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Abstract
Colocated MIMO Radar Using Compressive Sensing

Yao Yu

Advisor: Dr. Athina P. Petropulu and Dr. Youngmoo E. Kim

We propose the use of compressive sensing (CS) in the contextof a multi-input multi-
output (MIMO) radar system that is implemented by a small scale network. Each receive
node compressively samples the incoming signal, and forwards a small number of samples
to a fusion center. At the fusion center, all received data are jointly processed to extract
information on the potential targets via the CS approach. Since CS-based MIMO radar
would require many fewer measurements than conventional MIMO radar for reliable target
detection, there would be power savings during the data transmission to the fusion cen-
ter, which would prolong the life of the wireless network. First, we propose a direction
of arrival (DOA)-Doppler estimation approach. Assuming that the targets are sparsely lo-
cated in the DOA-Doppler space, based on the samples forwarded by the receive nodes,
the fusion center formulates anℓ1-optimization problem, the solution of which yields the
target DOA-Doppler information. The proposed approach achieves the superior resolution
of MIMO radar with far fewer samples than required by conventional approaches. Sec-
ond, we propose the use of step frequency to CS-based MIMO radar, which enables high
range resolution, while transmitting narrowband pulses. For slowly moving targets, a novel
approach is proposed that achieves significant complexity reduction by successively esti-
mating angle-range and Doppler in a decoupled fashion and byemploying initial estimates
to further reduce the search space. Numerical results show that the achieved complexity
reduction does not hurt resolution. Finally, we investigate optimal designs for the measure-
ment matrix that is used to linearly compress the received signal. One optimality criterion
amounts to decorrelating the bases that span the sparse space of the incoming signal and
simultaneously enhancing signal-to-interference ratio (SIR). Another criterion targets SIR
improvement only. It is shown via simulations that, in certain cases, the measurement
matrices obtained based on the aforementioned criteria canimprove detection accuracy as
compared to the typically used Gaussian random measurementmatrix.
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1. Introduction

In this chapter, we provide some background on multi-input multi-output (MIMO) ra-

dio detection and ranging (radar) and the theory of compressive sensing (CS). Then, the

contributions of this dissertation are described. Finally, we provide the outline of this dis-

sertation.

1.1 Background Review

In this section we introduce the basic concepts of radar, MIMO radar and the theory of

CS.

1.1.1 Radar Basics

A radar [1]-[3] is an target detection system that uses electromagnetic waves to detect

the presence of a target and also extract information about the target, e.g., range, direction

of arrival (DOA), or speed. The targets of interest can be aircraft, ships, motor vehicles,

people, weather formations, and terrain. A transmitter emits electromagnetic waves in the

space. When hitting an object, these waves are scattered in all directions. The signal is thus

partly reflected back to receivers with a certain time delay as compared to the transmission

time, as shown in Fig.1.1. At the receivers the received target echoes are processed to

identify a target. Note that here radar engineers use the term range to denote the distance

between the radar and the target.

From the perspective of transmit waveforms, the radar systems can be categorized into

continuous waveform radar and pulse radar [3]. Pulse Radar (PR) sends out signals in short

(few millionths of a second) bursts or pulses. PR is capable of not only detecting target

range or DOA but also measuring its radial velocity. A continuous-Wave Radar (CWR)
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Figure 1.1: Radar System

that transmits a continuous signal utilizes the Doppler effect to detect targets. Therefore,

CWR fails to detect stationary targets. We consider PR throughout this thesis.

Let us consider a monostatic radar in which the transmitter and receiver are collocated.

The received signal can be approximated as an attenuated andtime-delayed version of

transmit signal. In particular, let the transmitted signalbe x(t) exp(j2π f t), wherex(t) is a

narrowband waveform andf is carrier frequency. As seen in Fig. 1.2, the target return at

the receiver is given by

y(t) = βx(t − τ) exp(j2π f (t − τ)) + n(t) (1.1)

whereβ is the target reflectivity or the target response,n(t) is additive white noise andτ is

the time delay.

The time delayτ is of vital importance for a radar system. We can access to allthe

target information via knowledge ofτ.

• Range [1]. Let us see a simple case in which the radar is equipped with a single
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Pulse 1 Pulse 2 Pulse 3

Transmitted pulses

Received pulses

t

tPulse 1 echo Pulse 2 echo Pulse 3 echo

Figure 1.2: Transmitted and received signals

antenna and the target is assumed to be stationary. The radiowave is emitted by an

antenna att0 and returns this antenna att. The distance between the target and this

antenna, i.e., the rangeR, is equal to

R =
t − t0
2c
=

τ

2c
(1.2)

wherec is the speed of light.

• Doppler [1]. The moving targets can induce a Doppler shift in the carrier frequency.

The speed of targets is obtained by measuring the Doppler shift. The speed infor-

mation is beneficial in that the radar systems can detect the desired target echoes in

the midst of large clutter.Clutter encompasses the echoes reflected by the natural

environment, e.g., land, sea and clouds. In most of cases, the clutter echoes can be

many orders of magnitude larger than the desired target echoes. Since the clutter
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objects are usually stationary or move slowly, one can take advantage of the Doppler

effect to distinguish them from fast moving targets.

Suppose that a target is moving towards the radar at velocityv. Recall that the

Doppler shift is given by

fd ≈
2v
c

f (1.3)

The received signal, after demodulation, can be represented by

y(t) = βx(t − 2R0/c + vt/c) exp(j2π(( f + fd)t − 2 f R0/c)) + n(t) (1.4)

whereR0 is the target range at the reference timet0. Under the assumption of nar-

rowband signal, (1.4) is approximated as

y(t) = βx(t − 2R0/c) exp(j2π(( f + fd)t − 2 f R0/c)) + n(t) (1.5)

Since the Doppler shiftfd is small as compared to the carrier frequencyf , the ex-

traction of the Doppler information requires the PR to transmit multiple pulses. The

simplest way to obtain Doppler information is to perform IDFT on the samples of

the pulse train.

• DOA [1]. Unlike the range and Doppler estimation, multiple antennas are indispens-

able for the DOA estimation. Let us consider a colocated antenna array ofN antennas

in which each antenna serves as a tranceiver. As shown in Fig.1.3, the spacing of

antennas is denoted byd and we assume that a stationary target is located atR0 from

the first antenna for simplicity. For a phased-array radar, all the antennas transmit the

same waveformsx(t). The received signal of thei-th antenna after demodulation is
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given by

yi(t) = βx(t − 2R0/c)e j2π f
(i−1)d sinθ+R0

c + n(t) (1.6)

One can see from (1.6) that the DOA information,θ, can be extracted by performing

IDFT on the samples of the antenna array that are obtained at time t.

The DOA estimation techniques fall into two categories, namely spectral-based and

parametric approaches. Spectral-based methods, e.g., Capon beamformer and multi-

ple signal classification (MUSIC) methods, form a spectrum-like function of DOA.

The peak locations of this function provide DOA estimates. Unlike spectral-based

approaches, parametric techniques directly yield an estimate of DOA without search,

e.g., maximum likelihood (ML) approaches, ESPRIT methods and weighted sub-

space fitting (WSF) methods. The latter class of approaches can produce more accu-

rate estimates than the former at the expense of computational efficiency.

1.1.2 MIMO Radar

It is well known that MIMO systems that are equipped with multiple antennas can

offer significant increase in data throughput and improve link reliability (combat fading)

[6]. Benefiting from the idea of MIMO communication systems,MIMO radar systems

have received considerable attention in recent years. Unlike a phased-array radar [4][5]

in which the transmit nodes send out the scaled versions of a single waveform, a MIMO

radar transmits multiple independent waveforms from its antennas. The waveforms bearing

with the target information can be extracted by a band of matched filters at the receive end.

A MIMO radar system is advantageous in two different scenarios, i.e., widely separated

MIMO radar [7]-[11] and colocated MIMO radar [12]-[14].
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Figure 1.3: The illustration of phased array radar

Widely separated MIMO radar

In this scenario, the transmit antennas are located far apart from each other relative to

their distance to the target [7]-[11]. This enables the radar to view the target from different

directions simultaneously. The MIMO radar system transmits independent probing signals

from decorrelated transmitters through different paths, and thus each target return carries

independent information about the target. Combining theseindependent target returns re-

sults in a diversity gain, the MIMO radar system is capable ofreducing target radar cross

section (RCS) scintillations and achieving high target resolution.

The approaches to process observations can be classified as either non-coherent or co-

herent. The non-coherent method utilizes the information in the signal envelope only and

thus merely requires time synchronization between the transmit and receive antennas. The

coherent method considers the phase information of the received signal in addition to the



7

envelope. This requires the need for both time and phase synchronization.

Colocated MIMO radar

For a colocated MIMO radar [12]-[14], the antennas are closeto each other, so that the

RCS does not vary between the different paths. Let the number of transmit and receive

antennas beMt and Nr, respectively. In this scenario, the phase differences induced by

transmit and receive antennas can be exploited to form a longvirtual array with MtNr

elements. This enables the MIMO radar system to achieve superior spatial resolution as

compared to a traditional radar system. MIMO radar can achieve a desired beampattern by

transmitting correlated waveforms [15]-[17]. This is useful in cases where the radar system

wishes to avoid certain directions because they either correspond to eavesdroppers, or are

known to be of no interest. In this dissertation we consider closely spaced transmit and

receive antennas and uncorrelated transmit waveforms. We will elaborate on the rationale

behind colocated MIMO radar below.

Assume that the transmit array ofMt antennas and the receive array ofNr antennas are

colocated. The spacing of transmit antennas and receivers is dt anddr, respectively. The

transmit antennas emit orthogonal waveforms. Letxi(t)e j2π f t be the continuous waveforms

transmitted by theith transmit antenna. At each receive antenna, theMt orthogonal wave-

forms can be extracted byMt match filters. Therefore,Nr receive antennas can obtain a

total of MtNr waveforms. Thelth receive antenna receives from theith transmit antenna:

yil(t) = xi(t − τil)e
j2π f (t−τil ) + nil(t) (1.7)

whereτil = τ00 +
((i−1)dt+(l−1)dr ) sinθ

c andτ00 is the time delay of the reference antenna; Under
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the assumption of narrowband signal, the baseband receivedsignal is

yil(t) = xi(t)e
− j 2π f

c ((i−1)dt+(l−1)dr ) sinθ

= xi(t)e
− j 2π f dr sinθ

c ( dt
dr

(i−1)+(l−1)) (1.8)

Letting dt
dr
= Nr, then set{ dt

dr
(i − 1) + (l − 1)} = {0, 1, . . . , MtNr − 1}. Therefore, theMtNr

waveforms can be considered as the waveforms received by a virtual array of lengthMtNr

that is formed byMr + Nr elements. In this way, colocated MIMO radar is capable of

achieving super angular resolution as compared to phased-array radar with the same num-

ber of elements. It is worth noting that beamforming is impossible for the case ofdt
dr
= Nr.

This is because the sampling rate in the spatial domain is toolow to prevent aliasing.

1.1.3 Compressive sensing

Compressive sensing (CS), also known as compressed sensingor compressive sam-

pling, is a technique for reconstructing a signal that it is sparse in some space. CS has

received considerable attention recently [18]-[20], and has been applied successfully in

diverse fields, e.g., image processing [21] and wireless communications [22][23].

A K-sparse signalx of lengthN can be represented by

x = Ψs (1.9)

whereΨ denotes theN ×N basis matrix that spans this sparse space ands is the coefficient

vector.scontains onlyK large elements and the remaining elements are negligible orzeros.

If K ≪ N, the signalx is compressible.

We consider a general problem of recoveringx ∈ RN from the linear measurements

y = Φx = Θs (1.10)
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whereΦ is anM × N matrix andΘ = ΦΨ. Φ andΘ are referred to as the measurement

matrix and the sensing matrix in the CS society, respectively.

For the case ofM ≪ N, the recovery ofx requires to solve an underdetermined linear

system. This seems hopeless in that the number of equations is less than the number of the

unknowns. However, the theory of CS states thatx of lengthN can be recovered exactly

with high probability from much fewer measurements thanN.

Recovery algorithms

• Matching Pursuit (MP): These methods iteratively find the sparse vectors. At each

step, a locally optimal estimate ofs is obtained. The well-known algorithms in this

category include orthogonal MP (OMP) [24], regularized OMP(ROMP) [25][26]

and acrostic compressive sampling MP (CoSaMP) [27].

• Convex relaxation or Basis pursuit (BP) [28]: These methods solve a convex prob-

lem that minimizes the support ofs. The mathematical insight into MP methods is

provided in this section. Let us consider the recovery of aK-sparse signalx of length

N from the measurement vectory of lengthM whereK ≪ N andM ≪ N. To find

the sparsest solution ofx, a optimization problem is formulated as

min
s
‖s‖0

s.t. y = Θs (1.11)

where‖ · ‖0 denotesℓ0 norm which counts the number of nonzero elements of the

argument. Note that the solution of the problem (1.11) is thecoefficient vectors

instead of the signalx.

The problem ofℓ0 norm is intractable since it is NP-hard and the solution is not

unique in general. Fortunately, theℓ1 norm provides a natural convex relaxation of



10

theℓ0 norm:

min
s
‖s‖1

s.t. y = Θs (1.12)

where‖ · ‖1 is ℓ1 norm tha is equal to the sum of absolute value of all the elements in

the argument.

Eq. (1.12) can be recast as a linear program (LP), or second order cone program

(SOCP) [29][30]. This is can be efficiently solved by a standard science software.

It has been shown in [18] and [31] that the optimization problem of (1.12) succeeds

in recovering aK-sparse signal with high probability using onlyM ≥ cK log(N/K)

independent identically distributed (i.i.d.) Gaussian measurements, wherec is a con-

stant.

The BP algorithms require fewer measurements than the MP algorithms but are more

demanding than the MP algorithms. In our work, we apply a BP algorithm to target detec-

tion for MIMO radar.

Uniform uncertainty principle

In [32], the notion of uniform uncertainty principle (UUP) was introduced to understand

the exact recovery of the sparse signal. LetΘT, T ⊂ {1, . . . ,N} be theN × |T | submatrix of

Θ that contains the columns corresponding to the indices inT . TheS -restricted isometry

constantδS of Θ is the smallest quantity for all subsetsT with |T | ≤ S satisfying

(1− δS )‖c‖22 ≤ ‖ΘTc‖22 ≤ (1+ δS )‖c‖22 (1.13)

wherec is an arbitrary coefficient vector of length|T |.
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It was shown in [33] that ifS obeys

δS + δ2S + δ3S < 1 (1.14)

then any sparse signal of support less than S can be recoveredby solving (1.12). The

theorem essentially indicates that if every set of columns with cardinality less than the

sparsity of the signal of interest of the sensing matrix are approximately orthogonal, then

the sparse signal can be exactly recovered with high probability. In practice, however, it

would involve prohibitively high complexity to check (1.14) for a large size sensing matrix.

1.2 Contributions of the Dissertation

In a MIMO radar system that is implemented by a small scale network, each node is

equipped with one antenna, and the nodes are distributed at random on a disk of a small

radius. A group of nodes transmit radar waveforms and another group of nodes receive

target echoes. The received data by each receive node (RX) issubsequently forwarded to

a fusion center at which all the data are jointly processed todetect targets and extract their

information. Without any fixed infrastructure, the antennas scattered in this small network

render such MIMO radar more flexible than a fixed antenna arraysince we can choose the

nodes freely. However, the transmission of received data tothe fusion center consumes

a great amount of energy. This would shorten the life of the battery-operated wireless

network. In this dissertation, we propose to apply CS to a MIMO radar system that is

implemented by a small scale network. The CS approach enables a significant reduction

in the number of measurements required by the fusion center to reliably detect targets as

compared to conventional methods. The obtained power savings of transmission would

significantly prolong the life of the wireless network.
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1.2.1 DOA and Doppler estimation for MIMO radar using CS

We propose a novel DOA-Doppler estimation approach for MIMOradar using CS.

Assuming that the targets are sparsely located in the angle-Doppler space, based on the

samples forwarded by the receive nodes the fusion center formulates anℓ1-optimization

problem, the solution of which yields target angle and Doppler information. The proposed

approach achieves the superior resolution of MIMO radar with far fewer samples than re-

quired by conventional approaches. This implies power savings during the communication

phase between the receive nodes and the fusion center. We provide analytical expressions

for the average signal-to-jammer ratio (SJR) and propose a modified measurement matrix

that improves the SJR.

This part of work has been published in:

• Y. Yu, A.P. Petropulu and H.V. Poor, “MIMO radar using compressive sampling,”

IEEE Journal of Selected Topics in Signal Process., vol. 4, no. 1, pp. 146-163, Feb.

2010.

• Y. Yu, A. P. Petropulu and H. V. Poor, “Compressive sensing for MIMO Radar,” in

Proc. IEEE International Conference on Acoustics Speech and Signal Process., pp.

3017-3020, Taipei, Taiwan, Apr., 2009.

• A.P. Petropulu, Y. Yu and H.V. Poor, “Distributed MIMO radarusing compressive

sampling,” inProc. 42nd Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA,

pp. 203-207, Nov. 2008.

1.2.2 CSSF MIMO Radar: Low-complexity compressive sensingbased MIMO radar

that uses step frequency

We propose CSSF MIMO radar, a novel approach that applies step frequency to CS-

based MIMO radar. The proposed approach enables substantial range resolution improve-
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ment for CS-based MIMO radar. The aforementioned work assumes that the targets are

located in a small range bin and the sampling is synchronizedwith the first target return.

Such assumptions do not allow for range estimation. We consider the case in which targets

can be located across several range bins for the proposed CSSF MIMO radar. Two types of

CSSF MIMO radar systems are considered, i.e., linear step-frequency radar (LSFR), and

random step-frequency radar (RSFR), and their effects on the CS approach are studied. The

joint angle-Doppler-range estimation entails high complexity, as it employs a basis matrix

whose construction requires discretization of the angle-Doppler-range space. For the case

of slowly moving targets, a novel approach is proposed that achieves significant complexity

reduction by successively estimating angle-range and Doppler in a decoupled fashion and

by employing initial estimates obtained via matched filtering to further reduce the space

that needs to be digitized.

This part of work is included in:

• Y. Yu, A.P. Petropulu and H.V. Poor, “CSSF MIMO Radar: Low-complexity com-

pressive sensing based MIMO radar that uses step frequency,” submitted to IEEE

Trans. Aerospace and Electronic Systs. in 2010.

• Sagar Shah, Y. Yu and A.P. Petropulu, “Step-frequency radarwith compressive sam-

pling (SFR-CS),” inProc. IEEE International Conference on Acoustics Speech and

Signal Process., Dallas, TX, Mar. 2010.

• Y. Yu, A.P. Petropulu and H.V. Poor, “Reduced complexity angle-Doppler-range

estimation for MIMO radar that employs compressive sensing,” in IEEE Proc. 43rd

Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, pp. 1196-1200, Nov.

2009.

Y. Yu, A.P. Petropulu and H.V. Poor, “MIMO radar based on reduced complexity

compressive sampling,” in ProcIEEE Radio and Wireless Symposium 2010, pp. 21-
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24, New Orleans, LA, Jan. 2010.

• Y. Yu, A.P. Petropulu and H.V. Poor, “Range estimation for MIMO step-frequency

radar with compressive sensing,” inProc. 4th International Symposium on Commu-

nications, Control and Signal Process., Limassol, Cyprus, pp. 1-5, Mar. 2010.

1.2.3 Measurement matrix design

We propose two novel measurement matrix designs. The first one aims at reducing

the coherence of the sensing matrix (CSM) and at the same timeenhancing SIR. The sec-

ond one focuses on improving SIR in order to reduce complexity while keeping the CSM

comparable to that of the Gaussian random measurement matrix. Reduced complexity sub-

optimal constructions for the two measurement matrices arealso proposed. To the best of

our knowledge, this is the first work on optimum matrix design; previous approaches used

a Gaussian random matrix as the measurement matrix. It is shown via simulations that the

two proposed measurement matrices in certain cases can improve detection accuracy as

compared to the typically used Gaussian random measurementmatrix.

This part of work is included in:

• Y. Yu, A.P. Petropulu and H.V. Poor, “Robust target estimation in compressive sens-

ing based colocated MIMO radar,” inProc. IEEE Military Commun. Conf., San Jose,

CA, Nov. 2010, to appear.

1.3 Outline of the Dissertation

This dissertation is organized as follows.

In Chapter 2, we present the proposed approach for angle-Doppler estimation. We

derive the average SJR for the proposed approach and also discuss a modification of the

random measurement matrix that can improve the SJR.
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In Chapter 3, we propose a CSSF MIMO radar system that enableshigh-resolution

target detection. A decoupled scheme for CSSF MIMO radar is also described for the case

of slowly moving targets. This scheme can significantly alleviate computational burden

without sacrificing performance.

In Chapter 4, we propose two measurement matrices to improvedetection accuracy.

Chapter 5 contains concluding remarks and possible directions for future work.
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2. DOA and Doppler Estimation for MIMO Radar Using CS

This chapter exploits DOA and Doppler estimation for MIMO radar for the scenario in

which the targets are located in a small range bin and the sampling is synchronized with

the first target return. In this case, range estimation is notallowed. We will discuss range

estimation in the next chapter.

The MIMO radar consists of transmitters and receivers whichare nodes of a small scale

wireless network and are assumed to be randomly scattered ona disk. The transmit nodes

transmit uncorrelated waveforms. Each receive node applies compressive sampling to the

received signal to obtain a small number of samples, which the node subsequently forwards

to a fusion center. Assuming that the targets are sparsely located in the angle-Doppler

space, based on the samples forwarded by the receive nodes the fusion center formulates

an ℓ1-optimization problem, the solution of which yields targetangle and Doppler infor-

mation. The proposed approach achieves the superior resolution of MIMO radar with far

fewer samples than required by other approaches. This implies power savings during the

communication phase between the receive nodes and the fusion center. Performance in

the presence of a jammer is analyzed for the case of slowly moving targets. Issues related

to forming the basis matrix that spans the angle-Doppler space, and for selecting a grid

for that space are discussed. Extensive simulation resultsare provided to demonstrate the

performance of the proposed approach at different jammer and noise levels.

2.1 Introduction

The application of compressive sampling to a radar system was recently investigated in

[34]- [36]. In [34], in the context of radar imaging, compressive sampling was shown to

have the potential to reduce the typically required sampling rate and even render matched
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filtering unnecessary. In [35], a CS-based data acquisitionand imaging algorithm for

ground penetrating radar was proposed to exploit the sparsity of targets in the spatial di-

mension. The approach of [35] was shown to require fewer measurements than standard

backprojection methods. In [36], CS was applied in a radar system with a small num-

ber of targets, exploiting target sparseness in the time-frequency shift plane. The work of

[37] considered DOA estimation of signal sources using CS. Although [37] focussed on

communication systems, the proposed approach can be straightforwardly extended to radar

systems. In [37], the basis matrixΨ was formed by the discretization of the angle space.

The source signals were assumed to be unknown, and an approximate version of the basis

matrix was obtained based on the signal received by a reference vector. The signal at the

reference sensor would have to be sampled at a very high rate in order to construct a good

basis matrix.

Throughout this dissertation, we consider a small scale network that acts as a MIMO

radar system. Each node is equipped with one antenna, and thenodes are distributed at

random on a disk of a certain radius. Without any fixed infrastructure, the distributed an-

tennas in this small network render such MIMO radar more flexible than a fixed antenna

array since we can choose the nodes freely. For example, the network nodes could be sol-

diers that carry antennas on their backpacks. The nodes transmit independent waveforms.

We extend the idea of [37] to the problem of angle-Doppler estimation for MIMO radar.

Since the number of targets is typically smaller than the number of snapshots that can

be obtained, angle-Doppler estimation can be formulated asthat of recovery of a sparse

vector using CS. Unlike the scenario considered in [37], in MIMO radar the transmitted

waveforms are known at each receive node. This information,and also information on the

location of transmit nodes, if available, enables each receive node to construct the basis

matrix locally, without knowledge of the received signal ata reference sensor or any other

antenna. In cases in which the receive nodes do not have location information about the
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transmitters, or they do not have the computational power, or they face significant interfer-

ence, the received samples are transmitted to a fusion center which has access to location

information and also to computational power. Based on the received data, the fusion center

formulates an augmentedℓ1-optimization problem the solution of which provides target

angle and Doppler information. The performance ofℓ1-optimization depends on the noise

level. A potential jammer would act as noise, and thus affect performance. We provide

analytical expressions for the average signal-to-jammer ratio (SJR) and propose a modified

measurement matrix that improves the SJR. For the case of stationary targets, the pro-

posed approach is compared to existing methods, such as the Capon, amplitude and phase

estimation (APES), generalized likelihood ratio test (GLRT) [14] and multiple signal clas-

sification (MUSIC) methods, while for moving targets, comparison to the matched filter

method [39] is conducted.

Preliminary results of our work were published in [40]. Independently derived results

for MIMO radar using compressive sampling were also published in the same proceedings

[41]. The difference between our work and [41] is that in [41] a uniform linear array

was considered as a transmit and receive antenna configuration, while in our work we

focus on randomly placed transmit and receive antennas, i.e., an infrastructure-less MIMO

radar system. Further we investigate the effects of a jammer on estimation performance

and propose a modified measurement matrix to suppress the jammer. Note that [41] and

other works on CS-based radar, i.e., [34]-[36], did not consider the performance of the CS

algorithm in the case of strong interference.

The rest of the Chapter is organized as follows. In Section 2.2 we provide the signal

model of a distributed MIMO radar system. In Section 2.3, theproposed approach for

angle-Doppler estimation is presented. In Section 2.4 we derive the average SJR for the

proposed approach and also discuss a modification of the random measurement matrix

that can further improve the SJR. Simulation results are given in Section 2.5 for the cases
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of stationary targets and moving targets. Finally, we make some concluding remarks in

Section 2.6.

2.2 Signal Model for MIMO Radar

As shown in Fig. 2.1, we consider a MIMO radar system withMt transmit nodes and

Nr receive nodes that are uniformly distributed on a disk of a small radiusr. This partic-

ular assumption will be used in Section 2.5 for the analytical evaluation of the proposed

approach. For simplicity, we assume that targets and nodes lie on the same plane and we

consider a clutter-free environment. Perfect synchronization and localization of nodes is

also assumed. The extension to the case in which targets and nodes lie in 3-dimension

space is straightforward. Let (rt
i , α

t
i) and (rr

i , α
r
i ) denote the locations in polar coordinates of

the i-th transmit and receive antenna, respectively. Then the probability density functions

of rt/r
i andαt/r

i are

frt/r
i

(rt/r
i ) =

2rt/r
i

r2
, 0 < rt/r

i < r

and f
α

t/r
i

(αt/r
i ) =

1
2π
, −π ≤ αt/r

i < π. (2.1)

Let us assume that there areK point targets present. Thek-th target is at azimuth angle

θk and moves with constant radial speedvk. Its range equalsdk(t) = dk(0)− vkt, wheredk(0)

is the distance between this target and the origin at time equal to zero. Under the far-field

assumption, i.e.,dk(t) ≫ rt/r
i , the distance between theith transmit/receive antenna and the

k-th targetdt
ik/d

r
ik can be approximated as

dt/r
ik (t) ≈ dk(t) − ηt/r

i (θk) = dk(0)− vkt − ηt/r
i (θk) (2.2)

whereηt/r
i (θk) = rt/r

i cos(θk − αt/r
i ).

Let xi(t)e j2π f t denote the continuous-time waveform transmitted by thei-th transmit
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antenna, wheref is the carrier frequency; we assume that all transmit nodes use the same

carrier frequency and also that thexi(t) is periodic with periodTp and narrowband.

The received signal at thek-th target equals

yk(t) = βk

Mt∑

i=1

xi(t − dt
ik(t)/c) exp(j2π f (t −

dt
ik(t)

c
)), k = 1, . . . ,K (2.3)

where{βk, k = 1, . . . ,K} are complex amplitudes proportional to the RCS and are assumed

to be the same for all the receivers. The latter assumption isconsistent with a small network

in which the distances between network nodes are much smaller than the distances between

the nodes and the targets, i.e.,dk(t) ≫ rt/r
i . Thus, since they are closely spaced, all receive

nodes see the same aspect of the target.

Due to reflection by the target, thel-th antenna element receives

zl(t) =
K∑

k=1

yk(t −
dr

lk(t)

c
) + ǫl(t)

=

K∑

k=1

βk

Mt∑

i=1

xi(t −
dt

ik(t) + dr
lk(t)

c
)e j2π f (t−

dt
ik (t)+dr

lk(t)

c ) + ǫl(t), l = 1, . . . , Mr (2.4)

whereǫl(t) represents noise, which is assumed to be independent and identically distributed

(i.i.d.) Gaussian with zero mean and varianceσ2.

For the scenario in which the targets are located in a small range bin and the sampling

is synchronized with the first target return, the narrowbandassumption on the transmit

waveforms allows us to ignore the delay inxi(t), and consider the delay in the phase term

only. Thus, the received baseband signal at thel-th antenna can be approximated as

zl(t) ≈
K∑

k=1

βk

Mt∑

i=1

xi(t)e
j2π fkte j 2π

λ (−2dk(0)+ηt
i(θk)+ηr

l (θk)) + ǫl(t)

=

K∑

k=1

βke
− j 2π

λ
2dk(0)e j 2π

λ
ηr

l (θk)e j2π fktxT (t)v(θk) + ǫl(t) (2.5)
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whereλ is the transmitted signal wavelength,fk = 2vk f /c is the Doppler shift caused by

thek-th target, and

v(θk) = [e j 2π
λ
ηt

1(θk), ..., e j 2π
λ
ηt

Mt
(θk)]T (2.6)

andx(t) = [x1(t), ..., xMt(t)]
T . (2.7)

On lettingL be the length of waveforms,lTs, l = 0, . . . , L−1, denote the time within the

pulse (fast time) andT is the pulse repetition interval (PRI), the received samples collected

during them-th pulse are given by

zlm =





zl((m − 1)T + 0Ts)
...

zl((m − 1)T + (L − 1)Ts)





=

K∑

k=1

γke
j 2π
λ
ηr

l (θk)e j2π fk(m−1)T D( fk)Xv(θk) + elm(2.8)

where

γk = βke
− j 2π

λ
2dk(0),

D( fk) = diag{[e j2π fk0Ts , . . . , e j2π fk(L−1)Ts ]},

elm = [ǫl((m − 1)T + 0Ts), . . . , ǫl((m − 1)T + (L − 1)Ts)]
T ,

andX = [x(0Ts), . . . , x((L − 1)Ts)]
T (L × Mt). (2.9)

Throughout this chapter, we make the following assumptions:

• (A1) The targets are slowly moving. Therefore, the Doppler shift within a pulse can

be ignored, i.e.,fkTp << 1 for k = 1, ...,K, whereTp denotes pulse duration.

• (A2) The radar waveforms are independent across transmit nodes and thus
∫ T

t=0
xi(t)x∗i′(t+

τ)dt, i , i′ is negligible as compared to
∫ T

t=0
xi(t)x∗i′(t + τ)dt.
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2.3 Previous work on DOA and Doppler estimation for MIMO radar

In this section, we describe some well-known DOA and Dopplerestimation methods in

the literature that will be considered in Chapter 4. These methods will be compared to the

approach to be proposed via simulation results.

2.3.1 DOA estimation

We assume stationary targets for DOA estimation and thus only the data during one

pulse is considered. Then the received signal at thel-th node in (2.8) is reduced to

zl =

K∑

k=1

γke
j 2π
λ
ηr

l (θk)Xv(θk) + el (2.10)

Stacking the data ofNr nodes, we have

Z = [z1, . . . , zNr ]
T =

K∑

k=1

γkvr(θk)vT (θk)XT + E. (2.11)

wherevr(θk) = [e j 2π
λ
ηr

1(θk), ..., e j 2π
λ
ηr

Nr
(θk)]T andE = [e1, . . . , eNr ]

T .

Capon method [14]

The Capon method yields a beamformerw that can suppress noise, interference and

jamming suppression while keeping the desired signal undistorted. In particular, the beam-

formerw can be formulated as

min
w

wHRw s.t. wHvr(θ) = 1 (2.12)

whereR = ZZ H.
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The solution to (2.12) is

w∗ =
R−1vr(θ)

vH
r (θ)R−1vr(θ)

. (2.13)

Applying the LS method to the beamformed output byw∗, we can easily obtain the

estimates of target reflectivity as follows

β̂k(θ) =
(w∗)HZX ∗v∗(θ)vH

r (θ)w
(w∗)Hvr(θ)vT (θ)Rxv∗(θ)vH

r (θ)w
=

vH
r (θ)R−1ZX ∗v∗(θ)

vH
r (θ)R−1vr(θ)vT (θ)Rxv∗(θ)

(2.14)

whereRx = XT X∗.

APES method [14]

The APES beamformer aims at minimizing the distance betweenthe output and the

desired signalv(θ)XT , i.e.,

min
w,β
‖wHZ − β(θ)vT (θ)XT ‖2 s.t. wHvr(θ) = 1. (2.15)

The optimal beamformer solving (2.15) is

w∗ =
vH

r (θ)Q−1

vH
r (θ)Q−1vr(θ)

(2.16)

and the estimate of target reflectivity is given by

β̂k(θ) =
vH

r (θ)Q−1ZX ∗v∗(θ)
vH

r (θ)Q−1vr(θ)vT (θ)Rxv∗(θ)
(2.17)

where

Q = R − ZX ∗v∗(θ)vT (θ)XT ZH

vT (θ)Rxv∗(θ)
(2.18)
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GLRT method [14]

Let the columns ofE in (2.11) be independently and identical distributed (i.i.d) circu-

larly symmetric complex Gaussian random vectors with zero-mean and unknown covari-

anceRn. The GLR is defined as

ρ(θ) = 1−
[

maxRn f (Z|β = 0,Rn, θ)

maxβ,Rn f (Z|β,Rn), θ

] 1
L

= 1− vH
r (θ)R−1vr(θ)

vH
r (θ)Q−1vr(θ)

(2.19)

where

f (Z|β,Rn, θ) = π
LNr |Rn|−Le−Tr{R−1

n (Z−βvr(θ)vT (θ)X)(Z−βvr(θ)vT (θ)X)H } (2.20)

One can see from (2.19) that the GLR approaches to 1 if there isa target atθ; otherwise

it is close to zero.

MUSIC method [42]

The MUSIC method is one of subspace-based methods. Unlike the three DOA estima-

tion methods described above, the MUSIC does not require to know transmit waveforms.

Assuming white noise with covariance matrixσ2I , the covariance matrix of received signal

can be represented as

R = VXT X∗VH + σ2I (2.21)

where

V =
K∑

k=1

γkvr(θk)vT (θk) = [vr(θ1), . . . , vr(θK)]diag{[γ1, . . . , γK]}[v(θ1), . . . , v(θK)]T (2.22)

Subspace-based methods requireNt > K to sperate the noise space from the signal
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space. In this case,the termVXT X∗VH hasL − M zero eigenvalues. One can see from

(2.21) that the eigenvectors denoted byUn corresponding to the eigenvalueσ2 span the

noise space and are orthogonal toV, i.e.

UH
n V = 0→ UH

n [vr(θ1), . . . , vr(θK)] = 0. (2.23)

Therefore, the MUSIC ”spatial spectrum” is defined as

p(θ) =
vH

r (θ)vr(θ)
vH

r (θ)(UnUH
n )−1vr(θ)

. (2.24)

If there is a target located atθ, thenp(θ) goes to infinity; otherwise,p(θ) has small value.

The detection accuracy of the MUSIC method relies on the estimation of noise space.

For the sufficiently long signal or adequately high SNR, we can estimate the noise space

precisely and thus obtain the desired performance of the MUSIC method.

2.3.2 Doppler estimation [39]

The way to estimate Doppler shift for single-input single-out (SISO) radar has been

discussed in Chapter 1. In this section, we consider the Doppler estimation for MIMO

radar. The most common method is the matched filtering method(MFM). Based on the

signal model (2.8), the angle and Doppler need to be jointly estimated. The matched filter

looking for a target at (θ, v) yields

cMFM(θ, v) ,

∣
∣
∣
∣
∣
∣
∣

∑

m=1

Np

Nr∑

l=1

(zlm)H

(

γke
j 2π
λ
ηr

l (θ)e j 4π f v
c (m−1)T D(

2v
c

f )Xv(θk)

)
∣
∣
∣
∣
∣
∣
∣

. (2.25)

If there is a target located atθ, v, then (cMFM(θ, v)) has large value; otherwise, it is negligi-

ble.
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2.4 Compressive Sensing for MIMO Radar

Let us discretize the angle and speed space on a fine grid (seenin Fig. 2.2), i.e., respec-

tively, [ã1, . . . , ãNa] and [b̃1, . . . , b̃Nb]. Let the grid points be arranged first angle-wise and

then speed-wise to yield the grid points (an, bn), n = 1, ...,NaNbNc. Through this ordering,

the grid point (ãna , b̃nb) is mapped to point (an, bn) with n = (nb − 1)na + na.

We can rewrite (2.8) as

zlm =

N∑

n=1

sne j 2π
λ
ηr

l (an)e j2πbn(m−1)T D(bn)Xv(an) + elm (2.26)

whereN = NaNb and

sn =






γk, if the k-th target is at (an, bn)

0, otherwise
. (2.27)

In matrix form we have

zlm = Ψlms+ elm (2.28)

wheres= [s1, . . . , sN]T and

Ψlm = [e j 2π
λ
ηr

l (a1)e j2πb1(m−1)T D(b1)Xv(a1), . . . , e
j 2π
λ
ηr

l (aN )e j2πbN (m−1)T D(bN)Xv(aN)]. (2.29)

Assuming that there are only a small number of targets, the positions of targets are

sparse in the angle-Doppler plane, i.e.,s is a sparse vector. Let us measure linear projections

of zlm as

r lm = Φlmzlm = ΦlmΨlms+ ẽlm, (2.30)

whereΦlm is anM × L (M < L) zero-mean Gaussian random matrix that has small corre-
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lation withΨlm, andẽlm = Φlmelm. M must be larger than the number of targets.

All the receive nodes forward their compressed measurements to a fusion center. We

assume that the fusion center has the ability to separate thedata of different nodes from each

other. This can be done, for instance, if the nodes send theirdata over different carriers.

The fusion center combines the compressively sampled signals due toNp pulses obtained

at Nr receive nodes to form the vectorr . It holds that

r = [rT
11, . . . , r

T
1Np
, . . . , rT

Nr1, . . . , r
T
NrNp

]T = Θs+ E (2.31)

whereΘ = [(Φ11Ψ11)T , . . . , (Φ1NpΨ1Np))T , . . . , (ΦNr1ΨNr1)
T , . . . , (ΦNrNpΨNrNp))T ]T andE =

[ẽT
11, . . . , ẽ

T
1Np
, . . . , ẽT

Nr1
, . . . , ẽT

NrNp
]T . Thus, the fusion center can recovers by applying the

Dantzig selector to the convex problem of (3.8) as ([43])

ŝ= min‖s‖1 s.t. ‖ΘH(r −Θs)‖∞ < µ. (2.32)

According to [43], the sparse vectors can be recovered with very high probability ifµ =

(1+t−1)
√

2 logNσ̃2σmax, wheret is a positive scalar,σmax is the maximum norm of columns

in the sensing matrixΘ and σ̃2 is the variance of the noise in (3.8). IfΦΦH = I then

σ̃2 = σ2. Determining the best value ofµ requires some experimentation. A method that

requires an exhaustive search was described in [43]. A lowerbound is readily available,

i.e., µ >
√

2 logNσ̃2σmax. Also, µ should not be too large because in that case the trivial

solutions= 0 is obtained. Thus, we may setµ < ‖ΘHr‖∞.

2.4.1 Resolution

The UUP [19][20] indicates that if every set of columns with cardinality less than the

sparsity of the signal of interest of the sensing matrix (Θ defined in (3.8)) are approximately

orthogonal, then the sparse signal can be exactly recoveredwith high probability. For a
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fixed M the correlation of columns of the sensing matrix can be reduced if the number

of pulsesNp and/or the number of receive nodesNr is increased. Intuitively, the increase

in Np and Nr increases the dimension of the sensing matrix columns, thereby rendering

the columns less similar to each other. A more formal proof isprovided in Appendix I.

Moreover, increasing the number of transmit nodes, i.e.,Mt, also reduces the correlation of

columns; this is also shown in Appendix I.

In general, to achieve high resolution a fine grid is required. However, for fixedNp,

Nr andMt, decreasing the distance between the grid points would result in more correlated

columns in the sensing matrix. Based on the above discussion, the column correlation can

be reduced by increasingNp, Nr or Mt. Also, based on the theory of CS, the effects of a

higher column correlation can be mitigated by using a largernumber of measurements, i.e.,

by increasingM. In particular, it was shown in [19] thatM should satisfyM ≥ Kǫ2(log N)4

C ,

whereǫ denotes the maximum mutual coherence between the two columns of the sensing

matrix andC is a positive constant.

One might tend to think that in order to achieve good resolution one has to involve a lot

of measurements, or trasnmit/receive antennas, or pulses, which in turn would involve high

complexity. However, extensive simulations suggest that this is not the case. In fact, the

proposed approach can match the resolution that can be achieved with conventional meth-

ods, while using far fewer received samples, than those usedby the conventional methods.

2.4.2 Maximum grid size for the angle-Doppler space

The grid in the angle-Doppler space must be selected so that the targets that do not fall

on the chosen grid points can still be captured by the closestgrid points. This requires

sufficiently high correlation of the signal reflected by each target with the columns ofΘ

corresponding to grid points close to the targets in the angle-Doppler plane. However, this

requirement goes against the UUP, which requires that everyset of columns with cardinality
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less than the sparsity of the signal of interest be approximately orthogonal. Thus, there is a

tradeoff of the correlation of columns of the sensing matrix and the grid size.

Absent prior information about the targets, we can determine the maximum spacing

of adjacent grids in the angle-Doppler space by consideringthe worst case. Assume

that we discretize the angle-Doppler space uniformly with the spacing (∆a,∆b) as a =

[(a1, b1), . . . , (aN , bN)]. The worst case scenario is that the targets fall in the middle be-

tween two adjacent grid points. Therefore, a practical approach of selecting the grid points

is to calculate the correlation of columns corresponding to(ai +
∆a
2 , bi) and (ai, bi +

∆b
2 )

with the columns corresponding to (ai, bi), i = 1, . . . ,N. This can be done by computing

the correlation at lag zero of columns corresponding to (ai +
∆a
2 , bi) and (ai, bi +

∆b
2 ) with

the columns corresponding to (ai, bi), for i = 1, . . . ,N, and then taking the average. Then,

we can vary the step (∆a,∆b) until the average correlation reaches some threshold. This

threshold should be high enough to capture the targets that do not fall on the grid in the

angle-Doppler space, and at the same time, it should satisfythe UUP. The adoption of such

grid points would ensure that the angle-Doppler estimates of targets would always fall on

the grid of the constructed basis matrix.

When the targets are between grid points, the increase inNp or Nr will not necessarily

improve performance. However, simulations show that we canobtain very good perfor-

mances with very smallNp and Nr. To achieve a similar performance, the conventional

matched filter method will require much greaterNp andNr.

2.4.3 Range of unambiguous speed

Let us assume that the Doppler shift change over the duration(T ) of the pulse is negli-

gible as compared to the change between pulses. This is reasonable given the assumption

(A1). Given two grid points (ai, bi) and (ai, b j) in the angle-Doppler space, wherebi , b j,

the corresponding columns ofΨ are different ife j2πbiT , e j2πb jT . Let vi be the speed corre-
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sponding to the Doppler frequencybi and∆i j
v = v j − vi. It holds that

e j2πbiT
, e j2πb jT ⇒ 2∆i j

v f T
c

, n, n = ±1,±2, . . . (2.33)

Therefore, the range of the unambiguous relative speed between two targets that appear at

the same speed satisfies

2∆i j
v f T
c

≤ 1 ⇒ ∆i j
v ≤

c
2 f T

. (2.34)

The selection ofT affects the range of the unambiguous speed; the smaller theT the

larger the range of the unambiguous speed is. We also need a relatively smallT to satisfy

the assumption that the Doppler shift does not change withinthe duration of the pulse.

On the other hand, a largerT is needed to satisfy the narrowband assumption about the

transmitted waveforms. Therefore,T needs to be chosen to balance the above requirements.

2.4.4 Complexity

The proposed approach requires solving the convex programming problem of (2.32).

The more targets one would hope to be able to detect the higherthe complexity would be.

Further, the signals involved are complex. In this case (2.32) can be recast as a SOCP [29],

which requires polynomial time in the dimension of the unknown vector.

The requirement of a fine grid further increases the computational complexity. This

problem can be mitigated by first performing an initial angle-Doppler estimation using

a coarse grid, and then refining the grid points around the initial estimate. Restricting

the candidate angle-Doppler space reduces the samples in the angle-Doppler space that

are required for constructing the basis matrix, thus reducing the complexity of theℓ1-

optimization step.

In addition to the computation complexity, the receiver forobtaining the required sam-
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ples is also more complex. The schematic diagram of the receiver is shown in Fig. 2.3 (see

also [35]).

2.5 Performance Analysis in the presence of a jammer signal

In [43], Candes and Tao showed that if the basis matrix obeys the UUP and the signal

of interests is sufficiently sparse, then the square estimation error of the Dantzig selector

satisfies with very high probability

‖ ŝ− s ‖2ℓ2
≤ C22logN × (σ2 +

N∑

i

min(s2(i), σ2)) (2.35)

where C is a constant,N denotes the length ofsandσ2 is the variance of the noise. It can be

easily seen from (4.3) that an increase in the interference power degrades the performance

of the Dantzig selector. Thus, in the presence of a jammer that transmits a waveform un-

correlated with the radar transmit waveforms, the performance of the proposed CS method

will deteriorate. Next, we provide analytical expressionsfor the signal-to-jammer ratio at

the receive nodes, and propose a modified measurement matrixto suppress the jammer.
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2.5.1 Analysis of Signal-to-Jammer Ratio

Suppose that each transmitter transmitsNp pulses. In the presence of a jammer at

location (d, θ) the signal received at thel-th receive antenna can be expressed as

r l =





r l1

...

r lNp





=

K∑

k=1

γke
j 2π
λ
ηr

l (θk)





Φl1e j2π fk0T

...

ΦlNpe
j2π fk(Np−1)T





D( fk)Xv(θk)

︸                                                        ︷︷                                                        ︸

r ls

+ e− j 2π
λ

(d−ηr
l (θ))β





Φl1x̃1

...

ΦlNp x̃Np





︸                          ︷︷                          ︸

r l j

+





Φl1el1

...

ΦlNpelNp





︸         ︷︷         ︸

r ln

(2.36)

where x̃m = [ x̃m(0Ts), . . . , x̃m((L−1)Ts)]T contains the samples of the signal transmitted by

the jammer during them-th pulse, andβ denotes the square root of the power of the jammer

over the duration of one signal pulse.

We assume that for allm, E{x̃∗m(i)x̃m( j)} = 1/L for i = j, and 0 otherwise. Thus,

E{x̃H
m x̃m} = 1. Also, we assume thatx̃m, m = 1, . . . ,Np are uncorrelated with the main

period of the transmitted waveforms. Thus, the effect of the jammer signal is similar to

that of additive noise. In the following analysis we assume that the jammer contribution

is much stronger than that of additive noise, and therefore we ignore the third termr ln on

the right hand side of (2.36). Later, in our simulations we will consider additive noise in

addition to a jammer signal.

We assume that all receive nodes use the same random measurement matrix overNp

pulses, i.e.,Φl = Φl1 = Φl2 = . . . = ΦlNp. Let Ak,k′

l = XHDH( fk)ΦH
l ΦlD( fk′)X and

qk,k′

i, j denote the (i, j)-th element ofAkk′
l . Thus, the average power of the desirable signal
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conditioned on the transmitted waveform can be representedby

Ps(l) = E{r H
ls r ls|X} = E{

K∑

k,k′=1

γ∗kγk′e
− j 2π

λ
(ηr

l (θk)−ηr
l (θk′ ))

︸                    ︷︷                    ︸

ρl(k,k′)

(
Np−1
∑

m=0

e− j2π( fk− fk′ )mT )

︸                 ︷︷                 ︸

µkk′

vH(θk)Akk′

l v(θk′)
︸             ︷︷             ︸

Qkk′

}

= NpE{
K∑

k=1

|βk|2Qkk} + E{
∑

k,k′

ρl(k, k
′)µkk′Qkk′ } (2.37)

whereρl(k, k′) andQkk′ can be further written as

ρl(k, k
′) = e j 2π

λ
[2(dk(0)−dk′ (0))−(ηr

l (θk)−ηr
l (θk′ ))β∗kβk′ (2.38)

andQkk′ =
∑

i, j

qk,k′

i, j e j 2π
λ

(ηt
j(θk′ )−ηt

i(θk))
. (2.39)

As defined in Section 3.2, the position of theith TX/RX node is denoted by (rt/r
i , α

t/r
i )

in polar coordinates. Thus it holds that

ak′k
ji = η

t/r
j (θk′) − ηt/r

i (θk) =






2rt/r
i sin(θk′−θk

2 ) sin(αi − θk′+θk

2 ) i = j

rt/r
j cos(θk′ − α j) − rt/r

i cos(θk − αi) i , j
(2.40)

Let ψ0 be deterministic. Based on the assumed statistics ofri andαi (see (2.1)), the

distribution ofh =
rt/r

i

r sin(αt/r
i − ψ0) is given by ([50])

fh(h) =
2
π

√
1− h2,−1 < h < 1 (2.41)

and

E
{

e jαh
}

= 2
J1(α)
α

(2.42)

whereJ1(·) is the first-order Bessel function of the first kind. Thus, based on (4.15) we can
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obtain

E
{

e j 2π
λ

ak′k
ji

}

= E





e j 2πr

λ

ak′k
ji
r





=






1 i = j andk = k′

ς(4 sin(θk′−θk

2 )) i = j andk , k′

ς2(2) i , j

(2.43)

whereς(x) = 2
J1(x πr

λ
)

x πr
λ

.

Therefore, the average power of the desirable signalPs(l) taken over the positions of

TX/RX nodes can be found to be

Ps(l) = NpE






K∑

k=1

|βk|2Qkk





+ E






∑

k,k′

ρl(k, k
′)µkk′Qkk′






= Np

K∑

k=1

|βk|2E {Qkk} +
∑

k,k′

E {ρl(k, k
′)} µkk′E {Qkk′}

= Np

K∑

k=1

|βk|2
∑

i, j

qk,k
i, j E{e j 2π

λ
akk

ji } +
∑

k,k′

β∗kβk′e
j 4π
λ

(dk(0)−dk′ (0))E{e j 2π
λ

ak′k
ll }µkk′

∑

i, j

qk,k′

i, j E{e j 2π
λ

ak′k
ji }

= Np

K∑

k=1

|βk|2[
∑

i

qk,k
i,i +

∑

i, j

qk,k
i, j ς

2(2)]

+
∑

k,k′

β∗kβk′e
j 4π
λ (dk(0)−dk′ (0))ςkk′µkk′ [ςkk′

∑

i

qk,k′

i,i +
∑

i, j

qk,k′

i, j ς
2(2)]

(2.44)

whereςkk′ = ς(4 sin(θk′−θk

2 )).

For many practical radar systems with wavelengthλ less than 0.1m, (e.g., most military

multimode airborne radars), 2πr/λ is a large number ifr > 5m. Since the functionς(x)

decreases rapidly asx increases, the terms multiplied byς2(2) are small enough to be

neglected in the above equation. Therefore, (2.44) can be approximated by

Ps(l) ≈ Np

K∑

k=1

|βk|2
∑

i

qk,k
i,i +

∑

k,k′

β∗kβk′e
j 4π
λ

(dk(0)−dk′ (0))ςkk′
2µkk′

∑

i

qk,k′

i,i . (2.45)
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Similarly, the average power of the jammer signal over TR/TX locations is given by

P j(l) = E{r H
l j r l j} = (e− j 2π

λ
(d−ηr

l (θ))β)(e− j 2π
λ

(d−ηr
l (θ))β)∗

Np∑

m=1

x̃H
mΦ

H
l Φlx̃m

= |β|2
Np∑

m=1

x̃H
mΦ

H
l Φlx̃m. (2.46)

The SJR given the node locations is the ratio of the power of the signal to the power

of the jammer. Since the denominator does not depend on node locations, the average SJR

equals SJR= Ps(l)/P j(l).

Some insight into the above obtained expression will be given in the following for some

special cases.

2.5.2 SJR based on a modified measurement matrix

Since the jammer signal is uncorrelated with the transmitted signal, the SJR can be im-

proved by correlating the jammer signal with the transmitted signal. Therefore, we propose

a measurement matrix of the form

Φ̃l = Φ
′
lX

H (M × L) (2.47)

whereΦ′l is anM × Mt Gaussian random matrix. Note thatΦ̃l is also Gaussian. As stated

in [20], a random measurement matrix with i.i.d. entries, e.g., Gaussian or±1 random

variables, is nearly incoherent with any fixed basis matrix.Therefore, the proposed mea-

surement matrix exhibits low coherence withΨl, thus guaranteeing a stable solution to

(2.32). Based on (2.47), the average power of the desirable signal Ps(l) is given by (2.44),

except thatQkk′ is based onAk,k′

l = XHDH( fk)X(Φ′l)
H
Φ
′
lX

HD( fk′)X. The average power of

the jammer signal is given by (2.46) whereΦl is replaced byΦ̃l.

Let us assume that theMT transmit nodes emit periodic pulses containing independent
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quadrature phase shift keying (QPSK) symbols, and thatXHX = I Mt . Also, we assume that

ΦlΦ
H
l = Φ

′
l(Φ

′
l)

H = I M.

Let x̃i(n) be expressed asϑin/
√

L, whereϑin is a random variable with mean zero and

variance one. Then the average power of the jammer signalP j(l) can be rewritten as fol-

lows:

P j(l) = |β|2
Np∑

m=1

x̃H
mΦ

H
l Φlx̃m

= |β|2
Np∑

m=1

L−1∑

i= j=0

x̃∗m(i)x̃m(i)cii + |β|2
Np∑

m=1

L−1∑

i, j=0

x̃∗m(i)x̃m( j)ci j

=
1
L
|β|2

Np∑

m=1

L−1∑

i=0

ϑ∗miϑmicii +
1
L
|β|2

Np∑

m=1

L−1∑

i, j=0

ϑ∗miϑm jci j (2.48)

whereci j is the (i, j)-th entry ofΦH
l Φl. Since the entries ofΦl are i.i.d Gaussian variables

with zero means and variances1
L , cii, i = 1, . . . , L are i.i.d chi-square random variables with

meansM
L and variances2M

L ; ci j, i , j are of mean zero and varianceM/L2. Let us express

ci j, i , j as̺i j

√
M/L, where̺i j has zero mean and unit variance. It holds that

P j(l) = |β|2
Np∑

m=1

E{ϑ∗miϑmicii} +
√

M
L2
|β|2

Np∑

m=1

L−1∑

i, j=0

ϑ∗miϑm j̺i j

= |β|2Np
M
L
+
|β|2
√

M(L − 1)
L

Np∑

m=1

1
L(L − 1)

L−1∑

i, j=0

ϑ∗miϑm j̺i j

= Np|β|2
M
L
+
|β|2
√

M(L − 1)
L

Np∑

m=1

E{ϑ∗i,mϑ j,m̺i j}

≈ Np|β|2
M
L

(2.49)
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where we have used the fact that for largeL,

1
L

L−1∑

i=0

ϑ∗miϑmicii → E{ϑ∗miϑmicii} =
M
L

(2.50)

and
1

L(L − 1)

L−1∑

i, j=0

ϑ∗miϑm j̺i j → E{ϑ∗miϑm j̺i j} = 0 . (2.51)

Using the measurement matrix̃Φl in (2.47) will not affect the averageP j(l) over the

jammer signal due to the fact that
∑

i cii = Tr{X(Φ′l)
H
Φ
′
lX

H} = Tr{XHX(Φ′l)
H
Φ
′
l} = Tr{Φ′l(Φ′l)H} =

Tr{I M} = M.

In the following, we will look into the SJR improvement usingΦ̃l as opposed toΦl, for

two different cases, i.e., stationary targets and moving targets.

Stationary Targets

First, let us consider the SJR using the random measurement matrixΦl.

When the targets are stationary, the Doppler shift is zero and soAk,k′

l = A l = XH
Φ

H
l ΦlX.

Therefore, the average power of the desired signal can be approximated as

Ps(l) ≈ Np

K∑

k=1

|βk|2
∑

i

qi,i + Np

∑

k,k′

β∗kβk′e
j 4π
λ

(dk(0)−dk′ (0))ς2
kk′

∑

i

qi,i (2.52)

whereqi, j is the (i, j)-th entry ofA l.

Lettingxi denote thei-th column ofX,
∑

i qi,i can be expressed as

∑

i

qi,i = Tr{A l} =
Mt∑

i=1

xH
i Φ

H
l Φlxi =

Mt∑

i=1

L∑

m,n=1

x∗i (m)cmnxi(n)

=

Mt∑

i=1

L∑

m=1

x∗i (m)xi(m)cmm +

Mt∑

i=1

L∑

m,n

x∗i (m)xi(n)cmn. (2.53)

whereΦl(m, n) is the (m, n)-th entry ofΦH
l Φl.

The entries ofX have zero means and mutually independent; therefore, for sufficiently
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long L andMt it holds that

∑

i

qi,i =
Mt

L

L∑

m=1

cmm =
MMt

L
. (2.54)

Based on (2.54), a concise form ofPs(l) is given by

Ps(l) ≈
NpMMt

∑K
k=1 |βk|2

L
+

NpMMt

L
ϕ (2.55)

whereϕ =
∑

k,k′,k,k′ β
∗
kβk′e j 4π

λ
(dk(0)−dk′ (0))ς2

kk′ .

Thus, the SJR corresponding to the random measurement matrixΦl is

S JRl =
Ps(l)
P j(l)

≈ Mt(
∑K

k=1 |βk|2 + ϕ)

|β|2 . (2.56)

When using the measurement matrixΦ̃l = Φ
′
lX

H, the quantity corresponding toAk,k′

l is

Ãk,k′

l = Ã l = XHX(Φ′l)
H
Φ
′
lX

HX = (Φ′l)
H
Φ
′
l . (2.57)

It holds that
∑

i qi,i = Tr{(Φ′l)H
Φ
′
l} = Tr{Φ′l(Φ′l)H} = M. Similarly, the average power

of the desired signal can be approximated as

Ps(l) ≈ NpM(
K∑

k=1

|βk|2 + ϕ). (2.58)

Therefore, the SJR corresponding to the random measurementmatrix Φ̃l is

S JRl =
Ps(l)
P j(l)

≈ L(
∑K

k=1 |βk|2 + ϕ)
|β|2 . (2.59)

From (2.56) and (2.59), it can be seen that the use ofΦ̃l instead ofΦl can improve SJR

by a factor ofL/Mt whenL > Mt. The SJR can be improved by an increase inL. However,
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increasingL will require a higherTs when the pulse duration is fixed. This will increase

the bandwidth of the signal. It is interesting to note that the SJR of (2.56) and (2.59) does

not depend on the the number of measurements,M.

Slowly Moving Targets

Based on the measurement matrixΦl, and considering the Doppler shift, we have

Ak,k′

l = XHDH( fk)ΦH
l ΦlD( fk′)X. Due to the assumption (A1), we have

∑

i

qk,k′

i,i = Tr{Ak,k′

l } = Tr{XHDH( fk)Φ
H
l ΦlD( fk′)X} ≈

MMt

L
. (2.60)

Thus,Ps(l) for the slowly moving targets withfpT << 1 is approximately the same as that

of stationary targets.

Let us now consider the measurement matrixΦ̃l. Let ck
i j denote the (i, j)-th entry of

XHDH( fk)X and note thatck
i j is given byck

i j =
∑L−1

n=0 x∗i (n)x j(n) ∗ e j2π fknTs . In scenarios in

which L is relatively large, the following approximations are readily derived:

ck
i j






= 1
L

1−e j2π fk LTs

1−e j2π fk Ts i = j

≈ 0 i , j
. (2.61)

Since the off-diagonal elements are small compared with the diagonal elements, they can

be ignored.

Then, we obtain the following approximation

Ak,k
l = XHDH( fk)X(Φ′l)

H
Φ
′
lX

HD( fk)X ≈ (Φ′l)
H
Φ
′
l . (2.62)

Therefore, the SJR of slowly moving targets withfpT << 1 is approximately equal to

that of stationary targets for both random measurement matrices.
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2.6 Simulation Results

The goal of this section is to demonstrate the ability of the proposed MIMO radar

approach, denoted in the figures as CS, to pick up targets in the presence of noise and/or

a jammer, and also show the effect on the various parameters involved. In each case the

performance is compared against other methods that have been proposed in the context

of MIMO radar (here referred to as “conventional”) in order to quantify weaknesses and

advantages. For the case of stationary targets, the conventional methods tested here are

the methods of Capon, APES, GLRT [14] and MUSIC [52], while for moving targets,

comparison to the matched filter method [39] is conducted.

In our simulations we consider a MIMO radar system with the transmit/receive anten-

nas uniformly distributed on a disk of radius 10m. The carrier frequency isf = 5GHz

and the pulse repetition interval isT = 1/4000s. Each transmit node uses uncorrelated

QPSK waveforms. The received signal is corrupted by zero mean Gaussian noise. We also

consider a jammer that transmits waveforms uncorrelated tothe signal waveforms. For

simulation purposes we take the jamming waveforms to be white Gaussian [51]. The SNR

is defined as the ratio of power of transmit waveform to that ofthermal noise at a receive

node. Throughout this dissertation, we useCVX to solve the Dantzig selector in (2.32).CVX

is a package for specifying and solving convex programs [48][49].

2.6.1 Stationary Targets

The presence of a target can be seen in the plot of the magnitude of ŝobtained by (2.32).

We will refer to this vector as thetarget information vector. The location and magnitude of

a peak in that plot provides target location and RCS magnitude, respectively. The proposed

approach results in a clean plot away from the target locations, and well distinguished peaks

corresponding to the targets. This is a desirable behavior for target detection, as it would

result in small probability of false alarm. To demonstrate the appearance of the graph we
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define the peak-to-ripple ratio (PRR) metric as follows. Forthe k-th target, PRRk is the

ratio of the square amplitude of the DOA estimate at the target azimuth angle to the sum

of the square amplitude of DOA estimates at other angles except at the jammer location,

i.e., PRRk =
|sk |2

sHs−∑K
i=1 |sk |2−|s j |2

, wheres is defined in (2.27);sk ands j denote the elements ofs

corresponding to the location of thek-th target and the jammer, respectively. A clean plot

would yield a high PPR, while a plot with a lot of ripples wouldyield a low PRR.

A metric that shows the degree to which a jammer is suppressed, namely the peak-to-

jammer ratio (PJR), is also used here. PJR is defined as the ratio of the average square

amplitude of the DOA estimates at the target angles to the square amplitude of DOA esti-

mates at the jammer, i.e.,PJR =
1
K

∑K
i=1 |sk |2
|s j |2 . Unlike PRR, PJR is averaged over all targets.

In this way, the jammer is considered to be suppressed only ifthe peak amplitude at the

jammer location is much smaller than the peak amplitude at any target location.

The results that we show represent 1, 000 Monte Carlo simulations over independent

waveforms and noise realizations. To better show the statistical behavior of the methods

we plot the cumulative density function (CDF) of PPR and PJR,i.e.,Probability(PPR < x)

andProbability(PJR < x), wherePPR is the sum ofPRRk, k = 1, . . . , K.

Targets falling on the grid

We consider the following scenario. Two targets are locatedat anglesθ1 = 0.2oand

θ2 = −0.2o. The corresponding reflection coefficients areβ1 = β2 = 1. A jammer is

located at angle 7o and transmits an unknown zero-mean Gaussian random waveform with

varianceβ2 = 400. Additive white Gaussian noise is added at the receive nodes. The ratio

of the power of transmitted waveforms at each transmit node to the variance of the additive

Gaussian noise The number of transmit antennas is fixed atMt = 30. For the purpose of

reducing computation time, the angle space is taken to be [−8o, 8o], and is sampled with

increments of 0.2o from −8o to 8o, i.e., a = [−8o,−7.8o, . . . , 7.8o, 8o]. M = 30 random
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measurements of one pulse are used to feed the Dantzig selector. Since the MUSIC method

requires the number of receive antennas to be greater than the number of targets, when only

one receive antenna is used we compare the proposed CS methodwith only the Capon,

APES and GLRT methods. The comparison methods are usingL = 512 samples to obtain

their estimates, while the proposed approach usesM = 30 samples. The result of one

realization for the case of one receive node is shown in Fig. 2.4. One can observe the

cleaner appearance of the graph corresponding to the proposed approach, where the two

targets appear correctly except with a small error in the magnitude of the target RCS. The

CDF of the corresponding PRR and PJR are also shown in the samefigure. One can clearly

see that with one receive antenna the comparison methods yield PRR close to 1, which is

indicative of severe ripples.

In general, an increase in the length of waveformsL leads to improved PRR and PJR

for all methods. In the following results we fixL to 512. For the comparison methods,L

represents the number of samples needed to obtain target information. For CS, the number

of samples used to extract target information isM.

For the scenario of Fig. 2.4, the effect of the thresholdµ is evaluated in terms of the

empirical CDF of the PRR and the amplitude estimate of RCS, and the results are shown

in Fig. 2.5. One can can see that the increase inµ can lead to fewer ripples but at the same

time it degrades the amplitude estimate of RCS. In the following, the value ofµ used in

each case will be shown on the corresponding figures.

For the same target and jammer configuration as above, we now examine the effect

of different levels of jammer strength. We consider the scenario where Nr = 10 receive

nodes participate in the estimation. For the case of CS, eachnode sends to the fusion center

M = 30 received samples, while for the comparison methods, eachnode sends to the fusion

centerL = 512 received samples. In Fig. 2.6 we show the CDF of PPR and PJRcorre-

sponding to jammer varianceβ2 = 400, 1600 and 3600 and SNR equal to 0 dB. One can
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see that for CS, the probability of low PRR and PJR increases when the jammer becomes

stronger. In particular, there is some non-zero probability that the PRR will be close to

10−7. Such cases are rare and occur when one of the two targets is missed. The decrease in

the thresholdµ can improve the DOA estimates at the target locations and reduce the prob-

ability of missing one of the targets. The cost, however, would be an increase in ripples.

The performance of the proposed approach can be improved, i.e., the rare low PRR values

can be completely avoided by increasingNr, or M. This is demonstrated in Fig. 2.7, where

the strong jammer case of Fig. 2.6 is considered, i.e.,β2 = 3600, andNr is increased to 30.

We should note here that it does not help to increaseM beyondMt as the maximal rank of

Φ′l is Mt.

Next, we consider the same scenario as above but let the two targets be at variable

distanced in the angle domain. Figure 2.8 demonstrates performances for the casesd =

0.2o, 0.3o, 0.4oin the presence of a strong jammer with varianceβ2 = 3600. The SNR is 0

dB, Nr = 10 andM = 30. One can see that the comparison methods produce good level

PRR. Regarding the PJR, as expected, MUSIC fails, Capon and APES result in is PRR≈ 1

most of the time, while GLRT performs well all the time. The proposed CS approach

performs well with a few exceptions in which a PRR or PJR less than 1 is obtained with

very small probability. Again, the CS method performance can be improved by increasing

Nr and/or M.

Based on the above results, the performance of the proposed approach for the jammer

dominated scenario can be made at least comparable to that ofthe conventional methods

while using about 5.8% (= 30/512) of the number of samples required by the conventional

methods.

Next, we study a thermal noise dominated case, i.e., SNR=−40dB. Figure 2.9 shows

PRR and PJR performance for different values of jammer variance, i.e.,β2 = 400, 1600 and

3600. In all cases the parameters areNr = 10, Mt = M = 30 and the targets were separated
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by d = 0.4o. CS yields good performance even in the presence of both a strong jammer

and thermal noise. The PRR performance of other methods appears to deteriorate at this

noise level. The performances for targets with spacingd = 0.2o,0.3oand 0.4oare given in

Fig. 2.10 forNr = 20, Mt = M = 30 andβ2 = 400. As in the case of a strong jammer,

the decrease in the spacingd does not affect the performance significantly. In this thermal

noise dominated case, CS appears to perform very well in terms of PRR and PJR, while

the comparison methods appear to be very noisy. To further examine this case, we consider

two additional performance measures, i.e., mean squared error (MSE) and probability of

false alarm (PFA), which are computed based on the obtained estimatêsas follows. A new

vector, ŝt is formed; if ŝi is greater than some threshold then ˆst
i = 1, otherwise, ˆst

i = 0.

The MSE is calculated asMS E = ‖ŝt − st‖22/N, wherest is anN × 1 vector that contains

zeros everywhere except at angles corresponding to target locations, where it is 1. The PFA

measures the probability of 1 occurring inŝ at non-target locations. Figure 2.11 shows the

MSE based on 8, 000 Monte Carlo simulations. Note that the performance of MUSIC is not

shown here since MUSIC always yields a peak at the jammer location. One can see that the

simple thresholding described above helps the comparison methods, and if the threshold

is picked appropriately all methods can produce a low angle MSE and PFA. However, the

MSE corresponding to the CS method is less sensitive to the particular threshold than other

methods. For the milder jammer case (β = 20), the CS approach exhibits slightly better

“best MSE performance” than the comparison methods, while in the stronger jammer case

(β = 60) the GLRT outperforms CS for most thresholds. For the strong jammer case,

the MSE and PFA of CS are compared to those of the GLRT for different numbers of

samples,L in Fig. 2.12. One can see that for the strong jammer case (β = 60) CS performs

comparably to the GLRT withL = 256. Thus, in the strong jammer case, CS still achieves

good performance with fewer samples than the GLRT, except that the savings in terms of

number of samples is smaller. For CS, the trend of an increasing MSE as the threshold
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increases can be explained by the fact that one of the two targets can be missed as the

threshold increases. The GLRT relies on the Gaussian assumption for the noise and jammer

signals, which is totally valid in our simulations. Thus, unlike the other methods, the GLRT

can suppress the jammer completely. We should note that the specific values of MSE and

PFA depend on the kind of thresholding performed. For example, applying thresholding

on a nonlinear transformation of the estimated vector can give different values of MSE and

PFA, and the best results for each method are not necessarilyobtained based on the same

non-linear transformation. Determining the best thresholding method is outside the scope

of this disseration.

Targets falling off the grid points

In this section, we consider scenarios in which targets do not fall on the grid points. This

is a case of practical interest, as the target locations are unknown, and thus the best grid in

not known in advance. We first select the proper step to discretize the angle space following

the procedures described in Section 2.4.2. The angle space is sampled by increments of

0.2ofrom −8oto 8o, i.e., a = [−8o,−7.8o, . . . , 7.8o, 8o]. We assume that four targets of

interest are located atθk = {−1.1o,−0.3o, 0.3o, 1.1o}. Their reflection coefficients are{βk =

1, k = 1, 2, 3, 4}. A jammer is still located at 7o. Since the targets are located between

the grid points, we cannot plot PRR and PJR as in the case of targets on the grid points.

Therefore, we show the mean plus and minus one standard deviation (std) for the amplitude

of the DOA estimate at each grid point. The results are shown in Fig. 2.13. The power

of the jammer was 400 (left column of Fig. 2.13) and 3600 (right column). Based on Fig.

2.13, it can be seen that with the proper grid points, the proposed method can capture well

the targets that do not fall on grid points. The next best method is the GLRT which captures

the targets but exhibits high variance as indicated by the shaded region around the mean.
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2.6.2 Moving Targets

We continue to consider orthogonal QPSK waveforms and a jammer located at 7owith

power 400. The SNR is still set to be 0 dB and each receive node collectsM = 30 mea-

surements. Figures 2.14 and 2.15 show the target scene of theproposed CS method and the

matched filter approach [39] for targets on the grid points and off the grid points, respec-

tively. The matched filter correlates the receive signal with the transmit signal distorted by

different Doppler shifts and steering vectors.

Targets falling onto the grid points

We assume the presence of three targets located at{θk = −1o, 0o, 1o} that are moving

at the speed of{vk = 60m/s, 70m/s, 80m/s}, respectively. We sample the angle-Doppler

space by the increment (0.5o,5m) as

a = [(−8o, 50m/s), (−7.5o, 50m/s), . . . , (8o, 50m/s), (−8o, 55m/s), . . . , (8o, 110m/s)](2.63)

Figure 2.14 shows the target scene for one realization corresponding toN1 = 1 receive

nodes (left column of the figure), and alsoNr = 10 (right column of the figure). We can see

that the performance of the matched filtering method is inferior to that of the CS approach

even when using the data of 30 pulses. The proposed CS approach can yield the desired

performances even with a single receive node and as low as 5 pulses. Comparing the left

column and right column of Fig. 2.14, one can see the effect of the number of receive

antennasNr. The increase inNr can reduce the number of pulses required to produce good

performance.
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Targets falling off the grid points

In this section, we consider the scenarios in which targets that do not fall on grid points.

From simulations (the corresponding figure is not given herebecause of space limitations),

we found that the column correlation is more sensitive to theangle step than the speed

step, sincef Ts << 1. This indicates that in the initial estimation, the grid points should be

closely spaced in the angle axis and relatively sparser in the speed axis. Then the resolution

of target detection can be improved by taking denser samplesof the angle-Doppler space

around the initial angle-Doppler estimate.

Like the scenarios with the stationary targets, the angle dimension is sampled by incre-

ments of 0.2oand the step of the speed dimension is set to 5m/s. Three targets are moving

at speeds of{vk = 62.5m/s, 72.5m/s, 82.5m/s} in the directions of{θk = −1.1o, 0.1o,

1.1o}. Fig.2.15 demonstrates that the proposed method can capture the targets that fall out

of the grid points in both angle and speed dimensions and it can outperform the conven-

tional matched filter method. Moreover, we can see that an increase inNp or Nr will not

necessarily improve performance for the targets between grid points. This is because an

increase in the dimension of the basis vectors will decreasethe correlation of columns in

the basis matrix, which contradicts the requirement for capturing the targets out of the grid

points 2.4.2. The performance in the case of more closely spaced targets, i.e.,d = 0.4ois

shown in Fig. 2.16.

2.7 Conclusions

We have proposed a MIMO radar system that can be implemented by a small-sized

wireless network. Network nodes serve as transmitters or receivers. Transmit nodes trans-

mit uncorrelated waveforms. Each receive node applies compressive sampling to the re-

ceived signal to obtain a small number of samples, which the node subsequently forwards to

a fusion center. Assuming that the targets are sparsely located in the angle-Doppler space,
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the fusion center formulates anℓ1-optimization problem, the solution of which yields target

angle and Doppler information. For the stationary case, theperformance of the proposed

approach has been compared to that of conventional approaches that have been proposed

in the context of MIMO radar. The comparison scenario assumes that each receive node

forwards the received signal to a fusion center, where Capon, APES, GLRT or MUSIC is

implemented to obtain target information. The proposed approach can extract target in-

formation based on a small number of measurements from one ofmore receive nodes. In

particular, for a mild jammer, the proposed method has been shown to be at least as good

as the Capon, APES, GLRT and MUSIC techniques while using a significantly smaller

number of samples. In the case of strong thermal noise and strong jammer, the proposed

method performs slightly worse than the GLRT method. In thatcase, its performance is still

acceptable, especially if one takes into account the fact that it uses significantly fewer sam-

ples than GLRT. For the case of moving targets, the proposed approach has been compared

to conventional matched filtering, and has been shown to perform better in both single and

multiple receive nodes cases.

An important feature of the proposed approach is energy savings. If the fusion center

implemented the proposed CS approach, it would require nodes to forwardM samples

each, as opposed toL samples that would be needed if the fusion center were to implement

the conventional methods. In order to meet a certain performance level,M is typically

significantly smaller thanL, i.e., fewer samples would be needed for the CS implementation

as compared to the implementation of conventional methods.This translates into energy

savings during the transmission of the samples from the receive nodes to the fusion center.

The obtained savings would be significant in prolonging the life of the wireless network.
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2.8 Appendices: The effects ofNr,Np, Mt on the correlation of columns in the sensing

matrix

2.8.1 The effect of the number of pulses on the column correlation in the sensing

matrix

The sensing matrix for thel-th receive antennaΘl is given by

Θl =





ΦlΨl1

...

ΦlΨlNp





(2.64)

whereΨlm,m = 1, . . . ,Np, is defined in (2.29).

On lettinggk denote thei-th column ofΘl, the correlation of columnsgk andgk′ equals

pkk′ = | < gk, gk′ > | =






Np|vH(ak)Bkk
l v(ak)| k = k′

| sin(π(bk−bk′ )NpT )
sin(π(bk−bk′ )T ) ||vH(ak)Bkk′

l v(ak′)| k , k′
. (2.65)

whereBkk′

l = XHDH(bk)ΦH
l ΦlD(bk′)X.

For a given pair (k, k′), k , k′, the ratio of| < gk, gk > | to | < gk, gk′ > |, i.e.,hkk′ , reveals

the effect ofNp on the correlation of the two columns. It holds that

hkk′ ∝
Np

| sin(π(bk − bk′)NpT )| . (2.66)

Let assume thatT has been fixed. As long as (bk − bk′)NpT ≤ 1, hkk′ increases withNp,

and attains the maximum value when (bk − bk′)NpT = 1, because the cross correlation of

gk andgk′ becomes zero. Therefore, the increase inNp can improve the performance of CS

estimation of (2.32) as long as (bk−bk′)NpT ≤ 1. This indicates that if (bk−bk′)NpT ≤ 1 for

each pair of (k, k′), k , k′, the increase inNp can always improve the performances of CS
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estimation. For a conventional radar, the number of pulses can also improve the resolution

of Doppler estimates since the Doppler shift creates greater change between pulses.

2.8.2 The effect of the number of receive antennas on the column correlation in the

sensing matrix

Next, we investigate the effect of the number of receive antennasNr on the correlation

of columns in the sensing matrix. For simplicity, we assume that only the received data

collected during then-th pulse is considered and the random measurement matrixΦ is

constant over receive antennas. Then the sensing matrixΘ can be represented as

Θ =





ΦΨ1n

...

ΦΨNrn





. (2.67)

Thus, the correlation of columnsgi andgj equals

pi j = | < gi, gj > | =
∣
∣
∣
∣
∣
∣
∣

Nr∑

l=1

e j 2π
λ

(ηr
l (a j)−ηr

l (ai))

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣e j2π(n−1)T (b j−bi)vH(ai)XHDH(bi)Φ

H
ΦD(b j)Xv(a j)

∣
∣
∣

=






Nr |vH(ai)Bi, jv(a j)| i = j

|∑Nr
l=1 e j 2π

λ (ηr
l (a j)−ηr

l (ai))||vH(ai)Bi, jv(a j)| i , j
(2.68)

whereBi, j = XHDH(bi)ΦH
ΦD(b j)X.

Thus the ratio of| < gi, gj > | to | < gi, gi > | is

hi j ∝
1
Nr

∣
∣
∣
∣
∣
∣
∣

Nr∑

l=1

e j 2π
λ

(ηr
l (a j)−ηr

l (ai))

∣
∣
∣
∣
∣
∣
∣

. (2.69)

Since the receive nodes are randomly and independently distributed, 1
Nr
|∑Nr

l=1 e j 2π
λ

(ηr
l (a j)−ηr

l (ai))|

approaches 0 asNr becomes large. Therefore, the correlation of two columns inthe sensing
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matrix can be reduced when the number of receive antennas is increased.

2.8.3 The effect of the number of transmit antennas on the column correlation in the

sensing matrix

Finally, let us see the effect of the number of transmit nodes on the correlation of

columns. For simplicity, we assumeNr = Np = 1. ThenvH(ai)Bi, jv(a j) can be rewrit-

ten as

vH(ai)Bi, jv(a j) =
∑

k,p

vk(a j)v
∗
k(ai)B

i, j
p,p/L +

∑

k

∑

p,q

vk(a j)v
∗
k(ai)xk(q)x∗k(p)Bi, j

p,q

︸                                     ︷︷                                     ︸

σ
i j
1

+
∑

k,k′

∑

p,q

vk(a j)v
∗
k′(ai)xk(q)x∗k′(p)Bi, j

p,q

︸                                       ︷︷                                       ︸

σ
i j
2

(2.70)

≈






MMt

L + σ
ii
1 + σ

ii
2 i = j

M
∑

k vk(a j)v∗k(ai)

L + σ
i j
1 + σ

i j
2 i , j

(2.71)

wherevk andBi, j
p,q denote thek-th entry ofv and the (p, q)-th entry ofDH(bi)ΦH

ΦD(b j),

respectively.

Thus, the ratio of| < gi, gj > | to | < gi, gi > | is

hi j =

∣
∣
∣
∣
∣
∣
∣

M
∑

k vk(a j)v∗k(ai)

L + σ
i j
1 + σ

i j
2

MMt

L + σ
ii
1 + σ

ii
2

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

M
∑

k vk(a j)v∗k (ai)

MtL
+

σ
i j
1

Mt
+

σ
i j
2

Mt

M
L +

σii
1

Mt
+

σii
2

Mt

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2.72)

It can easily be seen that the numerator approaches 0 asMt approaches infinity. Therefore,

the correlation of two columns of the sensing matrix can be reduced by employing a large

number of transmit nodesMt.
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Figure 2.1: Illustration of a MIMO radar system.
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Figure 2.14: Angle-Doppler estimates for three targets on the grid points. The targets are
located at{-1o, 0o, 1o}. Mt = M = 30, SNR= 0 dB andβ2 = 400.
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Figure 2.15: Angle-Doppler estimates for three targets that do not fall on the grid points.
The targets are located at{-1.1o, 0.1o, 1.1o}. Mt = M = 30,β2 = 400 and SNR= 0 dB.

Figure 2.16: Angle-Doppler estimates for three targets on and off grid points. Nr = 10,
Mt = M = 30, SNR= 0 dB,β2 = 400 andd = 0.4o.
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3. CSSF MIMO Radar: Low-Complexity Compressive Sensing Based MIMO Radar

That Uses Step Frequency

In Chapter 2, we focus on DOA and Doppler estimation only for the case in which

the targets are located in a small range bin and the sampling is synchronized with the first

target return. Such assumptions do not allow for range estimation. In this chapter, we con-

sider a more general case without those assumptions and propose a new approach, namely

CSSF MIMO radar, which applies the technique of step frequency (SF) to CS-based MIMO

radar. The proposed approach enables high resolution range, angle and Doppler estimation,

while transmitting narrowband pulses. The problem of jointangle-Doppler-range estima-

tion is first formulated to fit the CS framework, i.e., as anℓ1 optimization problem. Direct

solution of this problem entails high complexity as it employs a basis matrix whose con-

struction requires discretization of the angle-Doppler-range space. Since high resolution

requires fine space discretization, the complexity of jointrange, angle and Doppler esti-

mation can be prohibitively high. For the case of slowly moving targets, a technique is

proposed that achieves significant complexity reduction bysuccessively estimating angle-

range and Doppler in a decoupled fashion and by employing initial estimates obtained via

matched filtering to further reduce the space that needs to bedigitized. Numerical results

show that the combination of CS and SF results in a MIMO radar system that has superior

resolution and requires far less data as compared to a systemthat uses a matched filter with

SF.

3.1 Introduction

The application of CS to step-frequency radar (SFR) [55]-[57] was investigated in [58]-

[60]. SFR transmits pulse trains of varying frequency. Thus, although the individual pulses



62

are relatively long in duration and are narrowband, the transmit signal is effectively wide-

band. Since range resolution increases with the signal bandwidth, SFR achieves high range

resolution. At the same time, SFR does not suffer from low SNR at the receiver typically

associated with wideband systems that rely on short duration pulses. In [60], it was found

that the CS approach can significantly reduce the number of pulses required by SFR to

achieve a certain resolution. A CS-based data acquisition and imaging method was pro-

posed in [58] for stepped-frequency continuous-wave ground penetrating radars, and in

[59] CS was applied to stepped-frequency through-the-wallradar imaging. In both cases it

was shown that the CS approach can provide a high-quality radar image using many fewer

data samples than conventional methods.

In this chapter, we consider a more general scenario than that of Chapter 2 in which

range estimation is excluded. The methods of Chapter 2 assume that the targets are lo-

cated in a small range bin and the sampling is synchronized with the first target return.

Such assumptions do not allow for range estimation. In this chapter, the targets can be

located across several range bins. We propose CSSF MIMO radar, an approach that ap-

plies step frequency to CS-based MIMO radar. Two types of CSSF MIMO radar systems

are considered, i.e., linear step-frequency radar (LSFR),and random step-frequency radar

(RSFR), and their effects on the CS approach are studied. The proposed approach en-

ables high resolution range as well as angle and Doppler estimation. The problem of joint

angle-Doppler-range estimation is first formulated to fit the CS framework, i.e., as anℓ1

optimization problem. Solving this problem entails high complexity as it employs a basis

matrix whose construction requires discretization of the angle-Doppler-range space. The

complexity increases with the size of the basis matrix, or equivalently, as the discretization

step decreases; the latter step needs to be as small as possible as it sets the lower limit of

resolution. For slowly moving targets, a technique is proposed that successively estimates

angle-range and Doppler in a decoupled fashion, and employsinitial estimates obtained via
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a MF to further reduce the space that needs to be digitized. In[61] and [62], information on

the support of a sparse signal was used in the minimization process resulting in complexity

reduction. In our case, we do not explore the role of initial estimates on the minimization

process, as they are not expected to be very reliable. Instead, we use them only as a guide

for the construction of the basis matrix. The preliminary results of CSSF MIMO radar

and the decoupled scheme were published in [63] and [64] which consider the same signal

models as in [40] and [53]. This chapter extends the work of [63] and [64] to the general

scenario aforementioned and offers an mathematic insight into CSSF MIMO.

The rest of the chapter is organized as follows. In Section 3.2, we provide the signal

model of a CS-based MIMO radar system. In Section 3.3, we introduce the proposed CSSF

MIMO radar system. A decoupled scheme for CSSF MIMO is described in Section 3.4.

Simulation results are given in Section 3.5 for the case of slowly moving targets. Finally,

we make some concluding remarks in Section 3.6.

3.2 Signal Model for CS-based MIMO Radar

Let us consider the same setting as in Chapter 2. The target return from thek-th target

arriving at thel-th antenna during them-th pulse is

yk
lm(t) =

Mt∑

i=1

βkxi(t − (dt
ik(t) + dr

lk(t))/c) exp(j2π f (t − (dt
ik(t) + dr

lk(t))/c)). (3.1)

The demodulated baseband signal corresponding to a single target can be approximated by

yk
lm(t) ≈

Mt∑

i=1

βk xi(t − 2dk(0)/c) exp(− j2π f (dt
ik(t) + dr

lk(t))/c). (3.2)

In the above equation, the time delays in the received waveforms due to thek-th target are

all the same and equal to 2dk(0)/c. This approximation is enabled by the assumption of

narrowband transmit waveforms, slowly moving targets and colocated nodes. The fact that
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the targets can be in different range bins implies that the delays corresponding to different

targets will be different. Therefore, sampling the received signal and ensuring that all target

returns fall in the sampling window would require time delayestimation. However, in a

CS scenario, there are not enough data to obtain such estimates using traditional methods,

e.g., the matched filtering method. In the following, we willextract the range and angle

information simultaneously using the CS approach without assuming availability of time

delay estimates.

The compressed samples collected by thel-th antenna during them-th pulse can be

expressed as

r lm =

K∑

k=1

βke
j2πplmkΦlD( fk)CτkXv(θk) +Φlnlm (3.3)

where

(i) plmk =
−2dk(0) f

c +
ηr

l (θk) f

c + fk(m − 1)T , where fk =
2vk f

c is the Doppler shift induced

by thek-th target; diag{XHX} = [1, . . . , 1]T ; lTs, l = 0, . . . , L − 1, represent the time

within the pulse (fast time) and thus the pulse duration isTp = LTs;

(ii) Φl is theM × (L + L̃) measurement matrix for thel-th receive node wherẽLTs is the

maximum time delay and known in advance. The measurement matrix has elements

that are independent and identically distributed (i.i.d) Gaussian random variables;

(iii) v(θk) = [e j 2π f
c ηt

1(θk), ..., e j 2π f
c ηt

Mt
(θk)]T andD( fk) = diag{[e j2π fk0Ts , . . . , e j2π fk(L−1)Ts ]};

(iv) τk = ⌊2dk(0)
cTs
⌋ andCτk = [0L×τk , I L, 0L×(L̃−τk)]

T . Here, we assume that the target returns

completely fall within the sampling window of length (L + L̃)Ts, and thatTs is small

enough so that the rounding error in the delay is small, i.e.,xi(t−τk) ≈ xi(t−⌊2dk(0)
cTs
⌋).

(v) nlm is the interference at thel-th receiver during them-th pulse, which includes a

jammer’s signal and thermal noise.
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Let us discretize the angle, speed and range space on a fine grid, i.e., respectively,

[ã1, . . . , ãNa], [ b̃1, . . . , b̃Nb] and [c̃1, . . . , c̃Nc]. Let the grid points be arranged first angle-wise,

then range-wise, and finally speed-wise to yield the grid points (an, bn, cn), n = 1, ...,NaNbNc.

Through this ordering, the grid point (˜ana , b̃nb , c̃nc) is mapped to point (an, bn, cn) with

n = (nb − 1)nanc + (nc − 1)na + na. We assume that the discretization step is small enough

so that each target falls on some angle-speed-range grid point. Then (3.3) can be rewritten

as

r lm = Φl





N∑

n=1

sne j2πqlmnD
(

2bn f
c

)

C⌊ 2cn
cTs
⌋Xv(an) + nlm



 (3.4)

wheresn =






reflection coefficient of the target, if there is a target at (an, bn, cn)

0, if there is no target at (an, bn, cn)
, N =

NaNbNc, and

qlmn =
−2cn f

c
+
ηr

l (an) f

c
+

2bn f (m − 1)T
c

. (3.5)

In matrix form we have

r lm = Θlms+Φlnlm (3.6)

wheres= [s1, ..., sN]T and

Θlm = Φl [e j2πqlm1D(2b1 f /c)C⌊ 2c1
cTs
⌋Xv(a1), . . . , e

j2πqlmN D(2bN f /c)C⌊ 2cN
cTs
⌋Xv(aN)]

︸                                                                                     ︷︷                                                                                     ︸

Ψlm

. (3.7)

According to the CS formulation,Θlm is the sensing matrix andΨlm is the basis matrix.

Combining the output ofNp pulses atNr receive antennas the fusion center can formu-

late the equation

r
△
= [rT

11, . . . , r
T
1Np
, . . . , rT

NrNp
]T = Θs+ n (3.8)
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where

Θ = [(Θ11)
T , . . . , (Θ1Np)

T , . . . , (ΘNrNp)
T ]T (3.9)

and

n = [(Φ1n11)
T , . . . , (Φ1n1Np)

T , . . . , (ΦNrnNr Np)
T ]T . (3.10)

Subsequently, using the predefined measurement matrices,Φl, l = 1, ...,Nr, based on

the discretization of the angle-speed-range space, and also based on knowledge of the wave-

form matrixX, the fusion center recoverssby applying the Dantzig selector.

3.3 Introducing Step Frequency to CS-MIMO radar

Let us consider a MIMO radar system in which the carrier frequency of them-th pulse

equals

fm = f + ∆ fm (3.11)

where f is the center carrier frequency and∆ fm denotes the frequency step,m = 1, . . . ,Np.

The baseband samples collected by thel-th antenna during them-th pulse can be ex-

pressed as

r̃ lm = Φl

K∑

k=1

βke
j2π p̃lmkD( fmk)CτkXvm(θk) +Φlnlm (3.12)
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where

fmk =
2vk fm

c
, vm(θk) = [e j 2π fm

c ηt
1(θk), ..., e j 2π fm

c ηt
Mt

(θk)]T

and p̃lmk =
−2dk(0) fm

c
+
ηr

l (θk) fm

c
+ fmk(m − 1)T . (3.13)

Then, based on discrete grid points of the angle-speed-range space, (3.12) can be rewritten

as

r̃ lm = ΦlΨ̃lms+Φlnlm

= Θ̃lms+Φlnlm (3.14)

where

Ψ̃lm = [e j2πq̃lm1D(2b1 fm/c)C⌊ 2c1
cTs
⌋Xvm(a1), . . . , e

j2πq̃lmN D(2bN fm/c)C⌊ 2cN
cTs
⌋Xvm(aN)],

q̃lmn =
−2cn fm

c
+
ηr

l (an) fm

c
+

2bn fm(m − 1)T
c

,

andΘ̃lm = ΦlΨ̃lm. (3.15)

At the fusion center, the compressively sampled signals dueto Np pulses obtained atNr

receive nodes are stacked as

r̃
△
= Θ̃s+ n (3.16)

where

Θ̃ = [(Θ̃11)
T , . . . , (Θ̃1Np)

T , . . . , (Θ̃NrNp)
T ]T . (3.17)

Recovery ofs is performed as in (2.32) whereΘ is replaced withΘ̃.
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3.3.1 Range resolution

In this subsection we study the relationship between range resolution and the ambiguity

function. For the conventional radar systems that uses a matched filter to extract target

information, the ambiguity function (AF) characterizes the response to a point target and

determines resolution. Let us assume that there is a target at (θ, d, v). The matched filter

looking for a target at (θ′, d′, v′) yields

χ(∆d,∆v, θ, θ′) =
Nr∑

l=1

Mt∑

i,i′=1

Np∑

m=1

χi,i′,m(∆d,∆v)e j2π fm
ηt

i(θ)+η
r
l (θ)−ηt

i′ (θ
′)−ηr

l (θ′)−2∆d

c (3.18)

where∆d = d − d′, ∆v = v − v′ and

χi,i′,m(∆d,∆v) ,
∫

t
xi(t)x

∗
i′(t + 2∆d/c)e j2π fm

2∆v
c tdt. (3.19)

Equation (3.18) is the AF for SF MIMO radar, where SF MIMO radar refers to MIMO

radar that uses the SF technique. Unlike the AF for MIMO radar[65], the carrier frequency

is varying between pulses in (3.18).

To investigate the range resolution let us set∆v = 0 andθ = θ′. Then, the AF becomes

χ(∆d, 0, θ, θ) = Nr

Mt∑

i,i′=1

Np∑

m=1

χi,i′,m(∆d, 0)e j2π fm
ηt

i(θ)−η
t
i′ (θ)−2∆d

c

= Nr

Np∑

m=1

e j2π fm(−2∆d/c)

︸             ︷︷             ︸

χ1(∆d)

∑

i=i′

∫

t
xi(t)x

∗
i′(t + 2∆d/c)

︸                         ︷︷                         ︸

χ2(∆d)

dt

+ Nr

Np∑

m=1

∑

i,i′

e j2π fm
ηt

i(θ)−η
t
i′ (θ)−2∆d

c

∫

t
xi(t)x

∗
i′(t + 2∆d/c)

︸                                                    ︷︷                                                    ︸

∆χ(∆d)

dt

(3.20)
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Due to (A2), the term∆χ(∆d) is negligible as compared to the productχ1(∆d)χ2(∆d)

in (3.20). One can see thatχ1(∆d) andχ2(∆d) are respectively the AF of SF single-input

single-output (SISO) radar and MIMO radar, both for∆v = 0 andθ = θ′. It can seen from

(3.20) that a colocated MIMO radar has no gain on range resolution as compared to a SISO

radar, i.e., the range resolution of MFSF MIMO radar is at least equal to the best between

the range resolution of SF SISO radar and SISO radar, where MFSF MIMO radar refers to

matched filter based MIMO radar that uses the SF technique.

In [66], in a study of CS-based SISO radar, it was observed that the maximum value of

the correlation of two different columns of the basis matrix is equal to the second largest

value of the discrete AF surface. The recovery performance of CS approaches, however, is

directly related to the column correlation of the sensing matrix rather than the basis matrix.

Unlike [66], we next study the relation of the AF and the column correlation of the sensing

matrix for the proposed CSSF MIMO radar. This analysis will provide a clue for comparing

the resolution of CS and matched filter in the context of SF MIMO radar, i.e., CSSF MIMO

radar and MFSF MIMO radar.

On lettingpk denote the column of the sensing matrixΘ̃ corresponding to thek-th grid

point in the angle-speed-range space, we have

< pk, pk′ > =

Nr∑

l=1

Np∑

m=1

e j2π(q̃lmk−q̃lmk′ )vH
m(ak′)XHCH

⌊ 2ck′
cTs
⌋
DH

(

2bk′ fm

c

)

Φ
H
l Φl

︸︷︷︸

A

D
(

2bk fm

c

)

C⌊ 2ck
cTs
⌋Xvm(ak)

︸                          ︷︷                          ︸

gk

=

Nr∑

l=1

Np∑

m=1

L+L̃∑

p,q=1

e j2π(q̃lmk−q̃lmk′ )g∗k′(p)gk(q)A(p, q)

=

Nr∑

l=1

Np∑

m=1

L+L̃∑

p,q=1

Mt∑

i,i′=1

A(p, q)e j2π fm(ηt
i(ak)+ηr

l (ak)−ηt
i′ (ak′ )−ηr

l (ak′ )−2∆dkk′+2∆vkk′ (m−1)T+2Ts(bk(q−1)−bk′ (p−1)))/c

· xi

(

(q − 1)Ts −
2ck

c

)

x∗i′

(

(p − 1)Ts −
2ck′

c

)

(3.21)

where∆dkk′ = ck − ck′ and∆vkk′ = bk − bk′ . For simplicity, in the above we assumed that
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the receive nodes use the same measurement matrix; thus the indexl was dropped inA.

Taking the elements of the measurement matrixΦ to be independent and Gaussian

N(0, 1
L+L̃

), the expectation of< pk, pk′ > with respect to the elements ofΦ equals

E{< pk, pk′ >} =
M

L + L̃

Nr∑

l=1

Np∑

m=1

Mt∑

i,i′=1

e j2π fm(ηt
i(ak)+ηr

l (ak)−ηt
i′ (ak′ )−ηr

l (ak′ )−2∆dkk′+2∆vkk′ (m−1)T )/c

·
L+L̃∑

p=1

xi

(

(p − 1)Ts −
2ck

c

)

x∗i′

(

(p − 1)Ts −
2ck′

c

)

e j2π fm(2Ts(p−1)∆vkk′ )/c

∝ χ(∆dkk′ ,∆vkk′ , ak, ak′). (3.22)

One can see from the above equation that the expectation of the column correlation of the

sensing matrix is proportional to the discrete AF. To focus on the range resolution we set

ak = ak′ and∆vkk′ = 0. Essentially, the range resolution of MFSF MIMO radar corresponds

to the smallest range difference between two targets,∆dkk′ , that sets the AF to zero. Based

on the UUP in [32], however, the coherence of the sensing matrix does not have to be zero

for exact recovery; a small level of coherence is good enough. Therefore, CS-based radar

systems have the potential to improve range resolution. This possibility will be confirmed

via simulations in Section 4.3 (see Fig. 3.2).

3.3.2 The effect of signal bandwidth on CSSF-MIMO radar

In an LSFR system, the carrier frequency increases by a constant step between pulses,

i.e., ∆ fm = (m − 1)∆ f . This type of SF radar can be efficiently implemented using the

Inverse Discrete Fourier Transform (IDFT) [55]; however, it suffers from range ambiguity

if the distance between a target and receive nodes exceeds the valueRu =
cT
2 . The range

ambiguity can be removed by randomly choosing the step frequency within a fixed band-

width at the expense of increased sidelobe as compared to theLSFR [67]. In this section,

we investigate the effect of the number of pulsesNp (or equivalently, the bandwidth) on
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range resolution for two types of CSSF MIMO radar, i.e., LSFRand RSFR, in terms of

the coherence of the sensing matrix (see (4.44)). Consistent with [67], which discussed

convectional radar systems using the MFM, we find that the RSFR requires more pulses

than LSFR to achieve the same range resolution for CS-based MIMO radar.

Since an increase in the number of receive nodes does not improve the range resolution,

for simplicity we consider one receive node only. The correlation of columnspk andpk′ for

ak = ak′ andbk = bk′ equals

pkk′ = | < pk, pk′ > | =
∣
∣
∣
∣
∣
∣
∣

Np∑

m=1

L+L̃∑

p,q=1

e j2π fm(−2∆dkk′ )/cg∗k′(p)gk(q)A(p, q)

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

Np∑

m=1

e j2π fm(−2∆dkk′ )/c
L+L̃∑

p,q=1

A(p, q)e j2π fm(2Tsbk(q−p))/c





Mt∑

i=1

Qkk′(m, p, q, i, i) +
Mt∑

i,i′

Qkk′(m, p, q, i, i′)





∣
∣
∣
∣
∣
∣
∣

(3.23)

where

Qkk′(m, p, q, i, i′) = e j2π fm(ηt
i(ak)−ηt

i′ (ak))/cxi

(

(q − 1)Ts −
2ck

c

)

x∗i′

(

(p − 1)Ts −
2ck′

c

)

. (3.24)

Due to (A1) and the discretized version of (A2), we can ignorethe Doppler shift within

a pulse and the second term
∑Mt

i,i′ Qkk′(m, p, q, i, i′) in (3.23). Therefore, (3.23) becomes

pkk′ ≈
∣
∣
∣
∣
∣
∣
∣

Np∑

m=1

e j2π fm(−2∆dkk′ )/c
L+L̃∑

p,q=1

A(p, q)
Mt∑

i=1

xi

(

(q − 1)Ts −
2ck

c

)

x∗i

(

(p − 1)Ts −
2ck′

c

)
∣
∣
∣
∣
∣
∣
∣

.

(3.25)
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Eq. (3.25) can be rewritten as

pkk′ ≈






Npρkk k = k′
∣
∣
∣
∣
∣
∣
∣

Np∑

m=1

e jαkk′ ( f+∆ fm)

∣
∣
∣
∣
∣
∣
∣

︸             ︷︷             ︸

h(∆f)

ρkk′ k , k′ (3.26)

where∆ f = [∆ f1, . . . ,∆ fNp],

ρkk′ =

∣
∣
∣
∣
∣
∣
∣

L+L̃∑

p,q=1

Mt∑

i=1

A(p, q)xi((q − 1)Ts −
2ck

c
)x∗i ((p − 1)Ts −

2ck′

c
)

∣
∣
∣
∣
∣
∣
∣

andαkk′ = −
4π∆dkk′

c
. (3.27)

Then, the coherence of the sensing matrixΘ̃ corresponding to columnspk andpk′ can

be written as

µkk′(Θ̃) =
pkk′√

pkk pk′k′
≈ h(∆f )ρkk′

Np
√
ρkkρk′k′

. (3.28)

Linear step frequency

If the carrier frequency increases by a constant step∆ f between adjacent pulses, i.e.,

∆ fm = (m − 1)∆ f , then

µkk′(Θ̃) ≈ |1− e jαkk′∆ f Np |ρkk′

|1− e jαkk′∆ f |Np
√
ρkkρk′k′

∝
| sin(1

2αkk′∆ f Np)|
Np

. (3.29)

It can be easily seen that an increase inNp tends to reduce the coherence and thus improves

the range resolution.

Let αpq
kk′ii′ denote the travel-time difference between the signals sent from the transmit

nodei to the target located at thekth grid point at time instantpTs, and from the transmit
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nodei′ to the target located at thek′th grid point at time instantqTs. It holds that

α
pq
kk′ ii′ = (−2∆dkk′ + 2Tsbk(q − p) + ηt

i(ak) − ηt
i′(ak))/c. (3.30)

Regarding the approximation error, the term discarded in (3.25) is

p̃kk′ =

Np∑

m=1

e j2π fm(−2∆dkk′ )/c
L+L̃∑

p,q=1

A(p, q)e j2π fm(2Tsbk(q−p))/c
Mt∑

i,i′

Qkk′(m, p, q, i, i′)

=

L+L̃∑

p,q=1

1− e j2πNp∆ fαpq
kk′ii′

1− e j2π∆ fαpq
kk′ ii′

e j2π fαpq
kk′ ii′A(p, q)

Mt∑

i,i′

xi

(

(q − 1)Ts −
2ck

c

)

x∗i′

(

(p − 1)Ts −
2ck′

c

)

.

(3.31)

The amplitude of1−e
j2πNp∆ fα

pq
kk′ ii′

1−e
j2π∆ fα

pq
kk′ ii′

e j2π fαpq
kk′ ii′ is bounded byNp. For independent waveforms, the

approximation error ˜pkk′ in (3.23) is always negligible as compared topkk′ .

Let µt denote the maximum coherence ofΘ̃ that guarantees exact recovery of the sparse

vector with high probability via the Dantzig selector. The minimum number of pulses

required to achieve a certain resolution can be obtained by solving

N∗p = min Np

s.t.
|1− e jαkk′∆ f Np |ρkk′

|1− e jαkk′∆ f |Np
√
ρkkρk′k′

≤ µt,

k, k′ = 1, . . . ,N andk , k′. (3.32)

The above problem is easy to solve, for example by trying different values forNp;

however, it requires a value forµt. In [54], a rough estimate ofµt in the presence of mild

interference was offered. In general,µt must be determined experimentally.
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Random step frequency

Assuming that the frequency steps over pulses are i.i.d uniform random variables, i.e.,

∆ fm ∼ U(0, 2b), the expectation of square coherence over∆ fm is given by

E{µ2
kk′(Θ̃)} = E






∣
∣
∣
∣

∑Np

m=1 e jαkk′ ( f+∆ fm)ρkk′

∣
∣
∣
∣

2

N2
pρkkρk′k′






=
ρ2

kk′

ρkkρk′k′





1
Np
+

N2
p − Np

N2
p

sin2(αkk′b)

α2
kk′b

2



 . (3.33)

For a fair comparison, we set LSFR and RSFR to cover the same frequency band, i.e., set

b equal to∆ f (Np − 1)/2. Then (3.33) can be rewritten as

E{µ2
kk′(Θ̃)} = ρ2

kk′
ρkkρk′k′Np

(

1+
4 sin2( 1

2 (Np−1)αkk′∆ f )

(Np−1)α2
kk′∆ f 2

)

=
ρ2

kk′
ρkkρk′k′Np

(

1+
sin2( 1

2 (Np−1)αkk′∆ f )
(Np−1)(2π∆ f∆dkk′/c)2

)

. (3.34)

As the term (2π∆ f∆dkk′/c)2 increases, the expected value of the squared coherence be-

comes approximately equal to 1/Np. This holds when the product of radian frequency step

2π∆ f and the range spacing of grid points∆dkk′ is comparable to the speed of lightc.

Since the coherence of the sensing matrix for RSFR cannot be obtained directly, we

instead compare the squared coherence of the sensing matrixfor LSFR and RSFR. For

largeNp, we find from (3.29) and (3.34) that the squared coherence forLSFR and RSFR

decreases inverse proportionally toN2
p andNp, respectively. This implies that more pulses

are required by RSFR to achieve the desired performance withall other parameters, i.e.,

Mt, Nr andM, being equal.

Before ending this section, we note that the expectation of the approximation error in
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(3.23) can be represented by

p̃kk′ =

L+L̃∑

p,q=1

e j2παpq
kk′ ii′ (Np−1)∆ f /2+ f Np

Np − 1

2 sin(παpq
kk′ ii′(Np − 1)∆ f )

α
pq
kk′ ii′2π∆ f

A(p, q)

·
Mt∑

i,i′

xi

(

(q − 1)Ts −
2ck

c

)

x∗i′

(

(p − 1)Ts −
2ck′

c

)

(3.35)

where one can see that a decrease in the product ofα
pq
kk′ii′ (seen in (3.30)) and the radian

frequency step, 2π∆ f , increases both the approximation error and the squared coherence.

Givenαpq
kk′ii′ , an increase in∆ f would reduce the approximation error ˜pkk′ . However, this

would increase the bandwidth required by RSFR.

3.4 Decoupled estimation of angle, velocity and range with reduced complexity

Solving theℓ1 minimization problem of (2.32) requires polynomial time inthe dimen-

sion ofs. For the discretization discussed in Section II, the joint estimation of angle, veloc-

ity and range requires complexity ofO((NaNbNc)3) [29][43]. For large values ofNa, Nb and

Nc, the computational cost of the CS approach would be prohibitive. In the following, we

propose a decoupled angle-velocity-range estimation approach which reduces the search

space and thus the computational complexity.

The scheme needs some initial rough estimates of angle and range. One way to obtain

those estimates is to use the MFM, which requires forwardingto the fusion center Nyquist

sampled data from one pulse. In the following, allNr nodes in the system sample all

received pulses in a compressive fashion, exceptÑr nodes, which sample the first received

pulse at the Nyquist rate and all remaining pulses in a compressive fashion. Those Nyquist

rate samples will be used to obtain coarse estimates of angleand range via the MFM.

The fusion center performs the following operations (also see Fig. 3.1).

(i) STEP1: Angle and range estimation
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This step uses the first pulse forwarded by each receive node.A fine grid, (an1, cn1),

. . . , (anK1
, cnK1

), is constructed around the MFM initial estimates. Then thesensing

matrix is constructed as

Θ̃1 = Φl1[e
j2π f1(−2cn1+η

r
l (an1))/cC⌊ 2cn1

cTs
⌋Xvm(an1), . . . , e

j2π f1(−2cnK1
+ηr

l (anK1
))/cC

⌊
2cnK1

cTs
⌋
Xvm(anK1

)]

(3.36)

where

Φlm =






I L+L̃, l = 1, . . . , Ñr, m = 1

the measurement matrix of sizeM × (L + L̃), otherwise
.

(3.37)

The received signals,r̃11, . . . , r̃ Nr1, are stacked in a vector, i.e.,

r̃1 = Θ̃1s+ n1 (3.38)

where r̃1 = [ r̃T
11, . . . , r̃

T
Nr1

]T . By applying the Dantzig selector to (3.38), new and

refined angle-range information is obtained.

Thanks to the initial estimates, the search area in the angle-range plane is significantly

reduced and thus the computational load of CS is lightened. Due to the fact that only

one pulse from each receive node is used, the range resolution at this step is limited

by c
2B , whereB is the signal bandwidth. The obtained range estimates will be refined

in the next step in which the fusion center will jointly process the entire pulse train.

Also, due to assumption (A1), Doppler information cannot beextracted at this step.

(ii) STEP 2: Range resolution improvement and Doppler estimation

In this step the fusion center processes the entire pulse train forwarded by each re-
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ceive node. The range space around the range estimates obtained in Step 1 is dis-

cretized into finer grid points. Based on a discretization ofthe Doppler space, the re-

fined range grid points and the angle estimates obtained in Step 1, i.e., (am1, bm1, cm1),

. . . , (amK2
, bmK2

, cmK2
), the fusion center formulates a sensing matrix and extracts angle-

Doppler-range information in a CS fashion.

To further reduce the complexity of CS reconstruction, the MFM can be applied

before CS to provide angle-Doppler-range estimates aroundwhich a finer grid can

be constructed and used by CS. In that case MFM would be applied based on the grid

points (am1, bm1, cm1), . . . , (amK2
, bmK2

, cmK2
).

For the case in which there are stationary targets and movingtargets, the angle esti-

mation can be further improved by taking into account Doppler information.

Assuming that the MFM is used for initial estimation, the complexity of two steps is

respectivelyO(NaNc(ÑrL+ (Nr − Ñr)M)+K3
1) andO(K2(Ñr(L−M)+Nr NpM)+K3

3), where

K3 is the number grid points used by CS at Step 2. Generally, it holds thatK3
1 + K3

3 ≪

NaNc(ÑrL + (Nr − Ñr)M) + K2(Ñr(L −M) + NrNpM) for a small number of targets. There-

fore, the computational load is mostly due to the initial estimation. As compared to the

complexity of the joint angle-Doppler-range CS approach, i.e.,O((NaNbNc)3, considerable

computations can be saved by using the proposed decoupled scheme for large values of

Na,Nb andNc.

The computation savings, however, may be obtained at the expense of detection ac-

curacy, unless the initial estimates provided by the initial estimation method are reliable.

Reliable estimates here refer to the initial estimates whose distances to the true target loca-

tions are within the resolution cell that is determined by the initial estimation. Then all the

targets can be captured based on the finer angle-range grid points constructed around the

reliable initial estimates. For the instance of the MFM, theperformance in providing good

initial estimates depends on several factors; (i) the signal-to-interference ratio (SIR), which
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can be improved by employing more data; (ii) angular, range or Doppler resolution, which

is improved by increasingNr or Np; (iii) the distance between the adjacent grid points. (In

the worst case in which the targets fall midway between grid points, the targets may fail

to be captured by the closest grid points if the spacing of adjacent grid points is too large.

An empirical approach to select grid spacing was discussed in [53]. That approach is also

applicable to the MFM); and (iv) the threshold for hard detection. A small threshold should

be used in order to reduce the miss probability. However, this implies that more grid points

need to be considered for the CS approach following the MFM ascompared to a larger

threshold. In summary, the performance of the MFM can be improved at the expense of

more transmit power and increased complexity.

3.5 Simulation Results

We consider a MIMO radar system with transmit and receive nodes uniformly dis-

tributed on a disk of radius 10m. The carrier frequency isf = 5GHz. Each transmit node

uses orthogonal Hadamard waveforms of lengthL = 512 and unit power. The received sig-

nal is corrupted by zero-mean Gaussian noise. The signal-to-noise ratio (SNR) is defined

as the inverse of the power of thermal noise at a receive node.A jammer is located at angle

7o and transmits an unknown Gaussian random waveform. The targets are assumed to fall

on the grid points. Throughout this section, the CS approachuses a measurement matrix

with Gaussian entries.

3.5.1 Range resolution of the CS-based SFR and conventionalSFR

In this subsection we provide some simulation results to show the superiority of CSSF

MIMO radar as compared to MFSF MIMO radar in terms of range resolution. Figure

3.2 shows the normalized amplitude estimates of target reflection coefficients for CSSF

MIMO radar and MFSF MIMO radar in one realization. Since the multiple colocated an-
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tennas fail to improve range resolution, we consider a single transmit and receive antenna

here for simplicity. LetM = 10,Np = 30 and the carrier frequencies be randomly selected

within the frequency band [5, 5.029]GHz. The CSSF radar uses 10 measurements per pulse

while MFSF radar obtains 665 measurements per pulse. Various values of SNR are consid-

ered. The spacing between two adjacent grid points is 2m. There are six targets at ranges

[1024, 1028, 1032, 1036, 1040, 1044]m. Figure 3.2 shows that the peaks corresponding

to all targets can be distinguished from each other for the CSSF radar while for the MFSF

radar some peaks are lost. This verifies the observations of Section 3.3.1 that CSSF radar

has the potential to achieve higher range resolution than does MFSF radar.

3.5.2 Range estimation for CSSF MIMO radar

The goal of this subsection is to test the performance of CSSFMIMO radar based on

LSF and RSF. Figure 3.3 compares the numerical and theoretical squared coherence of the

sensing matrix corresponding to two adjacent grid points inthe range plane for different

numbers of pulses and various values of the linear frequencystep∆ f = 1MHz, 4MHz

and 8MHz. All the results shown in Fig. 3.3 are the numerical squared coherence averaged

over 100 independent and random runs and the theoretical squared coherence for LSFR and

RSFR calculated based on (3.29) and (3.33). We consider the case in whichMt = M = 10,

Nr = 1 and the grid step is∆c = 7.5m. For a fair comparison, we choose random step

frequencies within the same frequency band as in LSFR, i.e.,f + [0, (Np − 1)∆ f ]. It can be

easily seen that the numerical squared coherence of the sensing matrix for LSFR perfectly

matches with the theoretical results in (3.29). The numerical squared coherence of the

sensing matrix for RSFR approaches the theoretical resultsin (3.33) as∆ f increases and

approaches 1/Np as the number of pulses increases. It is also verified by Fig. 3.3 that LSFR

exhibits lower coherence of the sensing matrix than does RSFR.

Figure 3.4 shows the receiver operating characteristic (ROC) curves of the range esti-
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mates produced by the random and linear step-frequency technique based on 200 random

and independent runs. Here, the probability of detection (PD) is the percentage of cases in

which all the targets are detected. The probability of falsealarm (PFA) is the percentage of

cases in which false targets are detected. We consider a casein which the angle and speed

of three targets are the same and assumed to be known. In each independent run, the target

angle and speed are randomly generated. The ranges of three targets are fixed to 1005m,

1010m and 1045m, respectively. The power of the jammer signal is 4 and SNR= 0dB. We

can see that the use of LSF yields better performance than randomly choosing the carrier

frequency within the same frequency band. In this particular case, CS-based RSFR requires

12 pulses to generate the ROC performance that can be achieved by CS-based LSFR using

only 9 pulses. The performance of LSFR and RSFR based on the MFM is also shown in

Fig. 3.4. It can be seen that the former using 12 pulses is far better than the latter with

the same number of pulses. It can also be seen that CSSF MIMO radar outperforms MFSF

MIMO radar.

3.5.3 The joint angle-Doppler-range estimation of CSSF MIMO radar

Figure 3.5 shows the ROC curves of the angle-speed-range estimates yielded by CSSF

MIMO radar using the decoupled scheme. The angle-speed-range estimates have been

obtained based on 200 random and independent runs. The casesin which Mt = 10, Nr =

Ñr = 7 andNp = 12 are shown in Fig. 3.5. The azimuth angle and range of three targets

are randomly generated in each run but the spacing of angle and range between targets are

fixed to 0.3o and 7.5m, respectively. The speeds of three targets are 10m/s, 30m/s, and

60m/s. The power of the jammer signal is 4 and SNR= 0dB. The performance of MFSF

MIMO radar, shown in Fig. 3.5, is obtained in the same decoupled fashion, i.e., 1) estimate

target angle and range based on a single pulse; then refine theangle estimates based on

the finer angle grid points around the initial angle estimates by using the MFM; and then
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2) process the entire pulse train to extract angle-speed-range information by discretizing

the speed space, constructing finer range grid points aroundthe initial range estimates and

utilizing the initial angle estimates obtained in 1). One can see that MFSF MIMO radar is

inferior to CSSF MIMO radar even when using far more measurements than the latter.

3.6 Conclusions

We have presented a CSSF MIMO radar system that applies SF to CS-based MIMO

radar. The technique of SF can significantly improve range resolution. We have shown

that CSSF MIMO radar has the potential to achieve better resolution than MFSF MIMO

radar, and that more pulses are required by RSFR than by LSFR to achieve the desired

performance with all other parameters being the same. The angle-Doppler-range estima-

tion requires discretization of the angle-Doppler-range space into a large number of grid

points, which would increase the complexity of the CS approach. We have presented a

CSSF MIMO radar scheme that by decoupling angle-range estimation and Doppler estima-

tion achieves significant complexity reduction. The proposed technique applies to slowly

moving targets and relies on initial rough angle-range estimates. Assuming that the initial

estimates do not miss any targets, the proposed low complexity scheme maintains the high

resolution of the CS approach.
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Figure 3.1: Schematic diagram of the proposed decoupled scheme.
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radar and MFSF radar (one realization forMt = Nr = 1 andNp = 30).
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4. Measurement matrix design

In Chapter 2, we have proposed a measurement matrix that enables high SIR as com-

pared to the Gaussian random measurement matrix. However, this measurement matrix is

only applicable to the case in which the targets are located in a small range bin and the sam-

pling is synchronized with the first target return. In this chapter, we propose new measure-

ment matrices for the general scenario considered in Chapter 3 without confining targets

in the same range bin and without requiring sampling synchronization.We design measure-

ment matrices that achieve some optimality measure that is function of the coherence of

the sensing matrix (CSM) and/or signal-to-interference ratio (SIR). The first approach de-

termines the measurement matrix by minimizing a criterion that is a linear combination of

CSM and the inverse of SIR. The second one, in order to reduce complexity, imposes a

structure on the measurement matrix, and the components of the structure are designed to

enhance SIR while keeping the CSM comparable to that of the conventional measurement

matrix, e.g., the Gaussian random measurement matrix. A reduced complexity suboptimal

construction for the first measurement matrix is also proposed. It is shown via simulations

that the proposed measurement matrices can improve detection accuracy as compared to a

Gaussian random measurement matrix.

4.1 Introduction

UUP [20][32] indicates that if every set of sensing matrix columns with cardinality

less than the sparsity of the signal of interest is approximately orthogonal, then the sparse

signal can be exactly recovered with high probability. Thisimplies thatΦ is incoherent

with Ψ. For an orthonormal basis matrix, use of a random measurement matrix leads to

a sensing matrix that obeys the UUP with overwhelming probability [31]. The entries of
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such measurement matrix can be taken from a Gaussian distribution, symmetric Bernoulli

distribution, and could be randomly sampled from a Fourier matrix or any orthonormal

matrix. In this chapter, we term asconventional approach the CS recovery via a Gaussian

measurement matrix.

In this chapter, we consider the general scenario considered in Chapter 3, in which the

targets might be located across several range bin and the sampling is asynchronized with the

first target return. The performance of the CS approach degrades in the presence of strong

interference and with increased coherence among the columns of the sensing matrix. We

propose two designs for the measurement matrix. The first design aims at decreasing CSM

and at the same time enhancing SIR. The measurement matrix isobtained by solving a con-

vex optimization problem and depends on the basis matrix, which in turn depends on space

discretization. This optimization problem might involve high complexity due to a large

number of variables and constraints involved. A reduced complexity suboptimal construc-

tion for the first measurement matrix is also proposed. The second approach targets only

SIR improvement. It is constructed based on the transmit signal waveforms and accounts

for all possible discretized delays of target returns within a given time window. It is shown

that depending on the waveforms used, the latter measurement matrix can significantly im-

prove SIR while it results in CSM comparable that of a random Gaussian measurement

matrix.

The rest of the chapter is organized as follows. In Section 4.2 we introduce the two pro-

posed measurement matrices and provide the analysis related to the second measurement

matrix. Simulation results are given in Section 4.3 for the cases of slowly moving targets.

Finally, we make some concluding remarks in Section 4.4.
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4.2 Measurement matrix design

In this section, we discuss the design of the measurement matrix in order to improve the

detection performance of CS-MIMO radar. We assume that all the nodes utilize the same

measurement matrix, defined asΦ, which does not vary with time for simplicity. Under the

assumption (A1), the Doppler shift within a pulse can be ignored. Recall that the received

signal at thel-th node during them-th pulse can be formulated as (eq. (3.3))

r lm =

K∑

k=1

βke
j2πplmkΦCτkXv(θk) +Φnlm (4.1)

and the sensing matrix for thel-th node is given by (eq. (3.7))

Θl = Φ[e j2πqlm1C⌊ 2c1
cTs
⌋Xv(a1), . . . , e

j2πqlmN C⌊ 2cN
cTs
⌋Xv(aN)]. (4.2)

Generally, there are two factors that affect the performance of CS. The first one is the

coherence of the sensing matrix. UUP requires low coherenceto guarantee exact recovery

of the sparse signal. Although the CSM always serves as a toolthat examines the necessary

conditions for the CS approach, it does reflect the behavior of the sensing matrix in many

cases. Furthermore, the simplicity of the CSM render itselfa practical performance crite-

rion for the CS application in real systems. The second factor is SIR. If the basis matrix

obeys the UUP and the signal of interests is sufficiently sparse, then the square estimation

error of the Dantzig selector satisfies with very high probability [43]

‖ ŝ− s ‖2ℓ2
≤ C22logN × (σ2 +

N∑

i

min(s2(i), σ2)) (4.3)

whereC is a constant. It can be easily seen from (4.3) that an increase in the interference

power degrades the performance of the Dantzig selector.
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4.2.1 The measurement matrix#1: The goal is to reduce the coherence of the sensing

matrix and at the same time increase SIR

The coherence of two columns of the sensing matrix,Θ, corresponding to thek-th and

k′-th grid point is given by

µkk′(Θ) =

∣
∣
∣
∣
∣

∑Np

m=1

∑Nr
l=1 e j2π(qlmk−qlmk′ )

(

ΦC⌊ 2ck′
cTs
⌋Xv(ak′)

)H

ΦC⌊ 2ck
cTs
⌋Xv(ak)

∣
∣
∣
∣
∣

Nr

√

∑Np

m=1

∥
∥
∥
∥
∥
ΦC⌊ 2ck

cTs
⌋Xv(ak)

∥
∥
∥
∥
∥

2

2

∑Np

m=1

∥
∥
∥
∥
∥
ΦC⌊ 2ck′

cTs
⌋Xv(ak′)

∥
∥
∥
∥
∥

2

2

=

∣
∣
∣
∣

∑Np

m=1

∑Nr
l=1 e j2π(qlmk−qlmk′ )uH

k′Φ
H
Φuk

∣
∣
∣
∣

NrNp

√

uH
k Φ

HΦukuH
k′Φ

HΦuk′

(4.4)

whereuk = C⌊ 2ck
cTs
⌋Xv(ak).

Let the interference waveform at thelth receive node during themth pulse be Gaussian

distributed, i.e.,nlm(t) ∼ CN(0, σ2). Let us also assume that the noise waveforms are

independent across receive nodes and between pulses. Then the average power of the

interference can be represented by

Pn = E{
Np∑

m=1

Nr∑

l=1

(Φnlm)H
Φnlm} = NpNrσ

2Tr{ΦH
Φ}. (4.5)

The average power of the echo reflected by theith target located on thekith grid point

of the angle-range space is approximately equal to

Pi
s ≈ |βi|2Nr

Np∑

m=1

uH
ki
Φ

H
Φuki . (4.6)

Therefore, the SIR equals

SIR=

∑K
i=1 |βi|2

∑Np

m=1 uH
ki
Φ

H
Φuki

σ2NpTr{ΦHΦ} . (4.7)
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The precise manner in which CSM and SIR affect the performance of the CS approach

is unknown. Although theoretical bounds for theℓ2-norm of the estimation error have been

proposed [26]-[43], the bounds are hard to obtain. Furthermore, those bounds might not

be relevant in applications in which the quantity of interest is the location of the non-zero

elements of the sparse signal rather than the non-zero values themselves. This is the case

for the problem at hand. In [44] the upper bound on the probability of error under the

optimal decision rule was derived. Although that upper bound is related to the detection

of non-zero elements, it cannot be used for the measurement matrix design as it is rather

loose in some practical cases and it has a complicated form. In this paper, we determine

the measurement matrix by optimizing a linear combination of the CSM and the reciprocal

of SIR.

The overall CSM is here taken as the maximum coherence produced by a pair of cross

columns in the sensing matrix. This criterion works well fora uniform sensing matrix but

might not capture the behavior of the sensing matrix in whichthe coherence of most column

pairs is small [45]. However, that coherence metric is widely used for the CS scenario due

to its simplicity [45][46]. The optimization problem becomes

min
Φ

(max
k,k′

µ2
kk′(Θ) + λ

1
SIR

) (C1) (4.8)

whereλ is a positive weight, which reflects the tradeoff between the coherence and SIR.

Since (4.8) is not a convex problem, two steps are taken to address this issue. First, we

solve (4.8) with respect toB = ΦH
Φ instead ofΦ. Furthermore, the norm of columns in

the sensing matrix is set to 1, i.e.,NrNpuH
k Φ

H
Φuk = 1, k = 1, ...,N, so that we can avoid
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the fractional expression ofµkk′(Θ) and 1
SIR. Thus (4.8) can be reformulated as

min
t,B

t + λTr{B}

s.t.

∣
∣
∣
∣
∣
∣
∣

Np∑

m=1

Nr∑

l=1

e j2π(qlmk′−qlmk)uH
k′Buk

∣
∣
∣
∣
∣
∣
∣

2

≤ t,

k = 1, . . . ,N, k′ = k + 1, . . . ,N

Nr

Np∑

m=1

uH
k Buk = 1, k = 1, . . . ,N,

B ≥ 0, t ≥ 0. (4.9)

which is a convex problem with respect toB. The first term in the objective refers to the

maximum coherence of cross columns in the sensing matrix; the second term is propor-

tional to the noise power which is a linear function ofB. OnceB is available,Φ can be

easily obtained. On lettingB be factorized by the eigendecompositionB = VΣVH, we can

obtain the measurement matrix #1 as

Φ#1 =

√

Σ̃ṼH (4.10)

whereΣ̃ is a diagonal matrix that contains the nonzero eigenvalues of Σ on its diagonal and

Ṽ includes the eigenvectors corresponding to the nonzero eigenvalues.

Φ#1 solved from (C1) might increase very low coherence of some pair of columns in

order to minimize the maximum CSM, i.e., the coherence of different pairs of columns

will spread more evenly than the conventional measurement matrix. This might not be

desirable in some cases. Another criteria for evaluating the CSM is the sum of coherence

of all pairs of columns in the sensing matrix (SCSM). The measurement matrixΦ obtained

by minimizing the SCSM can increase the number of pairs of columns which yield low
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coherence. It can be solved from

min
Φ

(
∑

k,k′

µ2
kk′(Θ) + λ

1
SIR

) (C2) (4.11)

The proposed methods of optimizing the measurement matrix,i.e., (C1) and (C2), can

reduce the coherence of cross columns in the sensing matrix without amplifying the in-

terference. This will improve the detection performance ofthe CS-based MIMO radar

system, however, this will incur a computation load as compared to using the conventional

measurement matrix. The number of complex variables to be solved in the convex problem

of (4.9) is (L̃+L+1)(L̃+L)
2 . The computation complexity would be prohibitively high for large

values ofL̃ + L. For a large number of grid pointsN, we have to deal with a large number

of constraints. The optimal measurement matrix might be obtained and stored offline based

on knowledge of grid points in the angle-range space. However, it would need to be up-

dated once the basis matrix varies with the search area of interest. This would bring heavy

burden to radar systems and thus might render the real-time application impossible. There-

fore, ways to alleviate the computational load are worthy ofbeing exploited. A suboptimal

scheme for the measurement matrix #1 that involves lower complexity is discussed next.

Let us impose a structure on the measurement matrix to be determined by the optimiza-

tion problem of (C2) as follows:

Φ#1 =WΦ (4.12)

whereW is an ((L + L̃) × M̃) unknown matrix to be determined andΦ is a M̃ × Mt(L̃ + 1)

Gaussian random matrix. Then the number of variables inW can be controlled by changing

the value ofM̃. Furthermore, the structure in (4.12) enables a two-step processing for CS-

based MIMO radar that simplifies the hardware of receive nodes. In particular, a receive

node linearly compresses the incident signal by usingΦ. At the fusion center, all the signal
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forwarded by receive nodes are first multiplied byW and then jointly processed to extract

target information. We can think ofW as a post processing. In this way, the received nodes

require no information ofW, which reduces the communication overhead for the fusion

center and nodes.

In order to render the convex problem tractable, the norm of columns in the sensing

matrix is forced to be a constant. This increases the number of constraints. If the number

of variables is not sufficiently high, there might not be enough degrees of freedoms to

decrease the coherence of the sensing matrix as compared to the original one. Since the

number of constraints equals the number of grid points, it can be decreased by reducing the

search area. This can be done by considering the grid points around the initial angle-range

estimates if they are available.

4.2.2 The measurement matrix#2: The goal is to improve SIR only

Although the suboptimal construction in (4.12) significantly reduces the number of

variables, solving (4.9) still requires high computation loads. Besides,Φ#1 must be adapted

to a particular basis matrix. To avoid these two defects ofΦ#1, another measurement matrix

that targets SIR improvement only is proposed in this section. As in [53], we impose a

special structure on the measurement matrix, i.e.,Φ#2 = ΦWH, whereΦ is anM× M̃ (M ≤

M̃) zero-mean Gaussian random matrix andW is an (L + L̃) × M̃ deterministic matrix

satisfying diag{WHW} = [1, . . . , 1]T . The above structure serves two purposes. First, the

matrix W can be selected to improve the detection performance of the CS approach at the

receiver. Second,Φ#2 is always a Gaussian random matrix regardless ofW. With the

appropriateW, the measurement matrix in the form ofΦWH might not increase the CSM

as compared to the conventional one. Otherwise, aW that is highly correlated with the

basis matrix would invalidate the UUP. Unlike the design ofΦ#1, the measurement matrix

proposed in this section targets SIR improvement only.
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The average power of the echo reflected by thekth target with respect to node locations,

conditioned on the transmit waveforms is approximately equal to

Pk
s ≈ |βk|2NrNpE{Tr{ΦCτkXv(θk)(ΦCτkXv(θk))

H}}

≈ |βk|2NrNpTr{ΦCτkXE{Vk}XHCH
τk
Φ

H} (4.13)

whereVk = v(θk)vH(θk) and its (i, j)th entry can be expressed asVk(i, j) = e j 2π f
c (rt

i cos(θk−αi)−rt
j cos(θk−α j)).

The Doppler shift within a pulse is ignored in (4.13) due to assumption (A1). Since the

nodes are uniformly dispersed on a disk of radiusr, the distribution ofh =
rt/r

i

r sin(αt/r
i −ψ0)

is given by ([50])

fh(h) =
2
π

√
1− h2,−1 < h < 1 (4.14)

so that

E
{

e jαh
}

= 2
J1(α)
α

(4.15)

whereJ1(·) is the first-order Bessel function of the first kind. Thus, based on (4.15) we can

obtain ([53])

E
{

e j 2π f
c (rt

i cos(θk−αi)−rt
j cos(θk′−α j))

}

=






1 i = j andk = k′

ς(4 sin(θk′−θk

2 )) i = j andk , k′

ς2(2) i , j

(4.16)

whereς(x) = 2
J1(x πr f

c )

x πr f
c

. As observed in [53], the terms multiplied byς2(2) are small enough
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and can be neglected. Then the average powerPk
s in (4.13) can be further approximated by

Pk
s ≈ |βk|2NpNrTr{ΦWHCτkXX HCH

τk
WΦH}

≈
|βk|2MNpNr

M̃
Tr{WHCτkXX HCH

τk
W}. (4.17)

InsertingΦ#2 into (4.5), the average power of the interference can be represented by

Pn = σ
2NpNrTr{ΦWHWΦH} = σ2NpNr

M∑

q=1

∑

i, j

Φqiwi jΦ
∗
q j ≈ σ2NpNr M (4.18)

whereΦi j andwi j are the (i, j)-th entries ofΦ andWHW, respectively. The approximation

in (4.18) uses the constraint diag{WHW} = [1, . . . , 1]T and the fact that
∑M

q=1

∑

i, jΦqiwi jΦ
∗
q j ≈

0 for sufficiently largeM̃ due toΦqi ∼ N(0, 1/M̃).

Based on (4.17) and (4.18), the SIR is given by

S IRk = Pk
s/Pn ≈

|βk|2

σ2M̃
Tr{WHQτkW} (4.19)

whereQτk = CτkXX HCH
τk

is an (L + L̃) × (L + L̃) matrix of rankMt. The matrixW that

maximizesS IRk can be obtained by solving

W∗ = max
W,M̃

|βk|2

σ2M̃
Tr{WHQτkW}

s.t. diag{WHW} = [1, . . . , 1]T
M̃×1. (4.20)

It can be easily seen thatW∗ is the eigenvector corresponding to the largest eigenvalue

of Qτk . Since the largest eigenvalue ofQτk is not greater than Tr{Qτk} = Mt, the maximum

S IRk is bounded by

Bound 1 :
|βk|2
σ2
≤ S IRk ≤

|βk|2Mt

σ2
. (4.21)
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The upper bound is achieved when the rank ofX equals 1, i.e., all the transmit nodes send

out the same waveforms. When orthogonal waveforms are utilized, i.e.,XHX = I Mt , the

S IRk reaches the lower bound.

However, the solutionW∗ would invalidate the conditions for the application of CS

since a pulse is equivalently compressed to a single measurement. Fortunately, there are

multiple equally large eigenvalues whenXHX = I Mt. In this caseQτk has Mt nonzero

eigenvalues which are all equal to 1. Therefore, for a fixedM̃, M̃ ≤ Mt, the optimalW

contains theM̃ eigenvectors ofQk corresponding to eigenvalue 1 and achieves the maxi-

mumS IRk =
|βk |2
σ2 . Since the maximumS IRk is independent ofM̃, any matrix containing

M̃, M̃ ≤ Mt, eigenvectors ofQ corresponding to eigenvalue 1 would give rise to the maxi-

mumS IRk. However,M̃ = Mt results in smaller coherence of the sensing matrix than any

M̃ less thanMt due to the fact that the rank ofW is M̃. Therefore, the optimalW is

W∗∗ = CτkX. (4.22)

For the case of completely coherent transmit waveforms in which the upper bound in (4.21)

is achieved, the resultingW∗∗ is rank deficient.

Unfortunately,W∗∗ is not achievable since the time delay induced by a target is un-

known at the receiver. To address this issue, we replaceS IRk in the objective function in

(4.20) with the average value ofS IRk with respect to the time delay, denoted byS IRk.

Let the time delay induced by thekth target follow discrete uniform distribution, i.e.,

p(τk = k) = 1
L̃+1
, k = 0, . . . , L̃. Then the average value ofS IRk can be expressed as

S IRk =
|βk|2

σ2M̃

L̃∑

τ=0

1

L̃ + 1
Tr{WHQτW} =

|βk|2

σ2M̃

1

L̃ + 1
Tr{WHCW} (4.23)
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where

C =
L̃∑

τ=0

Qτ = [C0X, . . . ,CL̃X][C0X, . . . ,CL̃X]H. (4.24)

Therefore, the optimization problem that maximizesS IRk can be rewritten as

W∗ = max
W,M̃

S IRk

s.t. diag{WHW} = [1, . . . , 1]TM̃×1. (4.25)

One can see again that the solution to (4.25) is the eigenvector corresponding to the largest

eigenvalue ofC. Unlike (4.20), we fail to find the close-form solution to (4.25) that has

sufficiently high rank. Besides, the problem (4.25) is non-convex. This further prevents us

from obtaining a desired solution that validates the conditions for the application of CS.

Inspired by the form of (4.22), we propose a feasible and simple W by taking all the

possible delays into account:

W = [C0X, . . . ,CL̃X]. (4.26)

SinceCiX contains eigenvectors corresponding to the largest eigenvalues ofQi, utilizing

(4.26) results in the averageS IRk bounded by

Bound 2 :
|βk|2
σ2

1

L̃ + 1
+ ∆ ≤ S IRk ≤

|βk|2
σ2

Mt

L̃ + 1
+ ∆ (4.27)

where∆ denotes |βk |2
σ2Mt(L̃+1)2

Tr{∑τ′,τ XHCH
τ Qτ′CτX}. One can see thatBound 2 would be

reduced toBound 1 whenL̃ = 0.

Next, we will examine the SIR yielded by the proposed measurement matrixΦ#2 =

ΦWH based on three types of waveforms, rectangular pulse, independently generated
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quadrature phase shift keying (QPSK) waveforms and Hadamard codes. As shown be-

low, usingΦ#2 can suppress interference uncorrelated with the transmit waveforms, and

maintains coherence as low as the Gaussian random measurement matrix with the proper

waveforms.

SIR under the conventional measurement matrix

Let us consider a conventional measurement matrixΦc, which is anM×(L+L̃) Gaussian

random matrix and Tr{ΦcΦ
H
c } = M. The average power of the interference isPn = σ

2M

(see (4.5)).

Let Si be a square matrix, formed by shifting the main diagonal ofI L up by i. It can

be easily seen thatSH
i = S−i. The average power of the target returns fromK targets at a

receive node, conditioned on the transmit waveforms, is given by

Ps = E{r Hr |X} =
∑

k

Pk
s +

∑

k,k′

Pk,k′
s (4.28)

where

Pk
s = |βk|2E{Tr{ΦcCτkXv(θk)(ΦCτkXv(θk))

H}}

≈ |βk|2Tr{ΦcCτkXX HCH
τk
Φ

H
c }

≈ Mt M|βk|2

L + L̃
(4.29)

and

Pk,k′
s ≈ β∗kβk′ς

2
(

4 sin
(
θk − θk′

2

))

e
4π f (dk (0)−dk′ (0))

c

︸                                         ︷︷                                         ︸

γkk′

M

L + L̃
Tr{XHSτk−τk′X}. (4.30)



98

SIR for the measurement matrixΦ#2

The proposed measurement matrixΦ#2 = ΦWH results in the same average interfer-

ence power as the matrixΦc. The average power of the desired signal conditioned on the

transmit waveforms,̃Ps, however, will improve. Like (4.28),̃Ps can be partitioned into the

sum of the autocorrelation,̃Pk
s, and cross correlation,̃Pk,k′

s , of the returns fromK targets. It

holds that

P̃k
s = |βk|2E{Tr{Φ̃#2CτkXv(θk)(Φ̃#2CτkXv(θk))

H}}

≈ |βk|2Tr{ΦWHCτkXX HCH
τk

WΦH}

≈ |βk|2M

(L̃ + 1)Mt

Tr{WHCτkXX HCH
τk

W}

=
|βk|2M

(L̃ + 1)Mt

L̃∑

q=0

Tr{XHSq−τk XX HSH
q−τk

X} (4.31)

and

Pk,k′
s ≈ γkk′M

(L̃ + 1)Mt

L̃∑

q=0

Tr{XHSτk−qXX HSq−τk′X}. (4.32)

For orthogonal, or randomly generated waveforms across transmit nodes,P̃k
s always

dominates the average power of the desired signal. In order to increaseP̃k
s, the quantity

Tr{XHSq−τk XX HSH
q−τk

X} in (4.31) needs to be as large as possible.XHSmX can be expressed

as

XHSmX =






XH
1:L−mXm+1:L, m ≥ 0

XH
1−m:LX1:L+m, otherwise

(4.33)

whereX i: j denotes the matrix that contains the rows ofX indexed fromi to j.

Eq. (4.33) implies that the non-circular autocorrelation of the waveform sequence of a

transmit node, i.e.,Ri(τ) =
∫ Tp

t=0
xi(t)x∗i (t−τ), i = 1, . . . , Mt, should be insensitive to the shift.
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This essentially requires a narrowband signal. Based on this principle, the best candidate

is a rectangular pulse and the maximumP̃s becomes

P̃s =
MMt

(L̃ + 1)

K∑

k=1

L̃∑

q=0

|βk|2
(

L − |q − τk|
L

)2

+
MMt

(L̃ + 1)

∑

k,k′

L̃∑

q=0

γkk′
(L − |τk − q|)(L − |q − τk′ |)

L2

≤ MMt





K∑

k=1

|βk|2 +
∑

k,k′

γkk′



 . (4.34)

The equality holds only if targets induce identical delays and the sampling window of

length exactly covers the duration of target returns. Obviously, transmit nodes cannot share

the same waveforms. This is because the transmit waveforms are required to be orthogonal,

or randomly generated in order to maintain low coherence of the basis matrix.

Similarly, the minimum average power of the desired signal is achieved when the ran-

domly generated QPSK waveforms are utilized. This is because the random generated

QPSK waveforms cover the widest bandwidth for the fixed pulsed durationTp and the

length of waveformsL. P̃s for the randomly generated QPSK waveforms is given by

P̃s ≈
M

(L̃ + 1)

K∑

k=1

|βk|2(
L̃∑

q=0,q,τk

Mt
L − |q − τk|

L2
+ 1). (4.35)

For orthogonal Hadamard waveforms that are of less bandwidth than the random gen-

erated QPSK waveforms, the average power of the desired signal is given by

P̃s ≈
M

(L̃ + 1)

K∑

k=1

L̃∑

q=0

|βk|2
(

L − |q − τk|
L

)2

. (4.36)

Recall thatW∗ corresponding to the true delay gives rise to the maximum received signal

power. Adding the termsCτ̃k X, τ̃k , τk to W (see (4.19)) would lower̃Pk
s. When a coarse

delay estimate is available, we need to consider the delays around the coarse delay only and

thus the length of sampling window can be shortened. This enables to reduce the number
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of possible delays considered for the construction ofW. Therefore,P̃k
s can be improved for

the waveforms considered above if the coarse delay is available.

The SIR gain

Let S IRp andS IRc denote the SIR obtained by usingΦ#2 and conventional measure-

ment matrices, respectively. When transmitting Hadamard codes, the SIR gain induced by

using the proposed measurement matrix can be expressed as

rHa =
Ps

P̃s

≈
M

(L̃+1)

∑K
k=1

∑L̃
q=0 |βk|2

(
L−|q−τk |

L

)2

∑K
k=1

Mt M|βk |2
L+L̃

=
L + L̃

Mt(L̃ + 1)L2

∑K
k=1 |βk|2Ck
∑K

k=1 |βk|2
(4.37)

where

Ck =

L̃∑

q=0

(L − |q − τk|)2
= (L̃ + 1− 2L)(τk − L̃/2)2 +

L∑

q=L−L̃

q2 +
(2L − L̃ − 1)L̃2

4
. (4.38)

For a fixedL̃ andL, with 0 ≤ L̃ ≤ 2L − 1, Ck can be bounded as

L∑

q=L−L̃

q2 ≤ Ck ≤
L∑

q=L−L̃

q2 +
(2L − L̃ − 1)L̃2

4
. (4.39)

Therefore, lower and upper bounds on the SIR gain using Hadamard codes are given

(L + L̃)
∑L

q=L−L̃ q2

Mt(L̃ + 1)L2
≤ rHa ≤

(L + L̃)(
∑L

q=L−L̃ q2 +
(2L−L̃−1)L̃2

4 )

Mt(L̃ + 1)L2
. (4.40)

Similarly, the SIR gain using randomly generated QPSK waveforms are bounded by

(L + L̃)(
∑L

q=L−L̃ q + L2

Mt
− L)

(L̃ + 1)L2
≤ rQPS K ≤

(L + L̃)(
∑L

q=L−L̃ q + L̃2

4 +
L2

Mt
− L)

(L̃ + 1)L2
. (4.41)
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As long asL̃ < L and Mt < L, rQPS K is always greater than 1. When
∑L

q=L−L̃
q2

Mt
∑L

q=L−L̃
q
> 1, the

lower bound onrHa is higher than that onrQPS K. For a sufficiently longL and moderateMt,

rHa would be superior torQPS K. Based on (4.34) and (4.36), one can infer that the SIR gain

using the rectangular pulse is approximatelyMt times greater than using Hadamard codes.

The CSM based on the suboptimal measurement matrix #2

In this section, we will examine the effect of the proposedW in (4.26) on the coherence

of sensing matrix. For simplicity, we consider stationary targets and the possible delays for

constructingW are based on the range grid points used to form the basis matrix. Then the

sensing matrix with the measurement matrixΦ#2, or the Gaussian random matrix can be

respectively represented as

Θ = Φ#2Ψ = ΦM×(L̃+1)Mt
WHWV (4.42)

and

Θ̃ = ΦM×(L+L̃)Ψ = ΦM×(L+L̃)WV (4.43)

whereV = kron(I L̃+1, [v(a1), . . . , v(aNa)]) andΦi× j is ani× j Gaussian random matrix whose

entries are of zero mean and variance 1/ j. For sufficiently large j, the column coherence

of Θ can be approximated as

µkk′ (Θ) =
|∑i(

∑

mΦ(m, i)Φ∗(m, i))vkk′(i)|
√∑

i(
∑

mΦ(m, i)Φ∗(m, i))vkk(i)
∑

i(
∑

mΦ(m, i)Φ∗(m, i))vk′k′(i)
(4.44)

wherevkk′(i) denotes thei-th diagonal element of the matrixWHC⌊ 2ck
cTs
⌋Xvm(ak)

(

WHC⌊ 2ck′
cTs
⌋Xvm(ak′)

)H

.

Without loss of generality, we let the columns ofΦ be of unit norm. Then (4.44) can be
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further written as

µkk′(Θ) =
|∑i vkk′(i)|

√∑

i vkk(i)
∑

i vk′k′(i)
. (4.45)

One can easily see from (4.45) that the coherence ofΘ is approximately equal to that of

matrix WHWV . The same conclusion applies tõΘ as well, i.e., the coherence ofΘ̃ is

approximately equal to that of matrixWV . SinceWHW is more ill-conditioned thanW,

the conditional number ofWHWV is greater than that ofWHW. Therefore, utilizingΦ#2

increases the maximum CSM as compared to the Gaussian randommeasurement matrix

with high probability. However, for the well conditionedW, the increase of maximum

CSM caused byΦ#2 can be neglected.

4.2.3 Φ#1 v.s.Φ#2

We have proposed two measurement matrices based on different performance metric.

The advantages and disadvantages ofΦ#1 andΦ#2 are summarized as follows.

• Complexity

SolvingΦ#1 involves a complex optimization problem and depends on a particular

basis matrix, whileΦ#2 only requires the knowledge of all the possible discretized

time delays. Therefore, the construction ofΦ#1 requires much more computations

than doesΦ#2.

• Performance

Φ#1 aims at decreasing the coherence of the sensing matrix and enhancing SIR si-

multaneously. The tradeoff between CSM and SIR results inΦ#1 yielding lower SIR

thanΦ#2. Therefore,Φ#1 is expected to perform better thanΦ#2 in the case of low

interferences, while it should perform worse in the presence of strong interferences.



103

4.3 Simulation Results

In this section, we show the performance of CS-based MIMO radar when using the

proposed measurement matricesΦ#1 andΦ#2, respectively. We consider a MIMO radar

system with transmit and receive nodes uniformly located ona disk of radius 10m. The

carrier frequency isf = 5GHz. The received signal is corrupted by zero-mean Gaussian

noise. The signal-to-noise ratio (SNR) is defined as the inverse of the power of thermal

noise at a receive node. A jammer is located at angle 7o and transmits an unknown Gaussian

random waveform. The targets are assumed to fall on the grid points.

4.3.1 The proposed measurement matrixΦ#2

SIR improvement

M = 30 compressed measurements are forwarded to the fusion center by each receive

node. The maximum possible delay isL̃ = 100. Figure 4.1 compares the numerical and

theoretical SIR produced using the rectangular-pulse, Hadamard waveforms and randomly

generated QPSK waveforms for the case ofMt = 30 transmit nodes andNr = 1 receive

node. The SIR performance, shown in Fig. 4.1, is the average of 1000 independent and

random runs. The theoretical SIR of these three sequences are calculated based on (4.34),

(4.36) and (4.35). The power of thermal noise is fixed to 1 and the power of the jammer

varies from−20dB to 60dB. Applying the proposed measurementΦ#2 at the receivers, the

rectangular pulse and Hadamard waveforms produce a significant SIR gain over the Gaus-

sian random measurement matrix (GRMM), while the random QPSK sequence achieves

almost no gain. Furthermore, the numerical SIR performancefollows the theoretical SIR

for all three sequences. Figure 4.2 demonstrates the SIR performance averaging over 500

independent and random runs for different values of the maximum time delayL̃. We con-

sider a case in which only one target exists and the jammer power is 225. One can see
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that a decrease iñL can significantly improve SIR yielded by QPSK waveforms whenL̃ is

less than 10. In contrast, Hadamard waveforms and rectangular pulse produce almost the

same SIR for different values of̃L. This indicates that the prior information of possible

delays enables SIR improvement for QPSK waveforms rather than the other two types of

waveforms.

The CSM

Figure. 4.3 shows the histograms of the condition number andthe maximum CSM using

Φ#2 for Hadamard waveforms and the GRMM produced in 100 random and independent

runs. We consider the case ofM = 30, Mt = Nr = 10 and the grid step of the discretized

angle-range space is [0.5o, 15m]. One can see that the numerical results fit the observa-

tions in Section 4.2.2, i.e.,Φ#2 increases the maximum CSM as compared to the GRMM

with high probability. In Fig. 4.4 we use histograms to compare the CSM corresponding

to adjacent columns over 100 independent and random runs. AlthoughΦ#2 incorporates

information on the waveforms, the distribution of the column correlation does not change

significantly as compared to that of the conventional matrix. Among the three types of

waveforms, the rectangular pulse gives rise to the worst CSMdistribution, indicating that

the performance of the proposed CS approach would be significantly degraded if rectangu-

lar pulses are transmitted. This is because the high autocorrelation of the rectangular pulse

results in high CSM independent of the measurement matrix used.

In Table 1, we compare the CSM and the SIR based onΦ#2 using rectangular pulse,

Hadamard waveforms and randomly generated QPSK waveforms.One can see that Hadamard

waveforms can enhance SIR and preserve low coherence of the sensing matrix simultane-

ously.
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Table 4.1: The comparison of SIR and CSM

Rectangular pulse Hadamard QPSK
SIR best second best worst

Coherence worst second best best

4.3.2 The proposed measurement matrixΦ#1

We consider a scenario in whichMt = Nr = 4 and three stationary targets exist. The

azimuth angle and range of three targets are randomly generated in 100 runs within [0o, 1o]

and [1000m, 1090m], respectively. The data of one pulse is utilized and thus only the

angle-range estimates can be obtained. The spacing of adjacent angle-range grid points

is [0.2o, 15m]. Φ#1 is obtained from (4.9) based on the special structure of (4.12). Φ in

(4.12) is replaced withΦ#2. We consider different values of the tradeoff coefficient λ̃ in

(4.9). Transmit nodes send Hadamard waveforms of lengthL = 128. Only M = 20

measurements per pulse are collected and forwarded to the fusion center by each node for

CS-based MIMO radar while 100 measurements feed MIMO radar based on the MFM.

Figure. 4.5 shows the distribution of CSM for the GRMM,Φ#1 andΦ#2 in 100 random

and independent runs. One can see that the GRMM andΦ#2 lead to the similar coher-

ence distribution.Φ#1 slightly reduces the maximum CSM and significantly increases the

number of column pairs with low coherence as compared to the other two measurement

matrices.Φ#1 solved from (4.9) using̃λ = 0.6 andλ̃ = 1.5 produce the similar coher-

ence distribution. Fig. 4.6 shows the SIR performance of CS-based MIMO radar using

the GRMM,Φ#1 andΦ#2 for difference values of noise power in absence of jammer. One

can see from Fig. 4.6 thatΦ#2 outperforms the other two measurement matrices in terms

of SIR.Φ#1 obtained from (4.9) using̃λ = 0.6 yields slightly better SIR than GRMM. As

expected, increasing̃λ from 0.6 to 1.5 moderately improves SIR.

Figure 4.7 and Fig. 4.8 compare the ROC performance of CS-based MIMO radar using
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the three aforementioned measurement matrices and MIMO radar based on the MFM, for

different combinations of SNR and jammer-signal power. The probability of detection (PD)

here denotes the percentage of cases in which all the targetsare detected. The percentage

of cases in which false targets are detected is denoted by theprobability of false alarm

(PFA). It is demonstrated in Fig. 4.7 and Fig. 4.8 thatΦ#1 andΦ#2 with the Hadamard

waveforms can improve detection accuracy as compared to theGRMM in the case of mild

and strong interference, respectively. Since an increase in the tradeoff coefficient λ̃ can

enhance SIR,Φ#1 solved from (4.9) using̃λ = 1.5 can perform better in the case of strong

interference than using̃λ = 0.6. Note that the three measurement matrices give rise to

similar performance forS NR = 10dB and β = 0. This is because the interference is

sufficiently small so that all the measurement matrices perform well. Again, one can see

that the MFM is inferior to the CS approach even with far more measurements than the CS

approach.

It has been seen from Fig. 4.7 and Fig. 4.8 that the tradeoff coefficientλ̃ affects the per-

formance of CS-based MIMO radar usingΦ#1. In order to further investigate the effect of

λ̃, the curves of probability of detection accuracy are shown in Fig. 4.9 forλ̃ = 0.6, 1, 1.5, 2

v.s. different thresholds of hard detection. The probability of detection accuracy here de-

notes the percentage of cases in which all the targets are detected and no false estimation

as well. By taking all the four combinations of SNR and jammer-signal power into ac-

count,λ̃ = 1.5 excels the other three values of tradeoff coefficient. For a particular case, the

optimal tradeoff coefficient depends on multiple factors, i.e., the basis matrix and the inter-

ferences. The manner in which SIR and the CSM affect the support recovery of a sparse

signal still remains to be clarified. Therefore, it is impossible to theoretically determine the

optimal tradeoff coefficient.
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4.4 Conclusions

We have proposed two measurement matrices in order to improve target detection per-

formance of CS-based MIMO radar for the case in which the targets may be located across

several range bins. The first oneΦ#1 aims at enhancing SIR and reducing the CSM at the

same time. It is obtained by solving a convex optimization problem. This measurement

matrix requires heavy computational load as compared to theconventional measurement

matrix, and also needs to adapt to a particular basis matrix.The computational burden

of solvingΦ#1 can be alleviated through reducing the number of variables involved in the

optimization problem. The second proposed measurement matrix Φ#2 targets improving

SIR only. It is constructed based on the transmit waveforms and also accounts for all pos-

sible discretized delays of target returns within the giventime window.Φ#2 is dependent

of the range grid only and requires much lower complexity thanΦ#1. It is shown thatΦ#2

based on reduced bandwidth transmit waveforms can improvesSIR, but on the other hand,

using waveforms that are too narrowband increases the CSM, thus invalidating conditions

for the application of the CS approach. Therefore, the waveforms must be chosen carefully

to guarantee the desired performance using the second measurement matrix. Numerical

results show thatΦ#1 andΦ#2 with the proper waveforms (e.g.,Hadamard waveforms) can

improve detection accuracy as compared to the Gaussian random measurement matrix in

the case of small and strong interference, respectively.
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5. Summary and Suggested Future Research

5.1 Summary

In this dissertation, we have proposed a CS-based MIMO radarsystem that is imple-

mented by a small-scale wireless network. Network nodes serve as transmitters or re-

ceivers. Each receive node applies compressive sampling tothe received signal to obtain a

small number of samples, which the node subsequently forwards to a fusion center. At the

fusion center, the information on angle, Doppler and range is extracted.

First, we have presented an DOA-Doppler estimation approach for the case in which

the targets are located in a small range bin and the sampling is synchronized with the first

target return. Assuming that the targets are sparsely located in the angle-Doppler space, the

fusion center formulates anℓ1-optimization problem, the solution of which yields target

angle and Doppler information. For the stationary case, theperformance of the proposed

approach was compared to that of conventional approaches that have been proposed in the

context of MIMO radar, i.e., Capon, APES, GLRT or MUSIC. For amild jammer, the

proposed method has been shown to be at least as good as the Capon, APES, GLRT and

MUSIC techniques while using a significantly smaller numberof samples. In the case

of strong thermal noise and strong jammer, the proposed method performs slightly worse

than the GLRT method. In that case, its performance is still acceptable, especially if one

takes into account the fact that it uses significantly fewer samples than GLRT. For the case

of moving targets, the proposed approach was compared to theMFM, and was shown to

perform better in both single and multiple receive nodes cases.

In the second part of this dissertation we have considered a more general case that does

not confine the targets to be within the same range cell, nor does it requires sampling syn-

chronization. Unlike the case considered above for DOA-Doppler estimation, this general
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case allows for range estimation. We presented a CSSF MIMO radar system that applies

SF to CS-based MIMO radar. The technique of SF can significantly improve range resolu-

tion. We have shown that CSSF MIMO radar has the potential to achieve better resolution

than MFSF MIMO radar, and that more pulses are required by RSFR than by LSFR to

achieve the desired performance with all other parameters being the same. The angle-

Doppler-range estimation requires discretization of the angle-Doppler-range space into a

large number of grid points, which would increase the complexity of the CS approach.

We have presented a CSSF MIMO radar scheme that by decouplingangle-range estimation

and Doppler estimation achieves significant complexity reduction. The proposed technique

applies to slowly moving targets and relies on initial roughangle-range estimates. Assum-

ing that the initial estimates do not miss any targets, the proposed low complexity scheme

maintains the high resolution of the CS approach.

Finally, We have proposed two measurement matrices in orderto improve target detec-

tion performance of CS-based MIMO radar for the case in whichthe targets may be located

across several range bins. The first oneΦ#1 aims at enhancing SIR and reducing the CSM at

the same time. It is obtained by solving a convex optimization problem. This measurement

matrix requires heavy computational load as compared to theconventional measurement

matrix, and also needs to adapt to a particular basis matrix.The complexity of solvingΦ#1

can be reduced through minishing the number of variables involved in the optimization

problem. The second proposed measurement matrixΦ#2 targets improving SIR only. It is

constructed based on the transmit waveforms and also accounts for all possible discretized

delays of target returns within the given time window.Φ#2 is dependent of the range grid

only and requires much lower complexity thanΦ#1. It is shown thatΦ#2 based on reduced

bandwidth transmit waveforms can improves SIR, but on the other hand, using waveforms

that are too narrowband increases the coherence of the sensing matrix, thus invalidating

conditions for the application of the CS approach. Therefore, the waveforms must be cho-
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sen carefully to guarantee the desired performance using the second measurement matrix.

Numerical results show thatΦ#1 andΦ#2 with the proper waveforms (e.g.,Hadamard codes)

can improve detection accuracy as compared to the Gaussian random measurement matrix

in the case of small and strong interference, respectively.

5.2 Suggested Future Research

5.2.1 Node selection

We have considered a small scale network that acts as a MIMO radar system. Each

node is equipped with one antenna, and the nodes are distributed at random on a disk of

a certain radius. It should be worth investigating selecting TX and RX nodes to achieve a

certain goal. There are two subtopics related to node selection:

• Select the minimum number of nodes to achieve desired performance given node

locations;

• Find node locations to optimize performance of target detection given the number of

nodes.

5.2.2 Target tracking

We have discussed target detection for CS-based MIMO radar in this dissertation.

Based on the initial information on targets, we can keep tracking targets by using the latest

data. In [68] and [69], the authors considered the problem ofrecursively reconstructing

sparse signals in which the sparsity pattern changes slowlywith time. They proposed CS

schemes that make use of the signal support estimate in the previous instant and the new

observations to update the support estimates. Support hererefers to the location of the non-

zero elements in the signal sparse representation The schemes of [68] and [69] were shown

to lead to higher quality reconstructed image than using CS without any support informa-
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tion for single-pixel camera imaging and static/dynamic MRI. Applying a similar approach

to target tracking for CS-based MIMO radar is an interestingfuture research topic for the

case of slowly moving targets.
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Appendix A. Abbreviations

• AF: Ambiguity Function

• AOA: Angle of Arrival

• APES: Amplitude and Phase Estimation

• BP: Basis Pursuit

• CDF: Cumulative Density Function

• CS: Compressive Sensing/Sampling

• CSM: Coherence of The Sensing Matrix

• CWR: Continuous-wave Radar

• GLRT: Generalized Likelihood Ratio Test

• IDFT: Inverse Discrete Fourier Transform

• i.i.d.: Independent and Identically Distributed

• LP: Linear Program

• LSF: Linear Step Frequency

• LSFR: Linear-Step-Frequency Radar

• MF: Matched Filter

• MFM: Matched Filtering Method

• MIMO: Multiple-Input Multiple-Output
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• MISO: Multiple-Input Single Output

• MP: Matching Pursuit

• MUSIC: Multiple Signal Classification

• PJR: Peak-to-Jammer Ratio

• PR: Pulse Radar

• PRR: Peak-to-Ripple Ratio

• QPSK: Quadrature Phase-Shift Keying

• RCS: Radar Cross Section

• RLSF: Random Step Frequency

• RSFR: Radom-Step-Frequency Radar

• SCSM: Sum of Coherence of The Sensing Matrix

• SF: Step Frequency

• SIMO: Single-Input Multiple-Output

• SIR: Signal-to-Interference Ratio

• SISO: Single-Input Single-Output

• SJR: Signal-to-Jam Ratio

• SNR: Signal-to-Noise Ratio

• SOCP: Second Order Cone Program

• UUP: Uniform Uncertainty Principle
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