

Development of a Web-Based Modeling System Using Metadata Concepts and

Databases

A Thesis

Submitted to the Faculty

of

Drexel University

by

Akm Saiful Islam

in partial fulfillment of the

requirements of the degree

of

Doctor of Philosophy

September 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Drexel Libraries E-Repository and Archives

https://core.ac.uk/display/190335911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

DEDICATIONS

To my wonderful parents:

My father Serajul Islam

And

My mother Shahana Islam

... With love

 iii

ACKNOWLEDGEMENTS

I am delighted to express my profound gratitude to Dr. Michael Piasecki for his

supervision, continuous guidance and encouragements during all this years. Indeed his

help to me has been indispensable to the completion of this work.

I would like to thank to National Oceanographic Partnership Program (NOPP)

and National Science Foundation (NSF) for their financial support under grant numbers

NAG13-0040 and 0412904 respectively.

I would like to express my appreciation to the other members of my doctoral

committee: Dr. Richard Weggel, Dr. Xia Lin, Dr. Agami Reddy and Dr. Alen C.W. Lau

for their support and encouragements during all these years.

I would like to thank Luis Bermudez for his generous help, valuable suggestions

and friendship and good wishes over the years.

Very special thanks go to Bora Beran for many constructive discussions, friendly

help and enthusiasm throughout the research work.

Other members of the computational Hydraulics Laboratory at Drexel University,

namely Volkan Yargici, Kutay Celebioglu, Yoori Choi and Zafer Defne are also

acknowledged for their help and friendship.

 iv

I am sincerely thankful to my friends, Mashfiqus Salehin, Shah Alam Khan, Nasir

Uddin, Azizul Islam, Lei Lou, Songtao Liao, Abu Syed Nasim and many others for their

love and respect.

I appreciated useful discussions and comments from Stephane Fellah of PCI

Geomatics Inc. Hull, QC, Canada during the creation of ontologies.

I would also like to thank Dr. Holger Knublauch of Stanford University who is

the developer of Protégé OWL plug-in for his valuable suggestions.

Finally, my deepest and sincerest regards go to my parents, brothers and sisters,

who provided me moral support as always. Thanks to Almighty for giving me strength to

overcome all the difficulties and problems I faced during the course of this study.

 v

TABLE OF CONTENTS

DEDICATIONS.. ii

ACKNOWLEDGEMENTS... iii

LIST OF TABLES... viii

LIST OF FIGURES ... ix

ABSTRACT.. xii

CHAPTER 1: INTRODUCTION... 1

1.1. Problem statement.. 5

1.2. Motivation.. 6

1.3. Contribution of the thesis... 8

1.4. Organization of this dissertation .. 8

CHAPTER 2: IMPLEMENTATION OF THE GEOGRAPHIC INFORMATION –
METADATA (ISO 19115:2003) NORM USING THE WEB ONTOLOGY LANGUAGE
(OWL)... 10

2.1. Abstract .. 10

2.2. Introduction.. 11

2.3. Ontology Concept .. 15

2.4. Mapping of the UML model and OWL ontology.. 18

2.4.1. Similarities and Differences of UML and OWL Concepts................................. 20

2.5. General rules for transforming the ISO 19115:2003 UML model to OWL ontology24

2.5.1. Name / role name.. 24

2.5.2. Short name and domain code.. 26

2.5.3. Definition .. 28

 vi

2.5.4. Obligation/condition ... 28

2.5.5. Mandatory (M).. 29

2.5.6. Conditional (C) ... 29

2.5.7. Optional (O) .. 30

2.5.8. Maximum Occurrence .. 30

2.5.9. Data Type.. 31

2.5.10. Domain and Range.. 33

2.5.11. UML Model Stereotypes... 33

2.5.12. Abstract class .. 34

2.5.13. Generalization ... 34

2.5.14. Enumeration.. 35

2.5.15. CodeList.. 36

2.5.16. DataType class .. 37

2.5.17. Union... 38

2.6. Summary .. 38

CHAPTER 3: A GENERIC HYDRODYNAMIC MODEL DATA DESCRIPTION FOR
THE SEMANTIC WEB ... 40

3.1. Abstract. ... 40

3.2. Introduction.. 41

3.3. Metadata-Standards and their representation... 43

3.4. Hydrodynamic codes ontology .. 45

3.5. Metadata profile for hydrodynamic modeling community.. 50

3.6. An example data/metadata set for the FEM2D code ... 64

3.7. Summary .. 67

 vii

CHAPTER 4: KNOWLEDGE BASED WEB SIMULATION OF HYDRODYNAMIC
PROCESSES... 70

4.1. Abstract. ... 70

4.2. Introduction.. 70

4.3. Web Based Simulation of Hydrodynamic Model.. 72

4.3.2. Simulation domain ontology... 74

4.3.3. Hydrodynamic code .. 76

4.3.3.1 Coding Languages .. 77

4.3.4. Graphical User Interface (GUI) .. 80

4.3.5. Model View Controller (MVC) Architecture ... 81

4.3.5.2 Search View.. 84

4.3.5.3 Metadata View.. 85

4.3.5.4 Display View .. 86

4.3.5.5 Edit View .. 88

4.3.5.6 Boundary View ... 89

4.3.5.7 Simulation View ... 91

4.3.5.8 Help View ... 92

4.3.6. Repository System .. 93

4.4. Summary .. 97

CHAPTER 5: CONCLUDING REMARKS .. 99

APPENDIX 1: EXAMPLE METADATA INSTANCE DOCUMENT FOR A
NUMERICAL GRID.. 108

APPENDIX 2: ONTOLOGY FOR A TWO DIMENSIONAL FINITE ELEMENT
HYDRODYNAMIC CODE WRITTEN IN OWL... 121

VITA... 143

 viii

LIST OF TABLES

Table 2-1: Similarities between UML and OWL concepts .. 21

Table 2-2: Major Incompatibilities of conversion from UML to OWL concepts 21

Table 2-3: Conversion of duplicate metadata element name.. 26

Table 2-4: Data type Implementation ... 32

Table 2-5: ISO 19115 Domain and OWL property mapping ... 33

Table 3-1: Metadata core elements as defined in ISO 19115:2003 51

Table 3-2: Data directory for the extended elements [Obligation = Optional, Condition =
none, Source = Drexel University] (Part-1).. 57

Table 3-3: Data directory for the extended elements [Obligation = Optional, Condition =
none, Source = Drexel University] (Part-2).. 59

Table 3-4: Md_AttachmentTypeCode <<CodeList>> ... 60

Table 3-5: MD_ElementTypeCode <<CodeList>>.. 61

Table 3-6: MD_GeoSpatialCode <<CodeList>>.. 61

Table 3-7: MD_GridTypeCode <<CodeList >>... 61

Table 3-8: MD_ModelDataTypeCode <<CodeList>> ... 62

Table 3-9: MD_VerticalDiscretizationCode <<CodeList >> ... 62

 ix

LIST OF FIGURES

Figure 2.1. RDF graph to describe a journal paper which has five authors and a publisher
... 13

Figure 2.2. (a) Orientation of the point in a pixel corresponding to the earth location of
the pixel for a regularly spaced grid, and (b) New metadata JapanBox is
extended from EX_GeographicBoundingBox metadata to locate earthquakes
around Japan. .. 16

Figure 2.3. ML Generalization relationship in ISO 19115:2003 34

Figure 2.4. UML of Enumeration in ISO 19115:2003.. 35

Figure 2.5. UML Code list in ISO 19115:2003 .. 36

Figure 3.1. General Ontology for describing Hydrodynamic Codes 48

Figure 3.2. Data and Metadata Ontology for Hydrodynamic Codes 49

Figure 3.3. Some common codes as an instance of the Hydrodynamic_Code class. 50

Figure 3.4. Hydrodynamic Modeling Metadata Community profile................................ 52

Figure 3.5. List of ISO 19115 Metadata Extensions and Code-Lists for Hydrodynamic
Codes... 55

Figure 3.6. (a) Extension of ISO 19115:2003 class “MD_ReferenceSystem” (b)
Compound coordinate reference system using two different datum 64

Figure 3.7. Numerical grid overlay with part of nautical chart showing grid coordinate
system and its rotation with respect to compass North................................... 65

Figure 3.8. Samples from the Example Metadata and Grid-Data Files 66

Figure 4.1. Layer data model of the hydrodynamic model data 73

Figure 4.2. Ontology for data and metadata of a numerical model 76

Figure 4.3. FORTRAN programs run through Java and CORBA Interface..................... 78

Figure 4.4. FORTRAN program runs using Java Native Interface (JNI)......................... 80

Figure 4.5. WBS system architecture based on Model-View-Controller (MVC) pattern . 83

Figure 4.6. Java based server and client communication.. 83

 x

Figure 4.7. Interface for search, copy or delete of simulations... 84

Figure 4.8. Interface for create, display, upload, or download metadata.......................... 86

Figure 4.9. Interface for display of model data as contour plot.. 87

Figure 4.10. Interface for display of model data as time series plot................................. 88

Figure 4.11. Interface for edit, uploads, download, and display of model data................ 89

Figure 4.12. Interface for set up boundary constraints on upstream water level 90

Figure 4.13. Interface for downstream discharge boundary ... 91

Figure 4.14. Interface for simulate of model .. 92

Figure 4.15. Interface for provide general help for the system... 93

Figure 4.16. RDF triple graph, (b) RDF/XML Document , and (c) Store RDF/XML into
database... 95

Figure 4.17. Relationship of tables in database for hydrodynamic model........................ 96

 xi

ABSTRACT

Development of a Web-Based Modeling System
Using Metadata Concepts and Databases

Akm Saiful Islam
Michael Piasecki, Ph.D.

The execution of hydrodynamic models typically requires the management of

large amounts of data and also utilizes considerable computational resources. Powerful

and robust servers with extensive storage capabilities are therefore desirable for rapid

execution of numerical simulations. Unfortunately, it is not always possible for an

individual to afford the necessary facilities whereas a powerful central computer system

can be the viable alternative to serve many clients. The simplest way for a client to

communicate with the central simulation server is via the internet and through a web

browser. This kind of simulation has been classified as web based simulation, or WBS.

The main advantages of web based simulation include platform independent access and

easy access from virtually anywhere. In this study the formal steps that need to be taken

for adapting a legacy hydrodynamic code such that it can be used for large scale

applications in a WBS environment is investigated. Standardized description of the

hydrodynamic model data (metadata) that has been created using geographical

information metadata, e.g. the ISO 19115:2003 standard is introduced. A formal

specification of the simulation domain or ontology has been developed to share and

retrieve this information unambiguously. Ontologies have been successfully applied in

many fields requiring intensive data retrieval, efficient searching, or analyzing the

domain knowledge. A simulation ontology is developed, which can be applied for

 xii

analyses and future reuse of the simulation domain knowledge. The interface of the WBS

environment has been developed based on the commonly used standard Model-View-

Controller (MVC) architecture, which separates business logic from its presentation.

 1

CHAPTER 1: INTRODUCTION

Demands on the modeling expertise of scientists and engineers in governmental

units and consulting companies have increased over recent years as the modeling tasks

have become more complex. Much of this increase is founded on the contention that

surrounds the detail of the modeling approach, i.e. whether a simple or a more involved

detailed approach needs to be chosen to address the (mostly environmental) problem at

hand. The contention develops from the potential costs that more stringent water quality

control measures demand as a result of higher water quality standards and the increased

awareness and demand for a healthy environment. The stakeholder process for both the

National Pollution Discharge Elimination System (NPDES) and the Total Maximum

Daily Load Program (TMDL) are typical example frameworks within which the

modeling approaches are often contested to address a specific water quality problem. As

a result, simplified approaches, requiring little modeling expertise, are often not sufficient

because, for instance, the chosen model must withstand challenges in court that are posed

by the affected stakeholder(s).

For example, many of the state and local agencies find themselves in a position to

have to conduct studies based on modeling approaches for which they can supply little or

no expertise. Due to funding limitations many of these modeling needs cannot always be

subcontracted out to (the few) consulting firms that do have the expertise. As a

consequence, many entities find themselves in a position of needing modeling expertise

but not being able to sub-contract it out due to limited funds resulting in a disparity

between the need for detailed level modeling and expertise available.

 2

To fill some of the gaps and to help alleviate the aforementioned difficulties,

almost all modeling packages now contain graphical user interfaces (GUI) to aid the user

in operating the numerical model and analyzing modeling results. One of the more

popular modeling packages is BASINS (a modeling environment that links surface

hydrology, subsurface hydrology, and stream flow models) that, in addition to a regular

GUI, provides a multipurpose modeling environment as it allows for inclusion of a

number of common modeling engines with data format conversions [1]. While this is a

first step towards more integrated modeling environments, it still requires the

development of numerical grids and modification (editing) of model specific input files.

Also, no modules exist that provide a user with a “smart” interface that eliminates much

of the expertise required to operate and run numerical models. As a result, the current

status-quo of integrated modeling systems is not sufficient to tackle the disparity between

needed ease-of-operation and required expertise.

Simulation models need input data (numerical grid, initial, and boundary

conditions) to operate. Yet, each numerical model currently available demands its own

specific data format making the interchange and analysis of model inputs and results a

tedious task that requires enormous data format conversions. Therefore, a standardized

framework to describe input and output data for the model is essential. Metadata,

commonly known as “data about data”, promises to provide a means to overcome the

heterogeneity and inconsistency that exists between models. Metadata frameworks have

been established worldwide to provide a solution to significantly eliminate the difficulties

that commonly surround the collection, interchange and analysis of data sets. A metadata

framework that is specific for operating a numerical model would eliminate the need for

 3

data file format conversions, individual descriptions of numerical model data sets, and

allow a large number of users to exchange their model data files freely and without

hindrance. Hence, it is hypothesized that it must be possible to identify a meta-standard

for the operation of numerical models. Consequently, the first goal of this research is to

develop a unified and hierarchical meta-standard for input data for numerical models.

Because of the complexity and breadth of numerical models and the vast scope of

numerical modeling efforts, this study will restrict to the application of hydrodynamic

models as a test-bed for the proposed work.

Once this standard has been developed it can be utilized to actually develop a

Meta-language. That is, the standard, which is purely semantic in nature, must be given a

syntactic support frame so it becomes a (Meta)-language. One very popular instrument

for doing this is the Extensible Markup Language (XML), which has been widely

recognized as standard form to publish electronic data and metadata [2]. In essence, it is a

platform-independent grammar that can be used to develop markup languages. In

addition, it can be used to define a so-called Resource Description Framework (RDF),

which will host the definitions and limitations of the semantics (metadata standard) [3].

Other related technologies such as Web Ontology Language (OWL), built on XML,

proves to be a better choice for encoding the standard because they permit a much richer

table of semantics as well as a more flexible definition of classes and their attributes

when compared to XML schema [4].

The concept of metadata and the use of XML as an encoding language lend itself

for expanding the approach one step further to include a database. Instead of storing data

in an input file and having a plethora of files crowding the file system, a database could

 4

serve as a data repository for all modeling efforts. In fact, it should be possible to utilize

the suggested technology to entirely eliminate input files and have the numerical engine

use the database directly for data feeds. This would not only make data file input and

output formats obsolete, but also would allow the population of the database by users that

do not necessarily partake in modeling efforts. For example, a person collecting data in

the filed could deposit these data in the database, such that subsequent modeling efforts

can directly use these datasets. The only requirement, besides Quality Control and

Quality Assurance (QC/QA) would be that the database itself must have an ontology that

maps directly to the metadata standard. Hence, this study proposes to incorporate a

database system that is directly linked to the metadata standard and can be used to

directly and seamlessly feed all necessary data items to the numerical engine.

To make the modeling environment operating platform independent all

development will be done in Java language. Java, in conjunction with a web-browser, like

Windows Explorer or Netscape, allows for a system that is portable without problems and

can be given a level of functionality. Various classes that come with Java JDK 1.4,

permit coding that can interface with legacy codes in C/C++ or FORTRAN (Java Native

Language Interface, JNI). As a result, execution of models can be performed in various

ways such as component based; client-server based, or distributed using Parallel and

High Level Architecture (HLA). Java is also rich on classes that allow the development

of high level graphical interfaces using the SWING classes (Java TM, 2002). In addition,

the possibility to include Applets into a regular HTML page permits a high level of

functionality between the user and a powerful server (for number crunching purposes).

The flexibility and power of Java for internet-capable software development is richly

 5

documented, in fact Java has become the globally accepted standard for applications that

seek to utilize network capabilities. Therefore, all code development, in fact the entire

modeling environment, will be done in Java.

Hence, the focus of this study is to develop a modeling system that is platform-

independent that eliminates much of the time consuming effort that accompanies learning

the numerical approach, setup and development of the model, as well as operation, and

that automatically ensures reasonable results with a greatly reduced demand on the

operating knowledge.

1.1. Problem statement

The recent development trend of the numerical models is ignoring some basic

needs of the modeling user community. A summary of the problems of the currently

available numerical models have are listed below:

1. Lack of sufficient description or metadata of the data sets used in the

numerical models.

2. Lack of selection of a suitable metadata standard.

3. Lack of providing guidelines for extending or creating new metadata sets.

4. Lack of selection of suitable metadata publishing languages so that it can be

understand by both humans and machines

5. Lack of a framework to publish these metadata which describes data sets of

the numerical models.

 6

6. Lack of a client-server based architecture in order to use the capability of

powerful machines for simulating large scale model such as simulation of

hydrodynamic models.

7. Lack of user friendly tools or graphical user interfaces which can be easily

used from the client machine to communicate with server machines.

1.2. Motivation

Numerical models deals with huge amount of input and output data. The proper

description of this data is essential to search and exchange of these data. Unfortunately,

this essential part of data has been neglected in the numerical modeling community in

the past. A very few cases has been found where numerical model uses metadata or

supports metadata creation tools. Metadata should be based on certain standard so that it

is possible for the users to understand and share metadata among the users. There are

several metadata standards or initiatives currently exist. The selection of a certain

metadata standard which better fit the need of the numerical model is necessary. At

present, there are no such suitable guidelines exist to create metadata based on any

particular standard for hydrodynamic models. Moreover, the extension of the metadata

for a particular purpose is required and should be provided. This study will focus on the

particular needs of hydrodynamic model to describe its data structure. It also focuses on

the selection of a certain metadata standard suitable for hydrodynamic models.

One of the problems of traditional hydrodynamic model is that it has designed to

run in a standalone machine. Sharing of numerical simulation results among users

located different places is not possible for most of the commonly used hydrodynamic

models. Numerical model should reside in a central place so that users can easily access

 7

the model and its data. User access to the server can be accomplished by many different

ways and the simplest way is to use a web browser. This study intent to develop a system

such that users can initiate simulation from their machines and simulation executed in

the server machines. Web browser will be the means of this simulation to simplify this

client-server based simulation.

One of the useful applications of the web based simulation is to use powerful

server machine. For example, world’s fastest super computer “Earth Simulator” has

more than 5000 processors and can run approximately 500 times faster than an ordinaty

computer. It is beneficial to use supercomputer if simulation requires high speed and

uses huge amount of data. This study has been motivated to develop a web-based

simulation environment as a future generation of simulation to use computational

resources of powerful server machines.

Another key problem of traditional modeling system is to access to distributed

data sources during the simulation time. Hydrodynamic models use different kinds of

data and it is not always possible to find all these datasets in one place or in one server.

Using distributed data sources is often desirable and access to these data sources could be

essential for real time simulation. However, web-based simulation can easily access to

distributed web resources during the simulation. Moreover, it can also help to retrieve

and display simulation results almost instantaneously to the remote users.

Finally, development of numerical models is always an expansive and tedious

process for a single person or a group of people. On the other hand it can be beneficial if

a certain community help on the development and debugging process. In recent years the

concept of “community models” has been established to develop a set of modeling tools

 8

which can server the whole community. Web based simulation can be ideal for sharing

the model for a certain community placing it in a central powerful server. These

community models can be beneficial using a Web-based simulation environment to share

the model and data within the community.

1.3. Contribution of the thesis

This study focuses on the development of a web-based simulation system. The following

can be listed as the major contributions of this study.

- Implementation of the Geographic Information – Metadata (ISO 19115:2003)

standard using Web Ontology Language (OWL);

- Development of a metadata community profile for hydrodynamic models using

the ISO 19115:2003 ontology.

- Development of a web-based simulation system for numerical models employing

databases.

- Presentation of a case study of the Web Based Simulation (WBS) environment

using a two dimensional finite element model for the upper Potomac estuary.

1.4. Organization of this dissertation

The thesis is organized as follows to provide an easier and streamlined reading,

each chapter was written as a stand-alone paper with its own abstract, introduction and

conclusion.

Chapter 2 presents the implementation of the geographic information metadata

(ISO 19115:2003) norm using the Web Ontology Language (OWL). It also discusses the

 9

shortcomings of XML schema and some critical issues that surround the conversion of a

Unified Modeling Language (UML) model into an OWL ontology.

Chapter 3 describes the development of a framework for hydrodynamic code and

data descriptions using the International Standard Organization, ISO, “Geographic

Information Metadata,19115:2003” standard.

Chapter 4 investigates design and development strategy of Web Based Simulation

(WBS) environment for hydrodynamic processes. Developing tools and graphical user

interfaces for different components of WBS such as metadata, data share and search, data

storage of model I/O are also examined. An application of a web based simulation has

been studied to simulate flow in the upper Potomac estuary using a two dimensional,

vertically averaged finite element model.

 10

CHAPTER 2: IMPLEMENTATION OF THE GEOGRAPHIC INFORMATION –
METADATA (ISO 19115:2003) NORM USING THE WEB ONTOLOGY

LANGUAGE (OWL)

2.1. Abstract

The International Organization for Standardization (ISO) has published the

geographic information metadata norm, ISO 19115:2003, to provide a formal structure

for describing digital geographic data. The standard is published using an abstract object

model that is implemented via the Unified Modeling Language (UML) for

conceptualizing the underlying structure of the norm. As a continuation for further

enhancement ISO is currently working on a geographic information metadata

implementation specification norm, ISO 19139.3 that seeks to find a new implementation

for the UML-based abstract model for the ISO 19115:2003. The current implementation

approach favors the use of a XML Schema to represent the 19115 norm in machine

readable format. However, the use of XML Schema entails a number of disadvantages

and as a result falls short in representing the full potential of the UML based ISO

19115:2003 standard. The use of the Web Ontology Language (OWL), built on XML,

proves to be a better choice for encoding the standard because it permits a much richer

table of semantics as well as a more flexible definition of classes and their attributes

when compared to XML schema. In this study, the shortcomings of XML schema will be

discussed. Some critical issues surrounded the conversion of a UML model into an OWL

ontology will be pointed out and a number of mapping approaches to overcome some of

the incompatibilities that exist between UML and OWL will be suggested.

 11

2.2. Introduction

The International Organization for Standardization (ISO) has published the

geographic information metadata standard, ISO 19115:2003, to provide a structure for

describing digital geographic data [16]. Although this standard is primarily developed for

digital datasets, its applicability can be extended to many other forms of geographic data

such as maps, charts, textual documents, and general purpose data. As a continuation of

interoperability enhancement among distributed geographic information, ISO is currently

working on a geographic information metadata implementation specification, ISO

19139.3 [17]. This new implementation effort will specify a profile using Unified

Modeling Language (UML) [18] interpretation and an Extensible Markup Language,

XML, Schema [19] for machine readability.

Yet, there is evidence that the use of XML-schema, the Resource Description

Framework, RDF [3], or RDF-schema is somewhat insufficient to translate the concepts

provided in UML into a fully compatible machine understandable form. These

shortcomings will be examined in more detail in the following sections.

XML Schema provides the syntax and grammar to validate documents, which in

itself is a desirable feature for automated handling of documents, but the ability of XML

Schema to represent semantics for validation and to link concepts across the World Wide

Web (WWW) is quite poor [20]. For example, a well formed XML document, that is a

document that strictly adheres to the rules of XML, could have a <watershed> element

which contains elements like <name>, <area>, <operatedBy> and <outletLocation>.

Using an XML Schema can also specify that a <watershed> can have only one

<outletLocation>. If any <watershed> element contains more than one

 12

<outletLocation>, a validation check of this XML Schema will yield that this information

is syntactically wrong. However, if two instances of a watershed have the same values or

entries for all its elements, except for <outletLocation> (this could be two different

names or two different longitude-latitude coordinates), an XML Schema validation will

not reveal that one of the instances is wrong, solely based on the fact that only one

<outletLocation> is allowed for any watershed. Moreover, it is also difficult to state more

facts about a watershed, for example that it is a geographic area or that a watershed is

similar to a hydrologic unit. Hence, although XML Schema provides a means to validate

the structures of a XML document, it does not permit to capture the semantic aspect

(correctness of an entry) of the web document [21] prompting the need to seek for

alternatives that better describe inherent semantic relationships.

Another model to better represent semantics is the Resource Description

Framework (RDF), which was designed to improve the representation of information

about web resources [22]. RDF is a data model that contains both properties and

statements. A property can be a specific characteristic, attribute or relation that describes

a web resource. A statement consists of three parts: a subject, a predicate and an object.

The subject represents a resource which has properties, while a predicate represents the

property and, an object the value of that property. A property value can bse either a

resource or a literal, e.g. free text. The main difference between a literal and a resource is

that literals cannot be the subject or the predicate of a statement. For example, a journal

article is a resource, which has a property <author> whose values are literals (Figure

2.1). That paper also has a property <publisher> which would be this journal. A journal

is considered a resource type value because it may have, or be related to, other elements

 13

such as <subscriber>, <number of copies published>, <cost of publication>, etc, which

does not permit it to be a literal.

Figure 2.1. RDF graph to describe a journal paper which has five authors and a publisher

As shown in the above example, RDF can provide a model to represent

information, however, it provides no mechanism for describing the relationships between

these properties and other resources [23]. For example, in the above RDF-outline need

that the value of the property <author> must reference a person and not a car or a flower.

However, the above example clearly demonstrates that <author> is a property about

which very little is said or demanded, i.e. that its range of acceptable values can only

include persons.

The previously outlined shortcomings can be partially overcome by an RDF

Schema, which provides a mechanism to describe properties and the relationship between

those properties and resources. The use of RDF Schema permits the addition of

information about the resource leading to better understanding of what it actually

references. It allows the division of resources in to classes and the instance of classes, and

 14

defines the property as an instance of a class [24]. As such, RDF Schema represents a

semantic extension of RDF by providing mechanisms to describe relationships between

resources. However, it does not provide all the descriptions that are useful for

representing sensible meanings among RDF classes and their properties. For example, for

a journal paper, it is needed to specify that each author of the paper is a distinct

individual, a demand that RDF Schema can not accommodate because it does not permit

inclusion of a restriction of this type on the property <author>.

It is evident from the previous discussion that neither XML Schema, RDF, nor

RDF Schema fully satisfies the specific needs of a structure to resolve foreseeable

semantic problems emerging with the ISO 19115:2003 metadata norm. On the other

hand, the advent of the Web Ontology Language (OWL) promises to introduce a tool to

overcome the se shortcomings and problems [25]. OWL is part of the ongoing effort of

the World Wide Web Consortium (W3C) to work towards the Semantic Web which is

defined as a future vision of the web by building machine understandable meaningful

form of web resources [26]. OWL enhances RDF Schema by adding more vocabulary to

describe properties and classes. For example, the owl:differentFrom property of OWL

can define that two authors of a journal paper are distinct individuals. Moreover, other

terms such as the maximum cardinality of the <publisher> property that can be set to

unity to indicate that an article can not be published in more than one journal. Hence, the

use of OWL to formally specify in an ontology the relationship between elements

(classes) and their properties (attributes) promises to provide adequate means through

which the full potential of the ISO 19115 :2003 norm can be utilized.

 15

In this study an ontology has been created for geographic metadata that

implements the norm in a machine-understandable format. In the next section, the

application of a geographic ontology is discussed with useful examples. Section 2.3,

discusses the similarities and dissimilarities when attempting to map a UML model into

an OWL ontology. Section 2.4 describes in more detail the mapping process and

conventions necessary when mapping the ISO 19115:2003 UML model to the OWL

ontology.

2.3. Ontology Concept

 Ontologies can be applied in many ways, e.g. for detecting

inconsistencies, performing validations, extending metadata, ensuring interoperability,

and for validation of information integrity and hierarchy [44]. To better understand how

ontologies in OWL can achieve the above objectives, some small examples are outlined

in the following paragraphs.

A simple example how OWL can be used to detect possible inconsistencies,

consider a small subset of geographic metadata. For example, as defined in ISO

19115:2003, the orientation of a point in a pixel is permitted in only five possible ways:

center, lower left, lower right, upper right, and upper left, Figure 2.2 (a). This concept can

be represented in an ontology by restricting the range of the property pointInPixel to a

class, MD_PixelOrientationCode. The class MD_PixelOrientationCode can be

enumerated by its five instances center, lowerLeft, lowerRight, upperRight, and

upperLeft. If the pointInPixel has as value bottom, which is not inside the allowed range,

a consistency error is reported.

 16

(a) (b)

Figure 2.2. (a) Orientation of the point in a pixel corresponding to the earth location of
the pixel for a regularly spaced grid, and (b) New metadata JapanBox is

extended from EX_GeographicBoundingBox metadata to locate earthquakes
around Japan.

A second example highlights the ability of ontologies to be easily extended to

support the completion of geographic information if new metadata elements or

vocabulary must be added. For example, a user is seeking to identify earthquakes that

occur around Japanese islands can define a new metadata term JapanBox, which is an

extension from the ISO 19115:2003 metadata element EX_GeographicBoundingBox

whose property westBoundLongitude is 1300, eastBoundaLongitude is 1450,

southBoundLatitude is 300, and northBoundLatitude is 450 as shown in Figure 2.2 (b).

This newly defined term JapanBox, can be reused for similar queries by the user.

Third, ontologies can be used as a bridge for interoperability demands among

different metadata standards. For example, ISO 19115:2003 has a metadata element title

in the CI_Citation package, which is similar to the Dublin Core element title. Using

OWL it is possible to declare an owl:equivalentProperty such that both these terms refer

to the same thing while XML Schemas and RDF schemas do not provide such mapping

 17

capabilities. One such effort uses a Dublin Core Metadata Ontology to provide meta

information for other ontologies in the HealthCyberMap domain [30].

Fourth, ontologies can be useful to validate and verify geographic data. For

example, the maximum occurrence of the ISO metadata element title in CI_Citation is

unity. Let us suppose that an instance document of the metadata ontology has two

different titles such as “water elevation” and “stage”. As the maximum cardinality

restriction is unity for the title property, it will be inferred that both “water elevation” and

“stage” represent the same thing. In contrast, an XML Schema would indicate a data

inconsistency. The above example highlights a significant difference between XML

Schema and OWL, i.e., XML Schema provides only syntactic information whereas OWL

provides semantic information for a domain.

Fifth, ontologies can be used to define the basis for system integrity. For example,

the ISO 19115:2003 CI_Address class has properties deliveryPoint, city,

administrativeArea, postalCode, country and electronicMailAddress that are intended to

describe any contact address. However, the property electronicMailAddress has zero-

infinite cardinality making it an optional property. In contrast, if it were defined as a new

metadata class called webGroupAddress, it would demand that instances of this class

must have electronicMailAddress for each contact, i.e. it is needed to change the

cardinality to unity-infinite. OWL permits change of cardinality. The result is that it is

now possible to restrict users so they are required to fill the email address while creating

an instance of webGroupAddress.

Finally, ontologies can improve query results inferring over the hierarchies of

contained terms. For example, a geographic information ontology can classify natural

 18

water bodies as stream, river, lake, pond or ocean. Lake can be further classified into

saltwater lake and fresh water lake based on salinity. For someone looking for a lake for

fishing, an ontology based search could not only provide the list of lakes but present a

classification of fresh water lakes and salt water lakes.

The above discussion outlines possible difficulties when developing community-

specific metadata sets based on the ISO 19115:2003 and the role OWL could play in

overcoming these difficulties. The conceptualization of the ISO 19115:2003 (which is

provided in UML) and its conversion into a machine readable framework is not

straightforward but fraught with shortcomings and potential pitfalls. Among the three

languages described, OWL is the most successful in avoiding these problems. In the

following section, some of the problems that persist when attempting to map UML into

OWL will be pointed out. Some of the newer concepts employed to date are reviewed.

2.4. Mapping of the UML model and OWL ontology

The basic difference between the concepts of ontology and object oriented

modeling is in their motivation [45]. The intent of object oriented modeling is to capture

sufficient knowledge for a specific purpose whereas the goal of an ontology is to capture

facts or knowledge about a domain. Therefore, an object oriented model should always

be an abstraction of an ontology. Object oriented models are typically visualized using

UML diagrams that demonstrate the static application structure of the model, the

different aspects of dynamic behavior, and the organization and management of the

application modules. Because of its popularity and wide-spread use, the idea of using

UML as an ontology representation language has recently received more attention by

researchers.

 19

There are a number of initiatives addressing domain knowledge in UML.

Cranefield [46] attempts to represent a RDF Schema as a UML class and an object

diagram using StyleSheet Language for XML Transformations [47]. Basic work

converting UML to OWL such as owl:Class, owl:SubClassOf, owl:DatatypeProperty and

owl:ObjectProperty has been carried out by using XSLT [48]. Kogut et al. [49] suggested

that UML provides excellent notation for ontologies by considering: (1) UML as a

graphical notation based on many years of experience, (2) UML as an open standard

maintained by Object Management Group (OMG), (3) UML has been widely adopted in

the software industry, and (4) UML has a standard mechanism for defining extensions for

specific application such as ontologies. They pointed out that the Object Management

Group (OMG) has built a Meta Object Facility (MOF) to provide metadata and semantics

of the UML model. The idea behind the MOF is to provide an abstract language and

framework to define a metadata layer for models [50]. Guizzardi et al. [51], proposed to

extend UML to represent a knowledge language for a conceptual model. One such

extension is Powertype a special class whose instances are classes in the UML. Finally,

Knublauch [52] demonstrated a concept to map the Protégé (open source knowledge-

modeling platform) metadata model into a UML meta-model. The basic idea is to create a

metadata model for the Protégé’s underlying object-model and then to convert this meta

model into XML Metadata Interchange (XMI) [53] using Java Metadata Interface (JMI)

[54].

Despite these recent efforts, no standard specification currently exists to express

an OWL ontology as a UML model, and vice versa. The OMG group recently sought

proposals for a specification consisting of three components: (1) an MOF metamodel for

 20

ontology, defined as ontology definition metamodel (ODM), (2) a UML profile for

ontology, and (3) mapping between ODM with UML and OWL [55]. At present, OMG

is selecting from four initial submissions. It remains unclear when the recommendation

for a specification of a MOF metamodel for OWL can be expected. Hence, similarities

and dissimilarities between UML and OWL will be indicated and resolved by suggesting

workable definitions and then manually mapping UML into OWL.

2.4.1. Similarities and Differences of UML and OWL Concepts

No reference available that points out the similarities between UML and OWL.

Baclawski [56] demonstrated mapping similarities between UML and the Darpa Agent

Markup Language (DAML). DAML is a language that can be considered the predecessor

of OWL that is based on RDF and RDF Schema to represent ontologies. Hence, this

comparison lends as a base to infer similarities for UML and OWL. For example, UML

class can be expressed in a similar concept using owl:Class, UML association can be

mapped into owl:ObjectProperty and UML attribute can be expressed as

owl:DatatypeProperty. On other side, there are some concepts in OWL that cannot be

straight forwardly mapped into UML. For example, there is no equivalent concept in

UML to express the owl:unionOf concept of OWL. A summary of the similarities

between UML and OWL concepts has presented in Table 2-1, while a list of significant

differences is given in Table 2-2.

 21

Table 2-1: Similarities between UML and OWL concepts

UML concept OWL concept

Package Ontology

Class Class

Attributes, Associations Property

Generalization Relation Hierarchy

Data Type Data Type

Object Instance

Multiplicity Constrains Restrictions

Table 2-2: Major Incompatibilities of conversion from UML to OWL concepts

Incompatible UML Concept OWL Concept

Associations as second class concept Property as first class concept

Closed world Open world (monotonic)

Modularity Not supported

Behavioral specialization/generalization Set theoretic subclass/ superclass

Multiple meta levels Single meta level

Abstract class Not supported

Scope – private , public and protected Not supported

Before starting to translate (or map) the metadata UML abstract model into an

OWL-based ontology, it is worthwhile to further discuss some of the dissimilarities, i.e.

potentially difficult points when mapping UML into OWL.

 22

a. Incompatibility of properties

In OWL properties are defined as a first-class concept whereas UML attributes

and associations are not first-class. What this means is that in OWL a property can exist

without defining its range and domain, while in UML attributes need to have a range and

domain definition. Therefore, in an ontology, every property must have a different name

as they are declared independently from classes. On the other hand, different UML

attributes and association with same name can exists in a single UML model in different

classes. For example, the language attribute of ISO 19115:2003 can be found in the

MD_Metadata, MD_DataIdentification, MD_FeatureCatalogDescription classes to

represent metadata language, data language and feature catalog language, respectively. In

contrast it is not possible to create three OWL owl:DatatypeProperty in a single ontology

with the same name. This must be carefully when considered when mapping UML into

OWL and some mapping guidelines will be provided to resolve this issue in the next

section.

b. Monotonic worlds

OWL and other knowledge representation systems are monotonic in nature, which

means that adding a new fact does not affect the correctness of a previously declared fact

[56]. In contrast, UML assumes a closed world, which means that if something is absent

or is newly added, it will be assumed as false or non-existent. For example, every

metadata instance document can only have a single metadata documentation creation

date, which is defined as dateStamp element. If any particular instance has two

dateStamp properties, the UML model will consider this situation as a violation of the

maximum cardinality requirements. In contrast, monotonic logic does not imply the same

 23

conclusion, because it is possible that both metadata creation dates are the same, which in

turn would establish equality of the dates and as such be consistent.

c. Modularization

The ISO presents metadata in different UML packages aimed at reducing the

maintenance effort. It is easier to handle, reuse and maintain a UML model if its different

analogous components are bundled into different packages. OWL on the other hand, does

not support the package-concept as UML does. Different ontologies can only interact

using the OWL owl:import element and XML “namespaces”, which provide unique

names. But unlike UML packages, the owl:import element provides no semantic

explanation about the use of resources within the imported ontology. To avoid this

problem when using OWL, the ontology was not modularized into different packages

rather to keep it as a single file.

d. Generalization

While the UML generalization and specialization relationship can be expressed in

similar fashion in OWL using the sub-class and super-class relationships, there are

semantic differences between the generalization relationship of UML and the subclass

relationship of OWL. The generalization relationship in UML is behavioral, which

means that specialization can add new methods or attributes thereby overriding the

method of the generalized class. On the other hand, the sub-class relationship of OWL is

defined and set as theoretic, which means that sub-class can restrict the super-class

without adding any attributes or methods [56]. Despite these semantic differences

mapping is important as these two concepts identify and represent parent and children

relationship between two classes.

 24

e. Abstract class

UML defines classes that are considered abstract for which an instance cannot be

created. On the other side, OWL does not support the concept of an abstract class, which

means that every class in OWL is available for creating a new instance. This

incompatibility of mapping cannot be resolved directly and an annotation property can be

provided to tag this type of class as abstract.

There are several other incompatibilities, all of which will be addressed in the

following section, including a suggestion or mechanism for resolving them.

2.5. General rules for transforming the ISO 19115:2003 UML model to OWL
ontology

This section will explain in detail the conventions adopted to translate the ISO

19115:2003 UML model into an OWL ontology. Section 3.1 to 3.8 addresses naming

conventions, data types, and restriction conditions between the two concepts. In section

3.9 to 3.15, the conversion of different UML stereotypes described in ISO 19115:2003

into OWL ontology will be addressed.

2.5.1. Name / role name

Each metadata entity or metadata element has a name or label which is derived

from single or multiple concatenated words. Although metadata element names are

typically unique within the entire specification, a metadata element may not be globally

unique as other entities (sub-portions of the specification) can contain the same element

name. This could be a problem if name was used as identifiers (e.g. rdf:ID), which

 25

should be unique throughout the namespace. Fortunately, there are very few elements

which have identical names. The following criteria will be used to resolve this problem.

If duplicate elements have the same range, only one element is declared without

defining its domain. A class that uses this property could refer to it by creating a

restriction.

If duplicate elements have different range, create a new element using its short

name. If duplicate element is a code list element, an underscore (“_”) is added before its

name. As only pairs of duplicate elements exist in the norm, this approach can resolve the

conflict successfully.

For example, the metadata element name appears in seven metadata entities (ISO

19115:2003 classes), as presented in Table 2-3. To resolve this problem, a data type

property name was created with range xs:string with an open domain for four identical

range elements.

<owl:DatatypeProperty rdf:ID="name">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

 26

Table 2-3: Conversion of duplicate metadata element name

ISO 19115:2003 Class owl:domain owl:range rdf:ID

MD_ExtendedElement

Information

- xs:string name

CI_Series - xs:string name

RS_ReferenceSystem RS_ReferenceSystem RS_Identifier refSysName

MD_Format - xs:string name

MD_Application

SchemaInformation

MD_ApplicationSchema

Information

CI_Citation asName

MD_Medium MD_Medium MD_Medium

Name Code

medName

CI_OnlineResource - xs:string name

Three owl:ObjectProperty: refSysName, asName, medName were created for

different range elements using their short names. The ranges of the elements are kept and

remain the same as that of their associated class.

Codelist element point appears in both code lists MD_CellGeometryCode and

MD_GeometricObjectTypeCode. Here, rdf:ID=”point” in MD_CellGeometryCode and

rdf:ID =“_point” in MD_GeometricObjectTypeCode is used.

2.5.2. Short name and domain code

The possibility to use short names is a unique feature of the ISO 19115:2003

standard which also suggests its use with the XML or SGML language. On the other

 27

hand, the ISO 19139.3 norm uses the metadata element name as a unique identifier for

the XML Schema to increase human readability. An approach that is similar to the ISO

19139.3 specification has suggested to use the metadata element name as rdf:ID.

However, in order to allow the use of short names as permitted in the UML

conceptualization of the ISO 19115:2003, an annotation property is created _shortname

to document this specific feature of ISO 19115:2003.

<owl:AnnotationProperty rdf:ID="_shortName” />

<owl:Class rdf:ID="MD_Metadata">

<iso:shortName>Metadata</iso:shortName>

</owl:Class>

ISO 19115:2003 defines a special data type class enumeration (see also 4.12)

whose instances form a list of literal values. Enumeration gives a list of well understand

values by assuming that all the values of the list are known and that this list cannot be

extended in future. To provide support for a more flexible list to which more values can

be added in future, ISO 19115:2003 also defines codelist which is an open type of

enumeration. Every element in codelist has a name and a domain code. Domain codes

are comprised of a 3 digit unique number within the codelist. To represent this domain

code feature, unlike a _shortname, an annotation property _domainCode has been created

to provide a higher degree of readability for each codelist element.

<owl:AnnotationProperty rdf:ID="_domainCode” />

<iso:MD_RestrictionCode rdf:ID="copyright">

 28

<iso:_domainCode>001</iso:_domainCode>

</iso:MD_RestrictionCode>

2.5.3. Definition

The ISO 19115:2003 norm provides the utility of a data directory within which

descriptions for a metadata entity or element can be outlined to describe the UML

abstract model. These descriptions are quite useful when the need arises to better

understand what the element tries to describe. This feature can be mapped into OWL via

the rdfs:comment property. For example, the definition for the MD_Metadata entity can

be described as follows;

<owl:Class rdf:ID="MD_Metadata">

<rdfs:comment> root entity which defines metadata about a resource or resources

</rdfs:comment>

</owl:Class>

2.5.4. Obligation/condition

The ISO 19115:2003 defines three types of obligations for documentation of

metadata entities or metadata elements which are classified as mandatory, conditional or

optional. Mandatory and optional obligations are identified in UML as cardinality

associations, that are mapped to an OWL ontology via cardinality restrictions. In OWL, a

cardinality restriction is an anonymous class, which applies a restriction on a specific

property and is declared as a super class of the class using that property.

 29

2.5.5. Mandatory (M)

Mandatory metadata entities or metadata elements are those which must be

documented, i.e. must receive a value if the norm is used for a data-set description. If a

class defines a minimum or exact cardinality greater than one for the usage of a property,

it is mandatory. A cardinality restriction in OWL is created with the value of that

cardinality, and it is applied on the entity (property) and is declared super class of the

entity (class) using the property.

If a metadata entity or metadata element has more than a single occurrence and

also has the same maximum and minimum occurrences, the same cardinality restrictions

will be used.

If the metadata entity or metadata element has different minimum and maximum

occurrences, the minimum cardinality restriction will be used.

If the metadata entity or metadata element has a maximum occurrence equal to 1,

it will be considered as an owl:FunctionalProperty.

2.5.6. Conditional (C)

A conditional element defines an element that is mandatory under certain

conditions. This definition is quite difficult to map in OWL and at present any

mechanism to map these conditional elements (or rather the conditions defining the

mandatory use of this element) to an ontology in OWL is not known. This is one of the

shortcomings of the present ontology and requires further investigation. For now,

conditions are set as an annotation property condition.

 30

<owl:AnnotationProperty rdf:ID="condition” />

<owl:ObjectProperty rdf:ID="characterSet”>

<iso:condition>ISO 10646-1 not used ?</iso:condition>

</owl:ObjectProperty>

2.5.7. Optional (O)

Optional metadata entities or metadata elements provide a means towards the full

documentation of the data but are not necessary. This feature is relatively easy to map

into OWL by setting the minimum cardinality restriction of the optional metadata

element to zero.

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="#metadataStandardName"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0

</owl:minCardinality>

</owl:Restriction>

2.5.8. Maximum Occurrence

Maximum occurrence indicates the possible maximum number of values that can

occur for a metadata element in a metadata entity. In OWL, this can be expressed as a

local cardinality restriction on the class.

The rules are given as follows:

 31

a. If the maximum and minimum occurrences of an metadata entity or metadata

element are the same, maximum occurrence will be represented by the

owl:cardinality

b. If a metadata entity or metadata element has a different maximum and minimum

occurrence, maximum occurrence will be represented by the owl:maxCardinality,

and the minimum as owl:minCardinality restriction.

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="#metadataStandardName"/>

</owl:onProperty>

<owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1

</owl:maxCardinality>

</owl:Restriction>

2.5.9. Data Type

The ISO 19115:2003 norm uses a number of data types which are defined in

“Geographic Information Conceptual Schema Language (ISO 19103)” norm to provide

distinct values for the metadata elements [57]. A similar approach as taken in the ISO

19139.3, i.e. to translate data types into XML base types is used. The conversion lists

from the ISO 19115:2003 data type class into XML base types are given in Table 2-4.

 32

Table 2-4: Data type Implementation

ISO 19103 Class XML base type

Binary xs:base64Binary

Boolean xs:Boolean

Character xs:string

CharacterString xs:string

Date xs:date

DateTime xs:dateTime

Decimal xs:decimal

Integer xs:integer

Number xs:decimal

Real xs:decimal

Time xs:time

URI xs:anyURI

A Metadata element that has its domain as data type, is mapped as

owl:DatatypeProperty. The range of the OWL property is then given by an XML base

type. For example, the range of the metadata element “hoursOfService” is defined as

follows.

<owl:DatatypeProperty rdf:ID="hoursOfService">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

 33

2.5.10. Domain and Range

In the ISO:19115:2003 norm the data directory domain represents the line

numbers covered by the entity. rdfs:range is used to represent the domain defined in the

ISO 19115:2003. OWL classifies properties into two basic groups owl:DatatypeProperty

and owl:ObjectProperty. If the domain in the ISO 19115:2003 is Free Text, Integer, Real,

Boolean, Date, DateTime , the property is mapped to owl:DatatypeProperty. If the

domain of a property in ISO 19115:2003 is a class, owl:ObjectProperty is used as shown

in Table 2-5.

Table 2-5: ISO 19115 Domain and OWL property mapping

ISO 19115:2003 Domain Property

Free Text, Integer, Real, Boolean, Date, DateTime owl:DatatypeProperty

Class or Association owl:ObjectProperty

2.5.11. UML Model Stereotypes

A UML stereotypes is an extension mechanism for existing UML concepts. An

annotation property “stereotypes” is used to provide this information. For example, the

stereotypes for the class MD_Metadata is “class".

<owl:AnnotationProperty rdf:ID="stereotypes” />

<owl:Class rdf:ID="MD_Metadata">

<iso:stereotypes>class</iso:stereotypes>

</owl:Class>

 34

2.5.12. Abstract class

Abstract class is defined in ISO 19115:2003 as a class that cannot be directly

instantiated, Since OWL, as mentioned before, does not support an abstract class concept,

An annotation property stereotype is used with a value of abstractClass. An example of

OWL stereotype for an abstract class is shown below.

<owl:Class rdf:ID="MD_Identification">

<iso:stereotypes>abstractClass</iso:stereotypes>

</owl:Class>

2.5.13. Generalization

Generalization is defined in ISO 19115:2003 as a relationship between a

generalized super-class and a specified subclass, Figure 2.3.

Figure 2.3. ML Generalization relationship in ISO 19115:2003

Generalization in OWL can be expressed as owl:Class and owl:subClassOf.

 35

<owl:Class MD_Identifiation></owl:Class>

<owl:Class rdf:ID="MD_ServiceIdentification">

<rdfs:subClassOf rdf:resource="#MD_Identification"/>

</owl:Class>

<owl:Class rdf:ID="MD_DataIdentification">

<rdfs:subClassOf rdf:resource="#MD_Identification"/>

</owl:Class>

2.5.14. Enumeration

Enumeration is defined in ISO 19115:2003 as a data type whose instances come

exclusively from a list of named literal values, as shown in Figure 2.4. Enumeration is

treated through the owl:oneOf property in OWL. The process in OWL is to: 1) create an

enumerated class; 2) create all the code list elements as the instances of the class, 3) link

the enumerated class with an equivalent class, which is a collection of the instances of

that class, and 4) the range of the property, which will hold the values of the enumeration,

is restricted to allow values of the equivalent created class.

Figure 2.4. UML of Enumeration in ISO 19115:2003

For example, the enumerated class MD_ObligationCode is represented as a

enumerated owl:equivalentClass using owl:oneOf collections:

 36

<owl:Class rdf:ID="MD_ObligationCode">

<owl:equivalentClass>

<owl:Class>

<owl:oneOf rdf:parseType="Collection">

<iso:MD_ObligationCode rdf:ID="mandatory" />

<iso:MD_ObligationCode rdf:ID="optional" />

<iso:MD_ObligationCode rdf:ID="conditional" />

</owl:oneOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

2.5.15. CodeList

CodeList are typically used to describe a long list of likely values, which makes it

a more open or flexible enumeration. CodeList is expressed by creating instances of the

class they belongs to, Figure 2.5. However, because CodeList needs to retain its ability to

be extended in the future, its instances should not be enumerated using the owl:oneOf

property. The stereotype annotation for CodeList is codelist.

Figure 2.5. UML Code list in ISO 19115:2003

 37

For example, the CodeList class MD_CellGeometryCode is represented as an

enumerated owl:equivalentClass rather than using owl:oneOf collections.

<owl:Class rdf:ID="MD_CellGeometryCode">

<owl:equivalentClass>

</owl:Class>

<iso:MD_CellGeometryCode rdf:ID="point" />

<iso:MD_CellGeometryCode rdf:ID="area" />

2.5.16. DataType class

A datatype class is a class that describes a set of values representing attributes of

a particular object. For example, citation is an attribute of MD_Identification. The values

of citation are of type CI_Citation, where CI_Citation is a datatype. Datatype classes are

composed of one or more primitive datatypes (e.g. number, string and date), as well as

other datatype classes.

While primitive datatypes are mapped to XML Schema datatypes, classes with

stereotype datatype are mapped to OWL classes. To keep the stereotype information

from the ISO specification for the datatype classes, an annotation property

iso:stereotypes with value datatypeClass is created in the OWL class. DQ_Result is an

example of a datatype class, and its encoding in OWL is shown below:

<owl:Class rdf:ID="DQ_Result">

<iso:stereotypes>datatypeClass</iso:stereotypes>

</owl:Class>

 38

2.5.17. Union

A union class allows an alternative selection (one of) of two or more classes. This

class is used in the ISO specification so there is no need to create a common super type

class. An union class is mapped to an OWL class, and its union definition is stored in the

iso:stereotypes annotation property with a value of unionClass. An example for

MD_ScopeDescription is shown below.

<owl:Class rdf:ID="MD_ScopeDescription">

<iso:stereotypes>unionClass</iso:stereotypes>

</owl:Class>

Finally, the complete ISO 19115:2003 norm has been mapped into OWL and is

being made available to the general public at

http://loki.cae.drexel.edu/~wbs/ontology/list.html . Several links have been created at

other web-pages, one of which is hosted at the Protégé Ontology Library at Stanford

University at http://protege.stanford.edu/ontologies/ontologies.html.

2.6. Summary

In this study, a mapping approach is developed for geographic information

metadata, ISO norm 19115:2003, from its conceptualization in UML into an ontology

using the Web Ontology Language, OWL. This work has been motivated by the

realization that the current implementation approach utilized in the ISO 19139.3, i.e. the

use of XML schema, falls well short of being able to fully represent the concepts inherent

in the UML conceptualization of the standard. These shortcomings have been discussed

http://loki.cae.drexel.edu/~wbs/ontology/list.html
http://protege.stanford.edu/ontologies/ontologies.html

 39

also including the alternative approaches using the Resources Description Framework

schema. In contrast, the use of an ontology is shown, and its realization in OWL, has the

potential of much better implementing the underlying UML concepts of the ISO

19115:2003. In addition, a step by step conversion process from ISO 19115:2003 UML

model to OWL ontology is demonstrated addressing each of the items that, in our

opinion, needed a specific mapping rule. While many of the dissimilarities have been

resolved and a mapping rule has been derived, a 100% perfect mapping has not been

achieved and that the present specification of UML does not permit a complete

conversion of an object oriented concept into a knowledge-based concept. This work can

help in establishing an automated conversion framework in future that would permit,

through an ontology definition metamodel, to convert any object oriented model into

knowledge based concept. The ISO 19115:2003 ontology is made available for public use

and hope that it will be used and also tested with a number of extensive real world

examples for future modification and corrections.

 40

CHAPTER 3: A GENERIC HYDRODYNAMIC MODEL DATA DESCRIPTION
FOR THE SEMANTIC WEB

3.1. Abstract.

Sharing of data sets between numerical models is considered an important and

pressing issue in the modeling community, because i) the time consumed to convert data

sets and ii) the need to connect different types of numerical codes to better map inter-

connectedness of aquatic domains. One of the reasons of the data sharing problem arises

from the lack of sufficient description of the data, or lack of metadata, which is due to the

absence of a standardized framework for these metadata sets. This study describes the

development of a framework for hydrodynamic code and data descriptions using the

International Standard Organization, ISO, “Geographic Information

Metadata,19115:2003” standard. This standard has been chosen not only because of its

extent and adequacy to describe geospatial data, but also because of its widespread use

and flexibility to extend the coverage. The latter is particularly important as further

extensions of the metadata standard are needed to provide a comprehensive metadata

representation of hydrodynamic codes and their data. In order to enable the community to

share and reuse numerical code data sets, however, they need to be published in both

human and machine understandable format. One such format is the Web Ontology

language (OWL), whose syntax is compliant with the Extensible Markup Language

(XML). OWL gives explicit meaning for machines to automatically extract and compile

information available on the web. In this study, an extensive metadata profile using the

available elements of the ISO 19115:2003 as well as its extension rules is presented.

Based on the metadata profile, an explicit specification or ontology for the modeling

 41

domain has been created using OWL. This ontology permits not only permits flexibility

when extending the coverage but also, to share data sets as resources across the internet

as part of the Semantic Web. The use of the framework using a two-dimensional finite

element code and its associated data sets is demonstrated.

3.2. Introduction

Over the last decade, the accessibility of data through internet based systems has

become more widespread with a plethora of web-portals to access real-time data sources,

forecasting systems, or direct access to holdings in data bases. This trend has enabled the

hydrodynamic processes modeling community, to gain access to a much denser array of

data that can be used for calibrating and validating hydrodynamic models in addition to

providing data sets for model improvement. While this access to data is a very welcome

development it has also prompted the need to develop a common vocabulary and

grammar to exchange model data among users of various models in order to ease the

burden of re-formatting numerical model data when using different codes. A key to the

successful development of such a framework is the adequate description of the model

data through a metadata system. Metadata is commonly known as “data about data” [5]

and is used to provide conceptual information about a data object. Unfortunately,

metadata has always been treated as a lesser important aspect in the world of numerical

modeling [6]. Typically the information about numerical model data is placed in a few

lines in the header and throughout the data files, an approach that is a common for many

of the currently used hydrodynamic models.

 42

A very few hydrodynamic and water quality modeling environments such as

BASINS [1] are the exception of this trend. BASINS provides an integrating modeling

environment, which uses metadata to describe the content, quality, condition, and other

characteristics of model data. However, while the BASINS approach is a right and

necessary step towards improving modeling efforts, it is limited to the use on

WINDOWS systems and also requires the use of an integrated geographic information

system (GIS) that is only commercially available. Another initiative is the HarmonIT

project (http://www.harmonit.org/) funded by the European Commission that aims at

developing and implementing a European Open Modeling Interface and Environment

(OpenMI) that will simplify the linking of hydrology related models across Europe [7].

The basic underlying idea is to create a software standard interface that permits software

components to request data from each other through “get_functions”. This approach

however requires the adherence to an adopted software interface (OpenMI) by all

programs and does not follow the idea of using a flexible description of model data

whose organization and formatting does not follow any particular rules but can be parsed

as needed. Other modeling environments such as SMS [8], GenScn [9] , or DELFT3D

[10] permit only the use of specially designed components that are part of a code family

or work only with specific set of codes that have been equipped with an custom interface.

All of these systems though require a customization of the codes to conform to a certain

standard, rather than defining a generic framework that leaves structure and convention

of the existing codes unaltered. There are also a number of self-describing data formats

available like netCDF [11] and HDF5 [12]. Both formats are intended for storage of large

(several Giga or even Peta bytes) scientific data sets using an internal data model for

http://www.harmonit.org/

 43

structuring the data and also employ a special encoding format. As a result, both formats

need a suite of tools to en- and decode the files stored in the respective formats. netCDF

does not permit external storage of metadata, which means that the files need to be

opened to find out what has been stored. HDF5 on the other side does permit this external

storage of metadata, which makes it more attractive for use. However, the meta

information stored is not regulated (following a standard) and can be set arbitrarily

leaving it to a user community to define what it should be. Hence, there exists a need for

developing a data exchange and description system that is i) platform independent and

generic so the information can be parsed on the Semantic WEB, ii) uses a metadata

standard that is internationally recognized, and iii) that has a higher degree of

generalization than what is currently available, [13].

3.3. Metadata-Standards and their representation

A number of metadata standards have emerged over the past years. The Dublin

Core Metadata Initiative [14] is one of the most widely used metadata standards for

describing a wide range of network resources. The most compelling virtue of the Dublin

core is the simplicity (only 15 required elements) and its commonly understood

semantics. However, the DCM is not adequate to describe the geospatial data for

numerical models because it has its origin in the library sciences. Another metadata

standard has been published by the Federal Geographic Data Committee (FGDC) whose

“Content Standard for Digital Geospatial Metadata” (CSDGM), [15], is extensive and

specifies the structure and content of some 220 metadata elements to describe geospatial

data sets. At the time of writing this manuscript version 3 of the CSDGM

recommendation, however, is slated to follow the International Organization for

 44

Standardization (ISO) recommendation for geographic information metadata, ISO

19115:2003 standard [16] in the near future. Although the ISO standard is primarily

developed for digital datasets, its applicability can be extended to use in many other

forms of geographic data such as maps, chart and textual documents and general purpose

data. Because hydrodynamic model data mostly deals with geographically referenced

datasets, this standard is ideally suited for developing a hydrodynamic modeling metadata

set.

Given the need to make metadata descriptions available across the WEB, and also

realizing that metadata instances need to be passed between researchers (human

readability) and also computer systems (machine readability), a suitable encoding scheme

must be selected. A first choice would be to use the eXtensible Markup Language (XML)

developed by World Wide Web Consortium (W3C) because it is a simple, very flexible

text format that has been designed for electronic publications of any kind [58]. However,

XML provides only a syntactic framework with very little semantic or meaning-between-

data-elements capabilities, and also is quite limited in its ability to be easily extended in a

Schema. Alternatively, ongoing W3C efforts have created several other languages based

on the XML format to make web resources more understandable for both human and

computers. The W3C is currently working on providing the basic building blocks for the

future vision of the WEB known as “Semantic Web”, with the goal to build a machine

understandable meaningful form of web resources [26]. One of these building blocks is

the Web Ontology Language (OWL) that is intended to provide a language that can

formalize the domain knowledge with explicit specification in a machine readable format

[27].

 45

Ontologies have been successfully applied in the geosciences field for information

retrieval, efficient searching, or analyzing domain knowledge. Ontologies can be applied

in a variety of ways in geographic information metadata systems to better address

consistency validation, interoperability needs, verification, and required system integrity

[28]. Bermudez and Piasecki [29] have outlined an approach that can help in overcoming

semantic heterogeneities among different community specific metadata standards. A

Dublin core Metadata Ontology was used to provide meta information for other

ontologies in the HealthCyberMap domain [30]. In another application, Wariyapola et al.

[31] showed an example to create an ontology and a metadata set for a coastal zone

management system. They adopted the FGDC standard for geospatial and biological

metadata and the Dublin core metadata standard for cataloguing information. Handschun

et al. [32] developed a framework, CREAM, to allow creation of metadata for existing

web pages based on a domain ontology. Islam et al. [28] developed an ontology for the

geographic information metadata ISO 19115:2003 norm, by defining mapping rules that

transform the ISO 19115:2003 conceptualization in UML (Uniform Modeling Language)

into OWL. The availability of the ISO 19115:2003 norm in OWL, even though not (yet)

recommended by ISO, is a basic building block for the proposed model data metadata set

as it allows the use of the metadata set together with the capabilities inherent in OWL to

express the meaning and relations between elements of numerical modeling data sets.

3.4. Hydrodynamic codes ontology

The very first step for users of hydrodynamic models is to select the appropriate

numerical code depending on the problem at hand. This depends first of course on the

range of physical processes involved and the necessity to include those in the modeling

 46

effort (or not). There are other factors, however, determining the selection of a code, one

of which may be the need to accurately map a very complex domain for which

rectangular or curvilinear grids are not as suitable as unstructured grids. This need may

determine the selection of the integration method, for example the use of Finite

Difference versus a Finite Element code. In addition, other circumstances, like the

availability of computational resources, may also play an important role when selecting

numerical codes. For example, the use of an implicit versus an explicit code may be

determined by the need to do long term simulations for which explicit codes may be

unsuitable because the available CPU power is too low.

Also, in view of the goal to develop a modeling ontology for a specific

hydrodynamic code, it is necessary to bring some structure to the hydrodynamic

modeling code world so any specific code ontology ties in into an upper level structure.

This upper structure is particular important when considering the desire to exchange

input/output data between different codes, a problem that typically requires multiple

conversion routines to move data from one format specification to another. A better

approach to this time consuming process is to introduce a framework in which data is

stored format independent so it can be parsed (on the accompanying metadata) and re-

inserted into other codes without reformatting.

Based on the above two motivations, A hydrodynamic model ontology is

developed that describes in broad terms a number of numerical codes using several

characteristics. A number of fundamental characteristics are selected such as (1)

dimensionality of the problem (should it be a 1D, 2D, or 3D formulation?), (2) numerical

integration method (Finite Difference, Finite Element, Finite Volume?), (3) numerical

 47

integration scheme (implicit, explicit, semi-implicit?), (4) developer (private, business,

government?), and (5) availability (proprietary or public domain?) as shown in Figure

3.1. This list, of course, is not complete and certainly not all-encompassing when

thinking about possible other characterizations. For example, one could further sub-

divide the 3D code class into what type of grid is being used (rectangular, curvilinear,

and un-structured) and also try to consider whether a Z-grid or a σ-grid (in the vertical)

has been employed. Other criteria could include the bottom or surface friction

formulations or (in 3D) what type of turbulence closure model has been implemented

(constant eddy diffusion coefficient, one-equation, or two-equation model). This detail

however is not necessary when trying to just broadly categorize hydrodynamic codes by

using a few but significant criteria. Please notice that the sub-classes Developer and

Availability have been collapsed in order not to overload the image with information

content. These two classes though contain other sub-classes and properties for more

specificity of these two sub-classes.

Figure 3.2 shows the second block of the code descriptions, i.e. the detailed

expansion of the class IO_Model that focuses on the actual data sets of the system and the

metadata description block. The latter contains the code specific data set (MD_FEM2D

and “others”) and the link to the classes describing the spatial and temporal extent of the

input and output data (marked by the red dotted line rectangles). It should be noted that

the blue arrows identify properties of a class, while the black arrows depict the

relationship of a parent- and child-class (or sub-class). The difference is that the

properties can be range restricted (only a certain set of values can be used when creating

instances) and the sub-classes can be given a different set of properties other than those

 48

they inherit from the parent class. These differences are quite significant and will not be

further elaborated on here, yet the careful identification of sub-classes and properties is a

crucial step of the development work as it determines the ability to properly identify and

also extent this code framework.

Figure 3.1. General Ontology for describing Hydrodynamic Codes

 49

Figure 3.2. Data and Metadata Ontology for Hydrodynamic Codes

Some common surface water and water quality models (in case the hydrodynamic

code module could also be used) are shown in Figure 3.3, which contains instances of the

Hydrodynamic_Code class in the ontology. The list shown (by no means complete)

contains several of the commonly known models out of a total of currently 57 different

numerical codes that are described without the IO_Model components (for the entire

ontology see http://loki.cae.drexel.edu/~wbs/ontology/2004/08/model#). These instances are

created based on a number of published code collections, like the list provided by the

Surface Water and Water Quality Models Information Clearinghouse (SMIC), and also

through an extensive search for numerical codes. An in-house two dimensional finite

element code, referred to as “FEM2D” is also added. The FEM2D instance of the

Hydrodynamic_Code class in the ontology will be used to develop and demonstrate how

to domain ontology for the data and the accompanying metadata of this instance. Before

http://loki.cae.drexel.edu/~wbs/ontology/2004/08/model

 50

describing that extended ontology, however, it is useful to review a few important

characteristics of the geographic information metadata ISO 19115:2003 specification, to

better understand where the required metadata elements are emanating from and how the

extension rules must be applied to this specific development.

Figure 3.3. Some common codes as an instance of the Hydrodynamic_Code class.

3.5. Metadata profile for hydrodynamic modeling community

ISO categorizes metadata into a number of Unified Modeling Language, UML,

[18] packages that are clusters of logically related components. ISO defines an extensive

set of metadata elements (about 300) but typically only a subset (albeit carefully selected)

of them is used. Metadata elements are also classified as: (1) mandatory (M), (2)

conditional (C), and (3) optional, which determine their prominence. Mandatory elements

must be documented whereas optional elements may be added or not. Conditional

elements are tested through the associated conditions and if the answers are positive they

must be documented. ISO recommends about twenty six metadata elements to be used as

a core element set of metadata for any dataset description, which are listed in Table 3-1.

Of those only seven elements as defined as mandatory (dark grey background), four of

them are conditional (light grey background) while the rest are optional.

 51

Table 3-1: Metadata core elements as defined in ISO 19115:2003

Parent Class Core

Elements

Parent Class Core

Elements

MD_Metadata fileIdentifier MD_Resolution equivalentScale

MD_Metadata metadataStandard

Name

MD_Resolution Distance

MD_Metadata metadataStandard

Version

CI_Responsible

Party

Role

MD_Metadata language MD_Format Name

MD_Metadata characterSet MD_Format Version

MD_Metadata dateStamp CI_Citation. Title

MD_DataIdentification geographicBox CI_Date Date

MD_DataIdentification geographicIdentifier CI_Date dateType

MD_DataIdentification. language CI_Online

Resource

Linkage

MD_DataIdentification characterSet EX_Extent Ex_Temporal Extent

MD_DataIdentification topicCategory EX_Extent EX_GeographicExtent

MD_DataIdentification spatialRepresentation

Type

MD_Reference

System

Reference

SystemIdentifier

MD_DataIdentification abstract LI_Lineage Statement

Although a large extent of standard metadata for digital geographic data has been

documented in the ISO 19115:2003, the standard does not contain all metadata

 52

descriptions that are needed to describe hydrodynamic codes and their associated data

sets. As a result, the ISO standard needs to be extended which can be done by creating a

community profile for that specific user group. Based on the extension guideline of ISO,

a community profile has been developed for hydrodynamic models as schematically

shown in Figure 3.4. This profile is composed of three parts: core metadata components

(as required by ISO and shown in Table 3-2), some elements of the comprehensive

metadata set (these are pick-and-choose from the existing definitions), and the extended

metadata components (to be defined by the community). The selection of optional

metadata in addition to the core metadata is left to the community metadata creators,

however a balance must be found between excessive description of data (“more-is-better-

approach”) and a sufficient but small enough description set. In other words, although

more metadata elements are better to fully capture all description aspects of a specific

data set, the inclusion of too many optional metadata elements could become an

overwhelming burden to the users reducing the acceptance threshold.

Figure 3.4. Hydrodynamic Modeling Metadata Community profile

Hydrodynamic model data is divided into two basic categories: (1) basic

geospatial data; and (2) data related to geospatial data which is called model data. Into

 53

the basic geospatial data category fall representations of the numerical grid, maps, digital

terrain models, and boundary polygons. These data are typically time-invariant and could

be vector-type such as the grid description or raster-type such as a topological map, and

are necessary to define the geospatial extent of the model domain. The Model data

category, while also geospatially referenced, contains the data that is required to describe

physical processes (often also time variant) such as wind speed, water velocity,

discharge, water level, viscosity coefficient, roughness coefficient, dispersion coefficient,

flow direction, boundary types, tidal elevation or tributary discharge data. Besides these

two data categories a hydrodynamic model typically also contains parameters that are not

geospatially referenced at all, like run time controls, logical flags, fixed parameters (like

the acceleration constant) and so on. These are of course quite code specific because no

numerical code is alike.

Two specialization groups of metadata entities are proposed to represent

hydrodynamic model data: (1) MD_ModelData and (2) MD_GeospatialData as shown in

Figure 3.5. The MD_ModelData metadata entity was defined as a specialization of

MD_DataIdentification metadata entity (UML class) to uniquely identify resources of the

hydrodynamic model. Inside the MD_ModelData metadata entity a set of metadata

elements was created which describe the data types of the model (e.g. discharge, velocity,

dispersion coefficients, and so on) and a code-specific class. In this example, specific

class MD_FEM2D is created that is an extension from the MD_ModelData class and that

is unique to the FEM2D code. This class contains FEM2D-specific information such as

the parameter that controls the use of the Petrov Galerkin scheme and the number of

iterations required, to name just a few. The MD_GeospatialData metadata entity was

 54

defined as a specialized class of the MD_VectorSpatial Representation class to represent

vector type geospatial data used in a hydrodynamic model such as the model grid.

Because a model grid consists of a number of nodes and elements the

MD_GeospatialData description includes the total number of nodes and elements, a code

list of permissible element types and the grid type.

The code-list for MD_ModelDataTypeCode (Figure 3.5) is not complete of

course, as many more data-types are possible within a numerical code, like pressure,

turbulent kinetic energy, energy dissipation, eddy viscosity and eddy diffusivity to name

just a few that are inherent in three-dimensional code for example. Our intention here is

to provide an example only (for FEM2D), yet it is realized that this list must be extended

in the future to encompass all possible data types, possibly including a finer granularity

(common data types, 1D types only 2D types only, 3D types only) for better organization

and categorization of the metadata.

 55

Figure 3.5. List of ISO 19115 Metadata Extensions and Code-Lists for Hydrodynamic
Codes

In accordance with the ISO 19115:2003 rules for extensions, each additional

metadata element must be defined by its name, short name, domain code, definition,

obligation, condition, data type, domain value, maximum occurrence, parent entity, rule,

and its rationale and source must be documented and published. A Data directory of the

extended elements of numerical model is presented in Table 3-3 and Table 3-4. Table 3-3

describes the name, short name, definition, data type and domain value for all extended

 56

elements, while maximum occurrences, parent entity, rule, and rationale of the extended

elements are listed in Table 3-4. The obligation of all extended elements is set to

“optional” in order to provide necessary flexibility when describing model data, i.e. there

is no “mandatory” or “conditional” settings for the extended elements. Recall however,

that each model data description also contains the ISO 19115:2003 core elements, some

of which are mandatory or optional. Tables 3-5 to 3-10 provide the contents of the

various code lists that have been developed for the metadata descriptions. These contain

the different attachment condition of model data with numerical grid (Table 3-5),

different permissible element types for finite element (difference) grids (Table 3-6), non-

associated geospatial data (at present only grid and map data has been shown as

geospatial data, Table 3-7), an enumeration of different grid types, namely structured and

unstructured (Table 3-8), an open list for different input and output constituents used in

the hydrodynamic model which are attached to the grid (Table 3-9) and an open list of

vertical discretization type of geospatial data (Table 3-10).

 57

Table 3-2: Data directory for the extended elements [Obligation = Optional, Condition =
none, Source = Drexel University] (Part-1).

Name Short
Name

Definition Data Type Domain Value

MD_Model
Data

MdlData information about
model data

Specified Class (
MD_
DataIdentific.)

geoSpatial
DataType

 defines type of
geospatial data

Class MD_GeoSpatial
Code<<codeList>

Model
DataType

mdlData
Typ

defines type of
boundary condition

Class MD_ModelData
TypeCode<<Cod

eList>
attachType atchTyp defines type of

attachment with grid
Class MD_Attachment

TypeCode<<Cod
eList>

totalColum
ns

columns total number of
columns of data sets

Integer Integer

unitsOf
Time

timeUnit definition of the unit
time used for
hydrodynamic model

Class UomTime

unit unit definition of the unit
used for the dataset

Class UnitOfMeasure

Temporal
Type

tempTy
p

indication of whether
or not data set is
temporal

Boolean Boolean

MD_FEM2
D

MdlFE
M

information about
model data for
FEM2D model

Specified
Class(MD_
ModelData)

iteration iteration number of iteration
used to solve set of
equations

Integer Integer

degreeOf
Freedom

degFree
dom

number of degree of
freedoms

Integer Integer

timeStep
Limit

timeStp
Lim

time step limit for the
simulation

Real Real

tolerance Toleranc
e

iteration limit for the
solver

Real Real

alpha Alpha time integration Real Real
Patrov
Galarkin

Patrov indication of Patrov-
Galarkin method

Real Real

 58

Table 3-2: (Continued)

Md_Geo
SpatialData

Mdlgrd description of the
grid for the model

Aggregated Class
(MD_ Spatial
Data)

totalNodes nodes total number of nodes
in a numerical grid

Integer Integer

Total
Elements

elements total number of
elements in a
numerical grid

Integer Integer

Element
Type

elemTyp code describing the
element type in a
numerical grid

Class MD_ElementTyp
eCode<<CodeList

>>
GridType grdTyp grid type: uniformity

of the spacing in the
element

Class MD_GridTypeCo
de<<CodeList>>

verticalDis
cretization

verDisc vertically
discretization type

Class MD_
VerticalDiscretiza

tionCode
<<CodeList>>

gridCoordi
nateSystem

grdCorS
ys

coordinate system
used in the numerical
grid

Class MD_
SC_CoordinateSy

stemType
<<CodeList>>

 59

Table 3-3: Data directory for the extended elements [Obligation = Optional, Condition =
none, Source = Drexel University] (Part-2).

Name Max
Occur
rence

Parent Entity Rule Rationale

MD_Model
Data

N MD_Data
Identification

New Metadata
class to
MD_Data
Identification

Provides information for
documentation of
hydrodynamic model data

geospatial
DataType

 MD_Model
Data

New Metadata
class

Identifies what type of
geospatial data

modelData
Type

N MD_Model
Data

New Metadata
class

Describes type of
boundary: open, close,
source, sink

attachType N MD_Model
Data

New Metadata
class

Data value is attached: to
node or edge of the
numerical grid.

totalColumns 1 MD_Model
Data

New Metadata
attribute

It is useful for Vector or
Tensor type data

unitsOfTime 1 MD_Model
Data

New Metadata
attribute

Information about the time
unit used for the model

unit 1 MD_Model
Data

New Metadata
attribute

Information about the unit
used for measurement

temporal
Type

1 MD_Model
Data

New Metadata
attribute

Identifies whether data is
temporal or not

MD_FEM2D N MD_Model
Data

New Metadata
class to
MD_Data
Identification

Provides information for
documentation of
hydrodynamic model data

Iteration 1 MD_FEM2D New Metadata
attribute

Identifies the number of
iterations to solve the
problem

degreeOf
Freedom

1 MD_FEM2D New Metadata
attribute

Indicator or the number of
degree of freedom

timeStep
Limit

1 MD_FEM2D New Metadata
attribute

Sets the limit of the time
step

tolerance 1 MD_FEM2D New Metadata
attribute

Sets the iteration limit for
solver

alpha 1 MD_FEM2D New Metadata
attribute

Gives the alpha coefficient

patrovGalark
in

1 MD_FEM2D New Metadata
attribute

Identifies whether Patrov-
Galarkin scheme is used

 60

Table 3-3: (Continued)

Md_Geo
SpatialData

N MD_Vector
Spatial
Represen-
tation

New Metadata
class to
MD_VectorSpa
tial
Representation

Provides information for
documentation of different
geospatial data used in
model

totalNodes 1 MD_Geo
SpatialData

New Metadata
attribute

Gives the total points in a
grid

total
Elements

1 MD_Geo
SpatialData

New Metadata
attribute

Gives the total elements of
the grid

element Type 1 MD_Geo
SpatialData

New Metadata
class

Type of element used is
important for simulation

gridType 1 MD_Geo
SpatialData

New Metadata
class

Indicates if grid spacing is
uniform or not

verticalDiscr
etization

1 MD_Geo
SpatialData

New Metadata
class

Indicates vertical
discretization of grid

gridCoordina
teSystem

1 MD_Geo
SpatialData

New Metadata
class

Type of coordinate system
used in grid

Table 3-4: Md_AttachmentTypeCode <<CodeList>>

 Name Domain
code

Definition

1. MD_AttachmentTypeCode AtchTypCd type of the attachment with model
grid

2. withNode 001 data attached with the node
3. withElement 002 data attached with the element
4. withEdge 003 data attached with the edge

 61

Table 3-5: MD_ElementTypeCode <<CodeList>>

 Name Domain
code

Definition

1. MD_ElementTypeCode ElmTypCd definition of the element type for the
grid

2. tringular3 001 each element contains 3 nodes
3. triangular6 002 each element contains 6 nodes
4. quadrilateral4 003 each element contains 4 nodes
5. quadrilateral8 004 each element contains 8 nodes
6. quadrilateral9 005 each element contains 9 nodes
7. tetrahydron4 006 each element contains 4 nodes
8. tetrahydron10 007 each element contains 10 nodes
9. pentahedron6 008 each element contains 6 nodes
10. pentrahydron15 009 each element contains 15 nodes
11. hexahydron8 010 each element contains 8 nodes

Table 3-6: MD_GeoSpatialCode <<CodeList>>

 Name Domain
code

Definition

1. MD_ GeoSpatialCode GeoSpCd definition of the geospatial data Type
2. grid 001 numerical grid
3. map 002 map or chart

Table 3-7: MD_GridTypeCode <<CodeList >>

 Name Domain
code

Definition

1. MD_GridTypeCode GrdTypCd definition of the grid types
2. structured 001 the volume elements are well ordered

and a simple scheme (e.g., i-j-k indices)
can be used to label elements and
identify neighbors

3. unstructured 002 volume elements can be joined in any
manner, and special lists must be kept to
identify neighboring elements

4. hybrid 003 volume elements are mixed with both
structured and unstructured types

 62

Table 3-8: MD_ModelDataTypeCode <<CodeList>>

 Name Domain

code
Definition

1. MD_ModelDataTypeCod
e

MdlDataT
ypCd

definition of different types of data used
in the model

2. boundaryType 001 boundary conditions such as open
boundary, discharge boundary, no flow
boundary or tidal boundary

3. discharge 002 river discharge or flow
4. dispersion 003 dispersion co-efficient
5. material 004 material property to represent

roughness
6. radiation 005 radiation stress coefficient
7. roughness 006 Manning’s roughness coefficients
8. slope 007 slope or angle of the direction of flow
9. tidalElevation 008 boundary data for tidal elevation
10. tributaryDischarge 009 boundary data for tributary discharge
11. velocity 010 velocity of water
12. viscosity 011 viscosity coefficient data
13. waterLevel 012 water elevation or stage

Table 3-9: MD_VerticalDiscretizationCode <<CodeList >>

 Name Domain

code
Definition

1. MD_
VerticalDiscretizationCode

VerDisCd definition of the vertically discretization
types

2. zCoordinate 001 coordinates are measured from a fixed
levels in the vertical z-direction

3. sigmaCoordinate 002 coordinates are expressed as sigma
defined as the ratio of water surface to
fluid depth

4 sCoordinate 003 Coordinates are expressed as function
of water fluid depth and sea surface

Finally, while the ISO 19115:2003 contains many of the desired description

elements, links to other norms within the 19000 group are necessary to deal with specific

 63

aspects, like the ISO 19108 for temporal schema [59], the ISO 19103 for units of

measurements [57], and the ISO 19111 for spatial referencing by coordinates [60]. The

ISO 19115:2003 shows only a dependency on the ISO 19103 norm without providing any

direct relation to express unit of measurement of the dataset. To this end a new metadata

element “unit” is defined to describe the measurement unit of the dataset. However, the

ISO 19103 norm provides support for only 7 data types namely, area, angle, time, scale,

length, volume, and velocity without addressing physical quantities such as discharge,

viscosity, and dispersion. Therefore, our extension of the UnitOfMeasure class now

contains the sub-classes UomDischarge, UomDispersion, UomViscosity. Accordingly the

elements “discharge” (with value “cubic meter/second”), “viscosity” (with value “square

meter/second” for kinematic viscosity), and “dispersion” (same units as viscosity) are

also added to the ISOStandardUnits code list.

The description of the coordinate reference system (CRS) is important for all

geospatial data such as grids or coastlines. The ISO 19115:2003 norm provides a separate

entity “MD_ReferenceSystem” and a subclass of that entity “MD_CRS” to describe this

information. The root class “MD_Metadata” has been connected by an association,

“referenceSystemInfo” with “MD_CRS” to provide the reference system information.

Three types of metadata descriptors namely ellipsoid, projection and datum are used to

identify these features in the CRS. These classes, however, are not sufficient to

adequately a numerical grid, because often the vertical coordinates of a numerical grid

are related to the mean sea level, MSL, or the mean lower low water, MLLW. In other

words, the horizontal and vertical components of a grid may originate from or are based

on two different geospatial reference systems, which prompts the need to use a compound

 64

reference system. While the ISO 19115:2003 does not presently support this idea the ISO

19111 norm does contain the option for compound CRS which can be used as an

extension to the ISO 19115:2003. Hence, the “SC_CRS” class as a subclass of

“MD_ReferenceSystem” is defined as shown in Figure 3.6.

(a) (b)

Figure 3.6. (a) Extension of ISO 19115:2003 class “MD_ReferenceSystem” (b)
Compound coordinate reference system using two different datum

3.6. An example data/metadata set for the FEM2D code

As a consequence of using the FEM2D code as an example instance, the creation

of twelve ModelData file pairs (one for the metadata description, one containing the raw

data), and one GeospatialData file pair containing the grid information is required. These

numbers may differ from code instance to code instance as more or fewer constituents are

being identified as necessary model data. The exact number is determined in the model

specific sub-class as mentioned before. Because each of the metadata files contain several

hundreds of code lines and the raw data files potentially many thousands, the

GeospatialData file will be restricted to use as a demonstration. The file contains the grid

information (x,y coordinates and bathymetry, as well as the connectivity matrix) for a

model domain (about 23 km in length) encompassing the upper Potomac estuary adjacent

 65

to Washington, DC, as shown in Figure 3.7, and is comprised of 1171 quadrilateral

elements and 1408 nodes.

Figure 3.7. Numerical grid overlay with part of nautical chart showing grid coordinate
system and its rotation with respect to compass North.

The complete set of descriptive entries in the grid_metadata.xml file encompasses

23 elements for which a total of 80 property values must be supplied. Part of the metadata

content is shown in the left panel of Figure 3.8. The top lines contain the Universal

Resource Locator (URL) identifier for the raw-data file (that can reside anywhere on the

WWW) and the lower block refer to information regarding the grid. The right panel

 66

shows a segment of the node coordinate descriptions (top) and a subset of the

connectivity information (bottom). The formatting of the raw-data file in this instance is

format-less, i.e. the numbers are only space separated, which allows for easy parsing. The

chosen number types are float (coordinates) and integer (connectivity), which are ISO

standard types.

Figure 3.8. Samples from the Example Metadata and Grid-Data Files

In creating metadata instances for each of the previously mentioned data files, it is

important to recall that that each metadata file will contain the core element set (required

by the ISO 19115) as was discussed in section 2. This can be done automatically in many

instances because the values required repeat themselves in each metadata file. The second

step is to select a subset of all other optional and conditional elements that can be related

to the grid metadata description. For example, one can add the email address and the

telephone number as additional information elements to the MD_ResponsibleParty class

of this metadata set. The final step is to fill the extended elements of metadata as

 67

described in section 3. The grid files are being made available and can be viewed and

downloaded at http://loki.cae.drexel.edu/~wbs/data/wbsModel/ that also hosts a pair of example

files containing time variant information associated with the velocity field. The site also

provides a number of EXCEL files that contain the detailed lists of all elements, their

properties, and the chosen values to create the instances shown. The metadata instance

document of the numerical grid has been documented in Appendix 1.

3.7. Summary

In this study a metadata structure for hydrodynamic model data is proposed that

can potentially pave the way of how to inter- and exchange data between different types

of codes and model domains. More specifically

• The ISO 19115:2003 metadata norm is selected as a basis to generate the

metadata framework for hydrodynamic codes. The ability of the ISO to

provide a very generic base set of elements (and properties) for this

purpose that is based on the set of recommended core elements is

demonstrated. While some of these elements are considered mandatory

and as a result must be included regardless, others optional. Conditional

elements whenever possible are tried to avoid either through avoidance or

through removing the condition by making them mandatory or optional.

• The need to extend the overall coverage of the ISO 19115:2003 in various

aspects is shown as it was not able to provide all necessary descriptions

for hydrodynamic model data. While have assumed the regular elements

to be present, this work emphasized the extensions (elements , properties

and code-lists) necessary, where they need to be inserted and also how

http://loki.cae.drexel.edu/~wbs/data/wbsModel/

 68

certain aspects of the metadata structure, like time and units, needed a

linkage to other ISO metadata standards as the ISO 19103 (units) and ISO

19108 (time). In particular, descriptions for elementary components like a

numerical grid (nodes forming elements, connectivity matrix, reference

systems), and linkage between geospatial reference points (nodes) and

associations of these points with hydrodynamic variables has been

demonstrated.

• The use of the Web-Ontology language OWL as an encoding medium for

the hydrodynamic metadata community profile is suggested, because it

best captures all aspects of the Unified Modeling Language, UML, in

which the ISO norms are presented. In other words, all elements, their

properties, and their relation to and among each other are manifested in an

ontology that can be changed and updated as the profile might change.

This flexibility is a core aspect of the chosen approach because it permits

the change and growth of this framework to cover more numerical codes

and their specifications.

• An ontology is created to better describe and therefore distinguish

numerical codes based on their integration schemes, dimensionality, type,

grid selection, and availability. While not exhaustive in its descriptions, it

provides for some categorization of the available codes (not a complete

list) that can be used at later stages when filling in the code specific

description classes (or ontologies). This ontology too is flexible and easily

being expanded as additional codes are being added.

 69

• An example is provided using a two-dimensional FEM code for which a

specific ontology is developed to describe the data structure of this

particular code. The example demonstrates the creation of one geospatial

(grid) data and 12 model data file pairs, one containing the metadata

information the other the “raw” data. Each of the metadata files contain

the core selection as a basis and then the specific extensions necessary to

describe the associated data variables, while the raw data is stored in a

format less (space limited only) fashion.

It is clear that the scope of this framework is extensive and would need to be filled

over time. Yet this approach can aid in overcoming the currently existing lack of data

interoperability among different hydrodynamic codes.

 70

CHAPTER 4: KNOWLEDGE BASED WEB SIMULATION OF
HYDRODYNAMIC PROCESSES

4.1. Abstract.

Hydrodynamic models generally deal with large sets of data and utilize

substantial computational resources. Powerful, robust servers with extensive storage

capabilities are desirable for rapid execution. Unfortunately, it is not always possible to

effort those kinds of facilities whereas a centralized computer system together with a user

access interface can be a viable alternative for many clients. The simplest way a client

can communicate with the central simulation server is by a web browser because it is

available as a pre-installed application on most every computing platform purchased

today. This type of environment is called web based simulation or WBS. In this chapter,

The concepts necessary to design and develop a WBS for the simulation of

hydrodynamic processes using legacy (FORTRAN) code are introduced here. A formal

specification of the simulation domain or an ontology has been developed that is the

underlying concept to share, retrieve, and move the simulation data between the different

components of the WBS. This ontology can also be used for future analysis and reuse of

the simulation domain concepts and the associated data sets.

4.2. Introduction

Numerical models have been used in many scientific disciplines to better

understand the physical behavior of nature. A number of hydrodynamic codes are now

available to investigate complex flow phenomena of rivers, estuaries, lakes or coastal

regions. Despite recent advances to include 3-D representations of the simulation domain

 71

and the ever improving level of graphical display options, the modeling user community

still faces some shortcomings when faced with the need to move data around between

pre- and post processors and to exchange model data in the user community. Typical

problems include the lack of a standardized framework to describe model data,

inadequate model data exchange facilities, insufficient interoperability of models among

different platforms or operating systems, inefficient search and retrieval of modeling

information, and the absence of the possibility to share and reuse the knowledge already

gathered about a certain simulation domain. In addition, several scientific communities

have recognized the need to develop numerical models that will serve long term

objectives, are not proprietary but based on open source components, and should serve as

a resource to the community for scientific exchange and further improvement. This has

spawned the idea to develop community models. There are many relatively sophisticated

community models available such as the groundwater community model MODFLOW

[33], atmospheric community models MM5 [34], and community climate system models

CCSM [35], to name just a few. These models are freely available as a modeling tool

within the respective community and allow scientists to focus on their needs rather than

building a model from scratch [36]. However, most of these community models are not

yet designed to operate in an integrated environment that would ease the work burden

that comes with the need to share and exchange modeling data within the community.

Consequently, the next step for the development of numerical models should focus on a

standardized data description, an improved functionality that permits better sharing of

both codes and model data, and provide a platform for preprocessing, execution, and

retrieval of simulation results in an environment that is operating system independent. In

 72

addition, a modeling system should permit a multi-user simulation environment where

models can run in the server machine and users can interact with the server applications

using a standard access tool like a web browser. A system of this kind is typically

classified as a web based simulation, or WBS.

The concept of WBS was first introduced in mid 90’s when web browsers became

available [37]. The WBS concept is based on the idea that any user can perform a

simulation either in the client machine or on the server machines using a web browser.

Moreover, it can potentially utilize a wide range of databases and information systems

through the web. Because one of the priorities is to build a platform independent system,

Java has been recognized as the essential language for WBS [38]. Several WBS

environments have been developed based on Java such as JSIM [39], simjava [40],

DEVSJAVA [41] to this date. Unfortunately, most of these environments are either

currently unavailable or have not been further developed. Wiedeman [42] conducted a

review of these systems and found that most of them were used for test scenarios only

and that actual user requirements were not taken into account. It has been found that only

very few WBS systems that permit data I/O operations of several 100Mbytes of data one

of which is the Websim3D system [43] that permits fast access to view and download

earth quake simulation results. The development of a WBS environment for large scale

simulations such as the simulation of hydrodynamic processes is quite challenging the

process of which have been outlined in the following sections.

4.3. Web Based Simulation of Hydrodynamic Model

Typically hydrodynamic model runs require the I/O of a substantial amount of

data related to water elevation, discharge, dispersion data, wind effect data, roughness,

 73

viscosity data, boundary and initial condition data, all of which may be spatially and

temporally invariant. As discussed in chapter 3, these data are classified into two

categories: (1) geospatial data, and (2) model data. Geospatial data includes maps, the

numerical grid, the bathymetry, and the digital elevation model, while model data

includes the state variables and all coefficients and constants, which are geo-referenced to

the geospatial data sets. In addition, parameters such as gravity, iteration counters,

tolerance limits, to name just a few, have also been included in the model metadata. A

multi layered data model has been developed to handle the model data as depicted in

Figure 4.1, for which the geospatial data set serves as the basis. Each layer represents a

snap shot in time of the model data for a specific time, i.e. time evolution of a specific

variable is stacked in layers above the base layer.

Figure 4.1. Layer data model of the hydrodynamic model data

 74

The next required step is to create an unambiguous description for the layer model data.

This is done through defining a metadata set that encompasses and incorporates

controlled vocabularies [13]. To this end the metadata community profile from chapter 3

will be utilized, where the need to publish metadata using Web Ontology Language, or

OWL is elaborated. OWL was specifically designed to formalize the knowledge of any

specific domain using explicit specifications that are expressed in a machine

understandable format. The formal specification of the domain knowledge through an

ontology permits much better retrieval, share, reuse or analyzing of this knowledge,

attributes that are essential when designing a WBS. Ontologies have been successfully

applied in many fields that deal with information retrieval, efficient searching, or

analyzing domain knowledge see for example Miller et al. [61]. Therefore, in this study a

WBS environment for hydrodynamic processes based on a simulation domain ontology is

developed. This WBS environment has four major components: (1) simulation domain

ontology, (2) hydrodynamic code and coding language, (3) Graphical User Interface

(GUI) and its architecture, and (4) data storage system. In the following sections, these

components of WBS environment will be discussed in details.

4.3.2. Simulation domain ontology

Using OWL, an ontology was created to describe a numerical model as shown in

Figure 4.2. Geospatial data encompasses the numerical grid, maps, costal boundaries,

charts, or a digital elevation model all of which are represented as “GeoSpatialData”

class in the ontology. The most important geospatial data set is the numerical gird, which

is represented as “Grid” class in the ontology. Numerical grids have nodes and elements,

which are represented as “Node” and “Element” class in the ontology, respectively.

 75

Model data includes data, which is related to geospatial data and is represented as

“ModelData” class in the ontology. In this instance, model data includes but is not

limited to wind, discharge, velocity, water elevation, viscosity coefficient, boundary

types, Manning’s roughness coefficient, dispersion coefficients, tidal elevation, and

tributary discharge. These model data have been represented as a subclass of the

“ModelData” class in the ontology and could consist of thousands of individual data

components. These individual data components are represented as “Data” class in the

ontology and are connected with either the “Node” or “Element” class of the ontology.

Besides the necessary I/O organization of data and the description of the flow of

these data streams, metadata about the model execution itself needs to be incorporated.

These include more general descriptions about the purpose of the simulation, time

intervals, modeler in charge, execution times associated with the run, and so on. To this

end the WBS ontology has been incorporated into the OWL encoded ISO 19115:2003 to

create the foundation of metadata classes. Because of the two major categories of data

namely, model data and geospatial data, at least two metadata classes are needed.

Moreover, one additional metadata class is needed to describe the hydrodynamic model.

Therefore, based on the root class of the ISO metadata ontology (“MD_Metadata”) three

subclasses were created in the WBS ontology: (1) “MetadataModel”, (2)

“MetadataGeoSpatialData”, and (3) “MetadataModelData”. In the WBS ontology, each

geospatial data type has a metadata class “MetadataGeoSpatialData”. Similarly, each

model data type has a metadata class “MetadataModelData”. A hydrodynamic model

could have some model parameters such as gravity, degree of freedom, number of

iteration, tolerance limit etc. These parameters are represented as “MetadataModel” class

 76

in the ontology. This web based simulation ontology based on OWL has been

documented in Appendix 2.

Figure 4.2. Ontology for data and metadata of a numerical model

4.3.3. Hydrodynamic code

This study uses a two dimensional, vertically averaged, finite element code for the

numerical integration of the governing shallow water equations. The formulation is

second order accurate in time and 5th order accurate with respect to numerical dispersion

and diffusion in space. The model was originally developed by Katopodes [62] and has

since been applied and tested in a number of applications; see for example Piasecki and

Katopodes [63]. The code has been applied to a test bed that encompasses the Upper

Potomac estuary around Washington D.C. It is comprised of ~1400 nodes and extends

over a domain approximately 23 kilometers in length. The flow in this part of the

Potomac is primarily driven by the tide signal, which results in significant flow reversals

making this domain a highly dynamic and unsteady flow regime.

 77

4.3.3.1 Coding Languages

Most hydrodynamic models developed in the last decades were written in

Formula Translation (FORTRAN) programming language. These codes are also called

legacy-codes and provide a rich source of very sophisticated and far advanced numerical

codes that are very valuable to the user communities. Because of this fact, it is very

desirable to maintain these codes or even continue to use them because the translation

into other languages is prohibitively expensive. Since JAVA language is used to develop

the WBS environment, a communication or conversion system needs to be developed

between the programs written in two languages. One way to solve this problem is to use

Java Native Interface (JNI) to run the FORTRAN code. JNI permits Java code to run

applications and libraries written in other languages, such as C, C++ [64] or, assembly

language. However, JNI cannot call FORTRAN programs directly, rather, FORTRAN

programs must be invoked from C/C++ subroutines. Aubourg [65] showed that a

FORTRAN code can be accessed either being called from C++ or the FORTAN code

itself calling a C++ routine. Zeng et al. [66] showed an example of using JNI to run a

multi-reaction model (MRM) written in FORTRAN for contaminants transport in soil.

They developed a JAVA based simulation Applet that runs in the client browser to solve

contaminant problems.

Another approach to utilize FORTRAN code in a JAVA environment is to use the

Common Object Request Broker Architecture (CORBA) [67]. CORBA provides

interoperability among clients and servers distributed over a heterogeneous environment,

is completely platform independent, and supports a number of languages such as C/C++,

 78

JAVA, and COBOL. CORBA is accessible through the Enterprise JavaBeans (EJB)

module, a server-side component architecture for the Java 2 Enterprise Edition (J2EE)

platform [68]. EJB uses the Internet Inter-Orb Protocol (IIOP) as a communication

bridge between the CORBA server and the Java Servlets [69]. While FORTRAN

subroutines are accessible through C++ programs, the CORBA server provide access to

these C++ programs. Then web browser clients can communicate with web servers

invoking JAVA Servlets, a server side technology for extending the functionality of a

Web server and for accessing existing business systems [70]. An overview of these

communication steps are shown in Figure 4.3. Chen et al. [71] demonstrates an attempt to

create a web based power system simulation environment using such an approach.

Although this approach demonstrates the possibility of JAVA to communicate with

programs written in a number of other languages, it needs both Web Server and EJB

server running. In addition, CORBA’s communications and programming interface is

quite complex and also need extensive server side maintenance when implemented.

Figure 4.3. FORTRAN programs run through Java and CORBA Interface

It is clear from the previous elaborations that the use of FORTRAN legacy codes

is not as straightforward in a WBS system as one would like and that it requires the

construction of a carefully thought through approach to permit these legacy codes to run

 79

in an WBS environment. Based on the above-shown two approaches, the first is chosen

because it is less complex and also because of its less extensive maintenance requirement

on the server side. The steps to run a FORTRAN code using Java Virtual Machine (JVM)

are summarized in Figure 4.4. First, a Java class should be created to declare native

methods, which includes a main method that calls these native methods. Secondly, a

header file should be generated for the native method using javah with the native

interface flag -jni. Once you have generated the header file, it can contain the formal

signature for the native method. Third, FORTRAN code should be compiled to generate

the object code. Finally, an implementation of the native method needs to be written in

the C or C++ language. The header, the FORTRAN object code and the implementation

files should be compiled and then linked into a shared library file (for UNIX) or a

dynamic link library (for WINDOWS). A JAVA based program can then load the shared

library files (or dynamic library files) and use the embedded FORTRAN subroutines that

originated from the legacy. This is a little tedious of course, but appeared to be the only

approach possible to achieve our objective. Also, there is a slight shortfall in the desire to

have the WBS entirely operating system independent, because the compilation and

linking process is typically different for each type of operating system (and different

compilers), i.e. a number of these compilation and linking procedures would have to be

executed to generate a set of WBS that are compatible with various OS.

 80

Figure 4.4. FORTRAN program runs using Java Native Interface (JNI)

4.3.4. Graphical User Interface (GUI)

Because of the potentially large amount of necessary data transfers between client

and server, a client-side-request and server-side-simulation approach is adopted as

execution mode. This will limit the communication between client and server and

therefore omit a potential data transfer bottleneck. The best architectural design for of this

kind of system was recommended by [72] who suggests to use a Model-View-Controller

(MVC) architecture. The details of the MVC architecture and how it is adopted for

creating a GUI to display different component of the WBS environment will be discussed

in the next subsection.

 81

4.3.5. Model View Controller (MVC) Architecture

The performance of large simulation systems can be improved if the model or

business logic is separated from the model views or presentation logics. This design

pattern has been known as Model-View-Controller (MVC) architecture, which suggests to

divide the system into three components (1) Model, (2) View and (3) Controller [73]. A

Model is the representation of the simulation domain; Views are the visual representations

of the Model; and Controllers handle the user interactions with the model. MVC has been

used in many software development projects and provides the fundamental basis for the

JAVA SWING API to support GUI and graphics functionality [74]. The MVC is adopted

as the basic architecture of our simulation environment whose components are shown in

Figure 4.5. An object data Model, which is based on an OWL ontology, is the core of the

system. The Model stores and retrieves data from an object relational database,

PostgreSQL [75]. The Model also keeps track of each registered view and will notify its

View components if any change in the Model occurs. These View components are built

using Java Server pages (JSP) and contain visual components such as Java Applet or,

HTML Form elements. During the session View components retain a state of the Model

to receive data and also contain one or more Controllers. Any request for the changes in

View component will be sent to the Controller (which is a Java Servlet program) that

contains a reference of the Model. Any request for change from the View will prompt the

Controller to update the Model. The Controller also decides which View will be

displayed to the user. The MVC architecture gives maximum flexibility to the WBS

system so that any View can be added or deleted from the system without having to

change the Model.

 82

Currently seven different Views are registered to display the different components

of the WBS system: (1) Search View, (2) Metadata View, (3) Edit View, (4) Boundary

View, (5) Simulation View, (6) Display View and (7) Help View. The Search View is used

to search for any pre-existing model. This search can be performed in simple-mode

through model description keywords or with a more advanced mode via metadata

elements. Once the desired model has been found, the user can copy, rename, or delete it.

The Metadata View is used to create, display, edit, or delete metadata for the

hydrodynamic model. In Display View mode the user can display model results as a

contour plot. The Edit View mode permits the display, creation, edit or deletion of model

data. The Boundary View helps to set the water level and discharge boundary constraint

of the model. The Simulation View tracks the execution of the model for the desired

length of the simulation. The Display View also supports the display of temporal model

data as a time series plot for a specific point. Finally, the Help View provides suggestions

and tips to the user about the WBS environment. Figure 4.6 shows a schematic diagram

of the communication of these client side Views with server side Java based Application

Programming Interfaces (API) and data repositories. The details of the functionality of

these different Views will be discussed in the following sub-sections.

 83

Figure 4.5. WBS system architecture based on Model-View-Controller (MVC) pattern

Figure 4.6. Java based server and client communication

 84

4.3.5.2 Search View

Search View is introductory display for users after log in process is successfully

completed (Figure 4.7). In this View, the user can search, display, create, rename, and

delete models. Simple keyword searches and advanced searches are the two search

options provided. Each model has a general description, which gives a short overview of

the model. Users also can restrict their search using start and end time of the simulation

or duration of simulation. Once the desired model has been found the user can perform

several operations on it. A selected model can be copied, renamed, or deleted. There is a

default model for each user (wbsModel) so that the user does not need to start from

scratch. The user can simply make a copy of the default model and subsequently change

the desired portions according to the desired modeling objective.

Figure 4.7. Interface for search, copy or delete of simulations

 85

4.3.5.3 Metadata View

After selecting a model, the user should click on the Metadata View tap to enter or

update model metadata (Figure 4.8). The first step is to select the data type for which

metadata will be created. The display screen is divided into three parts: (1) the left side of

the screen shows the ontology classes, (2) the right side of the screen shows properties for

each instance, and (3) where the instances of the classes are shown. The user must create

metadata for the root metadata class “MD_Metadata”. The top part of the screen has two

buttons “Update” and “Download”. The “Download” button if clicked will download a

metadata instance file in Resource Description Framework (RDF) format into the client

machine. The “Update” button is for updating the metadata instances in the server

database. The user can create any desired number of instances by clicking the “C” button

and also can delete it using the “X” button. OWL data type properties can be created or

deleted by using the “C” and “X” button respectively. OWL object type properties can be

selected from the instance of other classes. If the “C” button is clicked a popup screen

will appear and the instances of the respective class can be selected from that popup

window. Ontology instances may contain Resource Description Framework Schema

(RDFS) label, comments and annotation properties [76]. The Metadata View also

supports creation of these annotation properties. Finally, the user can mark and select the

core components by using the “M” button and the “core” check box which are located in

the top of the “class” panel. This feature can help the user to select and view a small

subset of the ontology based on their momentary needs. The Metadata View uses the

frame-based-knowledge-presentation approach where knowledge is organized into

chunks called frames [77]. Frames can be represented as objects (or classes) in object

oriented programming languages such as JAVA. The well known ontology editor Protégé

 86

with OWL plug-in [78], is one example application that too uses the frame-based-

knowledge-representation approach. Although most of our ontologies were created using

the Protégé ontology editor with OWL plug-in support, it is not possible to run Protégé as

a JAVA Applet. Therefore, a GUI has been developed to facilitate the use of metadata

inside the WBS. This GUI, or WBS component, is based on the JAVA Swing technology

[79] and is implemented as a Java Applet to provide WBS operation via web browsers.

Figure 4.8. Interface for create, display, upload, or download metadata

4.3.5.4 Display View

The Display View was designed to display model data using two different types of

plots: (1) contour plots and (2) time series charts. Both of these plot types are

displayed by JAVA Applets based on the JAVA Swing classes. In contour plot

mode, the user first needs to select a data type to be displayed (Figure 4.9). If the data

is time dependent, a slide bar will appear to facilitate scrolling through time staring at

 87

zero for the beginning of the simulation. Once the selection of time is completed, the

user can click on the “Plot Contour” button to display a contour plot. The user can

also zoom in and out of the contour plot by using the mouse. The right side of the

screen shows the contour legend and the bottom of the screen displays the scale of the

plot. For future versions of this software, a downloadable animation facility using the

Graphic Interchange Format (GIF) is planned to add. The user also can show and hide

the numerical grid in the contour display.

Figure 4.9. Interface for display of model data as contour plot

Display View also includes a time series plot of the model data at the bottom of

the screen (Figure 4.10). The user must first select the data type, then insert desired node

number, and then hit the “Plot” button after which a time series chart will be displayed on

the right side of the screen. The time scale is automatically adjusted based on the time

 88

series length. Also, the user can zoom in or out to get a clearer view of the chart plot

using the mouse buttons.

Figure 4.10. Interface for display of model data as time series plot

4.3.5.5 Edit View

Edit View was designed to help creating, displaying or deleting model data

(Figure 4.11). The first thing the user needs to do is to select the data type and then hit the

“Display” button to see data in text form. The default time indicates zero as the beginning

of the simulation. However, the user can select different time steps based on the start of

simulation for temporal type data. The user can edit any data value and click the

“Update” button when done with the editing, which will update the model data in a

database located in the simulation server. The “Download” button helps to download data

in plain ASCII text to the client computer. As it is very tedious to update or edit

thousands of data in the web forms, the user can upload data from a pre-existing file

located in the client machine using the “Upload” button. Clicking on the “Browse” button

will open a file selector in which the user can select the desired file for uploading.

 89

Figure 4.11. Interface for edit, uploads, download, and display of model data

4.3.5.6 Boundary View

Boundary View helps the user to setup the boundary constraints of the model.

Figure 4.12 shows a snapshot of Boundary View to create and edit water level boundary

(open boundary at downstream side) data of the model. Water level boundary data are

generated from tidal curves which follow a pattern similar to sine curves. At present

water level profile is assumed as a regular sine curve pattern. Amplitude, phase, and

period of the curve can be changed by three horizontal scroll bars located in the left side

of the graphic.

 90

Figure 4.12. Interface for set up boundary constraints on upstream water level

Similar to water level boundary, discharge boundary data also can be generated

with the aid of a graphical tool (Figure 4.13). First, the user will choose a certain inflow

boundary section to create inflow data for the model. The top portion of the window

shows overall view of the inflow discharge, and the bottom portion of the window shows

a zoomed view of a selected region. The user can also control the selected region using

the control buttons located in the left side of the Boundary View. Moreover, the user can

even move any data point in the chart using the mouse upon which the inflow data will be

generated according to the mouse position in the inflow chart. Finally, the user can save

the inflow data into the database located in server machine by clicking the “Save” button.

 91

Figure 4.13. Interface for downstream discharge boundary

4.3.5.7 Simulation View

Simulation View helps user to run the model in the server (Figure 4.14). The user

can select the desired time step for the simulation and then start the simulation by

clicking the “Start” button. The user can interrupt the simulation anytime using the

“Stop” button. The progress of the simulation run will be displayed in the bottom part of

the screen based on an automatic 1-minute refresh rate (it is done to reduce Applet-

Servlet communication), which can be accessed by clicking the “Result” button. Once the

simulation is finished, the user can see the results as contour plot in Display View or as

text data in Edit View.

 92

Figure 4.14. Interface for simulate of model

4.3.5.8 Help View

Help View provides different suggestions and tips of the web based simulation

system (Figure 4.15). Users can select a topic related to their need and click on the “Show

help” button. The help page will be displayed in the button part of the screen. Although

most parts of the simulation environment are self explanatory, users may still find this

section beneficial.

 93

Figure 4.15. Interface for provide general help for the system

4.3.6. Repository System

As outlined previously, the WBS system is designed not only to host and provide

access to numerous runs using the same numerical code operating on a single grid, but

also to use different grids for the same domain or even provide access to different codes.

Considering that one might want to execute a set of simulations that use one code and one

grid but different boundary conditions, one quickly realizes that there are potentially

many hundreds or even thousands of model runs that need to be stored. The data sets

could either be stored in a flat file system or in a database. For a large number of data

sets, however, storage in databases is preferable because querying and retrieving is more

efficient when compared to using a flat file system. For this reason, the object relational

database, PostgreSQL [75] is chosen from a group of possible products such as ORACLE

[80], MS ACCESS [81], MySQL [82], to name just a few but prominent programs. The

reason to decide on PostgreSQL is that it is a public domain code, i.e. free of charge, that

it provides sufficient features that is needed (interface with Jena for example), but at the

same time offering a much smaller administrative overhead when compared to ORACLE,

 94

which is the leading product on the relational database market, but at a heavy licensing

cost.

As mentioned above, Jena, a JAVA framework is used for developing semantic

web applications developed by HP Labs semantic web research [83]. Jena is an open

source package that has an OWL Application Programming Interface (API), and that also

supports rule based interface engines. Jena has been used to create instances for model

metadata that are based on the simulation ontology. The instances of the simulation

ontology are expressed as Resource Description Framework (RDF) in either RDF/XML

format or N-3 triple format. Although RDF/XML is the official serialization technique

for RDF data, the N-triple format is preferable when using medium to large databases

[83]. Figure 4.16 shows an example using a RDF graph model that depicts the

serialization and storage of RDF triples in a database. For example, the ontology class

“CI_Citation” has a property “title” to describe a dataset. If “CI_Citation” has an instance

“dataCitation”, it can be represented in the RDF graph using the prefix “rdf:ID” (Figure

4.16(a)). RDF/XML serialization of this RDF graph is shown in Figure 4.16(b), while

Figure 4.16(c) shows how this RDF/XML can be stored in a relational database with

tables that contain subject, object and property.

 95

(a)

(b)

(c)

Figure 4.16. RDF triple graph, (b) RDF/XML Document , and (c) Store RDF/XML into
database

Different database tables have been created to store different input and output data

components of the hydrodynamic model. Figure 4.17 shows a relationship among

different tables in the database. The “Models” table stores some common information of

each simulation: (1) unique ID for the simulation, (2) a title (3) a short description, (4)

start and end date and time, (5) length of each time step. Numerical grid information has

been stored in two different tables, namely “Element” and “Node”. Nodal information

such as unique identity and x, y, and z coordinates of each node has been stored in the

“Node” table. The “Element” table stores data in 3 columns: (1) elementID to provide a

unique identity, (2) numberOfNodes to estimate the total nodes, and (3) nodeID to

identify the nodes of each element. The “ModelData” table stores information about

different types of model data such as discharge, water level, viscosity, dispersion etc.

 96

”ModelData” table stores different components of model data such as name, unique

identity number, anchor point with the grid, and data values. Finally, the

“MetadataModelData” table stores a small subset of the metadata of the model data

namely, temporal characteristics, type of attachment with the grid, and number of data

columns. This “MetadataModelData” table has been created for faster access and

retrieval of the “ModelData”. For example, to retrieve velocity data from the

“ModelData” table, it is needed to know: (1) attachment type (node or element), (2)

temporal characteristics (true or false), (3) total number of data columns (two for 2D

velocity components), and (4) variable name (“velocity”). The “MetadataModelData”

table can be accessed directly through JAVA using a Java Database Connectivity (JDBC)

adapter. This saves a substantial amount of time when the call to the Jena program is

made to read metadata instances every time needed to retrieve model data.

Figure 4.17. Relationship of tables in database for hydrodynamic model

 97

4.4. Summary

In this chapter the concept for a web-based simulation system for simulating

hydrodynamic processes is introduced. The main thrust of this study is to provide a

possible new approach for remote clients to explore the computational facility of

powerful servers to simulate large scale hydrodynamic processes. To this end the

metadata profile from chapter 3 that describes hydrodynamic model data based on the

ISO 19115:2003 metadata standard have been utilized. In addition, a simulation ontology

to search and retrieve this metadata information and to reuse it as simulation domain

knowledge within the WBS has been developed. The WBS system architecture is based

on the Model-View-Controller (MVC) approach, which entails a set of 7 components that

not only reflect the system logic, but also guides the user via a GUI through the different

stages of the WBS application. The advantage of this approach is i) that it separates the

business logic from its representation, and ii) that is entirely modular allowing additional

components to be added without having to redesign the WBS system.

In order to store the model run instances (in conjunction with the associated

metadata sets), a Jena API is used to move and retrieve these instances from a relational

data base system. The decision to use PostgreSQL was based on the desire to have a free

of charge program, the advantage of having a medium seized system with a reduced

administrative overhead, and a list of features that makes the use of this application ideal

for web-based systems that require access via the internet.

 The sample numerical code using a two dimensional shallow water equation

with finite element formulation was wrapped into a Java environment and was placed on

 98

the web Server, which in turn run the Tomcat server which utilizes technologies such as

Java Servlet and Java Server Pages (JSP). The client side graphical user interfaces (GUI)

implements a Java Applet or HTML forms to display different presentations (Views) of

the model.

Although this study shows that it is possible to execute large scale numerical

model simulations using a web based simulation architecture, there are still many

challenges to overcome in case more complex numerical models are targeted for WBS. A

possible future direction of the study could be the development of a web based system for

three dimensional water quality or subsurface transport models, or the development of

efficient search facilities using software agents, and building robust systems using

Enterprise Java Bean (EJB) technology for enterprise applications.

 99

CHAPTER 5: CONCLUDING REMARKS

The study reported in this thesis addresses several important scientific and

engineering issues.

Among these issues are:

1. The need of expressing metadata in both human and machine readable format.

2. The necessity of developing a metadata community profile which can be used

for different types of hydrodynamic models to as data descriptors.

3. The necessity of developing a simulation environment to share both data and

numerical models among the users located anywhere in the world.

4. The need of a simple but elegant tool which can act as a graphical interface for

the user and is capable of storing, creating, searching and running a numerical model.

Chapter 2 focuses of the first issue to select a suitable publishing format for

metadata of hydrodynamic model which can be understand by both human and machine.

Web Ontology Language (OWL) has been selected as metadata publishing language

which serves this purpose best. But, geographic information metadata, ISO norm has

published its conceptual model in UML and it becomes a challenging task to convert this

UML model into OWL ontology because both of these specifications have many

conceptual differences.

A mapping approach for geographic information metadata, ISO norm

19115:2003, from its conceptualization in UML into an ontology using the Web

Ontology Language, OWL was examined. In addition, a step by step conversion process

from ISO 19115:2003 UML model to OWL ontology was demonstrated addressing each

 100

of the items that, in our opinion, needed a specific mapping rule. While many of the

dissimilarities have been resolved and a mapping rule has been derived, it should be

noted that a complete mapping has not been achieved and that the present specification of

UML does not permit a complete conversion of an object oriented concept into a

knowledge based concept. The ISO 19115:2003 ontology was made available for public

use and the expectation is that it will be used and also tested with a number of extensive

real world examples for future modification and corrections.

Chapter 3 examines the second important issue which was to develop suitable

metadata sets that can serve as a profile for hydrodynamic modeling community. Chapter

3 proposes a metadata structure for hydrodynamic model data that can potentially pave

the way of how to inter- and exchange data between different types of codes and model

domains. ISO 19115:2003 metadata norm has been selected as a basis to generate the

metadata framework for hydrodynamic codes. Although ISO 19115:2003 defines more

than 300 metadata elements, it was not able to provide all the necessary descriptions for

hydrodynamic model data. It has been shown that it is a need to extend the overall

coverage of the ISO 19115:2003 in various aspects and a metadata community profile for

hydrodynamic models has been created based on the extension guideline of ISO. In

particular, descriptions for elementary components like a numerical grid and linkage

between geospatial reference points (nodes) and associations of these points with

hydrodynamic variables has been demonstrated. It is clear that the scope of this

framework is extensive and will need to be filled over time. Yet this approach can aid in

overcoming the currently existing lack of data interoperability among different

hydrodynamic codes.

 101

It has also suggested the use of Web-Ontology language OWL as an encoding

medium for the hydrodynamic community profile, because it best captures the semantic

of metadata for both human and machine understandable format. Ontology based

approach has chosen to create community profile, because it provides both flexibility and

ease for change, extent and update of this framework.

Chapter 4 studied the third and fourth issues to the development strategy of web

based simulation architecture for hydrodynamic processes. The main focus of this study

is to provide a possible new approach for remote client to explore the computational

facility of powerful servers to simulate large scale hydrodynamic processes. A simulation

ontology has been created which includes both model data and metadata components and

their relationships. This simulation ontology can help to search and retrieve model data

and to represent the domain knowledge within the WBS.

The WBS system architecture has developed based on the concept of Model-View

–Controller (MVC) which separates business logic (Model) from presentation logic

(Views) to the user. Based on MVC pattern, a set of 7 View components has been

developed that not only reflects the system logic, but also guide user via a GUI through

the different stages of the WBS application. The simulation code was wrapped in a

platform independent language; Java and execution of models was done by Java client-

server based architecture. Model runs in a Java based web Server; Tomcat based on Java

Server side technology such as Java Servlet and Java Server Pages (JSP). The client side

Graphical User Interfaces (GUI) implements Java Applet or HTML forms to display

different presentations (Views) of the model.

 102

An object relational database management system PostgeSQL has been selected

for persistent storage of the model data and metadata. The instances of the ontology were

serialized as RDF triples and store in the database using Java Database Connectivity

(JDBC) interface. The decision to use PostgreSQL was based on the desire to have a free

of charge program, the advantages of having a medium seized system with a reduced

administrative overhead, and a list of features such as persistent storage of objects that

makes the use of this application ideal for Web-Based systems.

 Although this study shows that it is possible to simulate a large scale numerical

model using web based simulation architecture, there are still many challenges to

overcome for more complex numerical models. Future direction of the study could be

development WBS for three dimensional more complex water quality models,

development of efficient agent based searching facility, and building of robust systems

using Enterprise Java Bean (EJB) technology for enterprise applications etc.

The achievements of this study, in particularly:

• Implementation of geographical information metadata ISO 19115:2003

norm using Web Ontology Language (OWL)

• Development of a metadata community profile for hydrodynamic codes

using ISO 19115:2003

• Development of a tool to simulate a large scale hydrodynamic model

using web browser.

• As an application of these web based tools, a two dimensional finite

element model was successfully tested for simulating the flow in upper

Potomac estuary.

 103

LIST OF REFERENCES

[1] http://www.epa.gov/docs/ostwater/BASINS/

[2] http://www.w3.org/XML/

[3] http://www.w3c.org/RDF/

[4] http://www.w3.org/TR/2004/REC-owl-ref-20040210/

[5] Ahmed, K., et al., Professional XML Metadata. Profession. 2001, Birmingham:

Wrox Press Ltd.

[6] Sen, A., Metadata management: past, present and future. Decision Support

Systems, 2003: p. 1-23.

[7] http://www.harmonit.org/documents/pubview.php?view=all&doctype=all

[8] http://www.ems-i.com/SMS/SMS_Overview/sms_overview.html

[9] http://water.usgs.gov/software/genscn.html

[10] http://www.netcoast.nl/tools/rikz/delft3d.htm

[11] http://my.unidata.ucar.edu/content/software/netcdf/index.html

[12] http://hdf.ncsa.uiuc.edu/

[13] Bossomaier, T.R.J. and D. Green, Online GIS and spatial metadata. 2001, New

York: Taylor & Francis.

[14] http://dublincore.org/

[15] FGDC, Content Standard for Digital Geospatial Metadata (CSDGM). 1998.

[16] ISO, Geographic Information - Metadata (ISO 19115:2003). 2003.

[17] ISO, Geographic Information - Metadata - Implementation Specification (ISO

19139.3). 2003.

[18] http://www.omg.org/technology/documents/formal/uml.htm

[19] http://www.w3.org/XML/Schema

http://www.epa.gov/docs/ostwater/BASINS/
http://www.w3.org/XML/
http://www.w3c.org/RDF/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.harmonit.org/documents/pubview.php?view=all&doctype=all
http://www.ems-i.com/SMS/SMS_Overview/sms_overview.html
http://water.usgs.gov/software/genscn.html
http://www.netcoast.nl/tools/rikz/delft3d.htm
http://my.unidata.ucar.edu/content/software/netcdf/index.html
http://hdf.ncsa.uiuc.edu/
http://dublincore.org/
http://www.omg.org/technology/documents/formal/uml.htm
http://www.w3.org/XML/Schema

 104

[20] Hendler, J.A., XML and the Semantic Web. XML Journal, 2002.

[21] Klein, M., XML, RDF, and Relatives, in IEE Intelligent System. 2001. p. 26-28.

[22] http://www.w3.org/TR/rdf-concepts/#ref-rdf-semantics

[23] http://www.w3.org/TR/rdf-schema/

[24] Ahmed, K., et al., Professional XML Metadata. 2001, Birmingham: Wrox Press.

ix, 567 p.

[25] http://www.w3.org/TR/2004/REC-owl-features-20040210/

[26] Berners-Lee, T., J.A. Hendler, and O. Lassila, The Semantic Web. Scientific

American, 2001. 284(5): p. 34-43.

[27] http://www.w3.org/TR/2004/REC-owl-guide-20040210/

[28] Islam, A.S., et al., Implementation of the Geographic Information - Metadata

(ISO 19115:2003) Norm using the Web Ontology Language (OWL). Transactions
in GIS, 2004. submitted for publication.

[29] Bermudez, L. and M. Piasecki, Community Metadata Profiles for the Semantic

Web. Geoinformatica Journal, 2004. Submitted for publication.

[30] Kamel Boulos, M.N., A.V. Roudsari , and E.R. CarSon Towards a Semantic

Medical Web: HealthCyberMap's Dublin Code Ontology in Protege-2000. in
Fifth International Protege Workshop, Sowerby Centre for Health Informatics at
NewCastle (SCHIN). 2001. Newcastlem, England.

[31] Wariyapola, P.C.H., et al. Ontology and Metadata Creation for the Poseidon

Distributed Coastal Zone Management System. in IEEE Forum on Research and
Technology Advances in Digital Libraries. 1999. Baltimore, Maryland.

[32] Hanschuch, S. and S. Staab, CREAM: Creating Metadata for the Semantic Web.

Computer Networks, 2003. 42: p. 579-598.

[33] http://water.usgs.gov/nrp/gwsoftware/modflow.html

[34] http://www.mmm.ucar.edu/mm5/mm5-home.html

[35] http://www.ccsm.ucar.edu/

[36] http://walrus.wr.usgs.gov/transport/

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/
http://water.usgs.gov/nrp/gwsoftware/modflow.html
http://www.mmm.ucar.edu/mm5/mm5-home.html
http://www.ccsm.ucar.edu/
http://walrus.wr.usgs.gov/transport/

 105

[37] Miller, J.A., et al., Research and coomercial opportunities in Web-Based
Simulation. Simulation Practice and Theory, 2001. 9(1-2): p. 55-72.

[38] Kuljis, J. and R.J. Paul, An appraisal of web-based simulation: whither we

wander? Simulation Practice and Theory, 2001. 9(1-2): p. 37-54.

[39] Miller, J.A., A.F. Seila, and X. Xiang, The JSIM web-based simulation

environment. Future Generation Computer Systems, 2000. 17(2): p. 119-133.

[40] F. Howell, R.M. simjava: a discrete event simulation library for Java. in 1988

International Conference on Web-Based Modeling & Simulation, The Society for
Computer Simulation International. 1988. San Diego, CA.

[41] Sarjoughian, H.S. and B.P. Zeigler. DEVSJAVA: Basis for a DEVS-based

collaborative M&S environments. in 1988 International Conference on Web-
Based Modeling & Simulation, The Society for Computer Simulation
International. 1988. San Diego, CA.

[42] Wiedemann, T. Simulation application service providing (SIM-ASP). in Winter

2001 Simulation Conference. 2001. Arlington, VA, USA.

[43] Olsen, K.B. Websim3d: A Web-based System for Generation, Storage and

Dissemination of Earthquake Ground Motion Simulations. in 2003 AGU Fall
Meeting. 2003. San Francisco, CA.

[44] Fensel, D., Spinning the semantic Web: bringing the World Wide Web to its full

potential. 2003, Cambridge, Mass.: MIT Press. xxiii, 479.

[45] http://neptune.irit.fr/Biblio/03-09-04.pdf

[46] http://www.semanticweb.org/SWWS/program/full/paper1.pdf

[47] http://www.w3.org/TR/xslt

[48] http://www.exff.org./

[49] Kogut, P., et al., UML for Ontology Development. Knowledge Engineering, 2001.

17(1): p. 61-64.

[50] http://www.omg.org/technology/documents/formal/mof.htm

[51] Guizzardi, G., H. Herre, and G. Wagner. Towards Ontological Foundations for

UML Conceptual Models. in 1st International Conference on Ontologies,
Databases and Applications of Semantic (ODBASE 2002). 2002.
Irvine,California, USA.

http://neptune.irit.fr/Biblio/03-09-04.pdf
http://www.semanticweb.org/SWWS/program/full/paper1.pdf
http://www.w3.org/TR/xslt
http://www.exff.org./
http://www.omg.org/technology/documents/formal/mof.htm

 106

[52] http://protege.stanford.edu/plugins/xmi/download/2003-06-12%20SMI-
Knublauch.pdf

[53] http://www.omg.org/technology/documents/formal/xmi.htm

[54] http://java.sun.com/products/jmi/index.jsp

[55] http://www.omg.org/cgi-bin/doc?ad/2003-03-40

[56] Baclawski, K., et al., Extending the Unified Modeling Language for ontology

development. Software System Model, 2002. 1: p. 1-15.

[57] ISO, Geographic Information - Conceptual Schema Language (ISO 19103). 2004.

[58] http://www.w3.org/XML/

[59] ISO, Geographic Information - Temporal Schema (ISO 19108:2002). 2002.

[60] ISO, Geographic Information - Spatial Referencing by Coordinate System (ISO

19111). 2000.

[61] Miller, J.A. and P.A. Fishwick. Investigating Ontologies for Simulation Modeling.

in 37th Annual Simulation Symposium. 2004. Arlington, VA.

[62] Katopodes, N.D., A Dissipative Galerkin Scheme for Open-Channel Flow. Journal

of Hydraulics, ASCE, 1984. 110(4): p. 450-466.

[63] Piasecki, M. and N.D. Katopodes, Control of Contaminant Releases in Rivers and

Estuaries Part I: Adjoint Sensitivity Analysis. Journal of Hydraulic Engineering,
ASCE, 1997. 123(6): p. 486-492.

[64] Liang, S., Java(TM) Native Interface: Programmer's Guide and Specification. 2

ed. 1999: Addison-Wesley Pub Co.

[65] http://hfi-l2.in2p3.fr/fortranOO_EA.pdf

[66] Zeng, H., et al., A web-based simulation system for transport and retention of

dissolved contaminants in soil. Computers and Electronics in Agriculture, 2002.
33(2).

[67] http://www.omg.org/cgi-bin/doc?formal/04-03-01

[68] http://java.sun.com/products/ejb/

[69] http://java.sun.com/developer/technicalArticles/ebeans/corba/

http://protege.stanford.edu/plugins/xmi/download/2003-06-12 SMI-Knublauch.pdf
http://protege.stanford.edu/plugins/xmi/download/2003-06-12 SMI-Knublauch.pdf
http://www.omg.org/technology/documents/formal/xmi.htm
http://java.sun.com/products/jmi/index.jsp
http://www.omg.org/cgi-bin/doc?ad/2003-03-40
http://www.w3.org/XML/
http://hfi-l2.in2p3.fr/fortranOO_EA.pdf
http://www.omg.org/cgi-bin/doc?formal/04-03-01
http://java.sun.com/products/ejb/
http://java.sun.com/developer/technicalArticles/ebeans/corba/

 107

[70] http://java.sun.com/products/servlet/

[71] Chen, S. and F.Y. Lu, Web-based Simulation of Power Systems. IEEE Computer

Applications in Power, 2002. 15(1): p. 35-40.

[72] Kurniawan, B., Java for the Web with Servlets, JSP, and EJB. 2002, Indianapolis,

USA: New Riders Publishing.

[73] http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

[74] Stelting, S. and O. Maassen, Applied Java Patterns. 2002, Sun MicroSystems

Press: California, USA.

[75] http://www.postgresql.org/docs/

[76] http://www.w3.org/TR/2000/CR-rdf-schema-2000327

[77] Minsky, M., The Psychology of Computer Vision, ed. P. Winston. 1975, New

York: McGraw-Hill. 211-277.

[78] http://protege.stanford.edu/plugins/owl/tutorial/index.html

[79] http://java.sun.com/products/jfc/

[80] http://www.oracle.com/database/index.html

[81] http://office.microsoft.com/home/office.aspx?assetid=FX01085791

[82] http://www.mysql.com/products/mysql/

[83] http://jena.sourceforge.net/documentation.html

http://java.sun.com/products/servlet/
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://www.postgresql.org/docs/
http://www.w3.org/TR/2000/CR-rdf-schema-2000327
http://protege.stanford.edu/plugins/owl/tutorial/index.html
http://java.sun.com/products/jfc/
http://www.oracle.com/database/index.html
http://office.microsoft.com/home/office.aspx?assetid=FX01085791
http://www.mysql.com/products/mysql/
http://jena.sourceforge.net/documentation.html

 108

APPENDIX 1: EXAMPLE METADATA INSTANCE DOCUMENT FOR A
NUMERICAL GRID

<?xml version="1.0"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:iso19115="http://loki.cae.drexel.edu/~wbs/ontology/2004/08/iso-19115#"

 xmlns:iso19103="http://loki.cae.drexel.edu/~wbs/ontology/2004/08/iso-19103#"

 xmlns:iso19111="http://loki.cae.drexel.edu/~wbs/ontology/2004/08/iso-19111#"

 xmlns:iso19108="http://loki.cae.drexel.edu/~wbs/ontology/2004/08/iso-19108#"

 xmlns="http://loki.cae.drexel.edu/~wbs/data/wbsModel/grid_metadata.xml#"

 xml:base="http://loki.cae.drexel.edu/~wbs/data/wbsModel/grid_metadata.xml">

 <iso19115:MD_Metadata rdf:ID="Grid_MD_Metadata">

 <iso19115:language>en</iso19115:language>

 <iso19115:characterSet rdf:resource="#utf8" />

 <iso19115:date>20040804</iso19115:date>

 <iso19115:metadataStandardVersion>IS</iso19115:metadataStandardVersion>

 <iso19115:dataQualityInfo rdf:resource="#Grid_DQ_DataQuality"/>

 <iso19115:spatialRepresentationInfo rdf:resource="#Grid_MD_GeoSpatialData" />

 <iso19115:distributionInfo rdf:resource="#Grid_MD_Distribution"/>

 <iso19115:referenceSystemInfo rdf:resource="#Grid_Horizontal_MD_CRS"/>

 <iso19115:referenceSystemInfo rdf:resource="#Grid_Vertical_SC_CRS"/>

 109

 <iso19115:contact rdf:resource="#Grid_CI_ResponsibleParty"/>

 <iso19115:fieldIdentifier>http://loki.cae.drexel.edu/~wbs/

data/wbsModel/grid_metadata.xml</iso19115:fieldIdentifier>

 <iso19115:metadataStandardName>ISO 19115</iso19115:metadataStandardName>

 <iso19115:identificationInfo rdf:resource="#Grid_DataIdentification" />

 <iso19115:hierarchyLevel rdf:resource="#_dataset"/>

 <iso19115:dataSetURI

rdf:resource="http://loki.cae.drexel.edu/~wbs/data/wbsModel/grid.htm"/>

 <iso19115:distributionInfo rdf:resource="#Grid_MD_Distribution" />

 </iso19115:MD_Metadata>

<iso19115:MD_Distribution rdf:ID="Grid_MD_Distribution">

<iso19115:transferOptions rdf:resource="#Grid_MD_DigitalTransferOption" />

<iso19115:distributionFormat rdf:resource="#Grid_MD_Format" />

</iso19115:MD_Distribution>

<iso19115:MD_Format rdf:ID="Grid_MD_Resource_Format">

<iso19115:name>Tab-delimated</iso19115:name>

</iso19115:MD_Format>

<iso19115:MD_DigitalTransferOption rdf:ID="#Grid_MD_DigitalTransferOption">

<iso19115:unitsOfDistribution>single-ASCII-file</iso19115:unitsOfDistribution>

<iso19115:transferSize>0.12</iso19115:transferSize>

 110

<iso19115:onLine rdf:resource="Grid_CI_OnlineResource" />

</iso19115:MD_DigitalTransferOption>

<CI_OnlineResource rdf:ID="Grid_CI_OnlineResource">

<iso19115:linkage>http://loki.cae.drexel.edu/~wbs/data/wbsModel/grid.htm</iso19115:li

nkage>

<iso19115:protocol>http</iso19115:protocol>

<iso19115:name>Numerical Grid File</iso19115:name>

<iso19115:description>Contains node and element data for a numerical

grid</iso19115:description>

<iso19115:function rdf:resource="download" />

</CI_OnlineResource>

 <iso19115:MD_DataIdentification rdf:ID="Grid_DataIdentification">

 <iso19115:language>en</iso19115:language>

 <iso19115:characterSet rdf:resource="#utf8" />

 <iso19115:status rdf:resource="#completed"/>

 <iso19115:spatialRepresentationType rdf:resource="#vector"/>

 <iso19115:resourceConstraints rdf:resource="#Grid_MD_Constraint"/>

 <iso19115:topicCategory rdf:resource="#inlandWaters"/>

 <iso19115:resourceMaintenance rdf:resource="#Grid_MD_MaintenanceInformation"

/>

 111

 <iso19115:purpose>This grid was developed to simulate a two dimensional finite

element model anyalysing flow in Potomac river</iso19115:purpose>

 <iso19115:geographicBox rdf:resource="Grid_EX_GeographicBoundingBox" />

 <iso19115:spatialResolution rdf:resource="#Grid_MD_Resolution" />

 <iso19115:citation rdf:resource="#Grid_CI_Citation" />

 <iso19115:resourceSpecificUsage rdf:resource="#Grid_MD_Usage" />

 <iso19115:pointOfConact rdf:resource="#Grid_CI_ResponsibleParty"/>

 <iso19115:resourceFormat rdf:resource="#Grid_MD_Resource_Format"/>

 <iso19115:abstract>This document describes a two dimensional finite element grid.

This grid has total of 1171 triangular type of elements and 1408

nodes</iso19115:abstract>

 </iso19115:MD_DataIdentification>

 <iso19115:MD_MaintenanceInformation rdf:ID="Grid_MD_MaintenanceInformation">

 <iso19115:maintenanceAndUpdateFrequency rdf:resource="#asNeeded"/>

 </iso19115:MD_MaintenanceInformation>

 <iso19115:MD_Resolution rdf:ID="Grid_MD_Resolution">

 <iso19115:equivalentScale>

 <iso19115:MD_RepresentativeFraction

rdf:ID="Grid_MD_RepresentativeFraction">

 <iso19115:denominator>1</iso19115:denominator>

 </iso19115:MD_RepresentativeFraction>

 </iso19115:equivalentScale>

 112

 </iso19115:MD_Resolution>

 <iso19115:CI_Citation rdf:ID="Grid_CI_Citation">

 <iso19115:resRefDate>

 <iso19115:CI_Date rdf:ID="Grid_CI_Date">

 <iso19115:date>20040804</iso19115:date>

 <iso19115:dateType rdf:resource="#publication"/>

 </iso19115:CI_Date>

 </iso19115:resRefDate>

 <iso19115:title>Two dimensional finite element grid</iso19115:title>

 </iso19115:CI_Citation>

 <iso19115:MD_Usage rdf:ID="Grid_MD_Usage">

 <iso19115:userContactInfo rdf:resource="#Grid_CI_ResponsibleParty"/>

 <iso19115:specificUsage>Used for general public</iso19115:specificUsage>

 </iso19115:MD_Usage>

 <iso19115:CI_Address rdf:ID="Grid_CI_Address">

 <iso19115:country>USA</iso19115:country>

<iso19115:electronicMailAddress>asi22@drexel.edu</iso19115:electronicMailAddress>

 <iso19115:administrativeArea>Pennsylvania</iso19115:administrativeArea>

 <iso19115:postalCode>19104</iso19115:postalCode>

 <iso19115:deliveryPoint>3141 Chestnut St, Room 280F</iso19115:deliveryPoint>

 <iso19115:city>Philadelphia</iso19115:city>

 </iso19115:CI_Address>

 113

 <iso19115:DQ_DataQuality rdf:ID="Grid_DQ_DataQuality">

 <iso19115:lineage>

 <iso19115:LI_Lineage rdf:ID="Grid_Li_Lineage">

 <iso19115:statement>This grid has developed from following sources: US

Department of Commerce, NOAA, Washington D.C., National Ocean Service Coast

Survey</iso19115:statement>

 </iso19115:LI_Lineage>

 </iso19115:lineage>

 <iso19115:scope>

 <iso19115:DQ_Scope rdf:ID="Grid_DQ_Scope">

 <iso19115:level rdf:resource="#_dataset"/>

 </iso19115:DQ_Scope>

 </iso19115:scope>

 </iso19115:DQ_DataQuality>

 <iso19115:CI_Citation rdf:ID="Grid_CI_Citation">

 <iso19115:title>Two dimensional finite element grid</iso19115:title>

 </iso19115:CI_Citation>

 <iso19115:MD_Distribution rdf:ID="Grid_MD_Distribution">

 <iso19115:transferOptions>

 <iso19115:MD_DigitalTransferOptions rdf:ID="Grid_MD_DigitalTransferOptions">

 <iso19115:onLine rdf:resource="#Grid_CI_OnlineResource"/>

 </iso19115:MD_DigitalTransferOptions>

 </iso19115:transferOptions>

 114

 <iso19115:distributionFormat>

 <iso19115:MD_Format rdf:ID="Grid_MD_Format">

 <iso19115:name>RDF</iso19115:name>

 <iso19115:version>1.0</iso19115:version>

 </iso19115:MD_Format>

 </iso19115:distributionFormat>

 </iso19115:MD_Distribution>

 <iso19115:MD_Constraints rdf:ID="Grid_MD_Constraint">

 <iso19115:useLimitation>The CFL should be less than one for accurate

result</iso19115:useLimitation>

 </iso19115:MD_Constraints>

 <MD_GeoSpatialData rdf:ID="Grid_MD_GeoSpatialData">

 <gridType rdf:resource="#unstructured"/>

 <verticalDiscritizationType rdf:resource="#zCordinate" />

 <gridCoordinateSystem rdf:resource="iso19111:Cartesian" />

 <geoSpatialDataType rdf:resource="#grid"/>

 <elementType rdf:resource="#quadrilateral4"/>

 <iso19115:topologyLevel rdf:resource="#fullSurfaceGraph"/>

 <totalElements>1171</totalElements>

 <iso19115:geometricObjects>

 <iso19115:MD_GeometricObjects rdf:ID="Grid_GeometricObjects">

 <iso19115:geometricObjectType rdf:resource="#surface"/>

 </iso19115:MD_GeometricObjects>

 115

 </iso19115:geometricObjects>

 <totalNodes>1408</totalNodes>

 </MD_GeoSpatialData>

 <iso19115:CI_ResponsibleParty rdf:ID="Grid_CI_ResponsibleParty">

 <iso19115:organisationName>Drexel University</iso19115:organisationName>

 <iso19115:positionName>Ph.D. Candidate</iso19115:positionName>

 <iso19115:contactInfo>

 <iso19115:CI_Contact rdf:ID="Grid_CI_Contact">

 <iso19115:address rdf:resource="#Grid_CI_Address"/>

 <iso19115:onlineResource>

 <iso19115:CI_OnlineResource rdf:ID="Grid_CI_OnlineResource">

 <iso19115:linkage>

 <iso19115:URL rdf:ID="Grid_URL"/>

 </iso19115:linkage>

 </iso19115:CI_OnlineResource>

 </iso19115:onlineResource>

 <iso19115:phone>

 <iso19115:CI_Telephone rdf:ID="Grid_CI_Telephone">

 <iso19115:voice>215-387-1560</iso19115:voice>

 <iso19115:fascimile>215-895-1363</iso19115:fascimile>

 </iso19115:CI_Telephone>

 </iso19115:phone>

 </iso19115:CI_Contact>

 116

 </iso19115:contactInfo>

 <iso19115:individualName>Akm Saiful Islam</iso19115:individualName>

 <iso19115:role rdf:resource="#publisher"/>

 </iso19115:CI_ResponsibleParty>

 <iso19115:EX_GeographicBoundingBox

rdf:ID="Grid_EX_GeographicBoundingBox">

 <iso19115:westBoundLongitude>

 <iso19103:Angle rdf:ID="Grid_Angle_4">

 <iso19103:value>-77.08</iso19103:value>

 <iso19103:uom rdf:resource="#Grid_UnitOfAngle" />

 </iso19103:Angle>

 </iso19115:westBoundLongitude>

 <iso19115:southBoundLatitude>

 <iso19103:Angle rdf:ID="Grid_Angle_3">

 <iso19103:value>38.67</iso19103:value>

 <iso19103:uom rdf:resource="#Grid_UnitOfAngle" />

 </iso19103:Angle>

 </iso19115:southBoundLatitude>

 <iso19115:northBoundLatitude>

 <iso19103:Angle rdf:ID="Grid_Angle_2">

 <iso19103:value>38.92</iso19103:value>

 <iso19103:uom rdf:resource="#Grid_UnitOfAngle" />

 </iso19103:Angle>

 117

 </iso19115:northBoundLatitude>

 <iso19115:eastBoundLongitude>

 <iso19103:Angle rdf:ID="Grid_Angle_1">

 <iso19103:value>-77.00</iso19103:value>

 <iso19103:uom rdf:resource="#Grid_UnitOfAngle" />

 </iso19103:Angle>

 </iso19115:eastBoundLongitude>

 </iso19115:EX_GeographicBoundingBox>

<iso19103:UnitOfAngle rdf:ID="Grid_UnitOfAngle">

<iso19103:uomName>Degree Angle</iso19103:uomName>

<iso19103:conversionToISOStandardUnit>0.01745</iso19103:conversionToISOStandar

dUnit>

<iso19103:hasISOStandardUnit rdf:resource="radian" />

</iso19103:UnitOfAngle>

<iso19115:RS_Identifier rdf:ID="Grid_Horizontal_Datum_RS_Identifier">

 <iso19115:code>NAD 27</iso19115:code>

 <iso19115:name>North American Datum</iso19115:name>

</iso19115:RS_Identifier>

<iso19115:RS_Identifier rdf:ID="Grid_Vertical_Datum_RS_Identifier">

 <iso19115:code>NGVD 29</iso19115:code>

 <iso19115:name>National Geodetic Vertical Datum</iso19115:name>

</iso19115:RS_Identifier>

 118

<iso19115:RS_Identifier rdf:ID="Grid_Ellipsoid_RS_Identifier">

 <iso19115:code>Clarke 1866</iso19115:code>

</iso19115:RS_Identifier>

<iso19115:RS_Identifier rdf:ID="Grid_Projection_RS_Identifier">

 <iso19115:code>Lambert Conformal Conic Projection</iso19115:code>

</iso19115:RS_Identifier>

<iso19115:MD_CRS rdf:ID="Grid_Horizontal_MD_CRS">

 <iso19115:projection rdf:resource="#Grid_Projection_RS_Identifier" />

 <iso19115:ellipsoid rdf:resource="#Grid_Ellipsoid_RS_Identifier" />

 <iso19115:datum rdf:resource="#Grid_Horizontal_Datum_RS_Identifier" />

 <iso19115:projectionParameters rdf:resource="#Grid_MD_ProjectionParameter" />

 <iso19115:ellipsoidParameters rdf:resource="#Grid_MD_EllipsoidParameters" />

</iso19115:MD_CRS>

<iso19115:MD_ProjectionParameter rdf:ID="Grid_MD_ProjectionParameter">

 <iso19115:falseNorthing>0</iso19115:falseNorthing>

 <iso19115:falseEasting>400000</iso19115:falseEasting>

 <iso19115:latitudeOfProjectionOrigin>37.67</iso19115:latitudeOfProjectionOrigin>

 <iso19115:logitudeOfCentralMeridian>77</iso19115:logitudeOfCentralMeridian>

 <iso19115:standardParallel>39.45</iso19115:standardParallel>

 <iso19115:standardParallel>38.3</iso19115:standardParallel>

 <iso19115:obliqueLineAzimuthParameter

 rdf:resource="#Grid_MD_ObliqueLineAzimuth" />

 119

</iso19115:MD_ProjectionParameter>

<iso19115:MD_ObliqueLineAzimuth rdf:ID="Grid_MD_ObliqueLineAzimuth">

 <iso19115:azimuthAngle>0</iso19115:azimuthAngle>

<iso19115:azimuthMeasurePointLongitude>400000</iso19115:azimuthMeasurePointLo

ngitude>

</iso19115:MD_ObliqueLineAzimuth>

<iso19115:MD_EllipsoidParameters rdf:ID="Grid_MD_EllipsoidParameters">

 <iso19115:semiMajorAxis>6360263.7936</iso19115:semiMajorAxis>

 <iso19115:axisUnits rdf:resource="Grid_UnitOfLength" />

<iso19115:denominatorOfFlatteningRatio>294.9786982</iso19115:denominatorOfFlatte

ningRatio>

</iso19115:MD_EllipsoidParameters>

<iso19103:UnitOfLength rdf:ID="Grid_UnitOfLength">

<iso19103:uomName>Meter</iso19103:uomName>

<iso19103:conversionToISOStandardUnit>1.0</iso19103:conversionToISOStandardUnit

>

<iso19103:hasISOStandardUnit rdf:resource="meter" />

</iso19103:UnitOfLength>

<iso19111:SC_CoordinateReferenceSystem rdf:ID="Grid_Vertical_SC_CRS">

 120

 <iso19111:CRSID rdf:resource="#Grid_Vertical_Datum_RS_Identifier" />

 <iso19111:datum rdf:resource="#Grid_SC_VerticalDatum" />

</iso19111:SC_CoordinateReferenceSystem>

<iso19111:SC_VerticalDatum rdf:ID="Grid_SC_VerticalDatum">

 <iso19111:datumID rdf:resource="#Grid_Vertical_Datum_RS_Identifier" />

 <iso19111:point>-30</iso19111:point>

</iso19111:SC_VerticalDatum>

</rdf:RDF>

 121

APPENDIX 2: ONTOLOGY FOR A TWO DIMENSIONAL FINITE ELEMENT
HYDRODYNAMIC CODE WRITTEN IN OWL

<?xml version="1.0" ?>

<rdf:RDF

 xmlns:ext="http://loki.cae.drexel.edu/~wbs/ontology/2004/09/iso-19115-ext#"

 xmlns="http://loki.cae.drexel.edu/~wbs/ontology/2004/04/wbs#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:iso19115="http://loki.cae.drexel.edu/~wbs/ontology/2004/09/iso-

19115#"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:wbs="http://loki.cae.drexel.edu/~wbs/ontology/2004/09/wbs#"

 xml:base="http://loki.cae.drexel.edu/~wbs/ontology/2004/09/wbs"

>

 <owl:Ontology rdf:about="">

 <owl:versionInfo>version 1.0</owl:versionInfo>

 <rdfs:comment>

 title- An ontology to Describe Hydrodynamic Model Data for Web Based

Simulation

 creator- Akm Saiful Islam and Michael Piasecki

 publisher- Drexel University

 122

 date - 08/16/04

 language - english

 </rdfs:comment>

 <owl:imports

rdf:resource="http://loki.cae.drexel.edu/~wbs/ontology/2004/09/iso-19115-ext"/>

 </owl:Ontology>

 <owl:Class rdf:ID="MetadataModel">

 <rdfs:label xml:lang="en">MetadataModel</rdfs:label>

 <rdfs:subClassOf

rdf:resource="http://loki.cae.drexel.edu/~wbs/ontology/2004/09/iso-

19115#MD_Metadata"/>

 <rdfs:comment>Metadata of the model</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="Wind">

 <rdfs:subClassOf>

 <owl:Class rdf:about="#ModelData"/>

 </rdfs:subClassOf>

 <rdfs:label xml:lang="en">Wind</rdfs:label>

 <rdfs:comment>Wind stress data</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="Data">

 <rdfs:subClassOf>

 <owl:Restriction>

 123

 <owl:onProperty>

 <owl:FunctionalProperty rdf:about="#timeValue"/>

 </owl:onProperty>

 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:cardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#attachTo"/>

 </owl:onProperty>

 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:cardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:comment>Individual data object</rdfs:comment>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:cardinality>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#dataFlag"/>

 124

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:label xml:lang="en">Data</rdfs:label>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#dataValue"/>

 </owl:onProperty>

 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:cardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Element">

 <rdfs:comment>Elements of the grid</rdfs:comment>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:FunctionalProperty rdf:about="#numberOfNodes"/>

 </owl:onProperty>

 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:cardinality>

 125

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:label xml:lang="en">Element</rdfs:label>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#elementNode"/>

 </owl:onProperty>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:FunctionalProperty rdf:about="#elementID"/>

 </owl:onProperty>

 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:cardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 126

 <owl:Class rdf:ID="MetadataModelData">

 <rdfs:subClassOf

rdf:resource="http://loki.cae.drexel.edu/~wbs/ontology/2004/09/iso-

19115#MD_Metadata"/>

 </owl:Class>

 <owl:Class rdf:ID="InitialWaterLevel">

 <rdfs:comment>Initial water surface elevation</rdfs:comment>

 <rdfs:subClassOf>

 <owl:Class rdf:about="#ModelData"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="GeoSpatialData">

 <rdfs:label xml:lang="en">GeoSpatialData</rdfs:label>

 <rdfs:comment>Aggregated class for geospatial data such as grid , maps, coast

lines etc.</rdfs:comment>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:cardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasMetadataGeoSpatialData"/>

 </owl:onProperty>

 </owl:Restriction>

 127

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Model">

 <rdfs:comment>Main Element for Model Ontology</rdfs:comment>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasGeoSpatialData"/>

 </owl:onProperty>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:cardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasMetadataModel"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 128

 <rdfs:label xml:lang="en">Model</rdfs:label>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasModelData"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Discharge">

 <rdfs:comment>Flow or discharge data</rdfs:comment>

 <rdfs:label xml:lang="en">Discharge</rdfs:label>

 <rdfs:subClassOf>

 <owl:Class rdf:about="#ModelData"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Map">

 <rdfs:comment>Maps and coast lines used as model

boundary.</rdfs:comment>

 <rdfs:subClassOf rdf:resource="#GeoSpatialData"/>

 129

 <rdfs:label xml:lang="en">Map</rdfs:label>

 </owl:Class>

 <owl:Class rdf:ID="ModelData">

 <rdfs:label xml:lang="en">ModelData</rdfs:label>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >0</owl:minCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasData"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:cardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasMetadataModelData"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 130

 <rdfs:comment>All types of model data which are connected with geospatial

data</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="WaterLevel">

 <rdfs:subClassOf rdf:resource="#ModelData"/>

 <rdfs:comment>water surface elevation</rdfs:comment>

 <rdfs:label xml:lang="en">WaterLevel</rdfs:label>

 </owl:Class>

 <owl:Class rdf:ID="Grid">

 <rdfs:label xml:lang="en">Grid</rdfs:label>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >0</owl:minCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasElement"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#GeoSpatialData"/>

 <rdfs:comment>Grid used in numerical model.</rdfs:comment>

 <rdfs:subClassOf>

 131

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasNode"/>

 </owl:onProperty>

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="TidalElevation">

 <rdfs:label xml:lang="en">TidalElevation</rdfs:label>

 <rdfs:subClassOf rdf:resource="#ModelData"/>

 <rdfs:comment>Tidal water level data</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="Velocity">

 <rdfs:comment>Velocity data</rdfs:comment>

 <rdfs:label xml:lang="en">Velocity</rdfs:label>

 <rdfs:subClassOf rdf:resource="#ModelData"/>

 </owl:Class>

 <owl:Class rdf:ID="TributaryDischarge">

 <rdfs:comment>Tributary discharge data</rdfs:comment>

 <rdfs:subClassOf rdf:resource="#ModelData"/>

 132

 <rdfs:label xml:lang="en">TributaryDischarge</rdfs:label>

 </owl:Class>

 <owl:Class rdf:ID="Slope">

 <rdfs:subClassOf rdf:resource="#ModelData"/>

 <rdfs:label xml:lang="en">Slope</rdfs:label>

 <rdfs:comment>The angle of the flow</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="Viscosity">

 <rdfs:comment>Viscosity coefficient data</rdfs:comment>

 <rdfs:subClassOf rdf:resource="#ModelData"/>

 <rdfs:label xml:lang="en">Viscosity</rdfs:label>

 </owl:Class>

 <owl:Class rdf:ID="Material">

 <rdfs:label xml:lang="en">Material</rdfs:label>

 <rdfs:subClassOf rdf:resource="#ModelData"/>

 <rdfs:comment>Material property depending on the type of roughness

coefficient</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="MetadataGeoSpatialData">

 <rdfs:subClassOf

rdf:resource="http://loki.cae.drexel.edu/~wbs/ontology/2004/09/iso-

19115#MD_Metadata"/>

 </owl:Class>

 133

 <owl:Class rdf:ID="Dispersion">

 <rdfs:label xml:lang="en">Dispersion</rdfs:label>

 <rdfs:subClassOf rdf:resource="#ModelData"/>

 <rdfs:comment>dispersion coefficent data</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="Roughness">

 <rdfs:label xml:lang="en">Roughness</rdfs:label>

 <rdfs:subClassOf rdf:resource="#ModelData"/>

 <rdfs:comment>Mannings roughness coefficient</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="Radiation">

 <rdfs:label xml:lang="en">Radiation</rdfs:label>

 <rdfs:subClassOf rdf:resource="#ModelData"/>

 <rdfs:comment>Rediational stress data</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="Boundary">

 <rdfs:comment>Type of conditional biundary. It could be either upstream

inflow boundary , or no flow boundary or downstream tidal boundary</rdfs:comment>

 <rdfs:subClassOf rdf:resource="#ModelData"/>

 <rdfs:label xml:lang="en">Boundary</rdfs:label>

 </owl:Class>

 <owl:Class rdf:ID="Node">

 <rdfs:subClassOf>

 134

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#Z"/>

 </owl:onProperty>

 <owl:maxCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:FunctionalProperty rdf:about="#nodeID"/>

 </owl:onProperty>

 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:cardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:DatatypeProperty rdf:about="#Z"/>

 </owl:onProperty>

 135

 <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >0</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:comment>Node is point in space.</rdfs:comment>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:cardinality>

 <owl:onProperty>

 <owl:FunctionalProperty rdf:about="#Y"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:label xml:lang="en">Node</rdfs:label>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:FunctionalProperty rdf:about="#X"/>

 </owl:onProperty>

 <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:cardinality>

 136

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:ObjectProperty rdf:ID="hasElement">

 <rdfs:comment>information about element</rdfs:comment>

 <rdfs:label xml:lang="en">hasElement</rdfs:label>

 <rdfs:domain rdf:resource="#Grid"/>

 <rdfs:range rdf:resource="#Element"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasGeoSpatialData">

 <rdfs:label xml:lang="en">hasGeoSpatialData</rdfs:label>

 <rdfs:domain rdf:resource="#Model"/>

 <rdfs:comment>information about geospatial data</rdfs:comment>

 <rdfs:range rdf:resource="#GeoSpatialData"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasData">

 <rdfs:comment>Information about model data</rdfs:comment>

 <rdfs:label xml:lang="en">hasData</rdfs:label>

 <rdfs:domain rdf:resource="#ModelData"/>

 <rdfs:range rdf:resource="#Data"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="attachTo">

 <rdfs:range>

 137

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Node"/>

 <owl:Class rdf:about="#Element"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:range>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

 <rdfs:label xml:lang="en">attachTo</rdfs:label>

 <rdfs:comment>provides information about the attachment type of model data.

Attachment could be with node or element or edge.</rdfs:comment>

 <rdfs:domain rdf:resource="#Data"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="elementNode">

 <rdfs:comment>nodes which make the element</rdfs:comment>

 <rdfs:domain rdf:resource="#Element"/>

 <rdfs:label xml:lang="en">elementNode</rdfs:label>

 <rdfs:range rdf:resource="#Node"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasMetadataModel">

 <rdfs:comment>information about metadata of the model</rdfs:comment>

 138

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

 <rdfs:range rdf:resource="#MetadataModel"/>

 <rdfs:label xml:lang="en">hasMetadataModel</rdfs:label>

 <rdfs:domain rdf:resource="#Model"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasMetadataModelData">

 <rdfs:range rdf:resource="#MetadataModelData"/>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

 <rdfs:domain rdf:resource="#ModelData"/>

 <rdfs:comment>Information about metadata of the model data</rdfs:comment>

 <rdfs:label xml:lang="en">hasMetadataModelData</rdfs:label>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasModelData">

 <rdfs:comment>information about model variables like wind , water level ,

discharge</rdfs:comment>

 <rdfs:domain rdf:resource="#Model"/>

 <rdfs:range rdf:resource="#ModelData"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasNode">

 <rdfs:domain rdf:resource="#Grid"/>

 <rdfs:label xml:lang="en">hasNode</rdfs:label>

 139

 <rdfs:range rdf:resource="#Node"/>

 <rdfs:comment>information about the node</rdfs:comment>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasMetadataGeoSpatialData">

 <rdfs:range rdf:resource="#MetadataGeoSpatialData"/>

 <rdfs:domain rdf:resource="#GeoSpatialData"/>

 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="Z">

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>

 <rdfs:label xml:lang="en">Z</rdfs:label>

 <rdfs:domain rdf:resource="#Node"/>

 <rdfs:comment>altitude or z coordinate</rdfs:comment>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="dataFlag">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

 <rdfs:domain rdf:resource="#Data"/>

 <rdfs:comment>Indicator of data or null value</rdfs:comment>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="dataValue">

 140

 <rdfs:label xml:lang="en">dataValue</rdfs:label>

 <rdfs:comment>numerical value for the data</rdfs:comment>

 <rdf:type

rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>

 <rdfs:domain rdf:resource="#Data"/>

 </owl:DatatypeProperty>

 <owl:FunctionalProperty rdf:ID="timeValue">

 <rdfs:comment>time expressed as hour, minute and second</rdfs:comment>

 <rdfs:label xml:lang="en">timeValue</rdfs:label>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#Data"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="elementID">

 <rdfs:comment>unique identity for a element</rdfs:comment>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

 <rdfs:domain rdf:resource="#Element"/>

 <rdfs:label xml:lang="en">elementID</rdfs:label>

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="X">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>

 141

 <rdfs:comment>longitude or x coordinate</rdfs:comment>

 <rdfs:domain rdf:resource="#Node"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

 <rdfs:label xml:lang="en">X</rdfs:label>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="nodeID">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 <rdfs:domain rdf:resource="#Node"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

 <rdfs:comment>unique identity number of each node</rdfs:comment>

 <rdfs:label xml:lang="en">modelID</rdfs:label>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="Y">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>

 <rdfs:domain rdf:resource="#Node"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

 <rdfs:label xml:lang="en">Y</rdfs:label>

 <rdfs:comment>latitude or y coordinates</rdfs:comment>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="numberOfNodes">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 <rdfs:domain rdf:resource="#Element"/>

 <rdfs:comment>number of nodes in each individual element</rdfs:comment>

 142

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

 </owl:FunctionalProperty>

</rdf:RDF>

 143

VITA

Akm Saiful Islam was born, July 26, 1972, in Patuakhali, Bangladesh. He

graduated from Bangladesh University of Engineering and Technology (BUET), Dhaka,

Bangladesh with a Bachelor’s Degree in Civil Engineering in 1996. In December of

1999, he obtained his Master’s Degree in Water Resources Engineering from the same

university. His Master’s thesis was on "Rainfall estimation over Bangladesh using

satellite (GMS-5) data".

In January 2000, he enrolled in the Ph.D. program in Civil Engineering at Drexel

University, Philadelphia, USA. Saiful’s primary research interests include: hydrologic

information, web based large scale simulation, ontology based metadata, and Java based

hydrologic portal. While in Drexel, Saiful was working in a research project entitled,

“Integrated Monitoring Modeling (Im2) System” sponsored by the National Ocean

Partnership Program (NOPP) to developing a web based information portal for

atmospheric and oceanographic data. Saiful also serves as president of the Bangladeshi

Graduate Students’ Association, Drexel University from 2002-2003.

Saiful was joined as a research faculty in the Institute of Water and Flood

Management (IWFM) of BUET in 1997. He worked in numerous flood management and

water resources research projects at IWFM. After graduating from Drexel University in

September of 2004 with a Ph.D. in Civil Engineering, Saiful looks forward to continue

his career at BUET as an Assistant Professor.

