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ABSTRACT 
Development of a Hydrologic Community Modeling System Using a Workflow Engine 

Bo Lu 
Michael Piasecki, Supervisor, Ph.D. 

 

 

Community modeling is a comparatively new paradigm that emphasizes on developing 

evolving modeling systems through a collective effort. It has gained growing attention 

within the hydrologic communities because the demand of developing more holistic-view 

model systems addressing chemical, physical, and biological processes within the geo 

volumes of the hydrologic cycle. The development of a community modeling system 

involves a number of technical issues including how to seamlessly integrate various 

models/modules especially to mediate their communications and executions, how to 

improve development efficiency by migrating legacy codes, and how to improve model 

provenance and repeatability of model runs to name just a few. The major objective of 

our studies is to develop a hydrologic community modeling system (HCMS) that allows 

constructing seamlessly integrated, workflow-based hydrologic models with swappable 

and portable modules for retrieving data from various data sources, pre-processing, 

modeling, and post-analysis. The HCMS is built on the Microsoft’s TRIDENT workflow 

engine which assists in tackling many of the above technical issues during its 

development. Four libraries are incorporated into HCMS, i.e. a data retrieval, a data 

processing, a hydrologic computation and a data analysis library, which support to 

access data from numerous online data repositories using SOAP/FTP protocols or from 

local data stores, transform source data into model inputs, perform hydrologic modeling, 

and analyze model results, respectively. It can potentially be applied to anywhere in the 

nation due to its access to data sets of nationwide coverage, and can reduce the 

workload of conducting hydrologic modeling tasks to a great level. Besides its feature of 
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supporting parallel or concurrent executions as well as distributing computations in GRID 

environment can improve run-time efficiency. This thesis comprises three independent 

papers, which present the studies on (1) the current efforts that have been or are being 

made for community modeling, (2) the development of the HCMS using the Microsoft’s 

TRIDENT workflow engine, (3) the assessment on the applicability and performance of 

the TRIDENT-shelled HCMS by applying it to conduct hydrologic studies on the 

Schuylkill watershed located in the Southeastern Pennsylvania.  
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CHAPTER 1: INTRODUCTION 
 

 

Hydrologic communities around the world have developed a plethora of codes in a 

multitude of programming languages over the past few decades in order to assess 

environmental processes and to predict changes in the hydrologic realm. While these 

codes represent a vast amount of knowledge, expertise and resources spent and also 

have been extremely useful for the purposes they were designed, increasingly the 

realization emerges that a better coordination and coupling of both models among each 

other and also to data sources that drive the models is essential. The emergence of the 

idea of community modeling systems such as the Community Surface Dynamics 

Modeling System (Peckham, 2008), the Earth System Modeling Framework(Hill et al., 

2004) or the Weather Research and Forecasting model (Michalakes et al., 1998) as well 

as coupling frameworks such as the Open Modeling Interface and environment 

(Gregersen et al., 2005) and the Interactive Component Modeling System(Reed et al., 

1999) have opened up new ways of thinking about how to link up legacy codes or 

integrate them into frameworks that allow for a more holistic modeling approach than 

before. Herein the community modeling emphasizes on addressing specific issues or 

developing modeling systems within a domain through a collective effort, while coupling 

frameworks are commonly designed for easing the process of model integration thus 

can provide technical supports and participatory platforms for community modeling.   

 

Most existing coupling frameworks accomplish model integration by undertaking the 

mechanism of standardizing model interfaces, modularizing model kernels and placing 

models into a shared configuring and executing environment. The similar functionalities 

can also be found in existing workflow systems such as the Kepler (Ludäscher et 
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al.,2006), the Triana (Taylor et al., 2003) and the Microsoft’s TRIDENT (Microsoft 

Research Group, 2009), which utilize a workflow or a node resided in a workflow to 

represent a model. Workflow systems also incorporate features of recording data or 

model provenance information and supporting parallel or distributed computations thus 

allowing repetitive executions and can possibly improve running efficiency. To date a few 

efforts have been made for developing hydrologic community modeling systems based 

on coupling frameworks, for example, The Invisible Modeling Environment (Rahman, 

2003) has been undertaken by hydrologic community of Australia that has incorporated 

most of its well-known hydrologic models. However, applying workflow systems to the 

development of community modeling system is still rare in hydrologic domain, thus 

leading to our studies of developing a hydrologic community modeling system based on 

a workflow system.  

 

In this thesis, first, an overview of current efforts that have been made on the 

development of community modeling systems addressing processes located in the 

Critical Zone of the earth is provided. Second, the development of a hydrologic 

community modeling system(HCMS) utilizing the TRIDENT workflow system that permits 

seamless integration of data flows from source, to preparation, to ingestion, to model 

execution, to harvesting and analysis of the generated result through the design of 

workflow sequences is presented. The HCMS incorporates four libraries containing a 

number of so-called activities (execution blocks within TRIDENT) that dedicate to access 

source data from numerous online/local data resources, process data to meet 

requirements of model inputs, perform hydrologic computations, and analyzes model 

results etc. Third, the assessment of the feasibility and run-time performance of the 

HCMS is conducted by composing different hydrologic-modeling-oriented workflow 
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sequences and applying them to model the hydrologic responses of the Schuylkill 

watershed located in the Southeastern Pennsylvania.  
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CHAPTER 2: A REVIEW OF CURRENT EFFORTS TO ESTABLISH A HYDROLOGIC 

COMMUNITY MODELING SYSTEM 

 

Abstract 

Numerical modeling in the water sciences has been shifting from developing single or 

specific purpose oriented, tightly intertwined model applications to integrated model 

systems addressing more complex and interlinked geo-physical, -chemical, and-

biological processes across all strata of the critical zone geo-volume. This is a logical 

response to a number of important issues that reach from preservation of legacy code, 

to a higher degree of development cost efficiency, to the realization that processes in 

one strata depend on others (for example a mesoscale atmospheric model must be 

linked to a watershed model which must be linked to a sub-surface model), to harmonize 

code usage, and to improve code provenance and repeatability of model runs. 

Consequently, a number of Community Modeling Systems, CMS, have been either 

proposed or are being developed with typically individual communities taking the lead to 

develop a CMS for their constituency. While the development of CMS’ is a major step 

forward in trying to harmonize modeling efforts and to increase predictive capabilities, 

typical approaches vary with numerous efforts under way to arrive at a workable and 

functional CMS. Hence, this review seeks to provide an overview of these efforts and 

tries to assess their current degree of success.  The purpose of this review is to: (1) 

illustrate benefits and obstacles in the development of community model systems; (2) 

evaluate existing community modeling systems, typically on their technologies and 

performances; and (3) indicate potential future pathways of either improving or elevating 

the approaches to the next stage.  This overview focuses on some general aspects of 
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CMS, however, it will for the most part target those efforts that address processes 

located in the Critical Zone, CZ, of the earth.  

  

2.1 Introduction 

The focus of the hydrologic modeling community has been shifting over the past few 

years away from developing new models that address isolated aspects of water 

movement to more holistic-view-models that also include chemical, physical, and 

biological processes within the geo-volumes (while there is no clear definition of where 

the boundaries of this geo-volume are, in our definition the geo-volume is best aligned 

with that of the “critical zone” of the earth, which extends from a layer approximately 100 

meters in the sub-surface to the 500 mBar layer in the atmosphere) of the hydrologic 

cycle (Abbott and Vojinovic, 2009; Wagener et al., 2009). Integrated modeling 

approaches are especially needed for making well informed decisions, i.e. in the context 

of regulatory actions (Hewett et al., 2010). Development of such integrated modeling 

systems is typically beyond the knowledge scope of individual researchers, instead 

requiring team efforts to assemble codes being able to address processes at the 

envisioned complexity levels. Community modeling, a promising paradigm to develop 

complex evolving and adaptable modeling systems through a collaborative partnership, 

has thereby gained more attention in current years (Voinov et al., 2008). With the 

emphasis on the shared infrastructure and commonality in codes and data, community 

modeling can for one, improve the efficiency of model development, and for the other, 

broaden the possible research applications of individual models through integration 

(Dickinson, 2002). Hence, the concept of Community Modeling System (CMS) brought 

forward is one that represents the collection of models, pre- and post-processing tools, 
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benchmark data sets and the computing infrastructure such as high performance 

computing environments or “big iron” storage facilities. 

 

From the perspective of modelers, essential issues coming to fore in the development of 

CMS are the proliferation of individual models and modules, the credibility of 

model/legacy codes, the integration of independent models, the interoperability of both 

model components and accompanying data sets, the infrastructure maintenance, and 

the question how to best provide a means for the community to add to the CMS. For 

example, in the area of hydrology, a plethora of models have been developed over the 

past few decades that are employed in a wide spectrum of areas ranging from 

watershed management to engineering design (Singh, 2002). Since those code stacks 

are mostly standalone, and were not considered to be linked with other computational 

kernels at the time of their creation, it is typically quite difficult to integrate two or more 

code implementations together, and even more challenging to pull components from 

different modeling environments and assemble them into a brand new code assembly. 

The technical impediments includes lack of modular model structure, intertwining of user 

interfaces and computing kernels, varying computer languages used to encode the 

modeling kernel, distinct input and output data structures, and poor documentation of 

source codes to name a few (Rizzoli et al., 1998).  

 

Some of these legacy codes may have proven to be quite popular over the years such 

as the models developed by the Hydrologic Engineering Center (HEC, 2010) at the US 

Army Experiment station in Vicksburg, Mississippi (for example HEC-River Analysis 

System, HEC-Hydrologic Modeling System), which have been widely used in the 

hydrologic community, however, there are also a vast number of research legacy codes 



7 
 
that have only been used for individual research applications and that never had 

exposure to formal verification procedures (the authors themselves have quite a number 

of those). While Argent (2004) argues that harvesting and incorporating legacy codes, 

which represent countless man hours of effort in addition to being a very rich knowledge 

source, is an appropriate and even necessary step, it is also clear that this is not straight 

forward because of a typical lack of documentation, lack of credibility of the algorithms or 

methods encapsulated in the codes, incompatible programming languages, and a 

general lack of “good coding practices”, for example avoidance of (FORTRAN based) 

GOTO statements, hardwired constants, or structures that defy modularization and 

parallelization. Hence, a dilemma often faced is whether to put effort to vet and 

restructure legacy codes for common use (these codes represent a fairly rich 

knowledgebase after all), or to launch the creation of new codes and leave the legacy 

codes behind. Usually this decision will depend on the quality of the codes (and its 

documentation) versus the difficulty of recreating the code contents.  

 

It stands to reason then that new code developed for use in a CMS environment should 

feature a high degree of portability and modularity. To meet these demands Object-

Oriented (OO) code design has been adopted by many modelers when writing new code 

environments (Rumbaugh et al., 1991). The OO paradigm has been contrasted with 

previous modeling methods such as structured analysis or procedural methods in terms 

of communication, encapsulation, inheritance and polymorphism by Pressman (2001), 

who found that the modularity and decomposability of new OO based models make their 

integration with other models much easier. For example, the fact that the OO approach 

separates the compute kernel from the data allows the independent development of 

tools for data manipulation, transformation and visualization which can then be re-
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assembled with the modeling code. It relieves researchers and programmers from 

repetitive programming work and enables them to only focus on encoding model kernels. 

However, interfaces and code structures are still required to be somewhat standardized 

by the community in order to ensure communications between models.  

 

In addition to the need for model linking or module selection at run time within a larger 

modeling framework data interoperability constitutes a second important aspect that is 

crucial for developing a CMS because of the need i) to access data from disparate data 

sources, and ii) to ingest these data into the model kernels.  Regarding the former issue, 

some communities and institutions have been set out to provide data access and 

retrieval systems that can search and access data from national, state, institutional or 

individual data repositories, and then deliver data to users in the community-defined data 

formats. Notable attempts have been made by the Consortium for the Advancement of 

the Hydrologic Sciences, Inc (CUAHSI, 2010) and government partners in the US, the 

INSPIRE program in Europe (INSPIRE, 2007), and also the Australian Commonwealth 

Scientific and Research Organization (CSIRO, 2010) all three of which are engaged in 

developing data models for the exchange of hydrologic data. A CMS can (or better must) 

take advantage of those systems for retrieving data, even though  the respective  data 

models designed by those efforts need to be harmonized (at the time of the writing of 

this article the World Meteorological Organization, WMO, and Open GeoSpatial 

Consortium, OGC, have formed a Hydro Domain Working Group to tackle exactly this 

issue), in addition to sharing data access interfaces and semantic systems within the 

communities, or alternatively, by developing a set of data transformation tools.  
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Approaches for CMS development thus far can be broken down into two major classes: 

firstly those using what we call a monolithic code (of various complexity) class, and 

secondly a class that features link- or coupling interfaces that permit standalone codes 

to communicate with each other during execution. Our intention is to provide an 

overview of the approaches used in the hydrologic community in the context of these two 

classes, even though we will occasionally make reference to efforts developed in other 

geoscience communities when appropriate. Also, while advancing the idea and 

development of a CMS also has a cultural dimension within each community, i.e. the 

unwillingness of sharing data and individual code preferences that have developed over 

time, this paper only concentrates on the more technical challenges and aspects of CMS 

development. We first attempt to classify the systems we know of, which will be followed 

with the discussion of technologies that can facilitate the development of CMS. We will 

then focus on a range of code coupling approaches that are currently under 

development and that lend themselves for forming a CMS. We will also briefly discuss 

data interoperability, and finally try to give an outlook at future approaches that could be 

undertaken for building a CMS.  

 

2.2  Classification of Current CMS 

It is interesting to note that actually only very few CMS have been either proposed or are 

being developed by specific communities. Nevertheless, those CMS that have been 

identified can roughly be classified into three categories. The first type of CMS is 

regionally limited and only targets the study of processes inside a particular region. It 

commonly involves a collection of independent third-party model systems or tools along 

with regional data sets that drive these models. In this case community members enrich 

the CMS by submitting their models and accompanying data that have been collected 
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and compiled for specific purposes and time frames. A typical representative of this 

group is the Chesapeake Community Modeling Program (CCMP), hosted by the 

Chesapeake Bay Research Consortium (CRC, 2010), an open source system of 

watershed and estuary models that are dedicated to the study of the Chesapeake Bay 

region on the eastern shore of the US. It contains an assembly of watershed, 

hydrodynamic, biogeochemical models and additional modeling tools, along with the 

Chesapeake Bay Environmental Observatory (CBEO) data. However, the involved 

models are standalone executable programs, sometimes are license restricted, and in 

general do not provide a true “side-by-side” placement having used similar grid or mesh 

assemblies, model run timeframes and identical data sets to drive the model runs. 

Rather, the current focus of the Chesapeake Bay modeling community is more on the 

application and amelioration of those models, than the construction of more 

comprehensive model systems via integration. Yet, a set up of this structure permits the 

addition of other modeling efforts and the community can easily agree on a certain event 

or time frame that needs attention with several spawned independent modeling efforts 

running side by side.  

 

Alternatively, a CMS in the second category centers on the use of one specific or 

monolithic computational code often organized in a modular software architecture. While 

this model architecture typically features some degree of flexibility by allowing the on- 

and off-switching of a set of predefined modules it makes the extension more 

cumbersome as change requests need to be submitted which are then integrated (or not) 

(Kuo et al., 2004). In this case the development group will determine the usefulness of 

the request and then extend the code, which makes this a potentially time consuming 

process. Of course, the advantage lies in the fact that the development team can control 
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version creep as well as test and validate prior to release. A typical example of this type 

of CMS can be found in the meteorological community in which the MM5 

(PennState/UCAR Mesoscale Modeling 5th Generation, MM5, 2003) or the more recent 

Weather Research and Forecasting model (WRF, 2010), have been designed for 

mesoscale numerical weather prediction (Michalakes et al., 1998; 2001). The WRF 

model development is conducted through a set of sixteen lead groups, each of which 

concentrates on one particular task, such as the development of numerical software, the 

maintenance of model architecture, and the integration of models from related domains. 

A similar case is the family of three dimensional ModFlow codes (USGS, 2009) used to 

model sub surface flows (another popular system is ParFlow; LLNL, 2010). Its modular 

structure has enabled the integration of some additional simulation capabilities, for 

instance, simulation of surface-water, solute transport, aquifer-system compaction and 

land subsidence.  

 

There is an entire other class of community type systems that could also fall into this 

category. These concern codes for the simulation of river, estuarine and coastal process 

and encompass quite a long list with codes such as DELFT3D (the newest member 

added in January 2011 from DELTARS, http://www.deltares.nl/en), ROMS, TOMS, 

EFDC, SELFE, CH3D to name just a few from this list. It is clear that each of these 

codes has its group of followers and strictly speaking once it is more than a handful then 

one could actually think of it as a user community. However, we do not seek to explore 

this line of reasoning because there are quite a number of codes in this sub-domain 

(unlike for example ModFlow/ParFlow or MM5/WRF), and the estuarine/coastal 

modeling community is in fact quite divided on whether a specific code is better than 

another. Also, for many of the codes the community is not engaged in a coordinated 
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effort to improve these codes (this is often left to the original developer or an institution 

that adopted the code) that are either left alone as is, or are being “bastardized” into a 

myriad of derivatives as the original source code is altered by each individual who 

downloads the latest known documented version. Because this specific code landscape 

is so diverse we decided not include it into our discussion, however felt it worth 

mentioning.     

 

While the idea of forming interest groups to develop a new monolithic code structure has 

the advantage of bringing many minds to bear on the development thus ensuring 

substantial intellectual focus and breadth, it is a fairly time consuming task because of 

the large development group and the need for an organized versioning system. In 

addition, the tight source code control typically delays the transfer to other operating 

systems and also prevents the harnessing of a much broader community for code 

contributions. This in turn limits the incorporation of modules and externally developed 

code (including legacy code) and also the porting and integration of code segments 

written in other programming languages.   

 

The third type category CMS has a generic component-based modeling framework that 

can integrate models and build up multi-component model systems thus permitting a 

substantial degree of flexibility. Examples are the Community Surface Dynamics 

Modeling System (CSDMS) (Peckham, 2008), the Partnership for Research 

Infrastructures in earth System Modeling (PRISM) (Valcke et al., 2006) and the Earth 

System Modeling Framework (ESMF, 2010). The CSDMS uses a strategy called 

Common Component Architecture (CCA), which involves a set of tools and standards for 

modularizing component modules (Bernholdt et al., 2006). It also contains a language-
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interoperability tool called BABEL (Dahlgren et al., 2007), and a Graphical User Interface 

(GUI) for linking component modules within the high performance computing 

environment called Ccaffeine (http://www/cca-forum.org/ccafe). BABEL can generate 

“glue codes” for component modules written in different programming languages, 

including C, C++, Java, Fortran and Python. The CSDMS currently involves a variety of 

terrestrial, marine, coastal and hydrological modules that originate and were submitted 

by community members, and have been or will be modularized as linkable component 

modules. The PRISM framework employs a stand-alone coupler called OASIS to handle 

synchronized exchanges of coupling information between numerical codes, a Standard 

Compile Environment (SCE) to retrieve and compile source codes, and a Standard 

Running Environment (SRE) to maintain model execution. A child model of PRISM is 

portable, usable independently and interoperable with siblings, and freely available for 

research (Valcke et al., 2004). Finally, the ESMF framework is a hierarchical collection of 

components that can be combined to form larger scale models such as the atmospheric 

circulation model (GEOS5) that NASA deploys at its Goddard Space Center. 

Components can be comprised of physical domains on the earth surface such as 

hydrologic domains (lakes, rivers, etc.), but also chemistry, vegetation and catchment 

processes, as well as atmospheric turbulence and radiation models. The system permits 

the use of parallel computing environments and through its coupler functionality the 

module execution in sequential or concurrent mode (Hill et al., 2004; Collins et al., 2005).         

Coupling frameworks on the other hand seek to provide code into which external code 

can be embedded or linked to in an attempt to overcome difficulties that one encounters 

during the process of model integration, i.e. disparate model interface definitions, mixed 

programming languages, difference in data semantics, and incompatible spatial and 

temporal scales etc (Holzworth et al.,2010). Since they can provide technical supports 
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and participatory platforms for community modeling, they represent a promising 

alternative path to develop a CMS and as such warrant a separate section in our review.   

 

2.3  Using Coupling Frameworks in Developing CMS 

2.3.1 Components of Coupling Frameworks 

The literature is quite rich on approaches of how coupling frameworks could be designed 

and it has been reported that the advancement of coupling frameworks and increased 

code commonality facilitate the creation of more cohesive and collaborative communities 

(Killeen et al. 2006). We will try to give an overview on those that seem to be the most 

prominent ones currently being pursued. In a somewhat simplistic view, coupling 

frameworks are software layers that “glue” together component or modules during run 

time in such a fashion that data can be moved in and out of these components together 

with time (time manager) and spatial (re-gridding or spatial interpolation) control. In other 

words, as long as each of the components or modules abides by the rules and protocols 

set forth by the interface (or “glue”) definitions any code can be linked to another code 

during run time. When trying to incorporate legacy codes this leads to the need of writing 

so-called wrappers that mimic the coupling framework interface and hide the legacy 

codes’ historic I/O definitions. While the range of features of a coupling framework 

largely depends on the requirements of its problem domain, we have tried to identify the 

most common ones that can be summarized as follows: 

 

• Model standard or protocol: is the kernel of coupling frameworks that 

commonly comprises standard interfaces that component modules should 

comply with, descriptions of model structure, data model, metadata tags, and 

some other abstract standards. 
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• Module Library: Modules represent context-independent software units that can 

be separated from their original code base and turned into standalone 

executables with moderate change (Ciupke and Schmidt, 1996). They are 

standardized, portable, and usually are made available in form of a dynamic-link 

library (DLL) or a COM object. A module can encapsulate scientific concepts and 

algorithms or just be a service module. 

• Data Analyst: It contains tools for data analysis, for instance, geospatial data 

processing, data statistics, data interpolation or extrapolation etc.  

• Toolbox: It contains sophisticated tools and utilities that facilitate the 

development of component modules, such as optimizer, ODE solver, unit 

converter, tools for wrapping or converting legacy codes, data flow monitors etc.  

• Workbench: is a platform for model linkage, execution and management, which 

usually supports graphical, icon-based model construction (Maxwell and 

Costanza, 1996).  

 

Studies on coupling frameworks can be traced back to the 1990s, and the Modular 

Modeling System (MMS, Leavesley et al., 1996a) is an early attempt. The MMS 

represent a hybrid approach between a traditional stand-alone model system and a 

component-based coupling framework. It is similar to the former where modules stay as 

source code files and will be compiled and linked as executables during the linking 

process, and on the other hand, incorporates most features of the latter as summarized 

above. The only exception is the absence of the standard interfaces that contribute to 

make modules compatible.  Bongartz et al. (2003) pointed out that the MMS is an 

objected-based rather than an object-oriented coupling framework, which does not 

support features such as abstraction, inheritance, and encapsulation. David (2002) then 
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adopted the basic idea of MMS, and presented a pure Java, object-oriented framework 

called Object Modeling System (OMS). One highlight of the OMS is that it takes 

advantage of the introspection feature of the Netbeans (http://netbeans.org/) 

Independent Development Environment (IDE), thus supporting integration of component 

modules via metadata-tagging and reflection techniques (David et al., 2004). The same 

idea can also be found in the Interactive Component Modelling System (ICMS, Reed et 

al., 1999; Cuddy et al., 2002) and The Invisible Modelling EnvironMent (TIME, Rahman 

et al., 2003; 2004a). While the former is built by a self-developed C-like language along 

a debugger called ICMSBuilder, the latter is born from the .NET IDE (Meyer, 2001). The 

introspection mechanism embodies the concept of inducting the declarative language 

into model development. Fekete et al. (2009) presented the idea of developing a 

declarative framework called the Next generation Framework for Aquatic Modeling of the 

Earth System (NextFrAMES), which attempts to provide a high level abstraction of the 

scientific tasks. It provides an eXtensible Markup Language (XML) schema for 

describing model structure, along with a run-time engine that interprets the modeling 

XML, loads the modules, establishes the linkage, and executes the model (Lakhankar et 

al., 2008). The NextFrAMES centers on using the declarative language to integrate 

component modules, whereas the Spatial Modeling Environment (SME, Maxwell and 

Costanza, 1994), another early attempt of coupling framework, focuses on integrating 

component modules encoded in declarative language. It employs commercial 

declarative modeling environments like STELLA (www.iseesystems.com/softwares/ 

Education/StellaSoftware.aspx) to create modules that perform certain computations 

over a spatial unit, e.g. a grid cell. Those modules can then be loaded to the library, 

converted to C++ objects and executed within the geospatial context (MaxWell and 

Costanza, 1995; Maxwell, 1999). The declarative modeling approach (or system 
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modeling) is advantageous in linking elements declared in the model with entities 

declared in a distributed knowledge ontology, however, the absence of a standard and 

common declarative modeling language often slows its reuse in other applications 

(Argent and Rizzoli, 2004; Argent, 2004).     

 

The most representative coupling frameworks that incorporate the common features 

summarized above are the Open Modeling Interface and environment (OpenMI, 

Gregersen et al., 2005; 2007; Moore and Tindall, 2005), the ModCom framework (Hillyer 

et al., 2003) and the Tarsier environment (Watson et al., 2001; Watson and Rahman, 

2004). These linking kernels represent a set of standard interfaces that describe, link 

and run compatible models (Knapen, 2009). Since integration work is handled solely by 

the interfaces and such remains de-coupled from the “scientific” modules, module 

development is fairly uncomplicated with few and manageable constraints. Another 

alternative has been presented by Campbell et al. (1998) who introduce the Dynamic 

Information Architecture System (DIAS) that uses standard abstract classes to specify 

“entity objects” and their dynamic behaviors.  The “entity objects” conceptualize the real-

world entities in ecological systems such as atmosphere, ocean and fish, and the 

dynamic behaviors represent simulation models. The DIAS allows building, manipulating 

and simulating complex ecological systems, in which multiple objects interact via 

multiple dynamic environmental and ecological behaviors (Hummel and Christiansen, 

2002).  

 

We briefly introduced the architecture of a group of coupling frameworks above. They 

are selected because they represent different efforts made for the progress of coupling 

frameworks.  In the following section, we will discuss in more detail on associated 
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techniques of coupling frameworks, as well as the commonalities and divergences of 

those coupling frameworks.  

 

2.3.2 Modes of Integration 

Bulatewicz (2006) summarized four approaches based on how model codes are 

integrated: the monolithic approach, the scheduled approach, the component approach, 

and the communication approach. In the monolithic approach, pieces of code are taken 

from different programs and merged together to form a new program. As the result of 

introducing the concept of modular and hierarchical decomposition of models and the 

subsequent emergence of the object-oriented programming design as the dominant 

programming methodology, models have become much more modular which has served 

as a successful base for the advancement of integration approaches (Padulo and Arbib, 

1974; Gamma et al., 1995). The other three approaches are similar in their using of code 

blocks and as such resemble in the modular structure of the monolithic code approach 

but they differ in their code functionality and arrangement. In the scheduled and 

communication approach, the software components are independent models conducting 

scientific computations, and execute in a scheduled order and through messaging 

passing. The referred models can be further decomposed as a set of fine-grained 

software components each on which would be responsible for a specific function; this 

sub-division of a sub-division represents the main idea of the component approach. 

Among the coupling frameworks we mentioned here, the NextFrAMES falls into the 

scheduled approach group, while the SME, DIAS and Tarsier adopt the communication 

approach, and the rest utilizes the component approach.  
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In contrast to the previous classification approach, Brandmeyer and Karimi (2000) 

presented a classification of methodologies using a five-layered pyramid with ascending 

order of complexity and sophistication: one-way data transfer at the pyramid base, loose 

coupling, shared coupling, joined coupling, and finally a layer on top for the tool coupling 

approach, as shown in Figure 2.1.  

 
 

 

Figure 2.1 Classification of Coupling Methods according to Brandmeyer and Karimi 

 
 
The lowest level, i.e. the one-way data transfer, in which two completely separate 

models have a single directional data transfer requiring manual user control, may not be 

even taken as a genuine coupling method. In this approach it is the users’ responsibility 

to access the output of one model and adapt or re-format it to be the input of another 

model; an approach that is very common. The next level upgrade of this method is the 

loosely coupled approach, which supports bi-directional data transfer and permits users 

to be entirely hands-off on the data transfer. This approach works off a list of 

standardized file structures in which one program is expecting a certain file to appear in 

a specific sub directory at some point during run time, and vice versa. In the shared 



20 
 
coupling approach, models are integrated with the aid of a shared component, for 

example through a GUI or a database. While models in these first three approaches stay 

and execute as independent applications, the two remaining higher-level coupling 

schemas feature a higher degree of integration. In the joined coupling method, one 

model takes the dominant role and the other models are integrated via plugins, thus 

becoming secondary code insertions into the main or lead code. The concept of the top-

level tool coupling is a hybrid approach representing a combination of the ideas 

embedded in the shared and joined couplings.  

 

In our opinion, either classification scheme is as valid as the other as they provide an 

attempt to systematically list the various approaches. Inevitably, many of the model 

codes, frameworks, and coupling approaches mentioned in this manuscript can be 

classified according to these two schemas and it is less relevant to find a place for each 

and everyone in the schemas presented, than to simply outline what the underlying 

ideas are.    

 

2.3.3  Component Model Standardization 

Ideally component modules should be independent standalone code entities that can be 

analyzed separately and then be merged to form more complicated model systems 

(Voinov et al., 2008). For some of the coupling frameworks introduced earlier, i.e. 

OpenMI, Tarsier, and ModCom, component modules are compiled into dynamic link 

libraries (DLLs) which can be loaded by the execution manager at run time. In other 

coupling frameworks, component modules can be pre-complied source codes (as in 

MMS) or metadata-based models specified by declarative languages (in SME) (Abel et 

al. 1994). While a component module commonly remains as a “black box” to the external 
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environment, some degree of standardization can be achieved fairly easily if the 

component module is modified to expose an agreed upon set of information. There are 

two requirements for this type of standardization. First, while component modules of an 

integrated model typically execute in sequence or parallel being controlled by a run time 

manager, the underlying technology is based on a small set of designated methods 

embedded in the source codes, which are called to perform initialization, main 

computation and termination. In this approach each component module belonging to a 

coupling framework must use consistent method signatures which the run time manager 

can recognize even it requires customization. For example, the standard interface of the 

OpenMI (OpenMI, 2010) contains the methods Initialize(), Prepare(), GetValues(), 

Finish() and Dispose() etc., whereas that of the ICMS contains initialization(),main() and  

finalization(). We have listed a summary of these and other methods in Table 2.1. 

 

The second requirement is that component modules should expose their input and 

output definitions so that a linkage can be set up via mapping the output of one module 

to the input of another explicitly or implicitly. Some coupling frameworks adopt a 

metadata-based approach, in which component modules are required to self-document 

their source codes, where input/output properties will be assigned to certain variables 

along with other metadata. The TIME and the ICMS frameworks introduced earlier 

feature this type communication approach. While TIME relies on the metadata-tagging 

feature given by the third-party .NET environment, ICMS achieves this through a 

proprietary declarative programming language called MickL (Rahman et al., 2004b). The 

OMS and the NextFrAMES approaches are similar cases but instead of embedding 

metadata annotations in the source codes they define input/output quantities using XML-

encoded declarations in external files. A more common approach is to specify exchange 
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items in standard interfaces. For example, component modules using OpenMI should 

implement the IExchangeItem interface, which specifies exchanging items as Quantity 

and Elementset. A Quantity contains metadata of a variable, like ID, description and unit, 

etc, while an associated Elementset provides spatial information of the Quantity. 

ModCom uses an approach that is quite similar to OpenMI, where component modules 

need to implement the SimObj interface. The Input/output variables are defined as 

SimData class and can be exposed via the ISimObj.Input or ISimObj.Output properties 

(Hillyer et al., 2003). 

 
 
                    Table 2.1  Summary of technologies of the coupling frameworks 

Short 
Name 

Model 
Builder 

/Simulation  
control 

Component 
model format
(Acceptable 

Source 
codes) 

Methods in 
standard 
interfaces 

Input/output 
specified in 
component 

models 

Communication 
mechanism 

MMS GUI   Xmbuild 
Executables/ 
Source codes 
file(Fortran/C) 

declare(), 
initialize(), 

run(),main() 
N/A 

File transfer or 
sharing central 

database 

SME Configuration 
file 

SMML 
Object(C++/ 

Java,Fortran,C) 
N/A Specified in 

Frame classes Message passing 

ICMS GUI  
ICMSBuilder plugin(MickL) 

initialization(), 
main(),finalizati

on() 

Variable/fields 
attributes 

Input-Output 
mapping 

DIAS 
GUI(GeoView

er)/Context 
Manager 

N/A(Any) N/A 
Register 

input/output 
parameters 

Indirect 
communication via 

domain objects 

Tarsier GUI(Tarsino) DLL(Bortland 
C++ ) execute() RegisterFields 

function 
Data sharing and 
message passing 

OMS GUI(Model 
Editor) 

Jar(Java/ 
Fortran/C) 

init(),run(), 
cleanup() Attribute Editor Input-Output 

mapping 

ModCom GUI/ISimEnv 
interface 

DLL(Any 
supporting 

COM) 

StartRun(), 
EndRun(), 

HandleEvent() 

Input/Output 
Class 

Message passing 
interface and I/O 

actions from/to disk 
files 

TIME GUI 
DLL(VB/C#/ 
Fortran/C++/ 

Java) 
runTimeStep() Variable/ 

fields attributes 
Input-Output 

mapping 

OpenMI 
GUI 

Configuration 
Editor 

XML file(.omi) + 
DLL(Any) 

initialize(),Prep
are(), 

GetVaues(), 
Finish(), 

Dispose() 

Input/Output 
Class 

Request-reply 
mechanism 

NextFrA-
MES XML file plugin(C/C++) initialize(),exec

ute() 
XML 

statements 
Input-Output 

mapping 
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The above requirements for standardizing component modules are discussed under the 

assumption that they are written using a programming language that is supported by the 

coupling framework. For example, for the .Net version of OpenMI, component modules 

can be encoded using VB.Net or C# programming languages which allow the run time 

manager to invoke the embedded methods and parse input/output items. In contrast, for 

a large number of modules that are written in other languages OpenMI is not directly 

usable. The mixed-language issue could be addressed by performing language 

translations and re-coding, either manually or using translation tools (e.g. JNBridge, 

www.jnbridge.com). However, neither manual transformations, which can be 

complicated and prohibitively time-consuming, nor the translation tools, which often have 

difficulties to adequately translate complex programs, provide for a high degree of 

success. Alternative approaches seeking to overcome of the aforementioned difficulties 

center on the design of “glue” code interfaces (Argent and Rizzoli, 2004) written in 

conventional programming languages with the intent to wrap the original programs. This 

idea has been adopted by the OpenMI, which provides a set of wrapper interfaces 

assisting the migration of legacy code (note that this works only for those codes that can 

be executed in compatible batch mode).  

 

Another alternative approach is the use of web services which support machine-to-

machine integration and interoperation of web-based applications. This idea would entail 

the creation of web services based modules that can be accessed via standard 

interfaces, such as the Web Processing Service (WPS), an Open GeoSpatial 

Consortium standard, or customized web services designed for model communications 

(Horak et al., 2008). Figure 2.2 shows a simple example, where Model A is a 

standardized model located in one machine, and Model B represents a web service 
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based model located in one remote machine. On the local side, an additional wrapper 

would be needed in order to tap into the web services of model B.  

 
 

 

Figure 2.2 Communication of Web Service based Models 

 
 
2.3.4 Communication mechanisms 

Data exchange is the primary communication task between modules within a modeling 

system. In some early integrated models, modules achieved integration through 

transferring data files or sharing databases only. For example, Leavesley et al. (2005) 

coupled the BOR RiverWare model (Fulp et al., 1995) with the MMS via a shared 

relational database. The MMS simulated streamflows and wrote the results into a 

database, while the RiverWare model read them and proceeded to evaluate reservoir-

management strategies. To facilitate this setup customized data management interfaces 

(DMIs) need to be written for assisting the database to bridge the communications 

among the participating actors (Leavesley et al., 1996a; Leavesley et al., 1996b). This 

repetitive reading from and writing into a database approach mostly suffers from slow 

execution times slowing down the overall model progression. As a result of IT 

infrastructure growth on data pipelines and improved data and machine communication 

protocols, most coupling frameworks now seek approaches that allow component 

modules to communicate dynamically and seamlessly in addition to using new 

paradigms of how data collections can drive physical models (Gourbesville, 2009).   
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One approach adopted by some coupling frameworks is based on a request-reply 

mechanism. An example for this type of approach is again the concept behind OpenMI. 

During the initialization phase, it requires each compliant model to implement the 

“GetValues” method which allows the retrieval of data from another OpenMI compliant 

module during run time. The OpenMI uses a purely single-threaded architecture where 

only one data request is handled at any time (Fortune et al., 2008), however it now 

includes both quantitative (numbers) and qualitative values (such as “dry” or “wet”) as 

descriptors.  

 

Another approach can be described as input-output mapping. In some coupling 

frameworks the linkage between two component modules can be explicitly specified by 

matching the output of one module with the input of the other using GUI tools. For 

example, the ICMS provides a dragging-and-dropping platform where component 

modules or model objects (e.g. sub-catchment, stream) can be connected via a link-

arrow. The underlying connection is then defined by configuring the link properties. As a 

modification to this approach some coupling frameworks such as NextFrAMES specify 

those linkages implicitly; for the case of NextFrAMES via defining input/output 

components separately in a modeling XML file including the definition of variables 

passed. The variable names are then mapped to related variables declared in the 

sources codes of the plugin embedded in a component model (Fekete, 2009). This type 

of semantic link enables the data transfer from one module to the other, with the added 

advantage that point-to-point mappings often avoid semantic ambiguity and confusion. 

Note that this approach requires the need for a sequential execution of the component 

modules to ensure that a data provider model is executed before the next-in-line data 

consumer. From this point of view, this approach lacks some of the flexibility inherent to 
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the request-reply mechanism, which supports triggering the execution of a data provider 

model whenever it is needed. The last approach in this line is based upon in-memory 

data sharing and message passing mechanism. The Tarsier framework is an example, 

in which the model structure and communication protocols are based on the ‘observer’ 

pattern of client-supplier computing (Gamma et al., 1995). Data can be registered as 

“usees” and shared among models and tools called “users”. If two users use the same 

usee, they are implicitly linked. When one user changes the usee, it will send a message 

to the other user, which will respond immediately to the data changes (Watson et al., 

2001). The message passing is handled by the SendMessage and ReceiveMessage 

methods implemented by users.  

 

A key prerequisite of establishing valid communications between modules is that these 

modules are interoperable. Howie et al. (1996) defined interoperability as the ability of 

different programs to share and process information irrespective of their implementation 

language and platform. In the hydrologic domain, the component modules should also 

be interoperable with respect to spatial and temporal scales which could differ in format, 

resolution and reference system.  For example, regional climate models mostly provide 

meteorological estimates (precipitation, temperature, air humidity and wind speed) with a 

spatial resolution of a few kilometers, whereas distributed hydrologic models are 

normally built up for higher-resolution analysis with grid sizes in the tens of meters range. 

When coupling them together, a step of downscaling transformation should be put in the 

middle in order to reconcile the scale difference. The downscaling could be carried out 

via different approaches. For example, Marke et al.(2001) presents a statistic approach 

that introduces the correction of biases into a pragmatic approach for the downscaling of 

precipitation (Früh et al., 2006), and Cubasch et al. (1996) investigates approaches of 
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direct interpolation of the nearest grid points, time-slice and statistic downscaling 

experiments.  

 

It is clear that the degree of interoperability will therefore hinge on the degree of 

sophistication that has been implemented in the “interoperability tool box”. Unit 

conversions, syntactic (format) transformations, temporal and spatial interpolation and 

extrapolation capabilities, semantic mediation (for example of keywords and variable 

names) are all services that are ideally embedded into this tool box which should be able 

to automatically act whenever it detects an incompatibility. Currently, the majority of the 

coupling frameworks feature only a limited set of transformation tools.  

 

2.3.5 Coupling Frameworks and their Use for CMS 

As pointed out in the previous sections coupling framework exist in a number of flavors 

using different implementation strategies. They basically fall into two categories; those 

that use declarative statements in which the number and type of modules are recorded 

as well as the sequence in which the modules will be called, and then those that use a 

graphical user interface of some sort allowing the construction of module execution 

sequences using visual aids.  The former typically uses a set of configuration files to 

describe the overall model structure, i.e. component modules and their connections. An 

engine accesses the configuration file at runtime, parses the model hierarchy, loads 

specified component modules, invokes the model computations, and performs the model 

I/O. Into this category we can group NextFrAMES, SME and PRISM. For large model 

composed of many component modules, however, the preparation of the configuration 

file(s) can be quite complicated and time-consuming in addition to requiring users to 

have a clear understanding of the coupling hierarchy. 
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Working with a GUI workbench is a lot more user-friendly of course and from a users’ 

point of view visual aids for dragging and dropping connections supported by drop down 

menus to navigate module libraries is quite simpler than encoding configuration files. 

Examples for coupling environments providing GUIs include OpenMI, ICMS, and OMS. 

In most of these systems, an integrated model can be exported as a project file, which 

can be re-loaded to the workbench, thus providing some degree of repeatability and 

provenance.  

 

Whatever the adopted approach is, we believe that coupling frameworks can serve very 

well as the backbone of a CMS. One of the key advantages lies in the fact that legacy 

code can be migrated into the environment, admittedly with some work, so it complies 

with the necessary I/O and interface definitions. However, the convenience of legacy 

migration is not the only aspect to consider as there are also the frequency with which 

the coupling framework may experience upgrades and changes as it matures further 

(hence, how mature is the chosen one?). Additional points to consider concern the 

extent of the existing library of compliant modules and codes, whether or not the system 

enjoys a large group of developers or an active user community from which to draw 

support, a rich support library that contains peripherals and visualization applications, 

and if the framework supports high performance computations on parallel machines or 

the cloud.  

 

Among the discussed coupling frameworks, NextFrAMES is still under development, and 

some of the others such as the OMS and the DIAS only have few applications to date 

(Sydelko et al., 2001; Kralisch et al., 2005). The ModCom framework while developed by 

a (small) group of researchers and therefore having some manpower behind it appears 
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to have found little acceptance in practice; we found little evidence in -form of published 

references during the literature search that would demonstrate use of it in the wider 

modeling community. Also, being built on a Unix-based platform, MMS and SME may 

not have the chance to gain extensive popularity in the largely Windows-based 

hydrologic user community. Those frameworks developed using less compatible 

languages such ICMS (using MickL) and Tarsier (Borland C++) may be hindered in their 

degree of utilization and spread in the community. However, TIME and OpenMI have 

attracted a fairly large group of researchers, with TIME having incorporated most of the 

well-known hydrologic models in Australia (Bari et al., 2009; Rassam et al., 2009).  

2.4 Summary  

In this paper we attempted to review current efforts in building modeling systems for the 

hydrologic community and to summarize some of the salient points, both advantages 

and disadvantages, of the systems that we have been able to review. We deliberately 

focused on systems that are directed towards the hydrologic community with some 

efforts on the periphery, such as atmospheric or estuarine/coastal modeling systems. 

We felt that these efforts have a place in this review as they are related to the hydrologic 

realm and also demonstrate some basic features that are potentially common to any 

community modeling system regardless the specific community. The paper focuses on 

the use of two distinct strategies to establish a Community Modeling System: the first 

focuses either on a geospatial extent as a defining frame, or uses a single monolithic 

code, or uses a single complex multi-module code base; and the second focuses on 

coupling (or “glue”) frameworks bringing together codes under one umbrella. 
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We classify current CMS into three categories. The first one uses a specific region as an 

organizing principle for which any number of models can be developed with no particular 

requirement as to what these models should be. This somewhat lose organizing 

principle has the advantage, however, that additions are quite easily accomplished and 

exchange of data, information and results is fairly straightforward. The real strength lies 

in the ability to execute parallel efforts and to compare results that were arrived at using 

different methods. The next group uses a single code structure as the underlying 

organizing principle, i.e. instead of single-region-multiple-codes, it organizes around the 

idea of single-code-any-region. A key advantage in this system is that a single code 

used by the entire community allows for a high degree of sophistication of this code as 

the pool for suggestions and improvements is vast. In addition, it limits the need for a 

large set of pre- and post processors as the same utilities are used by everybody and 

also allows easy exchange of I/O data among fellow users. The third group concerns 

multi-module modeling frameworks that seek to combine the computations of processes 

in many geo-volume strata addressing the linkages that exist between the movements of 

water and the many bio-, chemical-, and physical (and even economical and life cycle) 

processes that are present in the hydrologic realm. The key advantage in these systems 

clearly lies in their potential to provide more holistic views of the environment in which 

the complex melee of coupled processes are accounted for. Community contributions to 

code development or benchmark case studies are possible in these systems as many of 

them feature gateways for externally developed code insertions in case the default 

modules need to be swapped out.          

 

Our second focus was on highlighting the features of coupling frameworks and how 

these features pertain to CMS development. In short, it is fair to say that they offer a 



31 
 
number of advantages for the development of a CMS. The advantages of using existing 

coupling frameworks include: 1) The component-based architecture enables the CMS to 

incorporate new component modules easily. This feature can make a CMS a powerful 

tool and also create the spirit of a true community environment. 2) Coupling frameworks 

provide infrastructure for mediating the execution and communication between quite 

disparate models, thus community members only need to focus on the migration of their 

own models. 3) The portability and reusability features of compatible modules enable 

users to construct more complex code assemblies that have a wide range of applications. 

4) Legacy codes can be wrapped to become compliant modules typically without the 

need for extensive code modifications by using development tools.  5) Some coupling 

frameworks support parallel computations, which can be possible venue for improving 

modeling efficiency. 6) A potentially large user community provides a good feedback 

pool that can be used to improve the coupling framework.  

 

There are, however, a few disadvantages as well. First, some of the frameworks are 

established at a basic computational level, often requiring a somewhat steeper learning 

curve for using the chosen coupling framework. For example, a coupling framework may 

provide a standard set of interfaces encoded in certain programming language, which 

makes it difficult to adopt or use if the user has little to no experience using this language. 

Second, when wrapping a piece of legacy code the effort to wrap the code increases 

dramatically if the code is complex and monolithic in its structure and features complex 

data models that are not easily modified to work well with the chosen interface 

definitions. Additional work may be necessary to separate intertwining interfaces and to 

partition and modularize monolithic codes. Third, coupling frameworks have been 

criticized to miss out on the opportunity to formulate a new modeling paradigm that 
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seeks to couple governing equations of the hydrologic processes present in each geo-

volume strata in a holistic fashion. This is to say that the coupling framework may 

perpetuate the existence of inadequate models (and the errors they produce) by 

coupling one inadequate model to another, thus producing a seemingly better outcome 

while in reality only adding faulty results of one model to the faulty results of another. In 

other words, a coupling framework may facilitate data exchange as run time, but does 

not link these models on a more conceptual and theoretical platform.  

 

We pose that future work on the CMS development is likely to happen along a more 

Darwinian evolutionary track: many of the systems presented here are still in a process 

of being developed, while others already have some degree of acceptance, while others 

may or may not survive in the future. In other words, future work will be spread across 

many different pathways and will involve try-outs and testing, as well as observing what 

happens as developments move along. In light of this, it is consequently quite difficult to 

arrive at a verdict as to what is best, or most promising, versus what has little chance of 

surviving or meeting community expectations. For this much of the work currently carried 

out is still too much in its infancy. However, it is also clear that it is hard to predict what 

technological developments will bring in the future and how these developments may 

impact one CMS versus another. For example, the increased use of internet 

technologies such as web services or cloud computing may open up opportunities 

hitherto unknown. There are also other frameworks that could be explored for CMS 

development such as workflow engines. These are relatively new arrivals on the 

computing scene (at least for hydrologic modelers) and have not yet been investigated 

for their suitability to serve as a backbone for a CMS, despite obvious advantages such 

as: a means to record provenance, automatic versioning system, smart connections to 
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web services and any type of data store, ease of library development, coupling of 

workflows from pre- to post processing, to name just a few. The questions that could be 

answered here are how easily legacy could be transferred into workflow activities (or 

actors), or how computing performance would suffer if executed through workflow 

engines, or how applicable or universally transferrable is a CMS when attempting to use 

it any location across the world (or initially perhaps the US).  Future studies could also 

focus on developing a system of CMS in which CMS could be linked through middleware, 

or middleware that permit to push any CMS computation out into the high performance 

computing arena, or frameworks that help to overcome semantic disparity between 

models in general and CMS in particular.  
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CHAPTER 3: DEVELOPMENT OF A HYDROLOGIC COMMUNITY MODELING 
SYSTEM (HCMS) USING A WORKFLOW ENGINE 

 
 
 
Abstract  

Hydrologic models can be conceptualized as a workflow sequence carrying out a suite of 

data-driven operations at various levels of complexity. It involves functionalities of data 

accessing, harvesting, digesting, processing and analysing. In this paper, we present our 

development of a workflow engine (TRIDENT) shelled hydrologic community modeling 

system, which supports customizing hydrologic-modeling-oriented workflows by means 

of sequencing  independent and swappable modules. We focus on developing four 

libraries: a data retrieval, a data processing, a hydrologic computation, and a data 

analysis library of activities. The data retrieval library allows for accessing data from 

online repositories via SOAP or FTP protocol based machine-to-machine 

communications, as well as from varied types of data files such as Excel, SQL database, 

and NetCDF among others. The data processing library is designed to bridge the gap 

between source data and model input data, which performs a number of data 

transformations including geospatial data analysis, interpolation/extrapolation and unit 

conversion. The modeling library consists of a number of activities that encapsulate 

traditional hydrological methods for simulating single hydrological process such as 

evapotranspiration, surface runoff and channel routing. In addition, the modeling library 

includes a semi-distributed hydrologic model, namely the TOPography based hydrologic 

MODEL (TOPMODEL) along with the hydrologic components of the Soil and Water 

Assessment Tool (SWAT). The fourth library encompasses activities for post-processing 

such as uncertainty analysis, data storage and visualization. To demonstrate the 

applicability and feasibility of this modeling environment, a simple hydrologic modeling 
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workflow is developed and applied to Furnace Creek watershed (located in south 

eastern Pennsylvania) for simulating a flood event.  

 

3.1 Introduction 

Hydrologic modeling systems are evolving along the same lines of innovations that 

accompany the increase of computational power (with decreasing costs), internet 

connectivity (volume and speed), and the realization that hydrologic modeling is a much 

more complex task than previously considered because it requires accounting the water 

pathways and stores in all geo-volumes simultaneously. What we mean by this is the 

need to overcome the conceptual separation of subsurface water, surface water, and 

atmospheric water modeling approaches and all the processes that govern and influence 

the flux of water through the environment, and instead to take a holistic view in which 

traditional horizontal layers in the geo-volume are coupled in vertical directions as well. 

Hence, there is an increasing need to develop coupling frameworks for traditional 

(layered) hydrologic models in the context of community modeling systems or as 

comprehensive modeling frameworks. These have been introduced at various levels 

over the past few years and some success has been achieved (Bo and Piasecki, 2011, 

in review); we refer to the referenced paper for a detailed review of community modeling 

systems and strategies to link models together. Some of these approaches are quite 

complex in their structure, such as the Earth System Modeling Framework (ESMF, 2010), 

or the Community Surface Dynamics Modeling System (CSDMS, Peckham, 2008) 

attempting to address as comprehensive a representation of the environment as 

possible. Others focus on establishing a coupling framework in which legacy codes are 

coupled at runtime and progress through simulations hand-in-hand (such as OpenMI, 

2010), while yet others try to build monolithic codes in which a multitude of equations 
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governing flow in the vertical and horizontal directions are numerically integrated over 

the geo-volume (such as PIHM, 2010). However, in none of them important issues such 

as data provenance, repeatability of model executions, and ease-of-adding-to-the-

modeling-environment, linking execution chains from preparing to analyses has been 

addressed satisfactorily so far. The reasons for this are manifold: this could be the result 

of proprietary code and resulting inability to add new pieces, lack of general pre- and 

post processing components, absence of proper model execution and data preparation 

documentation, inadequate code maintenance, or simply being “stuck” with a model 

development strategy that was formed years back and that is not easily changed.  

 

A workflow environment on the other side, presents numerous advantages and 

possibilities that can be utilized when trying to address some of the shortcomings 

mentioned above. For example, the ability to create detailed provenance information for 

each model run allows not only for model run documentation but also the possibility to 

completely record this workflow sequence as a file. In addition, the ease with which 

components can be added and modified is ideal for making this a community modeling 

environment in which formalized testing of new components can take place in addition to 

easily building libraries that contain various versions of the same process encoding, or 

alternative formulations that can be easily swapped in and out of a modeling sequence. 

Other advantages include the coupling with cloud computations and also a plethora of 

auxiliary services that range from data format conversions, to automated data 

annotations, to unit conversions, to the automate degeneration of added-value products 

during post processing to name just a few. Hence, in this study we seek to explore the 

advantages of using a workflow environment for creating a hydrologic modeling 

framework, which is functionally analogous to a coupling framework for modularizing and 
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integrating models and at the same time addressing some solutions to the aspects 

raised above.  We will provide an overview of workflows in general and then the 

TRIDENT workflow engine, followed by a section in which we describe our libraries, and 

then a small case study to show the utility of the developed system. The paper closes 

with a summary of the current state of the hydrologic workflow environment and presents 

an outlook on future activities.   

 

3.2 Workflow Engine 

3.2.1  Overview  

We will use the “workflow” paradigm as a conceptualization for the representation and 

management of distributed scientific computations where we can either encapsulate an 

entire numerical kernel into a single computing node or install the modeling components 

and its sub-components in a sequential execution string (Gil et al., 2007). Workflow 

engines are software applications that can facilitate composing, executing, archiving and 

sharing scientific workflows. Popular and widely used scientific workflow engines for 

scientific computations include KEPLER (Ludäscher et al., 2006), Pegasus (Deelman et 

al., 2005), Triana (Taylor et al., 2003; 2007), Taverna (Oinn et al., 2004) and Microsoft’s 

TRIDENT (Microsoft Research Group, 2009). The latter in particular supports high-

performance computing (on MicroSoft’s “Azure” cloud environment), while it is common 

to all engines to feature the options of parallel or concurrent execution, and distributed 

computations in the Grid environment (Pautasso and Alonso, 2006). All engines provide 

the service of recording provenance, a detailed history of each execution of a workflow, 

including the diagram of the workflow, workflow input/output data, and some other 

metadata associated with the workflow and data products, thus guaranteeing the 

repeatability of specific scientific execution sequences. Additional features like 
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scheduling workflow executions, monitoring workflow progress at runtime, tracking 

sources of errors, determining data quality, and interrogating histories of workflow 

executions are also incorporated (Simmhan et al., 2005; Goderis et al., 2008). All 

workflows can be shared through publication mechanisms or repositories such the 

MyExperiment site (http://www.experiment.org).    

 

It is beyond the scope of this paper to examine the pros and cons of each workflow in 

order to arrive at a best choice. While they differ in their capabilities (for example 

KEPLER has an extensive library for data connections and data manipulations, while 

TRIDENT features tight integration with other MicroSoft software suites such as OFFICE, 

AZURE, or SILVERLIGHT) and also in the way the workbench is organized, they more 

or less provide a similar environment. In our case we decided to work with the TIRDENT 

workflow largely because we had access to it as a beta site tester (this ensured on-the-

spot help and support) and also because much of our previous application development 

had been carried out using MS software stacks. The TRIDENT workflow engine supports: 

(1) high-performance computing, parallel or concurrent execution, and distributed 

computations in the Grid environment (Pautasso & Alonso, 2006), (2) capturing 

provenance information where provenance is comprised of workflow provenance and 

data provenance: the former is metadata associated with a workflow specifying who, 

how, what and which resources were used in the workflow, while the latter is 

complementary metadata describing the derivation flow of data products(Simmhan et al., 

2006; Rajbhandari et al., 2005), (3) sharing workflows through publication mechanisms 

or repositories, for example, publishing workflow on the myExperiment social web site, 

(4) composing workflow via the drag-and-drop manner on a GUI, and (5) automatic and 

holistic execution without any external intervenes. In addition, TRIDENT features an 
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environment for creating interactive workflow components and also provides a fine 

framework for monitoring the execution of the workflow at runtime with extensive error 

messaging which is quite helpful when in the workflow sequence design phase. 

 

3.2.2  TRIDENT Workflow Engine 

While the paper’s focus is on the activity libraries for the hydrologic modeling, it is helpful 

to give a short overview of TRIDENT so as to better understand what the underlying 

technologies are and based on that what the potential is for future expansion. The 

TRIDENT workbench is developed on top of the Microsoft Windows Workflow 

Foundation (WF), a technology for defining, executing and managing workflows. While 

WF requires .Net programming skill for writing and implementing workflows, TRIDENT 

provides a simpler and more flexible way to create and run WF data analysis workflows 

(Microsoft Research Group, 2009). It supports composition, execution, archiving and 

publishing workflows as well as capturing provenance for each experiment. The 

TRIDENT package includes two core applications, i.e. TRIDENT Workflow Composer 

and TRIDENT Management Studio. The former provides a work-board for importing 

activities (execution blocks within TRIDENT), composing workflows by selecting 

activities and configuring their relationships, monitoring the progress and performance of 

workflow execution, and recording workflows for repetitive executions. Activities must be 

pre-complied into the Dynamic Link Libraries (DLLs). The latter provides a powerful 

environment for managing workflows, activities, assemblies, users and workflow 

provenance etc., and moreover, enables users to schedule workflow execution, edit 

workflows by invoking TRIDENT Workflow Composer. A Trident titled SQL database is 

created automatically during the installation of TRIDENT. It records all types of data 

associated with those two applications, for instance, the activities, the workflows and the 
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bonded relationships between a workflow and its activities. Any manipulation on the front 

will be synchronized to the underneath database. This elaborate design allows TRIDENT 

applications to connect to a remote server and load its activities and existing workflows.  

 
In addition, TRIDENT involves a light-weight application tool merely used for invoking 

the execution of a workflow on its connected server, along with a Microsoft Word add-in 

that allows embedding and executing workflows in a Word document. The TRIDENT 

architecture is shown in Figure 3.1. Three workflow archiving formats are supported in 

TRIDENT, i.e. the XML-based file (.xoml), the workflow link (.wfl), and the workflow 

package following the Open Package Convention (.twp). It supports running workflows 

on remote computers, as well as running multiple workflows concurrently on different 

nodes of a Windows HPC server 2008 cluster.  

 
 

 

Figure 3.1 The architecture of the TRIDENT workflow 
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3.3 Architecture of the Modeling Environment 

In a simplistic way using a workflow engine for modeling purposes comes down to create 

a set of general purpose and specific activities, i.e. those units that are responsible for 

actually doing the work in a workflow. Consequently, some thought needs to be spent on 

developing an architecture and building activity libraries that are complementary and 

support each other, especially when trying to sequence them into a workflow. What we 

mean by this is that it would not be very helpful if activities would be created that have 

non-matching syntactic and semantic connectors, just like trying to use an US electrical 

plug in a European socket: neither the plug works (likened to a syntactic problem) nor 

does the same current flows through the appliances (likened to a semantic issue).  

 

The hydrologic community modeling system encompasses libraries of remote/local data 

retrieval, data processing, hydrologic computations, and model post-analysis. A variety 

of workflows conducting hydrologic simulations can be configured in this environment via 

linking up activities from corresponding libraries. These activities are the execution 

modules of the workflow environment and typically feature data I/O “plugs” that need to 

be connected to the next activity in line. This paper presents our current efforts on 

developing these libraries and how they interact with the workflow engine as depicted 

Figure 3.2. In addition to having standard activities such as I/O for files and databases, 

the data retrieval library features activities that can access important hydrologic data 

sources such as from the Consortium of Universities for the Advancement of Hydrologic 

Sciences, Inc., CUAHSI (http://www.cuahsi.org), Hydrologic Information System (HIS) 

water information server, meteorological data from North American Land Data 

Assimilation System (NLDAS-2, http://ldas.gsfc.nasa.gov), and multi-sensor precipitation 

estimates (MPE) data from the National Weather Service (NWS, 
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http://water.weather.gov/precip/). The data processing library also takes on the task of 

syntactically and semantically mediating the heterogeneities between the retrieved data 

and the data sets controlling the forcing of the model computations. It also contains 

activities for manipulating geospatial and temporal data respectively, for instance, 

watershed delineation, unit conversion, and temporal and spatial data interpolations. The 

hydrologic computation library is the modeling kernel, which provides a batch of activities 

for simulating single hydrologic processes along with a migrated semi-distributed 

hydrologic model such as TOPMODEL. In constructing the hydrologic model library the 

question arises whether to recode legacy code (for example written in FORTRAN) into C 

language or in any of the .NET languages such as Visual Basic or C#, or to keep the 

code as is and to embed it into a wrapper that mimics connectivity to the workflow 

engine programming environment which is Visual Studio (more on this in section 3.4.3).  

 

Finally the post-analysis library is designed for tasks such as uncertainty analysis and 

model performance evaluations but could also contains unit conversions for desired 

outputs as well as formatting tasks so results can be stored in custom formats. The 

library, while still under construction, contains some activities that address performance 

evaluations such as comparison of computed and observed discharge or water level 

sequences in terms of hydrograph shape, peak time and amount, and time lag or shifts. 

We also have included performance objective functions such as the sum of squared 

errors, the sum of absolute errors, and the Nash and Sutcliffe factor to name just a few.  

For a complete listing of the developed activities please refer to Appendix A.   
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Figure 3.2  Architecture of the Hydrologic Community Modeling System 
 
 
 
3.4 Building Modeling Libraries 

3.4.1 Data Access Library 

We will first focus on the details of our data access library which is basically a library of 

custom designed activities (in addition to a few standard ones already available as part 

of the TRIDENT installation) that target specific data sources with a bandwidth of 

relevant data needed for hydrologic modeling. Because the objective is to have a 

modeling environment that is applicable anywhere in the US, we focus on data sources 

that provide nationwide coverage.   
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3.4.1.1  WaterOneFlow web services 

WaterOneFlow stands for a family of web services developed by CUAHSI (for a 

definition of WOF see http://his.cuahsi.org) using the Simple Object Access Protocol, 

SOAP. It facilitates retrieving hydrologic and meteorological observation time series data 

from a central metadata catalogue (HISCentral located at the San Diego Supercomputer 

Center) which currently (April 2011) holds metadata information for about 5.7 billion data 

points making it the largest in the world for water data.   Currently about 70 data services 

have been registered in HISCentral reaching from small local data collection efforts, to 

regional information systems, to large experimental sites operated by governmental 

institutions, to large nationwide mission agencies such the US Geological Survey (USGS) 

National Water Information System (NWIS), the Environmental Protection Agency (EPA) 

STORET data store, and some of the National Climatic Data Center holdings. It also 

includes smaller services that are nationwide such as DayMET, in addition to NASA 

remote sensing data derived from NASA’S Moderate Resolution Imaging 

Spectroradiometer (MODIS) remote sensing data sets, output from the National Centers 

for Environmental Prediction North American Mesoscale model and the Daymet 

meteorological model, along with data sets provided by a number of academic entities 

covering specific areas (Whiteaker and To, 2008).  

 

WaterOneFlow acts as a bridge that mediates communications between data servers 

and data consumers. Given the URI of the web services either on local servers or those 

of the HISCentral (for the central metadata catalogue) , a spatial bounding box as well 

as a temporal bracketthe client can interrogate the underlying database to access 

metadata of the site and the variable by sending request of “GetSiteInfo” and 

“GetVariableInfo” respectively. Once desirable data sets have been identified a time 
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series of a specific variable can be retrieved by sending a “GetValues” request when 

giving a variable code, a site code for a given temporal bracket. These web services 

then return a data package consisting of metadata and the data itself which is described 

using the Water Markup Language (WaterML) which is a described XML schema.  

 

TRIDENT offers up an empty shell activity that can connect to web services, which is a 

valuable feature. However, just connecting to a web service is not enough as WOF 

require bounding boxes and also some other information without which they will not work. 

Hence, the workflow sequence designed for use with WOF needs to have some 

mechanisms that feed the basic web service activity with the necessary attributes 

required for the call.  We subdivide the whole procedure into several sub-tasks, including 

1) querying the URLs or IDs of web services capable of providing required data (for a 

given bounding box this can be many), 2) searching and acquiring the information of 

sites and variables such as site codes and variable codes for the next-step data request, 

3) retrieving and parsing time series. These sub-tasks are carried out by three activities. 

Herein, the HIS Central metadata web services (HISCentral) designed for accessing 

metadata of WaterOneFlow web services, sites and variables, are utilized in the 

development of the first two activities. Providing a latitude/longitude bounding box or a 

geospatial data file (containing a polygon, for example watershed boundaries), the first 

activity extracts the maximum and minimum latitude/longitude, then sends a request to 

the HISCentral, and subsequently collects information from all those web services that 

have stations within the specified area. The second activity with given information about 

the URLs or IDs of web services, a geospatial area and a variable name, then parses 

the variable name, retrieves information of associated variables, requests for making 
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selections among those variables, and finally retrieves information of available sites that 

have the required data holdings.  

 

One of the key issues in this activity concerns the semantic mapping of variable names 

to unique parameter codes that are unique to the workflow sequence. In other words, it 

is necessary to map and associate arbitrary variable names (and codes) to a master set 

of variable names (actually codes) that will remain unique throughout the workflow 

process. In this case we use the vocabulary of HISCentral as our “master” accepting the 

fact that this requires user interaction with the activity. More specifically, we require the 

user to map the variable name from the data source requested to the underlying master 

(which can be retrieved from HIS Central via a separate web service; for example a 

variable “temp” would need to be associated with either “air_temperature” or 

sol_temperature” or water_temperature”).  With the semantics cleaned up, a set of 

available sites, and the desired temporal bracket, the third activity invokes the WOF 

“GetVAlues” service. The returned WaterML file is then parsed for the needed 

information, which is then re-formatted into a format that is understood by the next 

activity in the workflow sequence. Figure 3.3 shows the sample workflow sequence 

configured on the canvas provided by TRIDENT.  

 
 

 

Figure 3.3 A workflow of retrieving data via WaterOneFlow web services 
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3.4.1.2  North American Land Data Assimilation System (NLDAS-2) 

NLDAS-2 provides quality-controlled, spatially and temporally consistent, near real-time 

land-surface model (LSM) datasets (http://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php) 

for the entire US. The dataset contains eleven fields that are quite useful for 

land/hydrologic modeling and include precipitation, air temperature, potential 

evaporation, wind velocity among others. Those forcing fields except precipitation are 

derived from that of the National Center for Environmental Prediction, NCEP, North 

American Regional Reanalysis (NARR) data, using a set of temporal disaggregation, 

spatial decomposition and vertical adjustment algorithms (Cosgrove et al., 2003). The 

precipitation field is derived from the gauge-based daily precipitation data product at the 

Climate Prediction Center (CPC) (Daly et al., 1994). The data are 1/8th-degree spatial 

resolution over the continental U.S. domain, hourly frequency, and range from Jan 1st 

1979 to present (Mitchell et al., 2004). Gridded data of all fields are stored in a single 

GRIdded Binary (GRIB) formatted file for each hour. Those GRIB files are archived and 

can be accessed via FTP protocol.  

 

In order to retrieve data of certain fields within a given temporal and spatial bracket, 

three activities are created that function as the downloading sequence for hourly GRIB 

files from the FTP site, as shown in Figure 3.4. The first activity, having specified a start 

time and an end time, generates file names according to the required naming convention 

for the GRIB file download site, and then proceeds to download. The second activity 

contains a modified “degribber” program, WGRIB, developed for manipulating, 

inventorying and decoding GRIB files (http://www.cpc.ncep.noaa.gov/products/ 

wesley/wgrib.html). A table of the eleven variables is then presented to the user  for 

selecting the desired parameter fields.  Gridded data of selected fields can then be 
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extracted from each file by invoking the WGRIB program with scripted commands. The 

third and final activity then clips the requested data sets from the national file using the 

spatial extent definition provided earlier, and then exports them as standardized time 

series.  

 
 

 

Figure 3.4  A workflow of retrieving NLDAS-2 data 
 
 
 
3.4.1.3  Multi-sensor Precipitation Estimates (MPE)  

Multi-sensor precipitation estimates are developed by the National Weather Service 

(NWS) operations at the 12 CONUS River Forest Centers (RFCs). For most continental 

regions, the precipitation datasets are produced using  radar estimates from the WSR-

88D NEXRAD system or from satellite precipitation estimates with gauge-based 

observational data for correction and ground truthing. For mountainous areas, MPE are 

produced by combining long term climatologic precipitation with gauge data. Multi-

sensor data have proven to be more accurate than those produced from a single source 

(Seo,1999; Seo and Breidenbach, 2002). MPE data is delivered using daily averages 

(there is a new hourly product that will eventually be available across the entire US) 

ranging from Jan 1st 2005 to present with a spatial resolution of roughly 4km*4km 

(Hydrologic Rainfall Analysis Project or HRAP grid) and can be accessed via FTP. The 

files are recorded in NetCDF formatted files, and compressed in tar archives.   
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We have packaged MPE data access in three activities similarly to those presented 

before and as shown in Figure 3.5. The first activity is designed to download data files 

within the specified temporal scale from the NWS MPE download site. An additional 

decompressing procedure is embedded in this activity for releasing archived NetCDF 

files. The second activity parses the NetCDF files, and exports precipitation datasets in 

the format of standard arrays. The last activity extracts data within a latitude/longitude 

box or a watershed boundary from the data arrays, and organizes them into 

standardized time series. To this end we have taken the netCDF libraries and embedded 

them into our workflows, so any netCDF file can be accessed.  

 
 

 

Figure 3.5  A workflow of retrieving MPE data 
 
 
 
3.4.1.4  USGS National Elevation Dataset (NED) 

The National Elevation Dataset is the latest elevation data product assembled and 

distributed by the USGS. It is designed to provide seamless raster elevation data of the 

conterminous United States, Alaska, Hawaii and the island territories using a consistent 

datum, coordinate system, projection and elevation unit (Gesch et al., 2002). It provides 

national coverage at a grid spacing of 1 arc-second (approximately 30 meters) and a 

post spacing of 1/3 arc-second (approximately 10 meters), with the exception of Alaska 

that only has a resolution of two arc-second. In some areas, elevation data of a higher 

resolution of 1/9 arc-second are accessible. For all three NED layers, the horizontal 

datum is the North American Datum of 1983 (NAD83), the vertical datum is the North 
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American Vertical Datum of 1988 (NAVD 88) and the projection is a geographic 

coordinate system (decimal degrees of latitude and longitude). The elevation units are 

standardized to decimal meters.  

 

The USGS Earth Resources Observation and Science (EROS) center has provided a 

set of web services that can be incorporated into custom applications for exploring NED 

data and relevant metadata. The core web services encompass the Inventory Service 

that can retrieve dataset information for a desired area of interest, the Request 

Validation Service that verifies and validates the returned information from the Inventory 

Service and composes URL(s) for downloading, and the Download Service that initiates 

download jobs and returns data to users (USGS EROS, 2010). We have developed an  

activity that supports downloading NED data of a specified resolution within a specified 

area making use of the USGS EROS web services . It allows users to select an 

archiving type either zip or tar-zip, a file format, i.e. ArcGrid, or GeoTIFF, or GridFloat or 

BIL, along with a resolution either 1, or 1/3 or 1/9 arc-second, and stores the 

downloaded data in a default folder. This activity can then be connected with the 

decompress activity that first searches the archived files for the ones needed and then 

decompresses them file by file. The workflow sequence is shown in Figure 3.6.  

 
 

 

Figure 3.6  A workflow of retrieving DEM data 
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3.4.1.5  National Land Cover Data (NLCD) 

The National Land Cover Data is provided by the Multi-Resolution Land Characteristics 

Consortium (MRLC). The first generation of land cover database (National Land Cover 

Dataset 1992) was derived from the Landsat Thematic Mapper™ (Vogelmann et al., 

2001). It only covers the conterminous United States, while the next-generation National 

Land Cover Database 2001 derived from Landsat imagery and ancillary data aims to 

cover Puerto Rico, Hawaii, Alaska as well (Homer et al., 2004). NLCD 2001 defines 29 

classes of land cover in total, in which nine classes are only for coastal zones, four 

classes are unique for Alaska, and the rests are for the main continent. Two data 

products recording the per-pixel estimates of the percentage of imperviousness and tree 

canopy are generated additionally. It has a spatial resolution of 30 meters, and uses the 

same horizontal datum as the NED, but a different projection, i.e. Albers Equal Area 

Conic projection.  

 

The process of retrieving NLCD data resembles that of retrieving NED data. Two 

activities are involved to address this task. The first one is responsible for retrieving land 

cover data in a specified area, i.e. a watershed boundary or a latitude/longitude 

bounding box, and the other decompresses the downloaded archives (which are 

encoded in GeoTIFF). Given a desired geospatial extent the activity first collects 

available land cover sources by tapping into the Inventory Service. Users can select 

single or multiple sources, which normally include NLCD 2001, NLCD 2001-

Imperviousness, NLCD 2001-Canopy and NLCD 1992. For each selected source, a 

request containing its attached URL can be composed and then submitted to the 

Validation Service. When accessing the URL, a download ID will be assigned with which 

specified land cover data can be downloaded via the Download Service. The 
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downloaded archives can then be decompressed and placed into designated folders, 

just as for the NED activity.  

 

3.4.1.6  Soil Survey Geographic Database (SSURGO) 

The U.S. Department of Agriculture’s (USDA) Natural Resources Conservation Service 

NRCS) publishes three soil databases intended to support resource planning and 

management at different scales: the Soil Survey Geographic database (SSURGO), the 

State Soil Geographic database (STATSGO), and the National Soil Geographic 

database(NATSCO). The SSURGO database provides the most comprehensive soil 

information, while substantial spatial differences have been reported  between 

STATSGO and SSURGO data especially for small areas and river watersheds (Juracek 

and Wolock, 2002; Lathrop et al., 1995), prompting the need for careful evaluation which 

database to use for what purpose. SSURGO is comprised of a tabular component 

containing information of soil attributes and a spatial component that can be visualized 

and analyzed via a Geographic Information System (GIS). The latter represents soil 

patterns in a landscape, and normally involves six spatial entities delineating the survey 

area boundary polygons, the line features, the point spot features, the map unit 

boundary polygons, the line map units, the point map units as well as a spot feature 

description entity. The map unit boundary polygon features along with the associated 

tabular soil attributes are of more importance in the parameterization of soil component 

for hydrologic modeling.  

 

The NRCS provides a couple of tools for accessing soil data, of which the Soil Data Mart 

(SDM) tool is of the most commonly used one. However, the SDM only supports delivery 

of spatially distributed soil data in tabular form for specified counties or states, which is 
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not user friendly and cumbersome to interpret. The information is distributed in ASCII 

delimited files, and required to be imported into a database just so it can be visualized let 

alone being parsed. To compensate for this, the Soil Data Access (SDA) system offers 

up a suite of web services that enable the request of geospatial data with tabular 

attributes for any area. Even though not all soil attributes can be accessed via submitting 

a single request, the embedded soil attributes in geospatial soil files are sufficient for 

common usages. Otherwise more abundant soil information can be obtained by sending 

SQL queries via the tabular web service. Those web services are based on the OGC 

WMS and WFS standards, and could be customized into TRIDENT activities as well.   

 

Accessing soil data activity requires provision of a latitude/longitude geospatial extent 

and the coordinate system. Acceptable coordinate systems include the WGS84, the 

NAD83 and NAD83 UTM. If selecting the NAD83 UTM coordinate system, providing the 

UTM zone number is optional since the activity can parse the zone number based on the 

given longitude. The SDA tool provides various layers but only covers map unit point, 

line and polygon features together with a handful of soil attributes as well as the survey 

area polygon features. Returned soil spatial data is encoded in Geographic Markup 

Language, GML, and the activity parses the data and exports them into GIS shapefile 

format. However, the current SDA only supports requesting data for a relatively small 

area, thus attempting to access large amounts of soil data would probably fail. This issue 

is expected to be addressed in the future. Figure 3.7 depicts the procedure of accessing 

SSURGO spatial data and adapts them to a specified geospatial extent.  
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Figure 3.7  A workflow of accessing soil data 
 

3.4.2 Data Process Library 

While data processing is one of the most time-consuming steps in a modeling effort and 

often the processing steps are repeatable tasks that lend themselves to be incorporated 

into a workflow sequence. Hence, in this subsection we introduce a number of workflow 

activities that open and establish connections to data centers where data sets pertaining 

to hydrologic modeling can be obtained. The examples given are by no means all 

encompassing, there are many more sources, but they serve as good examples what it 

takes to establish these data processing activities.   

 

3.4.2.1  Geospatial Data Processing 

Watershed delineation or decomposition is normally considered a preliminary task for 

hydrologic modeling. Most geographic information system(GIS) software tools provide 

functionalities for geospatial data processing, including capturing watershed 

characteristics, tracing flow directions, systematizing channel networks and delineating 

watershed boundaries (Beven and Morre, 1992; Wilson and Gallant, 2000; Maidment, 

2002). Accordingly, we have developed a suite of activities carrying out procedures of 

DEM processing for  watershed delineation that are based on procedures  deployed in 

the Terrain Analysis Using Digital Elevation Models,  TauDEM (Tarboton et al., 1991), 

and PIHMgis (Bhatt et al., 2008).  
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The step-by-step procedure of DEM processing is illustrated in Figure 3.8. We have 

dedicated one activity for each of the steps, with one “master” activity that implements 

the whole processing procedure. Aside from the DEM, the external inputs in this 

workflow include a threshold value of drainage area and an ESRI shapefile locating an 

outlet. For each grid, the number of upstream grids that drain to it is calculated. If the 

accumulated value is greater than the specified threshold value, the grid is defined as 

stream. The smaller the threshold is, the more complicated the river system will be, and 

the more sub-basins will be generated. While the outlet is normally located at a stream 

gauge, in some circumstances, the chosen stream gauge is not located on the defined 

stream network. We have thus developed an activity to address this issue. With given 

flow contribution data obtained from the third step of the DEM processing and the sites 

shapefile that could be obtained via calling WOF web services, the activity searches for 

the stream grid closest to the site, and then automatically creates a new shapefile 

containing that point. If multiple sites are present in the WOF downloaded shapefile, the 

one furthest downstream will be used as the target site. The outlet shapefile is not a 

mandatory input however, and without it the delineated exterior watershed boundary is 

identical to the periphery of DEM.  

 

 

Figure 3.8  The step-by-step procedure of DEM processing 
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The process of triangulation aims at generating a triangulated irregular network (TIN) to 

describe the surface morphology (Tsai, 1993). The mesh generation is conducted based 

on Delaunay algorithms (Delaunay, 1934; Tucker, 2001), with watershed boundary, river 

network and other physiographic coverage as restrictive layers. A series of spatial 

analyses programs for converting, smoothing, splitting, merging watershed polygons and 

stream polylines have been selected and wrapped into activities. Those activities assist 

in preparing a single GIS layer that incorporates all geometric and topographic 

information of constraining layers, thus enhancing the quality and improving the 

efficiency for domain decomposition. Aside from constraining layers, a smoothing 

tolerance is required, which is responsible for simplifying the polylines by eliminating 

their fluctuations or extraneous bends while still preserving essential features (Bhatt et 

al., 2008).  

 

We have also exposed some of the processing functions as web services which can be 

accessed via the internet by anyone seeking to process DEM information and needing to 

generate a TIN.  These web services implement the OpenGIS® Web Processing Service 

(WPS) standard specifications, which exposes three standard methods, i.e.  

“GetCapabilities”, “DescribProcesses” and “Execute”. The first two methods are 

responsible for returning service-level and method-level metadata respectively while the 

last method launches the actual geospatial data calculation (Schut, 2007). We have 

developed two activities that can call and consume the responses of these web services, 

one that calls and invokes DEM processing and one that generates a TIN as shown in 

Figure 3.9. Note that even though these two activities basically do the same as those 

described earlier, the code assembly is quite different with the latter open for public 
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access and also potentially being faster depending on the server they reside on and the 

available internet transmission speeds.  

 
 

 

Figure  3.9 The workflow accessing web services for DEM processing and triangulation 
 
 
 
3.4.2.2  Generating Hydrologic Response Unit (HRU) 

The concept of creating HRUs is based on the idea implemented in SWAT (see also 

http://swatmodel.tamu.edu/media/19754/swat-io-2009.pdf). The idea is to partition a 

watershed into a number of sub-basins based on flow attributes and then to sub-divide 

each sub-basin into HRUs as a function of soil properties and land use patterns. The 

HRUs are assumed to have homogeneous hydrologic responses, thus permitting a 

higher degree of efficacy and efficiency by limiting the computational units of the study 

area rather than carrying out computations over every available land use or soil type. 

Constructing HRUs for a watershed requires soil type and land cover data, which can be 

obtained from the National Resources Conservation Services, NRCS, and USGS 

respectively. Consequently, we have developed two activities that access USGS and 

NRCS, for extracting original classification information and performing reclassifications if 

necessary.  
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The first activity, processing land cover data, requires a number of preliminary steps. 

Because USGS uses the Albers Equal Area Conic projection, it needs to re-projected 

onto a geographic projection using latitude/longitude referencing as this is the base for 

the entire modeling effort.  It also needs to clip the grid file to cover the desired extent, in 

case a watershed polygon is provided.  The final reclassifying step is an optional one. 

Aside from classes for coastal zones and Alaska, there are still fifteen to be chose from. 

Because the HRU computation can be time consuming, we decided to introduce the 

possibility of defining a simpler classification system which narrows the original selection 

down to four, i.e. water, medium residential, residential, and agricultural. These new 

classification are described in an XML file that is embedded into the activity and can be 

updated easily.  The activity will create a new grid file and replaces the fifteen original 

classes with the new ones which can then be used  directly for building HRUs. However, 

since this step is not mandatory, the user can also use the original fifteen classifications 

for constructing the HRUs .  

 

When accessing SSURGO spatial data one essential attribute is the feature symbol 

which logically identifies the corresponding survey area or map unit. A symbol can be 

considered as a specific soil combo type with different slopes. Since there might be 

hundreds of different symbols for a fairly small area, it would be quite difficult if one were 

to consider all of them in a modeling effort. It is easier to use NRCS classifications of 

those soil types into four major hydrologic groups, denoted as A,B,C,D together with the 

combinations of two of the hydrologic groups such as B/D, B/C and so on. The 

categorization of multiple soil types into specific hydrologic groups has the benefit of 

capturing characteristics of different soils on some level, and on the other hand can 

reduce the degree of complexity of using soil data.  
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Two key operations are conducted over the SSURGO spatial data file before creating 

HRUs. Since the original extent of a spatial data file is normally specified as a 

latitude/longitude box, extracting spatial information within a given watershed boundary 

is the first task. Moreover, a soil spatial file, for example, a map unit polygon file, 

contains a large number of small shapes identified as map unit symbols. Hence, we first 

introduce a reduction step in which we merge shapes with same identifiers for each 

hydrologic group, i.e. all those that belong to the same hydrologic group. The above 

computations are implemented in a dedicated activity, which takes the boundary 

shapefile and SSURGO spatial soil file as inputs, and exports the updated soil spatial file 

with the soil shapes re-delineated. If the given boundary shapefile contains more than 

one polygon or polyline feature, a single shape covering the entire area is created and 

exported as an updated boundary shapefile.  

 

Constructing HRUs is embedded in another dedicated activity, which apart from the land 

cover and soil data, needs the sub-basin grid data as a key input. The sub-basin grid is 

composed of a number of cells, each of which is denoted by either a sub-basin 

identification number or the no-data identification number. The activity analyzes each 

cell of the sub-basin grid, and requests the land cover and soil type that belong to it. 

Cells with the same land cover and soil type will be accumulated into larger regions. 

Therefore, for each sub-basin, a variety of land cover and soil combinations can be 

generated. It is possible that some combinations only contain a few cells, in which case 

it is not economical to treat them separately as a distinct HRU.  Hence, a threshold value 

described as the percentage of total area can be set in advance which will only allow 

those HRUs to exist that are either equal or larger than this threshold value. The 

accumulated areas of the discarded combinations will be evenly distributed onto the 
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HRUs. If none of the combinations meets the threshold requirement, the one taking up 

the largest area will be set as the only HRU for that sub-basin.  

 

3.4.2.3 Time Series Data Process 

Time series data accessed from diverse repositories are different in terms of unit, data 

type, temporal and spatial resolution. For example, HIS servers mainly return gauge-

based time series with varied data types and units, while NLDAS-2 and MPE provide 

gridded data of different spatial resolutions. In most circumstances, the data formats do 

not meet model input requirements, thus customized activities have been developed for 

each individual data source. Data differs in its syntactic and semantic description in 

addition to not fitting the geospatial locations required, for example on grid points (or cell 

centers wherever the variable is described in the model) in addition to having different 

time stamps that need to be adjusted. We have therefore developed a number of 

activities that perform temporal and spatial interpolations (from “where it is” to “where it 

needs to be” in the spatio-temporal domain) in addition to auxiliary functions such as unit 

conversions.  

 

Unit conversion has been implemented as a web service (this way it is accessible on the 

internet), which uses unit definitions and conversion factors described in an XML file.  

We have defined a default unit for each base unit such as length, mass, and time 

together with conversion factors for any other derived unit. For example, the default unit 

of length is set as “meter” and when trying to convert “foot” to “inch”, “foot” is first 

converted to “meter” by carrying out the calculation specified in the “Conversion” 

attribute of the “foot” field, i.e. multiplying by 0.3048, and then the converted value 

implements the opposite calculation algorithm specified in the “Conversion” attribute of 
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“inch”, i.e. dividing by 0.0254.  Since the units are recognized via their names, a set of 

possible names or abbreviations for each unit is specified in its “Alias” attribute. We have 

also implemented the feature that the user can specify the source unit, desired target 

unit, the variable name and a data array, and after invoking the web service to getting 

back a converted data array.  

 

As an alternative option we have created a workflow activity (as opposed to a web 

service that is called) that also includes an automatic search procedure in which desired 

variables are matched to possible units and where the user can pick a preferred target 

unit for the output variable in question. For temporal interpolation of data points we have 

adopted linear and polynomial algorithms while the inverse distance weighted method is 

utilized for distributing or “moving” data from available gauges to sub-basins. Figure 3.10 

shows a partial workflow of processing data accessed via WaterOneFlow web service.  

 

 

Figure 3.10  A partial workflow for time series processing 

 
 
Commonly needed data operations for NLDAS and MPE gridded data involve temporal 

and spatial aggregations for which we have created a dedicated activity (note that this 

activity is customized for NLDAS and MPE data, which removes a little bit from the 

objective of a general purpose activity, but -it can be further expanded to handle 

additional data sources).  The eleven fields in a NLDAS data set reflect variables that 

need either temporal, or spatial, or modifications in both spaces, for example 
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“temperature” needs to be averaged while “precipitation” should be accumulated over a 

given temporal scale. Also, spatial operations often necessitate the aggregation of 

gridded data over sub-basins. Our activity groups the grids belonging to each sub-basin, 

and then averages grid data of each group at each time step .MPE is similar but does 

not involve separation of variables because it only has one data product, i.e. rainfall. 

 

Because NLDAS requires downloading GRIB files containing hourly data, thus 

demanding a considerable amount of disk storage to be available when long simulations 

are required, we created an all-in-one activity that deletes the GRIB files after they have 

been processed for data extraction. This activity implements the sequence of accessing 

a GRIB file, parsing gridded data, deleting the file, and computing sub-basin-based data 

at each time step. While it is somewhat slower than the step by step workflow sequence 

of individual activities we had good experiences reducing the storage requirement 

whenever a long simulation time was required.   

 

3.4.3 Hydrologic Modeling Library 

There are many ways and options to execute a hydrologic model task featuring a wide 

range of simple peak runoff calculations, to parameterized models, to fully distributed 

models of many shades and flavors. While it is possible to include and add any number 

of modeling approaches (this could be a back bone for a community modeling system), it 

would be impossible to include all of them into this modeling framework at the initial state 

of development. Hence, we have targeted a small subset of modeling approaches to 

demonstrate how each type or approach can be implemented.   
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3.4.3.1  TOPography based hydrologic MODEL, TOPMODEL 

TOPMODEL is a physically based watershed model that simulates hydrologic fluxes 

including infiltration-excess overland flow, saturation overland flow, infiltration/exfiltration, 

subsurface flow, evapotranspiration and channel routing through a watershed (Beven 

and Kirkby, 1979) and has been subject to a number of applications and improvement 

efforts, see for example Saulnier et al., 1998; Quinn,1998; Myrabø, 1997. A distinctive 

concept of TOPMODEL is to use a so-called topographic index to reflect variable 

characteristics of soil and topography over a watershed. A study area need be 

decomposed into a number of units with categorized topographic indices, which are 

analogous to the HRUs described earlier in that they represent an integrated area value, 

while in reality they may distribute across the sub-basins. Flow routing over a sub-

basin/basin is computed using the Contributing Area method. 

 

There are a number of TOPMODEL versions, from which we have selected the Visual 

Basic kernel for our development.  This version is most suitable for humid or semi-humid 

watersheds with shallow soil coverage and moderate topography in addition to being 

written in language that is easily incorporated into the Visual Studio environment (which 

we use for our TRIDENT activity development). We have integrated TOPMODEL as a 

sequence of four activities. The first activity is a migration of the GRIDATB program 

which handles the computation of the topographic index and the classification of 

topographic units. Given a study area, it is optional to decompose the study area into 

sub-basins and then produce topographic units over each sub-basin or to perform the 

topographic computation over the whole basin directly. The second activity ingests 

geospatial data derived from the DEM processing steps mentioned earlier and produces 

the area-distance histogram for routing overland flow. The third activity is responsible for 
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initializing parameters and initial states, which also provides an interactive interface for 

the purpose of parameter calibration. The last activity encapsulates the kernel of 

TOPMODEL that performs the actual hydrologic calculations.  

 
3.4.3.2   Soil Water Assessment Tool, SWAT 

SWAT is a physically-based, spatially semi-distributed model developed to simulate the 

effects of management decisions on water, sediment yields and pollutant loadings in 

watersheds related to soil, land use and management practices (Srinivasan and Arnold, 

1994; Arnold et al., 1998). The hydrology component in SWAT is based on the water 

balance equation in the soil profile and simulates processes including canopy 

interception, infiltration, surface runoff, evapotranspiration, lateral flow and percolation. 

As mentioned before SWAT conducts a two-stage decomposition over a watershed, and 

the final products called HRUs are assumed to have homogeneous characteristics and 

thus expose conformable hydrologic responses. The responses of each HRU are 

determined individually and accumulated at the sub-basin level, and then routed through 

its associated main channel to the sub-basin outlet, which join the channel network for 

the final routing to the watershed outlet (Bouraoui et al., 2004). SWAT has been hugely 

popular due to its capability to model complex and coupled watershed processes quite 

successfully see for example Rosenthal et al., 1995; Peterson and Hamlett, 1998; 

Muttiah and Wurbs, 2002.  

 

SWAT provides alternative methods for runoff simulation volume such as SCS Curve 

Number method and Green & Ampt infiltration method, alternative methods for 

estimation of evapotranspiration such as the Penman-Monteith, Priestley-Taylor along 

with the Hargreaves method, and Variable Storage and Muskingum methods for channel 
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routing. We have disassembled the SWAT2005 version and embedded the hydrological 

computing segments in a set of activities.  The collection of SWAT-based activities 

currently involves one activity for each process except evapotranspiration. The 

estimation of total flow volume and the fractional volume arriving at the main reach is 

carried out by a single activity regardless of the flow location. For example, the SCS 

Curve Number method and lag time method are bonded into a single activity to handle 

surface runoff process. Estimation of potential evapotranspiration is a relatively 

independent procedure thus each of the three methods is wrapped into an independent 

activity and also capable of contributing to other model set ups within TRIDENT. Since 

there are quite a number of parameters required in SWAT, each activity offers an 

interactive interface for inputting and adjusting these parameters from their default 

values.  

 
3.4.3.3  General Hydrologic Processes 

Aside from taking advantage of existing hydrologic models, a user can also create 

activity sequences for simulating hydrologic processes using basic methods and link 

them together as loosely-coupled models. While some of these activities use simplified 

hydrologic theory they permit a higher degree of flexibility when configuring hydrologic 

model approaches. Dominating flows in a watershed are direct runoff, base flow and 

channel flow where slow soil water movement is neglected, and direct runoff is 

perceived as the combination of flows on the surface and in the unsaturated soil zone. If 

modeling is carried out at the sub-basin-level, direct runoff is computed on each sub-

basin individually and then routed to the outlet of the sub-basin rather than the main 

channel of the sub-basin via different unit hydrograph methods. In other words, the first-

order channels are not taken into account in the channel routing.  
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In developing these activities we weighed the efforts required of using legacy codes 

versus coding new model kernels from the ground up. Consequently, some activities are 

created using legacy codes, while others are programmed directly mostly due to the 

underlying simplicity of the algorithm used.  The currently encoded hydrologic methods 

are listed in Table 3.1.  

 

Table 3.1  Methods for simulating hydrologic processes 

Hydrologic processes Methods 

Evapotranspiration 

Penman-Monteith  method 
Thornthwaite method 

Priestly-Taylor method 
Hargreaves method 

Runoff Yield SCS Curve Number 
Green&Ampt method 

Direct Runoff Routing 
SCS Unit Hydrograph 

Synder Unit Hydrograph 
Clark Unit Hydrograph 

Base Flow Linear Reservoir 
Recession baseflow 

Channel flow routing Muskingum-Counge method 
Modified Wave method 

 

 

3.4.3.4  Code Implementation 

Our development is focusing on the creation of activities, which are encoded in C# 

language and compiled into Dynamic Link Libraries (DLLs). Each activity is required to 

define its input/output variables explicitly via a metadata-tagging approach, along with an 

“Execute” function that controls its main computations. A workflow host application, e.g. 

the TRIDENT workflow composer, is thus able to expose the input/output variables of an 

activity via parsing its properties when it is loaded. The host invokes the execution of an 

activity via its “Execute” function, and pipes the data flow from the output of one activity 
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to the input of another activity at run time, commonly called “introspection”. A variable 

can be set as input, output or input/output, and assigned as mandatory or optional. The 

activity cannot execute if its required inputs were not given.    

 

Some activities have been scripted from the ground up, while others have been created 

porting legacy codes directly which often poses some challenges because of language 

heterogeneities. For porting TOPMODEL (written in Visual Basic) we opted for the re-

coding approach, because VB is quite similar to C# the preferred language in which the 

activities are encoded. While this is not without the need for some investment of time, it 

is relatively straight forward. The migration of the SWAT (written in C) is a different case 

however. Our objective was to migrate the code stack responsible for each hydrologic 

process (e.g. evapotransiration, runoff yield, overland routing) into an activity, so that the 

activities could gain more operational independence and possibly be swapped with other 

alternatives as is done in SWAT.  

 

SWAT also poses a challenge because it performs the simulation of the entire hydrologic 

cycle at each time step whereby some of the implemented methods require the 

interaction of different processes at each time step. For example, in SWAT the Curve 

Number (CN) method is used for computing surface runoff yield and infiltration. The 

controlling parameter CN is updated at the end of each time step based on either the 

evapotranspiration amount or the soil water. If using soil water, the computation 

sequence would be to compute the infiltration first, then deriving the soil water from the 

infiltration, and finally updating CN with the soil water for the computation of next time 

step. However, this type of loop computation is not supported by TRIDENT, as it only 

allows one-directional data transport between two activities. The solution to this problem 
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is to create an activity that executes the entire temporal loop for each hydrologic process 

without requiring/implementing interactive methods. Thus, in our example we update CN 

by using the evapotranspiration amount instead which is decoupled from the data 

products of curve number method. For inseparable processes such as the simulation of 

the soil water amount and the partial amount routed to the channel, they are combined 

into a single activity.  

 

The other approach is to compile the legacy codes into Dynamic Link Libraries (DLLs). 

An internal interface is embedded in a DLL which mediates the communications 

between the DLL kernel and those code segments who call it. If the DLL is encoded by a 

low-level language (e.g. C or Fortran), an additional interface is required at the side of its 

consumer in order to define entry points of the DLL. Figure 3.11 shows the composition 

of an activity and its interaction with an external module; our netCDF activity has been 

created using this approach.  

 

 

Figure 3.11 Composition of an activity and its interaction with a module  
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3.4.3.5  Data Model for HCMS 

Within a hydrologic modeling workflow, there are two types of data that are 

communicated from one activity to the next. One comprises representatives of physical 

computation elements, i.e. sub-basin polygons, river reaches and hydrologic response 

units, and the other is (for most part) time series data, either a set of gridded data or a 

data array. In order for two activities to communicate with each other they need to have 

syntactic and semantic compatible I/O type definitions (e.g. string, double, ect). Since 

the basic types given by the .NET IDE are not suitable for our study, we standardize the 

definitions of data types as shown in Figure 3.12.   

 

A watershed is represented by the BASIN class which comprises collections of 

SUBBASINs and RIVERs along with their number of appearances. Since the current 

activities require either the sub-basin collection or the river collection, the BASIN class is 

rarely utilized. The basic elements are SUBBASIN and RIVER, while the SUBBASIN can 

be further decomposed into HRUNIT.  Aside from basic properties, the SUBBASIN 

specifies the outlet, centroid, and the farthest point to the outlet as a POINT type. The 

river embedded in a sub-basin is identified by the RiverID. A river can have two 

upstream river reaches and one downstream river reach. The magnitude and order 

properties defined in the RIVER type are important in the computation of channel routing. 

A river having no upstream is defined as the first-level river both in with respect to order 

and magnitude, while a river having two upstream rivers is defined as the maximum 

order and the accumulated magnitude of the two. The cross-sectional area of a river is 

defined by the SHAPE type.  The HRUNIT defines the area with a specific combination 

of soil type and land cover type, which is assumed to have a homogeneous hydrologic 
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response. The identification of soil or land cover types could be a number or a 

character(s), thus they are defined as object type.  

 

 

Figure 3.12 The data structure of Hydrologic Community Modeling System 

 

Within the definition of TIMESERIES type, TimeSeriesType is utilized to differentiate the 

gridded data series (BlockValueArray, BlockTimeValueArray) and the common time 

series (TimeValueArray, ValueArray). For time series accessed from a site, the location 

of the site can be specified as POINT. A time series is always linked to a specific 
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quantity (e.g. precipitation, temperature etc.), which is defined as HYDROQUANTITY 

type. The time series data are usually transferred as a collection of TIMESERIES objects. 

 
 

3.4.4 Analysis Library 

Performance of a hydrologic model can be evaluated using several measures, for 

example by analysing the “closeness” of the simulated variables (typically streamflow or 

stage) to observations made within a watershed (Krause et al., 2005). The “closeness” 

can be qualitatively assessed via visually inspecting the simulated and observed 

hydrographs, particularly focusing on hydrograph shape, peak time and amount, and 

time lag or shifts. Often emphasis is placed on a quantitative measure defined as 

mathematical measures of how well a model simulation matches the observations 

(Beven, 2001). Hence, we have developed an activity that both displays the simulated 

and observed hydrographs, and also performs calculations for seven performance 

measures including the Nash-Sutcliffe coefficient, the coefficient of determination, the 

index of agreement, the relative efficiency criterion, the root mean square error, the 

relative mean error and the percentage of peak difference. Table 3.2 lists the equations 

of the efficiency criteria. The activities that perform calculations of the seven 

performance measures separately have also been created, which can be linked to the 

analysis activity directly.  In addition, an activity that analyses water balance within a 

hydrologic simulation is also placed in this library.  

 
 
This library also includes activities that carry out common tasks. For example, an activity 

embedding the MapWinGIS ActiveX Control is created to display geospatial data. The 

MapWinGIS is the core component of the MapWindow application a GIS software 

(http://www.mapwindow.org), which can be used to visualize ESRI shapefiles, and 
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image and grid data. Auxiliary activities such as searching for files in a specified 

directory with given extension, writing data to Excel, NetCDF files and SQL databases 

are also placed in this library.  

 
 

 Table 3.2 Summary of efficiency criteria in usages 

Name Equation Fittness 
Nash-Sutcliffe 

efficiency ܧ ൌ 1 െ
∑ ሺݏܾ݋௜ െ ௜ሻଶ௡݉݅ݏ
௜ୀଵ
∑ ሺݏܾ݋௜ െ തതതതതሻଶ௡ݏܾ݋
௜ୀଵ

 Range: -∞~1.0 
1.0-best fit 

coefficient of 
determination 

ଶݎ ൌ ሺ
∑ ൫ݏܾ݋௜ െ ௜݉݅ݏതതതതത൯ሺݏܾ݋ െ ଓ݉തതതതതሻ௡ݏ
௜ୀଵ

ඥ∑ ሺ݉݅ݏ௜ െ ଓ݉തതതതതሻଶ௡ݏ
௜ୀଵ ට∑ ൫ݏܾ݋௜ െ തതതതത൯ଶ௡ݏܾ݋

௜ୀଵ

ሻଶ Range:0~1 
0-no correlation 

index of 
agreement ݀ ൌ 1 െ

∑ ሺݏܾ݋௜ െ ௜ሻଶ௡݉݅ݏ
௜ୀଵ

∑ ሺหݏܾ݋௜ െ തതതതതหݏܾ݋ ൅ ห݉݅ݏ௜ െ തതതതതหሻଶ௡ݏܾ݋
௜ୀଵ

 Range:0~1 
1.0-best fit 

relative efficiency 
criterion ܧ ൌ 1 െ

∑ ሺݏܾ݋௜ െ ௜݉݅ݏ
௜ݏܾ݋

ሻଶ௡
௜ୀଵ

∑ ሺݏܾ݋௜ െ തതതതതݏܾ݋
തതതതതݏܾ݋ ሻଶ௡

௜ୀଵ

 Range: -∞~1.0 
1.0-best fit 

Root Mean 
Square Error ܴܧܵܯ ൌ ඨ∑ ሺ݉݅ݏ௜ െ ௜ሻଶ௡ݏܾ݋

௜ୀଵ
݊  

Range:0~∞ 
0-best match 

Relative Mean 
Error ܴܧܯ ൌ

1
݊
෍

௜݉݅ݏ െ ௜ݏܾ݋
௜ݏܾ݋

௡

ଵ

 Range: -∞~∞ 
0-best match 

percentage of 
peak difference ݀ܲ݁ܽ݇ ൌ ฬ

ܲ݁ܽ݇௢௕௦ െ ܲ݁ܽ݇௦௜௠
ܲ݁ܽ݇௢௕௦

ฬ כ 100 0~100 
0-best match 

;௜: observed quantityݏܾ݋ ** :௜݉݅ݏ  simulated quantity; ݏܾ݋തതതതത,  ;ଓ݉തതതതത: average valueݏ

ܲ݁ܽ݇௢௕௦ , ܲ݁ܽ݇௦௜௠ : peak value of observed and simulated sequence. 

 

 
 

3.5  A Small Watershed Application 

In order to demonstrate the functionality of our workflow environment for hydrologic 

simulations we have selected Furnace Creek a small sub-watershed of the Schuylkill 

basin (HUC 02040203) in Berks County in south-east Pennsylvania with a drainage area 

of a little over 4 square miles, as shown in Figure 3.13. Simulation time is just 2 days 
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(April 21 to 23, 1993), however it contains a severe rainstorm event, with which we can 

test the ability to reproduce an outflow hydrograph.  

 

By specifying a latitude/longitude bounding box (-76.198°,40.304°,-76.135°,40.340°) 

as shown in Figure 3.13, the 1-arc second DEM data file in GeoTIFF format is retrieved 

from the NED server and in parallel, hourly precipitation data ranging from 21st to 23rd 

April, 1993 is  downloaded from the NLDAS-2 server. For generating a digital watershed 

representation the Furnace Creek USGS gauge station (USGS 01470853, latitude: 40°

20'24", longitude: 76°08'37") is set as the watershed outlet. For comparison purposes 

the discharge information available at this site (Instantaneous Data Archive with 15-

minute intervals) is downloaded and then converted into 1-hour interval data which we 

do using our temporal interpolation activity.  

 

Working through the tauDEM procedural steps the watershed is then partitioned into 

nine sub-basins including the river network as shown in the lower right panel in Figure 

3.13; note that only four main stems participate in the channel routing calculations. The 

sub-workflow of processing precipitation data reads the sub-basin information and 

distributes precipitation data over each sub-basin. However, for a watershed this small 

(taking up only about one grid cell of NLDAS-2 type data), our sub-basins utilize a 

uniform precipitation distribution.  

 

For this example we use a loosely coupled hydrologic model that adopts the SCS Curve 

Number for runoff yield, the SCS Unit Hydrograph method for direct runoff routing, the 

Recession method for baseflow, and the Muskingum method for channel routing. For 

short-term rainfall-flood events such as the one chosen, we neglect computation of 
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evaporation. The model first simulates the amount of surface runoff for each sub-basin, 

and then routs the runoff yield to the sub-basin outlet, where with the baseflow amount is 

added. The model then proceeds to implement channel routing through the main 

channels and subsequently produces a discharge hydrograph at the watershed outlet 

(and also one at the exit of each main channel). For executing the hydrologic model, 

parameters and initial conditions can either be assigned during the workflow execution 

or be specified in an XML file, as mentioned before. The entire modeling workflow 

package consists of six sub-workflow segments as depicted in Figure 3.14.  During 

execution, the first two sub-workflows execute in parallel, and then the other four sub-

workflows proceed in sequence. 

 

Figure 3.15 shows the resulting hydrograph plotted next to the one obtained from 

downloading the flow data from the USGS site. The result window also displays the 

seven performance measures we have included in our library as a set of post analyses 

activities. In this case the hydrographs show a fairly good match which is also reflected 

in the performance measures, however, it should be stressed that this application was 

not meant to show the accuracy of the methods used, rather to show the utility of the 

outlines workflow sequences, in fact a demonstration that hydrologic modeling can be 

done in an environment such as a workflow engine.     
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Figure 3.13  The location of the Furnace Creek, the DEM and generated sub-basins and 
rivers  
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Figure 3.14  A sample hydrologic modeling workflow sequence 
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Figure 3.15 Comparison of simulated and observed hydrographs 

 
 
3.6 Summary and Future Work 

In this paper, we introduce the development of a hydrologic community modeling system 

based on the TRIDENT workflow system. Our aim is to utilize the characteristics of a 

workflow engine, such as provenance capture, repeatability of modeling executions, data 

handling activities at the pre-, execution-, and post-processing steps, and the ability 

construct entire modeling tasks within a single environment. The TRIDENT workflow 

system facilitates our development by providing standard interfaces for migrating legacy 

models or scripting new ones along with a workbench for manipulating model 

configurations and executions.  

 

As key components of the environment, we introduce four libraries that are used for pre-

processing steps such as establishing connections to data sources via web services and 
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retrieving required data sets; data preparation which concerns steps such as 

decompressing, extracting of data sub sets, and reformatting data; execution of models 

for which we have selected three types, i.e. a simple parameterized (TOPMODEL), a 

distributed approach (SWAT), and a loosely coupled one (individual hydrologic 

processes); and a post-processing library in which we integrated some data analyses 

activities such as visualization of hydrographs, performance measures such as the Nash 

Sutcliff coefficient to several auxiliary activities that perform steps such as unit 

conversion, data decompression, and I/O tasks.  

 

We have outlined some of the challenges that arise when trying to embed legacy codes 

into a workflow environment because some of the limitations of the workflow sequencing 

such as the inability for activities to communicate with each other in time loops, i.e. 

communications at each time-step level across activity sequences. Another challenge 

arises from the need to wrap legacy codes written in incompatible languages, such as C 

or FORTRAN, so they can interact with the activities whose language is found in 

the .NET environment such as Visual Basic or C#.  

 

We have also demonstrated the utility of the workflow system by applying it to a small 

watershed in SE Pennsylvania where we executed several workflow sequences to 

model a two-day storm event. Our objective was to produce an outflow hydrograph at 

the outlet of the watershed based on the modeling effort and to compare this hydrograph 

with one derived from a USGS measurement station at the outlet. We showed how web 

services can be used to find, access, and retrieve data from national catalogues and 

data sources with for modeling purposes and how these steps are embedded in 

workflow components called activities. We constructed a seamless workflow from the 
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selection of the modeling area via a bounding box, to the visualization and reporting of 

performance measures, all fully automated and repeatable in stored workflow sequences.    

Our future work will focus on the extension of the four libraries we started to build. All of 

them need expansion to allow for an increased number of data sources, to permit an 

increased number of modeling alternatives, and to expand post-processing capabilities, 

for example multiple plotting of time series in one graph, or statistical computations and 

assessments. One additional important objective is to conduct some comparative tests 

to find out how the numerical execution times are impacted when embedding larger 

numerical kernels into an activity, versus embedding it into a WPS web service, versus 

executing the program as a standalone piece of software. We have yet to quantify 

impacts on performance as well as the ability to push computations out into the cloud (in 

this case using MicroSoft’s AZURE application). Finally, we would like to conduct some 

comparisons between smaller and larger watersheds using simpler and more complex 

models, to obtain a better understanding where trade-offs are and when using a 

workflow engine may become too cumbersome or even infeasible.        
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CHATPER 4: APPLICATION AND PERFORMANCE ASSESSMENT USING A 
WORKFLOW ENGINE BASED HYDROLOGIC COMMUNITY MODELING SYSTEM 

 

Abstract  

The TRIDENT-shelled Hydrologic Community Modeling System (HCMS) is used to 

design workflow-based hydrologic model systems that incorporate components of data 

access, data preparation, model, and post analysis. The key strength of the HCMS lies 

in its ability of composing seamlessly integrated models with swappable modules, thus 

offering users alternative choices of hydrologic model assemblies. The objective of our 

study is to assess the applicability, ease-of-use, and performance of the TRIDENT 

based HCMS. Comparisons are made on the performance of accessing and processing 

precipitation data, discretizing the watershed using different delineation schemes, 

estimating alternative potential evapotranspiration (PET) schemes, and simulating 

hydrologic responses via the migrated Soil and Water Assessment Tool (SWAT) and 

TOPography based hydrologic MODEL (TOPMODEL) along with a loosely coupled 

hydrologic model. Generally the workload of conducting hydrologic simulations can be 

reduced significantly when using the HCMS. Performance can be improved when using 

parallel or distributed computations. Further, decline in performance can be 

compensated by the enhanced flexibility of model composition, the capability of 

capturing model provenance, and the possibility of expanding and growing the HCMS. In 

this paper, we use the Schuylkill watershed located in the Southeastern Pennsylvania as 

testbed in which we conduct our performance studies.  
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4.1  Introduction 

The watershed physical processes can be simulated or predicted using numerous and 

hydrologic models at varying degrees of complexity. These models reach from simple 

parameterized one-equation models that compute the peak runoff, such as the ‘Rational 

Method’, to complex deterministic formulations of linked partial and/or ordinary 

differential equations describing the governing processes (or at least all those that 

dominate) that are integrated over two- or even three-dimensional gridded 

representations of the geo-volume they are supposed to represent. Models that fall into 

this category include the Soil Water Assessment Tool, SWAT, (Arnold et al. 1993), the 

Penn State Integrated Hydrologic Model, PIHM, (Qu and Duffy, 2007), or the well known 

MODFLOW suite (McDonald and Harbaugh, 1988). Of course, the more attention is 

spent on the detailed representation of the governing processes the higher the work load 

required to get just one model run off the ground. Typically more complex models are 

also more input data hungry and consequently much more time is needed to prepare all 

data sets that are required (boundary conditions to force the model and initial conditions 

to start the numerical integration) for the chosen spatial and temporal scales especially if 

one is to track time variant events throughout the duration of the simulation. The same 

can be said for the generated output data that can be quite voluminous requiring 

advanced tools to cut, slice and dice through the contents for analysis or even just plain 

visualization.     

 

It is easy to imagine that if one were to use several models at the same time for example, 

because one wants to investigate the impact of differences between theoretical 

formulations or shortcomings of chosen approaches, that the work effort required for 

preparation and execution becomes even higher. Hence, it is no surprise that 
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communities have sought solutions to ease the work burden and, for example, agreed to 

establish testbeds for model skill assessment where researchers can compare their 

model side-by-side to other models, such as the Delaware Bay Modelling Evaluation 

Environment, or MEE, that was started by researchers at NOAA (Patchen, 2008; 

Stammermann and Piasecki, 2009). This approach assumes that many different 

modellers contribute their models and runs to a library of sorts where researchers can 

then examine how models compare to each other for a given data set for a specific time 

period. However, while quite helpful and potentially revealing the idea suffers from the 

need of substantial manpower (in from of many contributing to the effort) because a 

system of this type offers nothing to reduce the workload on data pre- post-processing 

as well as the model execution needs at run-time. While the aforementioned system is 

just one approach that has been used to create “modeling systems” and that is 

mentioned here as a motivation for the work presented, there are in fact quite a number 

of what are called Community Modeling Systems (CMS) approaches that are currently 

being suggested and pursued with various degrees of organization, different strategies 

and principles (for a review on those see Bo and Piasecki, 2011a).   

 

An alternative approach is to provide an environment in which a single researcher can 

perform comparison tasks of the type just described without spending the same amount 

of time otherwise required for the execution of many different models. In this 

environment a) much of the data preparation burden is automated, b) model selection is 

easy because several models can be selected, c) post processing can be automated for 

all model results regardless their structure, and d) any of these runs can be repeated 

because provenance information is recorded as well. The authors have developed a 

prototypical Hydrological Community Modeling System (HCMS) based on a workflow 
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engine environment (Bo and Piasecki, 2011b). This system takes advantage of a 

heavyweight backbone structure in which scientific workflows can be generated and 

executed; modeling workflows being one of the prominent applications that can be 

embedded into such an environment. For a more detailed introduction into the 

development of the environment please refer to Bo and Piasecki, 2011b.  

 

In this paper we seek to apply our prototype HCMS to a testbed in order to test its utility 

for serving as a Hydrologic Community Modeling System, including the ease-of-use, 

performance assessments when executing programs that are either embedded or are 

accessed via web service calls, the generality of basic library modules, and/or potential 

shortcomings and difficulties in using this system.  

 

4.2  Tools, Testbed, and Tasks  

4.2.1 Overview of the Hydrologic Community Modeling System (HCMS) 

Since it is not the scope of this paper to present the details of the HCMS (the reader is 

referred to Bo and Piasecki 2011b), a short overview may be helpful to set the context of 

the main thrust of this paper.   

 

Our HCMS has been developed based on Microsoft’s TRIDENT workflow engine 

(Microsoft Research Group, 2009), and provides a platform for the composition and 

execution of various hydrologic-modeling-oriented workflows. Within this system a 

hydrologic model kernel can reside as a single node or a sub-workflow in the parent 

workflow performing the comprehensive simulations. The HCMS is comprised of four 

libraries: one for accessing data from either internet-based data servers or local storages 

such as files or databases; one for processing geospatial data or time series to meet the 
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requirements of the model inputs; one for performing hydrologic simulations, and finally 

one for analyzing and post-processing model results using for example statistics 

calculations, or performance measure such the Nash-Sutcliff coefficient, or storage 

activities that would write out result in netCDF (among others).  

 

One of the main features we have explored is the ability of the TRIDENT system to 

access web services, which provides a convenient way to access national data stores 

such as US Geological Survey National Water Information System, or the USGS 

MapServer for digital elevation data to name just a few of several for which we have 

developed customized access points. These access points are organized in the access 

library. The hydrologic modeling library features the TOPography based hydrologic 

MODEL, TOPMODEL, and the hydrologic components from the Soil and Water 

Assessment Tool, SWAT, which we have been migrated into the HCMS. The purpose of 

this specific selection was to demonstrate the possibility of migrating two models of 

intermediate and high complexity, respectively, into the HCMS. The HCMS also features 

a number of activities (or compute kernels) encapsulating basic algorithms for simulating 

specific hydrologic processes (e.g. overland runoff yield and routing, channel routing etc.) 

which have been incorporated and organized in a hydrologic component library. While 

this library is not all encompassing yet, it does offer users a high degree of flexibility to 

customize models being able to swap modules in and out (or run them in parallel) when 

designing the workflow sequences. 

 

Last but not least the post-processing library contains a number of modules that help 

with the visualization and analysis of the results. There are a number of performance 

measures for assessing time series data produced by a model and compared to in-sit 
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measurements, such as discharge, that are quite popular in the hydrologic community. 

We have added indexes such as the Nash Sutcliff and RSME to this library in addition to 

having added some plotting capabilities for time series data. There are also output 

activities that allow writing the data out in any desired custom format or commonly used 

formats such as netCDF or GRIB, or even data streams that deposit results in a 

database.   

    

4.2.2 Testbed: Schuylkill River Catchment  

It was decided to use a sizable catchment in the 5,000 square kilometer range to better 

understand how the HCMS would respond or handle computational demands of a 

catchment this big, without needing to contrast it to larger watersheds with even higher 

computational demands prompting longer wait times. There was also the need to select 

a catchment that has a good collection of measurement stations either inside or in the 

immediate vicinity of the catchment for testing the interpolation routines for re-assigning 

data at certain geospatial locations to locations in the catchment where data was needed 

for simulation. Lastly, the research team also wanted a catchment that brings some 

familiarity, preferably one that is as close as to Philadelphia. The Schuylkill catchment 

provided an ideal candidate; in fact the outlet point of the catchment (which is a dam that 

also serves as head-of-tide for the tidal portion of the Schuylkill River) is just a stone 

throw away from Drexel University’s premises.  

 

The Schuylkill catchment (Hydrologic Unit Code, HUC, 02040203) is located in 

Southeastern Pennsylvania as shown in Figure 4.1. It is about 132 km in length, 41 km 

in width, and covers an area of approximate 5229 square kilometers. The Schuylkill 

River is the largest tributary of the Delaware River system and accounts for about one 
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third of its total flow in the lower reaches. The river itself is about 214 km long starting 

from its headwaters at Tuscarora Springs in Schuylkill County, and ending at its mouth 

at the Delaware River in Philadelphia. Major tributaries to the Schuylkill River include 

Little Schuylkill River, Maiden Creek, Tulpehocken Creek, Manatawny Creek, French 

Creek, Perkiomen Creek, and Wissahickon Creek, all of which run through mixed land 

use zones that are dominated by sub urban sprawl developments interspersed with 

some agricultural and forested land areas, with the latter dominating the uplands and the 

former being prevalent in the lower reaches.  

 

The Schuylkill experiences a modified continental climatic; warm and humid in summers, 

moderately cold in winters, and has abundant rainfall distributed throughout the year. 

The mean annual temperature is about 11 °C with summer and winter averages of 

22  °C and 0 °C respectively. The mean annual precipitation is around 45-50 inch/yr in 

the mountainous headwaters region, and decreases to 43 inch/yr eastward to the 

Coastal Plain. Precipitation is distributed fairly uniformly throughout the year, and is 

generally sufficient for crops and vegetables. In Pennsylvania, approximately 50% of 

annual precipitation is evaporated or transpired by plants back to the atmosphere, 20% 

runs off into rivers and stream during rainfall and snowmelt events and the left 30% 

infiltrates the ground surface to recharge groundwater aquifers (Fleeger, 1999; 

Biesecker et al., 1968). The stream flow rate tends to be highest in late winter and early 

spring generally due to snowmelt and low evaporation and transpiration, while be lowest 

in late summer and early fall primarily due to high rates of evaporation and transpiration.   



87 
 

 

Figure 4.1    Location of the Schuylkill river watershed 

 
 

4.2.3 Modeling Tasks 

The decision was made to use a sizable catchment in the 5,000 square kilometer range 

in order to demonstrate the utility of the HCSM we execute a number of tasks that are 

typical to a hydrologic modeling effort. First, we apply the SWAT module to simulate 

daily runoff hydrographs based on data retrieved over a 4 year period ranging from 2005 

to 2008. This task is intended to test the ability to extract large data sets and to subset 

them for preparation of a SWAT modeling exercise, and at the same time measure how 

much CPU clock is used (or needed) to execute a simulation this long using the daily 

time step SWAT typically utilizes for advancing the model’s state. Secondly, we use 

TOPMODEL along with a loosely coupled hydrologic model for the simulation of a flood 

event, i.e. a significant rainstorm moving the catchment (note that SWAT is not well 
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suited for this type of simulation because of its daily time step which is too coarse for 

simulating rainstorm events).  

 

For both cases, first steps include collection and processing of data by using different 

data resources and subsequent activities, where we conduct a correlation analysis on 

the precipitation accessed from different data sources. We then use workflow sequences 

to assess the speed by which DEM processing is executed and contrast an approach in 

which we have each step embedded into a separate activity with one in which we have 

embedded all steps into a single module that is accessed via web service calls. This test 

will aid in understanding to what extent the workflow engine will degrade execution or 

run time performance when carrying out model runs through this additional layer of 

software and thus give a ballpark estimate what size watershed will consume what wall 

clock or computational resources.  

 

Another important task is to evaluate how complex configuring the various models is, 

and how many interactions need to be implemented versus how general a preparation 

activity can be when setting up model simulations. The workflow for the SWAT-

simulation involves six activities; one each for modeling potential evapotranspiration 

(PET), snow melt, overland flow, soil water, groundwater flow and channel flow. While 

there are choices for any of these modules, we decided to isolate PET for a comparison 

using all four alternative PET activities (in parallel) each of which adopts a different 

calculation approach. The workflows for TOPMODEL and the loosely-coupled model are 

comparatively simple both of which only require four activities for simulating a three-day 

flood event (note that there are additional activities for data preparation and post 

processing). The final step is to import the modeled and the observed streamflow data 
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into the activity responsible for result analysis, which presents the comparisons in terms 

of plotting the hydrographs and computing the statistic criterion coefficients and water 

budgets.  

 

4.3  Data Preparation and Manipulation  

4.3.1 Data Retrieval 

Depending on the complexity of model used hydrologic simulations can be data 

intensive efforts. A complex model such as SWAT (recall that we use only the hydrologic 

components here) requires a complementary set of complex input data which covers 

Digital Elevation Model (DEM) data, land cover and soil data, meteorological data (e.g. 

precipitation, solar radiation) and hydrologic data (e.g. water level, discharge). HCMS 

supports direct data transfer from a list of online databases based on SOAP or FTP 

protocols, of which the U.S. Geological Survey (USGS) National Elevation Dataset (NED) 

and the National Land Cover Data (NLCD) provide DEM and land cover data, the 

National Resources Conservation Service (NRCS) Soil Survey Geographic Database 

(SSURGO) distributes soil survey spatial and tabular data, the  Environmental Protection 

Agency (EPA) provides accesses to hydrographic data, while the North American Land 

Data Assimilation System (NLDAS), the Hydrologic Information System (HIS) and the 

National Water Information System (NWIS)  maintains accesses to a large amount of  

meteorological and hydrologic data. Table 4.1 summarizes the available data resources 

and data utilized in this study.  

 

As a first step HCMS downloads DEM data with a spatial resolution of 1 arc second 

along with land cover data for the rough extend of the Schuylkill River catchment area.  

HCMS then has the ability to access NRCS’ Soil Data Access web service in order to 
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retrieve SSURGO data via a custom made activity. However, these web services 

currently only allow transferring data from within a restricted area that is significantly 

smaller than the Schuylkill catchment which is due to bandwidth restrictions at the host 

site. Efforts are under way to remedy this situation and to permit larger area downloads. 

While we could have addresses this problem through creating “stitching” services, we 

decided to obtain soil data through the Soil Data Mart (http://soildatamart.nrcs.usda.gov/) 

instead, which allows downloading soil survey spatial and tabular data at the spatial 

scale of a county (which is larger than Soil Data Access area/download). For the 

Schuylkill catchment this required the downloading of eleven soil data sets and while this 

still required some “stitching” this was easier to carry out than to work with the service 

described above. In a third step gridded hourly data of precipitation, temperature, air 

pressure, long wave/short wave solar radiation and vertical/horizontal wind speed 

ranging from 2005 to 2008 are retrieved from the NLDAS-2 data server. Data sets are 

provided on a nationwide grid on an hourly basis and are stored in GRIB file format 

(which is a binary format). This poses several challenges. For one, HCMS needs an 

activity to download the GRIB files for a specified time period. This process repeats itself 

for each hour, i.e. 8760 times for each year simulated. It then needs another activity to 

invoke the GRIB library in order to de-GRIB the files and extract data of the required 

meteorological quantities as well as do some directory clean up by deleting GRIB files 

that have been processed. For the envisioned 4 year simulation, it takes nearly 6 hours 

to retrieve all GRIB files and 120 hours to decode them. This may seem excessive and 

in a way could be construed as prohibitive but one only need to compare this to a 

manual process (or perhaps semi manual process using batch files, WINDOWS, or 

scripts, UNIX) to realize what time savings this generates considering that this is a ‘from-

scratch’ modeling exercise.  
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Table 4.1 Information of data resources and usages 

Acronym Data Availability&Access Data Scale Data In Use 

USGS 

NED 

National  Elevation Data, 
accessed via “Application  
Services” 

1,1/3,1/9  

arc second 

1 arc second 

(39.86,-76.4,40.9,-
75.1) 

USGS  

NLCD  

National  Elevation Data, 
accessed via “Application  
Services” 

30m*30m (39.86,-76.4,40.9,-
75.1) 

NRCS  

SSURGO 

Soil survey spatial and 
tabular data, accessed via 
“Soil Data Access” web 
services  

Currently only for 
restricted areas 

Accessed via Soil 
Data Mart, 
covering 11 
counties. 

HIS 

Hydrological and 
Meteorological data, 
accessed via 
“WaterOneFlow” web 
services 

 Varied temporal 
scales 

Streamflow of 
Schuylkill 
River(Station: 
USGS 01474500)  

NLDAS-2 

Meteorological 
data(temperature, 
precipitation, radiation 
etc),accessed via FTP 

1/8 degree, 

1979.1-present, 

1-hour 

2005.1.1-
2008.12.31 

NWS 
MPE 

Multi-sensor Precipitation 
Estimates, accessed via 
FTP 

4km*4km, 

2005.1.1-present, 
24-hour 

2005.1.1-
2008.12.31 

EPA  
NHD 

National Hydrography 
Dataset (watershed and 
stream shapefiles), 
accessed via EPA 
Geospatial services 

Medium and High 
resolutions N/A 

 

 

Daily precipitation data (Multi-sensor Precipitation Estimates, MPE) for the same 

temporal range is retrieved from NOAA’s National Weather Service, NWS, River 

Forecast Centers. MPE precipitation data, just as the NLDAS data, is provided on a grid 

(in this case the HRAP grid) with nationwide coverage, one file for each day. These data 

are also encoded in a binary file format, in this case NetCDF which need to be decoded 

using the netCDF libraries (these together with the GRIB library have been ported into 
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the HCMS and made available via activities). These downloads are much less time 

consuming and are handled within minutes. Finally, daily value discharge data from 

Schuylkill station (USGS 01474500) are obtained from the Hydrologic Information 

System server (HISCentral, which provides all USGS station data as a proxy) via 

activities invoking HISCentral’s WaterOneFlow web services. Instantaneous discharge 

data (15-minutes intervals) data for the targeted flood event are downloaded from the 

USGS NWIS website directly.  

 

4.3.2 Watershed: GeoSpatial Computations and Activities 

4.3.2.1  DEM Processing 

DEM processing seeks to partition a watershed into smaller units representing 

homogeneous topographic characteristics within the watershed and basically follows the 

modules and approaches as implemented in tauDEM (Tarboton et al., 1991). The HCMS 

offers three different pathways of working through the DEM processing steps, i.e. 

catchment delineation, subdivision of the catchment into sub-catchments, and 

identification of the stream network. The first alternative is to use a web service based 

activity in which the activity engages a dedicated server for the compute intensive DEM 

processing and which then sends features of the watershed and stream network back to 

the activity. Herein the DEM processing web service is developed based on the 

OpenGIS Web Processing Service (WPS) interface standard and intended a) to allow 

anybody in the community to access this service, i.e. outside the HCMS, and b) to off-

load computationally burdensome processes to a powerful server thus reducing the load 

on the client machine. The second workflow alternative is an activity that resembles the 

first one in its definitions of inputs and outputs, but instead of calling a web service, it 

performs the whole procedure of DEM processing locally, i.e. inside an activity. The third 
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alternative is the step-by-step DEM processing that uses separate activities handling 

different steps thus generating a workflow sequence. This alternative was introduced to 

allow for swapping in and out activities in case updates and improvement became 

available without having to change a monolithic code or simply to use an alternative 

process. The corresponding workflows are shown in Figure 4.2.   

  
 
 

 

Figure 4.2  The workflows of DEM processing: (a) using the activity invoking the WPS-
based web service (b) using the activity conducting the whole processing (c) using 

activities responsible for each step. 
 
 
 
For performance comparisons all three workflows are applied to process DEM data for 

the Schuylkill River catchment. We have created a supplemental workflow that identifies 

the outlet location of a catchment right at the USGS gauge stations, so we can better 

compare the computed and observed discharge (Figure 4.3). For the first workflow it is 

unrealistic to wrap a large DEM data set into a SOAP message. Instead, the activity 
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proceeds to upload the data from the external FTP site and deposits it on the same 

server that hosts the DEM processing web service. In other words, the activity not only 

calls the WPS service for execution but also provides for the necessary data by using 

FTP protocol to get the data from the source, thus effectively involving three servers. 

This is much faster because downloading data to the WPS service server host is much 

less work intensive than having the workflow engine host server having to upload the 

very same data to the WPS server. However, when compared to the standalone version 

of tauDEM there is a certain level of performance loss using any of these workflows. The 

first workflow may take a few extra minutes to upload the DEM data depending on the 

current network speed. In addition, the TRIDENT engine requires a few seconds (up to 

one minute) to launch the execution of the workflow depending up how much CPU has 

been taken up by other processes on the computer. The third workflow comprised of 

several individual activities actually needs extra time, usually several seconds, invoking 

each activity. However, it should be noted that even while the standalone version does 

not suffer from the overheads imposed by the workflow environment, processing of a 

catchment this large took more than fourteen hours to complete (on a ACPI 

Multiprocessor X64-based PC with 15.9 GB RAM and two 2.29GHz Quad-Core AMD 

CPUs). In light of this overall computational burden those few extra minutes should 

hardly matter though, even if on uses a powerful server that could reduce the processing 

time to just a few hours. Figure 4.4 shows the 1 arc second DEM (4681*3744 cells) and 

the delineated watershed with 7 sub-basins as well as the generated stream network.    
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Figure 4.3 The workflow for locating the outlet of the watershed 

 
 

 

Figure 4.4   The DEM, Delineated Sub-basins, River System of Schuylkill Watershed 

 
 
The right degree of watershed sub-division is often not known a prior and probably need 

to be found through trial and error by using ever finer sub divisions until little change can 

be observed. The literature too is not equivocal about it; for example, Mamillapalli et al. 

(1996) showed that finer subdivisions of a watershed can lead to more accurate 

predictions of streamflow whereas FitzHugh and MacKay (2000) as well as Jha et al. 

(2004) stated that the variation in total number of sub-basins had very little effect on 

streamflow. Hence, in our study, we utilized two types of subdivisions and attempted to 

highlight their influences on the streamflow simulation.   
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The watershed subdivision is controlled through a critical source area (CSA) threshold 

which is the minimum upstream drainage area for a channel to originate, and specified 

as the number of cells or the percentage of total watershed area (Di Luzio and Arnold, 

2004). Lower CSA numbers results in a higher degree of sub-division with a denser river 

system and more sub-basins. The opportunity to use various degrees of sub divisions 

offers up another test scenario, in which we can use the HCMS to execute parallel 

computations with the intent of learning more about a ‘good’ sub division. The threshold 

number set for the first division was 500,000 resulting into 7 sub-basins. A finer 

subdivision was obtained by using the threshold number of 100,000 which resulted in the 

generation of 33 sub-basins, as shown in Figure 4.5.  

 

 

Figure 4.5 The watershed generated by a finer subdivision 
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We used the third workflow alternative to compare results from these two sub divisions, 

which is a good example how to effectively use the HCMS. Since the only difference 

between these two catchments lies in their stream network, we executed a general DEM 

workflow to the stage where the stream network is determined, after which we split the 

workflow, one continue using the 7 sub-basins and the other using the 33 sub-basins set 

up which then run in parallel. It avoids implementing the same data operations 

repetitively, especially when considering the time consuming process of ‘fill sink’ which 

alone accounts for over thirteen hours of processing time.  

 

4.3.2.2 Construction of Hydrologic Response Units (HRUs) 

In SWAT, sub-basins of a watershed are further subdivided into HRUs that consist of 

homogeneous land cover and soil characteristics. The HRUs are commonly identified as 

a combination of a land cover type and a soil type, and are accounted for by area 

percentages of the total sub-basin area. A HRU is not necessarily a homogenous and 

connected unit but is comprised of a number of cells that are scattered throughout the 

sub-basin but are not identified and referenced using geospatial coordinates. Before 

constructing the set of HRUs, several data operations are required over the land cover 

and soil data of the basin.   

 

Firstly, the land cover grid is projected to match the coordinate system of the DEM after 

which it is then clipped along the Schuylkill River catchment boundary eliminating the 

cells outside of the catchment. The National Land Cover Dataset has a classification 

system consisting of 15 land cover classes for the mainland US, of which the Schuylkill 

River catchment contains 13 types except the Shrub/scrub and the 

Grassland/herbaceous classes. We assumed an additional meta-class system with the 
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intent to reduce the HRU workload resulting into 4 meta-classes as shown in Table 4.2. 

This reclassification is carried by a dedicated activity and consumes about 70 minutes. 

The final land cover grid is shown in Figure 4.6.  

 

Table 4.2 Current and Original Land Cover Classes 

Current Land Cover Classification Original Land Cover Classification 
Assigned ID Type ID Type 

1 Water 
11 Open Water 
90 Woody wetlands 
95 Emergent herbaceous wetlands 

2 Medium Residency 

21 Developed, open space 
22 Developed, low intensity 
23 Developed, medium intensity 
24 Developed, high intensity 

3 Forest 
41 Deciduous forest 
42 Evergreen forest 
43 Mixed forest 

4 Agriculture 

31 Barren land 
52 Shrub/scub 
71 Grassland/herbaceous 
81 Pasture/hay 
82 Cultivated crops 

 
 
 
The soil geospatial data are originally stored in 11 separate GIS shapefile (one each for 

every county), each of which contains a large number of shape attributes that are 

embedded as map units in the SSURGO set. First, for each shapefile the map units are 

merged based on the hydroloigc groups they belong to. Then, the 11 shapefiles are then 

merged into one, which is then subsequently clipped along the catchment boundary. 

This procedure has also been coded into a single activity, which takes a substantial time 

to execute. The final soil grid shows that the Group B and Group C take dominant roles 

in the watershed (Figure 4.7).  
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                                 Figure 4.6  Reclassified Land Cover Grid 

 

With the resulting products from the DEM processing, along with the pre-processed land 

cover and soil data, the HRUs can now be created automatically by yet another specific 

activity. For the coarsely divided watershed (7 sub-basins) 23 HRUs are created, while 

the finer gridded one (33 sub-basins) yields 114 HRUs. In order to make the HRU 

determination a one-time processing effort, metadata pertaining to the HRU 

classifications are recorded in XML files for future reference. The workflow sequence of 

building HRUs is shown in Figure 4.8, where the activities for processing land cover and 

soil data are executed in parallel and then linked to the activity of HRU constructor.  
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Figure 4.7   Distribution of Soil Groups 
 
 
 

 

Figure 4.8  The workflow of constructing HRUs 

 

4.3.3 Watershed: Temporal Data 

 4.3.3.1 Precipitation 

Precipitation data is probably the single most important driving force of hydrologic 

models; hence accurate determination of the spatial and temporal extent and variation is 



101 
 
of crucial importance. The HCMS can access precipitation data from two national data 

centers; NLDAS and NOAA/NWS MPE. MPE data can be obtained in finer spatial 

(HRAP grid with approximately 4x4 km spacing) but coarser temporal resolution (daily, 

even though an alternative system providing hourly data now exists for most of the 

continental US) than that of NLDAS, which delivered on a 224x464 grid (13.8x13.8km 

spacing) with hourly intervals. One additional test for which the HCMS is ideally suited is 

the comparison of these two rainfall products for the Schuylkill catchment for which we 

target the mean daily precipitation. For the NLDAS set the gridded hourly precipitation 

data is first extracted from the NLDAS GRIB files, is then aggregated over the sub-

basins they located in, is subsequently accumulated for each day, and is finally 

averaged over the entire catchment based on the area-weighted-factors.  

 

MPE daily data are directly extracted from the NetCDF files followed by an aggregation 

over the sub-basins and subsequently over the entire watershed to produce a 

comparable number. Both time series are then imported into the correlation analysis 

activity, which displays a scatter plot of NLDAS precipitation against MPE precipitation, a 

linear plot of each precipitation sequence against time and the statistics of correlative 

coefficients, total precipitation amounts and the percent differences. We have developed 

a number of post processing activities for these analyses steps and subsequent displays. 

A sample workflow depicting this process along with the result window is shown in 

Figure 4.9, where the result window features exporting the graphs in different formats.  

 

The workflow sequence is implemented separately for each of the years from 2005 to 

2008 based on using the 7-sub-basin catchment. The scatter plots of NLDAS 

precipitation against MPE precipitation are shown in Figure 4.10, while the plots of 
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precipitation against time are not listed here for space consideration. The correlation 

coefficient is around 0.9 with the exception of year 2007, while the percentage of amount 

difference stays between 1.4% and 5.3%. Since the NLDAS and NWIS precipitation data 

exhibit a good correlation and the daily NWIS MPE data are not suitable for the short-

term flood simulation performed by the workflows of TOPMODEL and the loosely-

coupled model, we use NLDAS precipitation data through the following simulations.  

 
 

 

Figure 4.9    The workflow sequence for retrieving and processing MPE and NLDAS 
precipitation data, and making correlation analysis. 
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Figure 4.10 Scatter plots of daily precipitation of MPE and NLDAS for the years 2005 to 
2008. The correlation coefficient(R) and percentage of amount difference (Diff) are 
shown on each graph 
 
 
 
4.3.3.2 Other driving forces and observations 

Apart from precipitation other meteorological forcing data within HCMS can (currently) 

only be obtained from the NLDAS database; their retrieval operations are identical to 

those of retrieving of precipitation data sets. Any of these variables are assumed to 

distribute evenly over each sub-basin as well. When converting the original hourly data 

into daily data, the averaging and aggregating operations are conducted on different 

meteorological quantities. For example, daily temperature is averaged from hourly 

temperature readings, and daily solar radiation is accumulated from hourly radiation 
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measurements. In practice, the sub-workflow addressing NLDAS data processing, 

shown in Figure 4.9, is utilized to perform data operations for all meteorological 

quantities even though only a sub set may be used. The computational cost of this 

potential ‘over-processing’ is small compared to alternative of developing an interactive 

activity in which the user selects what he wants. Note that the only difference between 

the 7 and 33 sub-basin cases is the execution of the aggregation activity for each sub-

basin. Consequently, we have isolated this activity from the general workflow chain and 

placed it in a parallel smaller workflow (which branches off at first before rejoining the 

longer sequence again later) that executes the aggregation steps for the 33-sub-basin 

case. This is easily done in the workflow composer and avoids having rerun the entire 

workflow, in fact it allow for any number of parallel executions for whatever degree of 

sub division desired.    

 

As mentioned before daily observations of streamflow at the Schuylkill station are 

retrieved via WaterOneFlow web service calls, which require no additional workflow 

operation except a small validation process that addresses data consistency and 

completeness. Since the WaterOneFlow can only access instantaneous data going back 

one month, the required streamflow data are downloaded from the USGS instantaneous 

archives. An activity is utilized to extract the streamflow data array from the downloaded 

file and formatted into the HCMS defined time series (see Lu and Piasecki, 2011b for 

more details). It enters into the interpolation activity to produce the hourly observed 

discharges since the original temporal interval is half hour.  
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4.4 Hydrologic Modeling 

4.4.1 Estimate of Potential EvapoTranspiration (PET)  

Potential evapotranspiration can be described as the maximum amount of water that can 

be evaporated within a time period from a vegetated region (Thornthwaite, 1948; 

Penman,1948). PET is one of the major components in the hydrologic budget 

calculations and while its accurate determination is obviously of great importance it also 

presents a great deal of difficulty when trying to quantify it. Numerous methods have 

been developed to estimate PET for various scenarios resulting in the applicability of 

one method in one setting while producing less accurate results in another. Thus the 

HCMS activity library is host to several approaches, namely the Penman-Monteith 

method (Monteith,1973), the Hargreaves method (Hargreaves, 1975; Hargreaves and 

Smani, 1985), the Thornthwaite method (Thornwaite,1948) and the Priestley-Taylor 

method (Priestley and Taylor, 1972). The Penman-Monteith method has shown to yield 

excellent PET estimates in a number of studies (Beyazgul et al., 2000; Hussein, 1999; 

Tyagy et al., 2003). However, it is a method that requires several data feeds including 

temperature, atmospheric pressure, relative humidity, solar radiation and wind speed 

and in cases where it is difficult or impossible to find all of these variables the method 

may not be applicable or loses some of its power in producing good PET estimates. 

Priestley and Taylor (1972) simplified the Penman-Monteith equation by removing its 

aerodynamic component and introducing an energy compensation factor, in which the 

wind speed is no longer required. The Hargreaves and Thornthwaite methods take the 

simplification a step further and estimate PET merely on the basis of temperature data. 

Within the HCMS it is quite simple to switch methods of PET estimation or to run 

comparison between methods. The implemented PET activities produce both daily and 

monthly PET in which we have added a correction factor (based on the daily photoperiod) 
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suggested by Pereira and Pruitt (2004) to modify the Thornthwaite method to yield daily 

values as it was originally designed to only yield monthly estimates. Monthly PETs are 

obtained by accumulating the daily PET at the month scale for the other three methods.   

 

In this particular application, we engage the four PET activities to compute monthly PET 

for the Schuylkill watershed (7 sub-basins version). The computation is carried out over 

each sub-basin at first and then proceeds to the spatial aggregation over the entire 

watershed. Since there was no observation gauge within this watershed, we set the 

Penman-Monteith estimate as the benchmark value. The monthly PETs from January 

2005 to December 2008 are plotted as shown in Figure 4.11 (a). The PETs estimated by 

the other three methods are graphed against the Penman-Monteith PETs in (b) to (d). 

Results show that the Thornthwaite method underestimates the PET significantly with 

values less than 50% of that of the Penman-Monteith PET estimate, while the other two 

are much closer. On the other hand, all of them show good correlation to the Penman-

Monteith PETs, with the correlation coefficient ranging from 0.93 to 0.99. The estimates 

of Penman-Monteith method are adopted in the following application of SWAT and 

TOPMODEL.    
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Figure 4.11 Results of monthly PET analysis: (a) Monthly PET sequences against time 
(b-d) Scatter plots of Hargreaves PET,Priestley-Taylor PET and Thornthwaite PET 

against Penman-Monteith PET respectively.   
 
 
 
4.4.2 SWAT Application  

 4.4.2.1 Workflow Setup 

The SWAT model is a physically based, semi-distributed watershed model that can be 

applied to predict the impact of land management practices on water, sediment, and 

agricultural chemical transport (Gassman et al., 2007). As mentioned before the HCMS 
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only incorporates its hydrology components for which we have developed  activities that 

mimic: snow melt, surface runoff, soil water and lateral flow within the unsaturated zone, 

groundwater flow in the saturated zone, and channel flow at a daily interval. Surface 

runoff is computed using the modified SCS curve number method, and the variable-

storage-routing method is used to compute water transport through stream networks 

(Neitsch et al., 2005). The lateral flow and groundwater flow are routed to the channel 

using the lag-time method.   

 

The workflow is set up by daisy-chaining these activities and piping the outputs of one 

activity to the inputs of the next activity as shown in Figure 4.12. Note that only one-

directional data transport takes place between two activities, i.e. there is no feedback 

along the temporal axis. The external data inputs of this workflow include PET computed 

by the Penman-Monteith method, precipitation as downloaded from NLDAS, feature data 

of sub-basins, streams, and then the HRUs. We have incorporated an interactive 

interface to each activity which allows users to modify parameters and reset initial 

conditions. These are recorded in an XML file that is automatically created in the activity, 

which can then be reloaded on the next run-time. 

 

  

Figure 4.12 The workflow of hydrologic simulation with SWAT activities  
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4.4.2.2 Results and post-analysis 

The workflow performs 2 simulations over a period of 4 years (2005-2008) for the 

Schuylkill River catchment with a 7 and 33 sub-basin division, respectively. The 

simulated and observed daily stream flows at the Schuylkill station (USGS 01474500) 

are entered into the result analysis activity at the end of the workflow sequences. It 

displays hydrographs and computes seven performance coefficients including such 

popular coefficients such the Nash-Sutcliffe efficiency, the root mean square error, the 

relative efficiency criterion. The daily mean precipitation for the catchment is computed 

by means of weighted averaging individual sub-basin precipitation values which are then 

imported to the results activity and displayed on the graphing panel as well.  

 

While it is not really crucial for the intent of this paper for completeness sake, Figures 

4.13 and 4.14 show the hydrographs of the 7 and 33 sub-basins simulations, 

respectively. As is quite obvious the simulated hydrographs in both cases do not fit well 

and also there are no significant differences between the 7- and 33-sub-basin 

simulations as is evidenced by the performance coefficients listed. While the finer 

subdivision does affect the run-time efficiency it does not provide more accurate 

estimates of the hydrograph.   
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Figure 4.13 Results of 4-year simulation by using 7-sub-basin watershed 

 
 

 

Figure 4.14 Results of 4-year simulation by using 33-sub-basin watershed 
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An important hydrologic objective of any simulation is the desire to close the water 

balance, i.e. to account for all quantities of water that move either vertically or laterally in 

and out of a pre-specified control volume. This seemingly trivial objective of mass 

conservation is not easily answered however in many instances, because the accurate 

estimation of fluxes and quantities in addition to identifying the proper pathways are both 

quite complex and numerous. Closing the water balance of the watershed involves 

estimates of precipitation, flow at the outlet, actual evapotranspiration, and change in soil 

water content for which we have created a water-balance activity. Results of the water 

balance calculations for the 7- and 33-sub-basin watershed cases are given in Table 4.3, 

where the ‘Difference’ is computed from the precipitation minus the sum of the other 

quantities. For both cases, the input precipitation and the total sum of hydrologic 

components actually come out to be a fairly good match. We have also created an 

activity that performs water balance calculations for each of the sub-basins within the 

catchment that requires river discharge as an additional input and which can be run in 

parallel. Since a sub-basin within a catchment is always the aggregation of even smaller 

sub-basins within the larger sub-basin, comparisons of water balance calculations can 

be made between the 7- and 33- sub-basin approaches as shown in the workflow 

sequence in Figure 4.15. The water balance accumulated from that of finer sub-basins is 

close to the one of corresponding coarse sub-basin, with a difference ranging from 1.16 

to 3.84 inch.    

 
 

Table 4.3 Water balance of Schuylkill watershed for 4 years (2005-2008) 

 Precipitation Evaporation Runoff ∆Soil Water Difference 
7-Sub-basin(in) 193.7 186.2 5.05 -0.05 2.5 
33-Sub-basin(in) 193.7 189.08 4.88 -0.05 -0.21 
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Figure 4.15 Comparisons of water balance for sub-basins between coarse and fine 
subdivisions 

 
 
 
4.4.3 Application of TOPMODEL and a loosely coupled model 

The previous SWAT workflow application was employed for a long-term daily time-step 

hydrologic simulation. In contrast, for this section we will simulate a short term event, i.e. 

an hourly rainfall-runoff simulation, for which we deploy the TOPMODEL and a loosely-

coupled hydrologic model workflows using the 7-sub-basin Schuylkill River catchment. 

TOPMODEL utilizes a topographic index that depends on features such as local slope, 

upslope contributing area and downslope contour length to highlight the hydrologically 

significant areas within a catchment (Beven and Kirby,1979). Consequently, the 

TOPMODEL workflow starts from computing the topographic index using DEM data (pit-

filled and sub-basin information) and then categorizing them into a specified number of 
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groups. In parallel, the workflow creates the area-distance histograms for sub-basins 

based on flow direction (also gleaned from the DEM data), which are used to rout flow 

through channels. Required parameter inputs are displayed at the beginning of the 

workflow, which allows users to either accept default or to input custom values. Outputs 

from these three activities are then piped into the TOPMODEL activity to perform the 

desired hydrologic simulation, the workflow sequence of which is shown in Figure 4.16. 

Other model inputs include precipitation and potential evapotranspiration, which are 

either directly obtained from NLDAS (precipitation) or computed indirectly using the 

Penman-Monteith method (PET), with data needs supplied by the other NLDAS fields. 

Both data sets are computed with hourly intervals and are inputted into the TOPMODEL 

activity as driving forces.  

 
 
 

 

Figure 4.16 The workflow of hydrologic simulation with TOPMODEL activities  

 

In addition to TOPMODEL we also use a loosely-coupled hydrologic model that adopts 

the SCS Curve Number for runoff yield, the SCS Unit Hydrograph method for direct 

runoff routing, the Recession method for baseflow, and the Muskingum method for 
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channel routing all of which provide an alternative computational kernel for this short 

term event computation and the workflow of which is depicted in Figure 4.17.  

Evaporation is not considered in the simulation thus hourly precipitation is the only 

driving force. The sub-basin and river feature data obtained from the DEM process are 

other important model inputs. Parameters associated with each hydrologic method can 

be inputted or modified via an interactive window displayed whenever an activity is 

called in the workflow.  

 

 

Figure 4.17  The workflow of a loosely coupled hydrologic model  

 

Both workflows are applied to simulate a severe rainstorm (and subsequent flood) event 

that occurred from October 8th -11th, 2005. The observed hydrograph (USGS) alongside 

the simulated one from each of the two workflows are shown in Figure 4.18.  Incidentally, 

the simulation of the loosely couple model is quite accurate and shows good agreement 

with the observed hydrograph; for this case the Nash-Sutcliffe coefficient is 0.95 and the 

Root Square Mean Errors (RSME) is about 4210 ft3/s. However, the simulation of the 

TOPMODEL is far less accurate, with a Nash-Sutcliffe coefficient of 0.68 and a RSME of 

10500 ft3/s. It indicates that the increased complexity of model structure and 

methodologies may not lead to the improved simulation results.  
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Figure 4.18 Comparisons of simulated hydrographs of TOPMODEL and the loosely 
coupled model with the observed hydrograph 

 
 
 
4.5  Discussion 

4.5.1 Applicability of HCMS 

4.5.1.1 Data availability and workflow sequencing 

The key objective of this study is to evaluate the utility of the workflow-based Hydrologic 

Community Modeling System for which we carried out some typical use cases in 

addition to recording several performance measures. Before detailing some of the pros 

and cons, in general the author’s experience has been that it is remarkably 

straightforward to build up workflows in the HCMS for hydrologic modeling purposes in 

addition to saving time and effort through the automated execution that the workflow 

sequences afford. Especially the preparation of model input data, which is often quite 
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time consuming, can be made much easier when embedding the necessary steps into a 

workflow. Note that this is particularly important in the context of wanting a system that is 

applicable anywhere in the US and as such is in need of data with nationwide coverage. 

In this regard, the two precipitation data sources (NLDAS at 13.8x13.8 km spatial and 

hourly temporal resolutions) and the NOAA/NWS MPE data (4x4 km spatial and daily 

temporal resolutions) are excellent data sources, with NLDAS providing additional 

meteorological data relevant to hydrologic modeling tasks. There are more data 

nationwide data sources that could be tapped into however; for the example the National 

Climatic Data Center, NCDC, holds the world largest meteorological data set some of 

which is accessible via CUAHSI’s HIS-Central WaterOneFlow web services. Other 

climate data includes MODIS, or DAYMET, in addition to data products published though 

NOAA’s National Weather Service. An entire different suite of data is offered up by 

NASA’s Distributed Active Archive Centers (DAACs) of which the NSDIC (cryosphere, 

snow), LP (land processes), and GHRC (global hydrology) centers are probably the 

most relevant to the HCMS. While this list is not at all comprehensive it serves to 

illustrate the degree of which data is available that could be used for consumption in the 

HCMS.     

 

Another convenient feature of the HCMS is its capability of processing raw data, such as 

the DEM data which is one of the fundamental steps of model data pre-processing. The 

HCMS allows access to different compute environments, i.e. either via activities 

embedded on the server inside the workflow, or via calling up web services that execute 

the steps on a remote server, or by sourcing out computations to the AZURE cloud (note 

that we have not tested the latter). The workflows can be organized such that certain 

computations are only carried out once, the results of which can then be stored and 



117 
 
recalled later (also via activities) so they can be further processed in any type of 

computation desired either in sequence or in many parallel strands. A good example for 

this type of pre-processing and using-it-later approach are the Hydrologic Response Unit, 

HRU, calculations (which are very time consuming) which can then be used by SWAT in 

many different run time scenarios. The data needs for these computations are extensive 

(soil and land cover) but can be accessed at a nationwide level as well; Soil Survey 

Geographic (SSURGO) data while not straightforward to handle is accessible from the 

US Department of Agriculture National Resources Conservation Service as is the 

National Land Cover Data (NLCD) from USGS. In short, the spatial applicability of 

HCMS is well supported because many data sources have a) nationwide coverage, and 

b) allow programmatic access to their data holdings using web technology.  

 

There are however a number of shortcomings that the HCMS exhibits, some of which 

are due to the nature of a workflow engine environment while others are more of 

external origin. While some effort can be expended to acquire and build an extensive 

post-processing library of activities, it is clear that a workflow engine is not an alternative 

to a full-fledged GIS environment such as ESRI’s ARCInfo, GRASS, or MapWindows. 

This is largely due to the fact that workflows are designed to be hit-button-and-forget 

operations without much GUI interaction (even though this can be done in a limited 

fashion) while a GIS environment lives from its ability to respond to user interactions 

while conducting spatial data analyses.  

 

Another downside consequence is that while the ability to access a wide variety of data 

stores, each activity that does so must be customized so it can handle the syntactic and 

semantic specificities of a data source. Some efforts are underway to reduce this 
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rampant heterogeneity in the data world, however, for the foreseeable future this will 

remain the status quo. As a result, adding functionality to the HCMS does require some 

coding work and in addition to understanding the constraints of the TRIDENT (or any 

other) environment. In this vein, the data access points are not uniform in their set up 

(some use FTP protocols, others use web service calls, yet others provide links to 

EXCEL spreadsheets) in addition to having access restrictions based on user origin 

(authentication) or simply based on bandwidth limitations on the data server side. The 

latter has implications on how easy it is to download the data needed for a specific 

catchment versus having to divert to an alternative albeit more cumbersome access 

point to get the data needed. These too may be improved in the future, however, at this 

point in time the HCMS must take some detours losing a little of its straightforwardness 

when accessing data sources.  

 

4.5.1.2 Hydrologic models and their portability into HCMS 

A second assessing metric is the ability of a HMCS to host different numerical models 

and approaches to simulating hydrologic processes. The authors acknowledge the fact 

that there are many models of various complexities available that provide a large pool to 

chose from and also realize that not all of them could be brought into the HCMS fold. 

Hence, we selected three numerical modeling approaches to elucidate how difficult it is 

to port legacy codes into the HCMS, to access them remotely via web service calls, and 

what it would take to build a flexible swap-in-swap-out numerical kernel. Our experience 

shows that it is possible to incorporate different models of various complexities into 

HCMS even using different compute access points, i.e. as an activity or remotely. There 

are limits to this however; we attempted to dis-aggregate the PennState Integrated 

Hydrologic Model (PIHM) into the workflow which proved an unsuccessful attempt due to 
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the complexity of the model composition, i.e. its internal data structure as well as the 

degree of coupled equations that need to be solved simultaneously rather than in 

sequence or parallel (without data communication needs in these parallel strands). It 

might have been possible to access PIHM remotely as a wrapped web service call but 

that would have left the need for pre- and post-processing of PIHM I/O data into 

digestible files that would need to be moved and copied into specific directories remotely 

on to some server, which seemed too onerous a task.  

 

Developing independent hydrologic process modeling components on the other side is 

ideal for the HCMS. The workflow composer is a convenient tool to plug-and-play 

components and building model execution chains that can be sub chains, full data 

processing chains, modeling chains, post-processing chains that can be linked together 

or stay apart to whatever degree of steps are desired for any given modeling task at 

hand. For example, PET is a hydrologic quantity that can be estimated via numerous 

approaches, we have 4 different alternatives in the hydrologic library, be tested and 

compared, and swapped in/out whenever needed or not. We found the effort to be quite 

manageable when encoding new process alternatives especially when the 

accompanying theoretical and implementation demands are reasonably short. With the 

underlying data structure it also fairly easy to make sure that activities “understand’ each 

other, i.e. the syntactic and semantic requirements for successful communications are 

being met by each of the activities. We have also found that the best strategy when 

composing workflows is to use short workflow assemblies first, especially for those tasks 

that are time consuming, such as doing the sink-fill and flow direction computations 

when processing the DEM. Since these are computations that only need to be carried 
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out once, they lend themselves to be parceled out and just using the resulting data sets 

repeatedly as input for the actual modeling runs. 

 

We also found it much easier to engage the more complex SWAT model within the 

HCMS as compared to the standalone version, because of the largely automated input 

data processing with some flexibility when assigning either default or custom values to 

parameters that need to be set at run-time. For example, the standalone SWAT version 

requires the preparation of a configuration file (with a strict format) that describes the 

configuration of model computations, the locations of model driving forces, parameter 

values and a schema for channel routing. Specifications such as the outflow of stream 

need to be added to the outflow of stream B the result of which then enters stream C as 

one of its inflows must be explicitly stated for each stream segment in the modeling 

domain. In the HCMS all of this can be avoided through an automation that is embedded 

in the SWAT data preparation activity.  

 

One shortcoming of the HCMS is the lack of an automated parameter estimation 

segment, which would bring the modeling effort one step closer to a true hit-a-button-

and-walk-away operation. Parameters within SWAT and TOPMODEL still need to be 

determined by a trial-and-error approach that is controlled manually. The SWAT 

standalone version offers this feature and we hope to be able to migrate an automated 

parameter estimation environment to HCMS in the future to fill this gap. Last but not 

least a user must realize the strength and also recognize the weaknesses of a workflow 

engine. In general one can state that a workflow engine shines when it comes to 

repetitive executions of the same procedure over and again. The utility of the system 

starts to gradually decline the more variations are added that seek to test out small 
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changes here and there. As long as the computations still involve repetitive steps this is 

probably acceptable, but it will diminish the more the user seeks to interact with the 

workflows. Clearly, the ability to record provenance in these cases is a huge advantage 

especially when need arises to redo model runs, in addition to being able to share 

“successful” or interesting workflows with others using sites such as MyExperiment.org.   

 

4.5.2 Performance of HCMS 

The second important aspect of whether the HCMS is a viable platform for community 

modeling purposes concerns its run-time performance. The question is not so much if 

the HCMS is able to achieve significant speed improvement during run time, but rather 

what the computational costs and speed losses are when adding a middle-layer such as 

a workflow engine to the modeling effort. We should say that we have not tested all 

possibilities afforded, especially not the option of pushing compute intensive application 

out to the AZURE cloud, or utilizing any other parallel code implementation (tauDEM for 

example could be run as parallel code). Rather we have restricted ourselves to a 

relatively common set up in which we work with 2 or 3 ordinary DELL servers, a set up 

we assume to be more widespread among hydrologic modellers.  

 

One aspect that stands out is the fact that the workflow engine requires some overhead 

time to get instantiated and ready to execute workflows. Instead of performing the 

computations embedded in the workflow immediately, we found that the engine needs 

about 15-40 seconds to create an execution scenario before proceeding to work through 

the workflow activities. One convenient feature that TRIDENT offers is that the 

processing status is monitored and that CPU performance can be traced during 

execution. Figure 4.19 shows an example of recorded processing status; notice that the 
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initiation time consumed by creating the scenario is not recorded here. If one assumes 

that the typical patience threshold of an online user is about 6 seconds, then 15-40 

seconds wait time must be considered a burden. However, what is considered a burden 

may be relative when compared to the overall run time. A program needing several 

hours to execute will not suffer from a few extra seconds for initiation, while a program 

needing 30 seconds doubles up in wait time; hence these extra seconds are either 

insignificant or significant from a percentage point of view, in reality should not play 

much of role however. For example, the processing status shown in Figure 4.19 is 

recorded for processing a small DEM (1176*883), which takes 313 seconds overall with 

24 seconds for creating the scenario. The standalone program takes around 92% of this 

time; the difference is not significant, almost non-existent when considering the 14 hours 

it takes to process the DEM for the Schuylkill River catchment.   

 

 

Figure 4.19 A sample of recorded processing status 

 

Another source of execution time loss is the activation of interactive components in an 

activity. Workflows containing interactive activities add some additional lag time as the 

workflow engine takes 5-15 seconds to start up an interactive window. This too is 

beyond the 6 second “patience” threshold and while not really substantial could be 
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viewed to be somewhat annoying, especially in those workflows that require several of 

the interactive windows to appear. For example, the workflow for SWAT contains five 

activities which call up an interactive window for loading or assigning parameters; hence 

this adds about 25 – 75 seconds to the execution. Given an overall run time of about 15 

seconds for the standalone SWAT program performing the 4-year daily runoff simulation 

for the 7-sub-basin catchment, this more than quadruples the execution time. In terms of 

percentage calculations this 400% increase seems unacceptable, even though this could 

be mitigated somewhat if SWAT where to be transferred into a single activity (no 

swapping modules possible in this case however).  

 

While the previous paragraphs show that run-time efficiency of a model kernel is 

adversely affected when being migrated into the HCMS it is also important to realize that 

time saved preparing model inputs makes these additional seconds or minutes 

insignificant. While it is difficult to exactly quantify the time saved during the data 

preparation steps our impression that one saves hours on these tasks versus spending 

seconds (during execution) should be pretty accurate. One should also take notice that 

not all processes, activities, and steps take the same time, in fact they can vastly differ. 

In the examples presented processing DEM and NLDAS-2 meteorological data as well 

as constructing HRUs were by far the most time-consuming tasks. Also, using web 

service based versions, such as the DEM processing, can yield improvement as the 

computations are performed on a remote server in parallel with other sub-workflows 

executed at the local machine thus harnessing additional CPU times elsewhere. In 

general, the authors feel that the overall time savings using the HCMS are significant 

enough to put a check mark on this performance criterion; losses due to additional 

middleware are more than adequately compensated for when processing model data.      
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4.6  Summary and Future work 

In this paper, we tried to assess the utility of a workflow (MicroSoft’s TRIDENT) shelled 

Hydrologic Community Modeling System, HCMS, by carrying out several typical 

hydrologic modeling studies and subsequently recording our experiences in addition to 

computing some performance measures. Key aspects to consider for the degree of 

HCMS utility were the potential and ability of the system to be used anywhere in the 

nation which to a great extent translates into being able to access relevant data on a 

nationwide scale. A second key aspect was to measure the computational costs of using 

a middle ware layer such as a workflow engine in terms of performance and degradation 

in run- and turn-around time for a modeling task when compared to the usual approach, 

i.e. stand alone codes and manual preparation of I/O data. To this end we selected a 

demonstration watershed of considerable size, the Schuylkill River catchment in 

southeast Pennsylvania having a drainage area of about 5,000 square-kilometers, for 

both long-term (4 years) and short term (several days) rainfall-runoff simulations that 

were compared to USGS stream gauge station data. For these tests we used different 

sub-divisions of the watershed, compared similar data products from two different data 

sources, in addition to deploying different model formulations and also running several 

comparisons between different hydrologic process formulations, such as for potential 

evapotranspiration. This ensured that many of our developed workflow activities, 

organized in 4 libraries (data-access, data preparation, modeling, post-processing), were 

put through their paces while at the same time providing the base for our assessments.  

 

We found that the HCMS can be used quite well as a modeling platform because data is 

available with good spatial and temporal coverage regardless the location in the US. 

This already pretty good situation is bound to improve even further as more mission 
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agencies improve their access points to their data holdings, be it through web service 

connections, better data preparation, larger server bandwidth, or through harmonizing 

efforts that brings more interoperability to the data world. This is a key strength of the 

HCMS, that it is able to access data via a wide range of access trajectories be it remote 

(or local) files systems, database connections, or web services. Building activities that 

can accomplish these connections while not trivial is reasonably easy, hence the HCMS 

exhibits a good deal of growth potential as more data sources can be added to the data 

access library. 

 

We also found that while not computational cost free, the middle ware layer that a 

workflow engine represents between modeling and the user, is computationally 

“affordable”. Added time demands are in the range of seconds or a few minutes, that, 

depending on the application, represent insignificant additions to otherwise lengthy 

(hours) computations, especially in the data preparation arena. During model  execution, 

often just taking seconds to minutes, lag times due to workflow initiation and preparing 

interactive window launching adds to the time demands often doubling (or more) 

execution or turn-around times. These costs while unavoidable do not seem to be too 

detrimental though given the time savings one gets when using the automated data 

preparation features of HCMS. Also, there is the potential to utilize dedicated servers 

(more powerful than the ones we used) that could reduce the execution times 

particularly those requiring hours.       

 

There are a number of tasks that could be carried out in the future that would help to 

improve and mature the HCMS. Computational efficiency could be improved greatly if 

some of the data preparation steps were available for a parallel compute environment, or 
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if the computation of the time-demanding data sets cold be pushed into a high 

performance computing environment; the option of trying the AZURE cloud being the 

most obvious one. For example, there is a parallel version of tauDEM available now 

which could be utilized instead of the single processor version we use for HCMS.  

 

While we have a web service based version for the DEM processor, we would also like 

to add web services versions of the HRU constructor and NLDAS-2 data processor 

those two (in addition to the DEM processor) being the most time demanding 

computations in the data preparation segment. We could also expand this idea and 

develop web-based versions of all hydrologic compute kernels in the HCMS thus 

allowing a powerful server to serve as the host instead of running these computations on 

the client machine.  

 

Future work will also need to focus on the inclusion of some of the auxiliary functions (or 

activities) in the HCMS. An automated parameter identification module would greatly 

help the modeling sequences in the calibration steps. There is also the need to build out 

the post-processing library to include more visualization and statistical analyses options 

both of which are somewhat limited in the current implementation. In this vein we would 

also to like to increase the data access library as more data sources are already 

available that could be tapped into. Lastly, in this paper we only used one catchment for 

demonstration purposes, it would helpful to actually carry out a study that uses a slate of 

4 or 5 different seized watersheds to see how well the HCMS “scales” to different 

watershed sizes.   
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CHAPTER 5: SUMMARY AND FUTURE WORK 

 

In this thesis, we presented three papers regarding to the development of a hydrologic 

community modeling system. We first took a review of current efforts in building 

community modeling systems within the hydrologic related realms, and investigated the 

potentials of coupling frameworks to serve as the backbone of community modeling 

systems. The general advantages of using existing coupling frameworks lie in their 

capabilities of incorporating new modules or wrapping legacy codes with much ease, 

mediating the execution and communication between modules seamlessly, and 

supporting the construction of more complex integrated models with compliant modules 

etc. However, the obstacles also stayed in the way, for example, their practical usages 

might involve a steep learning curve, and migrating a piece of legacy codes with 

complex structure and data model while lacking of code documentations could be 

extremely difficult. Further there could be some efficiency loss for a legacy model when 

being replanted to new environments. Of concern these challenges, we embark on our 

studies presented in the second paper. 

 

In the second paper, we made attempts to develop a hydrologic community modeling 

system based on the TRIDENT workflow system which is functionally analogical to 

coupling frameworks but also incorporates additional features such as recording 

provenance and distributing computations over network etc. Our objective was to 

provide such an environment supporting the construction of variable hydrologic modeling 

systems that channel model pre-processing, model and model post-processing through 

workflow sequences. As essential components of this environment, we presented our 

development of four libraries responsible for accessing data from online data 
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repositories or local data files, preparing source data into model inputs, performing 

hydrologic computations, and analyzing modeling results respectively. Each library 

consists of a number of activities either migrated from legacy models/codes or scripted 

from the ground up. The environment was demonstrated by composing a seamless 

workflow for hydrologic simulation and applying it to a small watershed in Southeastern 

Pennsylvania. To better test this environment and evaluate its performance, we 

conducted more case studies in the third paper.  

 

The HCMS was applied to the Schuylkill watershed located in the Southeastern 

Pennsylvania mainly for long-term or short term rainfall-runoff simulations in the third 

paper. We demonstrated its capabilities of accessing and comparing data from different 

data resources, performing DEM processing using different types of workflows and 

under different delineation schemes, estimating single hydrological quantity (potential 

evapotranspiration) with swappable activities encapsulating various mathematical 

methods, simulating entire hydrologic simulation with different models (the migrated 

SWAT, TOPMODEL and a loosely coupled hydrologic model), directly transporting 

results to the post-analysis activity for evaluation and comparison. These case studies 

confirm the feasibility of the environment, and detect limited run-time performance loss 

ranging from a few seconds to a minute more for workflows executed in local machine. 

This loss can hardly be noticed for workflows involving heavy computations, and also 

can be compensated by the time saved from the step of data preparations.   

 

Our future work will focus on the extension of the current four libraries to power up the 

modeling environment. We will enrich the data access library with accesses to an 

increased number of data sources, provide alternative activities for data processing such 
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as data interpolation or spatial data downscaling, migrate more existing hydrologic 

models into model library, and expand the post-processing capabilities. Typical activities 

such as the one for automatic parameterization as well as web service based activities 

for HRU construction and NLDAS-2 data processing will be created in the first place.     
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Appendix A: ACTIVITIES IN HYDROLOGIC COMMUNITY MODELING SYSTEM 
 
 
 
 
Library Sub-Category Activities 

Data 
Access 
Library 

USGS seamless 
data warehouse 

1)Download  National Elevation Data 

2)Download  Land Cover Data 

EPA Geospatial 
Service 3)Access Watershed and Stream Shapefile 

SSURGO 4)Access SSURGO Soil Data 

HIS 
WaterOneFlow  

5)Get Web Services within a Geospatial Area 

6)Retrieve Sites in a Specified Extent 

7)Get Time Series Data 

8)Variables Semantic Checking 

NLDAS-2  

9)Access NLDAS-2 Forcing Data 

10)Extract Data within a Geospatial Extent 

11)Extract Data of Specified Fields 

12)Access, Extract and Aggregate Time Series for 
Sub-basins 

MPE 

13)Access MPE data from NWS 

14)Parse MPE netCDF files 

15)Get Data within a Specified Area 

Read Data Files 

16)Read Basin Data from a XML file 

17)Read Basin Data from Shapefiles 

18)Read Data from an XML file 

19)Read Data from an Excel File 

20)Read Data from SQL Database 

21)Read Data from CSV file 

Data 
Processing 
Library 

GeoProcessing 

22)DEM Processing: Fill Sinks 

23)DEM Processing: D8 Flow Direction 

24)DEM Processing: D8 Flow Contributing Area 

25)DEM Processing: Grid Network and Flow Path 

26)DEM Processing: Define Stream Network 

27)DEM Processing: Watershed Delineation 
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Continued 

Library Sub-Category Activities 

Data 
Processing 
Library 

GeoProcessing 

28)DEM Processing: Watershed Grid To Shapefile 

29)Locate an Outlet Based on Given Sites 

30)Terrain Processing(The whole Dem processing 
procedure)  

31)Invoke DEM Processing Web Service 

32)TIN Generation 

33)Invoke TIN Generation Web Service 

34)Clip and Reclassify USGS Land Cover Data 

35)Merge Soil Shapes and Clip Soil Shape within 
the Boundary 

 

Time Series 
Processing 

36)Prepare Soil Spatial Data for Watershed(from 
Soil Data Mart) 

37)Simplify Soil Groups into A,B,C,D 

38)HRU Builder 

39)Unit Converter 

40)Invoke Unit Converter Web Service 

41)Process USGS Instantaneous Data 

42)Spatial Interpolation: Inverse Weighted Method 

43)Time Series Interpolation: Linear Method 

44)Compute Mean Precipitaiton For Sub-basins(For 
MPE) 

45)Aggregate Time Series of Given Fields for Sub-
basins(For NLDAS-2) 

46)Compute Maximum/Minimum/Average Value 

Hydrologic 
Model 
Library 

 

TOPMODEL 

47)GRIDATB:Compute Topographic Index 
ln(a/tanB) 

48)Computing Area-Distance Histogram 

49)Assigning Parameters& Initial condition 

50)TOPMODEL Main Computation 

SWAT 

51)Snow Melt Component 

52)Modified Curve Number Method 

53)Overland Routing Component 

54)Soil Water Component 



147 
 
Continued 

Library Sub-Category Activities 

Hydrologic 
Model 
Library 

SWAT 

 

55)Groundwater Component 

56)Channel Routing Component 

Hydrologic 
Methods 

57)ET: Hargreaves Method 

58)ET: Thornthwaite Method 

59)ET: Priestley Taylor Method 

60)ET: Penman-Monteith Method 

61)Runoff Yield&Infiltration: Green Ampt Method 

62)Runoff Yield&Infiltration: Curve Number Method 

63)Direct runoff routing: SCS Unit Hydrograph 

64)Direct runoff routing: Clark Unit Hydrograph 

65)Direct runoff routing: Synder Unit Hydrograph 

66)Baseflow: Linear Reservoir 

67)Baseflow: Recession method 

68)Channel Routing: Muskingum Method 

69)Channel Routing: Modified Wave Method 

Analysis& 
Utilities         

Library 

Performance 
Evaluation 

 

70)Hydrograph Visualization and Statistics 

71)Correlation Analysis 

72)Water Balance Check  

73)Geospatial Data Viewer 

74)Time Series Viewer 

75)Decompress ZIP or TAR-ZIP files 

Utilities 

76)Search Files 

77)Create Shapefile for Sites 

78)Sites Filter for a Spatial Extent 

79)Sites Filter for a Temporal Scale 

80)Write Time Series to an Excel File 

81)Write Time Series to an XML File 

82)Write Time Series to SQL Database 

83)Merge Grid Files 

84)Change Grid Format 
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