic

assembly. This method can be used to quantify aspects such as assembly procedure

and �exibility of an assembly system. Sanderson's work is put to use in [11], where the

parts entropy method is used to measure the complexity of a system of self-replicating

robots.

Many of the ideas used in distributed assembly relate to other multi-robot appli-
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cations. Hsieh presents control strategies for teams of networked robots in [7] and

[6]. Methods for simultaneous localization and mapping (SLAM) for a robot swarm

is outlined by Thrun in [18]. In many of the above works, it is assumed that the map

used by the robot team to navigate is given a priori. SLAM is very useful if this map

is not known or only partially known.

1.3 Organization of this Work

The remainder of this thesis is organized as follows. Chapter 2 describes the dis-

tributed assembly testbed used to carry out experiments. This includes the robots,

the software used to control the robots as well as the building materials used for

assembly. A motivating example is explored in Chapter 3, which describes a simple

assembly example and explains the challenges of distributed assembly. In Chapter 4,

methods are introduced to distribute the assembly tasks by scoring legal block attach-

ment sites. Chapter 5 explores di�erent ways to decentralize the assembly tasks and

de�ne structural complexity. After describing ways to divide the workload in Chap-

ters 4 and 5, a method for structural assembly is described in Chapter 6. Chapter 7

concludes the work with a summary and direction for future work.
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Chapter 2

Distributed Assembly Testbed

Throughout this work, we will be presenting experimental results. These results were

achieved using experiments designed to utilize the mini-mobile manipulator platform

(M3 for short). The experiments were carried out in the Scalable Autonomous Systems

lab (SAS lab) at Drexel University. Each M3 robot consists of an iRobot Create

programmable robot base, a 6-degree-of-freedom (DOF) Lynxmotion AL5D robotic

arm, and a Hokuyo URG-04LX-UG01 scanning laser range�nder (LRF). A picture of

an M3 robot is found in Figure 2.1.

Each M3 robot is assigned its own ACER Ferrari laptop. These laptops allow the

user to easily interface with the robots and control each component. The software

for the M3 testbed was written in Matlab and consists of functions and scripts which

reside in toolboxes dedicated to each piece of hardware of which the M3 consists.

2.1 Assembly Materials

The structures that the M3 robots assemble are made out of white opaque acrylic

blocks. The acrylic was cut into pieces using a laser cutter and taped together to

create the block shape. The shape of the blocks resemble Lincoln-Logs, and have
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Figure 2.1: M3 robot

grooves that allow them to interlock. An image of a building block is found in Figure

2.2. These blocks allow us to design 3-D structures for the robots to assemble.

Figure 2.2: Acrylic block used in assembly

In some of our simulations, we make the assumption that the building material has

some processing and communication capability. In experimentation, we do not use

these �intelligent building materials�, however, they are feasible. Figure 2.3 shows a

prototype of an intelliblock fabricated out of balsa wood. This block has contact sen-

sors to determine if and where other blocks are attached to it, and can communicate

the information to a robot by blinking an LED.
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Figure 2.3: Intelliblock prototype

2.2 Hardware

2.2.1 iRobot Create

The iRobot Create is based on iRobot's Roomba vacuum cleaner. It has a cargo bay

which is used to store excess wires and the battery for the arm, and threaded holes

which are used to mount the arm and LRF. The robot has a suite of sensors that

include a cli� sensor, wall following sensor, bump sensor, odometry sensors, lift sensor,

among others. For our purposes, we only need to utilize the odometry sensors for

closed loop navigation and to determine distance and angle traveled. The robot has

a USB cable that allows it be programmed and to communicate with the computer.

It is powered by a rechargeable NiMH battery.

2.2.2 Lynxmotion Arm

The arm consists of 6 servo-motors (the base, shoulder, elbow, wrist, wrist rotation,

and grip), and linkages that connect them. The motors are controlled by one SSC-32

servo controller which interfaces with the computer via USB. The servos accept pulse

lengths in milliseconds, which determine the angle that the servo will go to and speeds

in pulselength/second as input commands from the controller. The arm and motor

controller are powered by one 7.2 V battery, which connects to the controller board.

A switch on the board allows for easy power on and o�.

Each time the arm is powered on, it must be sent to an initial, or home position.
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The �rst movement of each servo once powered on is the servo's maximum speed, so

it is important that the arm makes this motion to a position that won't damage the

robot or anything in its direct vicinity. Since no two robotic arms are identical, each

arm was calibrated to obtain the equations to convert the desired angle for each servo

to a pulse length. For some of the servos, the manufacturer's recommended equations

work �ne, but for others, a di�erent calibration technique is needed.

To calibrate a servo, we �rst set up the arm in a position where the base will

not move. We then set up a system such that we can measure the angle that the

servo goes to in degrees. Once this is achieved, the process is simply to send a pulse

length to the servo being calibrated, and the angle that the servo goes to must then

be measured. This is done for the full range of motion for the servo. Once complete,

a simple linear regression is done to determine the two constants, α and β in

p = (αθ) + β, (2.1)

where p is the pulse length and θ is the desired angle in degrees. Calibration of the

servos is important, because with a 6-DOF arm, if one of the lower servos (such as

the shoulder or elbow) goes to the wrong angle, that error propagates until it reaches

the end-e�ector. This would cause the arm to miss the target location.

Once calibrated, each arm is capable of being given a desired end-e�ector position.

The robot uses inverse kinematics to determine the angle of each servo to achieve this

desired position. Since the end e�ector could be at the same �nal position but be

in di�erent con�gurations, the gripper width, wrist rotation angle, and elbow angle

must also be explicitly de�ned.
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2.2.3 Hokuyo Laser Range�nder

A laser range�nder is a device that uses a laser to obtain distance measurements. Like

the other hardware, the LRF interfaces with the computer via USB. It also receives

its power from the computer and does not need to be powered on or o�. The device

provides distance readings over a 240◦ �eld of view, with a 0.35◦ resolution. Figure

2.4 shows an example of a polar plot containing distance readings from the LRF. It is

with this device that we locate precise block positions so that the robot may assemble

the structure. Since we know the size of the blocks precisely, and the LRF gives us

distance measurements, the robot is able to determine if what it is seeing is a block

or another obstacle.

We do not use the LRF to navigate around the entire workspace, since this would

take a very long time. Instead, we use this device once we are reasonably close to

a block or structure, and use it to precisely navigate to a position such that a block

can be picked up or placed using its data.

In order to pick up a block, the robot must drive up to the block to a position

and angle such that the arm is capable of picking up the block once the robot has

stopped. To place a block on the structure, there must be a block attached to the

structure that the robot can use for position reference. The robot must recognize the

location and position of the structure, and be aware of the height at which the block

must be placed. The LRF is not responsible for knowing the height, since it only

capable of doing a 2-D scan.

2.3 Software

To synthesize the di�erent components of the M3, a set of toolboxes have been written

in Matlab. Each component is connected to the computer using USB, and when each
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Figure 2.4: A polar plot depicting data from an LRF reading

component is initialized, a serial object is created so that commands can be sent and

data can be received.

2.3.1 Robot Control

The Create's Matlab toolbox consists of commands that are able to read the various

on board sensors and control the motors. The robot can be driven using one of

several di�erent commands, which drive the robot by giving the wheels individual

speed commands, give the robot a desired forward velocity and angular velocity, or

set a forward speed and desired turning radius. We use the function that provides

each wheel with its own velocity, since these values are calculated in the closed-loop

navigation algorithm outlined in Appendix A.

To determine the distance and angle traveled by the robot, we initialize the sensor

before each trip to or from the structure. This initialization zeros out the data and

allows us to eliminate any error that may have built up over a previous trip. This

data can then be recorded and used for experimental results.
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2.3.2 Arm Control

Control of the robotic arm is open loop. For this reason, it is important that the

calibration constants are correct because no error correction can be made during

motion. The lowest level functions in this toolbox send serial commands to the

individual servos which include the servo port number, the pulse length and the speed.

There is one function to control each servo on the arm. Within each of these functions

lies the equation which converts degrees to pulse lengths. These equations are where

the calibration constants come into play. This allows us to de�ne the position we

want the servo to go to (in degrees). These functions also check to make sure that the

desired angle is within the working range for each servo. Other important lower level

functions that are included in the toolbox are a function which combines all of the

servo commands to move them in one �uid motion, and an inverse kinematics function

which calculates each servo angle based on the desired position and orientation of the

end e�ector.

The lower level functions are put to use in the functions that send commands to

pick up and place the blocks. The main inputs to both of these functions are the

block's x, y, z, and θ values, which are handed over from the LRF data. There are

several steps taken to pick up and place blocks which are necessary because the motion

of the arm is open loop. To pick up a block, the arm is �rst moved to a position just

above the block, and the gripper moves to its fully open position. The arm then

slowly lowers itself straight down to the point where it is able to grip the block, but

is not yet touching it. The arm then grips the block, and raises itself straight up to

ensure proper clearance from anything the block may have been resting on. Once the

arm and block are at a safe distance from any obstacle, the arm returns to the home

position holding the block.

The function to place down a block is very similar, in that it contains the same
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steps in reverse order. The one small di�erence is that instead of placing the block

directly back onto the ground or structure, it lowers it to a position such that the

block must drop a short distance. This is because the blocks are designed to fall into

place.

2.3.3 Block Extraction

The laser range�nder needs only one command, which sends a signal to the device

to take a reading, and then receives that data. This data is simply a 685x2 vector

containing the angle in the �rst column and the distance reading in the second. The

challenging part is interpreting the data once it has been received. The main purpose

of the LRF is to detect blocks in the vicinity of the robot, and this data is then used

to drive the robot to a position such that the arm is close enough to carry out its

manipulation.

Block detection is done using a line �tting algorithm. For sections of data that

appear to be linear, we ask whether or not it could be a block, given the length of the

line and the distance from the robot. Once all of the blocks in the space are found,

the algorithm calculates the centroid of each line. The robot then determines which

block is closest, and drives to it. An image of the laser data after the block detection

algorithm has been run can be found in Figure 2.5. This �gure shows two blocks side

by side, which we know to interpret as a structure.

When using the LRF data to drive to a block, the robot calculates the distance

and angle of the block with respect to the robot. Once this data is obtained, the

robot drives forward a small amount and takes another reading. The duration that

the robot drives is proportional to the distance it is from the block. When the robot

is close enough to the block, it will stop and communicate the block's position and

orientation to the arm, which will then pick up or place the block.
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Figure 2.5: Laser scan data with line �tting and block detection. The image shows
two blocks side by side, which indicates a structure.

2.4 Robot Navigation

With all of the hardware explained, we now wish to de�ne the navigation strategy.

The robot is able to maneuver around the workspace by combining data from the lab's

overhead localization system (OLS), using data from the Create's odometry sensors,

and using data from the LRF when close to blocks. We will focus on the �rst two

sensing mechanisms, which are used when the robot is traveling from one waypoint

to another and not trying to pick up or place a block. In the �rst iteration of our

controller, we only use the odometry sensors when the OLS data is unreliable (further

described in Subsection 2.4.2. This controller is used to navigate the robots in the

experiment described in Section 6.1 and Section 4.2. The second iteration implements

an extended Kalman �lter (EKF) to help better estimate the robot's actual position

and conbine data from both sensors for every time step. The closed-loop navigation

that is implemented in both cases is described in-depth in Appendix A.
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2.4.1 Overhead Localization System

The workspace in the lab consists of a �at rectangular �oor. This �oor acts as a

Cartesian coordinate system with x and y axes in the middle. These axes allow us

to determine the precise locations of each robot in the space. Four cameras, one on

each side of the rectangle, are set up such that the entire space is in view of at least

one camera. The coverage map can be seen in Figure 2.6.

Figure 2.6: Map of the workspace with the coverage area of each camera and each
camera's approximate location. The cameras are named north, south, east and west.

To locate a robot in the space, the cameras report every orange rectangle, or blob

that they see, and the blob's pose (position and orientation). Each robot has one

orange rectangle attached to it, as seen in Figure 2.1. When there are multiple robots

in the space, the system simply returns an array of poses for each blob seen. This

system runs on a computer connected to the lab's network, and transmits the data
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to any other computer on the network requesting that data.

2.4.2 Hardware Implementation

The closed loop navigation strategy, which allows the robot to navigate around the

workspace, is described in Appendix A. To implement the controller, we will use

both the overhead localization system and the odometry sensors on the Create. As

previously stated, OLS relies on four cameras to cover the entire space. Although

there is some overlap between the cameras, as seen in Figure 2.6, there are large

portions of the map that are only covered by one or two cameras. Due to this lack

of redundancy, the situation often arises where the arm of the robot prevents some

or all of the orange blob from being visible to one or multiple cameras. Additionally,

problems can arise when the robot is near the boundary of one camera's range. There

are also instances where the robot's arm causes one blob to appear as multiple blobs

to the camera or cameras.

Ideally, we would like to be able to take the OLS information as ground truth.

Although there is some error associated with each reading from the cameras, this

error does not propogate as time goes on (unlike the odometry sensors). As a result,

when we can determine that the reading recieved from the OLS is reliable (i.e. a

reasonable pose compared to the previous pose), we do take the OLS information to

be ground truth. Figure 2.7 shows the robot's position according to the OLS data

and the odometry data. We see that as the robot drives, the odometry data becomes

farther from the robot's actual position.

In order to implement the control law on our robot, all we need is the current

position and orientation of the robot, and the desired �nal position and orientation.

From the OLS, we may be receiving multiple coordinates if more than one robot is

visible to the system. To determine which blob position is ours, we must �rst de�ne
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Figure 2.7: Position of the robot as determined by the overhead localization system
(in blue) and the odometry sensors (in red).

the robot's starting position explicitly. The blob closest to this position is remembered

as the correct one. The odometry also uses this position to be the robots position,

unless the blob is not visible to the OLS, in which case the known starting position

is used.

The OLS is capable of recognizing a blob, and giving the blob's orientation, how-

ever, because the blob is just a rectangle, there is no way for it to know which way

is forward or backward. To resolve this issue, we drive the robot forward for a short

distance and recalculate the position. Using the old position and the new position,

we can construct a vector and determine which direction is forward, and whether or

not the OLS guessed correctly the �rst time. Once this direction is determined, we

can use it to check whether or not the OLS angle information is �ipped every time

the robot receives information.
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Kalman Filtering for Navigation

To improve on the navigation strategy, we implement an extended Kalman �lter

(EKF) to analyze localization information fed to the robot from the sensors. A

standard Kalman �lter uses the sensor information available to determine where it

believes the robot's position is at a given time, or bel(xt) at time t. First, the robot

determines where it thinks it is based on the robot's speci�c dynamic model, which

is the behavior of the state vector [x, y, θ]T . The position estimation is then updated

using the observation model, which is the relationship between the measurements and

the state vector. To generate the observation model, data is gathered a priori to

determine the sensor output's relationship to the robot's state. What results is a

calculation of the mean µt and covariance Σt of the robot's position at time t.

The EKF is based on the Kalman �lter described above. The standard Kalman

�lter assumes that the system is linear yet this is rarely the case in the real world

and our system is no exception. To account for these nonlinearities, additional steps

are added to the standard Kalman �lter to linearize the system. The EKF algorithm

is described in Algorithm 2.1.

Our system uses the M3's odometry sensors and the OLS information to generate

the observation model. As mentioned before, we take the OLS data to be ground

truth. By using the EKF, we are able to combine the OLS data and the odometry

data (instead of having to choose between one or the other), and when the OLS data

is unavailable or unreliable, the �lter will still ensure a better pose estimation than a

single bad data point [19, 2, 9].
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Algorithm 2.1 Extended Kalman Filter

Linearize the motion model by computing Jacobian matrices Gt and Vt
Determine the motion noise covariance matrix Mt

3: Calculate the predicted pose of the robot since its last movement µt
Use Gt, Vt and Mt to compute the uncertainty skirt Σt

for i = 1→ 2 do
6: de�ne noise in sensor reading to Qt

calculate the predicted measurement based on sensor data zit and Jacobian H i
t

determine uncertainty corresponding to the measurement Sit
9: compute the Kalman gain Ki

t

use Ki
t and z

i
t to update the pose estimate µt

use Ki
t and H

i
t to update the uncertainty in the pose Σt

12: end for
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Chapter 3

Motivating Example

In order to understand how to confront the problem of distributed assembly, we

devise a simple simulation. The purpose of this is to illustrate the challenges that

distributed assembly poses, and the advantages that it can lead to when implemented

correctly. This simulation is designed so that we may expand upon it once a broader

understanding of the concepts related to distributed assembly are achieved.

3.1 One Robot Building a 2-D Structure

This simulation involves one mobile robot, a desired structure, and a block cache

location. Let W denote the workspace, and let S be the shapemap, which is a map

of the target structure. Included in S are the positions of the block cache, C, as well

as the starting point of the structure m, or marker. We assume m is already placed,

and the locations of both m and C are known by the robot. We also assume that

the robot has the ability to locate m and C, know where its current position is in

W , knows S, and can avoid obstacles like the partially built structure. The robot is

also capable of following the perimeter of the structure in the clockwise direction and

recognizing when it has reached a legal attachment site l.
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In order to get from one position to another, for example, from C to the structure,

the robot uses an algorithm called A* to de�ne the path. This algorithm is expanded

upon in Appendix B. A* is a graph search method which provides a route from the

robot's current position in W to the desired �nal position in W , taking into account

any obstacles in the workspace.

3.1.1 Running the Simulation

The simulation begins with the robot placed at a starting point ps de�ned by the user.

We �rst instruct the robot to drive to C to retrieve the building material. Once the

robot has the block, it drives to m. The robot always drives from C to m because m

is the only position in the target structure whose position is known by the robot. For

this navigation method to work, m must lie on the perimeter of the target structure.

If m is not on the perimeter, then the robot must use more intuition once it has

reached the structure. Since m is an occupied space, driving to m means the robot

will drive to a spot next to it and orient itself such that it can begin to follow the

perimeter of the structure in a clockwise manner.

To assemble the structure, we use a method similar to the one seen in [21, 22].

The robot drives around the structure until it arrives at l. The location of l is either

the beginning of a row, or the spot next to the last placed block in the partially built

row. The robot will start building a new row when it recognizes that it has reached

the beginning of a row as long as there are no other open rows. It can �gure this out

based on its knowledge of S. The simulation is complete when all of the blocks in the

target structure have been placed.
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3.2 Two Robots Building a 2-D Structure

After several successful attempts of creating di�erently shaped structures using one

robot, we now expand the simulation to include another robot. In this expanded

scenario, the robots still work independently and do not assemble the target structure

simultaneously. This is because both the controller and the assembly strategy are

centralized. This leads to the solution being no more e�cient as the single-robot

example. Figure 3.1 depicts the two-robot assembly simulation in four steps.

This example provides an introduction to general robotic assembly, and begins to

incorporate a distributed aspect by adding another robot. Already, we begin to see

how challenging this problem can be. In order to have a true distributed system, we

must de�ne more rules for both the robots and the assembly strategy. By distributing

the system such that each robot is controlled independently and di�erent portions of

the structure can be tended to simultaneously, we will achieve a much more e�cient

system. To tackle the problem of distributing the workload, we devise a new assembly

strategy.
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(a) (b)

(c) (d)

Figure 3.1: The robots are represented by the green dots with arrows marking their
orientations. The black square around the robot indicates that the robot is carrying
a block. The red square represents m and the blue squares represent Ci where the
blocks are obtained. The yellow squares represent S, and the black squares around
the yellow ones represent placed blocks. This �gure shows four screen shots of the
simulation as it is happening.
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Chapter 4

Distributed Assembly in 2-D

By limiting the legal attachment sites to only the current row being assembled, as

done in the previous experiments, we reduce the possibilities for sites where the robot

is allowed to place a block. A shapemap may be very large and may expand in

di�erent directions, so this task could potentially take a very long time given an

ine�cient assembly strategy. Also, the idea of intelligent building materials [22, 23],

which was not utilized in the previous experiment, is explored here.

4.1 Methodology

4.1.1 Scoring Cells Adjacent to the Structure

To take advantage of what the structure is capable of doing, i.e. communicating

with the robot, we de�ne a new method for assembly. For this method, we explore

the concept of assigning a score to each location in S. The scoring strategy is based

on how many adjacent cells to point pi are occupied, and are therefore a part of the

already built structure. Cell pj is considered adjacent to pi if pj is in pi's neighborhood

of 4 or neighborhood of 8, depending on the experiment. These neighborhoods are
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composed of the 4 or 8 cells surrounding pi, as seen in Figure 4.1. Therefore, a pi

is given a score based on how many occupied cells' 4- or 8-neighborhoods pi lies in.

Every time a new block is placed, each pi is re-scored to take the new placement into

account. We de�ne s to be the list of scores for each cell, and si to be the score of

the corresponding cell pi.

(a) (b)

Figure 4.1: Neighborhood of 4, seen in (a), and neighborhood of 8, seen in (b)

4.1.2 Di�erent Assembly Techniques

Using this scoring idea, a new experiment was created. This experiment di�ers from

the previous one in that no attempt was made to simulate the robot driving to and

from the structure. For this simulation, we assume that the structure is planar and

has no internal holes. We also assume that the robots can query the blocks, and that

the blocks have limited processing capabilities, allowing them to store local data. The

blocks can then communicate this data to the robot when asked for it. This allows

the robot to learn its exact location in W when it arrives to the structure, and know

where it is at all times while it is circling the structure.

In this simulation, a random cell along the perimeter of the already built structure

is denoted as h. One of h's out-facing sides is chosen at random as the side at which

the robot arrives. This allows us to assume that the robot is capable of picking up

a block and delivering it to the structure without having to simulate it. A depiction
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of the simulation may be found in Figure 4.2. This method also does not require the

marker to be on the perimeter of the structure. Despite not actually simulating the

robot's motions graphically, the distance that the robot travels around the structure

from h to the attachment site is still recorded. Like the previous simulation, the

robot is directed to travel in a clockwise manner once it has reached the structure

until it arrives at the attachment site. When the robot arrives at the structure, it

calculates the next block placement site, b, based on its knowledge of the state of the

un�nished structure, and one of several block placement strategies. When b has been

determined, the robot proceeds to that spot.

Figure 4.2: Depiction of the scoring simulation: The empty squares represent S. The
symbols on the blocks adjacent to the structure indicate the score for those spots.
The individual scores can be seen in the �gure. The arrival site h is depicted by a
green square, and the side that the robot arrives at is indicated by the triangle.

Three di�erent methods were developed to assemble the structure using the scoring

technique. For each method, the robot was tasked to assemble four structures of

di�erent shapes and sizes. The starting point for each shape was the same point near
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the middle of the structure, and was the same for each assembly method.

Block Placement Based on Highest Score

Now that we have the scoring procedure clearly de�ned, di�erent assembly schemes

can be de�ned. The �rst of these is simply to place b in the spot with the highest

score. The location of b is determined by Formula 4.1.

b = arg max
i

si (4.1)

Since there will inevitably be instances where the highest score occurs in multiple

locations, the tiebreaker is simply the one that occurs �rst when the algorithm is

searching through S to �nd all of the scored sites.

By placing blocks in the spaces with the highest score, holes in the structure can

be avoided. The advantage to this assembly strategy is that the construction is done

in an orderly manner. This is achieved because as soon as a gap is created, it is �lled

in due to the high scores the empty neighboring cells will receive. Pseudocode for

this method is found in Algorithm 4.1.

Algorithm 4.1 Block Placement Based on Highest Score

while structure not complete do
score map

3: sort s from highest to lowest score
generate h
place block in top cell on list

6: log distance traveled
end while

This method is not e�cient, because the robot is still ordered to travel around the

structure in only one direction, so b may still be very far from h. This observation

leads to the next method, which is to take the distances of every pi into account, as

well as the score.
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Block Placement Based on Score and Distance from Robot

The second method aims to shorten the travel time of the robot while still taking the

scoring method into account. To do this, we calculate a new number. This number

is found by subtracting every si from the distance di, where di is the number of steps

around the perimeter it takes to get from h to pi in the clockwise direction, and d is

a vector that contains every di. To �nd b, we use Equation 4.2.

b = arg max
i

(k1si − k2di) (4.2)

This simple formula yields a highly scored legal attachment site that is close to

h. If there is no pi with a high score near h, then the robot will simply attach the

block at a lower scored site closer to h. The weighting constants k1 and k2 are used

to give either the distance or the score a higher importance than the other. For this

experiment, k1 = k2 = 1 was used. The algorithm used for this assembly strategy

can be seen in Algorithm 4.2

Algorithm 4.2 Block Placement Based on Score and Distance from h

while structure not complete do
calculate di for each pi

3: calculate b using Equation 4.2
place block at b
log distance traveled

6: end while

Interestingly, this method proved to be less e�cient than the �rst one. Because

the robot would often place blocks close to h, and given the fact that h is chosen

randomly, the assembly turned out to be less orderly than the initial method. This

leads to the third method, which aims to maintain the orderliness of the highest-score

method, but shorten the distance traveled wherever possible.
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Block Placement Based on Control of Perimeter Size

The third method combines the ideas of the previous two methods. The �rst step

of this method is the same as the �rst method. The map is scored and the highest

scoring cells are chosen as the next possible attachment sites. Let ri be the perimeter

of the structure that would be created if b is chosen to be pi, and let R denote the

set containing all r values.

Once all values of si are calculated, we determine which of these sites would

create the smallest perimeter if a block should be placed there. If there is one spot

where this is the case, then the robot will deliver the block to this site. If there are

multiple spots that have the highest score, they are added to the set Smax. If there are

multiple agents in Smax that create the same minimum perimeter rmin, they are added

to Rs,min. These variables are de�ned in Equations 4.3 and 4.4. The robot will deliver

the block to the closest pi in Rs,min. Equation 4.5 de�nes the calculation of b for this

method. The algorithm that is used to simulate this method is outlined in Algorithm

4.3. This method ensures that the structure is being completed in a responsible,

organized manner, yet still attempts to �nd the shortest distance possible.

Smax = {si|si = max (s)} (4.3)

Rs,min = {arg min
i
{ri| si ∈ Smax}} (4.4)

b = arg min
i
{di|ri ∈ Rmin} (4.5)
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Algorithm 4.3 Block Placement Based on Perimeter Control

while structure not complete do
calculate s

3: sort s from highest to lowest score
for i = 1 to length of Smax do

ri = perimeter of structure that placing block at this point would create
6: end for

if there is only one pi corresponding to the smallest perimeter then
b is pi corresponding to the minimum value in

9: else

b is the minimum pi value closest to h
end if

12: end while

4.2 Experimental Analysis

An experiment was designed to implement the shortest distance assembly strategy

and the perimeter assembly strategy. These experiments involved one M3 building a

2-D 5x5-block square. Figure 4.3 shows the experimental setup with the structure's

position and the positions of the two block caches. The assembly sequence for each

strategy was determined a priori by the Matlab simulations described above, with

user de�ned h locations rather than random h locations. These points were picked

based on which cache the robot would be coming from for each block placement.

Figure 4.3: Experimental setup for scoring experiment

To precisely navigate the workspace, the robot used the A* algorithm to compute
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waypoints every 250mm to drive back and forth between the structure and the block

caches. This was done to discretize the robot's motion so that it could precisely follow

the perimeter of the structure during the assembly process. To maintain consistency

with the simulation, the robot was also instructed to only travel in the clockwise

direction around the structure. The structure was assembled having the robot drive

along the trajectories from the block cache to the structure. When the robot arrived

at the spot on the grid where a block needed to be placed, a manual placement was

carried out by hand to simulate assembly. Figure 4.4 shows the experiment taking

place and the �nal completed structure.

(a) Experiment in progress (b) Completed Structure

Figure 4.4: Photos of experiment taking place.

4.3 Results

4.3.1 Simulations

For each of the three assembly methods, 50 iterations were carried out for four di�erent

shapemaps. The four shapemaps can be seen in Figure 4.5. Distance data was

recorded for all 50 iterations for each assembly method and for each map. The data

may be found in Table 4.1. The data in the table includes an average of the total

distance traveled over 50 iterations, the standard deviation of this data, and the

maximum and minimum distance traveled in the set of 50 runs for each assembly
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method. Furthermore, the plots in Figure 4.6 contain data for the average distance

traveled for each block placement for all assembly methods and shape-maps.

(a) Small Square (b) Large Square

(c) Small Maze (d) Large Maze

Figure 4.5: The four shape-maps evaluated in this simulation

4.3.2 Experiments

For each assembly strategy, three trials were carried out. Only one shapemap was

used in experimentation. The distances for each trial were recorded, and the data is

contained in Table 4.2.
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Average Total Standard Dev. of Minimum Maximum
Assembly Method Dist. Traveled Dist. Traveled Dist. Traveled Dist. Traveled

(measured in steps)
Small Square

High Score 1627.28 94.71 1362 1868
Distance 1708.10 102.69 1519 1938

Perimeter Control 1493.48 104.36 1228 1651
Large Square

High Score 11830.76 403.27 10944 12441
Distance 13315.24 381.55 12405 14132

Perimeter Control 10515.24 512.84 9636 11878
Small Maze

High Score 1465.78 95.07 1252 1729
Distance 1460.00 122.83 1199 1793

Perimeter Control 1559.72 97.57 1307 1788
Large Maze

High Score 21278.18 624.68 19949 22665
Distance 22487.56 867.41 20552 24488

Perimeter Control 21198.88 767.99 19543 22916

Table 4.1: Results for distance traveled by robot for each assembly method given four
di�erent shape-maps.

Assembly Method Trial 1 Trial 2 Trial 3 Average

(distance in meters)

Distance 291.03 296.00 303.85 296.96

Perimeter Control 325.48 323.42 324.26 324.39

Table 4.2: Results for distance traveled by robot for each assembly method. The
robot traveled an average of 9.2 % farther for the perimeter control method.

4.4 Discussion

Now that we have accumulated a set of data, we can begin to analyze the results.

Looking at numbers for the two square maps in Table 4.1 lead to some interesting

conclusions. The attempt to shorten the distance traveled by taking the distance

into account in the block placement function failed. The reason for this becomes

clear when we study Figures 4.5(a) and 4.5(b). Ignoring the perimeter method for

the time being, we see that the robot is traveling a shorter distance during the time

when the structure is roughly 20% complete until it is roughly 80% complete. It

turns out that because the robot is trying to place blocks closer to h, it is creating a

more complex structural shape in the process. This causes the robot to travel farther

distances in the middle of the assembly than the original high score method. When
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the structure is near completion, though, the numbers begin to even out. This is

because the shape of the structure is near its desired state, and thus similar for all

cases.

The results from the �rst two assembly strategies led to the idea for the third.

If creating a more complex perimeter caused the robot to travel larger distances,

then controlling the shape of the perimeter should shorten it. For the small square,

large square, and large maze, this proves to be the case. For these three maps, the

perimeter control method provides the best results. Interestingly, for the small maze,

the distance method proves to be the most e�cient. The reason for this is the low

number of attachment locations during a given assembly of this map. At any given

point during the assembly, the robot has far fewer options for legal block placement

sites than the other three maps. Also, for the small maze, the perimeter is de�ned

mainly by S rather than where the robot is placing blocks. Even though this may be

a special case, it shows that each assembly method has upsides and downsides, and

each has a scenario where it can be relevant.

The experimental results prove this point. As noted in Table 4.2, the distance

method proves to supply the faster assembly trajectories, with the robot traveling an

average of 27.43 meters less each time. Because the structure never gets big enough

for complexities to arise, traveling the shortest distance for each block placement is

better for this circumstance.

Unlike the example from Chapter 3, where only one legal attachment site exists

for any given time step t, multiple legal attachment sites exist in these new examples.

This leads to the opportunity to introduce more robots during the assembly process.

Although these experiments only involve one robot, a new set of rules could be de�ned

to utilize more robots. Using a team of robots in this scenario would lead to faster

assembly times. We will explore multi-robot techniques in the next chapter.
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(a)

(b)

(c)

(d)

Figure 4.6: Plot of the average distance traveled for each block placement over 50
iterations of each assembly method
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Chapter 5

Decentralizing the Assembly Tasks

Thus far, the simulations we created have dealt mainly with single robot systems.

Even the simulations expanded to include multiple robots have been centralized and

have not taken advantage of having more than one robot assembling the structure.

The next step is to develop a method for distributing the assembly tasks to all of the

robots in our system so that they can assemble the di�erent parts of the structure

simultaneously. This will speed up the assembly time, but it will also introduce new

challenges. We �rst examine ways to divide the structure so that di�erent pieces can

be allocated to di�erent robots.

5.1 Equal Mass Decomposition of Target Structures

Using Voronoi Diagrams

To decompose structures, we begin with the idea of using a Voronoi diagram to split

structures based on equal mass partitions. Voronoi diagrams create a tessellation of

the workspace, and they can be used to create a scenario such that every robot has

the same amount of work to do. An in-depth explanation of how these diagrams are
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realized may be found in Appendix C.

To achieve equal-mass partitions, we �rst assign a uniform mass to every position

in S and decompose this map using a Voronoi diagram. Then, random positions on

the map are selected to be the Voronoi points {p1, ...,pn}, where n is the number

of robots that will be building the target structure. Robot i will be responsible for

constructing the portion of the structure within Ci
V , which is calculated in Equation

C.1. Once placed, each pi moves to a position such that every Ci
V contains roughly

the same massMCi
. This is achieved by designing a cost function H, which is de�ned

as

H = H0 −
n∏
i=1

MCi
(5.1)

where

MCi
=

∫
Ci

V

φt(q) dq (5.2)

and

H0 =

(
1

n

n∑
i=1

MCi

)n

=

(
1

n

∫
W
φt(q) dq

)n
. (5.3)

Here, qi is a point in W and φt is the target density function.

The desired mass in each Ci
V , therefore is the arithmetic mean MC de�ned by

MC =
1

n

n∑
i=1

MCi
. (5.4)

We see from this set of equations that as each MCi
approaches MC , the cost function

H will approach zero. It is with this knowledge that we aim to minimize H and

achieve roughly equal mass in each Ci
V [5].
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One advantage to this method is that it can be done o�ine, before the assembly

actually begins. Once the robots begin to assemble the structure, they only have to

work within their pre-partitioned space. A simulation was carried out using a simple

square structure and a team of 6 homogeneous robots. We can see the results of the

partitioning in Figure 5.1. Notice how in Figure 5.1(a), the variance in size of the

partition is quite large, while in Figure 5.1(b), H has been minimized to the point

where the variance between each Vi is much smaller.

(a) Initial positions (b) Final positions

Figure 5.1: Voronoi decomposition of a simple square structure with uniform mass.
The shaded region represents the structure, the black dots represent the Voronoi
points and the lines represent the edges.

We quickly realize that this method, although dividing the mass equally amongst

the robots, does not create an ideal section for each robot because the geometry of

the structure is not taken into account. Figure 5.2 shows four more structures divided

into six equal-mass partitions. The resulting numbers for each of these structures, as

well as the square in Figure 5.1 can be seen in Table 5.1. Again, we see that each map

has roughly the same mass in Ci
V , but the decomposition is far from ideal. Looking

at Figures 5.2(c) and 5.2(d), it is easy to see that as the structure is assembled,

the number of inter-agent collisions is sure to increase compared to the structure in

Figure 5.1. Also, in the cases of Figures 5.2(a) and 5.2(d), the result might even be



38

unrealizable unless the robot traps itself in the middle of the structure. In order to

achieve the desired level of parallelization, we need another approach. What we want

to achieve is a navigation and geometry aware task partitioning strategy.

(a) A shape (b) M shape (c) Maze shape (d) Window shape

Figure 5.2: Four maps with their �nal equal-mass Voronoi cells.

Shape-map % of Total Mass in Each Cell Std Dev
1 2 3 4 5 6 (%)

Square 18.4 15.7 14.9 16.8 17.9 16.2 1.3
B 12.8 17.1 18.1 16.9 19.2 16.0 2.2
M 16.1 17.7 13.4 17.4 17.7 17.7 1.7

Maze 14.1 16.4 19.0 16.7 16.5 17.3 1.6
Window 14.7 16.1 15.9 16.6 18.9 17.8 1.5

Table 5.1: Mass distribution across the Voronoi partitions for the structures shown
in Figures 5.1(b) and 5.2.

5.2 Maintaining Navigation Awareness

5.2.1 Weighted Mass-Based Partitioning

To improve upon the simple mass based partitioning, we examine ways to take the

shape of the target structure into account. Using the same cost function H, we can

still try to do this. In the simple mass-based partitioning method, every qi ∈ S has

equal mass. In an attempt to make certain parts of the structure more important,

we can add weighting schemes to the maps. These weighting schemes attempt to
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highlight the importance of narrow entrances and passageways within the structure

because they introduce navigational challenges as the structure is being built.

Figure 5.3 shows a B shaped map with four di�erent weighting schemes. It is

clear that the attempt to improve the partition in terms of navigability fails. The

three di�erent weighting schemes all provide almost identical results to the original

partition. A new approach is necessary if we want to achieve a more navigation-aware

decomposition of the map.

(a) Equal (b) Entrance (c) Inside Edge (d) Gradient

Figure 5.3: Di�erent weighting schemes applied to the B map.

5.2.2 De�ning an Optimization Strategy for Navigation-Aware

Partitions

In our workspace W , we de�ne the free space as Wf , where Wf = W/S. We de�ne

a roadmap graph of important navigational points as an undirected graph GR =

(VR, ER), where VR is the set of vertices {v1R, ..., v
j
R} and ER is the set of edges

{e1R, ..., ekR}. For a team of n mobile robots, the objective is to partition S into Ti

connected subsets such that S = ∪ni=1Ti and |φ(Ti) − φ(Tj)| is minimized for every

{i, j} pair. Here, Ti denotes the subset of S assigned to robot i for assembly.

We will now see that the same method can be used within the structure to �nd

other important node locations. To de�ne these new locations, we assume a convex

cell decomposition of S and construct an undirected graph GS = (VS, ES) to represent

the cells within the desired structure. Each convex cell in S is represented by a vertex
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in VS = {v1S, ..., vlS} and the edges in ES represent adjacency relationships between

the vertices in VS. We refer to the graph GS as the structure graph.

We next de�ne the adjacency matrix AS for the structure graph GS is given by

AS = [aSij] =


1 vi, vj,∈ VS and vi, vj share an edge

0 otherwise

(5.5)

Given the roadmap and structure graphs, GR and GS, the objective is to obtain a

navigation-aware partitioning of S into Ti to enable parallel assembly of S by a team

of n homogeneous robots. In other words, for every viS ∈ VS, the goal is to assign

every vjS ∈ VS to a Ti such that for every vpS, v
q
S ∈ Ti, aSpq = 1 and there exists a

vrS ∈ Ti such that a feasible path for every point q ∈ vrS to a vertex in VR exists, and

denote this as vrS v
t
R. To achieve this, we de�ne the following optimization problem

as the minimization of:

∑
i∈{1,...,n},i 6=j

(φ(Ti)− φ(Tj))
2 s.t.

n∑
i=1

Ti = φ(S) (5.6)

This equation is similar to Equation 5.1, with the main di�erence being that we are

grouping subsets of T rather than individual spots q.

In general, solutions to Equation 5.6 may be di�cult to obtain since multiple

solutions may exist with no guarantees on global optimality. For small enough n

and reasonably sized roadmaps and structure maps, an exhaustive search can be

used to determine the optimal solution. However, di�erent from existing approaches

like Equation 5.1, the solution to Equation 5.6 guarantees a feasible path within the

workspace exists for every element in Ti for a given assembly strategy.



41

5.2.3 Using the Brush�re Algorithm to Partition Target Struc-

tures

In an attempt to apply the optimization strategy in Equation 5.6 we will utilize the

Brush�re algorithm. This algorithm is described in Appendix D. The algorithm

results in the highest values being at points that are farthest from both the structure

and the edge of the workspace. It turns out that the ends and intersections of these

lines can be useful in our navigation strategy around the structure. In other words,

we will use these points as VR.

To demonstrate this, a contour plot of 6 di�erent structures with the brush�re

algorithm applied to the outside of the structures can be seen in Figure 5.4. The

contour plot simply assigns a color depending on the number for that spot on the

grid in Figure D.1, therefore, positions with the same number will be the same color.

This will lead to an image whose elevations are easy to distinguish. For example,

in Figure 5.4(a), the dark blue represents the lower numbers, while the yellow and

red represent higher numbers. In these plots, the points of interest become apparent

upon observation.

(a) (b) (c) (d) (e) (f)

Figure 5.4: Six shapemaps with the brush�re algorithm applied to the outer edge of
each structure and map border.

The usefulness of the brush�re algorithm does not stop at the navigation level.

Using the set of VR derived from the plots in Figure 5.4, we set up GS such that

we ensure that every viS is reachable from at least one VR once the structure has

been partitioned and during construction, as de�ned in Section 5.2.2. We refer to
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Figure 5.5 to �nd the locations of each viS. Like Figure 5.4, Figure 5.5 produces plots

with recognizable nodes. These plots are easy to create, but they still lead to some

ambiguity. Figure 5.6 shows each structure with GR and GS clearly de�ned.

(a) (b) (c) (d) (e) (f)

Figure 5.5: Six shapemaps with the brush�re algorithm applied to the inside of each
structure.

(a) (b) (c) (d) (e) (f)

Figure 5.6: Six shapemaps with VR shown with blue and red dots and VS shown with
yellow dots.

We can now begin to think about partitioning the structure using these ideas.

The �rst idea is to use the values residing in VS as Voronoi points. This results in a

more organized decomposition than before, but we still don't have a very �navigation-

aware� partitioning. Figure 5.7 shows the decomposition of four structures using this

method. Figure 5.7(c) is an especially good example of a poor navigation-aware

decomposition.

(a) (b) (c) (d)

Figure 5.7: Navigation-aware partitioning of structures using VS as Voronoi points.
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Based on the poor results of using VS to determine the center of the cells, we will

instead try to use them as the boundaries for the cells. Figure 5.8 shows the new

decomposition using this approach. These maps provide very good navigation-aware

partitioning. As opposed to the Voronoi results, these maps provide a more logical

decomposition. Applying the proposed strategy given in Equation 5.6, we evaluate

the target structures with convex cell decompositions in Figure 5.8. For a team of

6 robots, Figure 5.9 shows the resulting navigation-aware partitions assigned to each

robot. Table 5.2 shows the percentage of the total mass contained in each Ti for each

target structure shown in Figure 5.9. As expected, the number of elements to be

assembled within each Ti is not the same for every member of the six robot team.

(a) (b) (c)

(d) (e) (f)

Figure 5.8: Decomposition using s nodes as boundaries for cells.
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: Navigation-aware task partitioning where the boundaries for Ti are de-
noted by the thicker lines.

5.3 De�ning Structural Complexity

We wish to de�ne another cost function that takes the complexity of a structure into

account. The hope is that by de�ning a complexity based cost function, we will be

able to partition the target structure in such a way that each robot has a similar

amount of work, yet also results in an easily navigable workspace.

In general, given a two-dimensional structure, we have developed an intuitive un-

derstanding of the complexity of the structure to be assembled. For example, it is easy

to understand how a target structure like the "smiling monster" seen in Figure 5.9(e)

would be de�ned as "more complex" than the square structure in Figure 5.1. Still,

the term "complexity" is subjective, and there will be many cases where the type of

robot, or the building materials being used, will add to a given structure's complexity

without it being initially apparent. Since we cannot account for every possible robot

or building material, we will de�ne a metric that can provide an estimate to enable
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S % of Total Mass in Each Partition
∑

(φi − φj)2
1 2 3 4 5 6 (%)

A 11.6 15.8 24.3 15.8 11.6 20.9 7.7
B 13.1 11.1 15.1 23.4 14.3 23.1 8.3
M 19.5 20.7 20.0 20.7 9.5 19.5 9.2

Maze 21.5 13.8 16.3 17.7 13.9 16.8 2.4
Smiling Monster 22.0 20.1 12.9 16.6 14.2 14.3 4.0

Window 18.9 15.8 13.0 18.6 14.9 18.8 1.8

Table 5.2: Mass distribution across the navigation-aware partitions Ti for the struc-
tures shown in Figure 5.9 where φi = φ(Ti). The boundaries for Ti are denoted by
the thicker lines.

comparisons, and inform the design of distributed strategies.

5.3.1 Problem De�nition

To de�ne complexity, we will again use S to represent our target structure. We will

consider the workspaceW to be a convex polygonal space and obstacle free, until the

assembly of S begins. Let q denote a point in W , and as before, let φt(q) be the

target mass density function for S. Let Si be the ith connected subset of S, andM

be the number of disconnected members of S such that S = ∪Mi=1Si. Additionally,

we denote the j massless connected subset enclosed in Si as Oij, i.e. φt(q) = 0 for

q ∈ Oij, and de�ne Oi = ∪mi
j=1Oij where O = ∪Mi=1Oi. Next, we let E and H denote

the number of entrances into and hallways in S. We will consider any opening into

the structure as an entrance.

Next, we let ∂S and ∂O denote the boundaries of the structure, and of the set of

massless connected components respectively. We denote the length of these bound-

aries by L(.). The area of each of these sets will be given by A(.), and let wi, vi, and

li represent the width of entrance i, the width of hallway i, and the length of hallway

i respectively. Since the desired metric must be independent of the size of individual

robots, we de�ne R as the radius of the smallest circle that circumscribes the robot.
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To understand all of these variables, we look at a couple of examples. For the

target structures in Figure 5.8, the yellow shaded areas represent S. For Figure

5.8(c), M = 1 since there is only one connected component of S. Further, O = 0

and E = H = 1. Figure 5.8(d) shows a structure where M = 2, O = 0, E = 2 and

H = 1. Finally, Figure 5.8(e) is an example with M = 1 and Oi = ∪2j=1Oij with each

Oij given by the interior empty squares, and E = H = 1.

With all of the variables laid out and understood, we can now de�ne the complexity

of a given S using Equation 5.11.

c1 = k1

(
L(∂S)√
A(S)

)M

(5.7)

c2 =


k2

(
L(∂O)√
A(O)

)∑M
i=1mi

if O > 0

0 otherwise

(5.8)

c3 =


k3

(∑E
i=1

2R
wi

)E
if E > 0

0 otherwise

(5.9)

c4 =


k4

(∑H
i=1

li
vi

)H
if H > 0

0 otherwise

(5.10)

C = c1 + c2 + c3 + c4 (5.11)



47

where k1, k2, k3 and k4 are weighting positive constants.

Equation 5.7 captures the geometric complexity of the target structure S. In

general, given S, a larger discrepancy between the perimeter of the structure and the

normalized area, i.e.
√
A(.), implies more protrusions and indentations associated

with the structure. In addition, asM increases, the workspace becomes more complex

as S is being assembled, since every Si introduces an obstacle into the environment.

Similarly, the Equation 5.8 describes the complexity introduced by massless re-

gions enclosed in Si for all i = 1, ...,M . Holes within a structure pose signi�cant

challenges in the synthesis of provably correct distributed algorithms unless an as-

sembly prioritization scheme can be imposed for certain portions of S.

Finally, Equations 5.9 and 5.10 describe the complexity introduced by the presence

of narrow entry points into and hallways within S. Such features can introduce sig-

ni�cant tra�c congestion for any robot trying to operate in the space. As the widths

of the entrances and hallways shrink, the complexity increases since localization and

navigation errors can detrimentally a�ect the performance of the entire system.

Although Equation 5.11 as a whole represents the complexity of the distributed

assembly task C, it is important to note that each individual term can also serve

as an independent measure for a given structure or task. These measures can be

used to adjust the target mass density function φt(q) to a�ect the partitioning of the

assembly task or to be used to determine the order in which components must be

assembled.

The complexity measures described here can now be applied to some example

target structures. The values for each measure can be found in Table 5.3. These

values were obtained by assuming R = 1 and k1 = k2 = k3 = k4 = 1. Based on

our chosen metric (given by Equation 5.11), the most challenging structure is the

Window, which can be seen in Figure 5.8(f). The complexity of the structure arises
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S M L(∂S)√
A(S)

∑M
i=1mi

L(∂O)√
A(O)

E
∑

wi

2R
H

∑
li
vi

C

Square 1 4.0 0 NA 0 NA 0 NA 4.0
B 1 10.2 1 NA 2 10 4 20.2 110.2
A 1 6.9 2 4.3 1 73 1 0.5 98.0
M 1 10.0 3 NA 1 10 2 14.5 20.0

Maze 2 15.9 4 NA 2 10 1 70.5 352.3
Window 1 9.2 6 10.2 0 NA 0 NA 1.1e6

Table 5.3: Complexity measures for various target structures

from the set of holes O within the target structure. One surprising result is the

relatively low complexity value of the M structure, found in Figure 5.8(c). This is

partly because the proposed complexity metric does not take into account the size of

the robot team that will be used to assemble the desired structure [8].
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Chapter 6

Methods for Assembly of Partitioned

Structures

Now that we have de�ned a method for obtaining navigation-aware decompositions

of a target structure, we must now de�ne an assembly strategy for each robot within

its given cell. To do this, we refer to the methods outlined in [25]. This strategy is

based on our experimental setup, which includes a 3-D structure, rather than the 2-D

structures dealt with in the previous sections. As a result, more physical constraints

exist during the assembly of the structure. A block on the lower portion of the

structure that must be placed prior to a block on the higher part of the structure is

known as a supporting block. When a supporting block and the block above it are

tasked to be placed by di�erent robots, the scenario is denoted as a split constraint.

The purpose of the algorithm is to minimize four criterion. These are the total

time it takes the robots to complete the structure, TC , the time di�erence between

robot A�s completion time and robot B's completion time, TD, the time each robot

spends waiting for the other, TW , and the number of split constraints, CS. Dijk-

stra's algorithm, which is another graph search method similar to A*, is used to help

determine which assembly components are placed by which robots.
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6.1 Experimental Setup

Two robots were tasked to assemble the target structure simultaneously. The target

structure for experimentation is found in Figure 6.1. To assemble the structure, two

di�erent assembly sequences were obtained based on the methods found in [25]. These

two sequences may be seen in Figure 6.2. Sequence 1 has 2 split constraints, while

sequence 2 has 14 split constraints. Con�icts of this nature would require that a robot

wait until the supporting block is placed before it could place its block. Because of

the simplicity of the structure in our experiment, however, no robot needed to wait

during either sequence.

Figure 6.1: Image of the target structure for experiment.

(a) (b)

Figure 6.2: Two di�erent assembly sequences - blocks shown in blue are assembled
by Robot 1 and blocks in yellow are assembled by Robot 2.
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To begin the experiment, Robot 1 and Robot 2 were placed on opposite ends of the

structure. The structure's base was pre-assembled so that the robots had a landmark

to navigate to, using their LRFs. Also, because of the self-aligning grooves on the

blocks, it was easier for the robots to place blocks on a pre-assembled base rather

than directly on the �oor. A diagram of this setup is seen in Figure 6.3. Figure 6.4

shows a sequence depicting the robotic assembly of the structure. The robots were

given the global position of the structure and the positions of their respective parts

caches. The robots traversed the workspace using the closed loop navigation strategy

de�ned in Appendix A. Finally, each robot was given their respective assembly plan.

Figure 6.3: Diagram of the experimental setup

6.2 Experimental Results

Five iterations of each assembly sequence were carried out. During each of these

trials, the time required to complete the experiment for each robot was recorded, as

well as the distance traveled by each robot. The time spent waiting to place a block

was also recorded, but there was no point during the experiment where either robot

was required to wait for the other. The time and distance values are found in Tables

6.1 and 6.2.
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(a) (b)

(c) (d)

Figure 6.4: Two robots assembling the structure during sequence 1 experiment

Seq Run 1 (s) Run 2 (s) Run 3 (s) Run 4 (s) Run 5(s) Avg (s)

Exp. Time
1 1028 1037 1060 1021 1027 1035
2 1069 1065 1030 1109 1174 1089

Time Di�erence
1 11 2 144 100 12 54
2 97 117 96 160 142 122

Table 6.1: Experimental results for 2 assembly sequences of 3-D structure

Seq Run 1 (m) Run 2 (m) Run 3 (m) Run 4 (m) Run 5 (m) Avg (m)

Tot. Dist. Trav.
1 31.58 31.30 31.27 31.32 31.34 31.36
2 32.10 32.25 32.18 32.33 32.22 32.22

Table 6.2: Experimental results for 2 assembly sequences of 3-D structure
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Chapter 7

Concluding Remarks

This work introduces methods for decentralized distributed assembly, using a team of

homogeneous robots. Using these methods, we show that assembly of a target struc-

ture is possible using our distributed assembly multi-robot testbed. In the process of

describing the methods and algorithms in this work, we have learned the challenges

that distributed assembly poses and provided ways to deal with these challenges to

come to a successful realization. As research in distributed assembly continues, and

robotic capabilities become greater, the likelihood of real world implementation of a

distributed assembly system grows.

7.1 Future Work

The work done in Chapter 4 could be expanded upon. There are other methods

that could be conceived to improve the current ones presented here. Also, proving

correctness of assembly would go a long way in making these assembly methods viable

techniques to use.

Regarding the navigation aware partitioning, given that the method presented

does not necessarily result in similarly sized partitions, an online auctioning system
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for robots to give sections of their partitions to neighboring robots would be useful

in balancing the mass in each partition, while maintaining navigation awareness.

Finally, the experimentation presented in this work displays the use of one or two

M3 robots. In order to truly show the advantages of our navigation aware partitioning

ideas compared to the equal mass partitioning ideas, more robots must be introduced

during experimentation. An experiment designed to compare these two methods

would be useful in showing that complexity based partitioning would be a more

realistic partitioning strategy.
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Appendices
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Appendix A

Di�erential Drive Robot Kinematics

for Closed-Loop Navigation

To move around the workspace, we assign various waypoints for the robots to drive to.

To get from waypoint to waypoint, we must de�ne equations so that we can give the

individual wheels commands to get the robots to their desired poses. Let Equations

A.1 and A.2 be

v =
r
(
φ̇R + φ̇L

)
2

, (A.1)

ω =
r
(
φ̇R + φ̇L

)
2l

, (A.2)

where v is the robot's forward velocity, ω is the robots angular velocity, φ̇L and φ̇R are

the robot's left and right wheel speeds, r is the radius of each of the robot's wheels,

and l is half of the robot's wheelbase. The kinematics are then de�ned as
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Figure A.1: Closed loop control diagram


ẋ

ẏ

θ̇

 =


cos(θ) 0

sin(θ) 0

0 1


v
ω

 , (A.3)

where x and y denote the robot's global position, and θ denotes the robot's orientation.

We want to control the wheel speeds such that the robot follows a smooth curve. We

de�ne a linear control law that considers the distance of the goal location as well as

the current and desired orientations of the robot. Let

v = kρρ, (A.4)

ω = kαα + kββ (A.5)

where ρ, α and β are found in Figure A.1 and kρ, kα and kβ are our controller gains.

By adjusting these k gains, we can tune the robot to behave desirably.
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Appendix B

The A* Algorithm

The A* algorithm is used to compute a path from one position to another. We assume

that a robot is trying to get to a goal. To compute a path using the A* algorithm,

the robot creates a binary map P which contains every cell p in W . Each pi which

lies in S is given a value of 1, and the rest are given values of 0. This matrix is known

as an occupancy grid. We de�ne pe as the list of every pi with a value of 0. The robot

next assigns a heuristic value hi to every pi in pe. We de�ne this value simply as the

euclidean distance from that pi to the desired goal position pg.

Beginning with the starting position, ps the robot checks all adjacent cells to see

if they are contained in pe. If they are, then they are added to a list of cells that

potentially lie on the desired path. This list may simply be called O, the open list.

For each position added to O, the current cell being evaluated is denoted as the parent

cell to each of these adjacent cells. We call the list of parent cells D. This is the most

important step, since D will eventually consist of the path from pg to ps.

Once these steps have been completed, the current pi is added to another list K,

called the closed list. K is simply a list of cells that have already been visited. When

a cell is added to K, it is removed from O. To pick the next cell to evaluate, we want

to choose the cell from O that has the lowest fi value, where
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fi = hi + gi. (B.1)

Here, gi is the distance to pi from the ps, and hi is the distance from pi to pg. Since

we don't know the actual distance from pi to pg, hi is just an estimate. The new

pi is picked and the process continues until the pg is found. If an adjacent cell is

found that is already in O, then it must be determined which parent cell is better for

that particular cell. Once the pg is added to K, the search has been completed. The

path from the pg to ps is D going backwards from pg to ps . Figure B.1 shows an

example of the A* algorithm �nding a path to the goal. For this example, D would

be N − J − I − E − A.

Figure B.1: An example solution to A*. The heuristics are the hi scores for each
spot. [3]
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Appendix C

Voronoi Decompositions

According to [20], a Voronoi diagram is �the partitioning of a plane with n points

into convex polygons such that each polygon contains exactly one generating point

and every point in a given polygon is closer to its generating point than any other.�

The diagram GV itself consists of Voronoi edges, EV , which denote the boundaries of

each cell, and Voronoi vertices VV , which denote every intersection of EV . Therefore,

a Voronoi cell Ci
V is represented by a set of vertices {v1V , ..., vmV } in VV and the set

of edges {e1V , ..., emV } in EV that connect them. The size and shape of each CVi is

determined by its generating Voronoi point pi according to

Ci
V = {q ∈ W | ||q− pi|| ≤ ||q− pj||, ∀j 6= i} (C.1)

where W represents the workspace, q represents a point in W , and {p1, ..., pn}

represents the set of all Voronoi points in W . The target density function φt is the

density of the building material, which is static during construction. These diagrams

provide a simple way of dividing the workspace. Figure C.1 shows a Voronoi diagram.

There are several ways to generate Voronoi diagrams. One easy way is to use a

computer program that has a built-in Voronoi diagram generator. To gain a better
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Figure C.1: An example of a Voronoi diagram

understanding of how Voronoi diagrams are actually decomposed, a simulation of For-

tune's sweepline algorithm was created. Figure C.2 shows a step by step breakdown

of how the algorithm works.

In Figure C.2(a), we de�ne the Voronoi points in the workspaceW . We then begin

to sweep a horizontal line H down the graph starting from the top. In Figure C.2(b),

H crosses the �rst pi . Upon encountering a point, a vertical line emanating from

the point is formed. As the sweepline continues downward, the vertical line becomes

a parabola P with the pi as the vertex and H as the directrix, or Pi = {ρ1, ..., ρn}

where

ρi = {q ∈ W| ||q− pi|| = ||q−Hx||}, (C.2)

where Hi point on H with the same x coordinate as q. A parabola Pi is formed every



62

time the sweepline encounters a pi.

Once more than one parabola exists, the two parabolas will intersect with each

other twice (unless the two points lie at the same y coordinate, in which case they

will only intersect once, but this is a special case). We let VP denote the set of these

intersection points, where VP = {v1Pij, v2Pij, ..., v1Pmn, v2Pmn} . We see this occur in

Figure C.2(c). Each EV is formed by drawing a line from v1Pij to v
2
Pij. We can only

see one of the intersection points in this �gure. The beachline B is the part of the

system of parabolas that is closest to the sweepline, as seen here:

B = {ρi | ||ρi −Hx|| < ||ρj −Hx||}. (C.3)

Based on Equation C.3, there will only be one ρ for every x coordinate. The beachline

in Figure C.2 is clearly represented by bold pink dots. The remaining sections of the

parabolas that do not lie on the beachline are shown as regular pink dots.

Figure C.2(d) depicts the third pi crossing. As H continues down, we can see

the formation of the �rst vV by the two rightmost ρ points as they converge. It is

at this point where one of the parabolas that was once a part of the beachline is no

longer a part of the beachline. Figure C.2(e) depicts a few moments after this has

happened. The black dot represents v1V created by the sweepline. A new edge is

now formed between this v1V and the new intersection of the two parabolas vP . The

moment before the last Voronoi vertex is formed can be found in Figure C.2(f).

In theory, H could continue down the graph forever, since some of the edges will

extend to in�nity. This is obviously not necessary, though, and H is stopped once

every vV has been found and the edges extend a reasonable length such that the shape

of the decomposition can be easily seen [1].



63

(a) (b)

(c) (d)

(e) (f)

Figure C.2: Fortune's Sweepline Algorithm
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Appendix D

The Brush�re Algorithm

The brush�re algorithm provides a clearance map of the area, where the clearance

from the edge of the map and the border of the structure are considered. To un-

derstand how the brush�re algorithm works, we refer to Figure D.1. In this �gure,

we see numbers growing as they get farther from the structure and the edge of the

workspace.

Figure D.1: Brush�re algorithm applied to the outer border of a structure and the
edges of the map.
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