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Abstract
Preemption control of multi-class loss networks

Zhen Zhao
Jaudelice Cavalcante de Oliveira, Ph.D. and Steven Weber, Ph.D.

This thesis addresses the analysis and optimization of preemption in multi-class loss networks.

Preemption, admission control and rate adaptation, are control mechanisms that enable loss network

operators to provide quality of service (QoS) guarantees for admitted calls. This research includes

two parts: i) performance characterization of a two parallel link loss network servicing multiple

classes of calls under a specific preemption and admission policy, and ii) preemption and admission

control policy analysis for a single loss link servicing two classes of calls.

In Part I, we consider a two parallel link multi-class loss network, where a call may preempt, if

necessary, any calls with lower priorities and may in turn be preempted by any calls with higher

priorities. The preemption policy permits both preemption from a preferred link to a backup link

if possible, and eviction from either link if necessary. Our contributions in this part include: i)

characterizing the rates of each class causing preemption of active lower priority calls, and the

rates of each class being preempted by an arriving higher priority call in Erlang-B functions when

all classes share a common service rate; ii) simple expressions of these preemption rates through

uniform asymptotic approximation; and iii) asymptotic approximation of these preemption rates

using nearly completely decomposable (NCD) Markov chain techniques when classes have individual

service rates.

After analyzing the performance of a typical policy, we would also like to study various policies.

In Part II, we analyze different preemption and admission control policies for a two-class loss link

where per-class revenue is earned per unit time for each active call, and an instantaneous preemption

cost is incurred whenever the preemption mechanism is employed. Our contributions in this part

include: i) showing that under reasonable reward models, if we always preempt when the link is full,

then it is better not to preempt at non-full states; ii) a sufficient condition under which the average



xii

revenue of optimal preemption policy without admission control exceeds that of optimal admission

control policy without preemption, which are established via policy improvement theorems from

stochastic dynamic programming.

Abstract
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Chapter 1: Introduction

1.1 Preemption control of multi-class loss networks

Communication networks may be divided into two categories: i) best-effort networks and ii) circuit-

switched (loss) networks, see Fig. 1.1. The current Internet is an example of a best-effort network,

while the traditional phone network is an example of a loss network. It is well-known that best-

effort networks are appropriate for the traditional data service but do not guarantee the adequate

performance of real-time traffic. On the other hand, circuit-switched networks are appropriate for

real-time traffic like voice calls and streaming media, but the allocation of resources is inefficient for

bursty connections. A loss network is defined as a collection of links (each capable of multiplexing

a finite number of concurrent calls) servicing a set of routes (each route consisting of a set of links),

where a control mechanism determines whether or not to admit each arriving call on each route [1].

Figure 1.1: Best-effort networks are packet switched, do not reserve resources for connections,
and do not employ admission control. Circuit switched networks are connection oriented, with
each admitted call reserving the use of one or more dedicated circuits, and as such admission
control is required.

In recent years, real-time (inelastic) network traffic (e.g., voice, streaming audio and video) com-

prises a rapidly growing fraction of network traffic. Real-time traffic is fundamentally different than

non-real-time (elastic) traffic (e.g., data transfer applications like web and email) in that satisfactory

application performance requires the network provide quality of service (QoS) guarantees that such

traffic will receive a minimum bit rate with bounded delay variation (jitter). The rising prevalence of

real-time traffic and fact that loss networks are the appropriate communication network architecture

to offer the QoS guarantees that such traffic requires motivates the study of loss networks.
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Loss networks offering multiple service classes are capable of discriminating among different

connection requests, see Fig. 1.2. Multi-class loss networks service multiple classes of calls, where

classes often indicate call priority, and call priority often reflects the ordering of reward paid to the

network for each admitted call. In the general case arrival rate, service rate, and call rate/size (the

number of circuits on each link of the route consumed by a call of that class) are class specific.

The importance of multi-class service discrimination arises from the widely heterogeneous nature of

loss network traffic, ranging from casual entertainment (e.g., YouTube videos) to emergency services

(e.g., 911 calls). This importance motivates our study of multi-class loss networks.

Figure 1.2: Multi-class loss networks are capable of service discrimination whereas single class
networks loss networks are not.

The facts that loss links have a finite amount of circuits and that admitted calls reserve link

resources requires that loss links employ some form of control to limit resource consumption. There

are three popular control mechanisms for multi-class loss networks: admission control, preemption

control, and rate adaptation. See Fig. 1.3. The most widely used control mechanism in loss networks

is admission control. An admission control policy specifies whether or not to admit an arriving call

of a given class on a given route as a function of the number of active calls of each class on each

link.

A second control mechanism for loss networks is rate adaptation, where active calls may be

asked to dynamically adjust their resource consumption in response to changes in the instantaneous

link load. Which calls are asked to change their rates and by how much, are specified by the

adaptation policy. Streaming media are good candidates for rate adaptation: typically there is a

range between the minimum acceptable media quality and the maximally desirable media quality,

with a commensurate range in media encoding rates. Dynamic encoding for rate adaptation enables

active calls to respond to changes in network congestion.

Chapter 1: Introduction 1.1 Preemption control of multi-class loss networks
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Figure 1.3: Control mechanisms for multi-class loss networks include admission control, pre-
emption and rate adaptation.

A third control mechanism for multi-class loss networks is preemption, where an arriving call

may be admitted by possibly preempting an active call of lower priority. The preemption policy

is typically a function of the number of active calls of each priority level, which we call the state

of the link. The preemption policy specifies whether to i) block, ii) admit without preemption, or

iii) admit with preemption an arriving call of each possible class as a function of the state. The

preemption policy enables service differentiation in that the blocking probability is typically smaller

for higher priority calls, but incurs the cost that lower priority calls may find themselves admitted

then preeempted before their intended call termination time. Preempted calls may be rerouted or

terminated depending upon the network policy and resource availability. In short, preemption may

be used to assure that high priority calls are routed along favorable paths. The use of preemption

policies for inelastic traffic (voice, video, etc.) in loss networks has gained attention in recent

years as a flexible and effective control mechanism to dynamically allocate network resources among

competing traffic classes with different priorities. This thesis addresses the performance analysis

and policy design of preemptive multi-class loss links in a wired network, see Fig. 1.4.

1.2 Thesis contributions

The contributions of this thesis are summarized in two main chapters. Chapter 2 investigates the

performance of a two parallel link loss network servicing multiple service classes under a specified

Chapter 1: Introduction 1.2 Thesis contributions
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Figure 1.4: Preemption control of multi-class loss networks and related context.

preemption policy. Although blocking probabilities for multi-class non-preemptive loss networks

(and their associated heavy traffic limits) have been known for a long time, this work is the first

to successfully analyze the blocking rates and preemption rates under preemption. Contributions

include:

• characterization of the preemption rates/probabilities for each of K preemptive classes with

homogeneous service rates on a two parallel link network characterization of the admission,

blocking, and departure rates is also provided;

• asymptotic expressions for the preemption rates for each of K preemptive classes with homo-

geneous service rates;

• approximation of preemption rates for classes with heterogeneous service rates under specific

time scale separation in the arrival and service rates.

Chapter 3 studies the joint use of admission and preemption control for a two class loss link under

a general revenue model incorporating per-class arrival and departure revenue, preemption costs, as

well as per-class holding revenue rates. Admission control policies for loss links and networks have

been widely studied for more than two decades. To the best of our knowledge, this is the first work

Chapter 1: Introduction 1.2 Thesis contributions
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addressing preemption and admission control. Contributions include:

• if preemption is always done when the link is full then any additional preemptions from non-full

states decrease revenue;

• a sufficient condition for the superiority of optimal preemption without admission control over

optimal threshold-based admission control without preemption control.

Results of Chapter. 2 were published in [2] with preliminary conference versions appearing in [3;4].

Results of Chapter 3 have been submitted for publication [5] with a preliminary conference version

appearing in [6]. Our initial results on the joint use of preemption and rate adaptation policies was

published in [7]. Other related results on preemption controls in generic network topologies under

different bandwidth constraint models are under review in [8].

1.3 Thesis outline

This thesis is organized as follows: Chapter 2 present our research on the performance analysis

of a typical preemption policy in a multi-class loss network, as illustrated in Fig. 1.5. A detailed

introduction of preemption performance analysis is presented in Section 2.1. Section 2.2 summa-

rizes related work of preemption analysis. Section 2.3 defines the model, notation, and performance

metrics. Sections 2.4 and 2.5 discuss the case when all classes have the same mean duration (homoge-

neous service rates); Section 2.4 addresses the finite capacity case, and 2.5 addresses the asymptotic

many small users regime. Section 2.6 discuss the case when call duration means are class-dependent

(heterogeneous service rates). The analytical results are shown to agree with simulation results in

Section 2.7, and Section 2.8 offers a conclusion.

After analyzing the performance of a typical preemption policy, a few questions immediately

follow: what about other preemption policies? what is the best preemption policy? which control

mechanism is better: preemption or admission control? We answer some of these questions and also

explain why we cannot answer the remaining ones in Chapter 3. We describe our system model in

§3.3, as illustrated in Fig.1.6. The two primary findings discussed above are presented in the two

subsections of §3.4. Numerical results are discussed in §3.5 with a detailed analysis of the simple

Chapter 1: Introduction 1.3 Thesis outline
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Figure 1.5: Chapter 2: Performance analysis of preemption rates/probabilities of a multi-class
loss network with fixed admission and preemption policy.

case of a link supporting a single circuit (c = 1) in §3.5.1, and numerical performance plots of larger

systems (c > 1) in §3.5.2. We give a brief summary of related work in §3.2 and a short conclusion

in §3.6.

Figure 1.6: Chapter 3: Policy analysis of admission and preemption controls of a two-class
loss link.

Summary of our research, limitations and future work is given in Chapter 4. Proofs of several

lemmas are placed in appendices following the references.

Chapter 1: Introduction 1.3 Thesis outline
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Chapter 2: Preemption rates for a parallel link loss network

We consider a two parallel link network supporting K call classes, where a class k call may preempt

if necessary any calls of classes k + 1, . . . ,K, and may in turn be preempted by any calls of class

1, . . . , k − 1. The two links are a (preferred) primary link (PL) and a backup link (BL). The

preemption policy permits both preemption from the PL to the BL (a transfer) if possible, and

eviction from either link if necessary. We characterize the rates of an arriving class k call causing

preemption of an active lower priority call, and of an active class k call being preempted by an arriving

higher priority call. When all classes share a common service rate, we express the preemption rates

for each class in terms of the Erlang-B blocking probability equation. Simple expressions for the

preemption rates are obtained in the heavy traffic limit. When classes have individual service rates,

we approximate the preemption rates for each class using nearly completely decomposable (NCD)

Markov chain techniques. The accuracy of the approximation improves with increasing timescale

separation between classes.

2.1 Introduction

The use of preemption policies for inelastic traffic (voice, video, etc.) in loss networks has gained

attention in recent years as a flexible and effective control mechanism to dynamically allocate network

resources among competing traffic classes with different priorities. The motivation behind the use

of preemption policies is the desire to provide differentiated quality of service (QoS) to the various

classes. Consider the simple case of multiple classes of unit rate (size) sharing a single loss link.

Without preemption, the service quality of the link is the common blocking probability for all classes.

With preemption, the blocking probability is class dependent: higher priority classes have smaller

blocking probabilities at the expense of higher preemption probabilities for lower priority classes.

Applications of preemption. Preemption policies have been widely employed in the context

of Multi-Protocol Label Switching (MPLS) capable networks, where the preemption attribute deter-
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mines whether a Label Switched Path (LSP) with a certain priority attribute can preempt another

LSP with a lower priority attribute from a given path, when there is a competition for available

resources. The preempted LSP may then be rerouted (if possible) or terminated (if necessary) [9].

Preemption has also been employed in wireless medium access control (MAC) protocols, where trans-

missions associated with inelastic applications, like voice or media traffic, have preemptive access

priority over transmissions associated with elastic applications, like web and email traffic. In cellular

networks, preemption has been employed to allow GSM (Global System for Mobile communications)

voice calls to preempt GPRS (General Packet Radio Service) data packets [10]. In cognitive radio,

the aim is to improve the efficiency of spectrum utilization by allowing users to adapt their spectrum

consumption based on spatio-temporal availability. It has been proposed to allow “primary” users

preemptive priority over “secondary users”, ensuring that primary users have access to the resource

when they require, and that secondary users have access to the resource when it is available [11].

Although preemption is gainfully employed in a wide variety of applications, the canonical applica-

tion motivating this paper is the case of wired multi-service loss networks with primary and backup

routes.

Model justification. The motivation for our two parallel link network is the common case of

two disjoint routes servicing a source destination pair in a multi-class preemptive loss1 network (see

top of Fig. 2.1). Often one route (the primary) is preferable to the other (backup), possibly due to

the shorter distance, shorter hop count, lower average congestion, etc. of the primary relative to

the backup. Alternately, the backup route may only be used in case the primary link fails (fault

restoration) or suffers an overflow (excessive congestion). As is natural in an overflow context, our

model allows transfers of calls from the primary link to the backup link (but not vice-versa). A first

order approximation of the two disjoint route network is the two parallel links topology (see middle

of Fig. 2.1). This approximation ignores the cross traffic in the two routes topology, as well as the

variation in link capacity on each route. Nonetheless, the model captures many essential features of

the two route loss model: route preference, multi-class arrivals, admissions, blocked calls, transfers,

1Loss links/networks/systems are so called because they have no queueing: requests arriving to find all
servers/circuits busy are lost (blocked) instead of queued.

Chapter 2: Performance analysis 2.1 Introduction
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preemptions, and departures.

Admission and preemption. Call2 classes are distinguished by their arrival rate and their

priority. Class 1 calls are highest priority, and class K calls are lowest priority. For simplicity

we assume all calls are unit rate (size), i.e., each call consumes one circuit, and we measure link

capacity in terms of the number of available circuits. We consider the case when the service rate is

common to all classes (homogeneous), as well as the case where the service rate is class dependent

(heterogeneous).

The admission and preemption mechanism for the two parallel link topology is as follows (see

bottom of Fig. 2.1). All arriving calls initially seek admission on the primary link. If an arriving

class k call finds the primary link not full, it is admitted there. If the primary link is full but there

are one or more lower priority active calls, then the class k call is admitted on the primary link, and

a randomly selected call of the lowest active class is preempted. This preempted call of class j > k

is transferred to the backup link if either the backup link is not full, or if it is full but there are one

or more active calls of lower priority i > j. In the latter case, a randomly selected call of the lowest

active priority class on the backup link is preempted from the backup link to accommodate the class

j call’s transfer from the primary to the backup link. If the call preempted from the primary link

cannot be transferred to the backup link, then it is preempted from the network (dropped).

If the arriving class k call cannot be admitted on the primary link (because the link is filled with

calls of priority 1, . . . , k), then it seeks admission on the backup link. If an arriving class k call finds

the backup link not full, it is admitted there. If the backup link is full but there are one or more

lower priority active calls, then the class k call is admitted on the backup link, and a randomly

selected call of the lowest active class is preempted. This preempted call is preempted from the

network (dropped). If the arriving class k call cannot be admitted on the backup link (because the

link is filled with calls of priority 1, . . . , k), then it is blocked from the system.

Performance metrics. We define three preemption probabilities/rates for each class: i) the

probability/rate that an arriving class i call preempts a certain active class k > i call, ii) the

2We use the generic term calls throughout the article, which could be replaced by LSPs, connections, circuits, etc.

Chapter 2: Performance analysis 2.1 Introduction
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probability/rate that a class k call arrival preempts any active lower priority call for admission, and

iii) the probability/rate that an active class k call is preempted by an arriving higher priority call.

Summary of results. Although blocking probabilities for multi-class non-preemptive loss net-

works (and their associated heavy traffic limits) have been known for a long time, this work is the

first to successfully analyze a multi-class preemptive loss network. This analysis is significant on

account of the fact that numerical techniques are unlikely to be successful for even moderate sized

systems, e.g., the number of states even for a single link with c circuits serving K classes grows like

O(cK). This contribution is significant on account of the increasing use of preemptive policies in a

wide variety of networking contexts. Specific contributions include:

• Characterization of the preemption rates/probabilities for each of K preemptive classes with

homogeneous service rates on a two parallel link network in terms of Erlang-B blocking prob-

abilities. Characterization of the admission, blocking, and departure rates is also provided.

• Asymptotic expressions for the preemption rates for each of K preemptive classes with ho-

mogeneous service rates using uniform asymptotic approximations for the Erlang-B blocking

probabilities. This approximation is appropriate for the “many small users” regime, where

both arrival rates and link capacities are large, and includes the heavy traffic limit as a special

case. Sensitivities of the heavy traffic preemption rate expressions to the arrival rates are

discussed.

• Application of the Markov chain concepts of lumpable, nearly completely decomposable (NCD),

and time-scale separation to the preemption model. This leads to an approximation of the

preemption rates for each of K preemptive classes with heterogeneous service rates under a

specific time-scale separation regime.

Outline. The rest of this paper is organized as follows. Section 2.2 summarizes related work.

Section 2.3 defines the model, notation, and performance metrics. Sections 2.4 and 2.5 discuss the

case when all classes have the same mean duration (homogeneous service rates); Section 2.4 addresses

the finite capacity case, and 2.5 addresses the asymptotic many small users regime. Section 2.6

Chapter 2: Performance analysis 2.1 Introduction



12

discuss the case when call duration means are class-dependent (heterogeneous service rates). The

analytical results are shown to agree with simulation results in Section 2.7, and Section 2.8 offers a

conclusion.

2.2 Related Work

We divide our discussion of related work on preemption into two parts. The first part discusses

related work on proposed preemption policies, both optimal and heuristic. Although much of this

work discusses the important issue of the computational complexity of the proposed policies, in

general this body of work contains very little in the way of performance analysis. The second part

concentrates on performance analysis of a single link with preemptive priority.

2.2.1 Proposed preemption policies

The 1992 paper by Garay and Gopal addressed the call preemption problem in communication net-

works [12], showing that the problem of selecting a connection for preemption in order to minimize the

number of preempted connections or minimize the amount of preempted bandwidth is NP-complete.

They propose heuristics for a centralized network framework that are shown to perform reasonably

well relative to the optimal solution. Extending Garay and Gopal’s work, in 1997 Peyravian and

Kshemkalyani proposed decentralized network connection preemption algorithms [13] that optimize

three fixed criteria in a given order of importance: number of connections, bandwidth, and priority.

After these two seminal works, many of the subsequent proposed preemption policies have been

described in the context of a Differentiated Services (DiffServ) aware MPLS scenario, e.g., [14–20],

discussed below. In particular, the decentralized policies in [13] are the basis for our earlier work on

flexible and adaptive preemption policies [14]. Here, an order of importance for the considered criteria

is not fixed, but can be configured by the network provider according to the network’s best interest.

In [15], Sung-eok et al. propose a centralized connection preemption algorithm that optimizes the

preemption criteria in a fixed order different from [13]. In [16], Tong et al. present an algorithm that

jointly considers both bandwidth allocation and preemption.

Stanisic and Devetsikiotis propose simple preemption policies based on random selection; this
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dramatically reduces the time needed to select a set of connections to be preempted [17]. Both Blanchy

et al. [18] and Yu et al. [19] focus on preemption–aware routing algorithms. In particular, a path is

selected by minimizing the number of connections (LSPs) that require preemption. The routing

algorithm therefore tries to minimize the occurrence of preemption events and thereby minimize the

need for rerouting. Recently, Vieira and Guardieiro implemented de Oliveira’s preemption policies

in [14] using fuzzy logic and genetic algorithms in an MPLS testbed [20].

2.2.2 Analysis of single links with preemption

Ours is the first analytical treatment of the performance of a preemptive network with multiple

loss links. Related work studies either a single link servicing multi-class elastic (e.g., email, web) or

inelastic (e.g., voice, video) traffic with preemption, or a general network servicing multi-class traffic

(elastic or inelastic) without preemption. The text by Ross [21] covers non-preemptive loss networks

(for inelastic traffic), while the text by Srikant [22] covers non-preemptive best-effort networks (for

elastic traffic). Below, we restrict our attention to work on preemption modeling.

Preemptive systems can be dichotomized into preemption with delay and preemption with loss.

Preemption with delay means preempted calls are “put on hold”, and queued until their service

resumes or restarts. Preemption with loss means that preempted calls are removed, this can mean

either transfer or eviction. Preemption with delay is usually modeled by an M/G/c queue (infinite

queueing), while preemption with loss is usually modeled by an M/G/c/c queue (no queueing).

Preemption with delay. The earliest analysis of preemption is in the context of preemption

with delay. In fact, the first paper published on priority queueing with preemption is from 1958, by

White and Christie [23]. In this paper, White and Christie analyze the average queue length and the

average time in system for a preemptive resume and repeat policy. They also study a “breakdown”

system where the preemptive server is prone to failure (vacations). Miller [24] uses matrix-geometric

methods to compute steady state probabilities for an M/M/1 priority queue, modeling a single link

servicing elastic traffic with preemption. Buzen and Bondi [25] published an article in 1983 studying

a network of M/M/c queues with preemptive resume policies. Their results are focused on moments

in a preemptive–delay network. Ngo and Lee published a short note in 1990 [26] on a single M/M/c
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queue with preemptive priority, extending [24]. The work in [24] is further generalized by Cho and

Un [27], who provide an analysis of a combined preemptive/nonpreemptive priority M/G/1 queue.

There are many other papers in the queueing literature on preemption with delay; these analyses

are of limited relevance to our work since our focus is on preemption with loss.

Preemption with loss. The above articles analyze the performance of a preemption system

with delay. Unfortunately, the more prevalent use of preemption policies (e.g., MPLS) is to drop

(as in the loss model), rather than postpone (as in the delay model) the preempted calls. There is

some existing work on preemption with loss, but all such work is either analysis of a single link, or

has a numerical/computational focus for multiple parallel links. The earliest performance analyses

of a preemption policy in a loss context are by Helly [28] and Burke [29], both from 1962. These short

papers present the framework for employing the Erlang B blocking probability equation on a single

link with preemption. These two papers served as an inspiration for our results in §2.4. After that,

the literature appears to be silent until 1980 when Calabrese et al. [30] published an analysis of a voice

network of multiple parallel links with preemption. Their paper includes a discussion of a variety

of different preemption policies, which they term “ruthless” and “friendly.” This model combines

the two preemption policies with the estimated probability that a high priority call returns to the

original link after searching all alternate links and finding them blocked. Although this paper studies

multiple parallel links, the focus is on algorithms for computation of the performance metrics, along

with numerical approximations of the optimal solution. In contrast, our work focuses on closed-form

performance expressions. Moreover, [30] is essentially a “soft” preemption model, where high-priority

calls only preempt low-priority calls if each of the routes is full, whereas our “hard” preemption model

allows high-priority calls to preempt low-priority calls if the primary link is full, regardless of the

status of the backup link. In 1980, Fischer [30] discussed the blocking and preemption probabilities

of two priority classes with different service times in a single preemptive loss link. In that paper,

due to the difficulty in solving the steady state equations, the author analyzed three special cases of

the solution: i) M/M/1/1, ii) M/M/c/c with ratio of class 2 to class 1 mean holding time tends to

0 and iii) M/M/c/c with ratio of class 2 to class 1 mean holding time tends to ∞.
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2.3 Model, notation, and performance metrics

The two parallel link network is illustrated in Fig. 2.2. The notation used in the paper is given in

Table 2.1. Quantities for the PL are denoted by superscript p, and quantities for the BL are denoted

by superscript b. Quantities for the two links viewed as a whole are denoted by superscript s (for

system). We will often discuss a generic single isolated link (IL); quantities for an IL are without

superscript. There are K classes, numbered 1, . . . ,K, where class 1 is of highest priority and class

K is of lowest priority. Arriving class k calls have preemptive priority over all active calls of lower

priority class k + 1, . . . ,K. Moreover, active class k calls are subject to possible preemption by

arriving higher priority calls of class 1, . . . , k− 1. The admission and preemption policy is described

in §2.1.

Table 2.1: Mathematical notation.

cp capacity of PL (# of available circuits)

cb capacity of BL (# of available circuits)

cs = cp + cb total capacity of system

λk arrival rate of class k

Λk =
∑k
i=1 λi cumulative arrival rate of classes 1 to k

r arrival rate scaling parameter (§2.7)

µk service rate of class k

µ−1
k mean duration of a class k call

ρk = λk/µk offered load of class k

Rk =
∑k
i=1 ρi cumulative offered load of classes 1 to k

nk # of class k calls on IL

npk # of class k calls on PL

nsk # of class k calls in system

n = (n1, . . . , nK) # of calls of each class on IL

Continued on next page
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Table 2.1 – continued from previous page

np = (np1, . . . , n
p
K) # of calls of each class on PL

ns = (ns1, . . . , n
s
K) # of calls of each class in system

Nk =
∑k
i=1 ni # of calls of classes 1 through k on link

N̄k =
∑K
i=k+1 ni # of calls of classes k + 1 through K on link

Np
k =

∑k
i=1 n

p
i # of calls of classes 1 through k on PL

N̄p
k =

∑K
i=k+1 n

p
i # of calls of classes k + 1 through K on PL

Ns
k =

∑k
i=1 n

s
i # of calls of classes 1 through k in the system

N̄s
k =

∑K
i=k+1 n

s
i # of calls of classes k + 1 through K in system

E(ρ, c) Erlang B blocking probability of an

M/M/c/c queue with offered load ρ.

Ak admission rate of class k calls on IL

Apk admission rate of class k calls on PL

Abk admission rate of class k calls on BL

Ask = Apk +Abk admission rate of class k calls into system

Bk blocking rate of class k calls on IL

Bpk blocking rate of class k calls on PL

Bbk blocking rate of class k calls on BL

Bsk = Bbk blocking rate of class k calls from system

Dk departure rate of class k calls from IL

Dp
k departure rate of class k calls from PL

Db
k departure rate of class k calls from BL

Ds
k = Dp

k +Db
k departure rate of class k calls from system

Pi,k = Qk,i rate that arriving class i calls preempt

active class k calls on IL

P pi,k = Qpk,i rate that arriving class i calls preempt

Continued on next page
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Table 2.1 – continued from previous page

active class k calls on PL

P si,k = Qsk,i rate that arriving class i calls preempt

active class k calls from system

Tk rate of class k arrivals causing transfers from PL to BL

Ok rate of class k arrivals causing drops from PL

Pk rate of class k arrivals causing preemptions from IL

P pk = Tk +Ok rate of class k arrivals causing preemptions from PL

P bk rate of class k arrivals causing preemptions from BL

P sk = Ok + P bk rate of class k arrivals causing preemptions from system

Vk rate of class k calls transferred from PL to BL

Wk rate of class k calls dropped from PL

Qk rate of class k calls preempted from IL

Qpk = Vk +Wk rate of class k calls preempted from PL

Qbk rate of class k calls preempted from BL

Qsk = Wk +Qbk rate of class k calls preempted from system

Notation. As evident from Table 2.1, the paper employs extensive notation; we have striven to

make this notation as intuitive and consistent as possible. The following conventions are employed:

• Letter mnemonics: admitted calls (A), blocked calls (B), capacity (C), departures (D), Erlang

blocking probability (E), class (K), number of active calls (N), drops (O, W), preemptions (P,

Q), system (S), transfers (T, V).

• Preemptions. Rates for causing preemption are denoted by P, rates for being preempted are

denoted by Q.

• Preemptions, transfers, and drops. Preemptions (denoted by P, Q) from the PL are either

transfers or drops. Transfers (denoted by V, T) are calls that move from the PL to the BL.
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Figure 2.2: Class k calls arrive at rate λk, with mean duration µ−1
k . Top: link view. Apk, A

b
k

are the PL and BL admission rates, Bpk , B
b
k are the primary and backup blocking rates, and

Dp
k, D

b
k are the primary and backup departure rates. Arriving class k calls cause preemption on

the primary and backup links at rates P pk , P
b
k respectively, and active class k calls are preempted

from the primary and backup links at rates Qpk, Q
b
k respectively. Preemptions of active class

k calls from the PL are divided into transfers (Vk) and drops (Wk), i.e., Qpk = Vk + Wk.
Preemptions caused by arriving class k calls are also divided into transfers (Tk) and drops
(Ok), i.e., P pk = Tk + Ok. Rate conservation ensures that all admitted calls either depart or
are preempted, i.e., Apk = Dp

k + Qpk, but no such conservation law need hold for calls causing
preemption, i.e., it need not be true that Apk = Dp

k+P pk . Bottom: system view. Consider the
two links together as a single “system” with capacity cs = cp + cb. Ask is the system admission
rate, Bsk is the system blocking rate, Ds

k is the system departure rate, and P sk , Q
s
k are the system

preemption rates.

Drops (denoted by W, O) are calls that leave the network, from either link.

• Primary, backup, system. PL, BL, and system quantities are indicated by a superscript p, b,

and s respectively. Unadorned quantities often refer to an IL.

• Probabilities and rates. The probability of an event, say F , is denoted by P(F ); the rate at

which the event occurs is denoted by R(F ).

• Arrivals, service rates, offered loads. Consistent with queueing conventions, λ denotes arrival

rates, µ denotes service rates, and ρ = λ/µ denotes offered loads. Cumulative arrival rates
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are denoted by Λ, i.e., Λk = λ1 + · · · + λk. Cumulative offered loads are denoted by R, i.e.,

Rk = ρ1 + · · ·+ ρk.

The other notation in Table 2.1 will be introduced as needed.

Primitive quantities. The primitive quantities needed to specify the model are i) the link

capacities, ii) the arrival rates, and ii) the service rates. All other quantities are derived from these

three. The capacities of the two links are cp, cb, measured in number of circuits. All calls are of unit

rate (size), i.e., each call consumes a single circuit. The total system capacity is cs = cp+cb circuits.

The symbol c will be used to denote the capacity of an IL, or in §2.5, the index in a sequence of ILs

of increasing capacity. We assume arrivals for each class form an independent Poisson process of rate

λk. Class k call durations are independent and exponentially distributed with rate µk, and hence

mean µ−1
k . In §2.4 and §2.5 we assume all classes share the same service rate, µk = µ (homogeneous

service rates); §2.6 addresses heterogeneous service rates.

Performance metrics. We focus on three performance metrics, computed for each class k, see

Fig. 2.2.

1. P pk (P bk) is the rate that arriving class k calls are admitted on the PL (BL) by preempting

an active call of class k + 1, . . . ,K. The primary preemption rate consists of both transfers (Tk)

and dropped calls (Ok): P pk = Tk + Ok. The quantity P sk = Ok + P bk is the rate at which calls are

preempted from the system (from either link).

2. P pi,k = Qpk,i (P bi,k = Qbk,i) is the rate that arriving class i calls preempt active class k > i calls

on the PL (BL).

3. Qpk (Qbk) is the rate at which active calls of class k are preempted from the PL (BL) by an

arriving call of class 1, . . . , k − 1. The primary preemption rate consists of both transfers (Vk) and

dropped calls (Wk), so Qpk = Vk + Wk. The quantity Qsk = Wk + Qbk is the rate at which calls are

preempted from the system (from either link).
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2.4 Homogeneous service rates: finite capacity

Throughout this section and the next we assume that all calls have homogeneous independent and

exponentially distributed service rates µk = µ. We use the Erlang-B blocking probability equation

to obtain exact expressions for our performance metrics as a function of the offered loads and link

capacities.

2.4.1 A Markov chain for a single preemptive link

Before studying the two parallel link model, we first study an isolated link (IL) serving a multi-class

preemptive offered load, modeled as a modified M/M/c/c queue.

Definition 1. Consider a single link M/M/c/c queue with c circuits serving a multi-class preemptive

offered load with independent Poisson arrival processes of rates λ1 . . . , λK , and independent and

exponentially distributed service times with rate µ. Let {n(t)} be the random occupancy process

giving the number of active calls of each class at each time t, where n(t) = (n1(t), . . . , nK(t)). The

state space for the occupancy process is

S = {n ≥ 0 : n1 + · · ·+ nK ≤ c}. (2.1)

The allowed transitions for each class k = 1, . . . ,K are:

n→ n + ek if n1 + · · ·+ nK < c

n→ n + ek − el if n1 + · · ·+ nK = c, l = max{j > k : nj > 0}

n→ n− ek if nk > 0

, (2.2)

where ek is a K-vector of all zeros except a one in position k.

The transition n→ n + ek corresponds to a class k call arriving to find the system not full. The

transition n→ n− ek corresponds to the departure of a class k call. The transition n→ n + ek− el

corresponds to a class k call arriving to find the link full, necessitating a preemption of a class l

call, where l is the lowest priority class (of lower priority than k) with one or more active calls. The
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admission is only allowed if the class l is well-defined.

Theorem 1. The random occupancy process {n(t)} is a continuous time Markov chain (CTMC).

The proof is found in the appendix, and in fact shows that the process {n(t)} is Markov for the

more general case of heterogeneous service rates.

2.4.2 Markov chains for the PL and the system

We next consider the two parallel link model.

Definition 2. Let {np(t)}, {nb(t)}, and {ns(t)}, be the random occupancy process giving the

number of active calls of each class at each time t on the PL, BL, and in the system as a whole,

where

np(t) = (np1(t), . . . , npK(t)),

nb(t) = (nb1(t), . . . , nbK(t)),

ns(t) = (ns1(t), . . . , nsK(t)). (2.3)

By construction, npk(t) +nbk(t) = nsk(t) for each time t and each class k = 1, . . . ,K. The state spaces

are

Sp = {np ≥ 0 : np1 + · · ·+ npK ≤ cp},

Sb = {nb ≥ 0 : nb1 + · · ·+ nbK ≤ cb},

Ss = {ns ≥ 0 : ns1 + · · ·+ nsK ≤ cs}. (2.4)

The primary and backup links are “coupled” in two ways: arrivals blocked from admission on the

PL seek admission on the BL, and calls preempted from the PL seek transfer to the BL. Although

the state evolution of the BL very much depends upon the state of the PL, the inverse does not

hold: the evolution of the PL state is independent of the BL state. Moreover, the state evolution of

the system as a whole is independent of how the active calls are distributed between the primary
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and backup links. A key observation is the fact that the PL and the system as a whole can each be

studied as isolated single link Markovian systems with capacities cp and cs respectively, and, modulo

the difference in capacity, their dynamics are in fact the same. Hence, for a generic L parallel link

case, the basic two “couple” methods are the same and so on are the limitations of our results. Thus,

we focus on only two parallel link case in this paper.

Theorem 2. The occupancy processes of the PL {np(t)} and of the system {ns(t)} are statisti-

cally equivalent to an IL serving a multi-class preemptive offered load, with capacities cp and cs

respectively. Both processes are Markovian.

Proof. Consider the PL. Its evolution is independent of the BL, i.e., calls gain admission, depart,

and are preempted from the PL independent of the state of the BL. The dynamics of the admission,

departure, and preemption are exactly those transitions specified in Definition 1. Only the capacity

cp determines these dynamics, the capacity cb is irrelevant. Consider the system as a whole. Its

evolution depends upon the state of the primary and backup links only through the aggregate state,

i.e., calls gain admission, depart, and are preempted from the system as a function of the total

number of calls of each class in the system, regardless of how they are divided among the two links.

Again, the dynamics are exactly those specified in Definition 1. Only the capacity cs determines

these dynamics, the individual capacities cp, cb are irrelevant.

2.4.3 Lumpability

General concepts. The key reason that the homogeneous service rates case is tractable is because

the corresponding link level and system level Markov chains are lumpable under a partition aligned

with the preemption rate performance metric. Quoting from Dayar and Stewart [31]:

Lumpability is a property of some Markov chains which, if conditions are met, may be

used to reduce a large state space to a smaller one. The idea is to find a partition of the

original state space such that, when the states in each partition are combined to form a

single state, the resulting Markov chain described by the combined states has equivalent

behavior to the original chain, only at a coarser level of detail. . . . It is mostly useful
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in systems which require the computation of performance measures dependent on the

coarser analysis specified by the lumped chain.

The following definition of lumpability for a CTMC is adapted to our notation from Ball and

Yeo [32]. See Kemeny and Snell [33] for the discrete time Markov chain (DTMC) definition.

Definition 3. Lumpability (Ball and Yeo [32]). Consider a continuous time Markov chain {x(t)}

with state space S, and initial distribution p = (p(s), s ∈ S). For a given state space partition

(Sm, m = 1, . . . ,M) define the lumped process {y(t)} with initial distribution r = (r(m), m =

1, . . . ,M) given by r(m) = P(x(0) ∈ Sm) and transition probabilities given by

P(y(tn) = mn‖y(tn−1) = mn−1, . . . , y(t0) = m0) = (2.5)

P(x(tn) ∈ Smn‖x(tn−1) ∈ Smn−1
, . . . , x(t0) ∈ Sm0

),

for each n, for each set of times t0 < · · · < tn, and for each sequence m0, . . . ,mn ∈ [M ]n+1. Then

{x(t)} is said to be lumpable with respect to (Sm, m = 1, . . . ,M) if, for each initial distribution p,

the process {y(t)} is a Markov chain and the transition probabilities do not depend upon p.

The fundamental theorem of lumpability is given below; note that some authors, e.g., [31], use the

following theorem as a definition of lumpability. See also [33] for the analogous theorem for DTMC.

Theorem 3. (Ball and Yeo [32]) A necessary and sufficient condition for a Markov chain {x(t)} on

S to be lumpable with respect to a partition (Sm, m = 1, . . . ,M) is that its rate matrix Q satisfies

the lumpability condition for each pair Sm,Sm′ :

∑
s′∈Sm′

qs,s′ = rm,m′ , s ∈ Sm (2.6)

The M ×M matrix R with entries rm,m′ is the rate matrix for the lumped chain, {y(t)}.

The lumpability condition asserts that for any two subsets in the state space partition, the

transition rate from a state in the first subset into the second subset is in fact the same for all states

in the first subset.
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Application to preemption. It is evident that the preemption probabilities for class k, i.e.,

Pk and Qk, do not depend on each class individually, but instead on the two groups of classes:

{1, . . . , k} and {k + 1, . . . ,K}. Informally, the only significance of a class j call to a class k call is

whether j < k or j > k, not the value of j itself. This observation allows us to collapse the set

of classes from the perspective of a class k call from K to 2. The performance metrics of interest

for class k are obtainable from the simplified process {(Nk(t), N̄k(t))}, where Nk = n1 + · · ·nk and

N̄k = nk+1 + · · · + nK . This aggregation gives the total number of calls of classes 1, . . . , k and

the total number of calls of classes k + 1, . . . ,K. This observation suggests the split k aggregate

occupancy partition, defined below, and we show that the random occupancy process {n(t)} for an

IL serving a multi-class preemptive load is lumpable under this partition. This partition is of use

because it is aligned with the three performance metrics, allowing an effective state space reduction.

Definition 4. The split k aggregate occupancy partition (saop k) of S (defined in Definition 1) is

Ssaop,k
m,m′ = {n ∈ S : Nk = m, N̄k = m′}, (2.7)

for each aggregate occupancy pair (m,m′) such that m + m′ ≤ c, and for a specified class k =

1, . . . ,K.

Several occupancy processes are lumpable under this partition.

Theorem 4. The occupancy processes {n(t)}, {np(t)}, and {ns(t)} (for an IL, the PL, and the

system, respectively) serving a multi-class preemptive offered load are lumpable under the split

k aggregate occupancy partition for each k = 1, . . . ,K. The corresponding lumped processes

{(Nk(t), N̄k(t))}, {(Np
k (t), N̄p

k (t))}, {(Ns
k(t), N̄s

k(t))} are Markov.

The proof is found in the appendix. The lumpability of the state process is perhaps surprising

on account of the fact that an active call may be preempted and replaced by a new call of higher

priority, possibly without triggering a state change in the lumped process. This is attributable to

the fact that the service rates are homogeneous and exponential, and thus the memoryless property

ensures that “restarting” an active call of class i via preemption with a new call of class j < i will
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not affect the dynamics of the process from the perspective of a class k call that is either k < i ∧ j

or k > i ∨ j.

2.4.4 Blocking and preemption on a single link

This subsection assumes an IL with capacity c servicing a multi-class preemptive offered load, see

Fig. 2.3. By Theorem 2, the performance probabilities and rates for the single IL may be applied to

the PL and the system by replacing the capacity c with cp and cs respectively.

Figure 2.3: An example of an IL with capacity c servicing a two class preemptive offered load.

Fix some class k of interest. Let Tk = {(Nk, N̄k) : Nk + N̄k ≤ c} be the state space for the

lumped process obtained under the split k aggregate occupancy partition. See Fig. 2.4. The set of

states where the link is full is:

T full
k = {(Nk, N̄k) : Nk + N̄k = c} ⊆ Tk. (2.8)

A class k arrival that finds the link full (i.e., Nk + N̄k = c) results in either the arriving call being
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blocked (if N̄k = 0), or the arriving call being admitted but causing a preemption (if N̄k > 0):

T block
k = {(Nk, N̄k) : Nk = c},

T preempt
k = {(Nk, N̄k) : Nk + N̄k = c, N̄k > 0},

T full
k = T block

k ∪ T preempt
k . (2.9)

T preempt
k = {(Nk, N̄k) : Nk + N̄k = c, N̄k > 0}N̄k

T full
k = {(Nk, N̄k) : Nk + N̄k = c}

T block
k = {(Nk, N̄k) : Nk = c}

c

0 NkTk = {(Nk, N̄k) : Nk + N̄k ≤ c}
c

Figure 2.4: The state space Tk for an IL of capacity c. The x-axis (Nk) is the cumulative
number of calls with higher or equal priority classes 1, . . . , k; the y-axis (N̄k) is the cumulative
number of calls with lower priority classes k + 1, . . . ,K. The set of states where the link is full
(Nk + N̄k = c) may be decomposed into the blocking state (N̄k = 0) and the preempting states
(N̄k > 0).

Define E(ρ, c) as the Erlang-B blocking probability of a single-class M/M/c/c queue with offered

load ρ. If {n(t)} is the Markov chain for the queue occupancy, then E(ρ, c) = P(n(t) = c), where t

is either an arbitrary time or an arrival time.

By “Poisson arrivals see time averages” (PASTA), the probabilities that a typical class k arrival

finds the system in a state in the sets T full
k , T block

k , T preempt
k are found by summing the invariant dis-

tribution of {(Nk(t), N̄k(t))}, the Markov chain over the states comprising the event. The invariant

distribution for this system is difficult to express in closed form, but the probabilities of the events

of interest are fortunately more tractable. In particular, the probability that the link is full (with

calls of any class) is E(RK , c), where RK = ρ1 + · · · + ρK is the cumulative offered load across all

classes. Moreover, the probability that the link is filled with calls of classes 1, . . . , k is E(Rk, c). This
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allows us to find the probability that an arriving class k call causes a preemption on the link:

P((Nk(t), N̄k(t)) ∈ T full
k ) = E(RK , c), (2.10)

P((Nk(t), N̄k(t)) ∈ T block
k ) = E(Rk, c),

P((Nk(t), N̄k(t)) ∈ T preempt
k ) = E(RK , c)− E(Rk, c).

We now use this basic observation to obtain expressions for the preemption probabilities and rates.

Three priority classes (K = 3) on a single link. We first cover the case of K = 3 priority

classes on a single link to build intuition. The case K = 2 on a single link is addressed by Helly [28].

It is vital to make a clear distinction between probabilities (of preemption, admission, blocking, etc.)

and the corresponding rates. The probability of an event, say F , is denoted by P(F ), the rate at

which the event occurs is denoted by R(F ). By (2.10), the probability that the link is full with at

least one call of class 2 or 3 is E(R3, c)− E(R1, c). In any such state, an arrival by a call of class 1

will cause a preemption of a call of class 3 (if any are present), else of class 2. By PASTA, the rate

at which class 1 arrivals preempt active calls of class 2 or 3 is

R(1 preempts) = R(1 preempts 2 or 3) = λ1(E(R3, c)− E(R1, c)). (2.11)

This should be read as: “the rate that class 1 preempts is the rate that class 1 arrives, times the

probability that the link is in a state requiring preemption”. Similarly, the probability that the link

is full with at least one call of class 3 is E(R3, c)−E(R2, c). The rate at which calls of classes 1 and

2 preempt calls of class 3 is then

R(3 is preempted) = R(1 or 2 preempt 3) = Λ2(E(R3, c)− E(R2, c)),

R(1 preempts 3) = λ1(E(R3, c)− E(R2, c)),

R(2 preempts) = R(2 preempts 3) = λ2(E(R3, c)− E(R2, c)).

(2.12)
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The rate that class 1 preempts class 2 is obtained from (2.11) and (2.12) using rate conservation:

R(2 is preempted) = R(1 preempts 2 or 3)− R(1 preempts 3)

= λ1(E(R2, c)− E(R1, c)). (2.13)

Note that (2.13) is independent of class 3’s arrival rate, λ3. This is because class 3 calls have no

bearing on the admission and occupancy processes of class 2 calls. The probability of class 2 being

preempted by class 1 is obtained from (2.13) using the ratio of rates:

P(2 is preempted) =
λ1

λ2
(E(R2, c)− E(R1, c)). (2.14)

This probability is to be understood as a customer average: the fraction of class 2 arrivals that find

themselves preempted is the long-run number/rate of preemptions over the long-run number/rate

of class 2 arrivals.

K priority classes on a single link. Generalizing the result for k = 3, the probability that

the link is full with at least one call of class k + 1 through K is E(RK , c) − E(Rk, c), and the rate

at which arrivals of classes k < K preempt active calls of classes k + 1, . . . ,K is:

Pk = R(k preempts) = λk(E(RK , c)− E(Rk, c)). (2.15)

The probability of a class k arrival preempting an active call from the PL is obtained by taking

the ratio of rates of (2.15) over the class k arrival rate:

P(k preempts) = E(RK , c)− E(Rk, c). (2.16)

The rate at which arriving class i < K arrivals preempt active class k > i calls is denoted by both
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Pi,k = Qk,i:

Pi,k = R(i preempts k) = Qk,i = R(k preempted by i)

= R(i preempts k, . . . ,K)− R(i preempts k + 1, . . . ,K)

= λi(E(RK , c)− E(Rk−1, c))− λi(E(RK , c)− E(Rk, c))

= λi(E(Rk, c)− E(Rk−1, c)). (2.17)

The rate at which active class k > 1 calls are preempted by arriving calls is

Qk = R(k preempted) = R(k preempted by 1, . . . , k − 1)

=

k−1∑
i=1

R(k preempted by i) = Λk−1(E(Rk, c)− E(Rk−1, c)). (2.18)

The probability of a class k call being preempted is the ratio of rates of (2.18) over the class k arrival

rate:

P(k is preempted) =
Λk−1

λk
(E(Rk, c)− E(Rk−1, c)). (2.19)

2.4.5 Blocking and preemption on the PL and system

Applying Theorem 2 to the above analysis yields the following theorem on the performance of the

PL and the system, see Fig. 2.5.

Theorem 5. The preemption rates P pk (P sk ), P pi,k = Qpk,i (P si,k = Qsk,i) and Qpk (Qsk) for each (k, i)

on the PL (system) are given by (2.15), (2.17) and (2.18) respectively by replacing c with cp (cs).

The following theorem employs the rate conservation equations from Fig. 2.2 to find departure,

admission and blocking rates for the PL, BL and the system.

Theorem 6. Rate conservation in Fig. 2.2 ensures:

Dp
k = Apk −Q

p
k, D

s
k = Ask −Qsk, Db

k = Ds
k −Dp

k. (2.20)
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Figure 2.5: The two parallel links are viewd the PL and the system as a whole.

The admission / blocking rates on the PL, BL, and system are:

Bpk = λkE(Rk, c
p), (2.21)

Apk = λkĒ(Rk, c
p),

Bsk = Bbk = λkE(Rk, c
s),

Ask = λkĒ(Rk, c
s),

Abk = Bpk −Bbk = λk (E(Rk, c
p)− E(Rk, c

s)) .

The departure rates from the PL, BL, and system are:

Dp
k = λkĒ(Rk, c

p)− Λk−1(E(Rk, c
p)− E(Rk−1, c

p)), (2.22)

Ds
k = λkĒ(Rk, c

s)− Λk−1(E(Rk, c
s)− E(Rk−1, c

s)),

Db
k =

(
λkĒ(Rk, c

s)− Λk−1(E(Rk, c
s)− E(Rk−1, c

s))
)

−
(
λkĒ(Rk, c

p)− Λk−1(E(Rk, c
p)− E(Rk−1, c

p))
)
.
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The departure rates are obtained by substituting the expressions in (2.18) into the rate conser-

vation equations (2.20).

2.4.6 Limitations of Erlang-B analysis

Several of the rates in Fig. 2.2 have now been characterized in terms of the model primitives: P pk ,

Qpk, P sk , Qsk (Theorem 5); Bpk , Apk, Bsk, Ask, Bbk, Abk, Dp
k, Ds

k and Db
k (Theorem 6). It remains to

compute Vk,Wk, Q
b
k and Tk, Ok, P

b
k . Rate conservation equations from Fig. 2.2 yield three equations

for the three unknowns Vk,Wk, Q
b
k:

Vk +Wk = Apk −D
p
k = Qpk,

Wk +Qbk = Ask −Ds
k = Qsk,

Qbk − Vk = Abk −Db
k. (2.23)

The three equations are rate conservation expressions for the PL, the system, and the BL respectively.

These three equations are linearly dependent: adding the first and the third yields the second. It is

therefore not possible to use this system of equations to obtain expressions for all three quantities

Vk,Wk, Q
b
k. The three unknowns Tk, Ok, P

b
k face a similar limitation with two independent equations:

Tk +Ok = P bk , Ok + P bk = P sk . (2.24)

The lack of a full rank system of equations in both cases stems from a fundamental limitation of

the model. There are two systems we can analyze using the Erlang approach: the PL by itself (the

link view) and the two links together (the system view). We can not analyze the BL by itself since

its state depends on that of the PL. The basic problem is that we cannot determine the probability

that a call preempted from the PL will be transferred to the BL versus being dropped. Determining

this probability would require a characterization of the stationary occupancy distribution of the BL.

This stationary distribution is difficult to obtain because the arrivals to the BL are not Poisson, on

account of both the overflow admissions and the transfers [34]. Put differently, even in the simplest
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case of K = 2 priority classes, only four elementary events may be expressed in terms of Erlang-B

probabilities:

• Class 1 blocking on PL: {np1 = cp},

• Class 1 blocking from the system: {ns1 = cs},

• Class 2 blocking on PL: {np1 + np2 = cp},

• Class 2 blocking from the system: {ns1 + ns2 = cs}.

All the admission, preemption, and departure events are combinations of these four elementary

events. Determining the probability of a transfer from the PL to the BL, however, requires computing

the probability of

{np1 + np2 = cp, np2 > 0, nb1 + nb2 < cb}. (2.25)

That is, a transfer requires i) the PL is filled, ii) there are one or more preemptable class 2 calls on

the PL, and iii) the BL is not filled. This type of event is not expressible as a combination of the

above four elementary events.

2.5 Homogeneous service rates: the many small users regime

In this section we obtain simplified expressions for the preemption rates Pk (2.15), Pi,k = Qk,i (2.17),

Qk (2.18) in the “many small users” regime, obtained by letting the arrival rates and link capacity

scale linearly to infinity. In particular, consider a sequence of links3, indexed by c, where link c

has capacity c and the arrival rates are λ
(c)
k = λ∗kc and the offered loads are ρ

(c)
k =

λ∗k
µ c for each

k = 1, . . . ,K. The common service rate is held constant: µ is independent of k and c. This is called

the many small users regime because for c large the arrival rates and capacities are large enough to

ensure a large number of active calls (users), where each call consumes a negligibly small fraction of

the link capacity.

3The phrase “sequence of links” should not be misconstrued as a network of parallel links. There is only one IL,
we are simply scaling its capacity and offered load.
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2.5.1 Single class link in the many small users regime

Define ρ∗ = λ∗

µ = ρ(c)

c as the normalized offered load. The underloaded, critically loaded, and

overloaded regimes then correspond to the cases when ρ∗ < 1, ρ∗ = 1, and ρ∗ > 1, respectively. In

the critically loaded case, it is conventional to define ρ∗ = ρ∗,(c) = 1 ± δ√
c
, so that ρ(c) = c ± δ√c.

Intuitively, one may think of δ as the number of standard deviations of the offered Poisson load

above or below the link capacity.

The technical literature on asymptotic blocking probability approximations in the many small

users regime is quite large (see, e.g., [21] and the references therein); for our purposes the results

by Mitra and Morrison [35] are sufficient. This paper is appealing as it is the first to develop a

uniform asymptotic approximations (UAA) for the Erlang blocking probability in the many small

users regime, i.e., an expression for the blocking probability with a relative error (in this case,

O(1/c)), valid for all values of ρ∗.4 Earlier results give expressions subject to some restriction on ρ∗.

The following Theorem 7 is obtained in a straightforward way from [35] by either taking the Poisson

limit in Propositions 5.2, 5.3, and 5.4, or by specializing Proposition 5.5 to the three regimes for ρ∗.

Theorem 7. (Mitra and Morrison [35]). Consider a sequence of loss links indexed by c, where link

c has capacity c and the offered load is ρ(c) = ρ∗c. A uniform asymptotic approximation for the

blocking probability is:

E(ρ(c), c) =



e−c(ρ
∗−1−log ρ∗)√

2πc

(
1 +O

(
1
c

))
, ρ∗ < 1√

2
π

1√
c± δ2

e−
δ2

2

Erfc
(
± δ√

2

) +O
(

1
c

)
, ρ∗ = 1± δ√

c

1− 1
ρ∗ +O

(
1
c

)
, ρ∗ > 1

. (2.26)

Here, Erfc(x) is the complimentary error function. Theorem 7 is stated with a relative error

of O(1/c) for the underloaded case (ρ∗ < 1), and with absolute error of O(1/c) for the critical

and overloaded cases. The fact that ρ∗ − 1 − log ρ∗ > 0 means the blocking probability in the

underloaded case is exponentially small, E(ρ(c), c) = O(c−1/2e−c) for ρ∗ < 1. Absolute error is

4Actually [35] develops expressions for multiple classes, where each class has a distinct arrival rate and each class
consumes a distinct number of circuits per call. For our needs it is sufficient to specialize their result to a single class,
where each call of that class consumes a single circuit, i.e., the classical M/M/c/c queue.
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preferable to relative error for our needs because the preemption probabilities require us to compute

the difference of two Erlang blocking probabilities.

2.5.2 Preemptive link in the many small users regime

The corollary below gives a UAA for the difference of two Erlang blocking probabilities in the many

small users regime.

Corollary 1. Consider the same setup as Theorem 7, and let ρ∗1, ρ
∗
2 represent two normalized offered

loads. Require ρ∗1 > ρ∗2 and δ1 < δ2. Then: E(ρ
(c)
1 , c)− E(ρ

(c)
2 , c) =



1√
2πc

(
e−c(ρ

∗
1−1−log ρ∗1) − e−c(ρ

∗
2−1−log ρ∗2)

) (
1 +O

(
1
c

))
,

ρ∗2 < ρ∗1 < 1, (region (1))√
2
π

1√
c± δ12

e−
δ21
2

Erfc
(
± δ1√

2

) +O
(

1
c

)
,

ρ∗2 < 1, ρ∗1 = 1± δ1√
c
, (region (2))

1− 1
ρ∗1

+O
(

1
c

)
,

ρ∗2 < 1 < ρ∗1, (region (3))√
2
π

(
1√
c± δ12

e−
δ21
2

Erfc
(
± δ1√

2

) − 1√
c± δ22

e−
δ22
2

Erfc
(
± δ2√

2

)
)

+O
(

1
c

)
,

ρ∗2 = 1± δ2√
c
, ρ∗1 = 1± δ1√

c
, (region (4))

1− 1
ρ∗1
−
√

2
π

1√
c± δ22

e−
δ22
2

Erfc
(
± δ2√

2

) +O
(

1
c

)
,

ρ∗2 = 1± δ2√
c
, 1 < ρ∗1, (region (5))

1
ρ∗2
− 1

ρ∗1
+O

(
1
c

)
,

1 < ρ∗2 < ρ∗1, (region (6))

(2.27)

The quantities ρ∗1, ρ
∗
2 represent two generic normalized offered loads; they should not be thought

of as class–specific. The six regions mentioned in the corollary are sketched in Fig. 2.6. They

correspond to (1) both loads 1, 2 underloaded, (2) load 2 is underloaded and load 1 is critically

loaded, (3) load 2 is underloaded and load 1 is overloaded, (4) both loads 1, 2 critically loaded, (5)

load 2 is critically loaded and load 1 is overloaded, and (6) both loads 1, 2 overloaded. With this

corollary it is straightforward to obtain the many small users UAA for the single IL preemption
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Figure 2.6: Illustration of the six regimes of ρ∗1 > ρ∗2. The six regions are addressed in
Corollary 1.

rates, given in the following theorem. Let R
(c)
k = ρ

(c)
1 + · · ·+ ρ

(c)
k , and Λ∗k = λ∗1 + · · ·+ λ∗k.

Theorem 8. UAA for the preemption rates Pk (2.15), Pi,k = Qk,i (2.17), Qk (2.18) in the many

small users regime are:

P
(c)
k

c
= λ∗k

(
E(R

(c)
K , c)− E(R

(c)
k , c)

)
, k < K,

P
(c)
i,k

c
= λ∗i

(
E(R

(c)
k , c)− E(R

(c)
k−1, c)

)
, i < k, (2.28)

Q
(c)
k

c
= Λ∗k−1

(
E(R

(c)
k , c)− E(R

(c)
k−1, c)

)
, k > 1.

where differences of Erlang blocking probabilities are given by Corollary 1. In the “both underloaded”

case the absolute error is O(c−1/2e−c); otherwise the absolute error is O(1/c).

By Theorem 2, the above Theorem can be specialized to give the many small users approximation

for the PL and system view preemption rates by replacing c with cp and cs respectively. Consider a

particular system of interest with fixed capacities cp, cb and cs = cp+cb, fixed arrival rates λ1, . . . , λK ,

and fixed service rate µ. For the PL use Theorem 8 with λ∗k = λk
cp for k = 1, . . . ,K, and for the
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system use Theorem 8 with λ∗k = λk
cs for k = 1, . . . ,K.

2.5.3 Preemptive overloaded link in the many small users regime

It is insightful to show explicitly the preemption rates for the overloaded regime, where the expres-

sions are simplified:

Corollary 2. If Λ∗k > µ then the expression for P
(c)
k is obtained from the “both overloaded” regime

(1 < ρ∗2 < ρ∗1, region (6)) in Corollary 1, yielding:

P
(c)
k

µc
=
λ∗k
Λ∗k
× Λ∗K − Λ∗k

Λ∗K
+O

(
1

c

)
, k < K. (2.29)

If, moreover, Λ∗k−1 > µ, then the expressions for P
(c)
i,k and Q

(c)
k are similarly obtained from the “both

overloaded” regime in Corollary 1, yielding:

P
(c)
i,k

µc
=

λ∗i
Λ∗k−1

× λ∗k
Λ∗k

+O

(
1

c

)
, i < k,

Q
(c)
k

µc
=

λ∗k
Λ∗k

+O

(
1

c

)
, k > 1. (2.30)

The expressions in Corollary 2 admit a natural interpretation. In particular, in the “both over-

loaded” regime, P
(c)
k , the rate that class k calls cause preemption (of calls of class k + 1, . . . ,K) is

proportional to the product of two rate ratios: i) the rate of class k arrivals over the rate of arrivals

that can preempt k+1, . . . ,K, and ii) the rate of arrivals of calls that k can preempt over the overall

rate of arrivals. An analogous interpretation holds for P
(c)
i,k . Finally, note that, as expected, P

(c)
i,k

and Q
(c)
k are independent of λk+1, . . . , λK .

2.5.4 Sensitivities of a preemptive overloaded link in the many small
users regime

It is insightful to study the sensitivities of the expressions in Corollary 2 on the parameters λi, λk.
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Corollary 3. The sensitivities of the preemption rates in Corollary 2 are:

1

µc

∂P
(c)
k

∂λ∗k
=

(Λ∗K − Λ∗k)((Λ∗k − λ∗k)(Λ∗K − λ∗k)− (λ∗k)2)

(Λ∗k)2(Λ∗K)2
,

1

µc

∂P
(c)
i,k

∂λ∗i
=

λ∗k((Λ∗k−1 − λ∗i )(Λ∗k − λ∗i )− (λ∗i )
2)

(Λ∗k−1)2(Λ∗k)2
,

1

µc

∂P
(c)
i,k

∂λ∗k
=

λ∗i
(Λ∗k)2

,

1

µc

∂Q
(c)
k

∂λ∗k
=

Λ∗k−1

(Λ∗k)2
. (2.31)

Holding each λ∗l aside from λ∗k constant, define

λ∗,max
k =

√
(Λ∗k − λ∗k)(Λ∗K − λ∗k). (2.32)

Corollary 3 asserts that in the “both overloaded” regime, P
(c)
k is monotone increasing in λ∗k for

λ∗k < λ∗,max
k , and monotone decreasing for λ∗k > λ∗,max

k . Intuitively, increasing λk at first increases

the amount of preempted load of classes k+ 1, . . . ,K, but eventually the class k traffic is preventing

the admission of traffic of classes k + 1, . . . ,K, which in turn reduces the preemption rate. The

expression for 1
µc

∂P
(c)
i,k

∂λ∗i
has a similar form to that of 1

µc

∂P
(c)
k

∂λ∗k
. Holding each λ∗l aside from λ∗i constant,

define

λ∗,max
i,k =

√
(Λ∗k−1 − λ∗i )(Λ∗k − λ∗i ). (2.33)

The corollary further asserts that in the “both overloaded” regime, P
(c)
i,k is monotone increasing in

λ∗i for λ∗i < λ∗,max
i,k , and monotone decreasing for λ∗i > λ∗,max

i,k . The same intuition applies to explain

the result, mutatis mutandis. Next, the corollary asserts Pi,k is monotone increasing in λk, while

1
µc

∂P
(c)
i,k

∂λ∗k
goes to zero. Increasing λ∗k increases P

(c)
i,k because the system is more likely to be full, with

a non-decreasing fraction of the link occupied by calls of class k. This increase is subject to a law

of diminishing returns, however, since the fraction of the link occupied by calls of class k is limited

by the fixed fraction occupied by calls of class 1, . . . , k− 1. Note that the sensitivity is independent

of λ∗k+1, . . . , λ
∗
K . Finally, the corollary asserts an almost identical relationship for Q

(c)
k . The same
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intuition applies to explain the result, mutatis mutandis.

2.6 Heterogeneous service rates

In this section we discuss the reasons why the heterogeneous service rates case is in general in-

tractable. We then discuss an approximate solution valid in a time-scale separation regime. Through-

out this section we focus on an IL serving a multi-class preemptive load. The results are specialized

to the PL and system CTMCs by application of Theorem 2.

2.6.1 Lumpability

The primary reason for the intractability of the heterogeneous service rates case is the fact that the

CTMC {n(t)} is not lumpable under a partition aligned with the performance metrics of interest.

It is lumpable under other partitions, but, as will be shown, these other partitions are only valuable

in obtaining approximate expressions, valid under certain time-scale separation assumptions.

Occupancy partitions. We introduce two occupancy partitions for the IL Markov chain {n(t)}.

Definition 5. The aggregate occupancy partition (aop) of S is Saop
m = {n ∈ S : NK = m} for each

m = 1, . . . , c.

Definition 6. The priority k occupancy partition (pop-k) of S is Spop,k
m = {n ∈ S : nk = m}, for

each occupancy level m = 0, . . . , c and some priority level k = 1, . . . ,K.

The aop, pop-1, and pop-2 partitions are shown in Fig. 2.7 for the case of an IL with capacity

c = 2 and K = 2 priority classes. The following theorem identifies when the Markov chain {n(t)} is

lumpable over these partitions.

Theorem 9. The CTMC {n(t)} is:

1. Lumpable under the aop with homogeneous service rates, and is Markovian across subsets.

2. Not lumpable under the aop with heterogeneous service rates, and therefore not Markovian

across subsets.

3. Lumpable under the pop-1 with homogeneous or heterogeneous service rates, and so Markovian

across subsets.
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Figure 2.7: Illustration of the occupancy partitions for c = 2 and K = 2. Each state shown
represents an occupancy of n = (n1, n2). Left: the priority 1 occupancy partition, middle:
the priority 2 occupancy partition, right: the aggregate occupancy partition.

4. Not lumpable under the pop-k (for k > 1) with homogeneous or heterogeneous service rates,

and therefore not Markovian across subsets.

Proof. Recall the definition of the transition matrix of the lumped chain given in Theorem 3. It is

clear that Rm,m′ = 0 for all m,m′ such that ‖m −m′‖ > 1 for all partitions under consideration.

Hence it suffices to consider transitions from occupancy level m to m+ 1 and to m− 1. Let n ∈ Sm

be a state in occupancy level m.

1. The transition rate from n in aggregate occupancy level m > 0 to aggregate occupancy level

m− 1 is ∑
n′∈Saop

m−1

qn,n′ = n1µ+ · · ·+ nKµ = mµ, (2.34)

and the transition rate from n in aggregate occupancy level m < c to aggregate occupancy level

m+ 1 is ∑
n′∈Saop

m+1

qn,n′ = λ1 + · · ·+ λK = ΛK . (2.35)

In both cases the transition rate is independent of the state n.

2. The transition rate from n in aggregate occupancy level m > 0 to aggregate occupancy level

m− 1 is: ∑
n′∈Saop

m−1

qn,n′ = n1µ1 + · · ·+ nKµK . (2.36)

The transition rate depends upon the state n.
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3. The transition rate from n in priority 1 occupancy level m > 0 to priority 1 occupancy level

m− 1 is: ∑
n′∈Spop,1

m−1

qn,n′ = n1µ1 = mµ1, (2.37)

and the transition rate from n in priority 1 occupancy level m < c to priority 1 occupancy level

m+ 1 is ∑
n′∈Spop,1

m+1

qn,n′ = λ1. (2.38)

In both cases the transition rate is independent of the state n.

4. The transition rate from n in priority k > 1 occupancy level m > 0 to priority k occupancy

level m+ 1 is: ∑
n′∈Spop,k

m+1

qn,n′ = λk1n1+···+nk<c. (2.39)

The transition rate depends upon the state n.

The key reason why the chain is lumpable under the aop is that preemptions do not change the

aggregate occupancy level. It is also worth noting that the CTMC is lumpable under pop-1 precisely

because class 1 has preemptive priority over all other calls. The multi-class model where priorities

are not preemptive is not lumpable under pop-1.

The aop is a valuable partition for the preemption model because the preemption probability can

be expressed in terms of the probability of being in aggregate occupancy level c. Unfortunately, as

we have seen, aop is only lumpable under homogeneous service rates. The pop-1 is appealing as it is

lumpable under heterogeneous service rates, but this is of less value than aop because the partition

does not map easily to the performance metrics of interest, i.e., the preemption probabilities and

rates. Nonetheless, the pop-1 is still of value in computing performance, especially when a time-scale

separation holds among the various classes.
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2.6.2 Decomposability and time-scale separation

Whereas lumpability refers to a partition where the transition across subsets is not state-dependent,

decomposability refers to a partition where the transition rate across subsets is zero, i.e., the chain is

reducible. Thus decomposability is a special case of lumpability. Both lumpable and decomposable

may be relaxed to quasi-lumpable (QL) and nearly completely decomposable (NCD), respectively.

A CTMC is said to be ε quasi-lumpable if Q can be decomposed as Q = Q− + Qε where Q− is

lumpable and the largest element in Qε has absolute value no larger than ε. A CTMC is said to be

nearly completely decomposable if the states may be arranged into blocks such that Q = Q+ + Qδ,

where Q+ is block diagonal, and the norm of the off-diagonal transition rates, ‖Qδ‖ is the degree

of coupling. The intuition for QL is that “most” transitions across subsets are state-independent,

and the intuition for NCD is that “most” transitions are within (rather than across) subsets. Just

as decomposability implies lumpability, Dayar and Stewart have shown that NCD implies QL, but

the inverse need not hold [31]. In other words, NCD is a stronger condition than QL. This is natural

since QL asserts the transitions across the subsets have a simple form, whereas NCD asserts the

transitions across the subsets may be effectively ignored.

The previous subsection identified the priority 1 occupancy partition as lumpable, but pointed

out that this by itself is of limited value since the partition does not map easily to the computation of

the performance metrics of interest, i.e., the preemption rates and probabilities. We now establish

that the priority 1 occupancy partition is NCD under a time-scale separation among classes. A

thorough discussion of time-scale separation for discrete time Markov chains is given in the book by

Yin and Zhang [36]; Reiman and Schmitt use time-scale separation for a multi-class non-preemptive

load on a loss link [37]. We now establish that the pop-1 is NCD under a time-scale separation among

classes.

Definition 7. The arrival rates and service rates obey a high-slow low-fast (hslf) time-scale sepa-

ration if

λ1 � · · · � λK , µ1 � · · · � µK . (2.40)
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They obey a high-fast low-slow (hfls) time-scale separation if

λ1 � · · · � λK , µ1 � · · · � µK . (2.41)

Intuitively, under both types of time-scale separation there are K timescales, one for each class

k. Under the hslf time-scale separation the highest priority class is on the slowest time scale, and

the lowest priority class is on the fastest time scale; the reverse is true under the hfls time-scale

separation. The degree of time-scale separation is not specified. Although there is an extensive

body of literature quantifying the degree of coupling among the subsets in an NCD analysis, to

our knowledge all such quantification is performed for DTMCs (see the book [36] for time-scale

separation for DTMCs), and these metrics do not carry over naturally to CTMCs. 5 See Dayar

and Stewart [31] and Meyer [38] and the references therein. As will be shown, the degree of time-scale

separation is directly proportional to the degree of coupling. Lacking a precise measure for the

latter, it is inessential to specify the former. The impact of the degree of time-scale separation on

the performance approximation is studied in §2.7. Our approach is similar in spirit to Reiman and

Schmitt, who use time-scale separation for a continuous time model of a multi-class non-preemptive

load on a loss link [37].

Theorem 10. The CTMC {n(t)} is NCD under the pop-1 and the hslf time-scale separation as-

sumption. It is not NCD under the pop-1 and the hfls time-scale separation assumption. It is also

not NCD under any pop-k with k > 1, for either time-scale separation assumption.

Proof. Order the states in S by their priority 1 occupancy level: all states in Spop,1
0 are listed before

all states in Spop,1
1 , and so on. Because the only transitions across subsets are from priority 1

occupancy level m to m− 1 and m+ 1, it follows that the infinitesimal generator matrix Q may be

5It is straightforward to show that the embedded discrete time (jump) chain associated with the CTMC of interest
in this work may demonstrate a high degree of coupling, even though the CTMC is decomposable. Thus computing
the degree of coupling for the embedded DTMC is an unreliable measure of the degree of coupling of the original
CTMC.
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written in block tridiagonal form:

Q =



Q0 A0

D1 Q1 A1

. . .

Dc−1 Qc−1 Ac−1

Dc Qc


. (2.42)

Here Qm contains the rates of all transitions among states n,n′ ∈ Spop,1
m , and is of dimensions

‖Spop,1
m ‖×‖Spop,1

m ‖, for each m = 0, . . . , c. The arrival matrix Am contains the rates of all transitions

among states n ∈ Spop,1
m and n′ ∈ Spop,1

m+1 , and is of dimensions ‖Spop,1
m ‖ × ‖Spop,1

m+1 ‖, for each

m = 0, . . . , c − 1. Similarly, the departure matrix Dm contains the rates of all transitions among

states n ∈ Spop,1
m and n′ ∈ Spop,1

m−1 , and is of dimensions ‖Spop,1
m ‖ × ‖Spop,1

m−1 ‖, for each m = 1, . . . , c.

The elements of Am are

Am(n,n′) =



λ1, (n′ = n + e1, n1 + · · ·+ nK < c)

or (n′ = n + e1 − ek, n1 + · · ·+ nK = c,

k = max{j > 1 : nj > 0})

0, else

. (2.43)

In words, the only transitions from Spop,1
m to Spop,1

m+1 are at rate λ1, and these occur if either the link

is not full, or is full and the transition marks the preemption of the lowest priority active stream.

The elements of Dm are

Dm(n,n′) =


mµ1, n′ = n− e1

0, else

. (2.44)

The expressions for Am,Dm make clear that they depend solely upon λ1, µ1, and not upon λk, µk for

k > 1. This suffices to ensure that the CTMC under the pop-1 is NCD provided the hslf time-scale

separation assumption is valid. The rest of the proof is similar.

The tri-diagonal form of the rate matrix for an IL under pop-1 and pop-2 for the special case
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of c = 2 and K = 2 is shown in Table 2.2. The off-diagonal elements make clear that the pop-1 is

NCD under the hslf separation assumption, and that the pop-2 is not NCD under either time-scale

separation assumption.

Table 2.2: Rate matrix for a single link under the pop-1 (left) and pop-2 (right) for the special
case of c = 2 and K = 2.

0,0 0,1 0,2 1,0 1,1 2,0
0,0 λ2 ‖ λ1

0,1 µ2 λ2‖ λ1

0,2 2µ2 ‖ λ1

— — — — —
1,0 µ1 ‖ λ2‖ λ1

1,1 µ1 ‖ µ2 ‖ λ1

— — —
2,0 2µ1 ‖

0,0 1,0 2,0 0,1 1,1 0,2
0,0 λ1 ‖ λ2

1,0 µ1 λ1‖ λ2

2,0 2µ1 ‖
— — — — —

0,1 µ2 ‖ λ1‖ λ2

1,1 µ2 λ1‖ µ1 ‖
— — —

0,2 2µ2 λ1‖

2.6.3 Time-scale separation and preemption rates

The previous subsection established that the CTMC {n(t)} is NCD under the pop-1, provided the

hslf time-scale separation holds. We now show how this decomposition lends itself to an approximate

computation of the preemption rates.

Definition 8. For each call class k = 1, . . . ,K:

• Let πk(m, c) denote the probability that a single-class M/M/c/c queue with offered load ρk is

in state m. Thus, E(ρk, c) = πk(c, c).

• Let φk(m, c) denote the probability that a queue with k classes labeled 1, . . . , k, with preemp-

tive offered loads ρ1, . . . , ρk and c circuits is in a state with Nk = m.

• Let ψk(m, c) denote the probability that a queue with K − k classes labeled k + 1, . . . ,K,

with preemptive offered loads ρk+1, . . . , ρK and c circuits is in a state with N̄k = m (recall

N̄k = nk+1 + · · ·nK).

Lemma 1. Under the hslf time-scale separation assumption, the functions φk, ψk admit the following
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recursive approximation for each k = 1, . . . ,K − 1:

φk(m, c) ≈
m∑
l=0

φk−1(l, c)πk(m− l, c− l),

ψk(m, c) ≈
m∑
l=0

πk+1(l, c)ψk+1(m− l, c− l), (2.45)

with the base case being

φ1(m, c) ≈ π1(m, c), ψK−1(m, c) ≈ πK(m, c), (2.46)

and ψK(m, c) = 0. The quality of the approximation improves as the degree of time-scale separation

increases.

Proof. Consider φk(m, c). Condition on Nk−1 = l for l = 0, . . . ,m. Then, by time-scale separation,

class k arrivals behave approximately the same as class k arrivals on a single class queue with c− l

circuits available. The probability that Nk = m conditioned on Nk−1 = l is then the probability that

there are m− l class k calls in this single class queue, πk(m− l, c− l). The probability of Nk−1 = l

is then φk−1(l, c). Next, consider ψk(m, c). Class k + 1 is unaffected by classes k + 2, . . . ,K, and

thus the probability that nk+1 = l is given by πk+1(l, c). Conditioned on nk+1 = l, by time-scale

separation, the arrivals of classes k + 2, . . . ,K effectively see a queue with c − l circuits available.

Thus, the probability that N̄k = m conditioned on nk+1 = l is given by ψk+1(m− l, c− l).

The following Theorem gives an approximation for the preemption rates under the hslf time-scale

separation.

Theorem 11. Assume the hslf time-scale separation holds. The rate that arriving calls of class

k < K preempt active calls of classes k + 1, . . . ,K is

Pk ≈ P̃k = λk

c−1∑
m=0

φk(m, c)ψk(c−m, c−m). (2.47)
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The rate that class i < K arrivals preempt active class k > i calls is approximately

P̃i,k = Q̃k,i = λi

c−1∑
m=0

(φk−1(m, c)ψk−1(c−m, c−m)

− φk(m, c)ψk(c−m, c−m)) . (2.48)

The rate that active class k > 1 calls are preempted is

Qk ≈ Q̃k = Λk−1

c−1∑
m=0

(φk−1(m, c)ψk−1(c−m, c−m)

− φk(m, c)ψk(c−m, c−m)) . (2.49)

The rates that arriving calls of class k = 1 are blocked (B1) and admitted (A1) are exactly

B1 = λ1φ1(c, c) = λ1π1(c, c) = λ1E(ρ1, c), A1 = λ1(1− E(ρ1, c)). (2.50)

The rates that arriving calls of class k > 1 are blocked (Bk) and admitted (Ak) are approximately

Bk ≈ B̃k = λkφk(c, c), Ak ≈ Ãk = λk(1− φk(c, c)). (2.51)

The rate that class k = 1 calls depart is exactly D1 = A1; the rate that class k > 1 calls depart is

Dk ≈ D̃k = Ãk − Q̃k. (2.52)

The preemption rates (P pk , P pi,k = Qpi,k, Qpk or P sk , P si,k = Qsk,i, Q
s
k), blocking and admission rates

(Bpk , Apk or Bsk, Ask), and departure rates (Dp
k or Ds

k) are found by replacing c with cp or cs in (2.47

– 2.52).

Proof. Consider Pk. The probability that an arriving class k call finds the system in a state requiring

preemption is the probability that (Nk, N̄k) = (m, c−m) for some m = 0, . . . , c− 1. By time-scale

separation, P(Nk = m) = φk(m, c), and P(N̄k = c −m) = ψk(c −m, c −m). The remaining cases

Chapter 2: Performance analysis 2.6 Heterogeneous



47

yield to similar argument.

Example: K = 2. Consider the case of K = 2 classes under the hslf time-scale separation.

Using Theorem 11, the rate that class 1 arrivals preempt active class 2 calls is approximately

P̃1 = P̃1,2 = Q̃2,1 = Q̃2 = λ1

c−1∑
m=0

π1(m, c)π2(c−m, c−m). (2.53)

Moreover, the class 1 blocking rate is B1 = λ1π1(c, c) = E(ρ1, c), while the class 2 blocking rate is

approximately

B̃2 = λ2

c∑
m=0

π1(m, c)π2(c−m, c−m). (2.54)

Finally, the class 1 departure rate is D1 = A1 = λ1 − B1, while the class 2 departure rate is

approximately D̃2 = λ2 − B̃2 − Q̃2.

Example: K = 3. Consider the case of K = 3 classes under the high-slow low-fast time-scale

separation. The arrival transitions are illustrated in Figure 2.8. Using Theorem 11 the rate of

preemption caused by class 1 arrivals is approximately

P̃1 = λ1

c−1∑
m=0

c−m∑
l=0

π1(m, c)π2(l, c−m)π3(c− (m+ l), c− (m+ l)), (2.55)

while the rate of preemption caused by class 2 arrivals is approximately

P̃2 = P̃23 = λ2

c−1∑
m=0

m∑
l=0

π1(l, c)π2(m− l, c− l)π3(c−m, c−m). (2.56)

The rate of preemptions of class 2 calls by class 1 arrivals is approximately

P̃12 = λ1

c−1∑
m=0

(c−m∑
l=0

π1(m, c)π2(l, c−m)× (2.57)

π3(c− (m+ l), c− (m+ l))

−
m∑
l=0

π1(l, c)π2(m− l, c− l)π3(c−m, c−m)
)
,

Chapter 2: Performance analysis 2.6 Heterogeneous



48

while the rate of preemptions of class 3 calls by class 1 arrivals is approximately

P̃13 = λ1

c−1∑
m=0

m∑
l=0

π1(l, c)π2(m− l, c− l)π3(c−m, c−m). (2.58)

The rate at which active class 2 calls are preempted is approximately

Q̃2 = λ1

c−1∑
m=0

(c−m∑
l=0

π1(m, c)π2(l, c−m)× (2.59)

π3(c− (m+ l), c− (m+ l))−
m∑
l=0

π1(l, c)π2(m− l, c− l)π3(c−m, c−m)
)
,

while the rate at which active class 3 calls are preempted is approximately

Q̃3 = Λ2

c−1∑
m=0

m∑
l=0

π1(l, c)π2(m− l, c− l)π3(c−m, c−m). (2.60)

Moreover, the class 1 blocking rate is B1 = λ1π1(c, c) = E(ρ1, c), while the class 2 and 3 blocking

rates are approximately

B̃2 = λ2

c∑
m=0

π1(m, c)π2(c−m, c−m), (2.61)

B̃3 = λ3

c∑
m=0

m∑
l=0

π1(l, c)π2(m− l, c− l)π3(c−m, c−m).

Finally, the class 1 departure rate is D1 = A1 = λ1−B1, while the class 2 and 3 departure rates are

approximately

D̃2 = λ2 − B̃2 − Q̃2, D̃3 = λ3 − B̃3 − Q̃3. (2.62)

Comparison of approximate and exact results. To give some intuition for the relationship

between the actual preemption rates and the approximations in Theorem 11, we compute P1 for the

case of arbitrary heterogeneous service rates for the simple case of K = 2 and c ∈ {1, 2}.

Consider first when the link can support a single call: c = 1. Global balance on the states

Chapter 2: Performance analysis 2.6 Heterogeneous



49

λ3λ2

100 n1λ1

λ2

λ1

λ1

λ1

λ3

001

λ2

λ3

000

n3

λ2

λ3 λ2

010

λ1

110

200

101

002

020

020

n2

λ1

λ1

λ1

λ1

λ2

λ2

Figure 2.8: State transition diagram for a link with three service classes (K = 3) and a
capacity of two calls (c = 2). Downward transitions (departures) are not shown for clarity.

S = {(0, 0), (0, 1), (1, 0)} yields the invariant distribution, say π̂(0, 0), π̂(0, 1), π̂(1, 0), from which we

find

P1 = λ1π̂(0, 1) = λ1
ρ2

(ρ1 + 1)(ρ1(µ1/µ2) + ρ2 + 1)
. (2.63)

Theorem 11 gives

P̃1 = λ1π1(0, 1)π2(1, 1) = λ1
1

1 + ρ1

ρ2

1 + ρ2
. (2.64)

The ratio

P̃1

P1
= 1 +

λ1

λ2 + µ2
(2.65)

illustrates that the approximation nears 1 as the time-scale separation becomes large. In fact, the

ratio illustrates that, at least for the case when c = 1, the approximation is valid if either λ2 is large

or µ2 is large.

Consider next when the link can support two calls: c = 2. Solving the global balance equations

yields the invariant distribution, say

π̂(0, 0), π̂(0, 1), π̂(0, 2), π̂(1, 0), π̂(1, 1), π̂(2, 0), (2.66)
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which permits computation of

P1 = λ1 (π̂(0, 2) + π̂(1, 1)) = λ1
ı(ρ1, ρ2, (µ1/µ2))

(ρ1, ρ2, (µ1/µ2))
, (2.67)

where

ı(ρ1, ρ2, (µ1/µ2))

= 2ρ2

[
ρ2

1(ρ1 + 1)(µ1/µ2)2

+ (2ρ2
1ρ2 + 3ρ2

1 + 3ρ1ρ2 + 2ρ1 + ρ2)(µ1/µ2)

+ (ρ1ρ
2
2 + ρ2

2 + 2ρ1ρ2 + ρ2 + 2ρ1)
]
,

(ρ1, ρ2, (µ1/µ2))

= (ρ2
1 + 2ρ1 + 2)

[
ρ3

1(µ1/µ2)3 + 2ρ2
1(ρ2 + 2)(µ1/µ2)2

+ (ρ2
2 + ρ1ρ2 + 2ρ2 + ρ1 + 2)(µ1/µ2)

+ (ρ2 + 1)(ρ2
2 + 2ρ2 + 2)

]
. (2.68)

Theorem 11 gives

P̃1 = λ1

(
π1(0, 2)π2(2, 2) + π1(1, 2)π2(1, 1)

)
= λ1

(
1

1 + ρ1 + ρ2
1/2
· ρ2

2/2

1 + ρ2 + ρ2
2/2

+
ρ1

1 + ρ1 + ρ2
1/2
· ρ2

1 + ρ2

)
. (2.69)

Simple algebra shows that dropping all terms with µ1

µ2
in P1 yields P̃1, showing that the approximation

becomes exact in the limit of the time scale separation. It warrants mention that in principle the

exact preemption rates can always be computed, for arbitrary K, c, by obtaining the invariant

distribution and summing over the appropriate states. This approach is infeasible, however, due to

the exponential growth in the size of the state space in both K and c.
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2.7 Numerical and simulation results

In this section we present plots of the preemption rates versus the arrival rates. We have written a

preemption network simulator in Java; the simulation results support the obtained exact numerical

results, as well as illustrate the regimes where the asymptotic approximations are valid. Throughout

this section our independent variable is the arrival rate scaling parameter, r. In particular,

we will grow λk linearly in r, i.e., λk = akr, for specified a1, . . . , aK . For r small the links are

underloaded, and for r large the links are overloaded.

2.7.1 Single link: homogeneous service rates

Consider a single IL with c = 100, K = 2, arrival rates λ1, λ2 (to be varied), and µ1 = µ2 = 1

(homogeneous service rates). Fig. 2.9 contains three plots of preemption probabilities versus r.

The preemption probabilities are obtained from the rate expressions by dividing by the appropriate

arrival rate: the preemption probability for class 1 is P1/λ1, and the preemption probability for class

2 is Q2/λ2. In each case the probability is to be understood as a “customer” average, e.g., P1/λ1

is the fraction of arriving class 1 calls that cause a preemption. Further, each curve on each plot is

actually a superposition of simulation results, exact numerical results (from §2.4), and approximate

numerical results (from §2.5). Theorem 8 is used for the numerical approximations for the first three

plots, Corollary 2 is used for the numerical approximation for the bottom plot.

The top of Fig. 2.9 presents P1/λ1 where λ1 = r, and λ2 is varied among 10r, r, and 0.1r.

In each case the preemption probability is seen to be increasing, reach a maximum very near to

λ1 = ρ1 = c1 = 100, and then be convex decreasing. The initial increase is because increasing λ1

moves the link from an underloaded regime to an overloaded regime: the number of preemptions

increases as the system “fills up”. The subsequent decrease is because as λ1 continues to increase, it

is increasingly likely that all circuits are occupied by class 1 calls, and thus arriving class 1 calls are

blocked, rather than admitted by preempting a class 2 call. P1/λ1 is increasing as λ2 increases from

0.1λ1 to λ1 to 10λ1: a higher λ2 means there are more class 1 arrivals that preempt class 2 calls.

The middle plot in Fig. 2.9 presents Q2/λ2 where λ2 = r, and λ1 is varied among 10r, r, and
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0.1r. The same shape of initial increasing and subsequent convex decreasing is retained, as is the

fact that the maximum preemption probability occurs when λ1 = ρ1 = c1 = 100. For the three

curves, these maxima occur at λ2 = 10, 100, 1000 respectively.

The bottom plot in Fig. 2.9 presents P1/λ1 and Q2/λ2 where the three scalings of the arrival

rates are (λ1, λ2) ∈ {(r, r), (r, 10r), (10r, r)}. The numerical approximation used in this plot is

the “both overloaded” expression from Corollary 2. The approximation is seen to be increasingly

accurate as r increases, but the inaccuracy is visible for r small. As is expected, the preemption

probability curves are increasing in the ratio of class 2 to class 1 calls. It bears mention that although

the preemption rates for the two classes P1, Q2 are the same for K = 2, i.e., P1 = Q2, the preemption

probabilities P1/λ1 and Q2/λ2 are distinct.

2.7.2 Single link: heterogeneous service rates

Consider a single IL with c = 100 servicing K = 2 classes with two different settings for λ1, λ2, µ1, µ2:

scaling λ1 λ2 µ1 µ2 ρ1 ρ2

hfls 10r r 10 1 r r

hslf 0.1r 10r 0.1 10 r r

The first scaling corresponds to a hfls time-scale separation, and the second to a hslf time-scale

separation. Note that the offered loads for the two classes are equal for both scalings, i.e., ρ1 = ρ2.

The fact that µ1 6= µ2 means we have heterogeneous service rates. Fig. 2.10 presents numerical

and simulation results of the preemption probability P1/λ1 and the blocking probabilities B1/λ1

and B2/λ2 versus r. The top figure demonstrates the inaccuracy of the NCD approximations in

the hfls scaling, while the bottom figure shows the NCD approximation to be accurate in the hslf

scaling.

2.7.3 Two parallel links: homogeneous service rates

The two parallel links have cp = cb = 100 servicing K = 2 service classes with λ1 = λ2 (to be

varied), and µ1 = µ2 = 1 (homogeneous service rates). Fig. 2.11 presents several of the rates from
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Fig. 2.2 versus the common arrival rate λ1 = λ2.

The top plot shows the class 2 departure rates from the PL, Dp
2 , and from the system, Ds

2.

The numerical results are taken from §2.4.5 (Theorem 6) and are seen to match exactly with the
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simulation results. The departure rate of class 2 calls from the PL is seen to increase until λ1 +λ2 =

ρ1 + ρ2 = cp = 100, and then decrease; this increase is attributable to the increasing arrival rate

of class 2 calls to an underloaded system. Above λ1 + λ2 = 100, the PL is typically filled up, and

thus class 2 calls are likely to be either blocked from admission on the PL, or preempted to the

secondary link; this explains the decreasing departure rate from the PL for λ1 + λ2 > 100. The

system departure rate is seen to increase steadily until λ1 + λ2 = ρ1 + ρ2 = cs = 200. Again, this

increase is attributable to the increasing rate of admissions of class 2 calls to an underloaded system.

Above λ1 + λ2 = 200, the system is typically filled up, and thus class 2 calls are likely to be either

blocked from admission into the system or preempted from the system; this explains the decreasing
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2). Bottom: rate of preemption from the PL

(both transfers and drops) and the rate of preemption from the system (from both the primary
and BL).

departure rate from the system for λ1 + λ2 > 200.

The bottom plot shows the rate at which class 2 calls are preempted from the PL, Qp2, and from

the system, Qs2. The numerical results are taken from §2.4.5 (Theorem 5) and are seen to match

exactly with the simulation results. The preemption rate from the PL, Qp2, is seen to be near zero

for λ1 + λ2 = ρ1 + ρ2 < c1 = 100; this is because the PL is underloaded and there is no need for

preemption. From λ1 + λ2 = 100 to λ1 + λ2 = cs = 200 the PL preemption rate steadily increases.

This is attributable to the fact that the PL is overloaded, and it is increasingly likely that any class

2 call admitted to the PL will be preempted. Above λ1 + λ2 = 200, the rate levels out, but the rate

of preemption from the system rises rapidly. The rate of preemption from the system is near zero
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for λ1 + λ2 < cs = 200 since the system is underloaded.

2.8 Conclusions and future work

We have studied the performance of a two parallel link network with transfers servicing K classes

with preemptive priority. The performance metrics are the rate that arriving calls preempt lower

priority active calls, and the rate that active calls are preempted by higher priority arriving calls.

For homogeneous service rates we obtained exact expressions by lumping the Markov chain, and

using the fact that the PL and the system as a whole can be treated as ILs. The exact results are in

terms of Erlang-B blocking probabilities. These expressions simplify in an asymptotic many small

users regime, appropriate for large arrival rates and large capacities. For heterogeneous service rates

with a time scale separation, we provided an efficiently computable approximation for preemption

rates using NCD methods for Markov chains.

There are a number of open directions for extending this work, including relaxation of the

assumed Poisson arrivals and exponential service times, and extension to L > 2 parallel links.

Using the same system view approach, one can extend the results to a network with L parallel

links. However, again only coupled metrics (system metrics) are computable, given that the same

restriction applies to finding the individual preemption/blocking probabilities within the individual

parallel links.

Chapter 2: Performance analysis 2.8 Conclusions and future work
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Chapter 3: Preemption and admission control of a two-class loss link

Although admission control policies for reward maximization in multi-class loss networks have been

well studied, much less attention has been given to preemption control policies, where active low

priority calls may be preempted upon high priority arrivals. We compare admission and preemption

control of a two class loss link under a reward model incorporating per class arrival and departure

rewards, preemption costs, and per class holding reward rates. Main results include i) if preemption

is always done when the link is full then additional preemptions from non full states decrease reward,

and ii) a sufficient condition for the superiority of optimal preemption without admission control

over optimal threshold-based admission control without preemption control. Results are established

by policy improvement theorems from stochastic dynamic programming. We provide numerical

results consonant with our analyses that illustrate parameter regimes with various sensitivities of

performance to control: i) optimal joint preemption and admission control outperforms admission

control and preemption control alone, ii) either admission or preemption control achieves same

performance as optimal joint control, iii) no control performs significantly worse than admission or

preemption control alone, and iv) no control performs same as either control alone but worse than

optimal joint control.

3.1 Introduction

A loss network is a collection of links (each capable of multiplexing a finite number of concurrent

calls) servicing a set of routes (each route consisting of a set of links), where a control mechanism

determines whether or not to admit each arriving call on each route [1]. There is no queueing in

loss networks – call requests are either admitted and begin service immediately or they are blocked.

Multi-class loss networks service multiple classes of calls, where classes often indicate call priority,

and call priority often reflects the ordering of reward paid to the network for each admitted call. In

the general case arrival rate, service rate, and call rate/size (the number of circuits on each link of
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the route consumed by a call of that class) are class specific.

In this paper we consider the simplest non-trivial case of a multi-class loss network: a single

loss link servicing two classes of calls, where all calls have a common rate (size), i.e., each call

occupies a single circuit. We further assume arrivals for each class of calls form independent Poisson

processes with class-dependent rates, and service times for all calls are independent and exponentially

distributed with class-dependent means. It follows from these assumptions that the state vector is

the number of active calls of each class, and the state evolution is that of a continuous time Markov

chain on a finite state space. Throughout the paper we adopt the convention that high (low) priority

calls are denoted as class 1 (2) respectively.

We consider two forms of control: admission control and preemption control. An admission

control policy specifies whether or not to admit an arriving call of a given class on a given route

as a function of the number of active calls of each class on each link. In our setting of two call

classes on a single link this translates to a decision of whether or not admit class 2 calls in each

state where the link is not full. A preemption control policy, on the other hand, specifies whether

or not to admit an arriving call on a given route by preempting one or more lower priority calls

occupying circuits on links comprising the arriving call’s route. Preemption is in fact an integral

control mechanism within the proposed Differentiated Services Internet architecture (DiffServ) [39].

Fig. 3.1 illustrates the design space of admission control and preemption control policies for the

setting of two call classes on a single link. We use the framework of Markov decision processes

(MDP) to demonstrate expected per stage reward orderings between two competing control policies.

The literature on preemption is smaller than on admission control, and in our opinion there has

been insufficient attention given to i) the optimal preemption policy and its performance, and ii)

the relative and joint performance of optimal admission and optimal preemption control policies.

Although the results in this paper fall short of answering these questions, our motivation in writing

this paper is to initiate their investigation.

The design of optimal admission control policies for multi-class loss networks is difficult due to

the following tension: admitting a low priority call guarantees a certain reward – more so than would
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Figure 3.1: The state transition diagrams for the continuous time Markov chains describing
the evolution of the number of active calls of each class (n1, n2) on a loss link with capacity
c = 3. Left: the admission control policy specifies whether to admit class 2 calls in non full
states. Right: the preemption control policy specifies whether to admit class 1 by preempting
class 2 calls.

be obtained were the circuits used to support the call to remain idle – but the admission occupies

circuits that might preclude even greater reward by admission of a potential future arrival of a high

priority call. Even in our restricted setting of two call classes on a single link the optimal admission

control policy is unknown. In fact, the set of all possible admission control policies is often too large

and unwieldy to yield to analysis. The admission control problem is an instance of a stochastic

knapsack problem, where the knapsack size is represented by the capacities of the network links,

the state is the number of calls of each class, and the arrival streams of items of various types are

the arriving multi-class calls [21]. Instead of seeking to optimize over all admission control policies,

much of the admission control literature focuses on optimizing over the set of coordinate convex

admission policies [40]. When restricted to this set, it is known that the optimal policy for two call

classes is of threshold type [41]. In particular, in our setting the set of coordinate convex admission

control policies is the set of policies where a class 2 call is admitted as long as the number of such

calls lies below a threshold (Prop. 1). It is then relatively straightforward to numerically identify the

optimal threshold (say, by bisection search). The design of optimal preemption control policies for

multi-class loss networks is difficult due to the fact that admitting a high priority call via preemption

Chapter 3: Policy analysis 3.1 Introduction
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guarantees a higher instantaneous reward rate than was achieved by the preempted low priority call,

but this gain is offset by the cost of preempting the low priority call.

In this work we adopt a flexible yet tractable reward framework that incorporates i) instantaneous

per class reward amounts for admitted, departing, and preempted calls, and ii) class and state

dependent reward rates (paid per unit time) for active calls. Our primary findings are summarized

as follows:

1. The use of preemption at non full states is shown to be strictly sub-optimal for all “reasonable”

reward models provided preemption is always performed at all full states (Prop. 2 in §3.4.1).

The stronger statement that policy performance always improves by removing preemptions

at non full states is shown to be false by a simple counter-example. We conjecture that the

optimal preemption policy is achieved without preempting at non full states (Conjectures 1

and 2), but we do not have a proof of this claim.

2. Given a choice between admission control and preemption control, we provide a sufficient

condition (Prop. 3 in §3.4.2) for the superiority of i) a policy that preempts at all full states

(and never preempts at non full states) but does not use admission control over ii) a policy

that does not employ preemption but chooses an optimal admission control strategy over the

class of class 2 threshold policies (the set of coordinate convex policies).

3. For a fixed admission and control policy, the space of all possible reward models may be

partitioned based on the asymptotic expected time-average reward rate. We characterize these

classes (Prop. 4 in §3.4.3) and give a condition for two reward models to be reward equivalent

(Prop. 5 in §3.4.3).

We provide extensive numerical results consonant with our analyses. Although our analytical work

in this paper does not address the combined use of admission control and preemption control, our

numerical results illustrate intriguing phenomena in various parameter regimes including i) optimal

joint admission control and preemption control outperforms either one alone, and ii) the use of

either one alone performs the same as no control (Fig. 3.13). These numerical results demonstrate

Chapter 3: Policy analysis 3.1 Introduction
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the interesting design space of joint admission control and preemption control.

This paper is organized as follows. We give a brief summary of related work in §3.2 and describe

our system model in §3.3. The three primary findings discussed above are presented in the three

subsections of §3.4. Numerical results are discussed in §3.5 with results for a link capable of holding

a single call in §3.5.1, and for larger capacity links in §3.5.2. §3.6 offers a brief conclusion. Proofs of

several technical lemmas are placed in appendices following the references.

3.2 Related work

We briefly discuss related work on admission control and preemption control. The discussion is

restricted to loss networks as the literature for more general queueing networks is too large to be

covered here and is of limited relevance.

Admission control. The optimization and performance analysis of admission control mech-

anisms for multi-class loss networks are well understood, see, e.g., the survey paper by Kelly [1]

and the book by Ross [21]. Ross and Tsang modeled the control of multi-class loss networks as a

stochastic knapsack problem [41] and characterized the optimal coordinate convex admission control

policy. The notion of coordinate convex sets was introduced by Aein [42;43]. Computation of block-

ing probabilities in multi-class loss networks with coordinate convex admission control policies was

addressed by Kaufman [40] who utilized the product form of the steady state occupancy distribu-

tion. Loss networks served by finite populations (Engset models) were investigated by Foschini and

Gopinath [44]. More recently work in admission control has addressed i) statistical quality of service

(e.g., [45] and many others), ii) measurement based decisions (e.g., [46;47] and many others), and iii)

micro–cellular policies for cellular wireless networks (e.g., [48] and many others) where there is the

additional concern of handoff (e.g., [49] and many others).

Preemption control. Garay and Gopal’s seminal 1992 paper showed that optimal preemp-

tion decisions (minimizing either the number of preempted connections or the amount of preempted

bandwidth) in circuit–switched networks is an NP-complete problem [12], and suggested several (cen-

tralized) approximations with associated guarantees relative to the optimal solution. Decentralized

preemption algorithms were presented in [13]. Many preemption policies have been described in the
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context of a Differentiated Services (DiffServ) aware multi–protocol label switching (MPLS) sce-

nario, e.g., [14–20;50], but few of these works offer analytical results. Instead these papers present

preemption policies that i) are flexible and adaptive [14;50], ii) jointly allocate bandwidth and make

preemption decisions [16], iii) reduce algorithm computation time [17], iv) integrate preemption with

routing [18;19], v) employ fuzzy logic and genetic algorithms [20]. The earliest performance analyses

of a preemption policy in a loss context are by Helly [28] and Burke [29], both from 1962. After that,

the literature appears to be silent until 1980 when Calabrese et al. [30] published an analysis of a

voice network of multiple parallel links with preemption. More recently, our prior work [2] analyzed

the performance of a preemption policy for two parallel loss links serving multiple call classes.

3.3 Model

As shown in Fig. 3.2, we study two classes of call arrivals serviced by a single loss link, where the

link employs selective admission control for class 2 arrivals, and may preempt active class 2 calls

upon class 1 arrivals. Class-specific quantities are indicated by a subscript k ∈ {1, 2}.

λ1

λ2

µ1

µ2

c

πa πp

n = (n1, n2)

ρ(e1 − e2)

ρ(e1)

ρ(e2)
ρ(−e2)

ρ(−e1)

r(n)

Figure 3.2: A loss link of capacity c circuits servicing two classes of traffic. The per class
arrival processes are Poisson with rates λ1, λ2, and the per class service times are independent
and exponentially distributed with rates µ1, µ2. The state of the system is n = (n1, n2) with ni
the number of active class i calls. The admission control policy πa selectively admits arriving
class 2 calls while the preemption control policy πp selectively preempts active class 2 calls
upon class 1 arrivals. The reward model consists of a state-dependent reward per unit time
r(n) and an instantaneous reward upon state transitions: ρ(e1), ρ(e2) for class 1 (2) admissions,
ρ(−e1), ρ(−e2) for class 1 (2) departures, and ρ(e1 − e2) for a preemption.

3.3.1 Arrival rates, service rates, link capacity, and system state

Assumption 1. All calls of both classes request a common bandwidth/rate, i.e., all calls are of

common “size”, which we define as a unit of capacity.

Chapter 3: Policy analysis 3.3 Model



63

The link capacity c ∈ N is the maximum number of calls it can hold.

Assumption 2. Each class k ∈ {1, 2} generates an independent Poisson arrival process with rate

λk and the corresponding service times are independent and identically distributed (iid) exponential

random variables with mean µ−1
k .

Due to the memoryless property corresponding to the assumed arrivals and service time distri-

butions, it follows that the relevant system state is the number of calls of each class active on the

link, i.e., n ≡ (n1, n2), with nk the number of active calls of class k ∈ {1, 2}. The state space is

denoted N ≡ {n ∈ Z2
+ : n1 + n2 ≤ c}. Note that the choices of admission and preemption control

policies, described below, may limit the set of accessible states in the state space to a strict subset

of N . We say the link is full for any state n with n1 +n2 = c. Let N ≡ |N | be the number of states.

3.3.2 Admission and preemption control policies and spaces

We consider two control mechanisms: i) admission control and ii) preemption control. Admis-

sion control determines whether to admit arriving class 2 calls, and preemption control determines

whether to preempt a class 2 call upon a class 1 admission. The following assumption reflects the

assumed priority of class 1 over class 2 calls.

Assumption 3. Class 1 calls are always admitted when the link is not full. Class 1 calls are never

preempted. Class 2 calls are never admitted when the link is full.

These assumptions leave open the following possibilities. First, class 1 calls may be admitted

by preempting a class 2 call even if the link is not full, provided one or more class 2 calls is active.

Second, class 2 arrivals requesting admission may be blocked even if the link is not full. The focus

of this paper is on the proper use of these controls. We restrict our attention to deterministic

(as opposed to randomized) and stationary (the chosen action is not time dependent) decisions.

Although we allow an admission or preemption control decision to depend upon the system state n,

we do not allow the decision to depend upon any other variables, including, e.g., i) the duration of

the arriving call, ii) the time of arrival, iii) recent call arrivals or completions or preemptions. Note

that admission (preemption) control policies dictate the course of action upon class 2 (1) arrivals,
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respectively.

Definition 1. An admission control policy is a function πa : N → {0, 1}, where

πa(n) ≡


1, admit

0, block

arriving class 2 call when the link state is n, (3.1)

for n ∈ N . Feasibility requires πa(n) = 0 for all n such that n1 + n2 = c.

Definition 2. A preemption control policy is a function πp : N → {0, 1}, where

πp(n) ≡


1, preempt

0, don’t preempt

class 2 call when class 1 arrival sees state n, (3.2)

for n ∈ N . Feasibility requires πp(n) = 0 for all n such that n2 = 0.

We call π ≡ (π(n), n ∈ N ) a control policy, and the specific value π(n) a control decision. We

consider various ways to restrict the feasible controls in each state through the use of decision spaces.

Definition 3. A decision space is a function S : N → {{0}, {1}, {0, 1}}, where

S(n) ≡


{0} ⇒ π(n) = 0

{1} ⇒ π(n) = 1

{0, 1} ⇒ π(n) ∈ {0, 1}

, n ∈ N . (3.3)

To clarify, the statement S(n) = {0, 1} ⇒ π(n) ∈ {0, 1} means the decision space S imposes no

restriction on the choice of decision for any control policy within that space at state n. A control

policy π is permissible under decision space S if π(n) ∈ S(n) for each n ∈ N . A decision space S

has an associated set of policies, defined below.

Definition 4. A control policy space Π is a collection of control policies π. A control policy space

associated with a decision space S is the set of control policies π permissible under S, i.e.,

ΠS ≡ {π : π(n) ∈ S(n), n ∈ N}. (3.4)
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The above discussion of a general decision space S and control space Π applies to both admission

control (πa,Sa,Πa) and preemption control (πp,Sp,Πp). We now give several examples of feasible

admission and preemption control policies and spaces that will be of interest in this paper.

Admission control policies and spaces

• Complete sharing (cs) policy: admit a class 2 call whenever there is room, i.e., πacs has elements

πacs(n) ≡ 1n1+n2<c, where 1A is the indicator function for event A.

• Threshold (th) admission control policy: admit a class 2 call if n1 + n2 < c and n2 < τ ,

for τ ∈ {0, . . . , c}. That is, πaτ (n) ≡ 1n1+n2<c,n2<τ . Complete sharing is a special case

of this policy with τ = c, while τ = 0 corresponds to never admitting a class 2 call. Let

Πa
th ≡ {πa0 , . . . , πac } denote the collection of possible threshold policies.

• Maximum flexibility (mf) admission control decision space: imposes no restriction on the choice

of admission control policy at any state:

Samf(n) ≡


{0, 1}, n1 + n2 < c

{0}, else

, n ∈ N . (3.5)

The corresponding control policy space is Πa
mf ≡ ΠSamf

.

• Coordinate convex (cc) control policy space. A coordinate convex admission control policy has

an associated set of achievable states, say Ω ⊆ N , satisfying i) n ∈ Ω with nk > 0 implies

n− ek ∈ Ω for k ∈ {1, 2}, and ii) accept a class k call in n ∈ N iff n+ ek ∈ Ω [40;41;43]. Let Πa
cc

be the control policy space of coordinate convex control policies.

Proposition 1. Under Ass. 1 and 3, the coordinate convex admission control policy space equals

the threshold admission control policy space: Πa
cc = Πa

th.

Proof. It is simple to verify that a threshold policy is coordinate convex. It remains to show that

a coordinate convex policy is a threshold policy, or, equivalently, a non-threshold policy is not

coordinate convex. Let Ω be the set of achievable states of a coordinate convex policy – we will show
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that admissions under a non-threshold policy violate the rules for Ω. A non-threshold policy must

have two distinct states in one of the following two scenarios. If no two such states exist then the

policy is of threshold type. See Fig. 3.3.

• Consider states n, n′ be with n2 < n′2, n1 + n2 < c, and n′1 + n′2 < c such that πa(n) = 0 and

πa(n′) = 1. Suppose n1 ≤ n′1 (Fig. 3.3 left). Observe that i) n′ ∈ Ω and ii) n+ e2 6∈ Ω (due to

πa(n) = 0). But such a set is not coordinate convex by repeated application of the requirement

n′ ∈ Ω with n′k > 0 implies n′ − ek ∈ Ω. Suppose instead n1 > n′1 (Fig. 3.3 middle). Observe

that i) πa(n) = 0 so that n + e2 = (n1, n2 + 1) 6∈ Ω. However, by repeating application of

the requirement n′ ∈ Ω with n′2 > 0 implies n′ − e2 ∈ Ω, we obtain (n′1, n2 + 1) ∈ Ω. Notice

n′1 < n1, n
′
1 +n2 + 1 < n1 +n2 + 1 ≤ c, and by assumption 3, we admit class 1 calls from state

(n′1, n2 + 1) till occupancy sum equals c, which means n+ e2 ∈ Ω, which is a contradiction.

• Consider states n, n′ with n2 = n′2, n1 < n′1, and n′1 +n′2 < c such that πa(n)+πa(n′) = 1 (Fig.

3.3 right). If πa(n) = 0, πa(n′) = 1, then n′ + e2 ∈ Ω and n + e2 6∈ Ω. Repeating application

of the requirement n′ + e2 ∈ Ω with n′1 > 0 implies n′ + e2 − e1 ∈ Ω, we obtain n + e2 ∈ Ω,

which is a contradiction. If πa(n) = 1, πa(n′) = 0, then n+ e2 ∈ Ω and n′ + e2 6∈ Ω. However,

Assumption 3 implies n′ + e2 ∈ Ω due to n+ e2 ∈ Ω, n1 < n′1, which is a contradiction.
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Figure 3.3: Three cases of non-threshold policies discussed in the proof of Prop. 1.
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We have the following relationships among the admission control policies and spaces:

πacs ∈ Πa
th = Πa

cc ⊆ Πa
mf . (3.6)

Thus for any performance objective, say g, that depends upon the admission control policy πa we

have:

gπacs
≤ max
π∈Πath

gπ = max
π∈Πacc

gπ ≤ max
π∈Πamf

gπ. (3.7)

The restriction to coordinate convex policies (equivalently, here, threshold policies) may preclude

achieving the overall optimal reward rate. For example, it would appear quite natural to consider

a class of “sum rate threshold policies” (none of which is coordinate convex) where πa(n) = 1 for

n1 + n2 < τ ≤ c for some τ ∈ [c]. It is worth noting, however, that restriction to coordinate convex

policies is common in the loss network admission control literature [40;41;43]. See Remark 1 later in

this section.

Preemption control policies and spaces

• Never preempt (np) control policy: πpnp(n) = 0 for all n.

• Always when full (awf) decision space: Spawf requires preemption when the link is full: Spawf(n) =

{1} for n : n1 + n2 = c and n2 > 0. Optionally preempt when the link is not full: Spawf(n) =

{0, 1} for n : n1 + n2 < c and n2 > 0. Denote the control policy space by Πp
awf ≡ Πp

Spawf
. Let

πpawf denote the control policy that always preempts when full but never when not full, note

πpawf ∈ Πp
awf .

• Only if full (oif) decision space: only allow preemption when the link is full:

Spoif(n) ≡


{0, 1}, n2 > 0, n1 + n2 = c

{0}, else

(3.8)

The corresponding control policy space is Πp
oif ≡ ΠSpoif

. Note πpawf ∈ Πp
oif .

• Maximum flexibility (mf) preemption decision space: imposes no restriction on the choice of
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preemption control policy at any state:

Spmf(n) ≡


{0, 1}, n2 > 0

{0}, else

(3.9)

The corresponding control policy space is Πp
mf ≡ ΠSpmf

.

The following relationships hold among preemption control policies and spaces:

{πpnp, π
p
awf} ∈ Πp

oif

πpawf ∈ Πp
awf

⊆ Πp
mf , (3.10)

For any performance objective, say g, that depends upon the preemption control policy πp we have:

{gπpnp
, gπpawf

} ≤ maxπ∈Πpoif
gπ

gπpawf
≤ maxπ∈Πpawf

gπ

≤ max
π∈Πpmf

gπ. (3.11)

where the stacking of the πpnp, π
p
awf policies indicates no ordering exists between them. From here

on, the notation π ≡ (πa, πp) denotes an admission control and preemption control policy pair.

3.3.3 Reward models

We consider a general reward model, where rewards may be both positive (revenue) and negative

(costs). The system accrues reward in two distinct ways: i) the function r : N → R gives the rate of

reward accrued per unit time r(n) by the system in each state n, and ii) the function R : N×N → R

gives the amount of reward earned R(n, n′) when the system transitions from state n to state n′.

We often consider R as an N ×N matrix with entries

R[n, n′] ≡


R(n, n′), n 6= n′

0, n = n′
. (3.12)

We emphasize that r is reward rate and R is a reward amount.

There are at most five possible state transitions n → n′ for n, n′ ∈ N : two possible arrival
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transitions, two possible departure transitions, and a combined arrival/departure for preemption.

Let e1 ≡ (1, 0) and e2 ≡ (0, 1) denote the two unit vectors.

n′ = n+ e1 class 1 admission without preemption

n′ = n+ e1 − e2 class 1 admission with preemption of a class 2 call

n = n+ e2 class 2 admission

n′ = n− ek class k departure, k ∈ {1, 2}

(3.13)

Our reward model allows for transition rewards to depend upon the type of transition but not the

state of the transition.

Definition 5. A reward model (r, ρ) consists of a state–dependent reward rate function r : N → R

and a five tuple for transition rewards

ρ ≡ (ρ(e1), ρ(e2), ρ(−e1), ρ(−e2), ρ(e1 − e2)) ∈ R4
+ × R (3.14)

where ρ(u) ≡ R(n, n+ u) is the transition reward for a transition of “type” u. Note the arrival and

departure reward ρ(±ek) for k ∈ {1, 2} are non-negative while the preemption reward ρ(e1 − e2) is

unrestricted in sign.

Assumption 4. The state-dependent reward rate function is nondecreasing with respect to the partial

order on N : if n ≤ n′ then r(n) ≤ r(n′), where n ≤ n′ means nk ≤ n′k for k ∈ {1, 2}.

We will employ a linear reward rate function in our numerical results in §3.5, r(n) = r1n1 + r2n2

for r1 ≥ r2 ≥ 0, which may be interpreted as each active class k call pays at rate rk per unit time.

Transition reward examples include:

ρ ρ(e1) ρ(e2) ρ(−e1) ρ(−e2) ρ(e1 − e2)

ρ(a) 0 0 0 0 −ρp

ρ(b) 0 0 ρd1 ρd2 −ρp

ρ(c) ρa1 ρa2 0 0 ρa1 − ρp

(3.15)
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1. ρ(a) corresponds to no admission or departure reward but a preemption cost −ρp < 0 for all

preempted class 2 calls.

2. ρ(b) corresponds to reward ρdk earned upon each class k call completion, and −ρp for all

preempted class 2 calls.

3. ρ(c) corresponds to reward ρak earned upon each class k call admission, and −ρp for all pre-

empted class 2 calls.

Note that our reward model includes a preemption cost −ρp but no blocking cost. The justifi-

cation for this model is twofold: i) One one hand, it is not natural to impose a charge for blocking

a call since the customer did not receive any service. On the other hand, customers need to be re-

warded in situations where their ongoing service is interrupted due to the arrival of a higher priority

customers’ call. An everyday example of this is the case of flight overbooking, where customers that

have booked their tickets need to be compensated when their reservation is revoked. ii) Service

disruption is naturally seen as worse than blocking.

3.3.4 Markov decision process and dynamic programming formulation

The system state evolves as a continuous time Markov chain Ñπ = {Ñπ(t)} on the state space N .

The statistics of the process are determined by λ1, λ2, µ1, µ2, and c and the choice of an admission

and preemption control policy pair π = (πa, πp). Let qπ(n, n′) denote the rate of transition n→ n′

under policy π:

qπ(n, n+ e1) = λ1(1− πp(n)), n1 + n2 < c

qπ(n, n+ e1 − e2) = λ1π
p(n), n2 > 0

qπ(n, n+ e2) = λ2π
a(n), n1 + n2 < c

qπ(n, n− ek) = µknk, nk > 0, k ∈ {1, 2}

, n ∈ N . (3.16)
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All other transition rates are zero. The transition rates are illustrated in Fig. 3.4 (left) for the case

c = 2. The asymptotic time-average reward rate for the CTMC {Ñπ(t)} is

g̃π = lim
T→∞

1

T

∫ T

0

r(Ñπ(t))dt+
∑
j:tj≤T

R(Ñπ(tj), Ñπ(t+j ))

 , (3.17)

where {tj} is the (countably infinite) collection of state transition times.

Remark 1. The class of threshold policies is optimal in terms of maximizing g̃π over the class of

coordinate convex admission control policies when Assumptions 1 and 3 are relaxed and a linear

reward rate model (no transition rewards) is employed [41]1.

Uniformization

Uniformization is a standard technique for converting a piecewise constant continuous time Markov

chain (CTMC) into an equivalent discrete time Markov chain (DTMC) [51] (§5.1). We select the

uniform transition rate γ = λ1 + λ2 + (µ1 + µ2)c to exceed the total transition rate from any state

n ∈ N . The uniformized chain has transition probabilities given by normalizing the transition rates

by the uniform transition rate, and adding self-loops to ensure the transition probabilities sum to

one:

qπ(n, n′) > 0 ⇒ pπ(n, n′) = qπ(n, n′)/γ∑
n′∈Γπ(n)

qπ(n, n′) < γ ⇒ pπ(n, n) = 1−
∑

n′∈Γπ(n)

pπ(n, n′), (3.18)

for each n, n′ ∈ N . Here Γπ(n) = {n′ 6= n : qπ(n, n′) > 0} are the neighboring states of n under

π. All other transition probabilities are zero. The transition probabilities are illustrated in Fig. 3.4

(right) for the case c = 2. Recall that a Markov chain is unichain under a policy if there exists a

state that can be reached from any other state ( [52] p. 165). The CTMC Ñπ and the DTMC Nπ

are both unichain for all policies since the origin o = (0, 0) ∈ N can always be reached from any

1For r(n) = r1n1 + r2n2 with r1 ≥ r2 and R(n, n′) = 0 for all n, n′ ∈ N the optimal expected reward rate over all
coordinate convex admission control policies g̃∗cc = maxπ∈Πacc

g̃π is obtained by a threshold admission control policy

limiting the number of class 2 calls (see last sentence in first column of p. 743 in [41] and note for our model we have
b1 = b2 = 1).
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other state under any policy π by simply having all active calls depart before the next arrival. The

unichain property is required for several results in §3.4.

After uniformization of the CTMC {Ñπ(t)} to an equivalent DTMC {Nπ[i]} as described above,

the asymptotic reward per stage is

gπ = lim
I→∞

1

I

I−1∑
i=0

(
1

γ
r(Nπ[i]) +R(Nπ[i], Nπ[i+ 1])

)
. (3.19)

Note that (3.17) has units of dollars per unit time while (3.19) has units of dollars per stage. The

duration of a stage in seconds is one over the uniform transition rate, 1/γ, and so it follows that

the reward per unit time of the DTMC is γgπ. The uniformization of the reward rate function

r(n) per unit time in the CTMC to r(n)/γ per unit stage in the DTMC ensures g̃π = γgπ. Having

uniformized, we henceforth restrict our attention to the DTMC {Nπ[i]}.
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Figure 3.4: Left: the continuous time Markov chain for c = 2 for a generic admission and
preemption policy pair (πa, πp): state transitions are marked with transition rates. Right: the
uniformized discrete time Markov chain with uniform transition rate γ: states are marked with
self-loop transition probabilities and state transitions are marked with transition probabilities.
The notation π̄ denotes complement: π̄ = 1− π.

Infinite horizon average cost discrete time Markov decision process

Our dynamic programming problem is of the infinite horizon average reward discrete time class. For

a given policy π, with i > 0 stages to go from state n ∈ N , the expected cumulative reward over the
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remaining i stages is

vπ(n, i) =
1

γ
r(n) +

∑
n′∈Γπ(n)∪{n}

(R(n, n′) + vπ(n′, i− 1)) pπ(n, n′), n ∈ N , i > 0. (3.20)

Note R(n, n) = 0 for all n ∈ N . The initial conditions are vπ(n, 0) = 0 for all n ∈ N . For each policy

π the associated DTMC {Nπ[i]} is aperiodic, positive recurrent and irreducible. Aperiodicity and

positive recurrence ensure limi→∞ 1
i v(n, i) <∞ exists while irreducibility ensures the limit is unique

and independent of the starting state n. In particular, define mπ[i] ≡ minn∈N {vπ(n, i)−vπ(n, i−1)}

and Mπ[i] ≡ maxn∈N {vπ(n, i)− vπ(n, i− 1)}. Then

lim
i→∞

mπ[i] = lim
i→∞

Mπ[i] = gπ (3.21)

and gπ is independent of the initial state (see p. 210 in [52]). Thus the asymptotic expected reward

per stage, as i gets large, is

gπ = lim
i→∞

1

i
vπ(n, i), n ∈ N . (3.22)

Define hπ ≡ (hπ(n), n ∈ N ) as the asymptotic reward increment per stage at each state; these

increments obey

hπ(n′)− hπ(n) = lim
i→∞

vπ(n′, i)− vπ(n, i), n, n′ ∈ N . (3.23)

Without loss of generality we may pick a special state, say the origin o ≡ (0, 0) ∈ N , and set

h(o) = 0. Define

∆vπ (n, i) ≡ vπ(n, i)− vπ(n, i− 1)

∆vπ (n′, n, i− 1) ≡ vπ(n′, i− 1)− vπ(n, i− 1)

∆hπ (n′, n) ≡ hπ(n′)− hπ(n). (3.24)
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For each n ∈ N and i > 0 we can subtract vπ(n, i − 1) from each side of (3.20) and take the limit

as i→∞.

∆vπ (n, i) =
1

γ
r(n) +

∑
n′∈Γπ(n)∪{n}

(R(n, n′) + ∆vπ (n′, n, i− 1)) pπ(n, n′)

lim
i→∞

∆vπ (n, i) =
1

γ
r(n) +

∑
n′∈Γπ(n)∪{n}

(
R(n, n′) + lim

i→∞
(∆vπ (n′, n, i− 1))

)
pπ(n, n′)

gπ =
1

γ
r(n) +

∑
n′∈Γπ(n)

(R(n, n′) + ∆hπ (n′, n)) pπ(n, n′) (3.25)

The asymptotic reward per stage gπ under policy π can be obtained by solving the N equations in

(3.25) along with hπ(o) = 0 for the N + 1 variables gπ, hπ.

Given a decision space S, the optimal policy π∗ over the class of policies ΠS permissible under

S is given by the solution to the Bellman equation:

gπ∗ =
1

γ
r(n) + max

π(n)∈S(n)

 ∑
n′∈Γπ(n)

(R(n, n′) + hπ(n′)− hπ(n)) pπ(n, n′)

 , n ∈ N . (3.26)

We will not address optimal policies in our analysis (§3.4), however, we will do so in our numerical

results (§3.5).

3.4 Model analysis

In this section we present the three results discussed in the Introduction: i) preempting always

when full implies not preempting when not full is optimal (§3.4.1), ii) a sufficient condition for

the superiority of preempting always when full (with no admission control) over optimal coordinate

convex admission control (with no preemption control) (§3.4.2), and iii) a characterization of reward

models that are equivalent in terms of per stage reward under a given policy (§3.4.3).

3.4.1 Preempting always when full implies not preempting when not full

In this subsection we study the performance of preemption policies with a focus on establishing

conditions under which it is optimal to not preempt when the link is not full. Prop. 2 below states

that, for “reasonable” reward models, if we always preempt when the link is full then the average per
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Table 3.1: Model parameters (k ∈ {1, 2})

c link capacity
λk arrival rate of class k calls
µk service rate of class k calls
nk number of active class k calls
n = (n1, n2) link state
N = {n : n1 + n2 ≤ c} link state space
N = |N | number of states
πa(n) admission decision for an arriving class 2 call in state n
πp(n) preemption decision for an arriving class 1 call in state n
πa admission control policy
πp preemption control policy
π = (πa, πp) an admission and preemption policy pair
S(n) allowable decisions at state n
S decision space
Π control policy space, a collection of control policies
ΠS collection of control policies permissible under S
r(n) reward rate at state n
R(n, n′) reward accrued upon transition n→ n′

ρ(u) = R(n, n+ u) reward accrued for a transition of “type” u
ρ a transition reward tuple specifying reward for each of the five

transition types
(r,R) or (r, ρ) reward model
vπ(n, i) expected time-cumulative reward under π with i steps to go from

state n
hπ(n) asymptotic reward increment per stage at state n under π
gπ long-term time-average expected reward per stage under π
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stage reward is increased by removing a preemption from a non full state. By extension, Corollary

1 states that if we always preempt when full then it is optimal to not preempt at any non full state.

One might conjecture the stronger statement that for “reasonable” reward models the performance

of any preemption policy is improved by removing preemptions at non full states. We show this

conjecture is false by a simple counter-example. Finally, we make two conjectures regarding optimal

preemption: for “reasonable” reward models i) the optimal preemption control only preempts when

full (Conjecture 1), and ii) optimal preemption control is of threshold type (Conjecture 2). Our

numerical results suggest these results to be true but we are unable to prove them.

Recall that upon a preemption state transition n → n + e1 − e2 a reward R(n, n + e1 − e2) =

ρ(e1 − e2) is accrued. Without loss in generality we define the “preemption penalty” fp ∈ R as

ρ(e1 − e2) = ρ(e1)− ρ(e2)− fp. (3.27)

The intuition behind this definition is that a preemption i) admits a class 1 call that would have

earned reward ρ(e1) upon admission without preemption, ii) preempts an active class 2 call that

presumably paid ρ(e2) for its admission and this reward is now forfeit, and iii) requires the link

pay a penalty fp to the preempted customer. This intuition merely adds a helpful interpretation

to (3.27), but the interpretation is not necessary for (3.27) to be valid. The phrase “preemption

penalty” suggests we usually think of fp as nonnegative, but it need not be. This penalty serves

as the disincentive for preemption and compensates for the disruption in service experienced by the

preempted customer. We define a “reasonable” reward model as one for which fp ≥ 0.

Proposition 2. Let π = (πa, πp) be a policy pair with πa ∈ Πa
cc = Πa

th and πp ∈ Πp
awf . If there

exists a non full state under which a call is preempted (i.e., there exists n̂ ∈ N with n̂1 + n̂2 < c and

n̂2 > 0 for which πp(n̂) = 1) then form the policy π̄ = (πa, π̄p) which behaves identically to π on all

states n 6= n̂ but does not preempt at n̂:

π̄p(n) =


πp(n), n 6= n̂

0, n = n̂

. (3.28)
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Define ∆r(n̂) ≡ r(n̂)− r(n̂− e2) ≥ 0 (by Assumption 4). Let fp be as in (3.27). If

fp ≥


A1 ≡ −(∆r(n̂)+ρ(−e2)µ2)+λ2ρ(e2)

γ+λ1
− ρ(e2), λ2ρ(e2) ≤ ρ(−e2)µ2 + ∆r(n̂)

A2 ≡ −(∆r(n̂)+ρ(−e2)µ2)+λ2ρ(e2)
γ−λ1

− ρ(e2), else

(3.29)

then the expected per stage reward under π̄ equals or exceeds that under π: gπ̄ ≥ gπ. If

fp ≤ P ≡ −
∆r(n̂) + ρ(−e2)µ2

γ − λ1
− ρ(e2) (3.30)

then the expected per stage reward under π equals or exceeds that under π̄: gπ ≥ gπ̄. Further,

P < min{A1, A2} ≤ max{A1, A2} ≤ 0.
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Figure 3.5: Illustration of Prop. 2. The axes are fp where fp is defined in (3.27). For
fp ≥ max{A1, A2} the removal of the preemption at the non full state n̂ results in an increase
in expected reward. Only for fp < P (effectively rewarding preemption) does removing the
preemption at n̂ reduce expected reward. Top: P < A2 < A1 < −ρ(e2) ≤ 0. Bottom:
P < −ρ(e2) < A1 < A2 < 0.

Prop. 2 is illustrated in Fig. 3.5. Note the proposition does not order gπ, gπ̄ for fp ∈ [P,max{A1, A2}].

Note fp < P requires a rather “unreasonable” reward model with both i) fp and ii) either ρ(−e2)

and/or ρ(e2) sufficiently negative. Before we prove Prop. 2 we state two technical lemmas; both

proofs are in the Appendix.

Lemma 1. Let π = (πa, πp) be a policy pair with πa ∈ Πa
cc = Πa

th and πp ∈ Πp
awf . If (3.29) holds

then

ρ(e1)− ρ(e1 − e2) + hπ(n)− hπ(n− e2) ≥ 0 ∀n ∈ N : n1 > 0, n2 > 0. (3.31)
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Lemma 2. Let π = (πa, πp) be a policy pair with πa ∈ Πa
cc = Πa

th and πp ∈ Πp
awf . If (3.30) holds

then

ρ(e1)− ρ(e1 − e2) + hπ(n)− hπ(n− e2) ≤ 0 ∀n ∈ N : n1 > 0, n2 > 0. (3.32)

The sufficient condition (3.29) is not quite intuitive. Note however, that the condition is always

satisfied when i) ρ(e1) ≥ ρ(e2) + ρ(e1 − e2), ii) ρ(e1) ≥ ρ(e1 − e2), and iii) ρ(−e2) ≥ 0. In words,

i) the reward from a class 1 admission (ρ(e1)) exceeds the sum of rewards from a class 2 admission

(ρ(e2)) followed by a preemption (ρ(e1−e2)), ii) the admission reward for class 1 exceeds preemption

reward, and iii) class 2 departure reward is nonnegative. Using (3.27), Condition i) is equivalent to

fp ≥ 0, as illustrated in Fig. 3.6. Given condition i) is true, conditions ii) and iii) hold provided we

make the natural assumption that non-preemptive admissions and departures generate nonnegative

reward.

n n + e1

n + e2

ρ(e1)

ρ(e2)

ρ(e1 − e2)

Figure 3.6: Assuming fp ≥ 0 for fp defined in (3.27) is equivalent to ρ(e1) ≥ ρ(e2)+ρ(e1−e2),
i.e., it is better to admit a class 1 call without preemption than to admit a class 2 call but then
preempt it to admit a class 1 call.

Proof. of Proposition 2. Let gπ, gπ̄ be the expected per stage reward under π, π̄, respectively, and

let hπ, hπ̄ be the relative rewards under π, π̄, respectively. By Theorem 3.1 in [52] (gπ, hπ) satisfy the

N + 1 equations:

r(n) +
∑

n′∈Γπ(n)

pπ(n, n′)R(n, n′)− gπ +
∑

n′∈Γπ(n)

pπ(n, n′)hπ(n′) = (1− pπ(n, n))hπ(n) (3.33)

for each n ∈ N and h(o) = 0 for o = (0, 0) ∈ N the origin. Note (3.33) is a rearrangement of (3.25).

The proof that (3.29) is sufficient for gπ̄ ≥ gπ is very similar to the proof that (3.30) is sufficient

for gπ ≥ gπ̄, hence we only present the proof of the former. By the policy improvement theorem for
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stochastic dynamic programming (e.g., Theorem 3.2 in [52]) a sufficient condition for gπ̄ ≥ gπ is that

(gπ, hπ) obey the N inequalities:

r(n)− gπ +
∑

n′∈Γπ̄(n)

pπ̄(n, n′)(R(n, n′) + hπ(n′)) + pπ̄(n, n)hπ(n) ≥ hπ(n) (3.34)

for each n ∈ N . The neighborhood of n̂ changes slightly under the two policies. Under π we

have n̂ + e1 − e2 ∈ Γπ(n̂) and n̂ + e1 6∈ Γπ(n̂) (preempt in n̂ under π), while under π̄ we have

n̂+ e1 − e2 6∈ Γπ̄(n̂) and n̂+ e1 ∈ Γπ(n̂) (don’t preempt in n̂ under π̄). This change is also reflected

in the transition probabilities p from n̂:

pπ(n̂, n̂+ e1) = 0 pπ̄(n̂, n̂+ e1) = λ1

pπ(n̂, n̂+ e1 − e2) = λ1 pπ̄(n̂, n̂+ e1 − e2) = 0

(3.35)

All transition probabilities and neighborhoods under the two policies are identical aside from the

change in the neighborhood of n̂ and the change in the transition probabilities in (3.35). Observe

that (3.34) therefore holds with equality for all n ∈ N \{n̂}. It remains to establish (3.34) for n = n̂.

The LHS of (3.34) for n = n̂ is:

r(n̂) +
∑

n′∈Γπ̄(n̂)

pπ̄(n̂, n′)R(n̂, n′)− gπ +
∑

n′∈Γπ̄(n̂)

pπ̄(n̂, n′)hπ(n′). (3.36)

Adding and subtracting pπ(n̂, n̂ + e1 − e2)R(n̂, n̂ + e1 − e2) and pπ(n̂, n̂ + e1 − e2)hπ(n̂ + e1 − e2)

allows:

r(n̂) +
∑

n′∈Γπ(n̂)

pπ(n̂, n′)R(n̂, n′)− gπ +
∑

n′∈Γπ(n̂)

pπ(n̂, n′)hπ(n′) +

pπ̄(n̂, n̂+ e1)R(n̂, n̂+ e1)− pπ(n̂, n̂+ e1 − e2)R(n̂, n̂+ e1 − e2) +

pπ̄(n̂, n̂+ e1)hπ(n̂+ e1)− pπ(n̂, n̂+ e1 − e2)hπ(n̂+ e1 − e2) (3.37)
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Substitute the RHS of (3.33) (with n = n̂) for the first line in (3.37) and use (3.35) to obtain:

(1− pπ(n̂, n̂))hπ(n̂) + (3.38)

λ1 (R(n̂, n̂+ e1)−R(n̂, n̂+ e1 − e2) + hπ(n̂+ e1)− hπ(n̂+ e1 − e2)) .

Noting pπ(n̂, n̂) = pπ̄(n̂, n̂) it follows that the theorem is proved provided we can establish

R(n̂, n̂+ e1)−R(n̂, n̂+ e1 − e2) + hπ(n̂+ e1)− hπ(n̂+ e1 − e2) ≥ 0. (3.39)

That is

ρ(e1)− ρ(e1 − e2) + hπ(n̂+ e1)− hπ(n̂+ e1 − e2) ≥ 0. (3.40)

But this is true by assumption: by Lemma 1, (3.29) implies (3.31) holds for all n and thus it holds

for n = n̂+ e1.

The following Corollary states that always preempting at full states ensures it is optimal to never

preempt at non full states, for all “reasonable” reward models. The corollary follows immediately

from repeated application of Prop. 2.

Corollary 1. Let π = (πa, πp) be a policy pair with πa ∈ Πa
cc = Πa

th and πp ∈ Πp
awf . Form the policy

π̄ = (πa, πpawf) which has the same class 2 admission policy πa but always and only preempts when

full (no preemption in non full states). If (3.29) always holds then the expected per stage reward

under π̄ equals or exceeds that under π: gπ̄ ≥ gπ.

Given Corollary 1, one might conjecture that under “reasonable” reward models any policy

π = (πa, πp) with a preemption at a non full state (π(n̂) = 1 for n̂ ∈ N with n̂1 + n̂2 < c and n̂2 > 0)

will be improved by removing the preemption at n̂. That is, form π̄ = (πa, π̄p) with π̄p = πp for

all n ∈ N except π̄p(n̂) = 0, and conjecture gπ̄ ≥ gπ. The following counter-example shows this

conjecture is false even for c = 2.

Consider a link with capacity c = 2 circuits, linear per state rewards r(n) = r1n1 + r2n2, no

arrival or departure rewards (ρ(±ek) = 0 for k ∈ {1, 2}), complete sharing admission control (πacs),
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and parameter values:

λ1 λ2 µ1 µ2 r1 r2 ρ(e1 − e2)

10 3 5 1 10 1 −0.1

. (3.41)

With these parameters we have an offered load of α1 = λ1/µ1 = 2 and α2 = λ2/µ2 = 3, where class

1 calls accrue reward at a rate of 10 per second, while class 2 calls accrue reward at a much lower

rate of 1 per second. Preemptions are relatively inexpensive, incurring a cost of 0.1. As illustrated in

Fig. 3.7, there are three possible preemptive states ((0, 1), (0, 2), and (1, 1)) and thus eight possible

preemption policies. The expected reward per stage for the eight policies is shown in the figure.

The claim that performance improves by removing preemptions at non full states is disproved by

observing gπp
(c)
> gπp

(d)
and gπp

(e)
> gπp

(g)
. The superiority of πp(a) over πp(b) is guaranteed by Prop. 2

and Corollary 1. The optimality of πp(a) is consistent with Conjecture 1.

(0, 0)

(0, 1)

(0, 2)

(1, 1)

(1, 0) (2, 0) (0, 0)

(0, 1)

(0, 2)

(1, 1)

(1, 0) (2, 0) (0, 0)

(0, 1)

(0, 2)

(1, 1)

(1, 0) (2, 0) (0, 0)

(0, 1)

(0, 2)

(1, 1)

(1, 0) (2, 0)

(0, 0)

(0, 1)

(0, 2)

(1, 1)

(1, 0) (2, 0) (0, 0)

(0, 1)

(0, 2)

(1, 1)

(1, 0) (2, 0) (0, 0)

(0, 1)

(0, 2)

(1, 1)

(1, 0) (2, 0) (0, 0)

(0, 1)

(0, 2)

(1, 1)

(1, 0) (2, 0)

g ≈ 0.649 g ≈ 0.645 g ≈ 0.583 g ≈ 0.576

g ≈ 0.559 g ≈ 0.494 g ≈ 0.459 g ≈ 0.359

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: The eight possible preemption policies for a loss link with c = 2 circuits, ordered
by largest to smallest expected per stage reward g.

Although expected per stage reward is not “monotone increasing in removed non full preemp-

tions”, we nonetheless make the following conjectures based on our numerical experiments with

preemption policies.

Conjecture 1. Under “reasonable” reward models, the optimal preemption policy does not preempt

at non full states:

max
π∈Πpoif

gπ = max
π∈Πpmf

gπ. (3.42)
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The second conjecture is stronger than the first: we conjecture that not only does it suffice to

consider preemption only at full states, but that the optimal preemption policy is of threshold type.

Define the following two preemption control policy spaces.

• Threshold when full, type 1 (thf1) control policy: preempt iff the link is full and n2 ≤ τ :

πp≤τ (n) = 10<n2≤τ,n1+n2=c. For τ = 0 we never preempt, for τ = c we always preempt when

full. Denote the control policy space as Πp
thf1 = {πp≤0, . . . , π

p
≤c}.

• Threshold when full, type 2 (thf2) control policy: preempt iff the link is full and n2 > τ :

πp>τ (n) = 1n2>τ,n1+n2=c. For τ = 0 we always preempt when full and for τ = c we never

preempt. Denote the control policy space as Πp
thf2 = {πp>0, . . . , π

p
>c}.

Conjecture 2. Under “reasonable” reward models, the optimal preemption policy does not preempt

at non full states and is of threshold type:

max
πp∈Πpthf1∪Πpthf2

gπ = max
πp∈Πpmf

gπ. (3.43)

The conjectures, if true, have significant implications for the size of the set of potentially optimal

preemption control policies as a function of the link capacity c. Without these conjectures we must

potentially search over 2Θ(c2) policies, as there are |N | = Θ(c2) states and most of them may feasibly

employ preemption. If Conjecture 1 is true then we need only consider Θ(2c) possible policies, since

there are Θ(c) full states in N where n1 + n2 = c and n2 > 0. If Conjecture 2 is true then we need

only consider Θ(c) possible policies, since there are Θ(c) possible thresholds.

3.4.2 Admission control vs. preemption control

In this subsection we compare the relative value of admission control vs. preemption control. In

particular, we consider a policy π with optimal admission control over the class of threshold /

coordinate convex admission control policies but no preemption control, and a policy π̄ with no

admission control but a preemption policy of always and only preempting when full. Prop. 3 provides

a sufficient condition under which preemption control outperforms admission control, i.e., gπ̄ ≥ gπ.
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This same condition naturally also guarantees that optimal preemption control will outperform

optimal admission control (Corollary 2). Recall fp defined in (3.27).

Proposition 3. Let π = (πa∗ , π
p
np) be a policy of optimal admission control without preemption

control, where πa∗ = arg maxπa∈Πath
gπa . Let π̄ = (πacs, π

p
awf) be the policy that always and only

preempts when the link is full but does not employ admission control. If

fp ≤
1

λ1
(r(n)− r(n− e2) + ρ(−e2)µ2 + (γ − λ1 − λ2)ρ(e2)) , (3.44)

then the expected per stage reward under π̄ equals or exceeds that under π: gπ̄ ≥ gπ.

We first provide a technical lemma needed in the proof of Prop. 3; the proof of the Lemma is

found in the Appendix.

Lemma 3. Let π̄ = (πacs, π
p
awf) be a policy that does not employ admission control but always and

only preempts when the link is full. If (3.44) holds then

vπ̄(n, i)− vπ̄(n− e2, i) ≥ −ρ(e2) ∀n ∈ N : n2 > 0, ∀i > 0. (3.45)

x2

λ1

x2

x2 = t∗
λ1

t∗µ2

0 x1x1

t∗µ2

λ2

0

Figure 3.8: Illustration of the transitions from state n = (0, t∗) under π (left) and π̄ (right).

Proof. of Proposition 3. Let gπ, gπ̄ be the expected per stage reward under π, π̄, respectively. From

(3.22), we see it suffices to prove that, for some starting state n ∈ N , the asymptotic reward per

stage under π̄ exceeds that under π starting in some state n, since this limit is not state dependent
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(i.e., if it holds for some state n then it holds for all states n):

gπ̄ = lim
i→∞

1

i
vπ̄(n, i) ≥ lim

i→∞
1

i
vπ(n, i) = gπ. (3.46)

A sufficient condition for the above inequality is that for the particular n ∈ N in (3.46) we have:

vπ̄(n, i) ≥ vπ(n, i), ∀i. (3.47)

From Prop. 1 the optimal threshold/coordinate convex admission control policy is a class-2 threshold

t∗ ∈ {0, . . . , c}. Fix n = (0, t∗), see Fig. 3.8. The expected cumulative reward over the remaining i

stages starting from state n under policies π and π̄ is, respectively

γvπ(n, i+ 1) = r(n) + λ1R(n, n+ e1) + t∗µ2R(n, n− e2)

+ λ1vπ(n+ e1, i) + t∗µ2vπ(n− e2, i)

+ (cµ1 + (c− t∗)µ2 + λ2)vπ(n, i)

γvπ̄(n, i+ 1) = r(n) + λ1R(n, n+ e1) + t∗µ2R(n, n− e2) + λ2R(n, n+ e2)

+ λ1vπ̄(n+ e1, i) + λ2vπ̄(n+ e2, i) + t∗µ2vπ̄(n− e2, i)

+ (cµ1 + (c− t∗)µ2)vπ̄(n, i). (3.48)

From the above two equations, the difference between the expected cumulative reward over the

remaining i stages starting from state n of the corresponding policies π, π̄ is

γ(vπ̄(n, i+ 1)− vπ(n, i+ 1)) = λ2ρ(e2) + λ2(vπ̄(n+ e2, i)− vπ̄(n, i))

+t∗µ2(vπ̄(n− e2, i)− vπ(n− e2, i))

+λ1(vπ̄(n+ e1, i)− vπ(n+ e1, i))

+(λ2 + cµ1 + (c− t∗)µ2)(vπ̄(n, i)− vπ(n, i)). (3.49)

We show by induction on i that (3.44) is sufficient to guarantee vπ̄(n, i)− vπ(n, i) ≥ 0 for all i. We
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first establish the base case: i = 0. By definition vπ(n, 0) = vπ̄(n, 0) = 0 for all n ∈ N (see below

(3.20)). Using (3.49) for i = 0 gives the difference for i = 1 as

γ

λ2
(vπ̄(n, 1)− vπ(n, 1)) = ρ(e2) ≥ 0. (3.50)

For the induction step, suppose vπ̄(n, j)− vπ(n, j) ≥ 0 for n = (0, t∗) and for all j = 1, . . . , i. Using

(3.49) and the induction hypothesis yields the following inequality for j = i+ 1:

γ

λ2
(vπ̄(n, i+ 1)− vπ(n, i+ 1)) ≥ ρ(e2) + vπ̄(n+ e2, i)− vπ̄(n, i). (3.51)

The required conclusion holds provided

vπ̄(n+ e2, i)− vπ̄(n, i) ≥ −ρ(e2). (3.52)

By assumption (3.44) holds, and by Lemma 3 this ensures (3.45) holds for all n ∈ N with n2 > 0,

which ensures (3.52) for n = (0, t∗).

The following corollary observes that the sufficient condition (3.44) in Prop. 3 trivially implies

the superiority of optimal preemption control over optimal admission control. This is immediate

from the fact that optimal preemption control outperforms any particular preemption control.

Corollary 2. Let π be as in Prop. 3. Let π′ = (πacs, π
p
oif∗) be a policy that has optimal preemption

control over full states but has no admission control: πpoif∗ = arg maxπ∈Πpoif
gπ. If (3.44) holds then

gπ′ ≥ gπ.

It is natural to inquire if we might not also obtain a sufficient condition for the superiority of

optimal admission control over preempting when full, i.e., a condition for gπ ≥ gπ̄. Although certainly

such a condition exists, our proof technique does not cover this case. The following corollary states

this formally; the details are presented in the Appendix.

Corollary 3. Let π, π̄ be as in Prop. 3. The proof methodology of Prop. 3 fails to yield a sufficient
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condition for gπ ≥ gπ̄.

3.4.3 Reward model equivalence

Our third set of results characterizes the class of reward models (r,R) (cf. §3.3.3) equivalent in

terms of expected per stage reward gπ under a given policy π. In this subsection we write gπ(r,R)

to emphasize reward model dependence. Let R = {(r,R)} be the space of all reward models. Each

policy π determines a partition of R into equivalence classes.

Definition 6. The class of reward models (r,R) with expected per stage reward ξ ∈ R under π is

defined as

Rπ(ξ) ≡ {(r,R) ∈ R : gπ(r,R) = ξ}. (3.53)

Definition 7. Two reward models (r,R) and (r′, R′) are expected per stage reward equivalent under

π when

gπ(r,R) ≡ gπ(r′, R′). (3.54)

The following two propositions characterize the equivalence class Rπ(ξ) and the relationship

between expected per stage reward equivalent reward models (r,R) and (r′, R′) respectively. These

propositions are immediate consequences of Theorem 3.1 in [52], as discussed in the proofs.

Proposition 4. For a policy π and ξ ∈ R, the expected per stage reward model equivalence class

Rπ(ξ) is given by

Rπ(ξ) =

{
(r,R) ∈ R : ∃h′ ∈ RN−1 : Pπ

[
0

h′

]
= (ξ − Pπ ◦R)1− 1

γ
r

}
, (3.55)

where Pπ is an N ×N stochastic (singular) matrix with elements

Pπ[n, n′] =


−(1− pπ(n, n)), n′ = n

pπ(n, n′), n′ ∈ Γ(n)

0, else

, (3.56)

1 is the N -vector of all ones, R is viewed as an N ×N matrix as in (3.12), and Pπ ◦R is the N ×N
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element-wise product matrix with element (n, n′) given by Pπ[n, n′]R[n, n′].

Proposition 5. Two reward models (r1, R1) and (r2, R2) are expected per stage reward equivalent

under π if there exist h′1, h
′
2 ∈ RN−1 such that

Pπ

[
0

h′1

]
+ (Pπ ◦R1)1 +

1

γ
r1 = Pπ

[
0

h′2

]
+ (Pπ ◦R2)1 +

1

γ
r2. (3.57)

Proof. of Prop. 4. Fix a policy π and ξ ∈ R. Rearrange (3.25) as

∑
n′∈Γ(n)

h(n′)p(n, n′)− (1− p(n, n))h(n) = ξ −
∑

n′∈Γ(n)

R(n, n′)p(n, n′)− 1

γ
r(n) (3.58)

for each n ∈ N , where we suppress the policy dependence notation since the policy is fixed, and

substitute the required gπ = ξ. We can write the N equations in (3.58) more compactly as

Ph = (ξ − (R ◦ P ))1− 1

γ
r. (3.59)

Note that P is stochastic (each row is nonnegative and sums to zero) by (3.18):

(P1)(n) = −1 + p(n, n) +
∑

n′∈Γ(n)

p(n, n′) (3.60)

= −1 +

1−
∑

n′∈Γ(n)

p(n, n′)

+
∑

n′∈Γ(n)

p(n, n′) = 0, n ∈ N .

A stochastic matrix is singular: the N columns are dependent since their sum is the zero vector,

hence the matrix is not of full rank and thus not invertible. By Theorem 3.1 in [52], the system of

N + 1 linear equations (the N equations in (3.59) along with h(o) = 0 for o = (0, 0) the origin) with

N + 1 unknowns (g and h = (h(n), n ∈ N )) has a unique solution. Further, the solution is such that

g = gπ is the reward per stage and h(n) = hπ(n) for n ∈ N is the relative reward under π. The

equation in (3.55) simply combines (3.59) with h(o) = 0 to yield N equations with N − 1 unknowns

h′ = (h(n), n ∈ N \ {o}).
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Proof. of Prop. 5. Following the discussion of the proof of Prop. 4 and using Definition 7, the two

reward models (r1, R1) and (r2, R2) are by expected per stage reward equivalent if their correspond-

ing expected per stage rewards g1 and g2 are the same. Solving the equation in (3.55) for ξ for both

models and equating them gives (3.57).

We illustrate reward equivalence for the c = 1 case in Remark 2 in §3.5.1.

3.5 Numerical results

This section presents numerical results for a link capable of holding a single call (c = 1, §3.5.1), and

for larger capacity links (c ≥ 1, §3.5.2). Similar to the analysis of the optimal admission control

in [53], the time index i in this section is the step index of the discrete system in the simulation, which

means the elapsed time from the start of the simulation. This is different from the “time to go”

definition used in the theoretical analysis, but this reversal is common in dynamic programming [51].

From (3.21) we know the expected per step reward starting form any state converges to a constant

as i→∞. For a given ε > 0 our numerical termination condition is to stop at iteration i such that

the growth v(n, i)− v(n, i− 1) in cumulative reward is relatively constant for all states, i.e.,

max
n∈N
{v(n, i)− v(n, i− 1)} − min

n∈N
{v(n, i)− v(n, i− 1)} < ε · min

n∈N
{v(n, i)− v(n, i− 1)}. (3.61)

When the simulation terminates at time index i = I, the expected per stage reward is calculated

from any n ∈ N as:

g = v(n, I)− v(n, I − 1), n ∈ N . (3.62)

3.5.1 Results for a single circuit link

We consider the simplest case of a link with a single circuit (c = 1). The following results illustrate

the interplay between admission control and preemption control is non-trivial even for this simplest

of models. We give explicit expressions for the expected per stage reward g in terms of the arrival

rates λ1, λ2, the service rates µ1, µ2, and the reward model (r, ρ). For c > 1 these expressions are

unwieldy. State transition diagrams for the Markov process {N [i]} when c = 1 are shown in Fig. 3.9
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for the three “primitive policies” of (a) forced preemption (left), (b) complete sharing (middle), and

(c) forced admission control (right). Note that the optimal preemption control policy πp∗ is found

by selecting between complete sharing (b) and forced preemption (a), while the optimal admission

control policy πa∗ is found by selecting between complete sharing (b) and forced admission control (c).

The optimal joint admission control and preemption policy π∗ is found by selecting the maximum

between all three cases (a, b, c).

x2

(0, 1)

λ1

λ1

λ2

x2

(0, 1)

λ1

λ2

x2

(0, 1)

λ1

(0, 0) (1, 0) (0, 0) (1, 0) x1x1 (0, 0) (1, 0) x1
(c) forced admission(b) complete sharing(a) forced preemption

Figure 3.9: Markov process of a single-link network model with c = 1. Only the arrival
transitions are shown for clarity.

Let ga, gb, gc be the expected per stage reward under cases (a), (b), (c), respectively in Fig. 3.9.

Let ha, hb, hc be the relative rewards under (a), (b), (c), respectively. From (3.33) and Theorem

3.1 in [52], we obtain four equations for cases (a) and (b) and three equations for case (c). Note

N = {o, e1, e2} with o = (0, 0), e1 = (1, 0) and e2 = (0, 1). Define λ ≡ λ1 + λ2 as the total arrival

rate and αk ≡ λk
µk

as the class k offered load, for k ∈ {1, 2}. The four equations of case (a) are:

λha(o) = r(o) + λ1ρ(e1) + λ2ρ(e2)− γga + λ1ha(e1) + λ2ha(e2)

µ1ha(e1) = r(e1) + µ1ρ(−e1)− γga + µ1ha(o)

λha(e2) = r(e2) + µ2ρ(−e2) + λ1ρ(e1 − e2)− γga + λ1ha(e1) + µ2ha(o)

ha(o) = 0 (3.63)

where γ = λ + µ1 + µ2. The solutions of the above equations for case (a) and of the analogous
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equations for cases (b) and (c) are

γga =
1

1 + λ1

µ1

(
λ1 + µ2

λ+ µ2
r(o) +

λ1

µ1
r(e1) +

λ2

λ+ µ2
r(e2) +

λ1 + µ2

λ+ µ2
λ1ρ(e1)+

λ2 + µ2

λ+ µ2
λ2ρ(e2) + λ1ρ(−e1) +

µ2

λ+ µ2
λ2ρ(−e2) +

λ1

λ+ µ2
λ2ρ(e1 − e2)

)
(3.64)

γgb =
1

1 + λ1

µ1
+ λ2

µ2

(
r(o) +

λ1

µ1
r(e1) +

λ2

µ2
r(e2) + λ1ρ(e1) + λ2ρ(e2)

+λ1ρ(−e1) + λ2ρ(−e2)) (3.65)

γgc =
1

1 + λ1

µ1

(
r(o) +

λ1

µ1
r(e1) + λ1ρ(e1) + λ1ρ(−e1)

)
. (3.66)

These expressions are used below to establish an example of reward equivalence, and are plotted in

Fig. 3.10.

Remark 2. Recall that Prop. 5 gives a condition for two reward models to be expected per stage

reward equivalent for a given policy. Consider two reward models (r(a), ρ(a)) and (r(b), ρ(b)) where

r(a)(n) = r1n1 + r2n2 and r(b)(n) = 0, and

ρ(e1) ρ(e2) ρ(−e1) ρ(−e2) ρ(e1 − e2)

ρ(a) 0 0 0 0 0

ρ(b) 0 0 r1/µ1 r2/µ2 0

(3.67)

Substituting (r(a), ρ(a)) and (r(b), ρ(b)) into (3.65) for case (b) (complete sharing) gives

γg(r(a), ρ(a)) = γg(r(b), ρ(b)) =
α1r1 + α2r2

1 + α1 + α2
. (3.68)

Thus these two reward models are expected per stage reward equivalent.

Throughout the rest of this subsection and §3.5.2 we use a reward model (r, ρ) with linear reward

rates, no admission or departure transition rewards, and a preemption penalty:

r(n) = r1n1 + r2n2,
ρ(e1) ρ(e2) ρ(−e1) ρ(−e2) ρ(e1 − e2)

0 0 0 0 −fp
(3.69)

Chapter 3: Policy analysis 3.5 Numerical results



91

where fp is defined in (3.27). Under this reward model, the sufficient condition (3.44) in Prop. 3

becomes

fp <
r2

λ1
. (3.70)

We now present numerical results for the c = 1 case. In Fig. 3.10 we use the following parameters:

case λ1 λ2 µ1 µ2 r1 r2 fp

(a) 1.0 1.0 1.0 1.0 1.0 4.5

(b) 1.0 1.0 1.0 1.0 4.5 1.0

(c) 1.0 0.5 0.5 5.0 3.0 1.5

(d) 1.0 2.5 0.5 5.0 3.0 1.5

(3.71)

From plot (a), we see i) forced admission control is always better than forced preemption, ii) forced

admission control is better than complete sharing for r1 > 2 (approx.), and iii) forced preemption is

better than complete sharing for r1 > 5.5 (approx.). In plot (b) we have decreased the preemption

cost from 4.5 to 1.0 and increased r2 from 1.0 to 4.5. Now we see that forced preemption is best for

r1 ≥ 5.5 (approx.) and is always better than forced admission control. This is guaranteed by Prop. 3

as the sufficient condition (3.70) under this reward model (3.69) is satisfied: 1.0 = fp < r2/λ1 = 4.5.

In plots (c) and (d) we vary the class 1 arrival rate λ1. Note in plot (c) we use µ1 = 1.0 while in plot

(d) we use µ1 = 2.5, hence class 1 calls leave five times as quickly in the latter case. This smaller

load of class 1 calls in plot (d) explains why full sharing is optimal for small to moderate λ1. Note

that all three policies converge to the same value in both plots as λ1 grows large: when class 1 call

load outstrips class 2 call load it doesn’t matter what controls are applied. Of course there is always

a slight benefit to using forced admission in the large λ1 regime since the other two policies incur

unnecessary costs by either admitting class 2 calls or admitting and then preempting class 2 calls.

3.5.2 Numerical results for multi circuit links

The previous subsections gave analysis and numerical investigation of the c = 1 case; we now give a

numerical investigation of the c > 1 case. In this subsection we investigate four policies, see Fig. 3.11:
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Figure 3.10: Plots for §3.5.1. The expected reward rate per unit time γg for c = 1 for the
three policies in Fig. 3.9. The top plots vary r1 while the bottom plots vary λ1. Note that each
of the three policies is optimal in certain parameter regimes.

• (πacs, π
p
np) (CS in plots): no admission control, no preemption control.

• (πa∗ , π
p
np) (oAC in plots): optimal admission control over class 2 threshold policies, no preemp-

tion control.

• (πacs, π
p
oif∗) (Pre in plots): no admission control, optimal preemption control over full states.

• (πa∗ , π
p
oif∗) (Pre+oAC in plots): optimal admission control over class 2 threshold policies and

optimal preemption control over full states.

We offer plots that vary the following parameters: r1 and fp (§3.5.2), λ1 and λ2 (§3.5.2), and µ1

and µ2 (§3.5.2).

Chapter 3: Policy analysis 3.5 Numerical results



93

n2

n10

no AC and no Pre

CS

��
��
��

��
��
��

n2

n10

optimal AC, no Pre

oAC
n2

n10

no AC, optimal Pre
Pre

��
��
��

��
��
��

n2

n10

optimal AC, optimal Pre
Pre+oAC

Figure 3.11: Figures for §3.5.2. Four policies are investigated in our numerical results.

Varying r1 and fp

Fig. 3.12 shows four cases where we vary r1 (cases (a), (b), (c)) and fp (case (d)). The parameters

for the four cases are

case c λ1 λ2 µ1 µ2 r1 r2 fp

(a) 6 0.1 1.0 1.0 0.1 1.0 0.5

(b) 50 1.0 5.0 0.2 0.1 1.0 0.5

(c) 50 3.0 4.0 0.1 0.1 1.0 0.5

(d) 6 1.0 5.0 1.0 0.1 2.0 1.0

(3.72)

Cases (a), (d) have link capacity c = 6; cases (b), (c) have link capacity c = 50.

We first discuss cases (a), (b), (c). In case (a) the offered load of class 2 calls is α2 = λ2/µ2 = 10

while the offered load for class 1 calls is α1 = λ1/µ1 = 1/10, and further the link capacity c = 6 is

inadequate to handle the aggregate offered load. Complete sharing performs poorly since a control

mechanism is required to ensure the class 1 calls are admitted even if the link is full. The preemption

cost is low and hence optimal preemption performs almost as well as optimal joint control. In case

(b) the offered loads are α1 = 5 and α2 = 50 and the link capacity is c = 50. Here both admission

control alone and preemption control alone nearly achieve the performance of joint control, but the

no control case performs poorly. In case (c) the offered loads are α1 = 30 and α2 = 40 and the link

capacity is again c = 50. Now we observe that i) joint control outperforms individual admission

or preemption control, and ii) both individual controls outperform no control. In all three cases

we observe that for r1 small (near r2 = 1) the four policies perform identically, since there is little
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distinction between class 1 and class 2 calls, and thus no need for control. We have also investigated

performance as a function of r2 and have obtained qualitatively similar results as for varying r1; the

reason being that what matters is the ratio r1/r2 and not their absolute values.

In case (d) the expected rewards received from πacs and πa∗ are constant since there is no pre-

emption in these two policies. πp∗ is better than πacs and πa∗ when the preemption cost fp is small.

However, as fp increases, the superiority of πp∗ decreases. The sufficient condition (3.70) for the

superiority of preemption over optimal admission control for these parameters is fp < r2/λ1 = 1

but we observe that in fact preemption is superior for fp < 1.25 (approx.). Further note that for

fp > 1.5 (approx.) the cost of preemption is too high and the optimal preemption policy is in fact

complete sharing (no preemption). Next note that optimal joint control outperforms both individ-

ual preemption and admission control for fp < 1.8 (approx.) but performs identically with optimal

admission control alone (no preemption) for fp > 1.8.
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(a) c = 6, µ1 = µ2
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(b) c = 50, µ1 > µ2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  10  20  30  40  50  60  70  80  90  100

T
h
e 

lo
n
g
-r

u
n
 e

x
p
ec

te
d
 r

ew
ar

d

The reward rate r1 of class 1

CS

oAC

Pre

Pre+oAC

(c) c = 50, µ1 = µ2
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Figure 3.12: Plots for §3.5.2. The expected reward rate per unit time γg for the four policies
in §3.5.2. Cases (a), (b), (c) vary r1; case (d) varies fp.
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Varying λ1 and λ2

Fig. 3.13 shows four cases varying λ1. The parameters for the four cases are

case c λ1 λ2 µ1 µ2 r1 r2 fp

(a) 6 5.0 1.0 0.1 2.0 1.0 0.5

(b) 100 5.0 1.0 0.1 2.0 1.0 0.5

(c) 100 5.0 0.1 0.1 2.0 1.0 0.5

(d) 100 25.0 0.1 0.5 2.0 1.0 0.5

(3.73)

Case (a) shows dramatic differences in performance under the four policies. Condition λ1 < r2/fp =

2 in (3.70) guarantees the superiority of preemption over admission control for this regime; its

superiority extends to λ1 = 6 (approx.). For cases (b), (c), (d) observe no control is required for

small to moderate λ1 as the link is underloaded. At λ1 ≥ 50 (approx.) for case (b) and λ1 ≥ 5

(approx.) for cases (c), (d), however, control is needed to achieve optimal performance. In case (b)

either control suffices but some control is necessary: employing either optimal admission control

or optimal preemption alone achieves a performance nearly equivalent to that under optimal joint

control, but employing no control incurs a major performance hit. In case (c) both controls are

required for optimal performance, but either control alone is significantly better than no control. In

case (d) both controls are required for optimal performance, but either control alone is equivalent

in performance to no control at all.

Fig. 3.14 shows performance as a function of λ2; the two cases are:

case c λ1 λ2 µ1 µ2 r1 r2 fp

(a) 100 5.0 0.1 1.0 2.0 1.0 0.5

(b) 100 50.0 1.0 0.1 2.0 1.0 0.5

(3.74)

Note i) the class 1 offered load is α1 = 50 and the class 2 offered load varies from 1 to 100 in both

cases, and ii) in case (a) µ1 < µ2 while in case (b) µ1 > µ2. No control is needed for small to moderate

class 2 load (approx. α2 = λ2/µ2 = 50) since the system is underloaded. Performance is much more
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(a) c = 6
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(b) c = 100, µ1 > µ2
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(c) c = 100, µ1 = µ2
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(d) c = 100, µ1 < µ2

Figure 3.13: Plots for §3.5.2. Case (a) has c = 6 while cases (b), (c), (d) have c = 100, all vary
λ1 and show the expected reward rate per unit time γg for the four policies in §3.5.2. Cases
(b), (c), (d) represent µ1 > µ2, µ1 = µ2 and µ1 < µ2, respectively.

sensitive to control for case (b) than for case (a): all four controls have similar performance in (a)

while the four controls have distinct performance in (b). The expected reward per unit time γg is

not necessarily monotone increasing in λ2. In particular, γ = λ1 + λ2 + (µ1 + µ2)c is increasing in

λ2 but the expected reward per stage g may decrease in λ2.

Varying µ1 and µ2

Fig. 3.15 shows performance as a function of µ1 and µ2 for two cases:

case c λ1 λ2 µ1 µ2 r1 r2 fp

(a) 100 20.0 10.0 0.1 5.0 2.0 0.1

(b) 100 20.0 10.0 1.0 5.0 2.0 0.1

(3.75)
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(a) µ1 < µ2
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(b) µ1 > µ2

Figure 3.14: Plots for §3.5.2. Case (a) has µ1 < µ2; case (b) has µ1 > µ2. Both vary λ2 and
show the expected reward rate per unit time γg for the four policies in §3.5.2.
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(a) varying µ1
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Figure 3.15: Plots for §3.5.2. Case (a) varies µ1 and case (b) varies µ2. Both cases show the
expected reward rate per unit time γg for the four policies in §3.5.2.

Note preemptions are inexpensive (fp = 0.1) and hence optimal preemption control outperforms

optimal admission control, but both controls are required to achieve optimal performance. It is

interesting that all four controls converge as µ1 and µ2 increase. In case (a) ((b)) the convergence as

µ1 (µ2) increases is explained by the decreasing fraction of class 1 (2) offered load α1 = λ1/µ1 → 0

(α2 = λ2/µ2 → 0), and in both cases the choice of control is irrelevant.

3.6 Conclusion

The design and performance analysis of joint admission control and preemption control mechanisms

for a multi-class loss network is an important and largely unsolved problem. This paper presents

results for the simplest non-trivial case of a single link serving two call classes. Further, our results
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are restricted to a restriction of the preemption control design space (if always preempting when full

then not preempting when not full is optimal), and a comparison of the performance of admission

and preemption control. Our proof technique is an application of the policy improvement theorems

from stochastic dynamic programming, and the associated induction technique works when the two

policies being compared essentially differ at two states. This limitation is restrictive in light of the

counter-example where we showed preemption performance is not monotone increasing as we remove

preemptions at non-full states. Our numerical investigations have motivated our Conjectures 1 and

2 that it suffices to consider threshold policies that preempt only at full states, but our current proof

techniques appear inadequate to prove them. Our numerical results evaluate the four policies of no

control, optimal preemption, optimal admission, and optimal joint control, and illustrate a variety

of qualitatively different sensitivities of performance to control. Analytical results on the joint use

of preemption and admission control are of both practical and theoretical interest, and we hope this

paper inspires others to work on this hard problem.
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Chapter 4: Conclusion

This dissertation presents results on the performance analysis and policy design of preemption in

the context of multi-class loss networks. The performance analysis in Chapter 2 is the first for a

multi-class preemptive loss network, although blocking probabilities for multi-class non-preemptive

loss networks (and their associated heavy traffic limits) have been known for a long time. We

have studied the performance of a two parallel link network with transfers servicing K classes with

preemptive priority. The performance metrics we study include the rate that arriving calls preempt

lower priority active calls, and the rate that active calls are preempted by higher priority arriving

calls. Contributions include:

• Exact expressions for each of K preemptive classes with homogeneous service rates on a two

parallel link network in terms of Erlang-B blocking probabilities.

• Asymptotic approximation of these expressions appropriate for the “many small users” regime

(large arrival rates and large link capacities).

• An efficiently computable approximation for preemption rates for each of K preemptive classes

with heterogeneous service rates under a specific time-scale separation regime, obtained via

associated lumpable, nearly completely decomposable (NCD) Markov chains.

The policy analysis of preemption and admission control policies for a two class loss link in

Chapter 3 is the first work comparing the performance of preemption and admission control. Con-

tributions include:

• If preemption is always employed when the link is full, we obtain sufficient conditions under

which it is better/worse to preempt when the link is not full.

• A sufficient condition for the performance of a certain natural preemption policy (without

admission control) to exceed that of optimal admission control.
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There are many directions for extending this work, besides what has been mentioned in Chapter 2

and 3, such as the relaxation of the assumptions of the mathematical models. Pressing unanswered

questions include:

1. For Chapter 2 our investigation is restricted to the special case of a two parallel link network.

Other topologies are also of interest and merit investigation. Generic network topologies do

not appear to be analytically tractable.

2. For Chapter 3, one extension is to compare the joint use of preemption and rate adaptation

controls. Our preliminary numerical results [7] motivate this investigation.
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Appendix A: Appendix for Chapter 2

A.1 Proof of Theorem 1

Proof. Although Theorem 1 asserts that {n(t)} is a Markov process when the service rates are

homogeneous, we will in fact show that the process is Markovian for the more general case of het-

erogeneous service rates. We first show that the time spent in each state is exponentially distributed

with a rate that depends only upon the current state. Let the current state be n, where we first

assume that n1 + · · · + nK < c. Let Ak(s, t) denote the number of arrivals of each class k over

(s, t]. Let the durations of the various active calls of class k be denoted Xk,1, . . . , Xk,nk . By the

memoryless property, each call duration probabilistically restarts upon entering each new state. Let

Tn be the random variable giving the time spent in state n. Then

P(T (n) > t) = P(Ak(0, t) = 0, k = 1, . . . ,K, and

Xk,i > t, i = 1, . . . , nk, k = 1, . . . ,K),

= exp

{
−
(

K∑
k=1

λk + nkµk

)
t

}
, (A.1)

where the second equality holds by the independence and stationarity of the arrival processes and the

independence of the call durations. Define τ(n) =
∑K
k=1 λk + nkµk; this allows T (n) ∼ Exp(τ(n))

for each such n with n1 + · · ·+ nK < c.

Consider next the case where the state is n with n1 + · · ·+ nK = c. For each class k = 1, . . . ,K,

define l(n, k) = max{j > k : nj > 0} as the class of call that would be preempted from state n if

a class k call arrived; leave l(n, k) undefined if no such j exists. Let B(n) = {k : l(n, k) defined}.
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Then

P(T (n) > t) = P(Ak(0, t) = 0, k ∈ B(n), and

Xk,i > t, i = 1, . . . , nk, k = 1, . . . ,K),

= exp

−
 ∑
k∈B(n)

λk +

K∑
k=1

nkµk

 t

 . (A.2)

Define τ ′(n) =
∑
k∈B(n) λk +

∑K
k=1 nkµk; this allows T (n) ∼ Exp(τ ′(n)) for each n with n1 + · · ·+

nK = c. We next show that the embedded jump chain is well-defined at each state. Let p(n,n′) be

the probability of jumping from n to n′ at a jump time. The results below exploit the well-known

property that if Z1, . . . , Zn are independent exponential random variables with rates ν1, . . . , νn then

P(m = arg min{Z1, . . . , Zn}) =
νm

ν1 + · · ·+ νn
, (A.3)

for each m = 1, . . . , n. Applying this fact to a state in n with n1 + · · ·+ nK < c yields:

p(n,n + ek) =
λk
τ(n)

, k = 1, . . . ,K

p(n,n− ek) =
nkµk1nk>0

τ(n)
, k = 1, . . . ,K,

p(n,n′) = 0, else. (A.4)

Similarly, for a state n with n1 + · · ·+ nK = c:

p(n,n + ek − el) =
λk
τ ′(n)

, k ∈ B(n)

p(n,n− ek) =
nkµk1nk>0

τ ′(n)
, k = 1, . . . ,K,

p(n,n′) = 0, else. (A.5)

It is easily verified that
∑

n′ p(n,n
′) = 1 for each n ∈ S. This establishes the process {n(t)} is a

Markov chain with rate matrix Q with entries q(n,n′) = p(n,n′)τ(n) for each n 6= n′.

Appendix A: Appendix for Chapter 2 A.1 Proof of Theorem 1
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A.2 Proof of Theorem 4

Proof. Theorem 4 asserts that {n(t)} with homogeneous service rates is lumpable under the split k

aggregate occupancy partition; we will show that lumpability holds iff the service rates are homo-

geneous. Fix k. Consider a pair (Nk, N̄k) with Nk + N̄k < c. Then the only allowed transitions

are

(Nk, N̄k)→ (Nk − 1, N̄k), Nk > 0 (A.6)

(Nk, N̄k)→ (Nk, N̄k − 1), N̄k > 0

(Nk, N̄k)→ (Nk + 1, N̄k), Nk + N̄k < c

(Nk, N̄k)→ (Nk, N̄k + 1), Nk + N̄k < c

(Nk, N̄k)→ (Nk + 1, N̄k − 1), Nk + N̄k = c and N̄k > 0

These correspond to i) a departure of a call of class 1, . . . , k, ii) a departure of a call of class

k + 1, . . . ,K, iii) an arrival of a call of class 1, . . . , k to a link that is not full, iv)) an arrival of a

call of class k + 1, . . . ,K to a link that is not full, and v) an arrival of a call of class 1, . . . , k to a

link that is full, causing a preemption of a call of class k+ 1, . . . ,K. Consider some n ∈ Ssaop,k
n ; the

transition rate up and down is:

∑
n′∈Ssaop,k

Nk−1,N̄k

q(n,n′) = (n1µ1 + · · ·nkµk) 1Nk>0,

∑
n′∈Ssaop,k

Nk,N̄k−1

q(n,n′) = (nk+1µk+1 + · · ·+ nKµK) 1N̄k>0,

∑
n′∈Ssaop,k

Nk+1,N̄k

q(n,n′) = Λk1Nk+N̄k<c,

∑
n′∈Ssaop,k

Nk,N̄k+1

q(n,n′) = (ΛK − Λk)1Nk+N̄k<c,

∑
n′∈Ssaop,k

Nk+1,N̄k−1

q(n,n′) = Λk1Nk+N̄k=c,N̄k>0. (A.7)

Appendix A: Appendix for Chapter 2 A.2 Proof of Theorem 4
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Clearly the process is lumpable and so Markovian under the partition iff the service rates are

homogeneous.

Appendix A: Appendix for Chapter 2 A.2 Proof of Theorem 4
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Appendix B: Appendix for Chapter 3

B.1 Proof of Lemma 1

Recall vπ(n, i), defined in (3.20), with initial condition vπ(n, 0) = 0 for all n ∈ N , is the expected

cumulative reward over the remaining i stages starting from state n, for i > 0 and n ∈ N . We omit

the dependence on π in the remainder of the proof which is assumed fixed. We rewrite v(n, i) as

γv(n, i) = r(n) +
∑

n′∈Γ(n)

(R(n, n′) + v(n′, i− 1))q(n, n′) + v(n, i− 1)(γ −Q(n)) (B.1)

for n ∈ N and i > 0, where Q(n) ≡ ∑n′∈Γ(n) q(n, n
′) ≤ γ is the aggregate transition rate out of

state n in the CTMC. Define

∆(n, i) ≡ γ(v(n, i)− v(n− e2, i)), n ∈ N , i > 0. (B.2)

We will establish ∆(n, i) ≥ −γ(ρ(e2) + fp) for each n ∈ N and i > 0. This suffices to prove the

desired result by letting i→∞ and using (3.23). Let m ≡ n− e2. Then:

∆(n, i) = r(n)− r(m) (B.3)

+
∑

n′∈Γ(n)

R(n, n′)q(n, n′)−
∑

m′∈Γ(m)

R(m,m′)q(m,m′) (B.4)

+
∑

n′∈Γ(n)

v(n′, i− 1)q(n, n′)−
∑

m′∈Γ(m)

v(m′, i− 1)q(m,m′) (B.5)

+ v(n, i− 1)(γ −Q(n))− v(m, i− 1)(γ −Q(m)). (B.6)

There are 12 possibilities for the transitions out of the pair of states (n,m), illustrated in Fig.

B.1. These are found by taking all 16 possibilities for the following 4 binary options and pruning 4
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1 2 3 4 5

7

6

8 9 10 11 12

Figure B.1: The twelve possibilities for transitions out from two states n,m = n − e2 ∈ N
with n1 > 0, n2 > 0 under πp ∈ Πp

awf .

impossible cases:

(a) πa(n) = 0 or πa(n) = 1

(b) πp(n) = 0 or πp(n) = 1

(c) πp(m) = 0 or πp(m) = 1

(d) m2 = 0 or m2 > 0

The 4 impossible cases are for m2 = 0 and πp(m) = 1, i.e., m has zero class 2 calls but still allows

preemption. Writing out ∆(n, i)−(r(n)−r(m)) for the 12 cases gives Table B.1, after simplification,

where we have used the shorthand notations j ≡ i − 1, λ ≡ λ1 + λ2, and vj(n) ≡ vπ(n, j). The

last five columns in Table B.1 have the common characteristic that each entry is a difference of

expected cumulative reward (vj(·)) values between two states where the two states have the same

number of class 1 calls and the first state has one or more additional class 2 calls than the second

state. We illustrate these manipulations for case #12 (the remaining 11 cases are analogous).

Appendix B: Appendix for Chapter 3 B.1 Proof of Lemma 1
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Table B.1: ∆(n, i)− (r(n)− r(m)) in (B.3) for the twelve possibilities in Fig. B.1.

# (B.4) (B.5) (class 1 arrivals) (B.5) (class 2 arrivals)
1 ρ(−e2)µ2−ρ(e2)λ2 λ1(vj(n+e1)− vj(m+e1))
2 ρ(−e2)µ2−ρ(e2)λ2 λ1(vj(n+e1)− vj(m+e1))
3 ρ(−e2)µ2−ρ(e2)λ2+(ρ(e2)+fp)λ1 λ1(vj(n+e1)− vj(m+e1−e2))
4 ρ(−e2)µ2−ρ(e2)λ2−(ρ(e2)+fp)λ1

5 ρ(−e2)µ2−ρ(e2)λ2−(ρ(e2)+fp)λ1

6 ρ(−e2)µ2−ρ(e2)λ2 λ1(vj(m+e1)− vj(m+e1−e2))
7 ρ(−e2)µ2 λ1(vj(n+e1)− vj(m+e1)) λ2(vj(n+ e2)−vj(n))
8 ρ(−e2)µ2 λ1(vj(n+e1)− vj(m+e1)) λ2(vj(n+ e2)−vj(n))
9 ρ(−e2)µ2+(ρ(e2)+fp)λ1 λ1(vj(n+e1)− vj(m+e1−e2)) λ2(vj(n+ e2)−vj(n))

10 ρ(−e2)µ2−(ρ(e2)+fp)λ1 λ2(vj(n+ e2)−vj(n))
11 ρ(−e2)µ2−(ρ(e2)+fp)λ1 λ2(vj(n+ e2)−vj(n))
12 ρ(−e2)µ2 λ1(vj(m+e1)− vj(m+e1−e2)) λ2(vj(n+ e2)−vj(n))

# (B.5) (class 1 departures) (B.5) (class 2 departures) (B.6)
1 n1µ1(vj(n−e1)−vj(m−e1)) (γ−(λ+n1µ1+µ2))(vj(n)−vj(m))
2 n1µ1(vj(n−e1)−vj(m−e1)) (n2−1)µ2(vj(m)−vj(m−e2)) (γ−(λ+n1µ1+n2µ2))(vj(n)−vj(m))
3 n1µ1(vj(n−e1)−vj(m−e1)) (n2−1)µ2(vj(m)−vj(m−e2)) (γ−(λ+n1µ1+n2µ2))(vj(n)−vj(m))
4 n1µ1(vj(n−e1)−vj(m−e1)) (γ−(λ+n1µ1+µ2))(vj(n)−vj(m))
5 n1µ1(vj(n−e1)−vj(m−e1)) (n2−1)µ2(vj(m)−vj(m−e2)) (γ−(λ+n1µ1+n2µ2))(vj(n)−vj(m))
6 n1µ1(vj(n−e1)−vj(m−e1)) (n2−1)µ2(vj(m)−vj(m−e2)) (γ−(λ+n1µ1+n2µ2))(vj(n)−vj(m))
7 n1µ1(vj(n−e1)−vj(m−e1)) (γ−(λ+n1µ1+µ2))(vj(n)−vj(m))
8 n1µ1(vj(n−e1)−vj(m−e1)) (n2−1)µ2(vj(m)−vj(m−e2)) (γ−(λ+n1µ1+n2µ2))(vj(n)−vj(m))
9 n1µ1(vj(n−e1)−vj(m−e1)) (n2−1)µ2(vj(m)−vj(m−e2)) (γ−(λ+n1µ1+n2µ2))(vj(n)−vj(m))

10 n1µ1(vj(n−e1)−vj(m−e1)) (γ−(λ+n1µ1+µ2))(vj(n)−vj(m))
11 n1µ1(vj(n−e1)−vj(m−e1)) (n2−1)µ2(vj(m)−vj(m−e2)) (γ−(λ+n1µ1+n2µ2))(vj(n)−vj(m))
12 n1µ1(vj(n−e1)−vj(m−e1)) (n2−1)µ2(vj(m)−vj(m−e2)) (γ−(λ+n1µ1+n2µ2))(vj(n)−vj(m))

∆(n, i)− (r(n)− r(m)) =

(λ1ρ(e1 − e2) + λ2ρ(e2) + n1µ1ρ(−e1) + n2µ2ρ(−e2))

−(λ1ρ(e1 − e2) + λ2ρ(e2) + n1µ1ρ(−e1) + (n2 − 1)µ2ρ(−e2))

+(λ1vj(m+ e1) + λ2vj(n+ e2) + n1µ1vj(n− e1) + n2µ2vj(m))

−(λ1vj(m+ e1 − e2) + λ2vj(m+ e2) + n1µ1vj(m− e1) + (n2 − 1)µ2vj(m− e2))

+(γ − (λ+ n1µ1 + n2µ2))vj(n)− (γ − (λ+ n1µ1 + (n2 − 1)µ2))vj(m) (B.7)

Appendix B: Appendix for Chapter 3 B.1 Proof of Lemma 1
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which may be rearranged as

∆(n, i)− (r(n)− r(m)) = ρ(−e2)µ2

+λ1(vj(m+ e1)− vj(m+ e1 − e2))

+λ2(vj(n+ e2)− vj(m+ e2))

+n1µ1(vj(n− e1)− vj(m− e1))

+(n2 − 1)µ2(vj(m)− vj(m− e2))

+(γ − (λ+ n1µ1 + n2µ2))(vj(n)− vj(m)) (B.8)

The six terms in the six rows in (B.8) are the six column entries in Table B.1 for row #12.

We now prove ∆(n, i) ≥ −γ(ρ(e2) + fp) for all n ∈ N with n2 > 0 and all i ≥ 0 by induction in

the time index i. Fix the state n.

• When fp ≥ −ρ(e2), the smallest value in the first column in the top half of Table B.1 (corre-

sponding to (B.4)) is for cases #4,#5. Requiring this value to exceed −γ(ρ(e2) + fp) ensures

all other entries in the first column in the top half of the table will also exceed that value.

This requirement

r(n)− r(m) + ρ(−e2)µ2 − ρ(e2)λ2 − (ρ(e2) + fp)λ1 ≥ −γ(ρ(e2) + fp) (B.9)

is easily seen to be equivalent to

fp ≥


A2, if ρ(e2)λ2 > ρ(−e2)µ2 + r(n)− r(m)

−ρ(e2), if ρ(e2)λ2 ≤ ρ(−e2)µ2 + r(n)− r(m)

(B.10)

• When fp < −ρ(e2), the smallest value in the first column in the top half of Table B.1 (corre-

sponding to (B.4)) is for cases #3. Requiring this value to exceed −γ(ρ(e2) + fp) ensures all

other entries in the first column in the top half of the table will also exceed that value. This

Appendix B: Appendix for Chapter 3 B.1 Proof of Lemma 1
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requirement

r(n)− r(m) + ρ(−e2)µ2 − ρ(e2)λ2 + (ρ(e2) + fp)λ1 ≥ −γ(ρ(e2) + fp) (B.11)

is impossible for ρ(e2)λ2 > ρ(−e2)µ2 + r(n)− r(m), and otherwise equivalent to

fp ≥ A1, if ρ(e2)λ2 ≤ ρ(−e2)µ2 + r(n)− r(m). (B.12)

Note (B.10) and (B.12) are the sufficient condition (3.29). Consider the base case of the induction,

i = 0, where by definition we have vπ(n, 0) = v0(n) = 0 and thus all entries in the remaining

five columns of Table B.1 are zero. It follows that (3.29) is sufficient to establish the base case.

Suppose now that the induction hypothesis holds for all times 0, . . . , i − 1 = j, we must show

this ensures it holds for i. Assumption 4 guarantees (B.3) is nonnegative, (3.29) guarantees (B.4)

exceeds −γ(ρ(e2)+fp), the induction hypothesis and Table B.1 guarantees (B.5) and (B.6) are both

nonnegative, and thus ∆(n, i) ≥ −γ(ρ(e2) + fp).

B.2 Proof of Lemma 2

The proof is very similar to that of Lemma 1 and hence we only highlight the important differences.

Recall ∆(n, i) defined in (B.3) and enumerated in Fig. B.1 and Table B.1. It now suffices to establish

∆(n, i) ≤ −γ(ρ(e2) + fp) for each n ∈ N with n2 > 0 and i ≥ 0. We again use induction in the time

index i. Fix the state n.

• When fp > −ρ(e2), the largest value in the first column in the top half of Table B.1 (cor-

responding to (B.4)) is for case #9. Requiring this value plus r(n) − r(m) not to exceed

−γ(ρ(e2) + fp) ensures all other entries in the first column in the top half of the table will also

not exceed that value. This requirement

r(n)− r(m) + ρ(−e2)µ2 + (ρ(e2) + fp)λ1 ≤ −γ(ρ(e2) + fp) (B.13)
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is impossible for fp > −ρ(e2) since r(n)− r(m), ρ(−e2)µ2 and fp + ρ(e2) are all nonnegative.

• When fp ≤ −ρ(e2), the largest value in the first column in the top half of Table B.1 (corre-

sponding to (B.4)) is for cases #10 and #11. Requiring this value plus r(n) − r(m) not to

exceed −γ(ρ(e2) + fp) ensures all other entries in the first column in the top half of the table

will also not exceed that value. This requirement

r(n)− r(m) + ρ(−e2)µ2 − (ρ(e2) + fp)λ1 ≤ −γ(ρ(e2) + fp) (B.14)

is equivalent to (3.30).

The lemma follows by the same induction argument used at the end of the proof of Lemma 1.

B.3 Proof of Lemma 3

The proof is very similar to that of Lemma 1 and hence we only highlight the important differences.

Recall the assumed policy π̄ = (πacs, π
p
awf); we omit the dependence on π̄ in the remainder of the

proof. Recall v(n, i) defined in (3.20), with initial condition v(n, 0) = 0 for all n ∈ N . Recall ∆(n, i)

defined in (B.2) and its expansion in (B.3) through (B.6): this expansion is valid for both Lemma

1 and this lemma. The lemma will be proved if we show ∆(n, i) ≥ −γρ(e2) for each n ∈ N with

n2 > 0 and i ≥ 0. Let m ≡ n− e2. There are twelve possibilities for the transitions out of the pair

of states (n,m) with n2 > 0, illustrated in Fig. B.2. Note the twelve possibilities for transitions out

of (n,m) under Lemmas 1 and 3 are different: in Lemma 1 we know n has n1 > 0 and πp ∈ Πp
awf

(always preempt when full and possibly when non-empty), whereas in Lemma 3 we know πp = πpawf

(always and only preempt when full).

Writing out ∆(n, i)− (r(n)− r(m)) for the 12 cases gives Table B.2, after simplification, where

we have used the shorthand notations j ≡ i − 1, λ ≡ λ1 + λ2, and vj(n) ≡ vπ̄(n, j) as was done in

Table B.1. The last five columns in Table B.2 have the common characteristic that each entry is

a difference of expected cumulative reward (vj(·)) values between two states where the two states

have the same number of class 1 calls and the first state has one or more additional class 2 calls

than the second state. We illustrate these manipulations for case #10 (the remaining 11 cases are
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7
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8 9 10 11 12

Figure B.2: The twelve possibilities for transitions out from two states n,m = n − e2 ∈ N
under π̄ = (πacs, π

p
awf) with n2 > 0.

analogous): ∆(n, i)− (r(n)− r(m)) =

(n1µ1ρ(−e1) + n2µ2ρ(−e2))) (B.15)

−(λ1ρ(e1) + λ2ρ(e2) + n1µ1ρ(−e1) + (n2 − 1)µ2ρ(−e2))

+(λ1 max{vj(m+ e1) + ρ(e1 − e2), vj(n)}+ n1µ1vj(n− e1) + n2µ2vj(m))

−(λ1vj(m+ e1) + λ2vj(m+ e2) + n1µ1vj(m− e1) + (n2 − 1)µ2vj(m− e2))

+(γ − (λ1 + n1µ1 + n2µ2))vj(n)− (γ − (λ+ n1µ1 + (n2 − 1)µ2))vj(m)

Since (λ1 max{vj(m + e1) + ρ(e1 − e2), vj(n)} ≥ λ1(vj(m + e1) + ρ(e1 − e2)), we obtain ∆(n, i) −

(r(n)− r(m)) ≥

(λ1ρ(e1 − e2) + n1µ1ρ(−e1) + n2µ2ρ(−e2))) (B.16)

−(λ1ρ(e1) + λ2ρ(e2) + n1µ1ρ(−e1) + (n2 − 1)µ2ρ(−e2))

+(λ1vj(m+ e1) + n1µ1vj(n− e1) + n2µ2vj(m))

−(λ1vj(m+ e1) + λ2vj(n) + n1µ1vj(m− e1) + (n2 − 1)µ2vj(m− e2))

+(γ − (λ1 + n1µ1 + n2µ2))vj(n)− (γ − (λ+ n1µ1 + (n2 − 1)µ2))vj(m)
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Table B.2: ∆(n, i)− (r(n)− r(m)) in (B.3) for the twelve possibilities in Fig. B.2.

# (B.4) (B.5) (class 1 arrivals) (B.5) (class 2 arrivals)
1 ρ(−e2)µ2−ρ(e2)λ2 λ1(vj(n+e1)− vj(m+e1))
2 ρ(−e2)µ2−ρ(e2)λ2−(ρ(e2)+fp)λ1

3 ρ(−e2)µ2−ρ(e2)λ2 λ1(vj(n+e1)− vj(m+e1))
4 ρ(−e2)µ2−ρ(e2)λ2−(ρ(e2)+fp)λ1

5 ρ(−e2)µ2 λ1(vj(n+e1)− vj(m+e1)) λ2(vj(n+ e2)−vj(n))
6 ρ(−e2)µ2 λ1(vj(m+e1)− vj(m+e1)) λ2(vj(n+ e2)−vj(n))
7 ρ(−e2)µ2−ρ(e2)λ2 λ1(vj(n+e1)− vj(m+e1))
8 ρ(−e2)µ2−ρ(e2)λ2−(ρ(e2)+fp)λ1

9 ρ(−e2)µ2−ρ(e2)λ2 λ1(vj(n+e1)− vj(m+e1))
10 ρ(−e2)µ2−ρ(e2)λ2−(ρ(e2)+fp)λ1

11 ρ(−e2)µ2 λ1(vj(n+e1)− vj(m+e1)) λ2(vj(n+ e2)−vj(n))
12 ρ(−e2)µ2 λ1(vj(n+e1)− vj(m+e1)) λ2(vj(n+ e2)−vj(n))

# (B.5) (class 1 departures) (B.5) (class 2 departures) (B.6)
1 (γ−(λ+µ2))(vj(n)−vj(m))
2 (γ−(λ+µ2))(vj(n)−vj(m))
3 (n2 − 1)µ2(vj(m)−vj(m− e2)) (γ−(λ+n2µ2))(vj(n)−vj(m))
4 (n2 − 1)µ2(vj(m)−vj(m− e2)) (γ−(λ+n2µ2))(vj(n)−vj(m))
5 (γ−(λ+µ2))(vj(n)−vj(m))
6 (n2 − 1)µ2(vj(m)−vj(m− e2)) (γ−(λ+n2µ2))(vj(n)−vj(m))
7 n1µ1(vj(n−e1)−vj(m−e1)) (γ−(λ+n1µ1+µ2))(vj(n)−vj(m))
8 n1µ1(vj(n−e1)−vj(m−e1)) (γ−(λ+n1µ1+µ2))(vj(n)−vj(m))
9 n1µ1(vj(n−e1)−vj(m−e1)) (n2−1)µ2(vj(m)−vj(m− e2)) (γ−(λ+n1µ1+n2µ2))(vj(n)−vj(m))

10 n1µ1(vj(n−e1)−vj(m−e1)) (n2−1)µ2(vj(m)−vj(m− e2)) (γ−(λ+n1µ1+n2µ2))(vj(n)−vj(m))
11 n1µ1(vj(n−e1)−vj(m−e1)) (γ−(λ+n1µ1+µ2))(vj(n)−vj(m))
12 n1µ1(vj(n−e1)−vj(m−e1)) (n2−1)µ2(vj(m)−vj(m− e2)) (γ−(λ+n1µ1+n2µ2))(vj(n)−vj(m))

which may be rearranged as

∆(n, i)− (r(n)− r(m)) ≥ ρ(−e2)µ2 − ρ(e2)λ2 − (ρ(e2) + fp)λ1

+n1µ1(vj(n− e1)− vj(m− e1))

+(n2 − 1)µ2(vj(m)− vj(m− e2))

+(γ − (λ+ n1µ1 + n2µ2))(vj(n)− vj(m)) (B.17)

The four terms in the four rows in (B.17) are the four column entries in Table B.2 for row #10.

We now prove ∆(n, i) ≥ −γρ(e2) for all n ∈ N with n2 > 0 and all i ≥ 0 by induction in the

time index i. Fix the state n.

• When fp ≥ −ρ(e2), the smallest value in the first column in the top half of Table B.2 (cor-

responding to (B.4)) is for cases #2,#4,#8,#10. Requiring this value to exceed −γρ(e2)

ensures all other entries in the first column in the top half of the table will also exceed that
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value. This requirement

r(n)− r(m) + ρ(−e2)µ2 − ρ(e2)λ2 − (ρ(e2) + fp)λ1 ≥ −γρ(e2) (B.18)

is equivalent to

fp ≤
1

λ1
(r(n)− r(m) + ρ(−e2)µ2 + (γ − λ1 − λ2)ρ(e2)) . (B.19)

• When fp < −ρ(e2), the smallest value in the first column in the top half of Table B.1 (corre-

sponding to (B.4)) is for cases #1,#3,#7,#9. Requiring this value to exceed −γρ(e2) ensures

all other entries in the first column in the top half of the table will also exceed that value.

This requirement

r(n)− r(m) + ρ(−e2)µ2 − ρ(e2)λ2 ≥ −γρ(e2) (B.20)

is always true since r(n)− r(m) > 0, ρ(−e2) ≥ 0 and (γ − λ2)ρ(e2) ≥ 0.

The lemma follows by the same induction argument used at the end of the proof of Lemma 1.

B.4 Proof of Corollary 3

The condition (3.44) is sufficient for (3.52), which by the policy improvement theorem, ensures

gπ̄ ≥ gπ, as described in Prop. 3. We now seek an analogous condition to (3.44) that would ensure

the opposite of (3.52), namely,

vπ̄(n+ e2, i)− vπ̄(n, i) ≤ −ρ(e2), n ∈ N , i > 0. (B.21)

If (B.21) holds, the policy improvement theorem ensures the desired conclusion, gπ ≥ gπ̄. Conse-

quently, the objective is to use the proof technique in Prop. 3 to find the sufficient condition for

(B.21). Table B.2 gives the values for ∆(n, i) − (r(n) − r(m)). The difference is that for Prop. 3

we wanted the smallest value in the first column, now we want the largest value in the first column.

There are two cases:
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• fp ≥ −λ1+λ2

λ1
ρ(e2). In this case the largest value in the first column in the top half of Table

B.2 (corresponding to (B.4)) is for cases #5, 6, 11, 12. This requirement

r(n)− r(m) + ρ(−e2)µ2 ≤ −γρ(e2) (B.22)

is impossible since r(n)− r(m) ≥ 0, ρ(−e2) ≥ 0 and −γρ(e2) ≤ 0.

• fp < −λ1+λ2

λ1
ρ(e2). In this case the largest value in the first column in the top half of Table B.2

(corresponding to (B.4)) is for cases #2, 4, 8, 10. Requiring this value to be less than −γρ(e2)

ensures all other entries in the first column in the top half of the table will also exceed that

value. This requirement

r(n)− r(m) + ρ(−e2)µ2 − ρ(e2)λ2 − (ρ(e2) + fp)λ1 ≤ −γρ(e2) (B.23)

is impossible since r(n)− r(m) ≥ 0, ρ(−e2) ≥ 0 and −ρ(e2)λ2 − (ρ(e2) + fp)λ1 > 0.

We conclude that we cannot obtain a sufficient condition for (B.21) using this proof technique.
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