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Abstract
Colocated MIMO Radar Using Compressive Sensing

Yao Yu
Advisor: Dr. Athina P. Petropulu and Dr. Youngmoo E. Kim

We propose the use of compressive sensing (CS) in the casftaxnulti-input multi-
output (MIMO) radar system that is implemented by a smallesnatwork. Each receive
node compressively samples the incoming signal, and fasvasmall number of samples
to a fusion center. At the fusion center, all received daggj@intly processed to extract
information on the potential targets via the CS approacmce&SICS-based MIMO radar
would require many fewer measurements than conventionsl®Madar for reliable target
detection, there would be power savings during the dataitnéssion to the fusion cen-
ter, which would prolong the life of the wireless network.rdtj we propose a direction
of arrival (DOA)-Doppler estimation approach. Assumingttthe targets are sparsely lo-
cated in the DOA-Doppler space, based on the samples foeddry the receive nodes,
the fusion center formulates #&p-optimization problem, the solution of which yields the
target DOA-Doppler information. The proposed approachesas the superior resolution
of MIMO radar with far fewer samples than required by conieamdl approaches. Sec-
ond, we propose the use of step frequency to CS-based MIM&, rathich enables high
range resolution, while transmitting narrowband pulses.sfowly moving targets, a novel
approach is proposed that achieves significant complegdyation by successively esti-
mating angle-range and Doppler in a decoupled fashion amuiipjoying initial estimates
to further reduce the search space. Numerical results shaithie achieved complexity
reduction does not hurt resolution. Finally, we invesggaptimal designs for the measure-
ment matrix that is used to linearly compress the receivgioladi One optimality criterion
amounts to decorrelating the bases that span the sparse alpidhe incoming signal and
simultaneously enhancing signal-to-interference r&8idRj. Another criterion targets SIR
improvement only. It is shown via simulations that, in certeases, the measurement
matrices obtained based on the aforementioned criteriangarove detection accuracy as
compared to the typically used Gaussian random measurenanxk.



1. Introduction

In this chapter, we provide some background on multi-inpultiroutput (MIMO) ra-
dio detection and ranging (radar) and the theory of compresensing (CS). Then, the
contributions of this dissertation are described. Finallg provide the outline of this dis-

sertation.

1.1 Background Review

In this section we introduce the basic concepts of radar, ®itddar and the theory of

CS.

1.1.1 Radar Basics

A radar [1]-[3] is an target detection system that uses mlathgnetic waves to detect
the presence of a target and also extract information abeuttget, e.g., range, direction
of arrival (DOA), or speed. The targets of interest can berait, ships, motor vehicles,
people, weather formations, and terrain. A transmittet&eiectromagnetic waves in the
space. When hitting an object, these waves are scatterdidlireations. The signal is thus
partly reflected back to receivers with a certain time delgampared to the transmission
time, as shown in Fig.1.1. At the receivers the receivedetaeghoes are processed to
identify a target. Note that here radar engineers use theriange to denote the distance
between the radar and the target.

From the perspective of transmit waveforms, the radar systean be categorized into
continuous waveform radar and pulse radar [3]. Pulse R&RY fends out signals in short
(few millionths of a second) bursts or pulses. PR is capabl@bonly detecting target

range or DOA but also measuring its radial velocity. A contins-Wave Radar (CWR)
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Figure 1.1: Radar System

that transmits a continuous signal utilizes the Doppféga to detect targets. Therefore,
CWR fails to detect stationary targets. We consider PR tinout this thesis.

Let us consider a monostatic radar in which the transmittdrraceiver are collocated.
The received signal can be approximated as an attenuatetnagdlelayed version of
transmit signal. In particular, let the transmitted sigbealk(t) exp(j2r ft), wherex(t) is a
narrowband waveform anflis carrier frequency. As seen in Fig. 1.2, the target rettrn a

the receiver is given by

y(t) = BX(t — 1) exp(j2rf(t — 7)) + n(t) (1.1)

whereg is the target reflectivity or the target responsg) is additive white noise andis
the time delay.
The time delayr is of vital importance for a radar system. We can access tthall

target information via knowledge of

e Range [1]. Let us see a simple case in which the radar is equippel avgingle
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Figure 1.2: Transmitted and received signals

antenna and the target is assumed to be stationary. Thewasl®is emitted by an
antenna aty and returns this antennatatThe distance between the target and this

antenna, i.e., the rang® is equal to

R= = (1.2)

wherec is the speed of light.

Doppler [1]. The moving targets can induce a Doppler shift in theieafrequency.

The speed of targets is obtained by measuring the Doppl&r Shie speed infor-
mation is beneficial in that the radar systems can detectdbieed] target echoes in
the midst of large clutterClutter encompasses the echoes reflected by the natural
environment, e.g., land, sea and clouds. In most of case|kter echoes can be

many orders of magnitude larger than the desired targetesch8ince the clutter



objects are usually stationary or move slowly, one can tdkarmtage of the Doppler

effect to distinguish them from fast moving targets.

Suppose that a target is moving towards the radar at velocitirecall that the
Doppler shift is given by

fo~ = (1.3)

The received signal, after demodulation, can be repreddayte

y(t) = BX(t — 2Ry/c + vt/c) exp(j2r((f + fy)t — 2fRy/C)) + n(t) (1.4)

whereR, is the target range at the reference titheUnder the assumption of nar-

rowband signal, (1.4) is approximated as

y(t) = BxX(t — 2Ro/c) exp(j2r((f + fq)t — 2fRo/C)) + N(t) (1.5)

Since the Doppler shifty is small as compared to the carrier frequerigythe ex-
traction of the Doppler information requires the PR to trartisnultiple pulses. The
simplest way to obtain Doppler information is to perform [DBn the samples of

the pulse train.

DOA[1]. Unlike the range and Doppler estimation, multiple am&s are indispens-
able for the DOA estimation. Let us consider a colocatedrarg@rray o antennas
in which each antenna serves as a tranceiver. As shown inlE3g.the spacing of
antennas is denoted lbyand we assume that a stationary target is locat&g &tom
the first antenna for simplicity. For a phased-array radeth@antennas transmit the

same waveforms(t). The received signal of thieth antenna after demodulation is



given by

1)dsin6+Ry

yi(t) = Bx(t — 2Ro/)eZ 2 4 n(t) (1.6)

One can see from (1.6) that the DOA informatién¢an be extracted by performing

IDFT on the samples of the antenna array that are obtaineuat.t

The DOA estimation techniques fall into two categories, agnspectral-based and
parametric approaches. Spectral-based methods, e.qan®apmformer and multi-
ple signal classification (MUSIC) methods, form a specttikafunction of DOA.
The peak locations of this function provide DOA estimatesiliké spectral-based
approaches, parametric techniques directly yield an estiof DOA without search,
e.g., maximum likelihood (ML) approaches, ESPRIT methood weighted sub-
space fitting (WSF) methods. The latter class of approachepmmduce more accu-

rate estimates than the former at the expense of compughadiciency.

1.1.2 MIMO Radar

It is well known that MIMO systems that are equipped with npl# antennas can
offer significant increase in data throughput and improve lallability (combat fading)
[6]. Benefiting from the idea of MIMO communication systel MO radar systems
have received considerable attention in recent years.k&aliphased-array radar [4][5]
in which the transmit nodes send out the scaled versions mfigéesvaveform, a MIMO
radar transmits multiple independent waveforms from iteamas. The waveforms bearing
with the target information can be extracted by a band of heatdilters at the receive end.
A MIMO radar system is advantageous in twdtdrent scenarios, i.e., widely separated

MIMO radar [7]-[11] and colocated MIMO radar [12]-[14].
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Figure 1.3: The illustration of phased array radar

Widely separated MIMO radar

In this scenario, the transmit antennas are located fat &pan each other relative to
their distance to the target [7]-[11]. This enables the raol&iew the target from dierent
directions simultaneously. The MIMO radar system transmilependent probing signals
from decorrelated transmitters througlttdrent paths, and thus each target return carries
independent information about the target. Combining thedependent target returns re-
sults in a diversity gain, the MIMO radar system is capableediicing target radar cross
section (RCS) scintillations and achieving high targebhason.

The approaches to process observations can be classifiglexsn®n-coherent or co-
herent. The non-coherent method utilizes the informatiotihé signal envelope only and
thus merely requires time synchronization between thestnatrand receive antennas. The

coherent method considers the phase information of thevezteignal in addition to the



envelope. This requires the need for both time and phasésymezation.

Colocated MIMO radar

For a colocated MIMO radar [12]-[14], the antennas are ctossach other, so that the
RCS does not vary between thdfdrent paths. Let the number of transmit and receive
antennas béVl; and N, respectively. In this scenario, the phas#&eatences induced by
transmit and receive antennas can be exploited to form avamgal array with M¢N,
elements. This enables the MIMO radar system to achieverisuspatial resolution as
compared to a traditional radar system. MIMO radar can a&ehasdesired beampattern by
transmitting correlated waveforms [15]-[17]. This is udeh cases where the radar system
wishes to avoid certain directions because they eitheespond to eavesdroppers, or are
known to be of no interest. In this dissertation we considesely spaced transmit and
receive antennas and uncorrelated transmit waveforms. iWelaborate on the rationale
behind colocated MIMO radar below.

Assume that the transmit array Bk antennas and the receive arrayNpfantennas are
colocated. The spacing of transmit antennas and recewweéysandd,, respectively. The
transmit antennas emit orthogonal waveforms. x;&)e/>* "t be the continuous waveforms
transmitted by théth transmit antenna. At each receive antennaMherthogonal wave-
forms can be extracted by; match filters. Thereford), receive antennas can obtain a

total of M;N, waveforms. Thdth receive antenna receives from ibletransmit antenna:

yi(t) = x(t — 7)el 0 4oy (1) (1.7)

—1)dk+(1-1)d; ) sing
C

whererj = 1o + { andr is the time delay of the reference antenna; Under



the assumption of narrowband signal, the baseband recgiyed is

yi(t) = Xi(t)e‘jzan((i—l)dtJr(l—l)dr)sine

x (g1 = G- D+(-1) (1.8)

Letting & = N,, then se{$(i — 1) + (I - 1)} = {0, 1,..., MN; — 1}. Therefore, theviN
waveforms can be considered as the waveforms received byuaharray of lengthivi;N;
that is formed byM, + N, elements. In this way, colocated MIMO radar is capable of
achieving super angular resolution as compared to phasag+adar with the same num-
ber of elements. It is worth noting that beamforming is inglble for the case o}: = N;.

This is because the sampling rate in the spatial domain iltto prevent aliasing.

1.1.3 Compressive sensing

Compressive sensing (CS), also known as compressed sersgoynpressive sam-
pling, is a technique for reconstructing a signal that itparse in some space. CS has
received considerable attention recently [18]-[20], aad been applied successfully in
diverse fields, e.g., image processing [21] and wirelesswwanications [22][23].

A K-sparse signat of lengthN can be represented by
x=W¥s (1.9)

where¥ denotes thé&l x N basis matrix that spans this sparse spacesasithe codicient
vector.scontains onlK large elements and the remaining elements are negligilzieros.
If K < N, the sighak is compressible.

We consider a general problem of recovering RN from the linear measurements

y =®x =0s (1.10)



where® is anM x N matrix and® = ®¥. ® and® are referred to as the measurement
matrix and the sensing matrix in the CS society, respegtivel

For the case oM < N, the recovery ok requires to solve an underdetermined linear
system. This seems hopeless in that the number of equasitessithan the number of the
unknowns. However, the theory of CS states thaf lengthN can be recovered exactly

with high probability from much fewer measurements than

Recovery algorithms

e Matching Pursuit (MP): These methods iteratively find the sparse vestdkt each
step, a locally optimal estimate efis obtained. The well-known algorithms in this
category include orthogonal MP (OMP) [24], regularized OKROMP) [25][26]

and acrostic compressive sampling MP (CoSaMP) [27].

e Convex relaxation or Basis pursuit (BP) [28]: These methods solve a convex prob-
lem that minimizes the support sf The mathematical insight into MP methods is
provided in this section. Let us consider the recovery iéfsparse signat of length
N from the measurement vectpiof lengthM whereK <« N andM < N. To find

the sparsest solution &f a optimization problem is formulated as

min (8o

st.y=0s (1.11)

where|| - ||o denotesfy norm which counts the number of nonzero elements of the
argument. Note that the solution of the problem (1.11) isabeficient vectors

instead of the signa.

The problem offy norm is intractable since it is NP-hard and the solution it no

unigue in general. Fortunately, tlie norm provides a natural convex relaxation of
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the o norm:

min |9

st.y=0s (1.12)

where|| - ||, is £; norm tha is equal to the sum of absolute value of all the elésrian

the argument.

Eqg. (1.12) can be recast as a linear program (LP), or secat& apone program
(SOCP) [29][30]. This is can beffeciently solved by a standard science software.
It has been shown in [18] and [31] that the optimization peablof (1.12) succeeds
in recovering aK-sparse signal with high probability using ol > cK log(N/K)
independent identically distributed (i.i.d.) Gaussiaresweements, wheies a con-

stant.

The BP algorithms require fewer measurements than the Mititdgns but are more
demanding than the MP algorithms. In our work, we apply a Bf@rthm to target detec-

tion for MIMO radatr.

Uniform uncertainty principle

In [32], the notion of uniform uncertainty principle (UUPaw&introduced to understand
the exact recovery of the sparse signal. @t T c {1,..., N} be theN x |T| submatrix of
O that contains the columns corresponding to the indicés iffthe S-restricted isometry

constants of @ is the smallest quantity for all subsétswith |T| < S satisfying
(1~ 6s)llcl; < 1Orcll3 < (1 + ds)licl; (1.13)

wherec is an arbitrary cogicient vector of lengtHr|.
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It was shown in [33] that i§ obeys

O0s + 05 + 035 < 1 (114)

then any sparse signal of support less than S can be recobgrsdlving (1.12). The
theorem essentially indicates that if every set of columith wardinality less than the
sparsity of the signal of interest of the sensing matrix gngr@ximately orthogonal, then
the sparse signal can be exactly recovered with high protyaldn practice, however, it

would involve prohibitively high complexity to check (1.)l#r a large size sensing matrix.

1.2 Contributions of the Dissertation

In a MIMO radar system that is implemented by a small scalevoit, each node is
equipped with one antenna, and the nodes are distributethddom on a disk of a small
radius. A group of nodes transmit radar waveforms and angffeeip of nodes receive
target echoes. The received data by each receive node (R¥bsequently forwarded to
a fusion center at which all the data are jointly processetktect targets and extract their
information. Without any fixed infrastructure, the antemsaattered in this small network
render such MIMO radar more flexible than a fixed antenna airage we can choose the
nodes freely. However, the transmission of received datagdusion center consumes
a great amount of energy. This would shorten the life of thiéeebgoperated wireless
network. In this dissertation, we propose to apply CS to a KIk&dar system that is
implemented by a small scale network. The CS approach enaldenificant reduction
in the number of measurements required by the fusion cemteslibbly detect targets as
compared to conventional methods. The obtained power gswohtransmission would

significantly prolong the life of the wireless network.
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1.2.1 DOA and Doppler estimation for MIMO radar using CS

We propose a novel DOA-Doppler estimation approach for Miké@ar using CS.
Assuming that the targets are sparsely located in the ddgbgpler space, based on the
samples forwarded by the receive nodes the fusion centerufates art;-optimization
problem, the solution of which yields target angle and Deppiformation. The proposed
approach achieves the superior resolution of MIMO radal fat fewer samples than re-
quired by conventional approaches. This implies powemggsv/during the communication
phase between the receive nodes and the fusion center. Wegsmalytical expressions
for the average signal-to-jammer ratio (SJR) and proposedifirad measurement matrix
that improves the SJR.

This part of work has been published in:

e Y. Yu, A.P. Petropulu and H.V. Poor, “MIMO radar using comgsive sampling,”
|EEE Journal of Selected Topicsin Sgnal Process., vol. 4, no. 1, pp. 146-163, Feb.
2010.

e Y. Yu, A. P. Petropulu and H. V. Poor, “Compressive sensingMtMO Radar,” in
Proc. |EEE International Conference on Acoustics Speech and Signal Process., pp.

3017-3020, Taipei, Taiwan, Apr., 2009.

e A.P. Petropulu, Y. Yu and H.V. Poor, “Distributed MIMO radasing compressive
sampling,” inProc. 42nd Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA,
pp. 203-207, Nov. 2008.

1.2.2 CSSF MIMO Radar: Low-complexity compressive sensingased MIMO radar

that uses step frequency

We propose CSSF MIMO radar, a novel approach that appligsfigquency to CS-

based MIMO radar. The proposed approach enables substantj resolution improve-
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ment for CS-based MIMO radar. The aforementioned work assuimat the targets are
located in a small range bin and the sampling is synchrons#dthe first target return.
Such assumptions do not allow for range estimation. We dengie case in which targets
can be located across several range bins for the proposed KBSO radar. Two types of
CSSF MIMO radar systems are considered, i.e., linear segpsency radar (LSFR), and
random step-frequency radar (RSFR), and thiéaats on the CS approach are studied. The
joint angle-Doppler-range estimation entails high comipeas it employs a basis matrix
whose construction requires discretization of the angdgider-range space. For the case
of slowly moving targets, a novel approach is proposed ttiasieaes significant complexity
reduction by successively estimating angle-range and [Roppa decoupled fashion and
by employing initial estimates obtained via matched fitigrio further reduce the space
that needs to be digitized.

This part of work is included in:

e Y. Yu, A.P. Petropulu and H.V. Poor, “CSSF MIMO Radar: Lowagalexity com-
pressive sensing based MIMO radar that uses step frequentynitted to IEEE

Trans. Aerospace and Electronic Systs. in 2010.

e Sagar Shah, Y. Yu and A.P. Petropulu, “Step-frequency ratarcompressive sam-
pling (SFR-CS),” inProc. |EEE International Conference on Acoustics Speech and
Sgnal Process., Dallas, TX, Mar. 2010.

e Y. Yu, A.P. Petropulu and H.V. Poor, “Reduced complexity larQoppler-range
estimation for MIMO radar that employs compressive sensinglEEE Proc. 43rd
Asilomar Conf. Sgnals, Syst. Comput., Pacific Grove, CA, pp. 1196-1200, Nov.
2009.

Y. Yu, A.P. Petropulu and H.V. Poor, “MIMO radar based on regtl complexity

compressive sampling,” in Prd€EE Radio and Wreless Symposium 2010, pp. 21-
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24, New Orleans, LA, Jan. 2010.

e Y. Yu, A.P. Petropulu and H.V. Poor, “Range estimation folM\D step-frequency
radar with compressive sensing,” Broc. 4th International Symposium on Commu-

nications, Control and Sgnal Process., Limassol, Cyprus, pp. 1-5, Mar. 2010.

1.2.3 Measurement matrix design

We propose two novel measurement matrix designs. The fiestagms at reducing
the coherence of the sensing matrix (CSM) and at the samectim&ncing SIR. The sec-
ond one focuses on improving SIR in order to reduce complexitile keeping the CSM
comparable to that of the Gaussian random measuremenknféiiluced complexity sub-
optimal constructions for the two measurement matricesbs@proposed. To the best of
our knowledge, this is the first work on optimum matrix desigrevious approaches used
a Gaussian random matrix as the measurement matrix. It vgrshi@a simulations that the
two proposed measurement matrices in certain cases caovengetection accuracy as
compared to the typically used Gaussian random measurenank.

This part of work is included in:

e Y. Yu, A.P. Petropulu and H.V. Poor, “Robust target estimain compressive sens-
ing based colocated MIMO radar,” Proc. IEEE Military Commun. Conf., San Jose,

CA, Nov. 2010, to appear.

1.3 Outline of the Dissertation

This dissertation is organized as follows.
In Chapter 2, we present the proposed approach for angl@iBopstimation. We
derive the average SJR for the proposed approach and atsesslia modification of the

random measurement matrix that can improve the SJR.
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In Chapter 3, we propose a CSSF MIMO radar system that enaigésresolution
target detection. A decoupled scheme for CSSF MIMO raddssdescribed for the case
of slowly moving targets. This scheme can significantly\adiee computational burden
without sacrificing performance.

In Chapter 4, we propose two measurement matrices to imgleteetion accuracy.

Chapter 5 contains concluding remarks and possible diresfor future work.
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2. DOA and Doppler Estimation for MIMO Radar Using CS

This chapter exploits DOA and Doppler estimation for MIM@aa for the scenario in
which the targets are located in a small range bin and the lgagrip synchronized with
the first target return. In this case, range estimation isalotved. We will discuss range
estimation in the next chapter.

The MIMO radar consists of transmitters and receivers whreimodes of a small scale
wireless network and are assumed to be randomly scatteradisk. The transmit nodes
transmit uncorrelated waveforms. Each receive node applimpressive sampling to the
received signal to obtain a small number of samples, whiemtde subsequently forwards
to a fusion center. Assuming that the targets are sparseftdd in the angle-Doppler
space, based on the samples forwarded by the receive na@ssibn center formulates
an ¢1-optimization problem, the solution of which yields targetgle and Doppler infor-
mation. The proposed approach achieves the superior tesotf MIMO radar with far
fewer samples than required by other approaches. Thisesipbwer savings during the
communication phase between the receive nodes and thenfasider. Performance in
the presence of a jammer is analyzed for the case of slowlyngdargets. Issues related
to forming the basis matrix that spans the angle-Dopplecespand for selecting a grid
for that space are discussed. Extensive simulation restdtprovided to demonstrate the

performance of the proposed approach #edent jammer and noise levels.

2.1 Introduction

The application of compressive sampling to a radar systesra@ently investigated in
[34]- [36]. In [34], in the context of radar imaging, compses&e sampling was shown to

have the potential to reduce the typically required sangpiaie and even render matched
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filtering unnecessary. In [35], a CS-based data acquisdiuth imaging algorithm for
ground penetrating radar was proposed to exploit the gparktargets in the spatial di-
mension. The approach of [35] was shown to require fewer oreagents than standard
backprojection methods. In [36], CS was applied in a radatesy with a small hum-
ber of targets, exploiting target sparseness in the timgdiency shift plane. The work of
[37] considered DOA estimation of signal sources using Cighodigh [37] focussed on
communication systems, the proposed approach can behdtaaigardly extended to radar
systems. In [37], the basis mati# was formed by the discretization of the angle space.
The source signals were assumed to be unknown, and an apgitexiersion of the basis
matrix was obtained based on the signal received by a refereector. The signal at the
reference sensor would have to be sampled at a very highratelér to construct a good
basis matrix.

Throughout this dissertation, we consider a small scalwarétthat acts as a MIMO
radar system. Each node is equipped with one antenna, ambties are distributed at
random on a disk of a certain radius. Without any fixed infragtire, the distributed an-
tennas in this small network render such MIMO radar more Iilexihan a fixed antenna
array since we can choose the nodes freely. For examplegtiv®rk nodes could be sol-
diers that carry antennas on their backpacks. The nodeshtiaimdependent waveforms.
We extend the idea of [37] to the problem of angle-Doppleinesion for MIMO radar.
Since the number of targets is typically smaller than the lemof snapshots that can
be obtained, angle-Doppler estimation can be formulatetthatsof recovery of a sparse
vector using CS. Unlike the scenario considered in [37], itMK2 radar the transmitted
waveforms are known at each receive node. This informa#ind,also information on the
location of transmit nodes, if available, enables eachiveaeode to construct the basis
matrix locally, without knowledge of the received signabakeference sensor or any other

antenna. In cases in which the receive nodes do not havadndaformation about the
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transmitters, or they do not have the computational powehey face significant interfer-
ence, the received samples are transmitted to a fusionraghteh has access to location
information and also to computational power. Based on tbeived data, the fusion center
formulates an augmented-optimization problem the solution of which provides targe
angle and Doppler information. The performance&ebptimization depends on the noise
level. A potential jammer would act as noise, and thfisc performance. We provide
analytical expressions for the average signal-to-jamatey (SJR) and propose a modified
measurement matrix that improves the SJR. For the case tanstey targets, the pro-
posed approach is compared to existing methods, such asapenCamplitude and phase
estimation (APES), generalized likelihood ratio test (GI.[RL4] and multiple signal clas-
sification (MUSIC) methods, while for moving targets, compan to the matched filter
method [39] is conducted.

Preliminary results of our work were published in [40]. Ipdadently derived results
for MIMO radar using compressive sampling were also publikin the same proceedings
[41]. The dtference between our work and [41] is that in [41] a uniform dinarray
was considered as a transmit and receive antenna confmurathile in our work we
focus on randomly placed transmit and receive antennasanenfrastructure-less MIMO
radar system. Further we investigate thieets of a jammer on estimation performance
and propose a modified measurement matrix to suppress tmeganNote that [41] and
other works on CS-based radar, i.e., [34]-[36], did not abersthe performance of the CS
algorithm in the case of strong interference.

The rest of the Chapter is organized as follows. In Secti@w provide the signal
model of a distributed MIMO radar system. In Section 2.3, pheposed approach for
angle-Doppler estimation is presented. In Section 2.4 weel¢he average SJR for the
proposed approach and also discuss a modification of themamdeasurement matrix

that can further improve the SJR. Simulation results arergia Section 2.5 for the cases
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of stationary targets and moving targets. Finally, we makaesconcluding remarks in

Section 2.6.

2.2 Signal Model for MIMO Radar

As shown in Fig. 2.1, we consider a MIMO radar system withtransmit nodes and
N; receive nodes that are uniformly distributed on a disk of alsradiusr. This partic-
ular assumption will be used in Section 2.5 for the anal{#saluation of the proposed
approach. For simplicity, we assume that targets and noeles Ithe same plane and we
consider a clutter-free environment. Perfect synchrdimmaand localization of nodes is
also assumed. The extension to the case in which targetsades fie in 3-dimension
space is straightforward. Let (o) and ¢/, /) denote the locations in polar coordinates of

thei-th transmit and receive antenna, respectively. Then thegtility density functions

t/r
i

t/r
i

of r”" anda

are

fu(r’) = =, 0<r/ <r

andf u(a/) = —, -n<ad" <m (2.1)

Let us assume that there &epoint targets present. Thketh target is at azimuth angle
6x and moves with constant radial spegdits range equaldg(t) = dg(0) — wt, whered,(0)

is the distance between this target and the origin at timaldquzero. Under the far-field

t/r
i

assumption, i.egy(t) > r.”", the distance between thth transmitreceive antenna and the

k-th targetd,/di, can be approximated as

dlf (©) ~ de(t) — 17" (B) = d(0) — vict — 11" (61 2.2)

wheren!" (6) = 1" cos@y — a/'").

Let x(t)eZ ™ denote the continuous-time waveform transmitted byittte transmit
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antenna, wheré is the carrier frequency; we assume that all transmit nodeghe same
carrier frequency and also that tkégt) is periodic with periodl', and narrowband.
The received signal at tHeth target equals

). k=1...K (2.3)

Mt
() = B X(t—dit)/c) exp(2nf(t-
i=1

where{Bx, k = 1,...,K} are complex amplitudes proportional to the RCS and are as$um
to be the same for all the receivers. The latter assumpticonisistent with a small network

in which the distances between network nodes are much srtiaie the distances between

the nodes and the targets, i@t) > ri“r. Thus, since they are closely spaced, all receive
nodes see the same aspect of the target.

Due to reflection by the target, théh antenna element receives

K dr
20 = D wlt- ) | o

c

A (t) + (). o oo
— M)eﬂ”f(t_%) + E|(t), l=1,...,M, (24)

g
>
™M

whereg (t) represents noise, which is assumed to be independentamitaly distributed
(i.i.d.) Gaussian with zero mean and variance

For the scenario in which the targets are located in a smadjedin and the sampling
is synchronized with the first target return, the narrowbassumption on the transmit
waveforms allows us to ignore the delayxit), and consider the delay in the phase term

only. Thus, the received baseband signal at teantenna can be approximated as

z(t)

Q

K Mt
Z B Z X ('[)E’\J'Zﬂfktej%(—2dk(0)+77}(9k)+77|r @) 4 6|(t)
k=1 i=1

K
D BT TR Wiz MXT () (6y) + (1) (2.5)
k=1
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where is the transmitted signal wavelength, = 2vf/c is the Doppler shift caused by

thek-th target, and

V) = [, H)T 2.

andx(t) [X1(t), ..., Xm (D] (2.7)

On lettingL be the length of waveform§l, | = 0, ..., L—1, denote the time within the
pulse (fast time) andl is the pulse repetition interval (PRI), the received saspt#lected

during them-th pulse are given by

Z((m - 1)T +0T) )
Zim = — Zfykej%ﬂ[(ﬁk)ejﬁfk(m—lﬁD(fk)xv(ek) + QW(ZS)
k=1

z((m-1T + (L -1)Ty)

where

Ve = B iE2KO)

D(fk) = diag[ejznfko-rs’ e ejznfk(L—l)Ts] }’

am [6(M-=1)T +0Ty),...,a((m-1)T + (L - 1)T]",

andX

[X(OTs),....,x((L = DTH]T (L x M. (2.9)

Throughout this chapter, we make the following assumptions

e (Al) The targets are slowly moving. Therefore, the Doppleft svithin a pulse can

be ignored, i.e.fyT, << 1 fork =1, ..., K, whereT, denotes pulse duration.

e (A2) The radar waveforms are independent across transhéts@nd thu£0 Xi (t) % (t+

7)dt,i # i’ is negligible as compared tﬁio X (1) (t + 7)dt.
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2.3 Previous work on DOA and Doppler estimation for MIMO radar

In this section, we describe some well-known DOA and Dopgétimation methods in
the literature that will be considered in Chapter 4. Thesthous will be compared to the

approach to be proposed via simulation results.

2.3.1 DOA estimation

We assume stationary targets for DOA estimation and thug thiel data during one

pulse is considered. Then the received signal al-thenode in (2.8) is reduced to

K
4= Z 1@ Ty (8, + @ (2.10)
k=1

Stacking the data dfl, nodes, we have
K
Z=[z,....23]" = ) i (BT (@)X +E. (2.11)
k=1

wherev, (6 = [e57®, . Th®]T andE = [e, ..., en].

Capon method [14]

The Capon method yields a beamformethat can suppress noise, interference and
jamming suppression while keeping the desired signal tordésl. In particular, the beam-

formerw can be formulated as
minw"Rw st. w'v, () = 1 (2.12)
w

whereR = zZH.
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The solution to (2.12) is

_ Rv(0)
T VHOR V()

*

(2.13)
Applying the LS method to the beamformed outputvay, we can easily obtain the
estimates of target reflectivity as follows

(wH)HZX v (O)vH (O)w _ v (@)RIZX*v*(6)
(W)HV, (OVT Q)R V*(O)VH(O)W — VH(O)R-Lv, (VT (O)Ryv*(6)

Bu) = (2.14)
whereR, = XTX*.

APES method [14]

The APES beamformer aims at minimizing the distance betweeroutput and the

desired signal(6)XT, i.e.,
miﬁn||WHZ —BOVT(OXT? st. whv, (6) = 1. (2.15)

The optimal beamformer solving (2.15) is

— < 2.16
O (2:10)
and the estimate of target reflectivity is given by
Lo VHOQIZX v (9)
PO = a0 v v ORV ©) (247
where
N T T—7H
Q:R—Zx v (@) (0)X'Z (2.18)

VT (O)R,v*(6)



24

GLRT method [14]

Let the columns oE in (2.11) be independently and identical distributedd).circu-
larly symmetric complex Gaussian random vectors with zeean and unknown covari-

anceR,. The GLR is defined as

_ [max, fZIB= 0RO L VOR™ ()

maxr, f(ZIB.R).0 |~ VH(O)Q V() (2.19)

p(0) =1

where

f(Z|8,Rn, 0) = 7™ |Rn|—Le—Tr{R;1(Z—,8v, OVT(OX)Z-Bvr (VT (X)) (2.20)

One can see from (2.19) that the GLR approaches to 1 if thertaiget av; otherwise

it is close to zero.

MUSIC method [42]

The MUSIC method is one of subspace-based methods. Unkkiithe DOA estima-
tion methods described above, the MUSIC does not requirada kransmit waveforms.
Assuming white noise with covariance matsixl, the covariance matrix of received signal

can be represented as
R =VXTX'V" + o2 (2.21)
where
K
V= Zykvr(HK)VT(Hk) = [Vi(6), ..., vi(@)]diag{[ys, . . ., 1} [V(Ba), . . ., v(6K)]" (2.22)
k=1

Subspace-based methods reqiNke> K to sperate the noise space from the signal
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space. In this case,the teX"X*VH hasL — M zero eigenvalues. One can see from
(2.21) that the eigenvectors denoted Wy corresponding to the eigenvalué span the

noise space and are orthogona\tai.e.

UV =0 — UMV, (61),...,v:(6K)] = O. (2.23)

Therefore, the MUSIC “spatial spectrum” is defined as

0(6) = v (O)v, (6)

~ VH(O)(UUR) v, () (2.24)

If there is a target located &t thenp(6) goes to infinity; otherwisep(d) has small value.
The detection accuracy of the MUSIC method relies on thenaditbn of noise space.
For the stficiently long signal or adequately high SNR, we can estimagenbise space

precisely and thus obtain the desired performance of the I@usthod.

2.3.2 Doppler estimation [39]

The way to estimate Doppler shift for single-input singlég-¢SISO) radar has been
discussed in Chapter 1. In this section, we consider the [Rogstimation for MIMO
radar. The most common method is the matched filtering metiéd). Based on the
signal model (2.8), the angle and Doppler need to be joirglyreted. The matched filter

looking for a target atf, v) yields

CMFM(H, V) = . (225)

N
. i r jantv 2V

Z Np Z (Zim)" ()’kej%"' (e)ej%(m_mD(? f)XV(Hk))

m=1 =1

If there is a target located atv, then €urm (0, V) has large value; otherwise, it is negligi-

ble.
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2.4 Compressive Sensing for MIMO Radar

Let us discretize the angle and speed space on a fine gridi(sE&n 2.2), i.e., respec-
tively, [&, ..., ay,] and bs,..., BNb]. Let the grid points be arranged first angle-wise and
then speed-wise to yield the grid poing,(,),n = 1, ..., NaNyN.. Through this ordering,
the grid point &, b,,) is mapped to pointg, by,) with n = (N, — 1)n, + N,

We can rewrite (2.8) as

N
Zim = Z s, @l 7 (@) gizebn(m-1)T D(br)XV(an) + &m (2.26)

n=1

whereN = N3Ny and

, ifthe k-th target is atd,, b
5 = Yk g &, bn) . (2.27)
0, otherwise

In matrix form we have

Zm = ¥imS+ &m (2.28)

wheres = [s;,...,s]" and
W, = [6l T @2 T Dk \Xy(ay), ..., e T @)eiZtnm-DT D YXy(ay)].  (2.29)

Assuming that there are only a small number of targets, ts#tipos of targets are
sparse in the angle-Doppler plane, is#s a sparse vector. Let us measure linear projections

of z,, as
MNm= (I)Imzlm = (DIm‘PImS"' ém’ (2-30)

where®,, is anM x L (M < L) zero-mean Gaussian random matrix that has small corre-
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lation with ¥, andg,, = ®n,@m. M must be larger than the number of targets.

All the receive nodes forward their compressed measuresnerd fusion center. We
assume that the fusion center has the ability to separatiathef diferent nodes from each
other. This can be done, for instance, if the nodes send dia¢ér over dierent carriers.
The fusion center combines the compressively sampled sigini@ toN, pulses obtained

at N, receive nodes to form the vectarlt holds that
F=[r oo TR s TNl = OS+E (2.31)

where® = [(q)llTll)T, ceey ((I)]_NDTJ_ND))T, ceey ((I)Nr]_‘I’er)T, ceey (q)NerTNer))T]T andE =

~
*

ar ar T ar 7 i i
[€1 - 8nye - & 1o+ -» 8y, ] - THus, the fusion center can recowey applying the

Dantzig selector to the convex problem of (3.8) as ([43])
S=min|gll; st O — Ol < i (2.32)

According to [43], the sparse vectsican be recovered with very high probabilityuif=
(1+t71) y/210gNG207 e, Wheret is a positive scalatr iy is the maximum norm of columns

in the sensing matri® and o2 is the variance of the noise in (3.8). @ = | then

&2 = o?. Determining the best value pfrequires some experimentation. A method that
requires an exhaustive search was described in [43]. A Ibwand is readily available,
i.e.,u > /210gNG&20 ey Also, u should not be too large because in that case the trivial

solutions = 0 is obtained. Thus, we may set ||®"r]|..

2.4.1 Resolution

The UUP [19][20] indicates that if every set of columns witrdinality less than the
sparsity of the signal of interest of the sensing ma#xdgfined in (3.8)) are approximately

orthogonal, then the sparse signal can be exactly recowetbchigh probability. For a
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fixed M the correlation of columns of the sensing matrix can be redutthe number
of pulsesN, andor the number of receive nodé§ is increased. Intuitively, the increase
in N, and N, increases the dimension of the sensing matrix columnsglblyerendering
the columns less similar to each other. A more formal progfr@vided in Appendix I.
Moreover, increasing the number of transmit nodes, Me.also reduces the correlation of
columns; this is also shown in Appendix I.

In general, to achieve high resolution a fine grid is requireldwever, for fixedN,,

N; andM;, decreasing the distance between the grid points wouldtiesaore correlated
columns in the sensing matrix. Based on the above discygki@olumn correlation can
be reduced by increasirg,, N; or M;. Also, based on the theory of CS, thigeets of a
higher column correlation can be mitigated by using a langenber of measurements, i.e.,
by increasingM. In particular, it was shown in [19] thadl should satisfyM > w
wheree denotes the maximum mutual coherence between the two celofrthe sensing
matrix andC is a positive constant.

One might tend to think that in order to achieve good resotutine has to involve a lot
of measurements, or trasnynéiceive antennas, or pulses, which in turn would involvé hig
complexity. However, extensive simulations suggest thigtis not the case. In fact, the
proposed approach can match the resolution that can bevadhigth conventional meth-

ods, while using far fewer received samples, than those lwséte conventional methods.

2.4.2 Maximum grid size for the angle-Doppler space

The grid in the angle-Doppler space must be selected solthaatgets that do not fall
on the chosen grid points can still be captured by the clag@édtpoints. This requires
suficiently high correlation of the signal reflected by each eangith the columns o®
corresponding to grid points close to the targets in theeadglppler plane. However, this

requirement goes against the UUP, which requires that eetigf columns with cardinality
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less than the sparsity of the signal of interest be appraeiyarthogonal. Thus, there is a
tradedt of the correlation of columns of the sensing matrix and the gize.

Absent prior information about the targets, we can deteentit®e maximum spacing
of adjacent grids in the angle-Doppler space by considettiegworst case. Assume
that we discretize the angle-Doppler space uniformly wit@ $pacing Aa, Ab) asa =
[(a,b1),...,(an, bn)]. The worst case scenario is that the targets fall in thedieidbe-
tween two adjacent grid points. Therefore, a practical @@ghn of selecting the grid points
is to calculate the correlation of columns correspondin@ator %‘,bi) and @, b + %b
with the columns corresponding te;(b;), i = 1,...,N. This can be done by computing
the correlation at lag zero of columns correspondingafe A—;‘, b) and @, b + A—Zb) with
the columns corresponding ta;(b;), fori = 1,..., N, and then taking the average. Then,
we can vary the step\@, Ab) until the average correlation reaches some thresholds Thi
threshold should be high enough to capture the targets thabtlfall on the grid in the
angle-Doppler space, and at the same time, it should s#tisfyUP. The adoption of such
grid points would ensure that the angle-Doppler estimattéargets would always fall on
the grid of the constructed basis matrix.

When the targets are between grid points, the increablg or N, will not necessarily
improve performance. However, simulations show that wealatain very good perfor-
mances with very smalN, andN,. To achieve a similar performance, the conventional

matched filter method will require much greabgyandN; .

2.4.3 Range of unambiguous speed

Let us assume that the Doppler shift change over the dur@ipaf the pulse is negli-
gible as compared to the change between pulses. This isnaasayiven the assumption
(Al). Given two grid pointsg, b)) and @;, b;) in the angle-Doppler space, whdze+ b;,

the corresponding columns ¥ are diterent ifel?™T # 2T |etv; be the speed corre-
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sponding to the Doppler frequenbyandAivj = Vvj — V.. It holds that

. . 2AIET
eZbT 4 g2 T :: #nn=+1+2 ... (2.33)

Therefore, the range of the unambiguous relative speedeleatiwo targets that appear at

the same speed satisfies

2AVET . c
<1 A< — 2.34
c ST TS (2:34)

The selection ofl affects the range of the unambiguous speed; the smallér the
larger the range of the unambiguous speed is. We also nedatiaely smallT to satisfy
the assumption that the Doppler shift does not change wittenduration of the pulse.
On the other hand, a largér is needed to satisfy the narrowband assumption about the

transmitted waveforms. TherefofeEneeds to be chosen to balance the above requirements.

2.4.4 Complexity

The proposed approach requires solving the convex progragnpmoblem of (2.32).
The more targets one would hope to be able to detect the hilghe@omplexity would be.
Further, the signals involved are complex. In this case2jZan be recast as a SOCP [29],
which requires polynomial time in the dimension of the unknorector.

The requirement of a fine grid further increases the comjoumalt complexity. This
problem can be mitigated by first performing an initial arDleppler estimation using
a coarse grid, and then refining the grid points around thelrestimate. Restricting
the candidate angle-Doppler space reduces the samples entile-Doppler space that
are required for constructing the basis matrix, thus redut¢he complexity of the’;-
optimization step.

In addition to the computation complexity, the receiverdbtaining the required sam-
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ples is also more complex. The schematic diagram of thevexcisi shown in Fig. 2.3 (see

also [35]).

2.5 Performance Analysis in the presence of a jammer signal

In [43], Candes and Tao showed that if the basis matrix obdey$JUUP and the signal
of interests is suficiently sparse, then the square estimation error of thedizaselector

satisfies with very high probability
N
13- s2< C?2logN x (o + Y min(s(i), o)) (2.35)
i

where C is a constant denotes the length sfando? is the variance of the noise. It can be
easily seen from (4.3) that an increase in the interferepegeepdegrades the performance
of the Dantzig selector. Thus, in the presence of a jammeititaasmits a waveform un-
correlated with the radar transmit waveforms, the perforeeaof the proposed CS method
will deteriorate. Next, we provide analytical expressiforsthe signal-to-jammer ratio at

the receive nodes, and propose a modified measurement moegtppress the jammer.
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2.5.1 Analysis of Signal-to-Jammer Ratio

Suppose that each transmitter transnNtspulses. In the presence of a jammer at

location @, 6) the signal received at tHeth receive antenna can be expressed as

ry . (I)IlejZJrkaT
n=| i | = Y neTi® s D(fi)Xv(6)
k=1

fin, Dy, €2 K Np-1)T

lls
D1X; D6,
peieqog| N : (2.36)

D\ XN, D\ e,

] fin

where X, = [%n(0Ts), . . ., %n((L—1)Ts)]" contains the samples of the signal transmitted by
the jammer during ther-th pulse, ang denotes the square root of the power of the jammer
over the duration of one signal pulse.

We assume that for ath, E{X (i)Xn(j)} = 1/L fori = j, and O otherwise. Thus,
E{XH%n} = 1. Also, we assume th&, m = 1,...,N, are uncorrelated with the main
period of the transmitted waveforms. Thus, thEeet of the jammer signal is similar to
that of additive noise. In the following analysis we assuhed the jammer contribution
is much stronger than that of additive noise, and therefaegmwore the third term, on
the right hand side of (2.36). Later, in our simulations wé wonsider additive noise in
addition to a jammer signal.

We assume that all receive nodes use the same random meastiraatrix ovem,
pulses, ie.® = @ = @ = ... = Dy, Let A = XHDH(f)@ ' D(fi,)X and

q!f’jk' denote thei( j)-th element ofAl¥'. Thus, the average power of the desirable signal
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conditioned on the transmitted waveform can be represdited

Np-1

P(l) = EirfingX) = Z Vit € TEUHOI 0D (7 g T v () A (g ))

— —/—/

k= pi(kk) m=0 Que
Hik!
= Z 1Bu*Que} + Ef Zpl(k K" ttiae Quaic } (2.37)
kek’
wherep,(k, k') andQy can be further written as

ok k) = eJ'%[Z(dk(o)—dkf(0))—(n{(Hk)—n{(ew))lg*klgk, (2.38)
andQue Z qu eJZ"(nJ (@) (0) (2.39)

As defined in Section 3.2, the position of titk TX/RX node is denoted byt(r t/r

in polar coordinates. Thus it holds that

2r" sinGo%) sin( — 22%) i =
jI - Tlt,/r(gk') - Tlit/r(gk) = I 2 2 . . (2.40)
”r cos@ — ;) — 1" cosfk—a;) i# ]
Let ¢ be deterministic. Based on the assumed statistics @fido; (see (2.1)), the

distribution ofh = ‘- - sm(a“r Wo) Is given by ([50])

fo(h) = 2Vic h,-1<h<1 (2.41)
T
and
Ef{e") = o) (2.42)
a

whereJ; () is the first-order Bessel function of the first kind. Thusséxon (4.15) we can
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obtain
jZak o K 91 i = jandk =k
E{e 1 } =EleT 7\ = g,(45“,.'(\‘)1«2— k)) i = jandk # K (2.43)
s%(2)
whereg(x) = Jl(xm 2y

Therefore, the average power of the desirable si§a@) taken over the positions of

TX/RX nodes can be found to be

NoE {Z 1Bl Qkk} +E {Z 1K, K)o Qkk’}

k£k’

Ps(1)

= Nleﬁk| E {Qu! +ZE {o1(K, K')} pge E {Quie }

k£k’

NS S+ 5 SO T

k£k’

= N Z B it + D @)

i#]

+ Zﬁkﬂ & FEAO- O g [Gae Z o + Z 4 s*(2)]

k#k’ i#]
(2.44)

wheresye = (4 sin@5%)).

For many practical radar systems with wavelengtéss than A m, (e.g., most military
multimode airborne radars)s /A is a large number if > 5m. Since the functior(X)
decreases rapidly asincreases, the terms multiplied ky(2) are small enough to be

neglected in the above equation. Therefore, (2.44) can p®ajnated by

K
Pill) = Np Y 1B D o+ > el FOO-aOg,, ukk,Zq . (249)
k=1 i

k£k’
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Similarly, the average power of the jammer signal ovefTPRlocations is given by

Np
P) = Elrfiry) = (@10 iog): S statag,
m=1
Np
= P ) X%y (2.46)
m=1

The SJR given the node locations is the ratio of the power @fktgnal to the power
of the jammer. Since the denominator does not depend on pnodgdns, the average SJR
equals SJIR Pg(1)/P;(1).

Some insight into the above obtained expression will berginghe following for some

special cases.

2.5.2 SJR based on a modified measurement matrix

Since the jammer signal is uncorrelated with the transchiignal, the SJR can be im-
proved by correlating the jammer signal with the transrdittiginal. Therefore, we propose

a measurement matrix of the form
® = d X" (MxL) (2.47)

where®| is anM x M, Gaussian random matrix. Note thlt is also Gaussian. As stated
in [20], a random measurement matrix with i.i.d. entrieg,.,eGaussian ot1 random
variables, is nearly incoherent with any fixed basis matffikerefore, the proposed mea-
surement matrix exhibits low coherence whf, thus guaranteeing a stable solution to
(2.32). Based on (2.47), the average power of the desiraimald (1) is given by (2.44),
except thaQy. is based oA = XHDH ()X (®)"®/X"D(fi,)X. The average power of
the jammer signal is given by (2.46) whebeg is replaced byb,.

Let us assume that tHd; transmit nodes emit periodic pulses containing independen
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quadrature phase shift keying (QPSK) symbols, andXhat = I,. Also, we assume that
D0 = d/(®)" =

Let % (n) be expressed a%,/ VL, whered, is a random variable with mean zero and
variance one. Then the average power of the jammer sijtiglcan be rewritten as fol-

lows:

Np
Pi() = 187 ) Ko D%y
m=1

Np L-1 Np L-1
= B2 D K@i + 182D D" %) En(i)cy
m=1i=j=0 m=1i#j=0
Np JL 1 Np ;Ltjl
= _|:8| Zzﬁmlﬂmcu + - |,8| Z Z i 29mlcll (2'48)
m=1 i=0 m=1i#j=0

wherec;j is the (, j)-th entry of®®,. Since the entries ab, are i.i.d Gaussian variables
with zero means and varianc%sc”,i =1,...,L arei.i.d chi-square random variables with
means% and variance§LM; Gj,i # j are of mean zero and varianMyL2. Let us express

Cij, 1 # ] asgjj VM/L, whereo;; has zero mean and unit variance. It holds that

Np L-1
Pi(l) = |,8| Z E{dnImCil + — 2 |,8| Z Z Ui O mj0ij
m=1i#j=0
_ M WF@D 1 N,
= BN+ Z L(L-1) .;oﬂ mmigi
oM L-1
= p|:8| Iﬁ| \/_( )ZE Jlej}

X

NpLBFT (2.49)
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where we have used the fact that for latge

15 M
E Z ﬁ*miﬂmicii - E{ﬁ*miﬂmicii} = T (250)
i-0
L-1
1
and ——- Z Inidmioij —  E{dmioij} =0. (2.51)
L(L -1) i#)=0

Using the measurement matnl; in (2.47) will not afect the averag®;(l) over the
jammer signal due to the fact thgt c; = Tr{X(®))"®/X"} = Tr{X"X(®))" @/} = Tr{®|(®))"} =
Tr{ly} = M.

In the following, we will look into the SJR improvement usidiy as opposed t®;, for

two different cases, i.e., stationary targets and moving targets.

Stationary Targets

First, let us consider the SJR using the random measurenerikid,.
When the targets are stationary, the Doppler shiftis zetdcsaAF"’ =A = X"o®X.

Therefore, the average power of the desired signal can bbexdpmated as
K
i 4n
Pol) ~ No ) B D i+ Np ) BiB@THOUOE B g (252)
k=1 i k#k’ i

whereq ; is the (, j)-th entry ofA,.

Letting x; denote the-th column ofX, 3; g; can be expressed as

Z Gi.i

Mt Mt L
TrAL = Y xefox = >0 3" X (M)cmx(n)
i=1

i=1 mn=1
Mg L M L
= D, 2 XXM+ D > X (MX (M), (2.53)
i=1 m=1 i=1 m#n

where®d,(m, n) is the (n, n)-th entry of®®,.

The entries oKX have zero means and mutually independent; therefore, ficisntly
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long L and M it holds that

L

Yoi = T Njom="p (25)

m=1

Based on (2.54), a concise form{(l) is given by

NoMM; 3K 182 N N, M M

Ps() =~ 2.55
wherep = ¥\ ke Bibr e/ FOrde O, f
Thus, the SJR corresponding to the random measuremenkdais
Ps(l) M, 1Bk +
SJR = s(1) N t(Xiea 1Bl” + ) (2.56)

P B2

When using the measurement maix= ®; X", the quantity corresponding &4 is
A = A = XPX(@) o XX = (@)D . (2.57)

It holds that}; ; = Tr{(®))"®[} = Tr{®[(®|)"} = M. Similarly, the average power

of the desired signal can be approximated as
K

P() =~ NeMO | 1B +¢). (2.58)
k=1

Therefore, the SJR corresponding to the random measurenaerix @, is

sor = P LGk Bl + o)

CPi() B2 (2:59)

From (2.56) and (2.59), it can be seen that the usb,dfstead of®, can improve SJR

by a factor ofL/M; whenL > M. The SJR can be improved by an increask.iklowever,
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increasingL will require a higherTs when the pulse duration is fixed. This will increase
the bandwidth of the signal. It is interesting to note that 8IR of (2.56) and (2.59) does

not depend on the the number of measuremeits,

Slowly Moving Targets

Based on the measurement matdx, and considering the Doppler shift, we have

Al = XHDH(fi)@ @,D(fi,)X. Due to the assumption (A1), we have

Z g = Tr{AFY} = Tr(X"D" (f)@ @ D(fi )X} ~ (2.60)

M M¢
-
Thus,Pg(l) for the slowly moving targets witlfi,T << 1 is approximately the same as that
of stationary targets.
Let us now consider the measurement madix Let cikj denote thei( j)-th entry of
XHDH(f )X and note that,kj is given bycI SE2o XA (n)x;(n) * @2 «Ts In scenarios in

which L is relatively large, the following approximations are riaderived:

_ l 1— @ZﬂkaTS _ J
er L 1-elZikTs o (2.61)
= 0 e

Since the &-diagonal elements are small compared with the diagonaiesi¢s, they can
be ignored.

Then, we obtain the following approximation
A = XHDH(fi)X (@) @/ X"D(fi)X ~ (@))"®;. (2.62)

Therefore, the SJR of slowly moving targets witfT << 1 is approximately equal to

that of stationary targets for both random measurementceatr
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2.6 Simulation Results

The goal of this section is to demonstrate the ability of theppsed MIMO radar
approach, denoted in the figures as CS, to pick up targeteiprésence of noise aiod
a jammer, and also show thé&ect on the various parameters involved. In each case the
performance is compared against other methods that havedreposed in the context
of MIMO radar (here referred to as “conventional”) in orderquantify weaknesses and
advantages. For the case of stationary targets, the coomahtnethods tested here are
the methods of Capon, APES, GLRT [14] and MUSIC [52], while feoving targets,
comparison to the matched filter method [39] is conducted.

In our simulations we consider a MIMO radar system with tl@s$mitreceive anten-
nas uniformly distributed on a disk of radius 10m. The carfiequency isf = 5GHz
and the pulse repetition interval is = 1/4000s. Each transmit node uses uncorrelated
QPSK waveforms. The received signal is corrupted by zeranezaissian noise. We also
consider a jammer that transmits waveforms uncorrelatatidsignal waveforms. For
simulation purposes we take the jamming waveforms to beanbé@ussian [51]. The SNR
is defined as the ratio of power of transmit waveform to thatefmal noise at a receive
node. Throughout this dissertation, we @3& to solve the Dantzig selector in (2.3ZVX

is a package for specifying and solving convex programg443]

2.6.1 Stationary Targets

The presence of atarget can be seen in the plot of the magruf@dbtained by (2.32).
We will refer to this vector as thiarget information vector. The location and magnitude of
a peak in that plot provides target location and RCS magejttespectively. The proposed
approach results in a clean plot away from the target lonatiand well distinguished peaks
corresponding to the targets. This is a desirable behawraiafget detection, as it would

result in small probability of false alarm. To demonstrdtte appearance of the graph we
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define the peak-to-ripple ratio (PRR) metric as follows. #ark-th target, PRRis the
ratio of the square amplitude of the DOA estimate at the taagenuth angle to the sum
of the square amplitude of DOA estimates at other anglesptatehe jammer location,
i.e.,PRR = Wﬂ;z_lsjlz wheresis defined in (2.27)sc ands; denote the elements of
corresponding to the location of tlketh target and the jammer, respectively. A clean plot
would yield a high PPR, while a plot with a lot of ripples wouyleld a low PRR.

A metric that shows the degree to which a jammer is suppressedely the peak-to-

jammer ratio (PJR), is also used here. PJR is defined as tbeofahe average square

amplitude of the DOA estimates at the target angles to tharecamplitude of DOA esti-

1 vK 2
K Zi:llad
Isj[?

mates at the jammer, i.eRJR = . Unlike PRR, PJR is averaged over all targets.
In this way, the jammer is considered to be suppressed otheipeak amplitude at the
jammer location is much smaller than the peak amplitudeyatanget location.

The results that we show represenf@0 Monte Carlo simulations over independent
waveforms and noise realizations. To better show the stati®rehavior of the methods
we plot the cumulative density function (CDF) of PPR and RIR,Probability(PPR < X)

andProbability(PJR < x), wherePPRis the sum oPRR,k=1,..., K.

Targets falling on the grid

We consider the following scenario. Two targets are locatiedngles; = 0.2°and
6, = —0.2°. The corresponding reflection d@ieients ares; = B>, = 1. A jammer is
located at angle®and transmits an unknown zero-mean Gaussian random waveiibn
variances? = 400. Additive white Gaussian noise is added at the receidesol he ratio
of the power of transmitted waveforms at each transmit nodled variance of the additive
Gaussian noise The number of transmit antennas is fixétl at 30. For the purpose of
reducing computation time, the angle space is taken to-B& 8°], and is sampled with

increments of 2° from -8° to &, i.e.,a = [-8°,-7.8°...,7.8°8°. M = 30 random
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measurements of one pulse are used to feed the Dantzigmselgicice the MUSIC method
requires the number of receive antennas to be greater thanuthber of targets, when only
one receive antenna is used we compare the proposed CS nwathoohly the Capon,
APES and GLRT methods. The comparison methods are wsi#n§12 samples to obtain
their estimates, while the proposed approach ies 30 samples. The result of one
realization for the case of one receive node is shown in Fig. ®ne can observe the
cleaner appearance of the graph corresponding to the mo@gproach, where the two
targets appear correctly except with a small error in themtade of the target RCS. The
CDF of the corresponding PRR and PJR are also shown in thefggune One can clearly
see that with one receive antenna the comparison methodsBRR close to 1, which is
indicative of severe ripples.

In general, an increase in the length of wavefoilmeads to improved PRR and PJR
for all methods. In the following results we flxto 512. For the comparison methods,
represents the number of samples needed to obtain targahiation. For CS, the number
of samples used to extract target informatioiis

For the scenario of Fig. 2.4, théfect of the thresholg is evaluated in terms of the
empirical CDF of the PRR and the amplitude estimate of RC8,the results are shown
in Fig. 2.5. One can can see that the increagedan lead to fewer ripples but at the same
time it degrades the amplitude estimate of RCS. In the foligwthe value ofu used in
each case will be shown on the corresponding figures.

For the same target and jammer configuration as above, we xamiee the &ect
of different levels of jammer strength. We consider the scenargredly = 10 receive
nodes participate in the estimation. For the case of CS, maah sends to the fusion center
M = 30 received samples, while for the comparison methods, maad sends to the fusion
centerL = 512 received samples. In Fig. 2.6 we show the CDF of PPR andcBdB-
sponding to jammer variang® = 400 1600 and 3600 and SNR equal to 0 dB. One can
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see that for CS, the probability of low PRR and PJR increagesnwhe jammer becomes
stronger. In particular, there is some non-zero probahitiat the PRR will be close to
10~. Such cases are rare and occur when one of the two targetsiedniThe decrease in
the thresholg: can improve the DOA estimates at the target locations aneceethe prob-
ability of missing one of the targets. The cost, however, idoe an increase in ripples.
The performance of the proposed approach can be improeedhie rare low PRR values
can be completely avoided by increasidg or M. This is demonstrated in Fig. 2.7, where
the strong jammer case of Fig. 2.6 is considered 4% 3600, and\; is increased to 30.
We should note here that it does not help to incréddseyondM; as the maximal rank of
O/ is M.

Next, we consider the same scenario as above but let the tgetsabe at variable
distanced in the angle domain. Figure 2.8 demonstrates performamcebd cases =
0.2°, 0.3°, 0.4%n the presence of a strong jammer with variag€e- 3600. The SNR is 0
dB, N; = 10 andM = 30. One can see that the comparison methods produce godd leve
PRR. Regarding the PJR, as expected, MUSIC fails, Capon &&bAesultinis PRR 1
most of the time, while GLRT performs well all the time. Theoposed CS approach
performs well with a few exceptions in which a PRR or PJR lessitl is obtained with
very small probability. Again, the CS method performanae lsa improved by increasing
N, andor M.

Based on the above results, the performance of the proppgedach for the jammer
dominated scenario can be made at least comparable to ttiee obnventional methods
while using about 8% (= 30/512) of the number of samples required by the conventional
methods.

Next, we study a thermal noise dominated case, i.e.,-SNRdB. Figure 2.9 shows
PRR and PJR performance fofféirent values of jammer variance, i82,= 400 1600 and

3600. In all cases the parameters dre= 10, M; = M = 30 and the targets were separated
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by d = 0.4°. CS yields good performance even in the presence of botloagstammer
and thermal noise. The PRR performance of other methodsaeppe deteriorate at this
noise level. The performances for targets with spacing 0.2°,0.3°and 04°are given in
Fig. 2.10 forN, = 20, M; = M = 30 andg? = 400. As in the case of a strong jammer,
the decrease in the spacidgloes not fect the performance significantly. In this thermal
noise dominated case, CS appears to perform very well insteff?RR and PJR, while
the comparison methods appear to be very noisy. To furttenane this case, we consider
two additional performance measures, i.e., mean squared (&SE) and probability of
false alarm (PFA), which are computed based on the obtastedates as follows. A new
vector, § is formed; if § is greater than some threshold thgn="1, otherwises"= 0.
The MSE is calculated a8ISE = ||§ — st||§/N, wheres is anN x 1 vector that contains
zeros everywhere except at angles corresponding to taggidns, where itis 1. The PFA
measures the probability of 1 occurringdat non-target locations. Figure 2.11 shows the
MSE based on,®00 Monte Carlo simulations. Note that the performance ofSWUis not
shown here since MUSIC always yields a peak at the jammetitocaOne can see that the
simple thresholding described above helps the comparisgthads, and if the threshold
is picked appropriately all methods can produce a low angk=Mnd PFA. However, the
MSE corresponding to the CS method is less sensitive to thieylar threshold than other
methods. For the milder jammer cage£ 20), the CS approach exhibits slightly better
“best MSE performance” than the comparison methods, whitee stronger jammer case
(8 = 60) the GLRT outperforms CS for most thresholds. For thengtf@ammer case,
the MSE and PFA of CS are compared to those of the GLRT ffierdint numbers of
samplesL in Fig. 2.12. One can see that for the strong jammer gaiseg0) CS performs
comparably to the GLRT with = 256. Thus, in the strong jammer case, CS still achieves
good performance with fewer samples than the GLRT, exceptthie savings in terms of

number of samples is smaller. For CS, the trend of an inargddiSE as the threshold
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increases can be explained by the fact that one of the twettagan be missed as the
threshold increases. The GLRT relies on the Gaussian assumigr the noise and jammer
signals, which is totally valid in our simulations. ThusJika the other methods, the GLRT
can suppress the jammer completely. We should note thaptwfie values of MSE and
PFA depend on the kind of thresholding performed. For examggplying thresholding
on a nonlinear transformation of the estimated vector cem djiferent values of MSE and
PFA, and the best results for each method are not necesshtdined based on the same
non-linear transformation. Determining the best thredimgl method is outside the scope

of this disseration.

Targets falling off the grid points

In this section, we consider scenarios in which targets déatieon the grid points. This
is a case of practical interest, as the target locationsrateawn, and thus the best grid in
not known in advance. We first select the proper step to digerthe angle space following
the procedures described in Section 2.4.2. The angle spaaaripled by increments of
0.2°from -8°to &, i.e.,a = [-8°,-7.8°...,7.8°8°. We assume that four targets of
interest are located &f = {-1.1°,-0.3°0.3° 1.1°}. Their reflection coficients argpx =
1,k = 1,2,3,4}. Ajammer is still located at7 Since the targets are located between
the grid points, we cannot plot PRR and PJR as in the caseg#tsaon the grid points.
Therefore, we show the mean plus and minus one standardideystd) for the amplitude
of the DOA estimate at each grid point. The results are showiig. 2.13. The power
of the jammer was 400 (left column of Fig. 2.13) and 3600 {rigflumn). Based on Fig.
2.13, it can be seen that with the proper grid points, thegsegd method can capture well
the targets that do not fall on grid points. The next best etk the GLRT which captures

the targets but exhibits high variance as indicated by thdethregion around the mean.
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2.6.2 Moving Targets

We continue to consider orthogonal QPSK waveforms and a pmntmeated at %with
power 400. The SNR is still set to be 0 dB and each receive nolliects M = 30 mea-
surements. Figures 2.14 and 2.15 show the target scenemftpesed CS method and the
matched filter approach [39] for targets on the grid points effi the grid points, respec-
tively. The matched filter correlates the receive signahihie transmit signal distorted by

different Doppler shifts and steering vectors.

Targets falling onto the grid points

We assume the presence of three targets locatgyj at —1°, 0°, 1°} that are moving
at the speed ofvx, = 60m/s, 70m/s, 80m/s}, respectively. We sample the angle-Doppler

space by the increment.f,5m) as

a = [(~8° 50m/s), (-7.5° 50m/s), .. ., (8% 50m/s), (-8°, 55m/s), .. ., (8°, 110m/)[2.63)

Figure 2.14 shows the target scene for one realization gporeding toN; = 1 receive
nodes (left column of the figure), and aldp= 10 (right column of the figure). We can see
that the performance of the matched filtering method is iofe¢o that of the CS approach
even when using the data of 30 pulses. The proposed CS appraagield the desired
performances even with a single receive node and as low ats&spuComparing the left
column and right column of Fig. 2.14, one can see tliecté of the number of receive
antennad\;. The increase i, can reduce the number of pulses required to produce good

performance.
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Targets falling off the grid points

In this section, we consider the scenarios in which tardpatisdo not fall on grid points.
From simulations (the corresponding figure is not given Ihexause of space limitations),
we found that the column correlation is more sensitive toahgle step than the speed
step, since T << 1. This indicates that in the initial estimation, the gridrms should be
closely spaced in the angle axis and relatively sparseeispleed axis. Then the resolution
of target detection can be improved by taking denser sangbldse angle-Doppler space
around the initial angle-Doppler estimate.

Like the scenarios with the stationary targets, the angteedsion is sampled by incre-
ments of 02°and the step of the speed dimension is setps Three targets are moving
at speeds ofv, = 625m/s, 725m/s, 825m/s} in the directions off6, = —1.1°, 0.1°,
1.1°}. Fig.2.15 demonstrates that the proposed method can eapeitargets that fall out
of the grid points in both angle and speed dimensions anchibcéperform the conven-
tional matched filter method. Moreover, we can see that aease inN, or N; will not
necessarily improve performance for the targets betweehpgints. This is because an
increase in the dimension of the basis vectors will decrdaseorrelation of columns in
the basis matrix, which contradicts the requirement fotwapg the targets out of the grid
points 2.4.2. The performance in the case of more closelgesptargets, i.eqd = 0.4°%s

shown in Fig. 2.16.

2.7 Conclusions

We have proposed a MIMO radar system that can be implementeddmall-sized
wireless network. Network nodes serve as transmittersoaivers. Transmit nodes trans-
mit uncorrelated waveforms. Each receive node applies oessjye sampling to the re-
ceived signal to obtain a small number of samples, which tloe subsequently forwards to

a fusion center. Assuming that the targets are sparselyed@athe angle-Doppler space,
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the fusion center formulates &poptimization problem, the solution of which yields target
angle and Doppler information. For the stationary casep#réormance of the proposed
approach has been compared to that of conventional apmedicht have been proposed
in the context of MIMO radar. The comparison scenario assutingt each receive node
forwards the received signal to a fusion center, where CafBES, GLRT or MUSIC is
implemented to obtain target information. The proposed@ggh can extract target in-
formation based on a small number of measurements from om® receive nodes. In
particular, for a mild jammer, the proposed method has bhew:s to be at least as good
as the Capon, APES, GLRT and MUSIC techniques while usingmifsiantly smaller
number of samples. In the case of strong thermal noise aodgsjammer, the proposed
method performs slightly worse than the GLRT method. Intlaag, its performance is still
acceptable, especially if one takes into account the fatithises significantly fewer sam-
ples than GLRT. For the case of moving targets, the propgseebach has been compared
to conventional matched filtering, and has been shown t@parbetter in both single and
multiple receive nodes cases.

An important feature of the proposed approach is energygavilf the fusion center
implemented the proposed CS approach, it would require sntmléorwardM samples
each, as opposed Losamples that would be needed if the fusion center were taeiméht
the conventional methods. In order to meet a certain pedooa level,M is typically
significantly smaller thah, i.e., fewer samples would be needed for the CS implementati
as compared to the implementation of conventional methdtss translates into energy
savings during the transmission of the samples from theveo®des to the fusion center.

The obtained savings would be significant in prolonging ifeedf the wireless network.



49

2.8 Appendices: The ffects ofN,, N,, M; on the correlation of columns in the sensing

matrix

2.8.1 The d#fect of the number of pulses on the column correlation in the sesing

matrix

The sensing matrix for thieth receive antenn@, is given by

(O 5
0 = : (2.64)

D ¥\,

where¥im,m=1,..., N, is defined in (2.29).

On lettinggk denote the-th column of@®,, the correlation of columng, andg, equals

NovH (a)Bv(aW) k=K
Pe = <060 >1= P ! . (2.65)

in(r(bk—b )Ny T ’ ,
|92i51(5r(T)k—T):/)18)_)||VH (@B v(aw)l k#k
whereB* = XHD" (b)®H®,D(by)X.
For a given pairK, k'), k # k', the ratio off < gy, gk > | tO| < Ok, Qv > |, i.e.,h., reveals

the efect of N, on the correlation of the two columns. It holds that

Np

hge - )
“ = sinr(be — De)NpT)

(2.66)

Let assume thal has been fixed. As long aby(— b )N, T < 1, hye increases with\,,
and attains the maximum value whemn ¢ b, )N, T = 1, because the cross correlation of
Ok andg, becomes zero. Therefore, the increasljrcan improve the performance of CS
estimation of (2.32) as long als- by )N, T < 1. This indicates that iftg— by )N, T < 1 for

each pair of K, k'), k # k', the increase ifN, can always improve the performances of CS
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estimation. For a conventional radar, the number of pulaasatso improve the resolution

of Doppler estimates since the Doppler shift creates grehnge between pulses.

2.8.2 The #fect of the number of receive antennas on the column correlasin in the

sensing matrix

Next, we investigate thefiect of the number of receive antenrigson the correlation
of columns in the sensing matrix. For simplicity, we assuhm bnly the received data
collected during then-th pulse is considered and the random measurement mtigx

constant over receive antennas. Then the sensing n@tran be represented as

(I)‘Pln
0= : . (2.67)

®TNrn

Thus, the correlation of columms andg; equals

|<0,0;>1=

N:
Pij Z INELCICHEHO)

=1

|ej2n(n—l)T(bj “P)yH ()X DM (bi)q)H(I)D(bj)Xv(aj)|

N IvH (@)B"Iv(ay)l i = j

= . N (2.68)
| S, @ F U @iCIvH @)BMv(ag)| i #
whereB" = X"DH ()@ ®D(b;)X.
Thus the ratio of < gi,g; > [to]| < g;, g > | is
1|
hyj o 5 Z el & @)-nf@)| (2.69)
" =1

Since the receive nodes are randomly and independenthipdisd, - | SN el el @)@

approaches 0 a4 becomes large. Therefore, the correlation of two columtisersensing
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matrix can be reduced when the number of receive antennasreaised.
2.8.3 The d#fect of the number of transmit antennas on the column correlabn in the
sensing matrix

Finally, let us see thefiect of the number of transmit nodes on the correlation of
columns. For simplicity, we assuni¢ = N, = 1. Thenv"(a)B"lv(a;) can be rewrit-

ten as

V@B v(a) = ) vi@Ve(@)Bio/L + > D Viday)vi(@)x( @)X (p)B},
kp

k p#q
£ @)V (@)@ (P)BY (2.70)
k#k’ p.,q
Ml\"t +ol+oll =]

) MDo@@ L L 2.71)
OO vl o) i # ]
whereyv, and By}, denote thek-th entry ofv and the p, g)-th entry of D" (b)®@"®D(b;),
respectively.

Thus, the ratio of < gi,g; > [t0| < i, g > | IS

M 3 vie(@i)V: T M Sv@)Vi@) | of | o

Zkk(LJ)k()+o_llj+o_|21 MLJk +V1+V2
h: = - ! : ! (2.72)
' MM | iy i M, o ol ' '
L 1 2 L4 2

It can easily be seen that the numerator approached) agproaches infinity. Therefore,
the correlation of two columns of the sensing matrix can lobeiced by employing a large

number of transmit nodédd;.
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Figure 2.3: Schematic diagram of the receivrdenotes the measurement matrix for the
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3. CSSF MIMO Radar: Low-Complexity Compressive Sensing Basd MIMO Radar

That Uses Step Frequency

In Chapter 2, we focus on DOA and Doppler estimation only fa tase in which
the targets are located in a small range bin and the samglisignichronized with the first
target return. Such assumptions do not allow for range astom. In this chapter, we con-
sider a more general case without those assumptions andgaemew approach, namely
CSSF MIMO radar, which applies the technique of step frequé€8F) to CS-based MIMO
radar. The proposed approach enables high resolution,rangke and Doppler estimation,
while transmitting narrowband pulses. The problem of jaingle-Doppler-range estima-
tion is first formulated to fit the CS framework, i.e., ast@moptimization problem. Direct
solution of this problem entails high complexity as it enygd@ basis matrix whose con-
struction requires discretization of the angle-Dopp#arge space. Since high resolution
requires fine space discretization, the complexity of joamtge, angle and Doppler esti-
mation can be prohibitively high. For the case of slowly nmgviargets, a technique is
proposed that achieves significant complexity reductiosumcessively estimating angle-
range and Doppler in a decoupled fashion and by employinigliistimates obtained via
matched filtering to further reduce the space that needs thgitezed. Numerical results
show that the combination of CS and SF results in a MIMO ragstiesn that has superior
resolution and requires far less data as compared to a syisé¢nses a matched filter with

SF.

3.1 Introduction

The application of CS to step-frequency radar (SFR) [5F}Hgas investigated in [58]-

[60]. SFR transmits pulse trains of varying frequency. Thalthough the individual pulses



62

are relatively long in duration and are narrowband, thestimaihsignal is éectively wide-
band. Since range resolution increases with the signaMadtitl SFR achieves high range
resolution. At the same time, SFR does nateufrom low SNR at the receiver typically
associated with wideband systems that rely on short durgtitses. In [60], it was found
that the CS approach can significantly reduce the number Isepuequired by SFR to
achieve a certain resolution. A CS-based data acquisitidnirmaging method was pro-
posed in [58] for stepped-frequency continuous-wave gilgoenetrating radars, and in
[59] CS was applied to stepped-frequency through-thesadhr imaging. In both cases it
was shown that the CS approach can provide a high-qualigr iathge using many fewer
data samples than conventional methods.

In this chapter, we consider a more general scenario tharott@hapter 2 in which
range estimation is excluded. The methods of Chapter 2 assat the targets are lo-
cated in a small range bin and the sampling is synchronizd&ud the first target return.
Such assumptions do not allow for range estimation. In thapter, the targets can be
located across several range bins. We propose CSSF MIMQ, raada@approach that ap-
plies step frequency to CS-based MIMO radar. Two types of FCBBVO radar systems
are considered, i.e., linear step-frequency radar (LS&R),random step-frequency radar
(RSFR), and their féects on the CS approach are studied. The proposed approach en
ables high resolution range as well as angle and Dopplenastn. The problem of joint
angle-Doppler-range estimation is first formulated to fé ®©S framework, i.e., as afl
optimization problem. Solving this problem entails highmgexity as it employs a basis
matrix whose construction requires discretization of thgle-Doppler-range space. The
complexity increases with the size of the basis matrix, anedently, as the discretization
step decreases; the latter step needs to be as small aslpassibsets the lower limit of
resolution. For slowly moving targets, a technique is psgabthat successively estimates

angle-range and Doppler in a decoupled fashion, and emiiid estimates obtained via
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a MF to further reduce the space that needs to be digitizd@1]rand [62], information on
the support of a sparse signal was used in the minimizatiocgss resulting in complexity
reduction. In our case, we do not explore the role of init&lreates on the minimization
process, as they are not expected to be very reliable. thstgause them only as a guide
for the construction of the basis matrix. The preliminargulées of CSSF MIMO radar
and the decoupled scheme were published in [63] and [64]wtoasider the same signal
models as in [40] and [53]. This chapter extends the work 8f ghd [64] to the general
scenario aforementioned anffers an mathematic insight into CSSF MIMO.

The rest of the chapter is organized as follows. In Secti@n8e provide the signal
model of a CS-based MIMO radar system. In Section 3.3, wedlnice the proposed CSSF
MIMO radar system. A decoupled scheme for CSSF MIMO is dbsdrin Section 3.4.
Simulation results are given in Section 3.5 for the casemf/lyl moving targets. Finally,

we make some concluding remarks in Section 3.6.

3.2 Signal Model for CS-based MIMO Radar

Let us consider the same setting as in Chapter 2. The tatgen feom thek-th target

arriving at thel-th antenna during the-th pulse is
Mt
Wi () = Zﬁkxi(t — (di (1) + di (1) /c) exp( 2 f (t - (i (t) + di (1)/C)). (3.1)
i=1
The demodulated baseband signal corresponding to a sargks tan be approximated by
Mt
Yin(®) & > Bixi(t — 204(0)/c) expi 2 f (di(t) + d(1)/0). (3.2)
i=1

In the above equation, the time delays in the received wavefalue to thé-th target are
all the same and equal tal0)/c. This approximation is enabled by the assumption of

narrowband transmit waveforms, slowly moving targets asldaated nodes. The fact that
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the targets can be inftierent range bins implies that the delays correspondingfierdnt
targets will be diferent. Therefore, sampling the received signal and ergsthrat all target
returns fall in the sampling window would require time dekstimation. However, in a
CS scenario, there are not enough data to obtain such essimsing traditional methods,
e.g., the matched filtering method. In the following, we vedtract the range and angle
information simultaneously using the CS approach with@suaning availability of time
delay estimates.

The compressed samples collected by Ithie antenna during thetth pulse can be

expressed as

K
fin= Y AP D(f)C, XV(6) + Difi (3.3)
k=1
where
() Pk = —2O TG (m—1)T, wheref, = 2% is the Doppler shift induced

by thek-th target; diagXx"X} = [1,...,1]"; ITs,1 = 0,...,L — 1, represent the time

within the pulse (fast time) and thus the pulse duratioh,is- LTs;

(i) @ istheM x (L + L) measurement matrix for tHeth receive node whereT is the
maximum time delay and known in advance. The measuremenitxrhas elements

that are independent and identically distributed (i.i.duSsian random variables;
(iii) V(6 = [€%h® T M@ andD(f,) = diag[eZi0T, ., eiZridL-Ts]},

(iv) 7 = LZde?(SO)J andC,, = [Oxn. |1 OLi—rp]T- Here, we assume that the target returns
completely fall within the sampling window of length ¢ L) T, and thafls is small

enough so that the rounding error in the delay is small Y.+ 7) ~ X (t— [ 22]).

(v) n is the interference at thieth receiver during thenth pulse, which includes a

jammer’s signal and thermal noise.
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Let us discretize the angle, speed and range space on a fahe.grj respectively,
[&g,....an,]) [by,..., BNb] and [Cy, ..., C\.]. Letthe grid points be arranged first angle-wise,
then range-wise, and finally speed-wise to yield the grid{sq@,, by, ¢,), n = 1, ..., NaNpNe.
Through this ordering, the grid poina,{ajf)nb,énc) is mapped to pointg,, b,, c,) with

n = (N, — 1)nane + (N — 1)n, + ny. We assume that the discretization step is small enough

so that each target falls on some angle-speed-range gnd gdien (3.3) can be rewritten

as
N 2b, f
MNm= D [Zl S1eJZ7TQ|mnD( (? )CL%JXV(a”) + n|mJ (34)
=
reflection coéficient of the target if there is a target ata(, by, C,)
wheres, = ,N =
0, if there is no target at&(, by, c,)
NaNch, and
-2c.f ni@)f 2b,f(m-1DT
= C”+'C +”(C T (3.5)
In matrix form we have
lm= @|mS+ (I)|n|m (36)

wheres = [s,, ..., sy] " and

O = @, [€79D(2b; f/O)C 2y XV (@), .., €74 ™D(2by f/C)C zy XV(an)].  (3.7)

Yim

According to the CS formulatio®,, is the sensing matrix artl, is the basis matrix.

Combining the output o, pulses alN; receive antennas the fusion center can formu-

late the equation

A
Fo= [T TNl = @S+0 (3.8)
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where
O=[01),....0w,)",....(OnN,)1" (3.9)
and
n=[(®n)",...,(@:"w,)",. ... (@yNNn,) T (3.10)

Subsequently, using the predefined measurement matd¢es,= 1, ..., N;, based on
the discretization of the angle-speed-range space, anbated on knowledge of the wave-

form matrix X, the fusion center recovesdy applying the Dantzig selector.

3.3 Introducing Step Frequency to CS-MIMO radar

Let us consider a MIMO radar system in which the carrier fesgpy of them-th pulse

equals
fm=f+Af, (3.11)

wheref is the center carrier frequency and,, denotes the frequency step=1,..., Np.
The baseband samples collected by Itle antenna during therth pulse can be ex-

pressed as

K
Fim = @ ) B&P™D () Co XVim(Bh) + ®iNim (3.12)
k=1
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where

. 2V f”‘,vm(ek) — [@FEAO) | T 6T
c

~20(0)fn , 7 (O) fm
c c

andpink = + fr(m—1)T. (3.13)

Then, based on discrete grid points of the angle-speecerspare, (3.12) can be rewritten

as
Fim = ®WimS+ ® Ny,
= é|mS+ DNy, (314)
where
Wi = [€79mD(2by frn/C)C 25, XVin(@a), . . ., @23 D(2bp Fn/C)C, 2oy XVim(aw)],
CTs CTs
~ _ch fm nlr (an) fm 2bn fm(m — 1)T
Imn — + + D)
c c c
and®, = O, ¥ (3.15)

At the fusion center, the compressively sampled signalgalldg pulses obtained &,

receive nodes are stacked as
F 2@s+n (3.16)
where
O=[0w),....0wn,)", ..., Onn,)T". (3.17)

Recovery ofsis performed as in (2.32) whe® s replaced with®.
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3.3.1 Range resolution

In this subsection we study the relationship between raeg@ution and the ambiguity
function. For the conventional radar systems that uses ahedtfilter to extract target
information, the ambiguity function (AF) characterizesg tiesponse to a point target and
determines resolution. Let us assume that there is a targétdav). The matched filter

looking for a target atq, d’, V') yields

N M No . nH@+n] @)-nt, @) -] (¢)-2d
X(ADAV,6,6) =" > " xiim(Ad, AV T (3.18)
I=1 i,i'=1m=1

whereAd =d-d’, Av=v -V and
Xiivm(Ad, Av) = fxi(t)xi*,(t + 2Ad/c)e12”fm2‘%tdt. (3.19)
t

Equation (3.18) is the AF for SF MIMO radar, where SF MIMO radefers to MIMO
radar that uses the SF technique. Unlike the AF for MIMO r§@a}, the carrier frequency
is varying between pulses in (3.18).

To investigate the range resolution let usset= 0 andd = ¢'. Then, the AF becomes

M:  Np

X(Ad,0,6,6) =N > 3" yiio m(Ad, 0)ei2rn™———
i,ir'=1m=1
Np

=N, ) eZm(2:d/9 f X (1) (t + 2Ad/c) dt
> Z (0% ( /c)

m=1

n()n ()ZAd

x1(Ad) Xx2(Ad)

'1(9) '1 (9) 2Ad
+N, Z Z el2rfn——— f X ()X (t + 2Ad/c) dt
t

m=1 i#i’

Ay (Ad)

(3.20)
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Due to (A2), the term\y(Ad) is negligible as compared to the prodye{Ad)y.(Ad)
in (3.20). One can see that(Ad) andy,(Ad) are respectively the AF of SF single-input
single-output (SISO) radar and MIMO radar, both Aor= 0 and6 = ¢'. It can seen from
(3.20) that a colocated MIMO radar has no gain on range résalas compared to a SISO
radar, i.e., the range resolution of MFSF MIMO radar is astemual to the best between
the range resolution of SF SISO radar and SISO radar, whe@FMMAMO radar refers to
matched filter based MIMO radar that uses the SF technique.

In [66], in a study of CS-based SISO radar, it was observediieamaximum value of
the correlation of two dierent columns of the basis matrix is equal to the seconddarge
value of the discrete AF surface. The recovery performah&@Soapproaches, however, is
directly related to the column correlation of the sensingrimaather than the basis matrix.
Unlike [66], we next study the relation of the AF and the coftuoarrelation of the sensing
matrix for the proposed CSSF MIMO radar. This analysis witij)de a clue for comparing
the resolution of CS and matched filter in the context of SF Ikadar, i.e., CSSF MIMO
radar and MFSF MIMO radar.

On lettingpy denote the column of the sensing mathcorresponding to thie-th grid

point in the angle-speed-range space, we have

SES j 2@k —Cliric) H (20 Tim Zbkf
< Pk, P > = Z Z el 2 (@mkc=Cime )y, (ak )X cH 2 D o <I)I @ D C zckJXVm(ak)

=1 m=1 Lers ] “"A

Ok
Ne Np L+L

33 @ncinog, (p)gdA(P. 9

I=1 m=1p,g=1
Ne Np L+l M
= Z Z Z Z A(p Q)ejznfm("}(ak)wlr(ak)‘”it' (8w )71} (8w ) —2Adige +2AVige (M-1)T+2T (b (0-1)-by (p-1)))/c

I=1 m=1p,g=1i,i’'=

x.((q Ts ——) (( - 1)Ts —2%) (3.21)

whereAdy = ¢« — C¢ andAve = by — be. For simplicity, in the above we assumed that
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the receive nodes use the same measurement matrix; thuslthe was dropped im\.
Taking the elements of the measurement maixo be independent and Gaussian

N(0, 1), the expectation of py, pr > with respect to the elements @& equals

> L+L

Nr NP Mt
E{< px, px >} = - el 27 fn(7; (@)+n] (8) =77} (84 )=} (@4 ) ~2A e +2AVge (M-1)T) /
N 2C) . . 20k \ _jontn(@To(p-1)AVee )/
25| (P=DTs = —= % (p = DT — — |e7rmeiapie
p=1
oc x(Ad, AV, &, 8 ).- (3.22)

One can see from the above equation that the expectatior abtbhmn correlation of the
sensing matrix is proportional to the discrete AF. To focogdlee range resolution we set
ax = a¢ andAvyge = 0. Essentially, the range resolution of MFSF MIMO radar esponds
to the smallest range filerence between two targetsjy, that sets the AF to zero. Based
on the UUP in [32], however, the coherence of the sensingixddes not have to be zero
for exact recovery; a small level of coherence is good enoliperefore, CS-based radar
systems have the potential to improve range resolutiors passibility will be confirmed

via simulations in Section 4.3 (see Fig. 3.2).

3.3.2 The dfect of signal bandwidth on CSSF-MIMO radar

In an LSFR system, the carrier frequency increases by aaanstep between pulses,
i.e., Af, = (m- 1)Af. This type of SF radar can bdfieiently implemented using the
Inverse Discrete Fourier Transform (IDFT) [55]; howevesuffers from range ambiguity
if the distance between a target and receive nodes exceedslteR, = % The range
ambiguity can be removed by randomly choosing the step &ecuwithin a fixed band-
width at the expense of increased sidelobe as compared t&HR [67]. In this section,

we investigate thefect of the number of pulsds, (or equivalently, the bandwidth) on
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range resolution for two types of CSSF MIMO radar, i.e., LS&RI RSFR, in terms of
the coherence of the sensing matrix (see (4.44)). Consigfigim [67], which discussed
convectional radar systems using the MFM, we find that theAR&fguires more pulses
than LSFR to achieve the same range resolution for CS-basekDVadar.

Since an increase in the number of receive nodes does natwenfite range resolution,
for simplicity we consider one receive node only. The catieh of columngy andpy for

ax = ax andby = by equals

D > erintadaeg (p)g(g)A(p, g)

m=1 p,g=1
L+L

Np L+L
P = < Pks P > | =

p.g=1 il

(3.23)
where

Que(m. p. a1 = e HH e (g - T, - 2 ((p - T, - 22 ). 320
Due to (Al) and the discretized version of (A2), we can igrtheeDoppler shift within

a pulse and the second tefyi;, Que (M, p, g,1,1") in (3.23). Therefore, (3.23) becomes

i#i

Np L+E Mt
21 fin(~2Adhge 2\ . 2Cy
Puc = El g/ in(-2Adec)/e E 1A(p, q) El X; ((q - DTs - Tk) X ((p - 1T - Tk) :
m= pa= i=

(3.25)

Np Mt M
Z ej2ﬂfm(—2Adkk/)/C Z A( P, q)ejanm(Zstk(Q—p))/C [Z Qkk’(rn, P, q, i, I) + Z Qkk’(m P, q, i, Il)
m=1 i=1

Jl
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Eq. (3.25) can be rewritten as

Npowk k=K
Np
Puw ~ Z glowe (F+A ) Ok K+ K (3.26)
m=1
| S—
h(Af)
whereAf =[Afy, ..., Afy],
L+L M 26, 26,
pc = | D D AP AX((@- DT = )X (P~ DT~ =)
p,g=1 i=1
anday, = _4”Acdkk’. (3.27)

Then, the coherence of the sensing maf)ixcorresponding to columns andpy can

be written as

Pae (AP
PPk Np vPudrie

Hie (©) = (3.28)

Linear step frequency

If the carrier frequency increases by a constant atéfpetween adjacent pulses, i.e.,

Afyn=(m-21)Af, then

|1 — elaweATNo |5 | sinGae AN
- oC .
|11 — el AT NG o Np

1 (©) ~ (3.29)

It can be easily seen that an increasbljyitends to reduce the coherence and thus improves
the range resolution.
denote the travel-time fierence between the signals sent from the transmit

pg
Let A

14

nodei to the target located at theh grid point at time instanpTg, and from the transmit
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nodei’ to the target located at theéth grid point at time instarqTs. It holds that

i = (—=2Adke + 2Tsbi(a - p) + 7 (@) — 73 (a))/c. (3.30)

Regarding the approximation error, the term discarded.@b(3s

Np L+E Mt
ﬁkk’ — Z ejZﬂfm(_ZAdkk/)/C Z A( P, q)eJZHfm(Zstk(q—P))/C Z Qkk’(m P, q, i, I/)
m=1 p,g=1 i#i

L+L 1 — @iZNpA falo .

p,o=1 1- e ki’ i’

(3.31)

ZIZNpAf(Y

The amplitude of%elz”f"f@w is bounded byN,. For independent waveforms, the

27rAfakk Vi

approximation erropy in (3.23) is always negligible as comparedd@ .
Let i denote the maximum coherence®that guarantees exact recovery of the sparse
vector with high probability via the Dantzig selector. Thénmum number of pulses

required to achieve a certain resolution can be obtainedbyng

N, = min N,
1 — @A oy
|1 — el AT NG ook

= U,

kK =1,.. Nandk#K. (3.32)

The above problem is easy to solve, for example by tryirfteoint values foNy;
however, it requires a value fopg. In [54], a rough estimate qf; in the presence of mild

interference wasftered. In general; must be determined experimentally.
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Random step frequency

Assuming that the frequency steps over pulses are i.i.eotmifandom variables, i.e.,

Af, ~ U(0, 2b), the expectation of square coherence aviyis given by
N . 2
‘ o emkkf(fmfm)pkk,‘

E{u.(0)) = E

NZowow
2 2 :
. (1 Np—Npsirf(aub
_ _Pix (_+ b p S ga’kk )| (3.33)
PKkPKK Np Np Qe b?

For a fair comparison, we set LSFR and RSFR to cover the sagadncy band, i.e., set

b equal toAf(N, — 1)/2. Then (3.33) can be rewritten as

2 (201
2 ~ _ Py 4SII’\2(§(Np—l)a/kk/Af)
Efuig (0)} = Proiie N (1+ (Np—1)a2, A f2 )

Kk’

Pl (1 + sin?(3 (Np—1)age AT) ) (3.34)

= PNy (Np—1)(2rA A /02

As the term (ZAfAdg /C)? increases, the expected value of the squared coherence be-
comes approximately equal tgN,. This holds when the product of radian frequency step
2rAf and the range spacing of grid poimtdy, is comparable to the speed of light

Since the coherence of the sensing matrix for RSFR cannobtzened directly, we
instead compare the squared coherence of the sensing HwatitSFR and RSFR. For
largeNp, we find from (3.29) and (3.34) that the squared coherence$6iR and RSFR
decreases inverse proportionaIIyN@ andN,, respectively. This implies that more pulses
are required by RSFR to achieve the desired performancealliither parameters, i.e.,
M;, N, andM, being equal.

Before ending this section, we note that the expectatioh@&pproximation error in
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(3.23) can be represented by

kk’ii”

L+L . P
i N, 2sin@a., ., (N, — DAT
P = Z izl (Np=1)Af /24 f p (@i (Np — 1) )A( )

Z4 No—1 o 2nAf
M
‘ 2 2ck
Y% (@-07- 2% (- v - 2X) (3.35)
i#i’

where one can see that a decrease in the prodlm@?,g,f (seen in (3.30)) and the radian
frequency step,2Af, increases both the approximation error and the squaresreote.
Givenef, .., an increase it f would reduce the approximation errpg > However, this

would increase the bandwidth required by RSFR.

3.4 Decoupled estimation of angle, velocity and range witheduced complexity

Solving thef; minimization problem of (2.32) requires polynomial timetire dimen-
sion ofs. For the discretization discussed in Section Il, the jogtireation of angle, veloc-
ity and range requires complexity 6{(NaNyN¢)?) [29][43]. For large values dfl,, N, and
N, the computational cost of the CS approach would be prowbitn the following, we
propose a decoupled angle-velocity-range estimationoagprwhich reduces the search
space and thus the computational complexity.

The scheme needs some initial rough estimates of angle agd.r®ne way to obtain
those estimates is to use the MFM, which requires forwartbrie fusion center Nyquist
sampled data from one pulse. In the following, Bl nodes in the system sample all
received pulses in a compressive fashion, exbeptodes, which sample the first received
pulse at the Nyquist rate and all remaining pulses in a cosspre fashion. Those Nyquist
rate samples will be used to obtain coarse estimates of angleange via the MFM.

The fusion center performs the following operations (als® Big. 3.1).

(i) STEP1: Angle and range estimation
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This step uses the first pulse forwarded by each receive oélee grid, @n,, Cy,),
...,(anKl,cnKl), is constructed around the MFM initial estimates. Thendéesing

matrix is constructed as

©1 = @[22 HEDIC 1y, Xy, .o, € B DI s (e, )

CTs

CTs

(3.36)
where
i, 1=1,....,N, m=1
(I)Im = LiL f
the measurement matrix of sikéx (L + L), otherwise
(3.37)
The received signal$;,, ..., n,1, are stacked in a vector, i.e.,
Fl = @1S+ ng (338)

wheref, = [f],,...,F{,]". By applying the Dantzig selector to (3.38), new and

refined angle-range information is obtained.

Thanks to the initial estimates, the search area in the aaglge plane is significantly
reduced and thus the computational load of CS is lightenee.tD the fact that only
one pulse from each receive node is used, the range regoaittbis step is limited
by -5, whereB is the signal bandwidth. The obtained range estimates witefined

in the next step in which the fusion center will jointly presghe entire pulse train.

Also, due to assumption (Al), Doppler information cannoekeacted at this step.

STEP 2: Range resolution improvement and Doppler estimation

In this step the fusion center processes the entire pulseftravarded by each re-
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ceive node. The range space around the range estimateseabtaiStep 1 is dis-
cretized into finer grid points. Based on a discretizatiothefDoppler space, the re-
fined range grid points and the angle estimates obtaine@miSt.e., &, , by, Cny ),
e (asz, mez, Csz)’ the fusion center formulates a sensing matrix and exteaugle-

Doppler-range information in a CS fashion.

To further reduce the complexity of CS reconstruction, thEM/can be applied
before CS to provide angle-Doppler-range estimates araumch a finer grid can

be constructed and used by CS. In that case MFM would be adpdiged on the grid
POINtS @m,, By, Cmy), - - -, (@my,» P> Cmi,)-
For the case in which there are stationary targets and maaiggts, the angle esti-

mation can be further improved by taking into account Dopjpirmation.

Assuming that the MFM is used for initial estimation, the gbexity of two steps is
respectivelyO(NaNe(N, L + (N, = Ni)M) + K2) andO(Ko(N: (L — M) + N, Np,M) + K3), where
Ks is the number grid points used by CS at Step 2. Generally,lishihatK? + K3 <
NaNc(N; L + (N; = Np)M) + Ko(N; (L — M) + N;N,M) for a small number of targets. There-
fore, the computational load is mostly due to the initiairagtion. As compared to the
complexity of the joint angle-Doppler-range CS approaeh, ®((N.NpN.)3, considerable
computations can be saved by using the proposed decougiedthedor large values of
Na, N, andN..

The computation savings, however, may be obtained at thensepof detection ac-
curacy, unless the initial estimates provided by the ihésimation method are reliable.
Reliable estimates here refer to the initial estimates whose distances to theetarget loca-
tions are within the resolution cell that is determined by itintial estimation. Then all the
targets can be captured based on the finer angle-range gnit$ gonstructed around the
reliable initial estimates. For the instance of the MFM, pleeformance in providing good

initial estimates depends on several factors; (i) the $ignaterference ratio (SIR), which
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can be improved by employing more data; (ii) angular, rarrgeappler resolution, which

is improved by increasinfy, or Np; (iii) the distance between the adjacent grid points. (In
the worst case in which the targets fall midway between goitits, the targets may fail
to be captured by the closest grid points if the spacing @)t grid points is too large.
An empirical approach to select grid spacing was discussgeBi. That approach is also
applicable to the MFM); and (iv) the threshold for hard détet A small threshold should
be used in order to reduce the miss probability. Howeves,ithplies that more grid points
need to be considered for the CS approach following the MFMoespared to a larger
threshold. In summary, the performance of the MFM can be avegxl at the expense of

more transmit power and increased complexity.

3.5 Simulation Results

We consider a MIMO radar system with transmit and receiveesaghiformly dis-
tributed on a disk of radius 10m. The carrier frequency s 5GHz Each transmit node
uses orthogonal Hadamard waveforms of lerigth 512 and unit power. The received sig-
nal is corrupted by zero-mean Gaussian noise. The sigrabite ratio (SNR) is defined
as the inverse of the power of thermal noise at a receive oglammer is located at angle
7° and transmits an unknown Gaussian random waveform. Thetsaage assumed to fall
on the grid points. Throughout this section, the CS appras&s a measurement matrix

with Gaussian entries.

3.5.1 Range resolution of the CS-based SFR and conventioraFR

In this subsection we provide some simulation results tovsthe superiority of CSSF
MIMO radar as compared to MFSF MIMO radar in terms of rangeltggn. Figure
3.2 shows the normalized amplitude estimates of targetctefte codficients for CSSF

MIMO radar and MFSF MIMO radar in one realization. Since thatiple colocated an-
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tennas fail to improve range resolution, we consider a sitrgihsmit and receive antenna
here for simplicity. LetM = 10, N, = 30 and the carrier frequencies be randomly selected
within the frequency band [5.029]GHz. The CSSF radar uses 10 measurements per pulse
while MFSF radar obtains 665 measurements per pulse. \favaues of SNR are consid-
ered. The spacing between two adjacent grid pointsrisPhere are six targets at ranges
[1024, 1028 1032 1036 104Q 1044]m. Figure 3.2 shows that the peaks corresponding
to all targets can be distinguished from each other for th8FC@dar while for the MFSF
radar some peaks are lost. This verifies the observationsatiof 3.3.1 that CSSF radar

has the potential to achieve higher range resolution thas MFSF radar.

3.5.2 Range estimation for CSSF MIMO radar

The goal of this subsection is to test the performance of G8BFO radar based on
LSF and RSF. Figure 3.3 compares the numerical and thealrstjoared coherence of the
sensing matrix corresponding to two adjacent grid pointh@range plane for ffierent
numbers of pulses and various values of the linear frequstegyAf = 1MHz, 4MHz
and 8VHz. All the results shown in Fig. 3.3 are the numerical squatdteeence averaged
over 100 independent and random runs and the theoreticatestjooherence for LSFR and
RSFR calculated based on (3.29) and (3.33). We considea#ein whichM; = M = 10,

N; = 1 and the grid step iAc = 7.5m. For a fair comparison, we choose random step
frequencies within the same frequency band as in LSFR fie[0, (N, — 1)Af]. It can be
easily seen that the numerical squared coherence of thengenatrix for LSFR perfectly
matches with the theoretical results in (3.29). The nunaésquared coherence of the
sensing matrix for RSFR approaches the theoretical resu{&33) asAf increases and
approaches/N, as the number of pulses increases. It is also verified by Fathat LSFR
exhibits lower coherence of the sensing matrix than doedRRSF

Figure 3.4 shows the receiver operating characteristicdQR&rves of the range esti-
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mates produced by the random and linear step-frequencyitpehbased on 200 random
and independent runs. Here, the probability of detectid®) (B the percentage of cases in
which all the targets are detected. The probability of falsem (PFA) is the percentage of
cases in which false targets are detected. We consider ancasgech the angle and speed
of three targets are the same and assumed to be known. Inneegiendent run, the target
angle and speed are randomly generated. The ranges of énge¢stare fixed to 100%
1010mand 104/, respectively. The power of the jammer signal is 4 and SNIEB. We
can see that the use of LSF yields better performance thaomag choosing the carrier
frequency within the same frequency band. In this partrcdae, CS-based RSFR requires
12 pulses to generate the ROC performance that can be aghigWeS-based LSFR using
only 9 pulses. The performance of LSFR and RSFR based on tin islBlso shown in
Fig. 3.4. It can be seen that the former using 12 pulses isdtebthan the latter with
the same number of pulses. It can also be seen that CSSF MIN#D watperforms MFSF

MIMO radar.

3.5.3 The joint angle-Doppler-range estimation of CSSF MIND radar

Figure 3.5 shows the ROC curves of the angle-speed-ranigeas¢ss yielded by CSSF
MIMO radar using the decoupled scheme. The angle-speggrastimates have been
obtained based on 200 random and independent runs. TheicageiEh M; = 10, N, =
N, =7 andN, = 12 are shown in Fig. 3.5. The azimuth angle and range of tlargets
are randomly generated in each run but the spacing of anglesaige between targets are
fixed to Q3° and 75m, respectively. The speeds of three targets am/$B0m/s, and
60m/s. The power of the jammer signal is 4 and SNRdB. The performance of MFSF
MIMO radar, shown in Fig. 3.5, is obtained in the same decedifdshion, i.e., 1) estimate
target angle and range based on a single pulse; then refirmgie estimates based on

the finer angle grid points around the initial angle estimaig using the MFM; and then
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2) process the entire pulse train to extract angle-spasgkeranformation by discretizing
the speed space, constructing finer range grid points artheniditial range estimates and
utilizing the initial angle estimates obtained in 1). One sae that MFSF MIMO radar is

inferior to CSSF MIMO radar even when using far more measergaithan the latter.

3.6 Conclusions

We have presented a CSSF MIMO radar system that applies SB4m€ed MIMO
radar. The technique of SF can significantly improve rangelwion. We have shown
that CSSF MIMO radar has the potential to achieve bettedugsno than MFSF MIMO
radar, and that more pulses are required by RSFR than by L&RRheve the desired
performance with all other parameters being the same. Thke-&oppler-range estima-
tion requires discretization of the angle-Doppler-rangace into a large number of grid
points, which would increase the complexity of the CS apgnoaWe have presented a
CSSF MIMO radar scheme that by decoupling angle-range astimand Doppler estima-
tion achieves significant complexity reduction. The pregbgechnique applies to slowly
moving targets and relies on initial rough angle-rangemesties. Assuming that the initial
estimates do not miss any targets, the proposed low contplphieme maintains the high

resolution of the CS approach.
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4. Measurement matrix design

In Chapter 2, we have proposed a measurement matrix thalesragh SIR as com-
pared to the Gaussian random measurement matrix. Howhigmeasurement matrix is
only applicable to the case in which the targets are locatadsmall range bin and the sam-
pling is synchronized with the first target return. In thispter, we propose new measure-
ment matrices for the general scenario considered in Ch8ptathout confining targets
in the same range bin and without requiring sampling synabkeadion.We design measure-
ment matrices that achieve some optimality measure thainistibn of the coherence of
the sensing matrix (CSM) ayat signal-to-interference ratio (SIR). The first approaeh d
termines the measurement matrix by minimizing a criterfaat ts a linear combination of
CSM and the inverse of SIR. The second one, in order to redocylexity, imposes a
structure on the measurement matrix, and the componente sfttucture are designed to
enhance SIR while keeping the CSM comparable to that of theesdional measurement
matrix, e.g., the Gaussian random measurement matrix. écezticomplexity suboptimal
construction for the first measurement matrix is also predo# is shown via simulations
that the proposed measurement matrices can improve dgtectcuracy as compared to a

Gaussian random measurement matrix.

4.1 Introduction

UUP [20][32] indicates that if every set of sensing matrixurons with cardinality
less than the sparsity of the signal of interest is approtaiparthogonal, then the sparse
signal can be exactly recovered with high probability. Tiniplies that® is incoherent
with ¥. For an orthonormal basis matrix, use of a random measutemainix leads to

a sensing matrix that obeys the UUP with overwhelming proinai31]. The entries of



86

such measurement matrix can be taken from a Gaussian dtggribsymmetric Bernoulli
distribution, and could be randomly sampled from a Fouriatrin or any orthonormal
matrix. In this chapter, we term asnventional approach the CS recovery via a Gaussian
measurement matrix.

In this chapter, we consider the general scenario conslder€hapter 3, in which the
targets might be located across several range bin and th@iegns asynchronized with the
first target return. The performance of the CS approach degri the presence of strong
interference and with increased coherence among the cslofthe sensing matrix. We
propose two designs for the measurement matrix. The firggul@sns at decreasing CSM
and at the same time enhancing SIR. The measurement maihtaised by solving a con-
vex optimization problem and depends on the basis matriigiwih turn depends on space
discretization. This optimization problem might involvegh complexity due to a large
number of variables and constraints involved. A reducedptexity suboptimal construc-
tion for the first measurement matrix is also proposed. Tlers®approach targets only
SIR improvement. It is constructed based on the transmiiaiyaveforms and accounts
for all possible discretized delays of target returns withigiven time window. It is shown
that depending on the waveforms used, the latter measutenatnx can significantly im-
prove SIR while it results in CSM comparable that of a randoau$dian measurement
matrix.

The rest of the chapter is organized as follows. In Sectigdm#. introduce the two pro-
posed measurement matrices and provide the analysisdétatke second measurement
matrix. Simulation results are given in Section 4.3 for thseas of slowly moving targets.

Finally, we make some concluding remarks in Section 4.4.
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4.2 Measurement matrix design

In this section, we discuss the design of the measuremenxrmaprder to improve the
detection performance of CS-MIMO radar. We assume thahalhbdes utilize the same
measurement matrix, definedd@swhich does not vary with time for simplicity. Under the
assumption (A1), the Doppler shift within a pulse can be rgdo Recall that the received

signal at thd-th node during then-th pulse can be formulated as (eq. (3.3))

K
i = ZﬁkejZRplmk(I)CTkXV(Qk) + ®ny, (4.1)
k=1

and the sensing matrix for theh node is given by (eq. (3.7))
Q= d)[ejz”q'mchﬁJXv(al), . ejz”q'mNCch_NJXv(aN)]. (4.2)

Generally, there are two factors thdfext the performance of CS. The first one is the
coherence of the sensing matrix. UUP requires low coherengaarantee exact recovery
of the sparse signal. Although the CSM always serves as #aioéxamines the necessary
conditions for the CS approach, it does reflect the behavitreosensing matrix in many
cases. Furthermore, the simplicity of the CSM render itagifactical performance crite-
rion for the CS application in real systems. The second fast8IR. If the basis matrix
obeys the UUP and the signal of intersess suficiently sparse, then the square estimation

error of the Dantzig selector satisfies with very high prolis§43]
N
13- s2< C?2logN x (o + )" min(s(i), o)) (4.3)
i

whereC is a constant. It can be easily seen from (4.3) that an inengethe interference

power degrades the performance of the Dantzig selector.
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4.2.1 The measurement matrixt1: The goalis to reduce the coherence of the sensing

matrix and at the same time increase SIR

The coherence of two columns of the sensing ma@ixcorresponding to thie-th and

k’-th grid point is given by

H
N i _ ,
Sty EPY €270 o) (9 i, X (@) OC, 2, XV(a)

cTs
N, \/22,21

N i -
'Z p Nr i (Cimk ka')ultf(I)H(I)Uk'

Hie (©) =

2

@C 2, Xv(@)
CTs

2 N
L
2

(I)C 20,/ XV (ak/)
=

2

m=1 &=1

(4.4)

NrNp \/ult'(I)Hfl)ukult!(I)H(I)uk/

whereuy = C 2z Xv(ay).
CcTs
Let the interference waveform at thé receive node during theth pulse be Gaussian
distributed, i.e.nm(t) ~ CN(0,0?). Let us also assume that the noise waveforms are

independent across receive nodes and between pulses. Adeavdrage power of the

interference can be represented by

NP N

Po=E() > (@) ®@nim} = NoN:o?Tr{®" ). (4.5)

m=1 |=1

The average power of the echo reflected byithaarget located on thigth grid point

of the angle-range space is approximately equal to
Np
PL ~ BN, Z ul @ @u. (4.6)
m=1

Therefore, the SIR equals

N
T8 BP T, Ul e duy

SIR =
2N, Tr{®H D)

4.7)



89

The precise manner in which CSM and SHReat the performance of the CS approach
is unknown. Although theoretical bounds for tfy)enorm of the estimation error have been
proposed [26]-[43], the bounds are hard to obtain. Furtibeemthose bounds might not
be relevant in applications in which the quantity of intéieghe location of the non-zero
elements of the sparse signal rather than the non-zerosvleenselves. This is the case
for the problem at hand. In [44] the upper bound on the prditaluf error under the
optimal decision rule was derived. Although that upper bound istedl@o the detection
of non-zero elements, it cannot be used for the measuremanixrdesign as it is rather
loose in some practical cases and it has a complicated famrthid paper, we determine
the measurement matrix by optimizing a linear combinatiiathe® CSM and the reciprocal
of SIR.

The overall CSM is here taken as the maximum coherence peddugca pair of cross
columns in the sensing matrix. This criterion works well founiform sensing matrix but
might not capture the behavior of the sensing matrix in wkiehcoherence of most column
pairs is small [45]. However, that coherence metric is wideded for the CS scenario due

to its simplicity [45][46]. The optimization problem becas

1
i 2 — 1 4.
rgﬂ(@gxukk (G)”sm) (C1) (4.8)

whereA is a positive weight, which reflects the tradidoetween the coherence and SIR.
Since (4.8) is not a convex problem, two steps are taken teeaddhis issue. First, we
solve (4.8) with respect tB = ®"® instead of®. Furthermore, the norm of columns in

the sensing matrix is set to 1, i.&;Nyu'®@"®u, = 1, k = 1,..., N, so that we can avoid
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the fractional expression gdy (@) andsﬁa. Thus (4.8) can be reformulated as

min  t+ ATr{B}

NP Ny 2

st. Z Z ej277(QIrrk’ _QImk)ult!Buk < t,

m=1 =1

k=1,...,N,K=k+1,...,N
Np

N > ufBuc=1,k=1,...,N,
m=1

B>0,t>0. (4.9)

which is a convex problem with respectBo The first term in the objective refers to the
maximum coherence of cross columns in the sensing matrexsétond term is propor-
tional to the noise power which is a linear function®&f OnceB is available, ® can be
easily obtained. On letting be factorized by the eigendecomposit®r- VXVH, we can

obtain the measurement matrix #1 as
@y = VEUH (4.10)

whereX is a diagonal matrix that contains the nonzero eigenvalfiEsom its diagonal and
V includes the eigenvectors corresponding to the nonzeemeddues.

@, solved from C1) might increase very low coherence of some pair of columns i
order to minimize the maximum CSM, i.e., the coherence @edent pairs of columns
will spread more evenly than the conventional measuremexttixn This might not be
desirable in some cases. Another criteria for evaluatiegdBM is the sum of coherence
of all pairs of columns in the sensing matrix (SCSM). The measent matrix® obtained

by minimizing the SCSM can increase the number of pairs afirools which yield low
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coherence. It can be solved from

min(>” 1(0) + Agr) (C2) (4.11)
k#k’

The proposed methods of optimizing the measurement matix(C1) and C2), can
reduce the coherence of cross columns in the sensing mathewt amplifying the in-
terference. This will improve the detection performancehs CS-based MIMO radar
system, however, this will incur a computation load as camegbéo using the conventional
measurement matrix. The number of complex variables to lved@mn the convex problem
of (4.9) is(u“—?(“”. The computation complexity would be prohibitively highr farge
values of__ + L. For a large number of grid pointé, we have to deal with a large number
of constraints. The optimal measurement matrix might baiaobtl and storedffine based
on knowledge of grid points in the angle-range space. Howéweould need to be up-
dated once the basis matrix varies with the search areaasestt This would bring heavy
burden to radar systems and thus might render the real-pplecation impossible. There-
fore, ways to alleviate the computational load are worthlgeihg exploited. A suboptimal
scheme for the measurement matrix #1 that involves loweiptexity is discussed next.

Let us impose a structure on the measurement matrix to bentiet= by the optimiza-

tion problem of C2) as follows:
Dy = WD (4.12)

whereW is an (L + L) x M) unknown matrix to be determined adslis aM x M;(L + 1)
Gaussian random matrix. Then the number of variabl&¢ tan be controlled by changing
the value ofM. Furthermore, the structure in (4.12) enables a two-stepassing for CS-
based MIMO radar that simplifies the hardware of receive sodie particular, a receive

node linearly compresses the incident signal by udmgt the fusion center, all the signal
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forwarded by receive nodes are first multipliedWyand then jointly processed to extract
target information. We can think &% as a post processing. In this way, the received nodes
require no information oV, which reduces the communication overhead for the fusion
center and nodes.

In order to render the convex problem tractable, the normotfrans in the sensing
matrix is forced to be a constant. This increases the nunft=rstraints. If the number
of variables is not dticiently high, there might not be enough degrees of freedams t
decrease the coherence of the sensing matrix as compareed toiginal one. Since the
number of constraints equals the number of grid pointsnteadecreased by reducing the
search area. This can be done by considering the grid pomisd the initial angle-range

estimates if they are available.

4.2.2 The measurement matrixt2. The goal is to improve SIR only

Although the suboptimal construction in (4.12) signifidareduces the number of
variables, solving (4.9) still requires high computatioads. Besidesby; must be adapted
to a particular basis matrix. To avoid these two defectbaf another measurement matrix
that targets SIR improvement only is proposed in this sactis in [53], we impose a
special structure on the measurement matrix,®g;,= ®W", where® is anM x M M <
M) zero-mean Gaussian random matrix afdis an L + L) x M deterministic matrix
satisfying diagW"W} = [1,...,1]". The above structure serves two purposes. First, the
matrix W can be selected to improve the detection performance of $nepgproach at the
receiver. SecondPy, is always a Gaussian random matrix regardlessVof With the
appropriatéV, the measurement matrix in the form@®fV" might not increase the CSM
as compared to the conventional one. Otherwis®@/ ¢hat is highly correlated with the
basis matrix would invalidate the UUP. Unlike the desigmbgf, the measurement matrix

proposed in this section targets SIR improvement only.
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The average power of the echo reflected bykthearget with respect to node locations,

conditioned on the transmit waveforms is approximatelyadt

PX ~ |Bu®Ny Np E{TH{®C, XV (6)(@C XV (8)) " }}

~ |BPN:Np TH{®C  XE{V }X"Cl @} (4.13)

whereV, = v(BVH(6) and its {, j)th entry can be expressed\agi, j) = e & (1 costima)-r] costi—ay))
The Doppler shift within a pulse is ignored in (4.13) due teuamption (Al). Since the

t/r
nodes are uniformly dispersed on a disk of radiue distribution oh = rT sin(@"" — o)

is given by ([50])

fo(h) = ; Vi-h2,-1<h<1 (4.14)
so that
E{e™" = 2@ (4.15)
04

whereJ; () is the first-order Bessel function of the first kind. Thusséxon (4.15) we can

obtain ([53])

E {ej ZL(r! cosbk—ai)-r cosfie _aj))}

1 i=jandk=kK
= 9§ s(@sin@%) i=jandk # K (4.16)
§%(2) i # ]

J1(x)

whereg(x) = 2 gt As observed in [53], the terms multiplied b$(2) are small enough

C
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and can be neglected. Then the average p&ger (4.13) can be further approximated by

P¥ ~ [B*NpN, Tr{@W"C XX "CHwoH}
2MN,N
~ MTr{WHCTkXXHCTHkW}. (4.17)

Inserting®y, into (4.5), the average power of the interference can beesgmted by
M
Pn = o?NpN, THOWHW®H) = 2NN >~ > 0gwi; @5 ~ 2NN M (4.18)

g=1 i,j

where®;; andw;; are the {; j)-th entries of® andWHW, respectively. The approximation

22

in (4.18) uses the constraint di@y"W} = [1, ..., 1]" and the fact thazq 1 Dizj Pgihj D,
0 for sufficiently largeM due todg ~ A(0, 1/M).
Based on (4.17) and (4.18), the SIR is given by

1Bul?

SIR = PY/P, ~ MTrW Q. W (4.19)

whereQ,, = C,XXHCH is an ( + L) x (L + L) matrix of rankM,. The matrixW that

maximizesSI R, can be obtained by solving

2
W* = max Bud ~TriwHQ, W
WM o2M

st. diagW"w} =[1,.. (4.20)

]Mxl

It can be easily seen th&{* is the eigenvector corresponding to the largest eigenvalue
of Q,,. Since the largest eigenvalue@f, is not greater than TQ,,} = M;, the maximum
SIR is bounded by

2 2
M
Bound 1 : M<S|Rk I'Bklzt.
ag

(4.21)
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The upper bound is achieved when the raniKafquals 1, i.e., all the transmit nodes send
out the same waveforms. When orthogonal waveforms areedilii.e. X"X = I v, the
SIR reaches the lower bound.

However, the solutiotW* would invalidate the conditions for the application of CS
since a pulse is equivalently compressed to a single measute Fortunately, there are
multiple equally large eigenvalues whet'X = Iy. In this caseQ,, hasM; nonzero
eigenvalues which are all equal to 1. Therefore, for a fiedVl < M, the optimalw
contains theM eigenvectors of), corresponding to eigenvalue 1 and achieves the maxi-
mumSIR = L%z. Since the maximun$| R, is independent oM, any matrix containing
M, M < M,, eigenvectors o corresponding to eigenvalue 1 would give rise to the maxi-
mumSIR,. However,M = M, results in smaller coherence of the sensing matrix than any

M less thanV|; due to the fact that the rank @ is M. Therefore, the optimaV is
W™ =C,X. (4.22)

For the case of completely coherent transmit waveforms ichvine upper bound in (4.21)
is achieved, the resulting/** is rank deficient.

Unfortunately, W** is not achievable since the time delay induced by a targehdis u
known at the receiver. To address this issue, we re@d&g in the objective function in
(4.20) with the average value &R, with respect to the time delay, denoted SyR..
Let the time delay induced by thigh target follow discrete uniform distribution, i.e.,
p(rk = K) = Eﬁ k=0,...,L. Then the average value 8f{ R, can be expressed as

L

2 2
SR, = D= ! rwrowy = B L rrwrew (4.23)

o2M &~ L+1 o2ML+1
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where

L
C=) Qr=[CoX,...,CiX][CoX, ..., CeX]". (4.24)
=0

Therefore, the optimization problem that maximi&& can be rewritten as

W* = maxSIRq
W,

M

st. diagW"w} =[1,...,1]% .. (4.25)

One can see again that the solution to (4.25) is the eigemveatresponding to the largest
eigenvalue ofC. Unlike (4.20), we falil to find the close-form solution to 28) that has
suficiently high rank. Besides, the problem (4.25) is non-canudnis further prevents us
from obtaining a desired solution that validates the coowlé for the application of CS.
Inspired by the form of (4.22), we propose a feasible and Emp by taking all the

possible delays into account:
= [CoX,...,CiX]. (4.26)

SinceC;X contains eigenvectors corresponding to the largest eif@es ofQ;, utilizing

(4.26) results in the averagd R bounded by

Bound 2 :

1B 1 LA <SR I,B_ M
o2

IR < +A 4.27
2Tl Rc (4.27)

|_Z

+1

where A denotesww(k'[T)zTr{ZT,#XHCTHQT'CTX}. One can see th&ound 2 would be
reduced tdBound 1 whenL = 0.
Next, we will examine the SIR yielded by the proposed measarg matrix®,, =

®W" based on three types of waveforms, rectangular pulse, émdEmtly generated
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guadrature phase shift keying (QPSK) waveforms and Hadhwmdes. As shown be-
low, using®,, can suppress interference uncorrelated with the transaneferms, and
maintains coherence as low as the Gaussian random meastimateix with the proper

waveforms.

SIR under the conventional measurement matrix

Let us consider a conventional measurement mdigpwhich is anMx(L+L) Gaussian
random matrix and T®@.®"} = M. The average power of the interferencéjs= oM
(see (4.5)).

Let S be a square matrix, formed by shifting the main diagondl afp byi. It can
be easily seen th&" = S;. The average power of the target returns frintargets at a

receive node, conditioned on the transmit waveforms, isrgby

Ps=E(rriX) = ) P+ > P¥ (4.28)
k kk!

where

P% = [BIPE{TH{®:C XV (B)(PC, XV (6:))™}}

~ |BPTr{®.C XX CH )

M, M|B,/2
 MMIB” (4.29)
L+L
and
, . (6 — O 4rt(d0)-ds @) M
P~ ﬁ;ﬂk’gz(48|n( e ))eA —TX"S, . X)L (4.30)
+

Ykk
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SIR for the measurement matrix ®x,

The proposed measurement matly, = ®W" results in the same average interfer-
ence power as the matr@®.. The average power of the desired signal conditioned on the
transmit waveformsP,, however, will improve. Like (4.28)P, can be partitioned into the

sum of the autocorrelatio, and cross correlatiof?* , of the returns fronK targets. It

1Sy

holds that

PX = |BUPE(Tr{®@42C XV (6)(@42C XV (6))™ 1}

~ B Tri@wW"C XX"CHwaoH}

2
M
~ PIM R, xx ey
(L + 1)M, -
ZM £
_ _Bd™ TrX" Sy, XX"SH . X} (4.31)
(L+ )M &
and
YeM <
’ kk’
KK v 2 N XS, XXMS, . X (4.32)

s ~ ~
(L+ )M &

For orthogonal, or randomly generated waveforms acrossiiia nodespPX always
dominates the average power of the desired signal. In ocd'mcteaseﬁ';, the quantity
Tr{X"S;_ XXM} | X} in (4.31) needs to be as large as possil{éS; X can be expressed
as

XH X1, M>0
XHgX =~ Hemme (4.33)
XH  Xi1am, Otherwise
whereX;.; denotes the matrix that contains the rows<ahdexed fromi to j.
Eqg. (4.33) implies that the non-circular autocorrelatibthe waveform sequence of a

transmit node, i.eR(7) = ft:Tg X (t)x (t—7),i =1,..., M, should be insensitive to the shift.
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This essentially requires a narrowband signal. Based arptimciple, the best candidate

is a rectangular pulse and the maxim&@gbecomes

MM S zv—m—ug MM, (L= Ir —a)(L - g - 7))
Po= — i
s (L+1);; k L (C + 1);(; L2
K
< MM, [Z 1Bl* + Z ka/) - (4.34)
k=1 k#k

The equality holds only if targets induce identical delaysl #he sampling window of
length exactly covers the duration of target returns. Olsliy transmit nodes cannot share
the same waveforms. This is because the transmit wavefaoems@uired to be orthogonal,
or randomly generated in order to maintain low coherencb@bisis matrix.

Similarly, the minimum average power of the desired sigaadhieved when the ran-
domly generated QPSK waveforms are utilized. This is bexdlie random generated
QPSK waveforms cover the widest bandwidth for the fixed pliderationT, and the

length of waveforms.. P for the randomly generated QPSK waveforms is given by

22

ZI/J’I( Z M= —19= ™ |q L (4.35)

g=0,g#7k

For orthogonal Hadamard waveforms that are of less bantwhdin the random gen-

erated QPSK waveforms, the average power of the desiredlsggiven by

.M S S L-lg- Tl
Pex 5 > 18d (f) . (4.36)

Recall thatW* corresponding to the true delay gives rise to the maximumived signal
power. Adding the term€: X, 7 # 7 to W (see (4.19)) would lowePX. When a coarse
delay estimate is available, we need to consider the deftaysid the coarse delay only and

thus the length of sampling window can be shortened. Thiblesdo reduce the number



100

of possible delays considered for the constructiowofT hereforej5'; can be improved for

the waveforms considered above if the coarse delay is &laila

The SIR gain

Let SIR, andSIR; denote the SIR obtained by usidy,, and conventional measure-
ment matrices, respectively. When transmitting Hadamades, the SIR gain induced by

using the proposed measurement matrix can be expressed as

M oK oL 2 (L-la-ul )

P K MiMIB2
S k=1 " L+L

L+L 2K, I8cPCk

= —— (4.37)
Mi(L + 1)L2 2 1Bl
where
: - - S (2L - [ - 1)[2
Ce= > (L-lg-7d)?= (L +1-2) - /27 + Z o+ ——f——. (4.39)
g=0 g=L-L
For a fixedL andL, with 0 < L < 2L — 1, C, can be bounded as
L L d 2
5 , (@L-L-1L
D <G Y e (4.39)
g=L-L g=L-L

Therefore, lower and upper bounds on the SIR gain using Hadthoodes are given

~ ~ _T_1\W2
L+Dxe, G D(xe ¢ o + &5
ML+ — M7 My(L + 1)L2

(4.40)

Similarly, the SIR gain using randomly generated QPSK wawe$ are bounded by

L+D(Es, ca+ 5 -1 e L+, ra+v S+ -L
(L + 1)L2 - oopsK= (L + 1)L

(4.41)
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~ . Te ;O
As long asL < L andM; < L, roesk is always greater than 1. Wh% > 1, the
lower bound oy, is higher than that ongesk. For a stficiently longL and moderaté/;,
r'na Would be superior togpsk. Based on (4.34) and (4.36), one can infer that the SIR gain

using the rectangular pulse is approximatelytimes greater than using Hadamard codes.

The CSM based on the suboptimal measurement matrix #2

In this section, we will examine thedfect of the proposeW in (4.26) on the coherence
of sensing matrix. For simplicity, we consider stationamgets and the possible delays for
constructingV are based on the range grid points used to form the basisxnélen the
sensing matrix with the measurement mathy, or the Gau